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Abstract—Existing approaches for multi–label classification are
trained offline, missing the opportunity to adapt to new data
instances as they become available. To address this gap, an
online multi–label classification method was proposed recently, to
learn from data instances sequentially. In this work, we focus on
multi–label classification tasks, in which the labels are organized
in a hierarchy. We formulate online hierarchical multi–labeled
classification as an online optimization task that jointly learns
individual label predictors and a label threshold, and propose
a novel hierarchy constraint to penalize predictions that are
inconsistent with the label hierarchy structure. Experimental
results on three benchmark datasets show that the proposed
approach outperforms online multi–label classification methods,
and achieves comparable to, or even better performance than
offline hierarchical classification frameworks with respect to
hierarchical evaluation metrics.

Index Terms—Hierarchical classification, online learning,
learning with constrains

I. INTRODUCTION

Multi–label classification refers to the task of classifying

data instances, each of which is associated with multiple labels

[1]. Multi–label classification algorithms have been widely

applied to many real–world application scenarios, including

but not limited to, protein function classification [2] and

semantic scene classification [3]. The majority of multi–label

classification methods [4]–[7] are trained offline, given a

training set. However, in the era of Big Data, many existing

and emerging applications, such as genomic data analysis [8]

and misinformation detection [9], often require classifiers to be

trained both on large datasets, as well as in an online manner.

For example, a news classifier system trained frequently on

current news articles, may experience an increased number of

news on a given topic in one day (e.g., election results), and a

totally different set of topics the following day (e.g., sports).

To facilitate training a classifier with an incomplete set

of training data instances, and to adapt the classification

model as new data instances become available, online learning

techniques have been proposed [10]. Different from traditional

learning, online learning trains a model sequentially by train-
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ing on data instances arising one by one at each learning

epoch, with the goal of maximizing prediction accuracy.

Recently, a framework of adaptive label threshold for online

multi–label classification (FALT) was proposed [11]. However,

[11] is not applicable to scenarios where the labels themselves

are organized in a hierarchy [12]. Such scenarios include, but

are not limited to, image and video annotation [13], [14], text

classification [15], [16], and genomics classification [17]–[19].

In hierarchical classification [12], algorithms are designed with

respect to a particular label hierarchy structure. Specifically,

labels are often arranged as a tree [20] or directed acyclic

graph (DAG) [21], where each label is a node residing in

a path of the hierarchy. One common hierarchical constraint

[20], [22] is to allow a current non–root node (label) become

a member of the prediction label set only if its parent’s

(similarly, ancestor’s) label is also in the prediction label

set. Unfortunately, naively incorporating such hard constraint

into FALT, would make its objective function noncontinuous,

which would in turn mean that a gradient based method could

no longer be employed to derive a closed–form update.

This paper proposes a novel online hierarchical multi–label

classification framework that learns a classifier as training data

instances arrive one at a time, while at the same time ensuring

that predicted labels conform to the hierarchy structure. Our

main contributions can be summarized as follows:

• We propose a novel hierarchy constraint that captures

the entire label hierarchy structure, as opposed to local

parent–child relationships.

• We formulate online hierarchical multi–labeled classifi-

cation as an online optimization task that facilitates the

joint learning of individual label predictions that com-

pute scores for each label. We incorporate our hierarchy

constraint directly in the objective function to penalize

predictions that are inconsistent with the label hierarchy

structure.

• We derive a closed form update for the case of linear

classifiers.

• We experimentally evaluate the effectiveness of our ap-

proach using three benchmark datasets.
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II. RELATED WORK

A. Multi–label Classification

Most multi–label classification algorithms can be divided

into two categories, namely transformation–based methods

and algorithm variant methods. Transformation–based meth-

ods convert the original multi–label classification task into

a set of binary classification problems (i.e., learn a binary

classifier for each class [23]) or learn ensembles (e.g., [24],

[25]). The main drawback of transformation–based methods

is that fixing the label threshold for each binary classifier

may degrade performance, since fixing the label threshold to

a predefined value may not always be optimal [11]. Methods

in algorithm variant category modify existing algorithms, such

as supported vector machine (SVM) [26], k–nearest neighbors

(KNN) [27], and neural networks [28] to apply on multi–label

classification tasks. For instance, multi–label classification

AdaBoost.MH [29] is a variant of the AdaBoost algorithm

[30]. All such methods are designed for offline learning, and

can therefore not adapt to new incoming data instances. To the

best of our knowledge, only [11] supports online multi–label

classification, but the method proposed there is not readily

applicable to hierarchical multi–label classification.

B. Online Learning

Online learning aims to train a machine learning model on

data that become available sequentially, such that the model

can be improved step by step as new data arrive [10]. A family

of online learning algorithms based on linear predictors have

been proposed in [31], which can be utilized for multiple

tasks, including binary and multi–class classification. Online

learning algorithms for single–label classification tasks (i.e.

every data instance has exactly one label) include kernel–based

algorithms [32], and perceptron–based algorithms [33], [34].

Online classification algorithms for multi–label classification

tasks (i.e. every data instance has multiple labels), include

streaming multi–label random trees (SMART) [35], extreme

learning machine for online multi–label learning [36], [37],

and ensembles of the multi–label Hoeffding trees [38]. Similar

to [11], these methods are restricted to vectors of labels that

are assumed to be unrelated. Instead, the method proposed

here is the first online multi–label classification method that

encodes hierarchical label relations directly into the multi–

label learning task.

C. Hierarchical Multi–label Classification

Hierarchical multi–label classification methods can be cat-

egorized into three main themes. The first theme comprises

methods that separate the hierarchical multi–label classifica-

tion task into independent binary classification tasks for each

class in the hierarchy, and then leverages existing methods

to learn a classifier for each class separately, completely

disregarding the hierarchical constraint [39]. The second theme

comprises methods that restrict the training set for a particular

class to those data instances belonging to the parent class

[40]. However, the parameters of the classifier are increased

dramatically for complex hierarchical structures (e.g., hun-

dreds of nodes located in the class hierarchy). The third theme

learns a single multi–label classifier and considers hierarchical

constraint in the prediction stage [39]. Unfortunately, such

methods do not generalize because of restrictions on certain

learning model structures. Instead, we propose a hierarchy

constraint that can easily be incorporated into any multi–label

classification algorithm.

D. Online Hierarchical Classification

Online hierarchical classification models, such as [41] aim

to classify streaming data in a top–down manner by learn-

ing a classifier for each node. Unlike [41], which is only

applicable to tree hierarchies, the approach proposed here

can accommodate any hierarchy structure, while at the same

time learning a global classifier for all classes at once, thus

reducing the number of parameters to be learned. Finally,

[42] facilitates incremental learning when the label hierarchy

itself is to be learned and can potentially change as new data

instances arrive. Although equally challenging, that problem

is orthogonal to the one addressed here.

III. PRELIMINARIES

A. Problem Definition

Let D denote the training set, and (x, Y ) denote each

training data instance in D, where x ∈ R
d and Y ⊆ Y , and

1 ≤ |Y| ≤ L, with L being the total number of labels. Among

the label space Y , labels are organized into the hierarchy

H. We use i as the label index, so that Y[i] denotes the

membership of x to the i–th label in H, and H[i] is the i–

th label in the hierarchy. Without loss of generality, for a tree

hierarchy, nodes are indexed as 1, 2, 3, ..., L in a top to bottom

manner (i.e., 1 is the root, 2 indicates its leftmost child, and so

forth). Additionally, let pa(i) denote node i’s parent in H. Fi-

nally, let an arbitrary sequence (x1, y1), (x2, y2), ..., (xT , yT )
denote the data instances arriving sequentially, one at a time

(i.e., (xt, yt) for any learning round 1 ≤ t ≤ T ). At

each round t, Wt = [w1
t , ...,w

i
t, ...,w

L
t ,w

L+1
t ] ∈ R

d×(L+1)

denotes the current multi–label classifier comprising L label

predictors that compute scores for each label of xt, and an

additional predictor for determining the threshold to be used

for assigning labels to xt. Without loss of generality, we drop

the round variable t, and refer to xt simply as x to avoid

confusion. Label i ∈ Y is considered to be relevant for x

if x
T
w

i > x
T
w

L+1. Thus, there are two true label sets for

each x: one relevant label set Y and one irrelevant label set Ỹ

(i.e., Ỹ = Y − Y ). Ŷ denotes the predicted label set which is

{Ŷ : i ∈ Y : xT
w

i > x
T
w

L+1}. After that, the ground truth

Yt is revealed, and the differences (if any) between Yt and

Ŷt are used to adapt Wt into a new model Wt, which is

expected to perform better in the next round, t + 1. Table I

summarizes the notation used hereafter.

Given D and H, the goal is to train a hierarchical multi–

label classification model as well as label threshold in an

online manner, which can be used to predict the hierarchical

categories of unseen data instances.
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instance xt. Ŷt ∈ R
L×1 is computed as a function of Wt

and xt. Specifically, we leverage the sigmoid function (i.e.,

Sigmoid(x) = S(x) = 1
1+e−λx ) to simulate the decision

process (i.e., Ŷ i
t = 1 if x

T
t w

i > x
T
t w

L+1), where λ is a

hyper–parameter that ensures S(x) is close to 1 if x > 0,

and close to 0 if x < 0. Therefore, Ŷ i
t = 1

1+e−λx , where

x = x
T
t w

i − x
T
t w

L+1. By including the predicted labels into

the objective function, we get:

(Wt+1, ξt+1) = argmin
W,ξ

{
1

2
||W −Wt||

2
F

+ η(
1

|Yt|
∑

i∈Yt
ξi

+
1

|Ỹt|
∑

i∈Ỹt
ξi
)}

s.t. x
T
t w

i − x
T
t w

L+1 ≥ 1− ξi, ∀i ∈ Yt

x
T
t w

L+1 − x
T
t w

i ≥ 1− ξi, ∀i ∈ Ỹt

ξi ≥ 0, ∀i ∈ {1, 2, ..., L}
L
∑

i=1

(

L
∑

n=1

VnHni)Vi = h,

Vi =
1

1 + e−λ(xT
t wi−xT

t wL+1)

(3)

where hyper–parameter η > 0 controls the trade–off between

the first regularization term and the slack variable term. Recall

that h is the depth of the hierarchy structure, which for

a single–path classification task on a tree hierarchy, is the

maximum number of valid edges. For multi–path multi–label

hierarchical tasks, the upper bound of possible valid edges

can be changed to kh, where k denotes the maximum number

of paths allowed. By incorporating the hierarchy constraint

directly into the objective function, we get:

(Wt+1,ξt+1) = argmin
W,ξ

{
1

2
||W −Wt||

2
F

+ η(
1

|Yt|
∑

i∈Yt
ξi

+
1

|Ỹt|
∑

i∈Yt
ξi
)

+
1

2
(

L
∑

i=1

(

L
∑

n=1

VnHni)Vi − h)2},

s.t. x
T
t w

i − x
T
t w

L+1 ≥ 1− ξi, ∀i ∈ Yt,

x
T
t w

L+1 − x
T
t w

i ≥ 1− ξi, ∀i ∈ Ỹt,

ξi ≥ 0, ∀i ∈ {1, 2, ..., L}.

(4)

Equation (4) can be compactly expressed as:

Wt+1 =argmin
W

{
1

2η
||W −Wt||

2
F + ft(W)

+
1

2
(

L
∑

i=1

(

L
∑

n=1

VnHni)Vi − h)2}

(5)

where ft(W) is defined in [11] as:

ft(W) =
1

|Yt|

∑

i∈Yt

max{0, 1− (xT
t w

i − x
T
t w

L+1)}

+
1

|Ỹt|

∑

i∈Ỹt

max{0, 1− (xT
t w

L+1 − x
T
t w

i)}.
(6)

Given that ft(W) has been shown to be piecewise linear

[11], a first–order approximation of ft(W) can be used, in-

stead of directly optimizing it. Leveraging this approximation,

the objective function in Equation (5) becomes:

Wt+1 =argmin
W

{
1

2η
||W −Wt||

2
F +

L+1
∑

i=1

(▽i
t)

T
w

i

+
1

2
(

L
∑

i=1

(

L
∑

n=1

VnHni)Vi − h)2}.

(7)

In this form, the objective function is differentiable and

the first two terms (i.e., 1
2η ||W −Wt||

2
F +

∑L+1
i=1 (▽i

t)
T
w

i)

are convex with respect to each w
i
t. However, the last term

(i.e., 1
2 (
∑L

i=1(
∑L

n=1 VnHni)Vi − h)2) is non–convex, as the

sigmoid function is a non–convex function. We therefore use

Stochastic Gradient Descent (SGD) [44] to update w
i
t+1 as:

w
i
t+1 = w

i
t − αt(η▽

i
t + hw), (8)

where αt denotes the step size, and

▽
i
t =



































−
ait
|Yt|

xt, if i ∈ Yt

bit

|Ỹt|
xt, if i ∈ Ỹt

(
ait
|Yt|
−

bit

|Ỹt|
)xt, if i = L+ 1

(9)

with ait = 1[xT
t w

i − x
T
t w

L+1 < 1], bit = 1[xT
t w

L+1 −
x
T
t w

i < 1], at =
∑

i∈Yt
ait, and bt =

∑

i∈Ỹt
ait, and

hw =
1

1 + e−λ(xT
t wi−xT

t wL+1)

L
∑

n=1

λxte
−λ(xT

t w
n−x

T
t w

L+1)Hni

(1 + e−λ(xT
t wn−xT

t wL+1))2

+
λxte

−λ(xT
t w

n−x
T
t w

L+1)

(1 + e−λ(xT
t wi−xT

t wL+1))2

L
∑

n=1

Hni

1 + e−λ(xT
t wn−xT

t wL+1)
.

(10)

Equation (7) leads to an efficient implementation described

in Algorithm 1.

A. Convergence Analysis

Here, we discuss the convergence of Algorithm 1. For

simplicity, we denote Equation (8) as:

w
i
t+1 = w

i
t − αt▽g(w

i
t), (11)

where g(W) substitutes the objective function in (7). Specif-

ically, at learning round t+ 1, by Taylor’s theorem,

g(wi
t+1) = g(wi

t − αt▽g(w
i
t))

= g(wt)− αt▽g(w
i
t)

T
▽g(wi

t)

+
α2
t

2
▽g(wi

t)
T
▽

2g(wi
t)▽g(w

i
t),

(12)

where ▽
2 denotes the Hessian matrix. Now, we show that

−CI ⪯ ▽
2g(wi

t) ⪯ CI , where C ≥ 0, and I is the identity

matrix. The sigmoid function (i.e., S(x)) is bounded. The
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Algorithm 1 OHMC

Input: Dataset D = (x,Yt), hierarchical matrix H , label set

Y
1: Randomly initialize the linear weights W1 =

[w
(1)
1 , ...,w

(L+1)
1 ]

2: repeat

3: Observe incoming data instance xt

4: Ŷt ←− ∅
5: for each i ∈ Y do

6: if xT
w

i
t > x

T
w

L+1
t then

7: Add i in Ŷt

8: end if

9: end for

10: Predict the relevant label set Ŷt,

11: Reveal true relevant and irrelevant label set Yt and Ỹt

(i.e., Y − Yt) for xt

12: Calculate hw by Eq. (10) and ▽
i
t by Eq. (9)

13: t←− t+ 1
14: Update Wt by Eq. (8)

15: until t = T

16: return Wt

second order derivative of S(x) is also bounded. The proof

follows.

Proof 1:

S(x)
′

= (
1

1 + e−λx
)′ =

e−λx

(1 + e−λx)2

=
1 + e−λx − 1

(1 + e−λx)2
=

1

1 + e−λx
−

1

(1 + e−λx)2

= S(x)(1− S(x)),

(13)

and

S(x)
′′

= (S(x)(1− (S(x))))′

= (S(x)− S(x)2)′

= S(x)′ − 2S(x)S(x)′

= S(x)(1− S(x))− 2S(x)S(x)(1− S(x)).

(14)

The second order derivative of S(x) comprises S(x) itself,

which is bounded in [0, 1], meaning that the second order

derivative of S(x) is also bounded (i.e., S(x)
′′

is bounded

within [1,−2]).
Furthermore, the second order derivative of x

T
t w

i
t −

x
T
t w

L+1 is bounded with respect to w
i
t, as, without loss of

generality, training data values can be assumed to be bounded5.

Hence, −CI ⪯ ▽
2g(wi

t) ⪯ CI , and Equation (12) becomes:

g(wi
t+1) ≤ g(wi

t)− αt▽g(w
i
t)

T
▽g(wi

t) +
α2
tC

2
∥▽g(wi

t)∥
2,

= g(wi
t)− (αt −

α2
tC

2
)∥▽g(wi

t)∥
2.

(15)

5Feature values are often normalized or quantized during feature engineer-
ing, before training a machine learning model.

Setting αt = α that satisfies 1− αC
2 > 1

2 , we get:

g(wi
t+1) ≤ g(wi

t)−
αt

2
∥▽g(wi

t)∥
2. (16)

Summing up over all T learning rounds,

g(wi
T ) ≤ g(wi

t)−
T−1
∑

t=0

αt

2
∥▽g(wi

t)∥
2. (17)

Let αt =
α0

t+1 . We get:

g(wi
T ) ≤ g(wi

t)−
T−1
∑

t=0

α0

2(t+ 1)
∥▽g(wi

t)∥
2. (18)

Rearranging the above equation, we get:

T−1
∑

t=0

α0

2(t+ 1)
∥▽g(wi

t)∥
2 ≤ g(wi

t)− g(wi
T ). (19)

Let zT = wt with probability 1
RT (t+1) , where RT =

∑T−1
t=0

1
t+1 [45]. Then,

∥▽g(zT )∥
2 =

T−1
∑

t=0

1

RT (t+ 1)
∥▽g(wi

t)∥
2, (20)

which means there exists a constant Z that ∥▽g(zT )∥
2 ≤ Z

logT

[45]. When T →∞, we have:

∥▽g(zT )∥
2 → 0. (21)

Therefore, the SGD algorithm is expected to converge to a

local minimum. This leads to the efficient algorithm, described

in Algorithm 1.

B. Complexity Analysis

We analyze the complexity of OHMC with resepct to each

online learning round (i.e., steps: 4–10). The complexity of

predicting label set Ŷ of a data instance xtis O(KL), where

K denotes the total number of features in xt (steps: 4–7).

Updating the learning weights is O(KL) (steps: 8–9), where

the complexity for calculating Eqs. 9, 10, and 8 are O(KL),
O(KL), and O(K) respectively. Thus, the overall complexity

of Algorithm 1 for a single round is O(KL).

VI. EXPERIMENTS

A. Datasets

We conduct experiments on three publicly available

datasets: ImageCLEF07D and ImageCLEF07A (X–ray im-

ages extracted from the 2007 ImageCLEF competition),

and WIPO (World International Patent Organization (WIPO)

dataset used to classify patent texts). Table II summarizes

these datasets. Note that the hierarchy depth for each of the

three datasets is 3, and the number of classes in each level of

each dataset is provided for reference. Intuitively, the number

of alternative options (i.e., labels) increases with depth. The

average label cardinally per data instance for all three datasets

is 3 due to single–path labels (i.e., each data instance can have

up to 3 labels). Compared with the total number of classes,

the number of true labels per data instance is significantly

smaller (i.e., the true label distribution is very sparse), making

classification particularly challenging.
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TABLE II
DATASETS USED IN EXPERIMENTAL EVALUATION.

Dataset Number of train data Number of test data Number of features Number of classes Number of classes per level Cardinality1

ImageCLEF07A 10, 000 1, 006 80 96 8/25/63 3

ImageCLEF07D 10, 000 1, 006 80 46 4/16/26 3

WIPO 1, 352 358 74, 435 187 7/20/160 3

1 The average number of class labels per data instance.

B. Experimental Setup

All experiments were conducted on an iMac running macOS

Big Sur with 3.8 GHz 8–core intel Core i7 processor and 16

GB 2667 MHz DDR4 memory. The learning step αt is set

to 0.81 in OHMC. The cooresponding value of αt is set to 1
in FALT and SALT, as suggested in [11]. Both OHMC, and

the baselines (e.g., FALT, SALT, H–Ada.MH, and Global) are

implemented in Python 3.8. The training and test sets are pre–

split for all the three datasets.

C. Baselines

To demonstrate the effectiveness of OHMC, we compare

it with baseline approaches for multi–label classification and

hierarchical multi–label classification, as follows.

1) Multi–label Classification Baselines:

• FALT [11]: First order linear algorithm for online multi–

label classification and adaptive label threshold selection.

• SALT [11]: Similar to FALT, but each element in wt is

updated with an adaptive learning rate.

2) Hierarchical Classification Baselines:

• HM3 [46]: Kernel–based algorithm for hierarchical clas-

sification using maximum margin variable [47] that al-

lows SVM–style objective functions to be optimized over

hierarchical label outputs. We use HM3–l△ to represent

HM3 method with symmetric loss, and HM3–lsub and

HM3–lsibl for HM3 with re-weight prediction errors

based on sibling and subtree, respectively [46]. HM3–

luni refers to uniform weighting in conjunction with

hierarchical loss. Experimental results come from [48].

• Clus–HMC–Ens [49]: Top–down decision tree based ap-

proach, where each node located in the tree corresponds

to a classifier, which contains all the training examples

belonging to that parent’s node. Reported experimental

results come from [48].

• H–Ada.MH [22]: Hierarchy–aware AdaBoost variant for

hierarchical multiclass classification.

• Global [50]: A global approach that builds a single clas-

sifier to discriminate between all labels simultaneously.

D. Evaluation Metrics

Let ŷ(t) be the set comprising the predicted labels for xt,

and let T̂ (t) be the set consisting of the true labels from of data

xt. | • | refers to the number of elements in the corresponding

set. N is the total number of test data instances.

• Hierarchical Classification Metrics [48]:

– Micro–averaged hierarchical precision (higher is

better): hPµ =
∑N

t |ŷt∩T̂t|∑
N
t |ŷt|

.

TABLE III
PERFORMANCE COMPARISON WITH RESPECT TO MULTI–LABEL

CLASSIFICATION METRICS.

Dataset Metric OHMC FALT SALT

Psn 0.54 0.48 0.51
ImageCLEF07A Rcal 0.55 0.49 0.48

F1 0.54 0.48 0.40
HL 3.56 3.75 3.1
RL 0.13 1.21 0.94

Psn 0.76 0.63 0.63
ImageCLEF07D Rcal 0.69 0.62 0.63

F1 0.73 0.62 0.63
HL 2.13 2.82 2.72
RL 0.08 0.19 0.18

Psn 0.74 0.68 0.68
WIPO Rcal 0.68 0.68 0.68

F1 0.70 0.68 0.68
HL 1.67 1.85 1.86
RL 0.04 0.15 0.15

– Micro–averaged hierarchical recall (higher is bet-

ter): hRµ =
∑N

t |ŷt∩T̂t|
∑

N
t |T̂t|

.

– Micro–averaged hierarchical F–measure (higher is

better): hFµ = 2×hPµ×hRµ

hPµ+hRµ .

• Multi–label Classification Metrics [11]:

– Precision (higher is better): P = 1
N

∑N

t
|ŷt∩T̂t|
|ŷt|

,

– Recall (higher is better): R = 1
N

∑N

t
|ŷt∩T̂t|

|T̂t|
, and

– F1–measure (higher is better): F1 = 2×P×R
P+R

.

– Hamming Loss (lower is better): HL =
1

N×L

∑N

t |ŷt△T̂t|, where △ refers to symmetric

difference between two sets.

– Ranking Loss (lower is better): RL =
1
N

∑N

t

∑
i∈Yt,k∈Ỹt

1[h(xt,i)≤h(xt,k)]

|Ỹt|×|Yt|
, where h(xt, i)

denotes the real value score assigned to label i.

E. Results

We begin by comparing OHMC with FALT and SALT with

respect to multi–label classification metrics. Table III shows

the evaluation results. As expected OHMC achieves the best

performances in all cases, which illustrating the benefit of

incorporating the hierarchical constraint directly into existing

multi–label classification for adapting hierarchical multi–label

classification task. The competitive advantage of OHMC be-

comes clearer in the ImageCLEF07D dataset, where OHMC

achieves a 10% increase in F1 score as compared to FALT

and SALT. Among the multi–label evaluation metrics, the RL

value of OHMC is significantly lower than FALT and SALT.

Average number of cases in which the real value prediction

score h(xt, i) is smaller than h(xt, k) where i denotes the
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linear classifiers. Our experiments on three real–world datasets

demonstrated the effectiveness of the proposed approach com-

pared with both online multi–label classification algorithms

and offline hierarchical classification frameworks.

In future work, we plan to extend our algorithm to non-

linear classifiers so as to achieve better classification results,

particularly in image datasets, such as ImageCLEF07A and

ImageCLEF07D. We additionaly plan to regularize the poten-

tial deviation of predictor weights at successive training rounds

to ensure temporal smoothness.
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