ON WARING’S PROBLEM FOR LARGER POWERS
JORG BRUDERN AND TREVOR D. WOOLEY

ABSTRACT. Let G(k) denote the least number s having the property that
every sufficiently large natural number is the sum of at most s positive
integral k-th powers. Then for all k£ € N, one has

G(k) < [k(log k + 4.20032)].

Our new methods improve on all bounds available hitherto when k£ > 14.

1. INTRODUCTION

Since the introduction by Hardy and Littlewood of their circle method a
century ago (see [3]), it has been possible to surmise progress associated with
this technology from corresponding advances in the theory of Waring’s prob-
lem. As is usual, we denote by G(k) the least number s having the property
that every sufficiently large natural number is the sum of at most s positive
integral k-th powers. The initial bound G(k) < (k — 2)2*~! + 5 of Hardy and
Littlewood [4] was improved rapidly over the next four decades, culminating
in 1959 with Vinogradov’s bound

G(k) < k(2logk + 4loglog k + 2logloglog k + 13) (k> 170,000)

(see [18]). The latter bound was subsequently improved by Karatsuba [7], and
shortly thereafter by Vaughan [12], showing that

G(k) < 2k(logk + loglogk + 1 +log2 4+ O(loglog k/ log k)).

A little over three decades after the work of Vinogradov, the second author
obtained a bound roughly half that of this earlier work, establishing the bound

G(k) < k(log k 4 loglog k + 2 + O(loglog k/ log k))

(see [19, 20] and [22, Theorem 1.4]). Our primary goal in this memoir is the
removal of the secondary term of size kloglog k.

Theorem 1.1. For all k € N, one has G(k) < [k(log k + 4.20032)].

The conclusion of this theorem constitutes the largest improvement in avail-
able bounds for G(k), when k is large, since the progress achieved thirty years
ago by the second author [19, 20]. The upper bound presented in Theorem 1.1
is in fact an approximation to one asymptotically very slightly stronger. In
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order to describe this result, we introduce some auxiliary constants. Let w be
the unique real solution, with w > 1, of the transcendental equation

w—2—1/w=logw. (1.1)
We then put
w? + 3w — 2

C) =2+ log(w® — 3 —2 d Cy= : 1.2
L= 2+ log(w fo) and G =S TEIZ (1)
A modest computation reveals that

w=23.548292..., (7} =4.200189... and (5 =3.015478....
Theorem 1.2. For all k € N, one has G(k) < k(logk + Cy) + Cs.

It transpires that the new ideas underlying the progress exhibited in Theo-
rems 1.1 and 1.2 apply not only for very large values of k, but also for exponents
of moderate size.

Theorem 1.3. When 14 < k < 20, one has G(k) < H(k), where H(k) is
defined by means of Table 1.

k14 15 16 17 18 19 20
H(k) 89 97 105 113 121 129 137

TABLE 1. Upper bounds for G(k) when 14 < k < 20.

For comparison, recent work of the second author [24] delivers the bounds
G(14) <90, G(15) < 99, G(16) < 108, while rather earlier investigations of
Vaughan and Wooley [17] obtained G(17) < 117, G(18) < 125, G(19) < 134,
(G(20) < 142. For values of k smaller than 14, although superior to the bounds
of [17], our new methods do not improve on those obtained in [24].

Two ideas underlie our approach to the theorems above, one old and one
new. A novel mean value estimate for moments of smooth Weyl sums over
sets of minor arcs of intermediate and large height is essential for our findings.
This new tool is of utility in bounding mean values restricted to sets of arcs
excluding those of classical major arc type, and hence is applicable in pruning
problems. A simple but crude version of this idea occurs as [2, Lemma 2.3],
where mean values over sets of major arcs of large height are estimated in
terms of complete mean values over shortened exponential sums. This idea,
in turn, has [9, Lemma 5.6] as a less flexible and more restricted precursor.
While a version of [2, Lemma 2.3] is obtained in Theorem 4.2 which applies
to lower moments than were accessible hitherto, the treatment of the present
memoir also delivers analogous bounds for moments restricted to minor arcs.
Crucial to our applications is the observation that the latter estimates are at
their most powerful when the associated set of minor arcs is of maximal height
relative to the length of the shortened exponential sums occurring within our
argument. Readers seeking clarity beyond these rough and murky remarks
would do well to inspect the account in §5 of the ideas delivering Theorem 5.3.
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This brings us to the second, much older, idea that we exploit. Minor arc
estimates of conventional type for smooth Weyl sums over k-th powers can be
substantially improved when their argument lies on an extreme set of minor
arcs, rather than on a conventional such set. This idea has been utilized
previously in work of Heath-Brown [6] and Karatsuba [8] on fractional parts of
an®. A flexible analysis using sets of smooth numbers of utility in applications
of the circle method can be found in [22]. These improved minor arc estimates
can be applied through the novel mean value estimates to which we alluded in
the previous paragraph, surmounting difficulties associated with intermediate
sets of arcs that previously obstructed their use. The details associated with
this plan of attack are described in §5.

We begin the main discourse of this memoir in §2 by introducing the in-
frastructure required for a discussion of mean values associated with smooth
Weyl sums. This section already introduces ideas that relate intermediate sets
of arcs of differing heights. The delicate analysis involved in considering mean
values restricted to sets of intermediate arcs requires a careful decomposition
of smooth Weyl sums, and this we discuss in §3. Thus prepared, we establish
our first mean value estimate in §4, completing the proof of Theorem 4.2. In
order to exploit the mean value estimate provided in this theorem, we revisit
estimates of Weyl type for smooth Weyl sums in §5, providing in Theorem 5.3
an estimate of minor arc type that should be flexible enough for future appli-
cation beyond the present memoir. In §6 we turn to the application central
to this paper, namely Waring’s problem, and we describe a general analysis.
Explicit bounds for G(k) are then derived for larger k in §7, establishing The-
orems 1.1 and 1.2. In §8, we consider intermediate values of k using the tables
of exponents made available in [17], and thereby we complete the proof of The-
orem 1.3. Finally, in §9, we briefly outline the consequences of our new bounds
for problems concerning the representation of almost all positive integers as
sums of positive integral k-th powers.

The authors are grateful to the referee for useful comments.

2. INFRASTRUCTURE

We initiate the proof of the mean value estimates provided in Theorems 4.2
and 5.3 by introducing infrastructure necessary for the ensuing discussion. A
central role is played by the set of R-smooth integers not exceeding P, namely

A (P,R)={n € [l,P]NZ: p|n implies p < R}.

Here, and throughout this memoir, the letter p is used to denote a prime
number. Recall the usual convention of writing e(z) for €2™. Then, associated
with this set o7 (P, R) are the smooth Weyl sum

fla; P,R) = Z e(az®),

z€d/ (P,R)
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and, for each positive real number s, the mean value
1
UAPR) = [ (0P R da
0

A real number A is referred to as an admissible exponent (for k) if it has
the property that, whenever € > 0 and 7 is a positive number sufficiently small
in terms of €, £ and s, then whenever 1 < R < P" and P is sufficiently large,
one has

Us(P, R) < P*~htaste,
Here and throughout, with P the underlying parameter, the constant implicit
in Vinogradov’s notation may depend on ¢, n, k and s. It is easily verified
that for all positive numbers s, one has A, > 0. It is a simple exercise in
interpolation, moreover, to confirm that for each > 0 one has Uy (P, P") >
P#/2_ Thus, for all s > 0 one has

Ay > max{0,k — s/2}.

In the opposite direction, one has the trivial upper bound Us(P, R) < P*.
Hence A, = k is an admissible exponent. We may therefore suppose that
A < k, and we shall do so whenever this is convenient.

We draw a trivial consequence from the definition of an admissible exponent
important enough that we summarise the conclusion in the form of a lemma.

Lemma 2.1. Suppose that A, is an admissible exponent for k and that € is
a positive number. Then there exists a positive number 1, depending at most
on e, k and s, with the following property. Suppose that P is sufficiently large
i terms of €, n, k and s, and further that 1 < R < P". Then, uniformly in
1 <Y < P, one has the bound

U,(Y,R) < PTY*s™F5s,

Proof. Fix €, k and s, so that in our use of Vinogradov’s notation we may
suppress any mention of quantities depending on these numbers, and write
s = s — k+ A, If we assume that A, is admissible for k, there exists a
positive number 7, depending at most on ¢, k and s, and satisfying 71 < ¢
and the following property. Whenever X is sufficiently large in terms of 7y,
say X = Xo(m), and 1 < R < X™, one has Uy(X, R) < X#*=. Now consider
a real number P sufficiently large in terms of n;, and suppose that 1 <Y < P.
We put n = n?/s and take R to be a real number with 1 < R < P7. There
are three different regimes for Y that we must consider. First, if Y < Xo(m1),
then a trivial estimate yields the bound

Us(Y,R) <Y* < Xo(m)® < 1.
Next, when Xo(71) <Y < RY™ | the same trivial estimate now reveals that
U(Y,R) <Y*® < RYm L prs/m = pm L P,

Finally, when Y > Xy(n;) and RY/™ <Y < P, we have R < Y™ and then it
follows from the above discussion that we have

Uy (Y,R) K YHTe <« PEYHs,
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By collecting together these estimates, we conclude that the last bound holds
uniformly in 1 <Y < P. This completes the proof of the lemma. O

In order to facilitate concision, from this point onwards we adopt the ex-
tended ¢, R notation routinely employed by scholars working with smooth
Weyl sums while applying the Hardy-Littlewood method. Thus, whenever a
statement involves the letter €, then it is asserted that the statement holds
for any positive real number assigned to . Implicit constants stemming from
Vinogradov or Landau symbols may depend on ¢, as well as ambient parame-
ters implicitly fixed such as k and s. If a statement also involves the letter R,
either implicitly or explicitly, then it is asserted that for any € > 0 there is a
number 7 > 0 such that the statement holds uniformly for 2 < R < P". Our
arguments will involve only a finite number of statements, and consequently
we may pass to the smallest of the numbers 7 that arise in this way, and then
have all estimates in force with the same positive number 7. Notice that n
may be assumed sufficiently small in terms of k, s and ¢.

We shall have cause to consider sets of integers, all of whose prime divisors
divide a fixed integer. In this context, we make use of transparent though
disturbing notation, writing u|¢> to denote that whenever p is a prime and
plu, then p|g. Then, when ¢ € N, we define the set

C.(P,R) ={ne€ o (P,R):n|¢>},

consisting of R-smooth natural numbers not exceeding P, each having square-

free kernel dividing g. We recall that, while card(«/ (P, R)) >, P when
R > P", the set €,(P, R) is very thin provided that ¢ is not too large.

Lemma 2.2. Suppose that C' is a positive number. Then, uniformly for posi-
tive integers q with ¢ < PC, one has card(%6,(P, R)) < P*.

Proof. The desired conclusion is immediate from [20, Lemma 2.1]. O

Our interest lies in mean values of f(a, P, R) analogous to Us(P, R), though
with domains of integration given by intermediate sets of arcs from a Hardy-
Littlewood dissection. Let @) be a parameter with 1 < Q < P*2. When ¢ is a
natural number with 1 < ¢ < @), we define the set of arcs ,(Q, P) to be the
union of the sets

My o(Q, P)={a €10,1): [go—a| < QP ™},
with 0 < a < g and (a,q) = 1, and then put
MQ,P) = J M(Q,P).
1<¢<@Q
It is convenient to extend these definitions so that 9,(Q, P) = () when ¢ > Q.
The related dyadically truncated set of arcs 91(Q, P) may then be defined by
N(Q, P) = M(Q, P) \ M(Q/2, P).

Associated with this set are the collections of arcs

N,(Q, P) = My (Q, P)\ M,y(Q/2, P).
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By Dirichlet’s approximation theorem, given a € [0,1), there exist a € Z
and ¢ € N with 0 < a < ¢ < P*?, (a,q) = 1 and |ga — a| < P7*/2. Thus we
see that o € M (P*/2, P). Hence, in particular, we have

0,1) = @7 P2 P),

7=0

in which

It therefore follows that
L

AR /(@; P, R)J* da
=0 7/ N(27IPk/2,P)

< (log P) max / |f(a; P, R)|* dav.
n(Q,P)

1<Q<PR/2

An important feature of the mean value on the right hand side here is a certain
scaling property of the associated set (@, P). We summarise this property
in the form of a lemma.

Lemma 2.3. Let F': R — C be a 1-periodic integrable function. Suppose that
w € N satisfies the property that 1 < Q < %(P/w)k/Q. Then whenever ¢ € N
satisfies (q,w) = 1, one has

/ F(aw®) da = w_k/ F(p)dg.
My (Q,P) My (Q,P/w)

Proof. Let
1=[q'QP ™ g QP and = [~g7'Qut P g7 Qui P

The hypothesis @ < 3(P/w)*? ensures that the arcs comprising 9, (Q, P/w)
are disjoint. Since F' has period 1, we infer that

q

b

/ F(B)ds=3 /F(— + 7) d. (2.2)

My (Q,P/w) b1 JJ q
(b,g)=1

Likewise, we find that

/smq(Q,P) F(aw®)da = Zl [F((g + B)wk> dg

By hypothesis (¢, w) = 1, whence the mapping a — aw” induces a bijection on
the reduced residue classes modulo ¢. Once again using the hypothesis that F'
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has period one, it now follows that the sums on the right hand sides of (2.2)
and (2.3) are equal. This proves the lemma. O

3. A DECOMPOSITION OF THE SMOOTH WEYL SUM

We are unable to apply Lemma 2.3 directly with F'(8) = |f(8; P, R)|*. How-
ever, following a decomposition of the smooth Weyl sum f(5; P, R), we are able
to achieve a conclusion tantamount to such an application. Here, the copri-
mality condition (¢, w) = 1 of Lemma 2.3 figures prominently in the analysis.
We begin by isolating a part of the smooth Weyl sum f(«; P, R) in which a
large factor w of the argument is available coprime to an auxiliary variable q.
With this objective in mind, we introduce the auxiliary exponential sums

fil; PM.R)= > > ela(uw)t) (3.1)
ved/ (P,R) u€%y(P/v,R)
v>M
(v,9)=1

and

fila; MRy = ) > ela(uv)®). (3.2)

ved/ (M,R) u€éy(P/v,R)
(v,9)=1

Lemma 3.1. Let ¢ € N. Then

flo: P,R) = fy(0; P.M,R) + fj(c; P, M, R).
Proof. Consider an integer x € o/ (P, R), and let u denote the largest divisor of
x with u|¢>®. Put v = z/u. Then either v < M, in which case v € &/ (M, R),

or else v > M and v € &/(P,R). In both cases, one has © = wv with u €
¢,(P/v,R) and (v,q) = 1. The conclusion of the lemma follows at once. [

It transpires that the contribution of the exponential sum f;(a; P, M, R) is
easily handled via a trivial estimate.

Lemma 3.2. Let Q be a parameter with 1 < Q < P*?. Then, whenever
1<qg<Q, one has

/ |fi(c; P, M, R)|* dae < QM*P**.
mQ(va)

Proof. By applying Lemma 2.2 together with a trivial estimate for the sum
over v in (3.2), we see that

P M RS> Y 1< PM

v<M ue,(P/v,R)

Thus, since mes(9M,(Q, P)) < QP we deduce that
/ ’qu(Oé; P,M,R)|*da < QP *(P°M)®,
My (Q,P)

and the conclusion of the lemma follows. O
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In order to analyse the exponential sum f; (a; P, M, R) further, we recall a
decomposition of the smooth numbers utilised in work of Vaughan [12]. In this
context, we introduce a subset of the smooth numbers o7 (P, R) given by

PB(M,m,R) ={ved(Mn,R):v>M,xlv, and «’|v implies 7’ > 7}.

Both here and in the remainder of this memoir, we reserve the symbols 7 and
7’ to denote prime numbers. We also require the exponential sum

9y rx(; Pym, R) = Z Z e(a(wu)r). (3.3)

wed (P/m,m) u€€q(P/(mw),R)
(w,q)=1

Lemma 3.3. Let ¢ € N. Then whenever M > R, one has
filasPMR) =Y Y gi (am*;P,m,R).

T<RmeB(M,r,R)
(m,q)=1

Proof. 1t follows from [12, Lemma 10.1] that for each v € &/ (P, R) satisfying
v > M > R, there is a unique triple (7, m,w) with v = mw, w € & (P/m,)
and m € Z(M,r,R). On noting that the coprimality conditions (m,q) =

(w,q) = 1 are inherited from the constraint (v,q) = 1, the conclusion of the
lemma follows from the definition (3.1) of fy(a; P, M, R). O

We complete this section by combining the conclusions of Lemmata 3.1, 3.2
and 3.3 so as to obtain a mean value estimate of considerable utility. In order
to abbreviate notation at this point, we introduce the mean value I,(M;B)
defined for B equal to either 9T or O by

.(M;*B) Z Z / |gq7T am®; P,m, R)|* da. (3.4)

T<RmeH( M7r ,R)
(mq)

Lemma 3.4. Let Q be a real number with 1 < Q < P*2, and suppose that s
1s a real number with s > 1. Then whenever M > R and 1 < ¢ < @), one has

/ |F(0s P, R)|* da < (MR)*™'[,(M;00) + QM* P,
Ng(Q,P)

The same conclusion also holds when 9N replaces I throughout.

Proof. 1t follows from Lemma 3.1 that when « € [0,1), one has
(s P, R)]" < |fy (o P.M R) + | £ (o P M R).
Moreover, by applying Holder’s inequality in combination with Lemma 3.3,
one obtains the bound
Fies PRI =3 > g (am®s P R)

T<Rme#B(M,r,R)
(m,q)=1

< (MRS > gi(amb; Pm R,

T<SRme#B(M,r,R)
(m,q)=1
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Note that M, (Q, P) C M,(Q, P). Hence, on integrating over a € N, (Q, P) or
a € My(Q, P), the lemma now follows from Lemma 3.2. O

4. MEAN VALUE ESTIMATES OVER INTERMEDIATE ARCS

The upper bound provided by Lemma 3.4 bounds f(«; P, R) in mean, over
a set of intermediate arcs, in terms of an auxiliary mean value. The latter is
susceptible to Lemma 2.3, but the presence of factors in the argument lying in
Cy(P/(mw), R) creates difficulties to which we now attend. In this section, we
prepare a preliminary mean value using a method that in certain circumstances
may be enhanced. These enhancements we defer to the next section.

We begin with a discussion of the exponential sum g;‘m(a; P,m,R). Here,
we shall find it useful to introduce a modification of the set 6,(P, R), namely

Cyn(P,R) ={n € €,(P,R) : p|n implies p > 7}.
Lemma 4.1. One has

Gyrla; Pom, R) = Z Z e(a(z2)F).

2€64,x(P/m,R) x€o/ (P/(mz),m)

Proof. On recalling the definition (3.3) of g7 _(a; P, m, R), we may interchange
the order of summation to obtain

g;,Tr(a;Pvm’ R) = Z Z e(a(wu)k)
u€%y(P/m,R) wed/ (P/(mu),r)
(w,g)=1
For each integer u € %,(P/m,R), there is a unique pair of integers (y, z)
satisfying © = yz, where y has all of its prime divisors no larger than 7, and z
has no prime divisors less than or equal to 7. Thus, we have y € €,(P/m, )
and z € €, .(P/m, R). Making use of this decomposition, we see that

Jorla; Pym, R) = Z Z Z e(a(wyz)k). (4.1
2€6q,x(P/m,R) y€€q(P/(mz),m) wed((f{l()rfgl/z),ﬂ)
Notice here that, given any integer n € &7 (P/(mz), ), there are unique in-
tegers y and w with n = yw, and satisfying the condition that y has all of
its prime divisors amongst those of ¢, and w is coprime with ¢g. With such
decompositions in mind, we recognise that

> Y eywyty = D> e(yah).

YyEGq(P/(mz),m) wed((P/()m%z),ﬂ') zedd (P/(mz),n)
w,q)=

The conclusion of the lemma follows on substituting this relation into (4.1). O
We now investigate the mean value I,(M;B) defined in (3.4) as a prelude to

the highlight of this section, a mean value estimate for moments of f(«; P, R)

restricted to the set IM(Q, P). Fix B to be either M or N, and fix a real
number @ with 1 < Q < 1P¥2R=*_ At this point, we put

M = P(2Q)"%/*R™, (4.2)
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and we observe that our hypothesis on @) ensures that M > R. Then, when
T < Rand m € #B(M,7,R), one has m < Mr < P(2Q)"?*, and thus
Q < 1(P/m)*/2. The latter condition ensures that the arcs M, ,(Q, P/m) are
d15301nt for 0 < a < ¢ < Q with (a,q) = 1. Under these hypotheses on @ and
m, therefore, we deduce from (3.4) via Lemma 2.3 that

= Z Z m* |95+ (c; P,m, R)|* da. (4.3)

r<RmeB(M,n,R) B4(Q,P/m)
(m,q)=1

Observe next that, since 6, (P/m, R) C €,(P/m, R), it follows from Lemma
4.1 together with Lemma 2.2 and Holder’s inequality that when s > 1, one has

|90 (c; Pym, R)|* < P? Z ‘ Z e(a(z2)F)

2€6q,x(P/m,R) z€o/ (P/(mz),m)

S

<P > |f(azk P/(mz), T

z€4/ (P/m,R)

Write
LéOanZﬁB)—l/ |faz; P/ (mz), m)|* da
(Q,P/m)

Then we deduce via (4.3) that

Y LBy <Y > mt Z/ |95 (c; Pym, R)|* dex

1<q<Q T<RmeRB(M,n,R) 1<g<@ a(Q.P/m)
< PEZ Z m* Z Vs(m,m, z;B). (4.4)
T<RmeB(M,m,R) zed (P/m,R)

The special case of (4.4) with B = 9 combines with Lemma 3.4 to deliver
the main conclusion of this section. We emphasise that in this statement just
as elsewhere, we are making use of the extended &, R convention.

Theorem 4.2. Suppose that s is a real number with s > 2 and A, is an
admissible exponent. Then whenever Q is a real number with 1 < Q < P¥/?,
one has the uniform bound

| it R da < Pk
(Q7P)

Proof. We begin by observing that the conclusion is immediate from the def-
inition of an admissible exponent when 1P¥2R™% < @ < P*2, for in such
circumstances one has

/ |f(0é; P, R)|s dav < US(P, R) < Ps—kz—i—Aﬁ-a < Ps—k—i-QaQQAs/k.
(@,P)

We may therefore suppose henceforth that 1 < @ < %Pk/ 2R7*. In view of
(4.2), one then has also M > R. For each summand m in the relation (4.4),
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one trivially has 9(Q, P/m) C [0,1). Thus, by means of a change of variable
we deduce that

Vim,m, 2 9) < / F(@z¥; P/(mz), mI* da = U,(P/ (m=), 7).

We hence infer from Lemma 2.1 and (4.4) that when s — k + A > 1, one has

S <Y Y mt Y <%)s—k+As

1<9<Q TSR me#(M,m,R) zed (P/m,R)

< P~ k+2az Z (§>S+AS

<R me#B(M,r,R)
P As
< Ps—k+SaM1—s <_> )
M
The condition s — k + Ay > 1 is satisfied so long as s > 2, for as we have
already observed, it is always the case that Ay > k — s/2. We therefore
conclude from Lemma 3.4 that

/ |f(a; P, R)|° dav = Z/ fla; P, R)|° da
Dﬁ(Q,P) 1<q<Q
< (MR)*™* Z I,(M;9M) + Q*M*P=*
1<g<@Q

< Ps—k-l—e(P/M)As 4 Q2MsPs—k'

Thus, on recalling our choice (4.2) for M, we conclude that
/ |f(04; P, R)|s dav < Ps—k+5 (Q2As/k + QQ—Qs/k> )
m(Q,P)

The conclusion of the theorem follows on observing that A, > k — s, whence
the first term on the right hand side majorises the second. O

We remark that a version of Theorem 4.2 appears as [2, Lemma 2.3|, though
in that version the condition s > k 4 1 is imposed. The proof of that lemma
is in many ways more straightforward, with the price being a more restrictive
constraint on s. As we shall see in the next section, the approach that we have
taken in this memoir also offers the option of retaining minor arc information.

5. MEAN VALUE ESTIMATES RESTRICTED TO MINOR ARCS

The conclusion of Theorem 4.2 provides a mean value estimate over an inter-
mediate set of major arcs M(Q, P). If instead we integrate over the truncated
set M(Q, P), then we are removing the points from 9M(Q, P) of small height,
and the resulting mean value is relevant to the estimation of the minor arc
contribution. Suppose that 1 < @ < $P¥? and put X = Q¥*. Then in
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very rough terms, one can interpret the argument leading to Theorem 4.2 as
delivering a bound of the flavour

/ fe: P, R)|* da < (P/X)F+ / Fa: X, R)|" da
M(Q,P) Mm(Lx*k/2,X)

< (P/X)¥ U, (X, R).

Our goal now is to obtain an analogous bound of the general shape

/ F(0; PR da < (P/X)7H+e / flos X, R)J da
N(Q,P)

N($X*/2,X)

The set ‘ﬁ(%X /2. X) is an extreme set of minor arcs. Here, when « lies on
N($X*2, X)), it is known that the smooth Weyl sum f(a; X, R) is O(X'~*),
for a suitable positive number c. Since this bound is considerably sharper
than conventional minor arc bounds for f(«; X, R), which would lose a factor
of roughly log k£ in the Weyl exponent, one has rather sharper bounds for

| if@r R

N(Q,P)

than were available hitherto, at least when s is fairly large.
We begin by deriving a consequence of [22, Lemma 3.1].

Lemma 5.1. Let t be an even integer, and suppose that the exponent A, is
admissible. Then whenever b € Z, r € N and (b,r) = 1, one has

2
fla; P,R) < r*P""e (P2 (71 + P7+2 4 P"“@))Q/t + pl/2te
in which we write © = r + P*|ra — b|.

Proof. Suppose that % <A< 1, M = P*and a € R. Suppose further that
a € Z and q € N satisfy (a,q) = 1 and |a — a/q| < 1/¢*>. Then [22, Lemma
3.1] establishes that for all even natural numbers ¢ and w, one has

Fles P, R) < g P (M (P/M)™ (q7" + M~ + (P/M) ™ 4 gP~)) "
+ M.

We take w =t and \ = % + 9, for a small fixed positive number §. Thus

2
f(Oé, P, R) < q6P1+k5 (PAt (q—l +P—k/2 +qP_k))2/t n P1/2+6_

We now apply a standard transference principle (see [23, Lemma 14.1]) to see
that the same conclusion holds for all b € Z and r € N with (b,7) = 1 when
we replace ¢ by © = r + P*|ra — b| throughout. The conclusion of the lemma
therefore follows, since § may be taken arbitrarily small. OJ

The most powerful consequences of Lemma 5.1 are made available by apply-
ing Dirichlet’s approximation theorem to obtain integers b and r with (b,r) = 1
and 1 < r < P*/? for which |ra — b| < P7%/2, In such circumstances, Lemma
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5.1 is most effective when « satisfies the condition that r > ¢P*2, for some

fixed ¢ > 0. One then has f(a; P, R) < P'"7k+e o p1/2+e where
k— 24
T(t, k) = TR

Since A; > max{k —t/2,0}, one sees that

t—k k 1
R G
k) <min{2E S < o

and thus our estimate for f(«; P, R) simplifies to f(a; P, R) < P*=7®k+e To
extract the most from this bound, we introduce the number

k—2Aq,

(k) = max (5.1)
and then have
f(a; P,R) < Pr=mhte, (5.2)

The number 7(k) will be of significance in the argument below. It appears also
in slightly different guises in work of Karatsuba [8] and Heath-Brown [6].

We now return to the rescaling argument underlying the work of §4. In this
context, we introduce an auxiliary exponent. Suppose that s is a real number
with s > 2, and that the exponents A, are admissible for 2 < u < 5. We
define

AY = min (As_y —tr(k)), (5.3)

5 ogt<s—2
and refer to A as an admissible exponent for minor arcs.

Theorem 5.2. Suppose that s > 2, and that A} is an admissible exponent for
minor arcs. Then whenever 1 < Q) < 1P"“'/2R k, one has the uniform bound

| IfP R da < P,
NQ,P)

Proof. We again fix M according to equation (4.2), and we recall from (4.4)
that when 1 < Q < 2P¥?R~* one has

LM< P Y Y omt > Vi(mm, M), (5.4)

1<q<@Q 7<RmeB(M,n,R) 24/ (P/m,R)

where

Vs(m,m, z; M) = A(QP/ )|f(azk;P/(mz),7r)]S da. (5.5)

We apply Lemma 5.1 to estimate f(az”; P/(mz),7) when a € M(Q, P/m).
In the latter circumstances, one has o € M(Q, P/m) \ M(Q/2, P/m). Thus,
there exist integers a and ¢ with 0 < a < ¢ < @ and (a,q) = 1 for which one
has |ga — a| < Q(P/m)~*, and either ¢ > Q/2 or |qa — a| > %Q(P/m)_k
Consider a fixed integer z € «7(P/m,R). Then as a consequence of these
relations, if we put

q az"

and b= ,
(g, 2%) (g, 2")

r =
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then we find that (b,7) = 1 with » < Q and |r(az*) — b
Moreover, one has either » > 2Qz7" or |r(az”) — b > 1Q(
particular,

<Q( P/(mz))~*
P/

m)~*. Thus, in

Pk
1.k I Ky _ bl <
Q27" <r+ <mz) Ir(az”) —b] < 2

We therefore deduce from Lemma 5.1 that whenever ¢ is an even integer, then

P\ 1te P \Ae 2P mz\ k/2 mz\k
ke Ge) (G2 (G (%) +e(F))
flaz Pf(mz), m) < Q°( — w) gt p) Q%
P \1/2+¢
(=)
mz
We choose t = 2w to correspond to the maximum in the definition of 7 = 7(k)

in (5.1), and recall from (4.2) that Q@ = 1(P/(MR))¥/?. Then, when M < m <
MR and o € N(Q, P/m), we conclude that

2/t%

P \1/2+e PN\1-7 5
flazk Plma),m) < (=) 4+ (o) et

mz m

Since Ay > k —t/2 and t > 2, we arrive at the upper bound

sup | f(as; Pf(ma), m)| < PA(Pfm) T2 (5.6)
aeN(Q,P/m)

We now return to the mean value Vi(m, m, ;M) defined in (5.5). Let ¢ and
v be non-negative integers with s =t 4+ v. Then it follows from (5.6) that

Vol =2 90) < Pfm) ) [k Py me), ol da
0

A change of variable therefore combines with Lemma 2.1 to show that

V(m,m, ) < P¥(P/m)' U, (P/(mz),)
< PQE(P/m)t(l_T)(P/(mz))v_k+A”.

Since A, > k —v/2, we see that v — k+ A, > 1 whenever v > 2. On recalling
the deﬁnitlon (5.3) of A%, therefore, and noting that v = s —¢, we discern that

Vi(m,m, 2;M) < 27 LPE(P/m)*kTas

On substituting this upper bound into (5.4), we find that

Z (M; M) <<P€Z Z “R(P/m)sTRTAS Z 2zt

1<g<Q TSR M<m<MR 1<z<P/m
L PRRENITS(P/M)As, (5.7)
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We next appeal to Lemma 3.4, proceeding just as in the conclusion of the
proof of Theorem 4.2. Thus, making use of the bound (5.7), we obtain

/ @ P RFda= 3 / f(a: P.R)[* da
‘ﬁ(Q,P) mQ(Q’P)

1<g<@Q

< (MR)*™ Y I(M;M) + Q*M°P*
1<g<@

< PskarE(P/M)A: + QQMspsfk.

Hence, on recalling the choice (4.2) for M, we conclude that
| @R PR @ (o)
(@.P)

We have observed already that 7(k) < 1/(4k). Thus, since Ag_y = k— (s — 1),
one sees that for some integer ¢ satisfying 0 < ¢ < s—2 (the integer ¢ associated
with the definition (5.3) of A¥), one has

2 2 t 2s
2505 2 (k- L) sa 2
P U L T K
The desired conclusion is therefore immediate from (5.8). O

This theorem may be exploited to obtain a bound for minor arc contributions
of considerable utility in applications of the circle method. In this context, we
introduce the set of minor arcs m(Q)) = m(Q, P) given by m(Q) = [0,1] \
M(Q, P). We also abbreviate the major arcs 9(Q, P) simply to 9MM(Q) in
circumstances where the implicit second parameter is equal to P and brevity
is to be prized above full disclosure.

Theorem 5.3. Let s > 2 and suppose that A% is an admissible exponent for
minor arcs satisfying AY < 0. Let 0 be a positive number with 0 < k/2. Then
whenever P? < Q < P"’/Q, one has the bound

/ |f(c; P, R)|” dov < P*FQe 2185 1/K,
m(Q)

Proof. Write

_ [log(P*?/Q) _ [log(2R")
_[ log 2 W and JO_{ log 2 W

We begin by observing that, since m(Q) = [0,1] \ M(Q, P), we have
) C U N2/ P2 P).
When Jy < 7 < J, it follows from Theorem 5.2 that
/ |f(a; P, R)|* da < P¥=FFe (277 pk/2)
MN(2—9 Pk/2 P)

< Ps_k+EQ_2IA;|/k. (59)

207 /k
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Meanwile, when 0 < j < Jp, we may apply the argument underlying the
proof of Theorem 5.2. Thus, when o € M(277 P2 P), there exist b € Z
and r € N with (b,7) = 1, r < 279P%2 and |ra — b| < 277P7%2. Since
a & M(277-1P*/2 P), we have

Pk/2R—k < 2—1—ij/2 < T+Pk]7“a . b| < Pk/2,

By Lemma 5.1 and (5.2), we now have f(a; P, R) < P'=7W+ With s = t 4,
and t and v defined as in the proof of Theorem 5.2, we therefore infer that

1
/ fe: P, R)[* da < (P70 / f(: P, R)|" da
N(2-i Pk/2 P) 0

< PS*kJrEPAy*tT(k)
< Ps_k+EQ_2|A;|/k.

On combining this estimate with (5.9), we see that

J
3 / F: P, R)|* da
N(2-3 Pk/2 P)

=0

/ f(: P.R)[* da <
m(Q)

< Psfk+5Q72|A§|/k'

Since Q > P? and 6 > 0, it suffices to recall the conventions concerning the
use of € and 7 to complete the proof of the theorem. O

6. THE TREATMENT OF G(k) IN GENERAL TERMS

Our proofs of Theorems 1.1 and 1.2 are largely routine given the flexible
nature of Theorem 5.3, so we may be concise in our exposition. We begin with
a pruning argument that extends the range of () in Theorem 5.3 from a power
of P to an arbitrarily slowly growing function of P.

Theorem 6.1. Suppose that k > 3, s > 2k + 3 and A is an admissible
exponent for minor arcs with A¥ < 0. Let v be any positive number with

< mi {2|A:| 1 }
y<minq —2>, —5.

k 6k
Then, when 1 < Q < P*/?, one has the uniform bound

| IrepRFda <P
m(Q)

Proof. In view of the conclusion of Theorem 5.3, it suffices to consider values
of Q with 1 < Q < P?, where 0 is a fixed positive number small in terms of k
and s. We assume in particular that 8 < 1/k, whence for k > 3 one has

3 40 1
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Our starting point is the observation that, as a consequence of Theorem 5.3,
[ permpda= [ f@rmrdas [ e rR)da
m(Q) m(P?) m(Q)\m(P?)
« PP [ PR da
m(Q)\m(P?)

<L PTRQTY 4 / |f(a; P,R)|* da. (6.2)
M(PO)\M(Q)

When a € Z and ¢ € N satisfy 0 < a < ¢ < 1P¥? and (a,q) = 1, the
intervals 9, ,(3P*?2, P) are disjoint, and for v € M, ,(3 P2, P) we put

T(a) = (¢ + Plga — af) ™

Meanwhile, for a € [0,1) \ M($P*2, P) we put Y(a) = 0. This defines a
function T : [0,1) — [0, 1]. By [14 Lemma 7.2], we find that when

2<R<M <P, |go—a| < M/(K(2P)*R) and (a,q) =1,
one has
f(Oé P R) < q£L3 (PT( )1/ 2k) (PMR)1/2+Q1/4P(R/M)1/2)

where L is defined by (2.1). But on taking M = P?*9/4 and recalling (6.1),
we see that when ¢ < P? one has

L3 ((PMR)1/2 4 q1/4P(R/M)1/2) < Pitétep « pl-1/(2h)
It follows that whenever o € 9(P?, P), one has the bound
f(a; P,R) <« PL3Y (a) =t/ 4 plor(k+e, (6.3)

We now put s = t + v, where ¢ and v are chosen in accordance with the
definition (5.3) of A%, just as in the proof of Theorem 5.2. Thus, by substituting
(6.3) into (6.2), we obtain the bound

/ |f(a; P, R)|*da < PS*Q™" + PTy + (PL?)'Ty, (6.4)
m(Q)
where )
7= (P9 [ (i PR da (6.5)
0
and
7,- | T(a) | f(o; P, R)|" da. (6.6)
M(P\M(Q)

As in the proof of Theorem 5.3, it is apparent from (6.5) that
T, < (P1—T(k))t prktAvte o ps—k—|Afl+e.
Thus we obtain the estimate

Py < PRQ™. (6.7)
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Meanwhile, an application of Hélder’s inequality to (6.6) reveals that

T2 < T?)(U—Q)/(S_Q)Ti/(S_Q) (68)
where

7= [ |f(ei PR da

m(Q)
and
T, = / T()~=HE=2/CR)| f(q; P, R)|? da. (6.9)
M(PI\M(Q)
On substituting (6.7) and (6.8) into (6.4), we obtain the estimate
Ts < PS—kQ—lI + (PL?))tTgl—t/(S—Q)Ti/(S—Q)7

whence

/ |f(a; P, R)|*da < PSFQ™ 4 (PL?)*°T,. (6.10)
m(Q)

Thus it remains only to bound the mean value T}.

When a € R, it follows from Dirichlet’s approximation theorem that there
exist @ € Z and ¢ € N with (a,¢) = 1, ¢ < Q7'P* and |ga — a| < QP7*.
When o € M(P?) \ M(Q), moreover, one has ¢ + P¥lga — a| > @, and hence
T(a) < Q7. We therefore deduce from (6.9) that when s > 2k + 3, we have
the bound

T4 < Qsl/(4k)/ T(Oé)1+1/(4k)‘f(&; P, R)’Q da.
Mm(PY)

The mean value on the right hand side here is amenable to [10, Lemma 11.1], a
pruning lemma that refines earlier work of the first author [1, Lemma 2]. Thus,
we obtain the estimate Ty < Q=~1/(4%) P2~k After substituting this bound into
(6.10), we infer that

/ |f(a; P, R)’S da < Ps—kQ—u + Qe_l/(4k)L3sPS_k.
m(Q)

The desired conclusion therefore follows provided that @ > L%  since then
L35Q6—1/(4k) < Qs—l/(5k) (L60st_1)1/(20k) <Q
~X .

At this point we are reduced to the scenario in which one has Q < L%%5. In
this range for @), we appeal to [14, Lemma 8.5]. Let A > 0 be fixed. Then the
latter lemma shows that when a € Z and ¢ € N satisfy (a,q) = 1 and ¢ < L4,
one has the upper bound

fla; P,R) < PY(a) =% 4 Pexp (—c(log P)'/?) (1 + P¥la — a/q]),
in which ¢ = ¢(A) > 0. When a € (L) \ 9M(Q), one has
Q < q+ P¥lga — a| < 205,
In such circumstances, therefore, we have

f(a; P,R) < PY(a)~ stk 4 PL=0%s « PY ()Y ERIQ=1/GR),
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Write

ﬂ:/ f(a: P, R)J* da.
IM(LOOks )\ M(Q)

Then we deduce that when s > 2k + 3, one has

Ty < (PQ™Y/(BR)s=2 / Y ()| f(a; P, R)* day
m(LGOks)
< PQY? T ()| f(a; P, R)* dav.
m(LGOkS)

Observe that m(Q) \ m(L%*) = 9 (L%%)\ M(Q). Then, again employing [10,
Lemma 11.1], we conclude that

/ |f(a; P,R)|*dar = Ty < P*FQ~1/2
m(Q)\m(LO0ks)

Hence, on applying the conclusion of the theorem already established when
Q > L% we obtain

t/ mmﬂmmm:/ (o PR da + T
m(Q)

m(LGOks)
< Psfk(L6Oks)fz/ +P57kQ71/2
< Pskafu.

The conclusion of the theorem therefore follows also in this last case with
1 < Q < L% and thus the proof of the theorem is complete. O

We are now equipped to bound the quantity G(k) relevant to Waring’s
problem. We assume that we have available an admissible exponent A, for
each positive number u. Then, when k > 4, we define 7(k) as in (5.1), and we
also put

Go(k) = min (v + T@;) : (6.11)

Also, when s € N, we write R x(n) for the number of solutions of the equation
¥4k =n, (6.12)
with x; € N.

Theorem 6.2. Suppose that k > 4 and s > max{|Go(k)| + 1,2k + 3}. Then
provided that the integer n is sufficiently large in terms of k and s, and for
each natural number q the congruence

o8+ 2¥ =n (mod q)

possesses a solution with (r1,q) = 1, one has Ry x(n) > n**=1. In particular,
when k is not a power of 2 one has G(k) < max{|Go(k)| + 1,2k + 3}, and
when k is a power of 2 one has instead G(k) < max{|Go(k)] + 1, 4k}.
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Proof. We first address the claimed asymptotic lower bound Ry x(n) > ns/k=1,
the final conclusions of the theorem following from the standard theory as-
sociated with local solubility in Waring’s problem (see [13, Theorem 4.6], for
example). Consider a natural number n sufficiently large in terms of k and s.
Let P =n'/* and R = P", where n > 0 is sufficiently small, in a manner to be
specified in due course. We denote by r, ;(n) the number of representations of
n in the form (6.12) with z; € &/(P, R) (1 < i < s), so that Rsx(n) > rsx(n).
By orthogonality, one has

Ts,k(n)z/o f(a; P, R)’e(—na) da.

We put @ = L'/, and we specify 1 to be sufficiently small in the context of the
(finitely many) admissible exponents that must be discussed in determining
7(k) and Go(k). We make use of a simplified Hardy-Littlewood dissection.
Thus, we take K to be the union of the arcs

Rlg,a) = {a € [0,1) : |a—a/ql <QP"},

with 0 < a < ¢ < @ and (a,q) = 1, and then put € = [0,1) \ K. Thus, by the
triangle inequality, we have

rsk(n) = /ﬁf(a; P, R)’e(—na) da + O(/e’f(&;P’ R)\Sda). (6.13)

We first handle the contribution of the minor arcs ¢ within (6.13). Suppose
that s > max{|Go(k)| + 1,2k + 3}, and recall (5.3) and (6.11). Then there
exists a positive number v with v > 2 and an admissible exponent A, for which
the exponent A¥ is admissible for minor arcs, where

A=A, —(s—v)T(k) = —7(k) (s — Go(k)) < 0.
Put v = min{|A¥|/k,1/(18k)}. Then we see from Theorem 6.1 that

/ |f(o; P, R)|* dov < P*F Q™" = P F L7/,
m(Q)
Finally, since £ C m(Q), we may conclude thus far that
/E|f(a; P.R)*da < /(Q) f(e: P, R)[* da < P*FL"/15, (6.14)

Next we attend to the contribution of the major arcs K. Suppose that
a € R(q,a) C R. The standard theory of smooth Weyl sums (see [12, Lemma
5.4]) shows that there is a positive number ¢ = ¢(n) such that

f(a; P,R) = cq ' S(q, a)v(er — a/q) + O(PL™'*),

wherein
q

S(ga) =Y clar/a) and w(B) =3 3w ee(gm).

r=1 m<n
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Since & has measure O(Q3n™!), we see that

/f(a; P, R)*¢(—na)da = J(n, Q)S(n, Q) + O(P*F*Q3L~Y%),  (6.15)
8
where
X/n
3 X) = [ w(aye-m)ds
—-X/n
and

=) Z q° (—na/q).

1<g<X  a=1
(a,9)=1

Notice that since @ = L'/15 the error term in (6.15) is O(P*~*L~1/20), Famil-
iar estimates from the theory of Waring’s problem (see [13, Chapters 2 and 4])
show that under the hypotheses on s at hand,

S(n,X) =6(n) + O(X V),

where
o] q
Z d g (—na/q).
(aaq) 1

Thus, in particular, subject to the hypotheses of the statement of the theorem,

one has &(n, X) > 1. Likewise, one finds that

(14 1/k)®
I'(s/k)

Hence, again under the hypotheses of the statement of the theorem, we deduce
from (6.15) that

J(n,X) _ ns/k—l + O(?’Ls/k_lX_l/k).

[(1+1/k)*
['(s/k)

On substituting (6.14) and (6.16) into (6.13), we conclude that

r(1+1/k)
I'(s/k)

whence R, ;(n) = 7, (n) > n*/*=1. This completes the proof of the asymptotic
lower bound asserted in the statement of the theorem, subject of course to the
associated hypotheses on s, and, when s < 4k and k is a power of 2, the
hypothesis on local solubility. Since we have already confirmed the remaining
assertions of the theorem, subject to validity of this asymptotic lower bound,
the proof of the theorem is complete. O

/f a; P, R)’e(—na)da = ¢°S(n) nkt LomE). (6.16)

rsi(n) = c*6&(n) n®/k=t 4 o(ns/k1),
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7. THE PROOFS OF THEOREMS 1.1 AND 1.2

The proof of our main theorems using Theorem 6.2 is relatively routine,
involving an optimisation of parameters. We first compute the Weyl-type
exponent 7(k) defined in (5.1). This is essentially the optimisation performed
in the proofs of Corollaries 1 and 2 to [21, Theorem 1.1].

We begin by observing that whenever v is even, then the corollary to [21,
Theorem 2.1] shows that the exponent A, is admissible for & > 4, where A,
is the unique positive solution of the equation

Ayet/F = el vk, (7.1)

Notice here that the exponent A, in the statement of this earlier result cor-
responds to our A, with v = 2s, owing to the slightly different definitions
employed between [21] and the present memoir. Equipped with these expo-
nents, we now seek to obtain a good approximation to

kt(k) = max ——————. (7.2)

We explore this quantity by putting w = [vk], where v > 0 is a real parameter
at our disposal. With the relation (7.1) in mind, we take 0 = §(y) to be the
positive solution of the equation

d+logd=1-—27. (7.3)

We note that the function t + logt is increasing for ¢ > 0. Then, since the
relation (7.1) shows that the exponent Ay, is admissible, where As, is the
unique positive solution of the equation
AQw AQw 2w
1 =1—-—
PR K
and 1 —2w/k < 1— 27, we infer that Ag, < kd(7y). We now define § = 0(~, w)
by setting = w — yk. Thus 0 < 6 < 1, and we see that the formula (7.2)
delivers the lower bound

kr(k) > m 1= 2007)

SRR i

One may now attempt to optimise the choice of v on the right hand side
of (7.4) so as to maximise our lower bound for 7(k). It transpires that the
optimal choice for ~ is very close to 1, and so a good approximation to the
maximum is found by taking v = 1 and hence # = 0. Solving (7.3) with v = 1,
it is apparent that 0 is constrained to satisfy the equation

d+logd+1=0.

It is not difficult via a Newton iteration to verify that § = 0.2784645.... With
this value of 9, one has
1-26 1

4 9.027900...°

kr (k) > (7.5)
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Asymptotic information very slightly superior to the lower bound (7.5) is
obtained by observing that since 0 < 6 < 1, the relation (7.4) yields

1—24(y)
kr(k) > —_
(k) 2 max e Ty
The maximum here corresponds to a value of v for which
4(y + 1/k)?
1—26(v)

achieves its minimum. On making use of (7.3) to eliminate v and substituting
¢ for §(y), we find that this minimum value is equal to the minimum of the

function | 2
1—-¢— 2
5(5):( § 1ig2££+ L

as & varies over the interval (0,1), and that the minimising value of d(y) is
then equal to the value of £ corresponding to this minimum. Identifying the
value of £ where £/(§) = 0, we see that £ satisfies the equation

1 2
L, W
§ §+ +k ogé

Thus, if w = 3.548292. .. is the positive real number with w > 1 satisfying the

equation (1.1), namely w—2—1/w = logw, then we find that £ = 1/w+O(1/k).

We should therefore take § asymptotically close to 1/w for large k.
Motivated by this discussion, and recalling the relation (7.3), we put

v =31 =1/w+logw) = 0.992320 .. .,

and we avoid adjusting this value by the term of size O(1/k) corresponding to
the optimal choice. With this very slightly non-optimal choice of v, we find

that 5(7)
1 —20(y
kr(k) > ——~=.
B Te Y5
Here, in view of (7.3), one has
1 1
0+logd=1—2y=—+1log—,
w w
whence 0 = 1/w. Thus

1-2/w 1 1
kr (k) > _ 1y
M) 2 G Flogw £ 2/k7  9.026725 . +O<k>

We summarise these deliberations in the form of a lemma.

Lemma 7.1. When k > 4, one has

1
k) > ——,
(k) 2 5 oa7001k
and also
1-2/w

(1—1/w+logw + 2/k)%k’

T(k) >
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where w is the unique real solution with w > 1 of the equation
w—2—1/w=logw.

We remark that, following a modest computation, one can confirm that the
second lower bound for 7(k) delivered by this lemma takes the asymptotic
form

1 1
k) > 0 (—) .
U sy TR VE
We may now make use of Theorem 6.2, where we must consider the quantity

) mipo+ 22

Write 7(k) = (Dk)™!, where D may depend on k, but is asymptotic to a
constant determined via the conclusion of Lemma 7.1. Given a positive even
integer v, we take § to be the real number with 0 < ¢ < 1 satisfying the
equation § + logd = 1 —v/k. Then, in view of the equation (7.1), one has
A, = k&, and hence also A, = ke'~9~/k Consequently,

A,
Go(k) < v+ ) < v+ Di2el07v/k, (7.6)

As a corresponding inequality in a real variable v, the right hand side is approx-
imately minimised by taking v = k(1 + log(Dk)). Instead, with v constrained
to be an even integer, we take

v =2 Ek(l +log(Dk)) — %J |

In this way, one finds that
5106 > 1 — (1+log(Dk)) + — = — +1 (1)
080 = °8 Dk~ Dk 8\ Dr/)

whence 0 > 1/(Dk).
Define the real number 8 via the relation

1
v = k(1 +log(Dk) — = — ¥,

and note that one then has 0 < 6 < 2. In this way, we discern that

) 1 1 )
Y1 (14 log(DE)) + — + 7
I o~ (L H1oe(DR)) + 50+ ¢

= —log(Dk) + %

1-90—

Then we deduce from (7.6) that

Go(k) < v+ 2 < k(1 + log(Dk)) — % 4 ke, (7.7)
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The function —6 4 ke’/* is increasing with 6 for § € [0,2), so is bounded above
in this interval by —2 4 ke?*. Moreover, the function k(e?* — 1) is decreasing
as a function of k for £ > 2. One may check that when k > 20, one has

1 1

<k+—.

—2 4+ ket <k
+ ke * 9.6604 D

In such circumstances, we deduce that

1 1
—5 =0k < — 2 ket <k,

whence, as a consequence of (7.7), we obtain the bound

Av
Go(k) <v+ %) < k(2 + log(Dk)).

In this way, we deduce that for & > 20, one has

Go(k) < k(logk +2 +log D). (7.8)

The proof of Theorem 1.1. By reference to the first bound supplied by Lemma
7.1, one finds that the argument just described may be applied with D =
9.027901 whenever £ > 20. In such circumstances, one has 2 + log D <
4.2003199, and hence it follows from (7.8) that

|Go(k)] < [k(log k + 4.2003199) | < [k(log k + 4.20032)] — 1.

The proof of Theorem 1.1 when k > 20 is therefore made complete by reference
to Theorem 6.2. For small values of k, one finds that the bounds for G(k)
already available in the literature are smaller than [k(logk + 4.20032)] for
k < 19. Indeed, the bound G(k) < 2% + 1 available via Hua’s work (see
the corollary to [13, Theorem 2.6], for example) already suffices for k£ < 4,
while for £ > 14 one has the bounds already reported in the introduction
following the announcement of Theorem 1.3. We can complete this list with
the addition of the bounds G(7) < 31, G(8) < 39, G(9) < 47, G(10) < 55,
G(11) < 63, G(12) < 72, G(13) < 81, available from [24], together with the
bounds G(5) < 17 and G(6) < 24 obtained, respectively, in [16] and [15].
Following this small list of checks, the proof of Theorem 1.1 is complete. [

We note that the bound supplied by Theorem 1.1 is surprisingly competitive
even for small values of k. Thus, for example, the bound G(20) < 144 of
Theorem 1.1 may be compared with the corresponding bound G(20) < 142 of
[17]. Of course, in Theorem 1.3 of the present memoir, we obtain G/(20) < 137.

The proof of Theorem 1.2. We now apply the second bound supplied by Lemma
7.1. With this bound in hand, the argument leading to (7.8) may be applied
with
(w—1-2/w+2/k)?

1-2/w ’

D:
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again, whenever k£ > 20. On recalling the definition (1.2) of C} and Cs, we
now have

2 2
2+1log D =2+ log(w? = 3~ =) +2log(1
+ log +log{w”™ —3 w>+ og +k(w—1—2/w)>
4w 02—1
<Ci+——5———==C .
1+k(w2—w—2) vt k

We therefore deduce from (7.8) that
Go(k) +1 < k(logk + Cy + (Cy — 1) /k) + 1 = k(log k + Cy) + Cb.

The proof of Theorem 1.2 is completed by reference to Theorem 6.2 when
k > 20. For the small values of £ with £ < 19, the bound claimed in the
statement of Theorem 1.2 is again confirmed by reference to the previously
known upper bounds for G(k) already cited in the proof of Theorem 1.1. O

8. BOUNDING G(k) FOR INTERMEDIATE VALUES OF k

Our proof of Theorem 1.3 follows the argument used to establish Theorems
1.1 and 1.2, save that we now make use of the numerical tables of exponents
available from [17]. We begin by numerically computing the exponent 7(k).

Theorem 8.1. When 14 < k < 20, one has 7(k) < T(k)™', where the expo-
nents T'(k) are presented in Table 2.

Proof. We apply the formula

() = (“20)

available from (5.1), using the values of w and corresponding admissible expo-
nents Ay, to be found in the tables of [17]. Here, the exponents A, of [17] are
related to Ag,, via the formula As, = A\, — 2w + k. We record the necessary
choice of parameter w, together with the associated admissible exponent Ay,
rounded up in the final decimal place, in Table 2 below. 0

k w Agw T(k‘) (% Av Go(k’)

14 26 4.039939 114.1869 76 0.109356 88.4871
15 28 4.323087 123.3903 82 0.117123 96.4519
16 30 4.606286 132.5981 90 0.108806 104.4275
17 32 4.888677 141.7763 96 0.116203 112.4749
18 34 5.170691 150.9411 104 0.109619 120.5461
19 36 5.451758 160.0695 110 0.116770 128.6914
20 38 5.732224 169.1748 118 0.111388 136.8441

TABLE 2. Choice of exponents for 13 < k& < 20.
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We next confirm Theorem 1.3 by utilising the formula G(k) < [Go(k)| + 1
available via Theorem 6.2. Here, we have

Go(k) =v+ = =v+T(k)A,,
7(k)
for a suitably chosen value of v. We present values of v, A, and Gy(k) in Table
2, with the values A, extracted from [17], again all rounded up in the final
decimal place presented. The conclusion of Theorem 1.3 follows on noting that
G(k) < |Go(k)| + 1 for each value of k in the table. This completes the proof
of Theorem 1.3.

9. REMARKS ON UPPER BOUNDS FOR G (k)

Scholars of the circle method as it applies to Waring’s problem will appre-
ciate instantly that the methods of this paper deliver bounds for the number
G (k), the smallest number s having the property that almost all positive
integers (in the sense of natural density) are the sum of at most s positive
integral k-th powers. Here, one makes a standard application of Bessel’s in-
equality to estimate the minor arc contribution in mean square, the upshot
being the familiar upper bound G*(k) < 3(H(k) + 1), whenever H(k) is an
upper bound for G(k) obtained by the methods of this paper. The methods
here have nothing to contribute to the literature well-known to any worker in
the area, so we may record without further delay the following conclusions.

Theorem 9.1. Suppose that k € N\ {4,8,16,32}. Then
G* (k) < [$k(log k + 4.20032)]
and
G*(k) < 3k(logk + Cy1) + 2(Cy + 1).

In the exceptional cases k = 29 with j € {2,3,4,5}, one has G*(k) = 4k.
Moreover, when 14 < k < 20 but k # 16, one has G*(k) < H*(k), where
H™ (k) is defined by means of Table 3.

k 14 15 16 17 18 19 20
H*(k) 45 49 53 57 61 65 69

TABLE 3. Upper bounds for G* (k) when 14 < k < 20.

The assertion that G (k) = 4k when k = 27 with j € {2,3,4,5} is not new.
This was established by Hardy and Littlewood [5] when k& = 4, by Vaughan
[11] when k£ = 8, and by the second author [20] when k = 16 and k = 32. It is
straightforward, however, to establish the following refinements that more fully
reflect the entry H*(16) = 53 from Table 3, and the upper bound implicitly
obtained for k = 32 in Theorem 9.1.
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Theorem 9.2. Let k be either 16 or 32, and put H*(16) = 53 and H*(32) =
123. Suppose that s > HT (k) and that r is an integer with 1 < r < s. Then
almost all positive integers n with n = r (mod 4k) are the sum of s positive
integral k-th powers.

The proof of this conclusion is once again routine for scholars of the circle
method, and we refer the reader to earlier literature such as [11] or [20] for the
ideas necessary to complete this exercise.
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