2023 IEEE International Conference on Big Data (BigData) | 979-8-3503-2445-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/BigData59044.2023.10386110

2023 IEEE International Conference on Big Data (BigData)

Online Hierarchical Multi—label Classification

Wenting Qi
Department of Computer Science
University at Albany, SUNY
Albany, New York, USA
wqi@albany.edu

Abstract—Existing approaches for multi-label classification are
trained offline, missing the opportunity to adapt to new data
instances as they become available. To address this gap, an
online multi-label classification method was proposed recently, to
learn from data instances sequentially. In this work, we focus on
multi-label classification tasks, in which the labels are organized
in a hierarchy. We formulate online hierarchical multi-labeled
classification as an online optimization task that jointly learns
individual label predictors and a label threshold, and propose
a novel hierarchy constraint to penalize predictions that are
inconsistent with the label hierarchy structure. Experimental
results on three benchmark datasets show that the proposed
approach outperforms online multi-label classification methods,
and achieves comparable to, or even better performance than
offline hierarchical classification frameworks with respect to
hierarchical evaluation metrics.

Index Terms—Hierarchical classification,
learning with constrains

online learning,

I. INTRODUCTION

Multi-label classification refers to the task of classifying
data instances, each of which is associated with multiple labels
[1]. Multi-label classification algorithms have been widely
applied to many real-world application scenarios, including
but not limited to, protein function classification [2] and
semantic scene classification [3]. The majority of multi—label
classification methods [4]-[7] are trained offline, given a
training set. However, in the era of Big Data, many existing
and emerging applications, such as genomic data analysis [8]
and misinformation detection [9], often require classifiers to be
trained both on large datasets, as well as in an online manner.
For example, a news classifier system trained frequently on
current news articles, may experience an increased number of
news on a given topic in one day (e.g., election results), and a
totally different set of topics the following day (e.g., sports).

To facilitate training a classifier with an incomplete set
of training data instances, and to adapt the classification
model as new data instances become available, online learning
techniques have been proposed [10]. Different from traditional
learning, online learning trains a model sequentially by train-
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ing on data instances arising one by one at each learning
epoch, with the goal of maximizing prediction accuracy.

Recently, a framework of adaptive label threshold for online
multi—label classification (FALT) was proposed [11]. However,
[11] is not applicable to scenarios where the labels themselves
are organized in a hierarchy [12]. Such scenarios include, but
are not limited to, image and video annotation [13], [14], text
classification [15], [16], and genomics classification [17]-[19].
In hierarchical classification [12], algorithms are designed with
respect to a particular label hierarchy structure. Specifically,
labels are often arranged as a tree [20] or directed acyclic
graph (DAG) [21], where each label is a node residing in
a path of the hierarchy. One common hierarchical constraint
[20], [22] is to allow a current non—-root node (label) become
a member of the prediction label set only if its parent’s
(similarly, ancestor’s) label is also in the prediction label
set. Unfortunately, naively incorporating such hard constraint
into FALT, would make its objective function noncontinuous,
which would in turn mean that a gradient based method could
no longer be employed to derive a closed—form update.

This paper proposes a novel online hierarchical multi—label
classification framework that learns a classifier as training data
instances arrive one at a time, while at the same time ensuring
that predicted labels conform to the hierarchy structure. Our
main contributions can be summarized as follows:

e« We propose a novel hierarchy constraint that captures
the entire label hierarchy structure, as opposed to local
parent—child relationships.

o We formulate online hierarchical multi-labeled classifi-
cation as an online optimization task that facilitates the
joint learning of individual label predictions that com-
pute scores for each label. We incorporate our hierarchy
constraint directly in the objective function to penalize
predictions that are inconsistent with the label hierarchy
structure.

o We derive a closed form update for the case of linear
classifiers.

o We experimentally evaluate the effectiveness of our ap-
proach using three benchmark datasets.
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II. RELATED WORK
A. Multi-label Classification

Most multi-label classification algorithms can be divided
into two categories, namely transformation-based methods
and algorithm variant methods. Transformation—based meth-
ods convert the original multi-label classification task into
a set of binary classification problems (i.e., learn a binary
classifier for each class [23]) or learn ensembles (e.g., [24],
[25]). The main drawback of transformation—based methods
is that fixing the label threshold for each binary classifier
may degrade performance, since fixing the label threshold to
a predefined value may not always be optimal [11]. Methods
in algorithm variant category modify existing algorithms, such
as supported vector machine (SVM) [26], k—nearest neighbors
(KNN) [27], and neural networks [28] to apply on multi—label
classification tasks. For instance, multi-label classification
AdaBoost.MH [29] is a variant of the AdaBoost algorithm
[30]. All such methods are designed for offline learning, and
can therefore not adapt to new incoming data instances. To the
best of our knowledge, only [11] supports online multi-label
classification, but the method proposed there is not readily
applicable to hierarchical multi-label classification.

B. Online Learning

Online learning aims to train a machine learning model on
data that become available sequentially, such that the model
can be improved step by step as new data arrive [10]. A family
of online learning algorithms based on linear predictors have
been proposed in [31], which can be utilized for multiple
tasks, including binary and multi—class classification. Online
learning algorithms for single-label classification tasks (i.e.
every data instance has exactly one label) include kernel-based
algorithms [32], and perceptron—based algorithms [33], [34].
Online classification algorithms for multi-label classification
tasks (i.e. every data instance has multiple labels), include
streaming multi—label random trees (SMART) [35], extreme
learning machine for online multi-label learning [36], [37],
and ensembles of the multi—label Hoeffding trees [38]. Similar
to [11], these methods are restricted to vectors of labels that
are assumed to be unrelated. Instead, the method proposed
here is the first online multi-label classification method that
encodes hierarchical label relations directly into the multi—
label learning task.

C. Hierarchical Multi-label Classification

Hierarchical multi-label classification methods can be cat-
egorized into three main themes. The first theme comprises
methods that separate the hierarchical multi-label classifica-
tion task into independent binary classification tasks for each
class in the hierarchy, and then leverages existing methods
to learn a classifier for each class separately, completely
disregarding the hierarchical constraint [39]. The second theme
comprises methods that restrict the training set for a particular
class to those data instances belonging to the parent class
[40]. However, the parameters of the classifier are increased
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dramatically for complex hierarchical structures (e.g., hun-
dreds of nodes located in the class hierarchy). The third theme
learns a single multi—label classifier and considers hierarchical
constraint in the prediction stage [39]. Unfortunately, such
methods do not generalize because of restrictions on certain
learning model structures. Instead, we propose a hierarchy
constraint that can easily be incorporated into any multi—label
classification algorithm.

D. Online Hierarchical Classification

Online hierarchical classification models, such as [41] aim
to classify streaming data in a top—down manner by learn-
ing a classifier for each node. Unlike [41], which is only
applicable to tree hierarchies, the approach proposed here
can accommodate any hierarchy structure, while at the same
time learning a global classifier for all classes at once, thus
reducing the number of parameters to be learned. Finally,
[42] facilitates incremental learning when the label hierarchy
itself is to be learned and can potentially change as new data
instances arrive. Although equally challenging, that problem
is orthogonal to the one addressed here.

III. PRELIMINARIES
A. Problem Definition

Let D denote the training set, and (x,Y’) denote each
training data instance in D, where x € RYand Y C ), and
1 < |Y| < L, with L being the total number of labels. Among
the label space )/, labels are organized into the hierarchy
H. We use ¢ as the label index, so that Y[i] denotes the
membership of x to the i—th label in H, and H[i] is the i—
th label in the hierarchy. Without loss of generality, for a tree
hierarchy, nodes are indexed as 1,2, 3, ..., L in a top to bottom
manner (i.e., 1 is the root, 2 indicates its leftmost child, and so
forth). Additionally, let pa(i) denote node i’s parent in H. Fi-
nally, let an arbitrary sequence (X1,y1), (X2,¥2); .-, (X7, Y1)
denote the data instances arriving sequentially, one at a time
(i.e., (x¢,y¢) for any learning round 1 < ¢t < T). At
each round t, W, = [w},...,w!, .., wk wlT!] ¢ RIx(L+1)
denotes the current multi—label classifier comprising L label
predictors that compute scores for each label of x;, and an
additional predictor for determining the threshold to be used
for assigning labels to x;. Without loss of generality, we drop
the round variable ¢, and refer to x; simply as x to avoid
confusion. Label 7 € ) is considered to be relevant for x
if xTw? > xTwL+l Thus, there are two true label sets for
each x: one relevant label set Y and one irrelevant label set Y
(.e., Y = y-Y). Y denotes the predicted label set which is
{V:ieY :xTwi >xTwl+t!} After that, the ground truth
Y; is revealed, and the differences (if any) between Y; and
fft are used to adapt Wy into a new model W¢, which is
expected to perform better in the next round, ¢ + 1. Table I
summarizes the notation used hereafter.

Given D and H, the goal is to train a hierarchical multi—
label classification model as well as label threshold in an
online manner, which can be used to predict the hierarchical
categories of unseen data instances.
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TABLE I
EXPLANATION OF MAIN SYMBOLS.

Symbol | Description
D Training set
t Online learning round index
L Total number of labels. The index of each label is
denoted as %
Xt The arrived data instance at ¢-th learning round
w”;' Learning weight for label ¢
W, Linear classifier at ¢-th learning round
Y% Label space
Y: True relevant label set for data instance
§7t True irrelevant label set for data instance x¢
Yt Predicted label set for data instance ¢
Yt Prediction result for data instance x: in the vector
form
H Hierarchical relationship matrix with m and n
denoting row and column index separately
h The depth of the hierarchical label structure
Dt Valid hierarchical edges inside of the prediction
result Y
pa(i) The parent label of ¢
i Learning step size

000000
0110003
000110o
00000

= H 00000 0@
00000 0@
G 00000 0@

Fig. 1. Toy hierarchy and its corresponding matrix H.

IV. HIERARCHY CONSTRAINT

A. Definition

We design a hierarchy matrix H € RY*L to represent the
hierarchical label structure 7{. Specifically, H records all links
between each non-root node to its parents (< #,pa(i) >).
For instance, in the toy example shown in Figure 1, the link
between node 2 to 4 is a valid edge according to the hierarchy.
Matrix H is upper triangular, with O in the diagonal. Indices
m € [1,...,L] and n € [1, ..., L] refer to the rows and columns
of H, respectively. Each element H,,, is 1 if label m is the
parent of label n in H, otherwise 0.

The corresponding matrix I for the toy hierarchy in Figure
1 is shown for reference. For convenience we use h to denote
the depth of the hierarchical label structure (2 in the toy
example).

We calculate the number of edges inside Y that are valid
with respect to H as:

p=Y"HY, (1)

where Y € RE*! denotes the vector representation of Y, with
entry ¢ being 1 if ¢ € Y, otherwise 0. For a single path, if all
predicted labels in Y follow the label hierarchical structure,
the number of valid edges with respect to the hierarchy is
|[Y|| — 1. Therefore, we wish each prediction output Y to
satisfy the hierarchy constraint YTHY = |[Y]| — 1.
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(d) Example 4

Fig. 2. Toy example of four possible predictions, to illustrate p; = YtT HYq.

Figure 2(a) shows one possible prediction result, where
Y, = {1,2,5}, and p = 2 due to two valid edges: < 1,2 > and
< 2,5 >. Figure 2(b) shows a different prediction outcome
Y, = {1,2,3,5,6} with four valid edges (i.e., p = 4), namely
<1,2>,<1,3>,<2,5>and < 3,6 >.

This example illustrates another important property of the
proposed hierarchy constraint. Specifically, H is not limited
to single—path hierarchical classification tasks. Instead, it can
accommodate multiple paths, as illustrated in Figure 2(b).
Figure 2(c) shows an example of an undesirable prediction
Y, = {1,5,6}). The prediction is undesirable because it has
0 valid edges with respect to H. Finally, Figure 2(d) shows
a prediction output (i.e., Y, = {1,3,5,6}) that has only two
valid edges according to H.

B. Generality

Hierarchical multi-label classification types can be com-
pactly described as a 3—tuple < T, ¥, ® >, where T denotes
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Fig. 3. Examples to illustrate the broad applicability of the proposed constraint in diverse hierarchical multi-label classification settings. Yellow denotes
predicted labels for data instances xz¢. Full Depth, Partial Depth, Single Label Path, Multiple Label Paths are abbreviated as FD, PD, SLP, and MLP.

(a) Ground truth

(b) Possible prediction result

Fig. 4. Illustrative example of the top—down hierarchical constraint.

the type of graph (i.e., T'(T'ree) or D(DAGQ)) representing the
hierarchy of classes. ¥ (i.e., SLP', M LP?) indicates whether
labels for each data instance are allowed to be associated
with single or multiple paths in the hierarchy, and ® (i.e.,
F D3, PD* indicates whether a data instance can have full or
partial depth of labeling [12]. Figure 3 shows examples of such
hierarchical multi-label classification settings, and illustrates
the ability of the proposed hierarchy constraint to encompass
all such cases.

In addition to generalizing other settings, the proposed hi-
erarchy constraint overcomes the limitation of traditional top—
down [43] approaches. Specifically, top—-down methods require
upper—level predictions to be accurate to avoid propagating er-
rors down to the lower levels. Figure 4 illustrates the limitation

ISingle Path of Labels.

*Multiple Paths of Labels.

3Full Depth Labeling: Every instance is labeled with classes at all levels
[12].

4Multiple Paths of Labels: The value of the class label at some level is
unknown [12].
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of top—down hierarchical constraints. Specifically, Figure 4(a)
shows the ground truth whereas Figure 4(b) shows a possible
prediction result. According to the top—down constraint, only
class 1 (i.e., node 1) is considered to be correctly predicted,
even though classes 5,7,9 seem to be labeled correctly as
compared to the ground truth (see Figure 4(a)). This is because
top—down methods enforce hierarchy constraints after making
classification predictions, and once a mistake is detected (i.e.,
at class 2), the remainder of the predictions are considered to
be wrong for training purposes. Instead, the number of valid
edges with respect to proposed hierarchy constraint is 3 (i.e.,
<1,3>,<5,7>,<7,9>) out of a total of 4 valid edges
(e, <1,2>,<2,5>,<5,7>, <7,9>). Note that edge
< 1,3 > is valid with respect to the hierarchy, but should be
treated as a classification mistake. Section V discusses how
to obtain correct classifications in addition to enforcing valid
paths according to the hierarchy.

V. ONLINE HIERARCHICAL MULTI-LABEL
CLASSIFICATION (OHMC)

We propose to solve the online hierarchical multi-labeled
classification problem by solving the following objective:

. 1
W, 1= argmin —=|[W — W%
WEeREX (L+1) 2
st. xIw' —xI'wltl>1Viey, 2)

X{WL+1 — X;fWi >1,Vie f/t
Y{HY, =(|¥] -1

where || - || denotes Frobenius norm of a matrix, and || - ||
denotes the L1 norm. With each new round, the goal is to
improve W, to Wy to achieve better classification accuracy
(i.e., separating the relevant and irrelevant sets with high
confidence). The hierarchy constraint (i.e., last term in Eq. 2)
is used to penalize predictions that violate the label hierarchy
structure.

At each learning round ¢, the known information includes
the current linear learner W, and the newly arrived data
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instance x;. Yy € REL*! is computed as a function of W,
and x;. Specifically, we leverage the sigmoid function (i.e.,
Sigmoid(z) = S(x) = ﬁ) to simulate the decision
process (i.e., Y;Z = 1if xI'w? > xI'wl*l), where X is a
hyper—parameter that ensures S(z) is close to 1 if z >0,
and close to 0 if < 0. Therefore, Y} = ﬁ, where
r =x!'w' —x]wltl By including the predicted labels into
the objective functlon, we get:

(Wi1,€1) = arg min{ 5[ W — Wi}
W.¢
1 1
VIS & s
xtTWL'H >1-¢,VieY,
—xI'wi>1-¢,VieY, 3)
)

n(

st x;w'—
x; whtt

& >0,Vie{1,2,..

- 1 4+ e~ A&F wi—x{wk+l)

where hyper—parameter 77 > 0 controls the trade—off between
the first regularization term and the slack variable term. Recall
that h is the depth of the hierarchy structure, which for
a single—path classification task on a tree hierarchy, is the
maximum number of valid edges. For multi—path multi—label
hierarchical tasks, the upper bound of possible valid edges
can be changed to kh, where k denotes the maximum number
of paths allowed. By incorporating the hierarchy constraint
directly into the objective function, we get:

C1
(Wip1,6e41) = argmln{§\|w - W%
W,¢
1 1
+ —
Vel Yievi & Vil Eiey, &

1 L L ) (4)

i=1 n=1

n(

)

xIwhtl > 1 ¢, Viey;,
_thi > 1—§Z,VZE)~/1§,
,L}.

s.t. xtTw
xtTwLJrl

& >0,Vie{l,2,..

Equation (4) can be compactly expressed as:

o1
Wit :argmln{anW - Wt”%’ + f:(W)

1 L (®)]

+3 2;”]" Vi —h)*}

where ft(W) is defined in [11] as:
T oL+
(W) = g;max{o 1— (x{w' —x/wit)}
‘ - ©
| Z maz{0,1 — (x! wrtt — xT'w')}.
zGYt
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Given that f;(W) has been shown to be piecewise linear
[11], a first-order approximation of f;(W) can be used, in-
stead of directly optimizing it. Leveraging this approximation,
the objective function in Equation (5) becomes:

L+1
Wi —argmm{*HW Wil + D (7)) "W

i=1 (7)

L
%ZZVHMW n?}.

In this form, the objective function is differentiable and
the first two terms (i.e., - W — VVt||2 + YN Tw)
are convex with respect to each wi. However, the last term
(i.e., 1(2{“ 1(2 1 VoH,i)V; — h)?) is non—convex, as the
sigmoid function is a non—convex function. We therefore use
Stochastic Gradient Descent (SGD) [44] to update w}_ ; as:

MV} + hw), (8)

where «; denotes the step size, and

) )
Wt—',-l*wtiat

)

|;‘xf,1f 1€Y;
t
i bi
Vi = ‘~t|xt71fz€Yt 9)
ay b’
(ot — L )xy,if i =L+ 1
Y.l |
with a! = 1[x]w® — XTWL+1 < 1], b = 1[xf'wkt! —
x{w! <1], ay = Yy, af, and by = Y, ;. af, and

)\(x?wnfxTwLJrl)H .
ni

1 Axe”
hw 1 _|_e_)\(x wi—x] TwL+1) Z _~_€—A(X?W"—x?wL+1))2

T . L+1

“AFwn—xT'w ) L

AXe Z Hpy;
(1 + e—k(xt wi—x{ WL+1))2 vt 1+ e—)\(xTW"—X?WL+1) '

(10)

Equation (7) leads to an efficient implementation described
in Algorithm 1.

A. Convergence Analysis

Here, we discuss the convergence of Algorithm 1. For
simplicity, we denote Equation (8) as:
Wip1 =W, — o Vg(wy), (1)

where g(W) substitutes the objective function in (7). Specif-
ically, at learning round ¢ + 1, by Taylor’s theorem,

9(wii1) = g(w — e Vg(w}))

= g(wi) — e Vg(w) vg(wi) (12)

2
e . . .
+ SLvg(wi) TP g(wi) vg(wi),

where V2 denotes the Hessian matrix. Now, we show that
—CI =< v2g(w!) = CI, where C' > 0, and I is the identity
matrix. The sigmoid function (i.e., S(x)) is bounded. The
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Algorithm 1 OHMC
Input: Dataset D = (x, Y), hierarchical matrix H, label set

Y
I: Randomly initialize the linear weights W; =
(1) (L+1)
(Wi, w7
2: repeat
3 Observe incoming data instance x;
4 Y, <0
5 for each i € ) do
6: if x"wi > xTwlT! then
7: Add i in Y;
8: end if
9: end for
10:  Predict the relevant label set }A/t
11:  Reveal true relevant and irrelevant label set Y; and }7}
(ie., Y —Y,) for x;
12 Calculate h,, by Eq. (10) and Vi by Eq. (9)
13: t+t+1
14:  Update W, by Eq. (8)
15: until t =T

16: return W,

second order derivative of S(z) is also bounded. The proof
follows.

Proof 1:
, 1 e
S(x) = (1 n e*”)/ Tt ey
1+e -1 1 1 (13)
- (1+e 2o)2 Tlterm  (1te )2
= S(z)(1 = S()),
and
S(z)" = (S(@)(1 - (S(x))))’
= (5(x) — S(x)*) (14)
"—28(x)S(z)

(£)(1 = S(z)) — 25(z)S(z)(1 — S(x)).

The second order derivative of S(x) comprises S(z) itself,
which is bounded in [0, 1], meaning that the second order
derivative of S(z) is also bounded (i.e., S(x)” is bounded
within [1, —2]).

Furthermore, the second order derivative of x;w! —
xFwl+! is bounded with respect to w?, as, without loss of
generality, training data values can be assumed to be bounded”.
Hence, —C1 < V?g(w}) < CI, and Equation (12) becomes:

i i i i a;C i
9(Wit1) < g(wp) — aVg(wy) " vg(wy) + =5=[[79(wp) %,
i a;C i
= g(w}) — (a0 = “L2) [ vg(wi)II>.
(15)

SFeature values are often normalized or quantized during feature engineer-
ing, before training a machine learning model.
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Setting o; = « that satisfies 1 — % > %, we get:

. . le i
9(wis) < g(w) = S| va(wi)* (16)
Summing up over all T" learning rounds,
-1,
i i t i
g(wp) <g(wi) = > FlIve(wpl®. a7
t=0
Let oy = 5%. We get
-1
i i 0 (|2
< — —||V . 18
owr) < gwi) = 3 gy 1ol a9
Rearranging the above equation, we get:
-1
0 iy||2 i i
\% < - . 19
; s D) VDI < g(w)) —glwi). (19)
Let zp = w, with probability m, where Rr =
S o 7 [45]. Then,
T—1 1
Vg(zr)|? = —[[Vg(w))||?, 20
Ivsn)lP =3 gy VeI, o
which means there exists a constant Z that | Vg(z7)||? < loiT
[45]. When T' — oo, we have:
I7g(z)II* = 0. @D

Therefore, the SGD algorithm is expected to converge to a
local minimum. This leads to the efficient algorithm, described
in Algorithm 1.

B. Complexity Analysis

We analyze the complexity of OHMC with resepct to each
online learning round (i.e., steps: 4—10). The complexity of
predicting label set Y of a data instance z;is O(K L), where
K denotes the total number of features in x; (steps: 4-7).
Updating the learning weights is O(K L) (steps: 8-9), where
the complexity for calculating Egs. 9, 10, and 8 are O(K L),
O(KL), and O(K) respectively. Thus, the overall complexity
of Algorithm 1 for a single round is O(KL).

VI. EXPERIMENTS
A. Datasets

We conduct experiments on three publicly available
datasets: ImageCLEF07D and ImageCLEF07A (X-ray im-
ages extracted from the 2007 ImageCLEF competition),
and WIPO (World International Patent Organization (WIPO)
dataset used to classify patent texts). Table II summarizes
these datasets. Note that the hierarchy depth for each of the
three datasets is 3, and the number of classes in each level of
each dataset is provided for reference. Intuitively, the number
of alternative options (i.e., labels) increases with depth. The
average label cardinally per data instance for all three datasets
is 3 due to single—path labels (i.e., each data instance can have
up to 3 labels). Compared with the total number of classes,
the number of true labels per data instance is significantly
smaller (i.e., the true label distribution is very sparse), making
classification particularly challenging.
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TABLE II
DATASETS USED IN EXPERIMENTAL EVALUATION.

Dataset Number of train data  Number of test data  Number of features Number of classes ~ Number of classes per level  Cardinality!
ImageCLEFO7A 10,000 1,006 80 96 8/25/63 3
ImageCLEF07D 10, 000 1,006 80 46 4/16/26 3

WIPO 1,352 358 74,435 187 7/20/160 3

! The average number of class labels per data instance.

B. Experimental Setup

All experiments were conducted on an iMac running macOS
Big Sur with 3.8 GHz 8—core intel Core i7 processor and 16
GB 2667 MHz DDR4 memory. The learning step «; is set
to 0.81 in OHMC. The cooresponding value of «; is set to 1
in FALT and SALT, as suggested in [11]. Both OHMC, and
the baselines (e.g., FALT, SALT, H-Ada.MH, and Global) are
implemented in Python 3.8. The training and test sets are pre—
split for all the three datasets.

C. Baselines

To demonstrate the effectiveness of OHMC, we compare
it with baseline approaches for multi-label classification and
hierarchical multi-label classification, as follows.

1) Multi-label Classification Baselines:

o FALT [11]: First order linear algorithm for online multi—

label classification and adaptive label threshold selection.

e SALT [11]: Similar to FALT, but each element in w; is
updated with an adaptive learning rate.

2) Hierarchical Classification Baselines:

« HM3 [46]: Kernel-based algorithm for hierarchical clas-
sification using maximum margin variable [47] that al-
lows SVM-style objective functions to be optimized over
hierarchical label outputs. We use HM3-/x to represent
HM3 method with symmetric loss, and HM3-[,,; and
HM3-l,;,; for HM3 with re-weight prediction errors
based on sibling and subtree, respectively [46]. HM3—
lyn; refers to uniform weighting in conjunction with
hierarchical loss. Experimental results come from [48].

¢ Clus—-HMC-Ens [49]: Top—down decision tree based ap-
proach, where each node located in the tree corresponds
to a classifier, which contains all the training examples
belonging to that parent’s node. Reported experimental
results come from [48].

« H-Ada.MH [22]: Hierarchy—aware AdaBoost variant for
hierarchical multiclass classification.

« Global [50]: A global approach that builds a single clas-
sifier to discriminate between all labels simultaneously.

D. Evaluation Metrics

Let §(t) be the set comprising the predicted labels for x;,
and let T’ (t) be the set consisting of the true labels from of data
x;. | ®| refers to the number of elements in the corresponding
set. N is the total number of test data instances.

o Hierarchical Classification Metrics [48]:

— Micro-averaged hierarchical precision (higher is

. S 90Ty
B 2t
better): hP AT

TABLE III
PERFORMANCE COMPARISON WITH RESPECT TO MULTI-LABEL
CLASSIFICATION METRICS.

Dataset Metric | OHMC  FALT  SALT
Psn 0.54 0.48 0.51
ImageCLEF07A Rcal 0.55 0.49 0.48
F1 0.54 0.48 0.40
HL 3.56 3.75 3.1
RL 0.13 1.21 0.94
Psn 0.76 0.63 0.63
ImageCLEF07D Rcal 0.69 0.62 0.63
F1 0.73 0.62 0.63
HL 2.13 2.82 2.72
RL 0.08 0.19 0.18
Psn 0.74 0.68 0.68
WIPO Rcal 0.68 0.68 0.68
F1 0.70 0.68 0.68
HL 1.67 1.85 1.86
RL 0.04 0.15 0.15

— Micro-averaged hierarchical recall (higher is bet-
-0 er
ter): hRF = Lijf‘\’y;;?“
- Micro—averagedt hierarchical F-measure (higher is

.} fu _ 2XhPYxhR"
better): hF'" = = 5550

o Multi-label Classification Metrics [11]:
1 N |§:0Ty]
19l

— Precision (higher is better): P = + >,
1\ |Z?tOTt|, and

— Recall (higher is better): R = 5 ) ,

— Fl-measure (higher is better): F'1 =

- Hammiljl\g L0§s (lower 1is Dbetter):
T 2o |5 ATy, where A refers to symmetric
difference between two sets.

— Rankin Loss (lower is better): RL
by S PP gy iz

denotes the real value score assigned to label <.

b}

E. Results

We begin by comparing OHMC with FALT and SALT with
respect to multi-label classification metrics. Table III shows
the evaluation results. As expected OHMC achieves the best
performances in all cases, which illustrating the benefit of
incorporating the hierarchical constraint directly into existing
multi—label classification for adapting hierarchical multi—label
classification task. The competitive advantage of OHMC be-
comes clearer in the ImageCLEF07D dataset, where OHMC
achieves a 10% increase in F1 score as compared to FALT
and SALT. Among the multi-label evaluation metrics, the RL
value of OHMC is significantly lower than FALT and SALT.
Average number of cases in which the real value prediction
score h(xy,i) is smaller than h(xy, k) where ¢ denotes the
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TABLE IV
PERFORMANCE COMPARISON WITH HIERARCHICAL MULTI-LABEL CLASSIFICATION METHODS.

Dataset Metric | OHMC | HM3-1~  HM31un; HM3 1.5 HM3 1,4, Clus HMC Ens H-AdaMH _ Gobal
RDF 057 0,51 053 0.46 041 0.70 0.74 0.67

ImageCLEFO7A | hRM 0.51 0.41 0.42 043 0.42 0.71 0.69 0.62
hEH 0.52 0.45 0.42 043 0.46 0.71 0.71 0.64

RDF 0.74 047 045 048 052 0.80 0.73 0.66

ImageCLEFO7D | hRM 0.72 0.38 0.41 041 0.42 0.81 0.72 0.65
hEH 0.72 0.41 0.42 043 0.46 0.80 0.72 0.65

RPP | 0.69 0.62 0.62 0.60 0.60 0.63 0.53 0.39

WIPO RRE | 0.70 0.40 0.38 0.50 0.50 0.68 0.49 0.24
RE® | 0.69 0.49 0.47 0.55 0.55 0.68 0.50 0.29

0.8
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Fig. 5. Experiment results of WIPO for hP* and hR* with respect to

OHMC (without disturbing the order of data instances), OHMC (Random),
i.e., OHMC with data instances processed in random order), and OHMC
(Reverse), i.e., OHMC with data instances appearing in reverse order.

true relevant label and k& denotes the true irrelevant label. This
suggests that OHMC is better able to distinguish between the
relevant and irrelevant labels.

Next, we compare OHMC with hierarchical classification
baselines (i.e., HM3—I A, HM3—l,,;, HM3-lg;,;, HM3—14,5,
Clus—-HMC-Ens, H-Ada.MH, Gobal). Table IV presents the
comparison results. In WIPO, the competitive advantage of
OHMC becomes more prominent, as it outperforms all base-
lines. As for ImageCLEF07A and ImageCLEF07D, Clus—
HMC-Ens and H-Ada.Mh perform better than OHMC. Our
explanation for this result is threefold: (i) Clus—HMC-Ens
leverages decision tree based learner, and trains each class as
a separate classifier by pre—arranging data instances belonging
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to its parent’s node, whereas OHMC considers all classes,
training a single linear—based classifier without separating
the training data instances (i.e., there are total 96 based
classifiers in Clus—HMC-Ens compared to 1 in OHMC in
ImageCLEF07A), (ii) hierarchical multi-label classification
baselines are allowed to repeatedly train over each data in-
stance in each learning epoch, whereas OHMC learns online,
using each data instance once, and (iii) a nonlinear classifier
may be needed to improve classification performance in image
domain (e.g., ImageCLEFO7A and ImageCLEF07D) where
features are highly correlated. Nevertheless, OHMC achieves
better results on ImageCLEFO7A and ImageCLEF07D com-
pared with SALT and FALT, which illustrates the benefit of
proposed objective function in hierarchical classification tasks.
Additionally, OHMC is able to better handle the large number
of features and the complex hierarchical structure of WIPO.

Last but not least, we explore the impact (if any) of the order
in which training data instances become available to OHMC.
Specifically, we consider two additional scenarios, in which
the order of training data instances is (i) randomized, and (ii)
reversed with respect to the order of their appearance in the
original WIPO dataset. These are denoted as OHMC(Random)
and OHMC(Reverse), respectively. Figure 5 shows how hierar-
chical precision (hP*) and recall (hR") evolve on the WIPO
dataset as more data instances become available. Despite some
variations due to different starting conditions (i.e., different
data instances early on), OHMC seems to converge as more
data instances becomes available. The results illustrate that
although the order by which training data instances become
available indeed has an impact on the evolution of W4, such
impact is not significant from the overall training perspective.

In summary, the experimental results indicate that incorpo-
rating the hierarchy constraint directly into the online learning
process is beneficial, particularly for datasets with complex
hierarchical structure (e.g., WIPO).

VII. CONCLUSION

We presented OHMC, a new algorithm for online hierarchi-
cal multi-label classification. Specifically, we first introduced
a new hierarchy constraint to describe the entire hierarchi-
cal label structure instead of local parent—child relationship.
Next, we formulated the task of online hierarchical multi—
labeled classification as an online optimization problem. We
subsequently derived a closed form update for the case of
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linear classifiers. Our experiments on three real-world datasets
demonstrated the effectiveness of the proposed approach com-
pared with both online multi-label classification algorithms
and offline hierarchical classification frameworks.

In future work, we plan to extend our algorithm to non-
linear classifiers so as to achieve better classification results,
particularly in image datasets, such as ImageCLEFO7A and
ImageCLEF07D. We additionaly plan to regularize the poten-
tial deviation of predictor weights at successive training rounds
to ensure temporal smoothness.
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