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Abstract

Understanding how extreme weather, such as tropical cyclones, will change with future climate
warming is an interesting computational challenge. Here, the hindcast approach is used to create
different storylines of a particular tropical cyclone, Hurricane Irma (2017). Using the community
atmosphere model, we explore how Irma’s precipitation would change under various levels of
climate warming. Analysis is focused on a 48 h period where the simulated hurricane tracks
reasonably represent Irma’s observed track. Under future scenarios of 2K, 3K, and 4 K global
average surface temperature increase above pre-industrial levels, the mean 3-hourly rainfall rates in
the simulated storms increase by 3-7% K~! compared to present. This change increases in
magnitude for the 95th and 99th percentile 3-hourly rates, which intensify by 10-13% K~! and
17-21% K1, respectively. Over Florida, the simulated mean rainfall accumulations increase by
16-26% K~!, with local maxima increasing by 18-43% K~!. All percent changes increase

monotonically with warming level.

1. Introduction

Tropical cyclones (TCs) are impactful extreme
weather events in many ways, not just monetarily
in the form of economic damages. The damage from
their extreme precipitation, intense winds, severe
flooding, and storm surges is costly to the strength
and livelihoods of communities. Given that Earth’s
surface has warmed by over 1 °C since 1880 due to
human actions (Eyring ef al 2021), analyzing changes
in TC genesis, intensity, and extreme precipitation
is important for gauging how TCs and their soci-
etal impacts are influenced by anthropogenic climate
change (Knutson et al 2019). It is also useful to study
TCs under potential warming conditions to see how
their characteristics and impacts may continue to
change into the future (Knutson et al 2020).

Two main drivers of TCs are warm ocean water
and abundant atmospheric moisture—properties
that are increasing globally due to climate warming
(Eyring et al 2021); therefore, it is becoming clear that

climate change is affecting certain characteristics of
TCs, including their intensity and precipitation rates
(Kossin et al 2020, Seneviratne et al 2021, Utsumi and
Kim 2022). The research community has high con-
fidence that TC maximum wind speeds will increase
with a warming climate, implying a larger proportion
of Category 4 and 5 storms on the Saffir-Simpson
scale (Sobel et al 2016). Higher atmospheric temper-
atures result in a higher saturation vapor pressure for
water and therefore an increased capacity for holding
water vapor. According to the Clausius—Clapeyron
relationship, the saturation vapor pressure increases
about 7% per K increase in air temperature, and thus
this rate is a rough estimate for expected increases
in extreme precipitation with climate warming since
extreme precipitation tends to happen in saturated
atmospheric environments (Allen and Ingram 2002).
For TCs, their intensities, precipitation rates, and
environmental ocean temperatures are all related
(Stansfield and Reed 2021, 2023, Xi et al 2023),
which suggests that as climate warming continues

© 2023 The Author(s). Published by IOP Publishing Ltd
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TC precipitation rates will increase due to a combin-
ation of increasing available atmospheric moisture
and increasing TC intensities (Liu et al 2019).

Over time, new approaches have developed to
quantify the impacts of climate change on extreme
weather events. Storylines are a physically self-
consistent unfolding of past events and their plaus-
ible unfolding in the future (Shepherd et al 2018).
Such approaches have been used to quantify the
impact of past climate change on recent devastat-
ing North Atlantic hurricanes (Patricola and Wehner
2018, Reed et al 2020, 2021, 2022). To yield action-
able climate science in a decision-making setting for
relevant stakeholders and policymakers, event-based
storylines allow for consideration of climate vulner-
ability and exposure risks on a more localized level
(Shepherd et al 2018). Rather than relying solely on a
probabilistic approach using large model ensembles,
the focus has shifted to incorporating plausibility
with the storyline approach; this allows for the ana-
lysis of low-likelihood, high-impact events that are
conditional on plausible assumptions about potential
future hazards to ecological systems and the envir-
onment (Sillmann et al 2021). The analysis is espe-
cially informative when there is uncertainty around
the likelihood of the cause of a weather event, but
more certainty about the effects such an event would
have, which is the case for TCs. With event-based
storylines, individual events can be focused on with
high-resolution simulations to enable in-depth map-
ping of their effects (Sillmann et al 2021). These
event-focused simulations are typically run at finer
resolutions than traditional climate model simula-
tions and can consider a variety of future climate
scenarios, which is challenging for ensemble climate
models due to the computational costs of decadal
to century long simulations (Brogli et al 2023). Two
downsides of the storyline approach are that it does
not provide insight on potential future changes in the
frequency of weather events and it does not take into
account potential future changes in large-scale wind
fields that are not forced by thermodynamic changes
in the atmosphere. The storyline approach, in con-
junction with a probabilistic framework on the quan-
tification of impact, represents uncertainty in climate
change’s physical aspects and frames risk around con-
crete events (Shepherd et al 2018).

Building off recent work using storyline frame-
works for hurricanes, we will focus our study on
Hurricane Irma. Hurricane Irma began as a trop-
ical wave moving westward from the West African
coast on 27 August 2017 (Cangialosi et al 2018). The
storm system intensified over waters that were mar-
ginally warmer than average and was officially cat-
egorized as a hurricane on 31 August, after which
it made landfall seven times and its intensity oscil-
lated between Categories 3, 4, and 5. Irma struck the
Florida Keys, specifically Cudjoe Key around 1300
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UTC on 10 September and later hit the continental
United States on southwestern Florida’s Marco Island
around 1930 UTC that same evening (Cangialosi
et al 2018). Between millions of people losing power,
property loss due to major flooding, and other dam-
ages, costs added up to around $50 billion (NOAA
2023). At the time, Hurricane Irma was the first cat-
egory 5 hurricane to hit the Leeward Islands and
was the most intense hurricane on record to exist in
the open Atlantic Ocean. Because of Irma’s record-
setting strength and devastating damage throughout
the Caribbean and Florida, the World Meteorological
Society retired the name Irma from the rotation for
future Atlantic hurricane names.

Previous studies have attributed aspects of indi-
vidual TCs to anthropogenic climate change using
a variety of methodologies ranging from statistical
techniques using observations to model simulations
of the storms under various historical and future cli-
mate scenarios (e.g. Risser and Wehner 2017, Van
Oldenborgh et al 2017, Patricola and Wehner 2018,
Wang et al 2018). For this study, we apply the hindcast
technique with the Community Atmosphere Model
version 5 (CAM5) to simulate Hurricane Irma under
multiple potential future climate warming levels. This
methodology was previously developed and tested
on other TCs, such as Hurricane Dorian (Reed et al
2021), Hurricane Florence (Reed et al 2020), and
Typhoon Haiyan (Wehner et al 2019). These previ-
ous studies focused on the impacts of climate change
up to the present, but not of future warming scen-
arios, and demonstrated CAM5’s capability to sim-
ulate hurricane tracks, intensities, and precipitation
that match well with observations. While Patricola
and Wehner (2018) performed hindcast simulations
of TCs under future scenarios, they examined changes
in the individual TCs at the end of the century under
three representative concentration pathway (RCP)
scenarios. In contrast, our methodology simulates
Hurricane Irma under specific levels of atmospheric
warming above pre-industrial temperatures, which
allows for the quantification of how Irma would
be different at any time in the future when (or if)
the level of climate warming reaches these levels.
The goal of this study is to demonstrate the useful-
ness of the storyline approach to quantify plausible
changes in TC precipitation under potential future
climate warming. This paper is structured as follows:
section 2 details the CAM5 ensemble simulations,
the TC tracking and precipitation extraction meth-
odology, and the observational datasets; section 3
compares Hurricane Irma’s track and precipitation in
CAMS to observations and then examines the changes
in storm precipitation in the future warming scen-
arios compared to the present warming scenario; and
section 4 concludes with a discussion of the implica-
tions of the results and the usefulness of the storyline
approach for studying TCs under future warming.
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2. Methodology

2.1. Model simulation design

The simulation component of our storyline ana-
lysis makes use of CAM5 within the Community
Earth System Model (CESM) framework (Neale and
Coauthors 2012, Hurrell et al 2013). CAMS5 is con-
figured with a variable resolution grid (Zarzycki and
Jablonowski 2014), with grid spacing of 28 km over
much of the North Atlantic, following the approach
of Zarzycki and Jablonowski (2015) to initialize hind-
casts at various lead times in advance of Hurricane
Irma’s landfall in Florida. In particular, CAMS5 is ini-
tialized using the Global Data Assimilation System
(GDAS) and Optimum Interpolation Sea Surface
Temperature (OISST), the NOAA atmospheric and
ocean analyses (National Centers for Environmental
Prediction, National Weather Service, NOAA, U.S.
Department of Commerce 2015, Huang et al 2021),
and a digital filter is used to remove any hydrostatic
imbalance associated with the initial state (Zarzycki
and Jablonowski 2015). This scenario, which was
initialized with the climate experienced by the real
Hurricane Irma in 2017, is referred to as the ‘present
warming’ scenario. To quantify the impact of poten-
tial future climate change on Hurricane Irma, future
storyline simulations are conducted with the GDAS
and OISST initial conditions adjusted using estim-
ates of a future warming fingerprint on the SST
and 3D temperature and specific humidity fields.
Following the guidance from similar studies of TCs
(e.g. Lackmann 2015, Patricola and Wehner 2018, Liu
et al 2020), we chose to only modify the thermo-
dynamic initial conditions and not geopotential or
wind. This is to ensure Hurricane Irma’s tracks among
all the model simulations are as close as possible so
we can compare the precipitation fields directly, since
large-scale winds tend to steer hurricanes and pre-
cipitation fields are greatly impacted by the exact
track of the storm. These fingerprints are estimated
using the 40-member CESM Large Ensemble under
a future high-emissions (RCP8.5) scenario (Kay et al
2015), calculated from the first year that global aver-
age surface temperature is 2K, 3K and 4K warmer
than the 1500-year 1850 control simulation (prein-
dustrial). Note that in 2017, when Hurricane Irma
occurred, the global average temperature was about
1K warmer than preindustrial. Since CAMS5 is the
atmospheric component of CESM, there is consist-
ency between the modeling system used to run the
Irma storyline simulations and to calculate the cli-
mate change fingerprints.

Four initialization times of 8 September 00Z, 8
September 12Z, 9 September 00Z and 9 September
127 are used for each of the four scenarios (present
warming and the three future warming levels). For
each combination of initialization time and climate
scenario, 20-member ensembles of 7-day long sim-
ulations are completed, resulting in four scenarios
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for each initialization time and 320 total simula-
tions. The ensembles are created by slightly vary-
ing parameters in CAM5’s deep convection para-
meterization package (Zhang and McFarlane 1995),
as in Reed ef al (2020) and Reed et al (2022). The
three parameters in the deep convection scheme that
were modified to create the ensembles are precip-
itation coefficient (c0_ocn), convective time scale
(tau), and parcel fractional mass entrainment rate
(dmpdz). Following suggestions from He and Posselt
(2015) on reasonable ranges for these parameters,
random values were sampled between 0.001 and
0.045 for c0_ocn, 1800 and 28 800 for tau, and —0.002
and 0 for dmpdz. Other parameterization packages
used are the University of Washington (UW) shal-
low convection scheme (Park and Bretherton 2009),
the UW moist boundary layer turbulence scheme
(Bretherton and Park 2009), the Morrison and
Gettelman cloud microphysics scheme (Morrison
and Gettelman 2008), cloud macrophysics (Park et al
2014), and the rapid radiative transfer method for
GCMs radiation scheme (Iacono et al 2008). All
settings are exactly the same as described in Reed
et al (2022). The CAMS5 hindcast approach has been
applied to explore the impact of historical climate
change on the precipitation during recent devastat-
ing hurricanes, including Hurricane Florence (Reed
et al 2020), Hurricane Dorian (Reed et al 2021)
and the entire 2020 Atlantic hurricane season (Reed
et al 2022). Further, in traditional decadal-scale cli-
mate simulations, CAM5 has shown the ability to
simulate realistic North Atlantic hurricane frequency
(Wehner et al 2014, Reed et al 2019) and precipitation
(Stansfield et al 2020).

2.2. TC track and precipitation analysis

This work utilizes TempestExtremes (Ullrich et al
2021) to detect and track the simulated Hurricane
Irma in each ensemble hindcast, as in Reed et al
(2022). Furthermore, storm-specific precipitation is
extracted following the approach of Stansfield et al
(2020), in which TempestExtremes calculates the
outer radius of the storm, taken to be the azimuthally-
averaged azimuthal wind speed of 8m s~!, and
all precipitation within this radius is identified as
Hurricane Irma’s. The storms’ simulated tracks were
compared to observations to assess the error in track,
landfall location, and landfall timing and character-
ize the simulations’ goodness-of-fit for a storyline
analysis. Large variations in track can greatly alter
the storms’ precipitation amounts, so the tracks
in the different simulations must be comparable
to quantify differences in precipitation under dif-
ferent climate scenarios. Hurricane Irma’s observed
track was obtained from the International Best Track
Archive for Climate Stewardship (IBTrACS; Knapp
et al 2010) database. Precipitation observations are
from the U.S. National Weather Service Stage IV
precipitation analysis, which combines observations
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from ground-based radars and rain gauges (Seo and
Breidenbach 2002). Before any analysis, the Stage IV
data is conservatively regridded from its native 4 km
resolution onto the native CAM5 grid. To compare
the Stage IV data to data from weather stations, we
have plotted Irma’s precipitation accumulation using
data from the Global Historical Climatology Network
daily dataset (Menne et al 2012), which is shown in
figure S1.

3. Results

3.1. Storm track

Since TC track and translation speed impact precip-
itation (Tu er al 2022), we first compare the simu-
lated storm tracks and landfall metrics to observa-
tions to determine if the storm is represented well in
the CAMS5 simulations. Figure 1 shows the ensemble-
mean simulated TC tracks across the four model scen-
arios (Present warming, 2 K warming, 3 K warming,
and 4K warming), grouped by initialization time
of the simulations (09-08 0Z, 09-08 12Z, 09-09 0Z,
and 09-09 12Z). For comparison, each panel con-
tains Hurricane Irma’s observed track (black line).
Calculating a time series of track error (i.e. the
distance between the simulated track and observed
track) demonstrates that the 09-09 0Z initialization
time has the lowest track error for a continuous 48 h
period (09-10 0Z to 09-12 0Z) starting 24 h after the
initialization time to allow for model spin-up (see
figure S2 and table 1). All the ensembles, initializ-
ation times, and model scenarios simulate landfall
in Florida, but the timing and location vary. Again,
the 09-09 0Z initialization time has the smallest
mean error in landfall location and timing (table 1).
Considering the well-simulated track with the smal-
lest errors in landfall location and timing, the 09-09
0Z initialization time is used for the remainder of this
study.

3.2. Storm precipitation

Figure 2 presents the (panels (b)—(e)) model 09-09 0Z
initialization time ensemble-mean accumulated pre-
cipitation in Florida from Hurricane Irma over the
selected 48 h period of interest (09-10 0Z to 09-12
0Z) compared to (panel (a)) observations. For obser-
vations and all model scenarios, there are precipit-
ation accumulations above 0.1 m over most of the
Florida peninsula. The maximum accumulated pre-
cipitation amount (see bottom left of each panel)
is about 30% higher in the present warming scen-
ario compared to observations, which is likely related
to the regridding onto the coarser CAM5 grid and
underestimation of the extreme precipitation rates
that occur for hurricanes in modern observations
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(Medlin et al 2007, Omranian et al 2018). The under-
estimation is further evidenced by comparing to the
official National Hurricane Center report on Irma
(Cangialosi et al 2018), which mentions that the max-
imum accumulated precipitation amount was about
22 inches (0.56 m), although that amount is for the
full lifetime of the hurricane and not the 48 h period
used in this study. The locations of the maxima in the
models are within 180km to 270km from the loc-
ation of the maximum from observations (27.6° N,
80.4° W). Variations in the exact maximum precip-
itation amounts and locations between the model
ensembles are to be expected due to internal variabil-
ity and slight variations in Irma’s track since the mod-
els were initialized a few days before the storm’s land-
fall. The mean accumulated precipitation amount
(see bottom left of each panel) increases with warm-
ing and is more comparable between the observations
and present warming scenario than the maximum.
Overall, there is an increase in precipitation accu-
mulations over many areas of Florida under all the
warming scenarios compared to the present warming
scenario.

Figure 3(a) shows the frequency distributions
of Hurricane Irma precipitation rates for each
of the model simulations and observations. With
greater warming, the frequency of precipitation rates
between 3mmd~! and 300 mm d ! decreases, while
the more extreme rates greater than 400 mmd~!
become more frequent. Additionally, the right tails
of the distributions extend further to the right as
warming increases, indicating that the most extreme
precipitation rates are larger. Figure 3(b) shows the
distributions of precipitation amounts attributed to
each precipitation rate (i.e. the amount of precipit-
ation that came from different precipitation rates).
More details about how the distributions in figure 3
are calculated can be found in Pendergrass and
Hartmann (2014). For all the simulations scenarios,
the most precipitation comes from rates greater than
200 mmd~"'. The 2K, 3K, and 4 K warming scenarios
have their largest precipitation amounts coming from
rates of at least 400 mm d~!. As the warming level for
the scenario increases, less precipitation comes from
the lower rates between 30 mmd~—! and 300 mmd~!
and more comes from the higher precipitation rates
greater than 400 mmd~!. Based on the distribu-
tion peaks, the precipitation rate that contributes
the largest precipitation amount also increases with
warming.

Observations show a peak precipitation rate fre-
quency of about 100mmd~!, with the greatest
precipitation amounts coming from rates around
300mmd—!. The simulated amount distributions,
particularly for the present warming scenario, show
peak amounts of precipitation coming from rates
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storm’s location at the 0Z timestamps for each labeled date.

Figure 1. Ensemble-mean simulated tracks of Hurricane Irma for the four scenarios (colored lines), along with the observed track
(black lines). The panels show different initialization times, ranging from 09-08 0Z to 09-09 12Z. The star markers pinpoint the

15°N
95°wW 90°w 85°W 80°W 75°W 70°W

Table 1. Metrics used to compare CAM5 hindcasts at different initialization times to observations. These metrics represent a mean
statistic across the four warming scenarios (present, 2 K, 3 K, and 4 K) for each initialization time. The first metric is the mean track
error over a 48 h period, starting 24 h after the corresponding initialization time to account for model spin-up. The second and third

metrics are the mean landfall location and timing errors.

Initialization time 09-08 0Z 09-08 127 09-09 0Z 09-09 127
Track 96 km 78 km 51km 161 km
Landfall location 129 km 365 km 79 km 467 km
Landfall timing 45h 25.0h 3.0h 13.5h

around 300 mmd~!, suggesting some consistency
between the observed and simulated storm rainfall.
More generally, the observed precipitation distribu-
tions shown in figure 3 differ from the simulated dis-
tributions for a few reasons. For one, observations
are just one realization while the model distributions
are 20-member ensemble means. Additionally, the
observed precipitation field is measured from land-
based data sources with limited availability off the

coast. This may cause the distributions to exclude
some of Irma’s precipitation when it was over the
ocean at the beginning of the 48 h period of interest,
as well as the outer bands of precipitation while
the storm is overland. Modern observational tech-
nology tends to underestimate precipitation rates
within TCs (Medlin et al 2007, Omranian et al
2018), which could partially explain the lower max-
imum precipitation rates in observations compared
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Figure 2. Ensemble-mean accumulated precipitation (meters) in Florida from Hurricane Irma, from 09-10 0Z to 09-12 0Z for (a)
observations and (b)—(e) the model warming scenarios using the 09-09 0Z initialization. The ensemble-mean maximum and
mean accumulated precipitation amount (m) in Florida are noted in the bottom left of each panel.

— Present Warming
2K Warming
—— 3K Warming
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Figure 3. Distributions of Hurricane Irma precipitation rate (a) frequencies (%) and (b) amounts (mm d ') for observations and
each model scenario using the 09-09 0Z initialization. The x-axis shows precipitation rates (mm d~!), binned on a logarithmic
scale. Panel a represents a distribution of proportions of each precipitation rate’s occurrence. Panel b represents a distribution of
the precipitation amount that is attributed to each precipitation rate on the x-axis.

to the models. Climate models are also known to

produce too much drizzle compared to observa-
tions (Chen et al 2021, Ahn et al 2023), which may
explain the first peak in the model frequency dis-
tributions in figure 3(a) around 1-3mmd~!. The
high bias in the frequency of these low precipitation
rates in the models does not impact the precipitation

amount distributions (figure 3(b)) since most of the
precipitation accumulation comes from rates above
100 mmd—1.

To more directly quantify the potential impact
of climate change on extreme precipitation, figure 4
shows the percent increase in Irma’s 3-hourly pre-
cipitation rates in the model warming scenarios
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Figure 4. Percent increases in Hurricane Irma’s 3-hourly
precipitation rates in the 2 K (yellow), 3K (green), and 4K
(red) warming scenarios compared to the present warming
scenario. The x-axis shows different precipitation metrics:
the mean 3-hourly rate and certain percentiles to quantify
extreme precipitation metrics (95th, 99th, 99.9th). Using
bootstrapping techniques, 1000 samples were taken from
the ensemble member data for each warming scenario,
recording the mean and relevant percentiles from each
sample. The percent increases between the 1000 sample
values from each warming scenario as compared with the
present warming scenario were then calculated for each of
these rainfall rate metrics. The X markers denote the
average percent increase of these samples, and the colored
dots behind the X markers show the spread of the percent
increases from the individual samples. The colored dashed
horizontal lines show the expected precipitation increases
based solely on the Clausius-Clapeyron relationship (e.g.
7% increase for the 2 K warming scenario, which is 1 K
warmer than the present warming scenario).

compared with the present warming scenario.
Bootstrapping techniques were used to calculate
the precipitation percent changes; for each warm-
ing scenario, 1000 samples were taken from the
ensemble member precipitation data and percent
increases for each of the rainfall rate metrics were cal-
culated. The figure shows the average percent increase
across 1000 samples and the resulting spread from
the individual samples. A percent increase is calcu-
lated for the mean 3-hourly precipitation rate, as
well as select extreme precipitation rate percentiles:
the 95th, 99th, and 99.9th. The horizontal dotted
lines demonstrate the Clausius—Clapeyron scaling
(i.e. 7% for every degree of warming) for each warm-
ing scenario and show that for the 95th percentile of
precipitation and above, the precipitation increases
exceed the Clausius—Clapeyron scaling for all warm-
ing scenarios. For all the precipitation rate metrics,
the percent increase pattern is consistent and mono-
tonic with the 4K warming scenario demonstrat-
ing the largest percent increase and the 2K scen-
ario with the smallest percent increase. Additionally,
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the percent increase becomes more extreme as the
percentile becomes more extreme (e.g. the 95th
percentile has percent increase metrics in the 13%—
29% range or 10-13% K~!, while the 99.9th per-
centile has percent increase metrics in the 43%—-61%
range or 20-43% K~ '). Figure 4 suggests that the
change in Hurricane Irma’s extreme precipitation
with warming increases with more extreme percent-
iles of the precipitation rate distribution. Previous
studies also see this effect for changes in distribu-
tions of global precipitation from a variety of climate
model simulations, which they attribute to differ-
ences in upward velocities (O’Gorman and Schneider
2009, Pendergrass 2018, Norris et al 2019).

In these simulations, Hurricane Irma’s maximum
intensity during the 48h period of interest does
strengthen with warming (see figure S3) at an estim-
ated 9.8% K~! for maximum low-level wind speed
and 1.0% K~! for minimum sea level pressure. TC
intensity has been identified as a mechanism that
can increase precipitation rates beyond the Clausius-
Clapeyron scaling (Liu et al 2019, Stansfield and Reed
2021); therefore, this increase in Irma’s intensity at
least partially explains the large precipitation rate
increases demonstrated in figure 4. When focusing on
precipitation rates over Florida only, instead of over
land and ocean, the percent changes in precipitation
rates are larger. The mean 3-hourly precipitation rates
over Florida increase by 17-26% K~ !, compared to 3—
7% K~! for Irma overall (see figure S4 for a version
of figure 4 for precipitation over Florida only). This
is consistent with a recent study that looked at many
North Atlantic hurricane seasons and also found a lar-
ger increase in TC precipitation per K over the eastern
United States than over the ocean (Hallam et al 2023).

4, Conclusion

This paper demonstrates the utility of the storyline
framework in assessing potential future changes in
precipitation for recent TCs under different warming
scenarios. When using this framework, it is important
to first evaluate the model’s ability to simulate the TC
track, landfall, and precipitation accumulations real-
istically compared to observations. This ability may
not be sufficient for all models and all TCs, such as
TCs where the steering flow was not simulated well in
the models (Brennan and Majumdar 2011, Galarneau
and Davis 2013). For Hurricane Irma, CAM5 demon-
strated reasonable track, landfall location and tim-
ing, and precipitation accumulation in all warm-
ing scenarios when the model was initialized on 9
September at 00Z. Given this realistic simulation, the
present warming scenario Irma was compared with
Irma under three warming scenarios (a 2K, 3K, and
4 Kwarmer climate). Under these warming scenarios,
the mean accumulated precipitation from Hurricane
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Irma over Florida increased by 24%—-55%, the max-
imum precipitation within the storm increased by
43%—61%, and larger precipitation amounts are the
result of more extreme precipitation rates.

For the 3-hourly precipitation rates within the
storm, the percent change compared to the present
warming scenario increased more for higher precipit-
ation percentiles when comparing the 95th, 99th, and
99.9th percentiles. The 4 K warming scenario con-
sistently showed the greatest percent increases in 3-
hourly precipitation rates. It can be helpful to discuss
changes in these different precipitation metrics as a
percentage change per degree of global average warm-
ing. Compared with present warming, the mean and
maximum accumulated precipitation over Florida
increased by 16-26% K~! and 18—43% K~!, respect-
ively. Likewise, the mean and 99.9th percentile for 3-
hourly precipitation rates over Florida increased by
17-26% K~! and 21-43% K™!, respectively. For the
95th, 99th, and 99.9th percentiles, the precipitation
increases exceeded the Clausius—Clapeyron scaling
for all warming scenarios, likely due to the increase
in intensity of Irma. Overall the %/K changes found
here are comparable to results for similar precipita-
tion metrics for other individual hurricanes (Risser
and Wehner 2017, Reed et al 2021) and the 2020
Atlantic hurricane season (Reed et al 2022). For sim-
ulations of Hurricane Irma under various RCP scen-
arios using the Weather and Research Forecasting
(WRF) model at 4.5km grid spacing, Patricola and
Wehner (2018) found increases of 2.1-8.8% K~! for
precipitation averaged within a 5° box around the TC
center and 17.5-27.8% K~ ! within a 1.5° box around
the center. Despite using different precipitation met-
rics, different models, and different methodologies,
the %/K increases in precipitation for Hurricane Irma
are quite similar between this study and Patricola and
Wehner (2018).

The results here are consistent with more tradi-
tional approaches to exploring the projected impact
of climate change on TC precipitation (e.g. Knutson
et al 2020, Stansfield et al 2020) and with event attri-
bution studies (e.g. Patricola and Wehner 2018, Reed
et al 2022). One caveat of this analysis is that only
the thermodynamic fingerprints of climate change
(i.e. changes in temperature, moisture, and SST) are
incorporated into the storyline simulations so there
may be large-scale atmospheric dynamic changes
that are not accounted for. By focusing on recent
impactful storms, the storyline approach allows for
decision-makers and practitioners to view such an
event with a future lens as they are assessing dam-
ages and resiliency planning. In this sense, the frame-
work can be used to inform adaptation planning at
local, region and national levels. Furthermore, such
storyline frameworks could be coupled to economic
loss models or infrastructure operations models (e.g.
water, energy, transportation sectors) to aid in the
assessment of the potential impacts of future similar
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storms on society. Such storyline approaches provide
a pathway for operational weather modeling cen-
ters to quantify the past impacts of climate change
(Wehner and Reed 2022) and provide relevant cli-
mate information of possible futures at operational-
scales. Finally, this warming level-based storyline
approach may enable easier communication about
the impacts of limiting climate change to specific
warming amounts in the context of regional, national
and international policy.
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