
2023 IEEE International Conference on Big Data (BigData)

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 819

Hybrid Loss for Hierarchical Multi–label

Classification Network

Wenting Qi

Department of Computer Science

University at Albany, SUNY

Albany, New York, USA

wqi@albany.edu

Charalampos Chelmis∗†

Department of Computer Science

University at Albany, SUNY

Albany, New York, USA

cchelmis@albany.edu

Abstract—Machine learning models for hierarchical multi–
label classification (HMC) typically achieve low accuracy. This
is because such models need not only predict multiple labels
for each data instance, but also ensure that predicted labels
conform to a given hierarchical structure. Existing state–of–
the–art strategies for HMC decouple the learning process from
ensuring that predicted labels reside in a path of the hierarchy,
thus inevitably degrading the overall classification accuracy.
To address this limitation, we propose a novel loss function,
which enables a model to encode both a global perspective of
the class hierarchy, as well local class–relationships in adjacent
hierarchical levels, to ensure that predictions align with the class
hierarchy, both during training and testing. We demonstrate the
superiority of the proposed approach against multiple state–of–
the–art methods for HMC on 20 real–world datasets.

Index Terms—Learning with constraints, local loss, global loss

I. INTRODUCTION

Hierarchical multi–label classification (HMC) is defined

as a classification in which data instances are associated

with multiple classes that are not disjoint, but organized into

hierarchical structures, such as trees [1]–[3] or directed acyclic

graphs (DAG) [4]. The main difference between multi–label

classification and HMC is the hierarchy constraint with respect

to the class hierarchy. Hierarchy constraint refers that if a data

instance belongs to a class, it must also be an instance of

all of its predecessors in the class hierarchy [3]. HMC tasks

have attracted increasing attention in the machine learning

domain since they have numerous real–world applications

including, but not limited to, bioinformatics [1], [5], [6], image

annotation [2], and text classification [7]–[9].

From the perspective of the learning algorithm, existing

solutions can be generally divided into two categories: algo-

rithmic and neural networks. Methods in the first category

include, but are not limited to CSSA [10] (a greedy approach),

H–AdaBoost [11] (based on AdaBoost), H–SVM [12], C–

SSVM [13] (based on SVM), and CLUS–HMC [14] (based on

decision trees). More recently, neural network–based solutions

This material is based upon work supported by the National Science
Foundation under Grant No. ECCS–1737443.
∗Corresponding author.
†Both authors contributed equally.

have been proposed, such as CHMCNN [15] (feed–forward

neural network) and HMCN–R (recurrent neural network)

[16]. Both have been shown to outperform algorithmic ap-

proaches, especially for HMCN–R, which leveraged a long

short-term memory (LSTM) network [17] and achieved com-

parable performance compared to CHMCNN, but requires

fewer training parameters. Inspired by this result, this work

focuses on further improving the performance of LSTM–based

solutions for HMC tasks.

From the perspective of the hierarchy constraint, most

neural network–based solutions [16], [18], [19] impose the

constraint post–processing. However, addressing hierarchy vi-

olations for individual data instances post–processing hinders

the ability of a model to learn the class hierarchy during the

learning process. Methods, such as CHMCNN [15], which

incorporate the hierarchy constraint directly into the learning

process, have been shown to significantly outperform post–

processing methods. The major drawback of CHMCNN is that

it optimizes a loss function globally1. The global approach is

more likely to be cheaper and avoid the well–known error–

propagation, but it is less likely to capture local2 information

for any given level in the class hierarchy [3]. However, local

information encodes class–relationships in adjacent hierarchi-

cal levels, which are essential for improving learning accuracy

[16]. Meanwhile, a purely local approach is more likely to

result in overfitting [16].

This work introduces a local loss function, that is used to

incorporate local class relationships into the learning process,

in a manner that complements the global loss proposed by

[15]. The resulting framework, Hybrid LSTM (HLSTM),

concurrently optimizes both loss functions.

Our main contributions can be summarized as follows.

• First, we propose a local loss function that explicitly

incorporates the hierarchy constraint into the learning

process.

1Global in HMC refers to discriminating all classes simultaneously. For
example, the entire class hierarchy path is 8 → 3 → 1 → 0 in Figure 1(a).

2Local in HMC refers to class–relationships in adjacent hierarchical levels,
such as 3 → 1 or 8 → 3 in Figure 1(a). Different from the global
approach, the local approach emphasizes particular partial hierarchical class–
relationships.

Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on August 27,2024 at 18:30:37 UTC from IEEE Xplore. Restrictions apply.

820

• Second, we propose a novel loss that can simultaneously

optimize both local and global loss functions without any

post–processing steps for hierarchy constraint.

• Finally, we experimentally evaluate the effectiveness of

the proposed approach on 20 benchmark datasets against

the state–of–the–art.

II. BACKGROUND

A. HMCN–R

The hierarchical multi–label classification network (HMCN)

in [16] for HMC problems uses both local and global op-

timization. However, HMCN allows the hierarchy to be vi-

olated in predictions, and adopts an additional independent

loss to rectify hierarchy inconsistencies, which may lead to

conflict with global and local loss when updating the gradient.

Specifically, a feed–forward (HMCN–F) and a recurrent neural

network (HMCN–R) architecture are exploited. Since HMCN–

R is obtained by HMCN–F to reduce the number of learning

parameters while maintaining high accuracy, we focus on

HMCN–R hereafter.

In HMCN–R, the recurrent cell is designed as an LSTM

network, and each iteration is concerned with an unrolled

recurrent cell that represents a hierarchical level. The recurrent

flow between the recurrent cells captures global information,

whereas the unrolled recurrent cell captures local informa-

tion. Therefore, at each iteration, the gradients flow between

recurrent cells, as well as within each recurrent cell. The

introduction of the LSTM structure enjoys the advantage of

capturing the long–term dependency by using the forgetting

gate and the input gate, such that each recurrent cell has

access to the information contained in the previous recurrent

cells. The loss function of HMCN–R comprises local, global,

and hierarchy violation loss. Different from HMCN–R, this

work directly incorporates the hierarchy constraint into the

global and local losses, deeming the hierarchy violation loss

completely unnecessary. The advantage of this approach is to

ensure the prediction aligns with the class hierarchy.

B. CHMCNN

Coherent hierarchical multi–label classification neural net-

work (CHMCNN) [15] is another popular model for HMC

tasks. CHMCNN defines a max constraint module (MCM),

which takes the output score of the learning model as input

and imposes the hierarchy constraint. Specifically, assuming

DA denotes the set of A’s sub–classes, and h denotes the

learning model’s output, the MCM for class A is defined as

MCMA = maxB∈DA
(hB). The global loss [15] is defined as

MCLossA = −yAln(maxB∈DA
(yBhB)) − (1 − yA)ln(1 −

MCMA). However, CHMCNN does not capture local infor-

mation and cannot leverage existing hybrid approaches since

MCM value is unobtainable from the local perspective. For

instance, computing MCMA requires hB for all the descen-

dants of A. However, in the hybrid approach, the value of hB

is available only for the children in the nearest hierarchy level,

rather than all descendants. This work proposes a novel loss

function that encodes local hierarchy information and imposes

the hierarchy constraint at the same time.

III. PRELIMINARIES AND PROBLEM STATEMENT

Let H denote the class hierarchy structure of c classes in

total, j denote the class index in H as 0, 1, . . . , c − 1 in a

top to bottom manner with the index of j, and d represent

the depth of H with level index of h. For two classes cA
and cB (i.e., cA and cB ∈ {0, 1, . . . , c − 1}), cB is a parent

of cA, then we have cA → cB . Additionally, let the training

data be Dtrain = {(xi,yi), . . . , (xn,yn)}, where 0 ≤ i ≤ n,

and the label vector y(i) = [y0
i
, y1

i
, y2

i
, . . . , yc−1

i
] ∈ {0, 1}c

denote the labels of xi in H. Given classification network l,
let lxi

(j) denote l’s output for data instance xi. Specifically,

each label j is assigned to xi if lxi
(j) exceeds a pre–set

threshold ts (i.e., j ∈ y if l(j) ≥ ts). ŷi denotes the set

of labels that l predicts for xi. Following [15], we define

hierarchy violation for HMC tasks as follows. For label cA
and cB , a hierarchy violation occurs when any l(cA) > l(cB),
if cA → cB . Given D and H, the goal is to learn a multi–

label classification network l to predict the labels of xi, while

ensuring the predicted labels follow the hierarchy structure. To

ensure the hierarchy constraint is always satisfied, the output

of l(cB) should always be larger than or equal to l(cA) if

cA → cB [16].

IV. HYBRID HIERARCHICAL MULTI–LABEL

CLASSIFICATION NETWORK

A. Global Optimization Using MCLoss

The majority of global approaches for HMC output predic-

tion results (or scores) at once for all classes. [15] proposed a

HMC network that globally optimizes neural network using

the MCLoss function discussed in Section II-B. However,

global methods such as the above are prone to errors when

a wrong prediction only occurs in a class located in the lower

hierarchy level. Figure 1 shows such an example. Specifically,

Figure 1(a) presents the class hierarchy structure as well as

the l’s outcomes. The prediction perfectly aligns with the

ground–truth for a threshold ts = 0.5 (i.e., for ∀ j in H,

l(j) ≥ 0.5 ⇒ j ∈ ŷi). However, if the output score for the

9th class happened to be 0.7, as illustrated in Figure 1(a),

the MCM loss in [15] updates all scores of the 9th node’s

predecessors to 0.7, as illustrated in Figure 1(b), severely

affecting the learning results of the 5th and 2nd classes.

The problem is even more severe if the class hierarchy is

deep because an error in a leaf node will affect all of its

predecessors. Despite the inadequacy of the global approach

to handling such cases, it is still beneficial in scenarios such

as the one illustrated in Figure 2(a) where a wrong prediction

occurs on the 1st and 3rd classes. In this case, incorporating

the MCLoss into the learning process results in better aligning

the predictions to the ground–truth, as shown in Figure 2(b).

This work proposes to leverage the strength of the global

approach, while avoiding its pitfalls, as discussed in Section

IV-B.

Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on August 27,2024 at 18:30:37 UTC from IEEE Xplore. Restrictions apply.

823

descriptions for F d, Id, Ĉh, and Ch are shown below:

F
h = σ(WF (A

h−1 ⊙ x) + bF), (6)

Ih = σ(WI(A
h−1 ⊙ x) + bI), (7)

Ĉ
h = T (WC(A

h−1 ⊙ x) + bC), (8)

C
h = F

h
C

h−1 + I
h
Ĉ

h, (9)

where T and σ denote the tanh and sigmoid functions,

respectively. Oh denotes the output gate that decides the new

hidden state (Ah
G

in Figure 4). Wh
T

is used as a transition

weights matrix to project Ah
G

to Ah
L

. After projecting global

features into a particular local level, the weight parameter Wh
L

makes predictions for classes located in the corresponding

hierarchy level. Thus, the hidden state for capturing the local

hierarchy information. The mathematical descriptions for Oh

and Ah are expressed as follows:

O
h = σ(WO(A

h−1 · x) + bO), (10)

A
h = O

hT (Ch). (11)

In both the training and testing phases of HLSTM output,we

define P = MCM(σ(W d+1(Ad
G
+ bd+1)), where W d+1 is

weight matrix that maps the hierarchical output of the bottom

layer to the global output with total C classes. Local outputs

(LMC) are not directly used in the model’s prediction phase.

This is because LMC requires an additional round to achieve

consistency, transitioning from multiple partial local parent-

child paths to a complete path.

V. EXPERIMENTAL SETTING

A. Datasets

We evaluate HLSTM on 20 benchmark datasets [15], [16]

that are widely used to evaluate HMC methods. The datasets

can be divided into three categories, including 16 functional

genomics datasets [12], two medical datasets [2], one textual

dataset [20], and a dataset of microalgae images [21]. Table I

provides the dataset name (Dataset), the number of classes (#

classes) and the number of features (# features), and the size

of the training and test datasets for each benchmark. All 20
datasets are preprocessed so that missing values are replaced

with the mean for numeric features, and a vector of all zeros

for categorical features. Moreover, data are Z–normalized to

eliminate the influence of the magnitude difference among

features on the learning process.

B. Baselines

HMC–LMLP [19] is the first work that uses neural net-

work (NN) in HMC tasks. HMC–LMLP consists of multiple

Multi-Layer Perceptrons (MLP), and each MLP represents a

hierarchical level. CHMCNN [15] uses a global approach for

HMC tasks based on the feed–forward NN without any post–

processing step for hierarchy constraint. HMCN–R [16] uses a

hybrid approach based on the LSTM architecture, and applies

additional procedures to address hierarchy violation. HMCN–

F [16] is similar to HMCN–R, but based on the feed–forward

NN architecture. Clus–Ens [22] is a decision tree–based

approach, where each node located in the tree corresponds to

a classifier that contains all the training examples belonging to

its parent’s node. HMCN–CHMC is based on HMCN–R [16]

with the difference that the global loss function is changed to

MCLoss [15]. This baseline is chosen to explore the effect

of the proposed local loss function (i.e., LHLoss). CHMC–

LSTM is based on CHMCNN but changes the architecture

from feed–forward NN to LSTM. This baseline is chosen to

explore the effect of proposed NN architecture.

C. Evaluation Metrics

The outputs of the baselines and HLSTM are probability

values for each class. Therefore, a threshold is required to

make a final prediction that indicates whether the input data

instance belongs to a particular class. To avoid using a

predefined threshold, we employ precision–recall curves (i.e.,

PR–curves) to compare the different approaches, and report

the area under the average precision and recall curve, denoted

as AU(PRC), which is accepted as the standard evaluation

metric for HMC models [10], [14], [15]. Let TPi, FPi, and

FNi denote the number of true positive predictions, false

positive predictions, and false negative predictions for class

i, respectively. The precision and recall scores are defined as

P̄r = (

c−1
∑

i=0

TPi)/(

c−1
∑

i=0

TPi +

c−1
∑

i=0

FPi) (12)

and

barRe = (
c−1
∑

i=0

TPi)/(
c−1
∑

i=0

TPi +
c−1
∑

i=0

FNi), (13)

respectively. For a specific prediction threshold, a precision

and recall score can be obtained, which corresponds to a point

in the P̄r − R̄e plane. By varying the prediction threshold, a

precision–recall curve can be plotted, under which the area is

computed as AU(PRC). A high AU(PRC) indicates both

high P̄r and R̄e.

D. Setup

Experiments for CHMC–LSTM and HLSTM are performed

with Pytorch. For all neural network–based baselines and

HLSTM, we minimize the loss function via mini–batch gra-

dient descent, and batch size of 4 as suggested by [16]. For

LSTM–based baselines and HLSTM, the time step is equal

to the depth of the hierarchy structure. The hyperparameter

br is chosen as 0.5, which is discussed in Section VI-C. The

global weight (e.g., parameters inside LSTM cell) is uniformly

initialized, and the local weight (W d
L

) is initiated with small

weights which is detailed discussed in the supplementary

material. Besides, the Adam optimizer is utilized to learn the

parameters with a learning rate of 1×10−4, and weight decay

of 1 × 10−5. We report results using the model at the last

epoch. All experiments were conducted on NVIDIA GeForce

RTX–3080 Ti GPU.

Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on August 27,2024 at 18:30:37 UTC from IEEE Xplore. Restrictions apply.

824

TABLE I
SUMMARY OF 20 REAL-WORLD DATASETS.

Dataset # classes # features Dtrain Dtest taxonomy label cardinality label density depth average classes per level

CELLCYCLE FUN 499 77 1625 1281 Tree 8.72 0.019 6 83.16
DERISI FUN 499 63 1605 1272 Tree 8.76 0.019 6 83.16
EISEN FUN 461 79 1055 835 Tree 9.20 0.022 6 76.8
EXPR FUN 499 551 1636 1288 Tree 8.69 0.019 6 83.16

GASCH1 FUN 499 173 1631 1281 Tree 8.70 0.019 6 83.16
GASH2 FUN 499 52 1636 1288 Tree 8.69 0.019 6 83.16

SEQ FUN 499 478 1692 1332 Tree 8.53 0.019 6 83.16
SPO FUN 499 80 1597 1263 Tree 8.74 0.019 6 83.16

CELLCYCLE GO 4122 77 1625 1281 DAG 34.67 0.008 6 687
DERISI GO 4116 63 1605 1272 DAG 34.76 0.008 6 694
EISEN GO 3570 79 1055 835 DAG 37.92 0.01 6 595
EXPR GO 4128 551 1636 1288 DAG 34.61 0.008 6 688

GASCH1 GO 4122 173 1631 1281 DAG 34.63 0.008 6 687
GASCH2 GO 4128 52 1636 1288 DAG 34.61 0.008 6 688

SEQ GO 4130 478 1692 1332 DAG 34.40 0.008 6 688
SPO GO 4166 80 1597 1263 DAG 34.73 0.008 6 694

DIATOMS 398 371 1085 1054 Tree 2 0.007 2 199
ENRON 56 1000 692 660 Tree 5 0.10 5 11.2

IMCLEF07A 96 80 7000 1006 Tree 3 0.04 3 32
IMCLEF07D 46 80 7000 1006 Tree 3 0.08 3 15.3

VI. EXPERIMENTAL RESULTS

A. Comparison with the State–of–the–art

This section compares HLSTM with the state–of–the–art

(see Section V-B). Table II shows the comparison of HLSTM

with the state–of–the–art with respect to AU(PRC). The

results for CHMCNN come from [15], and the results for

HMCN–R, HMCN–F and HMC–LMLP come from [16].

The average rank of HLSTM is 1.50, which means it out-

performs baselines. First, we compare HMCN–R and HLSTM.

Among all 20 datasets, HLSTM outperforms HMCN–R in

all cases except for EISEN FUN, although the difference

with HLSTM is small (i.e., 0.09). This illustrates the effi-

ciency of incorporating the hierarchy constraint into the hybrid

loss. Specifically, outputting prediction results that align with

the hierarchy constraint contributes to the improvement of

the overall performance. Next, we compare CHMCNN and

HLSTM. CHMCNN performs the best for particular datasets,

such as Eisen Fun and IMCEF07A/07D. However, its differ-

ence with HLSTM is relatively small. Besides, HLSTM shows

its superiority on GO datasets with a more complex hierarchy

(i.e., # classes) structure, as shown in Table II. This illustrates

the benefit of jointly considering the proposed local loss (i.e.,

LHLoss) with global loss into a hybrid framework.

B. Statistical Significance of Results

To compare the statistical difference between HLSTM and

the state-of-the-art, we perform the Friedman test. Indeed, the

models are statistically different with a p-value of 2.76 ×
10−12. The Nemenyi test is carried out to further investigate

the statistical difference. To visualize the statistical difference,

we employ the critical difference diagram [23], as shown

in Figure 5. Specifically, the horizontal line represents the

classifiers’ average rank on the 20 real–world datasets. The

classifiers that are not statistically different are connected

by a bold horizontal line. The threshold for determining the

statistical difference is CD = 2.01. Evidently, the average

rank of HLSTM is higher than the other models with statistical

significance.

C. Ablation Study

To investigate the importance of the proposed LHLoss, we

separately compare CHMC–LSTM with HLSTM. The only

difference between CHMC–LSTM and HLSTM lies in the

loss function. HLSTM employs the proposed Hybrid Loss,

while CHMC–LSTM uses MCLoss without incorporating the

proposed local Loss (LHLoss). We calculate the lift percentage

for HLSTM as compared to CHMC–LSTM as:

AU(PRC)(HLSTM)−AU(PRC)(CHMC−LSTM)

AU(PRC)(CHMC−LSTM)
× 100%. (14)

The results are shown in Figure 6. Positive lift is observed

for all datasets with the exception of three datasets in FUN

(i.e., DERISI, EXPR, and SPO). This means that HLSTM

outperforms CHMC–LSTM, demonstrating the effectiveness

and importance of learning from a local perspective. In

the FUN datasets, learning becomes more challenging with

lower performance for all baselines and HLSTM. However,

incorporating the proposed local loss contributes to improved

performance in the majority of datasets in FUN.

To further investigate the influence of the local component,

we focus on parameter br in Equation (5) which controls the

tradeoff between the local and global losses. We assign br with

different values in {0.1, 0.3, 0.5, 0.7, 0.9}. br < 0.5 means HL

is biased towards local LHLoss, and global MCLoss otherwise.

Figure 7 shows the results for different br on Cellcycle Fun,

Cellcycle Go, and Imclef07A datasets, respectively. Both too

small (i.e. br < 0.3) and too big br (i.e., br > 0.7) values are

not good options. Small br values are likely to cause overfitting

because HL is biased more on the local loss, as shown by the

Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on August 27,2024 at 18:30:37 UTC from IEEE Xplore. Restrictions apply.

826

blue curve in Figure 7(a) (i.e., br = 0.1). On the other hand,

large br values limit the overall performance as HL will omit

the local information, as illustrated in Figures 7(b) and 7(c).

Therefore, we take br = 0.5 as the best option based on the

results shown in Figure 7.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a novel approach for hierarchical multi-label

classification tasks. Specifically, we first proposed a local loss

function, which captures the local information and imposes

the hierarchy constraint at the same time. Then, we proposed

a hybrid loss that simultaneously optimizes for local and global

constraints. We use several simple but informative examples

to illustrate the rationality of this loss. Our experiments on

20 real–world datasets demonstrated the superiority of the

proposed approach. In future work, we wish to extend the

proposed solution to an online learning setting, in which the

model can be updated as new data instances become available.

APPENDIX A

DISCUSSION ON MCLOSS AND LHLOSS

We present more examples to present the difference between

MCLoss and LHLoss. From the local perspective, there are

only three possible scenarios for the combination of labels

of parent and child. Specifically, assuming xi only has two

classes, A and B, and that A → B, then, only three scenarios

are possible as follows: (yA = 0, yB = 0), (yA = 1, yB = 1),
and (yA = 0, yB = 1). Note that (yA = 1, yB = 0) is invalid

in hierarchical classification task.

We have already discussed the example with respect to

(yA = 1, yB = 1) in the main text. We therefore consider

the rest two scenarios here.

Example 1: l(A) = 0.3, yA = 0; l(B) = 0.1, yB = 0.

The hierarchy violation exists in this example because l(B) <
l(A). The MCLoss is calculated as follows:

MCLoss = MCLoss(B) +MCLoss(A)

= −ln(1−MCM(B))− ln(1−MCM(A))

= −ln(1− l(A))− ln(1− l(A)),

∂MCLoss

∂l(A)
= −

2

l(A)− 1
≈ 2.85,

∂MCLoss

∂l(B)
= 0.

In contrast, LHLoss is calculated as:

LHLoss = LHLoss(B) + LHLoss(A)

= −ln(1− LMC(B))− ln(1− LMC(A))

= −ln(1− l(B))− ln(1− l(B)),

∂LHLoss

∂l(A)
= 0,

∂MCLoss

∂l(B)
= −

1

l(B)− 1
−

1

l(B)− 1
≈ 2.22.

Example 2: l(A) = 0.3, yA = 0; l(B) = 0.1, yB = 1.

MCLoss is calculated as follows:

MCLoss = MCLoss(B) +MCLoss(A)

= −ln(max(yAl(A), l(B)))− ln(1−MCM(A))

= −ln(l(B))− ln(1− l(A)),

∂MCLoss

∂l(A)
= −

1

l(A)− 1
≈ 1.4,

∂MCLoss

∂l(B)
= −

1

h(B)
= −10.

The LHLoss is calculated as:

LHLoss = LHLoss(B) + LHLoss(A)

= −ln(LMC(B))− ln(1− LMC(A))

= −ln(l(B))− ln(1− l(B)),

∂LHLoss

∂l(A)
= 0,

∂MCLoss

∂l(B)
= −

1

l(B)− 1
−

1

l(B)
≈ −8.89.

The above Examples show the MCLoss and LHLoss are

complementary to each other. In summary, combining MCLoss

and LHLoss seems to address all possible scenarios well.

APPENDIX B

IMPACT OF LOCAL WEIGHT INITIALIZATION

To investigate the influence of initialization strategy on the

model’s performance, we have trained our model with six

distinct initialization methods, including zeros initialization,

ones initialization, constant initialization, normal initialization

(rand), xavier initialization (Xavier) [24], and He normal

initialization (He) [25]. For completeness, we briefly introduce

these initialization methods. The zeros and ones initialization

are straightforward. The weights are initialized as all zeros or

one, accordingly. The constant initialization adopts a similar

idea, but all weights are set to a constant α. In our experiments,

we consider α ∈ {0.1, 0.2, 0.4, 0.6, 0.8}. The normal initial-

ization method initializes the weight parameters with random

variables drawn from Gaussian distribution with zero mean

and unit variance. The Xavier normalization initializes the

parameters with random variables from a uniform distribution

in [−
√

6
nin+nout

,
√

6
nin+nout

], where nin (nout) is the number

of inputs (outputs) for a neuron. The He normal initialization

initializes the parameters as random variables drawn from a

Gaussian distribution with zero mean and
√

1/nin standard

deviation. We use these methods to initialize the local weights

(i.e., Wh
L

in Figure 4).

Figure 8(a) shows the experiment results for the constant ini-

tialization method. Initializing the local weights with a small

constant value (i.e., LW = 0.1) yields the best performance.

This leads us to the question if a smaller constant would

further improve the performance. However, as Figure 8(b)

illustrates, zeros initialization causes an overfitting problem,

as the AU(PRC) drops for large training epochs. Similarly,

random, He and Xavier initializations lead to an overfitting

Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on August 27,2024 at 18:30:37 UTC from IEEE Xplore. Restrictions apply.

