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Abstract—Machine learning models for hierarchical multi—
label classification (HMC) typically achieve low accuracy. This
is because such models need not only predict multiple labels
for each data instance, but also ensure that predicted labels
conform to a given hierarchical structure. Existing state—of—
the-art strategies for HMC decouple the learning process from
ensuring that predicted labels reside in a path of the hierarchy,
thus inevitably degrading the overall classification accuracy.
To address this limitation, we propose a novel loss function,
which enables a model to encode both a global perspective of
the class hierarchy, as well local class-relationships in adjacent
hierarchical levels, to ensure that predictions align with the class
hierarchy, both during training and testing. We demonstrate the
superiority of the proposed approach against multiple state—of—
the-art methods for HMC on 20 real-world datasets.

Index Terms—Learning with constraints, local loss, global loss

I. INTRODUCTION

Hierarchical multi—label classification (HMC) is defined
as a classification in which data instances are associated
with multiple classes that are not disjoint, but organized into
hierarchical structures, such as trees [1]-[3] or directed acyclic
graphs (DAG) [4]. The main difference between multi—label
classification and HMC is the hierarchy constraint with respect
to the class hierarchy. Hierarchy constraint refers that if a data
instance belongs to a class, it must also be an instance of
all of its predecessors in the class hierarchy [3]. HMC tasks
have attracted increasing attention in the machine learning
domain since they have numerous real-world applications
including, but not limited to, bioinformatics [1], [5], [6], image
annotation [2], and text classification [7]-[9].

From the perspective of the learning algorithm, existing
solutions can be generally divided into two categories: algo-
rithmic and neural networks. Methods in the first category
include, but are not limited to CSSA [10] (a greedy approach),
H-AdaBoost [11] (based on AdaBoost), H-SVM [12], C-
SSVM [13] (based on SVM), and CLUS-HMC [14] (based on
decision trees). More recently, neural network—based solutions
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have been proposed, such as CHMCNN [15] (feed—forward
neural network) and HMCN-R (recurrent neural network)
[16]. Both have been shown to outperform algorithmic ap-
proaches, especially for HMCN-R, which leveraged a long
short-term memory (LSTM) network [17] and achieved com-
parable performance compared to CHMCNN, but requires
fewer training parameters. Inspired by this result, this work
focuses on further improving the performance of LSTM-based
solutions for HMC tasks.

From the perspective of the hierarchy constraint, most
neural network—based solutions [16], [18], [19] impose the
constraint post—processing. However, addressing hierarchy vi-
olations for individual data instances post—processing hinders
the ability of a model to learn the class hierarchy during the
learning process. Methods, such as CHMCNN [15], which
incorporate the hierarchy constraint directly into the learning
process, have been shown to significantly outperform post—
processing methods. The major drawback of CHMCNN is that
it optimizes a loss function globally!. The global approach is
more likely to be cheaper and avoid the well-known error—
propagation, but it is less likely to capture local? information
for any given level in the class hierarchy [3]. However, local
information encodes class—relationships in adjacent hierarchi-
cal levels, which are essential for improving learning accuracy
[16]. Meanwhile, a purely local approach is more likely to
result in overfitting [16].

This work introduces a local loss function, that is used to
incorporate local class relationships into the learning process,
in a manner that complements the global loss proposed by
[15]. The resulting framework, Hybrid LSTM (HLSTM),
concurrently optimizes both loss functions.

Our main contributions can be summarized as follows.

o First, we propose a local loss function that explicitly
incorporates the hierarchy constraint into the learning
process.

'Global in HMC refers to discriminating all classes simultaneously. For
example, the entire class hierarchy path is 8 —+ 3 — 1 — 0 in Figure 1(a).

2Local in HMC refers to class—relationships in adjacent hierarchical levels,
such as 3 — 1 or 8 — 3 in Figure 1(a). Different from the global
approach, the local approach emphasizes particular partial hierarchical class—
relationships.
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o Second, we propose a novel loss that can simultaneously
optimize both local and global loss functions without any
post—processing steps for hierarchy constraint.

o Finally, we experimentally evaluate the effectiveness of
the proposed approach on 20 benchmark datasets against
the state—of—the—art.

II. BACKGROUND
A. HMCN-R

The hierarchical multi—label classification network (HMCN)
in [16] for HMC problems uses both local and global op-
timization. However, HMCN allows the hierarchy to be vi-
olated in predictions, and adopts an additional independent
loss to rectify hierarchy inconsistencies, which may lead to
conflict with global and local loss when updating the gradient.
Specifically, a feed—forward (HMCN-F) and a recurrent neural
network (HMCN-R) architecture are exploited. Since HMCN-
R is obtained by HMCN-F to reduce the number of learning
parameters while maintaining high accuracy, we focus on
HMCN-R hereafter.

In HMCN-R, the recurrent cell is designed as an LSTM
network, and each iteration is concerned with an unrolled
recurrent cell that represents a hierarchical level. The recurrent
flow between the recurrent cells captures global information,
whereas the unrolled recurrent cell captures local informa-
tion. Therefore, at each iteration, the gradients flow between
recurrent cells, as well as within each recurrent cell. The
introduction of the LSTM structure enjoys the advantage of
capturing the long—term dependency by using the forgetting
gate and the input gate, such that each recurrent cell has
access to the information contained in the previous recurrent
cells. The loss function of HMCN-R comprises local, global,
and hierarchy violation loss. Different from HMCN-R, this
work directly incorporates the hierarchy constraint into the
global and local losses, deeming the hierarchy violation loss
completely unnecessary. The advantage of this approach is to
ensure the prediction aligns with the class hierarchy.

B. CHMCNN

Coherent hierarchical multi—label classification neural net-
work (CHMCNN) [15] is another popular model for HMC
tasks. CHMCNN defines a max constraint module (MCM),
which takes the output score of the learning model as input
and imposes the hierarchy constraint. Specifically, assuming
D4 denotes the set of A’s sub—classes, and h denotes the
learning model’s output, the MCM for class A is defined as
MCMy = maxpep, (hp). The global loss [15] is defined as
MCLosss = —yaln(maxpep, (yphp)) — (1 — ya)ln(l —
MCM4). However, CHMCNN does not capture local infor-
mation and cannot leverage existing hybrid approaches since
MCM value is unobtainable from the local perspective. For
instance, computing MCM 4 requires hp for all the descen-
dants of A. However, in the hybrid approach, the value of hp
is available only for the children in the nearest hierarchy level,
rather than all descendants. This work proposes a novel loss
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function that encodes local hierarchy information and imposes
the hierarchy constraint at the same time.

III. PRELIMINARIES AND PROBLEM STATEMENT

Let H denote the class hierarchy structure of c¢ classes in
total, 7 denote the class index in H as 0,1,...,c— 1 in a
top to bottom manner with the index of j, and d represent
the depth of H with level index of h. For two classes c4
and cp (ie., cq and cg € {0,1,...,¢c—1}), ¢p is a parent
of ca, then we have c4 — cp. Additionally, let the training
data be Dypgin = {(x3,¥4i)s- -+, (Xn,¥n)}, where 0 < i <mn,
and the label vector y(i) = [v9, 4}, v2, ...,y '] € {0,1}°
denote the labels of x; in H. Given classification network [,
let I,;,(j) denote I’s output for data instance x;. Specifically,
each label j is assigned to x; if l;,(j) exceeds a pre—set
threshold ¢s (ie., j € y if I(j) > ts). §; denotes the set
of labels that [ predicts for x;. Following [15], we define
hierarchy violation for HMC tasks as follows. For label c4
and cp, a hierarchy violation occurs when any I(c4) > l(cp),
if ca4 — cp. Given D and H, the goal is to learn a multi—
label classification network [ to predict the labels of x;, while
ensuring the predicted labels follow the hierarchy structure. To
ensure the hierarchy constraint is always satisfied, the output
of I(cp) should always be larger than or equal to I(c4) if
cqa — cp [16].

IV. HYBRID HIERARCHICAL MULTI-LABEL
CLASSIFICATION NETWORK

A. Global Optimization Using MCLoss

The majority of global approaches for HMC output predic-
tion results (or scores) at once for all classes. [15] proposed a
HMC network that globally optimizes neural network using
the MCLoss function discussed in Section II-B. However,
global methods such as the above are prone to errors when
a wrong prediction only occurs in a class located in the lower
hierarchy level. Figure 1 shows such an example. Specifically,
Figure 1(a) presents the class hierarchy structure as well as
the I’s outcomes. The prediction perfectly aligns with the
ground-truth for a threshold ¢, = 0.5 (i.e., for V j in H,
I(7) > 0.5 = j € §;). However, if the output score for the
9th class happened to be 0.7, as illustrated in Figure 1(a),
the MCM loss in [15] updates all scores of the 9th node’s
predecessors to 0.7, as illustrated in Figure 1(b), severely
affecting the learning results of the 5th and 2nd classes.
The problem is even more severe if the class hierarchy is
deep because an error in a leaf node will affect all of its
predecessors. Despite the inadequacy of the global approach
to handling such cases, it is still beneficial in scenarios such
as the one illustrated in Figure 2(a) where a wrong prediction
occurs on the 1st and 3rd classes. In this case, incorporating
the MCLoss into the learning process results in better aligning
the predictions to the ground—truth, as shown in Figure 2(b).
This work proposes to leverage the strength of the global
approach, while avoiding its pitfalls, as discussed in Section
IV-B.
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Fig. 1. Toy example (better seen in color) of a tree hierarchy. True classes and prediction errors are highlighted in yellow and red, accordingly. Three scenarios
are shown: (a) a single prediction error (b) output after applying MCM (the whole predicted path is incorrect), and (c) output when applying LMC (proposed

loss introduced in Section 4.2).
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Fig. 2. Different scenario using the same tree hierarchy as in Figure 1. (a) shows mistakes (highlighted in red). (b) shows the output after applying MCM.

B. Local Hierarchical Multi-label Classification

Different from global approaches, local methods focus on
the nearest hierarchy—level relationship and make predictions
for each class hierarchy level. Based on this idea, we propose
a method that imposes the local hierarchy constraint by using
the output scores at higher hierarchy levels to calibrate the
outputs of children classes located in the lower hierarchy
levels in order to avoid hierarchy violation. We call this local
minimal constraint module (LMC) and implement LMC as a
single layer that takes the learning model’s output as input and
imposes the hierarchy constraint. Specifically, for any non—root
class j, we define LMC as follows:

LMC(j) =

min

I(2),
z€{j,pa(s)} (=)

(D

where pa(j) denotes the parent classes of j. To better explain
LMC, consider the example shown in Figure 1(a). Different
from the global approach’s result (i.e., Figure 1(b)), LMC
is able to correct the mistake by imposing the hierarchy
constraint from the local perspective (i.e., [(9) = 0.7 = (9) =
1(5) = 0.3) as shown in Figure 1(c). The rationale behind
LMC is to impose the hierarchical constraint in the lower level
in the top—down manner.

Based on LMC, we define local hierarchical loss (LHLoss)
function as follows.

Definition 1: Let C = {1,2, ..., j,...,¢c — 1} (excluding the
root class) and LMC(1),...,LMC(c — 1) be defined as in
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Equation (1), for each j € C, LHLoss is defined as:

LHLoss(j) = —ylin( min  (y71(2)))— 2)
z€{j.pa(s)}
(1= y)in(l — LMC(j)). 3)
The final local hierarchy loss is defined as:
LHLoss = Z LHLoss(j). 4)

jec

Next, we discuss the advantages of LHLoss compared to
MCLoss [15] from a gradient descent perspective, using an
illustrative example as shown in Figure 3, where for simplicity,
x; only has two classes, A and B, and A — B.

In Example 4.2, MCLoss learns to increase [(A), whereas
LHLoss learns to increase I(B). Both MCLoss and LHLoss
learn in the right direction (i.e., given y* = 1 and 3% = 1),
and can even complement each other. However, increasing
I(B) according to LHLoss is more beneficial, since it helps
to avoid hierarchy violation in the next learning round.
Conversely, MCLoss only learns to increase [(A) while keep-
ing I(B) unchanged, potentially exacerbating the hierarchy
violation in subsequent learning rounds, since [(A) remains
larger than [(B). However, LHLoss addresses this issue by
increasing [(B) and keeps [(A) to achieve the possible sce-
nario that /(A) will be smaller than /(B). More examples to
illustrate the benefits of MCLoss and LHLoss are discussed
in the supplementary material. In summary, LHLoss leads to
better update of the gradient by directly imposing hierarchy
constraint on the “parent level”. However, LHLoss alone
cannot address all possible scenarios. Instead, it can benefit
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Example 4.2. [(A) = 0.3,y” = 1;1(B) = 0.1,y® = 1. In this example, a hierarchy violation exists
because [(B) < l(A). The MCLoss and LHLoss are computed as:

MCLoss = MCLoss(B) + MCLoss(A)
—In(maz(y21(A),1(B))) — In(MCM(A))
= —In(I(4)) — In(I(4)),

LHLoss = LHLoss(B) + LH Loss(A)
—In(LMC(B)) — In(min(l(A), yB1(B)))
~In(U(B)) — In(y"U(B)),

OMC Loss _ 2 ~ —6.67 OLHLoss
dl(A) (4~ oA
OMCLoss _ OLHLoss 2 20
ol(B) dl(B) I(B)
Fig. 3. Gradient calculation using MCLoss (left) and LHLoss (right).
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Fig. 4. The proposed HLSTM framework for Hybrid Loss (HL).

by properly considering MCLoss as illustrated in the examples
presented in Appendix A.

C. Hybrid Loss for Hierarchical Multi-label Classification
Network

We propose Hybrid Loss for LSTM (HLSTM) hierarchi-
cal multi-label classification network. Figure 4 illustrates the
structure of HLSTM, which is based on the original LSTM
structure. The benefits of LSTM are (i) gradient regulation
which can prevent the gradient vanishing or explosion issue,
and (ii) limited parameters regardless of the hierarchy level
[16]. The recurrent flow captures global information by incor-
porating the global hierarchy constraint (MCLoss). Each “time
step” (iteration) corresponds to a particular hierarchy level,
which captures local information. Considering the above two
factors, we define the Hybrid Loss (HL) as follows:

HL = (1-"b,)LHLoss + b.MCLoss, 5)
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where hyperparameter b, controls the trade—off between the
local loss and global loss. The reason for linearly combining
the global and local loss is the complementary gradient update
flow for the global recurrent flows and unrolled local outputs,
as discussed in the examples in Section IV-B.

As HLSTM is a variant of the original LSTM, we adopt
conventional LSTM notations. Let F'¢ denote the forget gate,
which decides which parts of the long-term memory have
less weight given the previous hidden state and the new data
instance in the sequence. Note that the “new” data instance
input at each hierarchy level is always the given data instance
x;. 19 is the input gate that decides what new information
should be added to the LSTM. C" is a “conveyor belt”
in which the past information directly flows to the future.
Combining with the input gate, C" decides which value needs
to be added to the “conveyor belt”. In HLSTM, C" is used
for capturing global hierarchy information. The mathematical
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descriptions for F¢, I%, C", and C" are shown below:

F' = o(Wp(A" o x) 4+ bp), (6)
I"=o(W (A" Y o x) + b), (7)
C'=T(We(A' ' o)+ be), (8)
ch = Fhch—1 4 1hCh, (9)

where 7 and o denote the tanh and sigmoid functions,
respectively. O" denotes the output gate that decides the new
hidden state (AL in Figure 4). W} is used as a transition
weights matrix to project A’é to A}LL. After projecting global
features into a particular local level, the weight parameter W}
makes predictions for classes located in the corresponding
hierarchy level. Thus, the hidden state for capturing the local
hierarchy information. The mathematical descriptions for O"
and A" are expressed as follows:

O" = o(Wo (A" 1. x) + bo),
Al =0T (Cch).

(10)
(1)

In both the training and testing phases of HLSTM output,we
define P = MCM (c(WaH1(AY + b?+1)), where Wt is
weight matrix that maps the hierarchical output of the bottom
layer to the global output with total C classes. Local outputs
(LMC) are not directly used in the model’s prediction phase.
This is because LMC requires an additional round to achieve
consistency, transitioning from multiple partial local parent-
child paths to a complete path.

V. EXPERIMENTAL SETTING
A. Datasets

We evaluate HLSTM on 20 benchmark datasets [15], [16]
that are widely used to evaluate HMC methods. The datasets
can be divided into three categories, including 16 functional
genomics datasets [12], two medical datasets [2], one textual
dataset [20], and a dataset of microalgae images [21]. Table I
provides the dataset name (Dataset), the number of classes (#
classes) and the number of features (# features), and the size
of the training and test datasets for each benchmark. All 20
datasets are preprocessed so that missing values are replaced
with the mean for numeric features, and a vector of all zeros
for categorical features. Moreover, data are Z-normalized to
eliminate the influence of the magnitude difference among
features on the learning process.

B. Baselines

HMC-LMLP [19] is the first work that uses neural net-
work (NN) in HMC tasks. HMC-LMLP consists of multiple
Multi-Layer Perceptrons (MLP), and each MLP represents a
hierarchical level. CHMOCNN [15] uses a global approach for
HMC tasks based on the feed—forward NN without any post—
processing step for hierarchy constraint. HMCN-R [16] uses a
hybrid approach based on the LSTM architecture, and applies
additional procedures to address hierarchy violation. HMCN-
F [16] is similar to HMCN-R, but based on the feed—forward
NN architecture. Clus—Ens [22] is a decision tree-based
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approach, where each node located in the tree corresponds to
a classifier that contains all the training examples belonging to
its parent’s node. HMCN-CHMC is based on HMCN-R [16]
with the difference that the global loss function is changed to
MCLoss [15]. This baseline is chosen to explore the effect
of the proposed local loss function (i.e., LHLoss). CHMC-
LSTM is based on CHMCNN but changes the architecture
from feed—forward NN to LSTM. This baseline is chosen to
explore the effect of proposed NN architecture.

C. Evaluation Metrics

The outputs of the baselines and HLSTM are probability
values for each class. Therefore, a threshold is required to
make a final prediction that indicates whether the input data
instance belongs to a particular class. To avoid using a
predefined threshold, we employ precision—recall curves (i.e.,
PR—curves) to compare the different approaches, and report
the area under the average precision and recall curve, denoted
as AU(PRC), which is accepted as the standard evaluation
metric for HMC models [10], [14], [15]. Let T'P;, F'P;, and
F'N; denote the number of true positive predictions, false
positive predictions, and false negative predictions for class
1, respectively. The precision and recall scores are defined as

c—1 c—1 c—1
Pr=()_TP)/)_TPi+) FF) (12)
1=0 =0 =0
and
c—1 c—1 c—1
barRe = (Y TP)/(Y TP +» FN;),  (13)
=0 =0 =0

respectively. For a specific prediction threshold, a precision
and recall score can be obtained, which corresponds to a point
in the P, — R, plane. By varying the prediction threshold, a
precision—recall curve can be plotted, under which the area is
computed as AU(PRC'). A high AU(PRC) indicates both
high P, and R..

D. Setup

Experiments for CHMC-LSTM and HLSTM are performed
with Pytorch. For all neural network—based baselines and
HLSTM, we minimize the loss function via mini-batch gra-
dient descent, and batch size of 4 as suggested by [16]. For
LSTM-based baselines and HLSTM, the time step is equal
to the depth of the hierarchy structure. The hyperparameter
b, is chosen as 0.5, which is discussed in Section VI-C. The
global weight (e.g., parameters inside LSTM cell) is uniformly
initialized, and the local weight (Wg) is initiated with small
weights which is detailed discussed in the supplementary
material. Besides, the Adam optimizer is utilized to learn the
parameters with a learning rate of 1 x 10~%, and weight decay
of 1 x 1075. We report results using the model at the last
epoch. All experiments were conducted on NVIDIA GeForce
RTX-3080 Ti GPU.
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TABLE I
SUMMARY OF 20 REAL-WORLD DATASETS.

Dataset # classes  # features  Dyipgin  Dtest  taxonomy  label cardinality label density  depth  average classes per level
CELLCYCLE FUN 499 71 1625 1281 Tree 8.72 0.019 6 83.16
DERISI FUN 499 63 1605 1272 Tree 8.76 0.019 6 83.16
EISEN FUN 461 79 1055 835 Tree 9.20 0.022 6 76.8
EXPR FUN 499 551 1636 1288 Tree 8.69 0.019 6 83.16
GASCH1 FUN 499 173 1631 1281 Tree 8.70 0.019 6 83.16
GASH2 FUN 499 52 1636 1288 Tree 8.69 0.019 6 83.16
SEQ FUN 499 478 1692 1332 Tree 8.53 0.019 6 83.16
SPO FUN 499 80 1597 1263 Tree 8.74 0.019 6 83.16
CELLCYCLE GO 4122 71 1625 1281 DAG 34.67 0.008 6 687
DERISI GO 4116 63 1605 1272 DAG 34.76 0.008 6 694
EISEN GO 3570 79 1055 835 DAG 37.92 0.01 6 595
EXPR GO 4128 551 1636 1288 DAG 34.61 0.008 6 688
GASCH1 GO 4122 173 1631 1281 DAG 34.63 0.008 6 687
GASCH2 GO 4128 52 1636 1288 DAG 34.61 0.008 6 688
SEQ GO 4130 478 1692 1332 DAG 34.40 0.008 6 688
SPO GO 4166 80 1597 1263 DAG 34.73 0.008 6 694
DIATOMS 398 371 1085 1054 Tree 2 0.007 2 199
ENRON 56 1000 692 660 Tree 5 0.10 5 11.2
IMCLEF07A 96 80 7000 1006 Tree 3 0.04 3 32
IMCLEF07D 46 80 7000 1006 Tree 3 0.08 3 15.3

VI. EXPERIMENTAL RESULTS
A. Comparison with the State—of-the—art

This section compares HLSTM with the state—of—the—art
(see Section V-B). Table II shows the comparison of HLSTM
with the state-of-the—art with respect to AU(PRC'). The
results for CHMCNN come from [15], and the results for
HMCN-R, HMCN-F and HMC-LMLP come from [16].

The average rank of HLSTM is 1.50, which means it out-
performs baselines. First, we compare HMCN-R and HLSTM.
Among all 20 datasets, HLSTM outperforms HMCN-R in
all cases except for EISEN FUN, although the difference
with HLSTM is small (i.e., 0.09). This illustrates the effi-
ciency of incorporating the hierarchy constraint into the hybrid
loss. Specifically, outputting prediction results that align with
the hierarchy constraint contributes to the improvement of
the overall performance. Next, we compare CHMCNN and
HLSTM. CHMCNN performs the best for particular datasets,
such as Eisen Fun and IMCEF07A/07D. However, its differ-
ence with HLSTM is relatively small. Besides, HLSTM shows
its superiority on GO datasets with a more complex hierarchy
(i.e., # classes) structure, as shown in Table II. This illustrates
the benefit of jointly considering the proposed local loss (i.e.,
LHLoss) with global loss into a hybrid framework.

B. Statistical Significance of Results

To compare the statistical difference between HLSTM and
the state-of-the-art, we perform the Friedman test. Indeed, the
models are statistically different with a p-value of 2.76 x
10712, The Nemenyi test is carried out to further investigate
the statistical difference. To visualize the statistical difference,
we employ the critical difference diagram [23], as shown
in Figure 5. Specifically, the horizontal line represents the
classifiers’ average rank on the 20 real-world datasets. The
classifiers that are not statistically different are connected
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by a bold horizontal line. The threshold for determining the
statistical difference is CD = 2.01. Evidently, the average
rank of HLSTM is higher than the other models with statistical
significance.

C. Ablation Study

To investigate the importance of the proposed LHLoss, we
separately compare CHMC-LSTM with HLSTM. The only
difference between CHMC-LSTM and HLSTM lies in the
loss function. HLSTM employs the proposed Hybrid Loss,
while CHMC-LSTM uses MCLoss without incorporating the
proposed local Loss (LHLoss). We calculate the lift percentage
for HLSTM as compared to CHMC-LSTM as:

AU(PRC)(HLSTM)—AU(PRC)(CHMC—LSTM)
AU(PRC)(CHMC—LSTM) x 100%.

(14)

The results are shown in Figure 6. Positive lift is observed
for all datasets with the exception of three datasets in FUN
(i.e., DERISI, EXPR, and SPO). This means that HLSTM
outperforms CHMC-LSTM, demonstrating the effectiveness
and importance of learning from a local perspective. In
the FUN datasets, learning becomes more challenging with
lower performance for all baselines and HLSTM. However,
incorporating the proposed local loss contributes to improved
performance in the majority of datasets in FUN.

To further investigate the influence of the local component,
we focus on parameter b, in Equation (5) which controls the
tradeoff between the local and global losses. We assign b,. with
different values in {0.1,0.3,0.5,0.7,0.9}. b, < 0.5 means HL
is biased towards local LHLoss, and global MCLoss otherwise.
Figure 7 shows the results for different b, on Cellcycle Fun,
Cellcycle Go, and ImclefO7A datasets, respectively. Both too
small (i.e. b, < 0.3) and too big b, (i.e., b, > 0.7) values are
not good options. Small b, values are likely to cause overfitting
because HL is biased more on the local loss, as shown by the
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TABLE 1T
COMPARISON OF AU(PCR) OF HLSTM AND STATE—OF—THE-ARTS ON 20 REAL-WORLD DATASETS. THE RESULTS OF HMC-LMLP FOR DIATOMS,
ENRONM, IMCLEFO7A AND IMCLEFO7D ARE NOT BEEN PROVIDED IN [15].

Dataset CHMCNN  HMCN-R HMCN-F HMC-LMLP CLUS-ENS HMCN-CHMC HLSTM

CELLCYCLE FUN  0.255 0.247 0.252 0.207 0.227 0.263 0.267
DERISI FUN 0.195 0.189 0.193 0.182 0.187 0.253 0.199
EISEN FUN 0.306 0.298 0.298 0.245 0.286 0.224 0.289
EXPR FUN 0.302 0.300 0.301 0.242 0.271 0.278 0.288
GASCHI1 FUN 0.286 0.283 0.284 0.235 0.267 0.304 0.349
GASCH2 FUN 0.258 0.249 0.254 0.211 0.231 0.281 0.328
SEQ FUN 0.292 0.290 0.291 0.236 0.284 0.301 0.311
SPO FUN 0.215 0.210 0.211 0.186 0.211 0.246 0.272
CELLCYCLE GO 0.413 0.395 0.400 0.361 0.387 0.420 0.452
DERISI GO 0.370 0.368 0.369 0.343 0.361 0.395 0.454
EISEN GO 0.455 0.435 0.440 0.406 0.433 0.412 0.487
EXPR GO 0.447 0.450 0.452 0.373 0.422 0.379 0.457
GASCHI1 GO 0.436 0.416 0.428 0.380 0.415 0.428 0.479
GASCH2 GO 0.414 0.463 0.465 0.371 0.395 0.437 0.474
SEQ GO 0.446 0.443 0.447 0.370 0.438 0.473 0.491
SPO GO 0.382 0.375 0.376 0.342 0.371 0.410 0.450
DIATOMS 0.758 0.514 0.530 — 0.501 0.719 0.776
ENRON 0.756 0.710 0.724 — 0.696 0.764 0.781
IMCLEFO7A 0.956 0.904 0.950 — 0.803 0.681 0.932
IMCLEF07D 0.927 0.897 0.920 — 0.881 0.872 0.926

Average Rank 2.65 4.47 3.37 6.95 5.67 3.37 1.50

7 6 5 4 3 2 1
| 1 | 1 ] | 1 | 1 ] ]
HMCN-LMLP Qm ] L2000 HLSTM
CLUS-ENS 2= | 209 CHMCNN
HMCN-R &2 23750 HMCN-CHMC
HMCN—F 33750

Fig. 5. The improved ratio of AU(PRC') of HLSTM compared with CHMC-LSTM.
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blue curve in Figure 7(a) (i.e., b, = 0.1). On the other hand,
large b, values limit the overall performance as HL will omit
the local information, as illustrated in Figures 7(b) and 7(c).
Therefore, we take b, = 0.5 as the best option based on the
results shown in Figure 7.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a novel approach for hierarchical multi-label
classification tasks. Specifically, we first proposed a local loss
function, which captures the local information and imposes
the hierarchy constraint at the same time. Then, we proposed
a hybrid loss that simultaneously optimizes for local and global
constraints. We use several simple but informative examples
to illustrate the rationality of this loss. Our experiments on
20 real-world datasets demonstrated the superiority of the
proposed approach. In future work, we wish to extend the
proposed solution to an online learning setting, in which the
model can be updated as new data instances become available.

APPENDIX A
DiscussioN oON MCLoss AND LHLOSS

We present more examples to present the difference between
MCLoss and LHLoss. From the local perspective, there are
only three possible scenarios for the combination of labels
of parent and child. Specifically, assuming x; only has two
classes, A and B, and that A — B, then, only three scenarios
are possible as follows: (y4 = 0,y% =0), (y* = 1,y = 1),
and (y* = 0,y® = 1). Note that (y* = 1,y® = 0) is invalid
in hierarchical classification task.

We have already discussed the example with respect to
(y* = 1,y® = 1) in the main text. We therefore consider
the rest two scenarios here.

Example 1: 1(A) = 0.3,y* = 0;1(B) = 0.1,y®% = 0.
The hierarchy violation exists in this example because [(B) <
[(A). The MCLoss is calculated as follows:

MCLoss = MCLoss(B) + MCLoss(A)
= —In(1— MCM(B)) — In(1 — MCM/(A))
= —In(1 —1(A)) —In(1 —1(A)),

OMCLoss 2

DA Ay =1
OMCLoss

ol(B)

In contrast, LHLoss is calculated as:

LHLoss = LHLoss(B) + LHLoss(A)
= —In(l1— LMC(B)) —in(1 — LMC(A))
= —In(1 —1(B)) — In(1 - 1(B)),
OLH Loss

oAy
OMC Loss _ 1 B 1 ~ 9,99,
21(B) (B)—1 I(B)-1
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Example 2: 1(A) = 0.3,y = 0.1,y% = 1.

MClLoss is calculated as follows:
MCLoss = MCLoss(B) + MCLoss(A)
= —In(max(yl(A),1(B))) — In(1 — MCM (A))
= —In(l(B)) — In(1 - I(A)),

0;1(B) =

OMCLoss B 1 ~ 14
Ol(A) I(A)—1 o

OMC Loss _ 1 — 10
0l(B) h(B) '

The LHLoss is calculated as:
LHLoss = LHLoss(B) + LHLoss(A)
= —In(LMC(B)) — In(l — LMC(A))
— —In(I(B)) — In(1 ~ I(B)),

OLHLoss 0
Ol(A) o

OMCLoss _ 1 B 1 ~ —8.80.
0l(B) I(B)y—1 I(B)

The above Examples show the MCLoss and LHLoss are
complementary to each other. In summary, combining MCLoss
and LHLoss seems to address all possible scenarios well.

APPENDIX B
IMPACT OF LOCAL WEIGHT INITIALIZATION

To investigate the influence of initialization strategy on the
model’s performance, we have trained our model with six
distinct initialization methods, including zeros initialization,
ones initialization, constant initialization, normal initialization
(rand), xavier initialization (Xavier) [24], and He normal
initialization (He) [25]. For completeness, we briefly introduce
these initialization methods. The zeros and ones initialization
are straightforward. The weights are initialized as all zeros or
one, accordingly. The constant initialization adopts a similar
idea, but all weights are set to a constant cv. In our experiments,
we consider o € {0.1,0.2,0.4,0.6,0.8}. The normal initial-
ization method initializes the weight parameters with random
variables drawn from Gaussian distribution with zero mean
and unit variance. The Xavier normalization initializes the
parameters with random variables from a uniform distribution

\/n o, \/m”fnm ], where 7, (Toyt) is the number
of inputs (outputs) for a neuron. The He normal initialization
initializes the parameters as random variables drawn from a
Gaussian distribution with zero mean and /1/n;, standard
deviation. We use these methods to initialize the local weights
G.e., Wf in Figure 4).

Figure 8(a) shows the experiment results for the constant ini-
tialization method. Initializing the local weights with a small
constant value (i.e., LW = 0.1) yields the best performance.
This leads us to the question if a smaller constant would
further improve the performance. However, as Figure 8(b)
illustrates, zeros initialization causes an overfitting problem,
as the AU(PRC') drops for large training epochs. Similarly,
random, He and Xavier initializations lead to an overfitting

in[—
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Fig. 7. HLSTM’s AU (PRC) for different b, values on the (a) Cellcycle FUN, (b) Cellcycle GO, and (c) IMCLEFO7A datasets.

problem for training epochs greater than 60, as shown in
Figure 8(c). In summary, initializing local weights with a
constant value of 0.1 yields the best performance.

APPENDIX C
AU(PRC OF HLSTM AND CHMC-LSTM

We present the AU(PRC' of HLSTM and CHMC-LSTM
in Tables III, IV, and V.

APPENDIX D
DISCUSSION ON THE LEARNING SPEED OF HLSTM

Here, we compare HLSTM with the state—of-the—art (see
Section VI-A) with respect to learning speed. Considering
the influence of different ways of local weight initialization,
we present two versions of HLSTM here, HLSTM,.,, (i.e.,
Random initialization) and HLSTMg,, (i.e., Constant initial-
ization with LW = 0.1). For both HLSTM,.,, and HLSTM,,,,
we set b, 0.5. Figure 9 shows the learning speech of
HLSTM and state—of—the—art methods within limited learning
epoches on Eisen Fun dataset. It’s obvious that the learning
speed for HLSTM (i.e., HLSTM,.,, and HLSTM,,) is consid-
erably faster than CHMCNN.
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TABLE III

COMPARISON OF AU(PCR) oF HLSTM AND CHMC-LSTM ON FUN.

Dataset / Model CELLCYCLE DERISI EISEN FUN  EXPR FUN GASCH1 GASCH2 SEQ FUN SPO FUN
FUN FUN FUN FUN
HLSTM 0.267 0.199 0.289 0.288 0.349 0.328 0.311 0.272
CHMC-LSTM  0.232 0.222 0.223 0.291 0.312 0.302 0.278 0.288
TABLE IV
COMPARISON OF AU (PCR) oF HLSTM AND CHMC-LSTM ON GO.
Dataset / Model ~CELLCYCLE DERISI EISEN GO EXPR GO GASCH1 GASCH2 SEQ GO SPO GO
GO Go GO GO
HLSTM 0.452 0.454 0.487 0.457 0.479 0.474 0.491 0.450
CHMC-LSTM 0.433 0.185 0.440 0.190 0.413 0.440 0.308 0.349
TABLE V
COMPARISON OF AU(PCR) OF HLSTM AND CHMC-LSTM ON OTHER DATASETS.
Dataset / Model =~ DIATOMS ENRON IMCLEFO7A  IMCLEFO7D
HLSTM 0.776 0.781 0.932 0.926
CHMC-LSTM  0.547 0.624 0.828 0.851
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Fig. 9. Learning speed comparison of HLSTM with state—of—the—art methods

for Eisen Fun dataset.
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