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Abstract
We study wall-crossing for the Beauville–Mukai system of rank three on a general genus
two K3 surface. We show that such a system is related to the Hilbert scheme of ten points on
the surface by a sequence of flops, whose exceptional loci can be described as Brill–Noether
loci. We also obtain Brill–Noether type results for sheaves in the Beauville–Mukai system.
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1 Introduction

Irreducible holomorphic symplectic manifolds are generalizations of K3 surfaces. The first
higher-dimensional example was discovered by Fujiki [13] (the Hilbert scheme S[2] of two
points on a K3 surface S), and soon generalized by Beauville [4] (the Hilbert scheme S[n]
of n ≥ 2 points on S). An interesting question is: when is an irreducible holomorphic
symplectic manifold birational to a Lagrangian fibration, i.e., a fibration by complex tori that
are Lagrangian with respect to the holomorphic symplectic form? The conjectural solution
has come to be known as the Hyperkähler SYZ Conjecture (see [19, 31, 36]). For Hilbert
schemes S[n] this question was considered byMarkushevich [27] and the second author [32],
and a complete answer was given by Bayer and Macrì [1, 2], verifying the Hyperkähler SYZ
Conjecture in this case (see also [6, 12, 16, 22] for some special cases). The Lagrangian
fibration that arises in this case is the compactified relative Jacobian of a complete linear
system of curves on a K3 surface, and is known as the Beauville–Mukai integrable system
[5, 28]. In fact, Markushevich [26] conjectured that any Lagrangian fibration whose fibres
are Jacobians of curves must be of this type, i.e., the family of curves must be a complete
linear system on a K3 surface. He proved this for genus two curves [25], and the second
author proved this for genus three, four, and five [35], and for all genera under an additional
assumption [34].

In the simplest cases, the Hilbert scheme S[n] is actually isomorphic to a Beauville–Mukai
system. However, in most cases they are only birational. The birational map can take the form
of a Mukai flop [28], or a more complicated stratified elementary transform, as studied by
Markman [24]. The goal of this paper is to understand the birational map in a particular case.

We start with a general polarized K3 surface (S, H) of genus two, i.e., π : S → P
2 is a

double cover ramified over a general smooth sextic curve, H = π∗(OP2(1)), and Pic(S) =
Z[H ]. By the results mentioned above, [1, 2, 27, 32], for such a K3 surface the Hilbert
scheme S[n] is birational to a Beauville–Mukai system if and only if n = m2 + 1 is a perfect
square plus one. Here and throughout Beauville–Mukai systemswill be identifiedwithMukai
moduli spaces M(0,m, k) of stable sheaves on S (semistable if m and k are not coprime).
Recall that the general element ofM(0,m, k) looks like ι∗L where ι : C ↪→ S is the inclusion
of a curve C ∈ |mH | into the K3 surface, and L is a line bundle on C of degree k + m2.
The Fitting support gives a morphism M(0,m, k) → |mH | ∼= P

m2+1, and M(0,m, k) is
a compactification of the relative Jacobian Pick+m2

(C/|mH |) of the family of curves in the
linear system |mH |. The birational map

S[m2+1] ��� M(0,m,−1)

is given by taking a general length m2 + 1 subscheme ξ of S (consisting of m2 + 1 distinct
points) to the line bundle

OC (−ξ) ⊗ OS(mH)|C
on the (unique) curveC ∈ |mH | passing through them2+1 points. At the level of the derived
category of S, this birational map is induced by the autoequivalence � : Db(S) → Db(S)

given by the composition of the spherical twist TOS(−mH) and tensoring with the line bundle
OS(mH).

When m = 1, and thus n = 2, Mukai [28, Example 0.6] observed that the birational map

S[2] ��� M(0, 1,−1)
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is simply the elementary transform which flops the plane in S[2] parametrizing subschemes
π−1(p), p ∈ P

2, to the zero section in M(0, 1,−1) → |H | parametrizing trivial line bundles
OC . When m = 2, and thus n = 5, the birational map

S[5] ��� M(0, 2,−1)

was studied by Hellmann [18]. She decomposed it into flops.

Theorem 1.1 [18, Theorem 5.2] There are five smooth K -trivial birational models of S[5],
or M := M(0, 2,−1). They are connected by a chain of flopping contractions

BlW2 S
[5] BlW̃3

X1 Bl Z̃3
X3 BlZ1M

S[5] g1
X1

g2
X2

g3
X3

g4
M .

The exceptional loci W2 ⊂ W3 ⊂ S[5] and Z1 ⊂ Z3 ⊂ M are described explicitly in [18];
they are either Brill–Noether loci or irreducible components of Brill–Noether loci.

Our paper is greatly inspired by Hellmann’s results, and may be seen as an extension to
the ‘next’ case. Namely, we consider the case m = 3, and thus n = 10, and we decompose
the birational map

S[10] ��� M(0, 3,−1)

into flops.

Theorem 1.2 Let (S, H) be a general polarizedK3 surfacewithPic(S) = Z[H ] and H2 = 2.
There are eleven smooth K -trivial birational models of S[10], or M := M(0, 3,−1). They
are connected by a chain of flopping contractions

BlW0 S
[10] BlW̃1

X1 BlW̃2
X2 BlW̃3

X3 Bl
˜W4∪W0

X4 BlW̃1
X5

S[10] g0
X1

g1
X2

g2
X3

g3
X4

g4
X5

g5
X6

�−→
Bl Z̃8

X7 Bl Z̃1,3
X8 Bl Z̃4

X9 BlZ2 M

�−→ X ′
6 X7g6

X8g7
X9g8

M .
g9

This is restated in greater detail as Theorem4.8. In particular, the exceptional lociW0 ⊂ W1 ⊂
· · · ⊂ W4 ⊂ S[10], W0 ⊂ W1 ⊂ S[10], Z2 ⊂ Z4 ⊂ Z8 ⊂ M , and Z2 ⊂ Z1,3 ⊂ Z8 ⊂ M are
described explicitly there; they are once again Brill–Noether loci or irreducible components
of Brill–Noether loci.

To prove this theorem, we employ the powerful techniques developed by Bayer andMacrì
[1, 2] for determining the birational models of a moduli space. The space of Bridgeland
stability conditions on S has a wall-and-chamber structure. Computing the walls typically
requires some work, as it involves solving Diophantine equations, though in our case these
reduce to certain Pell’s equations that have already been carefully analyzed by Cattaneo [9].
For the Hilbert scheme S[10] = M(1, 0,−9), we consider moduli spaces Mσ (v) of σ -stable
objects with Mukai vector v = (1, 0,−9). If we vary σ in a single chamber the σ -stable
objects do not change and themoduli spaces are isomorphic; one of the chambers corresponds
to the moduli space of Gieseker stable sheaves, i.e., S[10]. When σ crosses a wall some σ -
stable objects become unstable, while new σ -stable objects appear. One can calculate these
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loci of destabilized objects in the moduli spaces, and thus arrive at a precise description of
the resulting birational modification of the moduli space. In our case, there are six walls to
cross to reach X6 from S[10]. Similarly, for the Mukai vector (0, 3,−1) there is a chamber
corresponding the Beauville–Mukai system M := M(0, 3,−1), and crossing four walls
takes us to X ′

6. Finally, the isomorphism � : X6 → X ′
6 is induced the autoequivalence � of

the same name mentioned earlier, which takes σ -stable objects of Mukai vector (1, 0,−9)
to �∗(σ )-stable objects of Mukai vector �∗(1, 0,−9) = (0, 3,−1). For a suitable choice of
σ , we have X6 = Mσ (1, 0,−9) and X ′

6 = M�∗(σ )(0, 3,−1).
In some respects, our result is quite similar to Hellmann’s. We use the same strategy

of analyzing the wall-crossings and birational modifications from both the Hilbert scheme
and the Beauville–Mukai system sides, eventually reaching birational models (X6 and X ′

6,
respectively) that can be identified by an isomorphism coming from the autoequivalence
�. Moreover, as in Hellmann’s analysis, all of the walls that we cross are ‘rank one’ (see
Remark 4.6), which makes it easier to describe the exceptional loci that are flopped. On
the other hand, there are some differences and added complications in our work. By [2,
Section 14], the exceptional locus of a flop corresponding to a wall-crossing has a natural
stratification given by the decomposition of the Mukai vector. In Hellmann’s work these
stratifications are always trivial and the flops are simple, or elementary modifications in
the terminology of Mukai [28]. By contrast, we encounter nontrivial stratifications for some
wall-crossings. Specifically, the exceptional loci for our fourth, fifth, and sixth wall-crossings
have nontrivial stratifications, and the resulting flops are stratified elementary modifications
in the terminology of Markman [24]. A priori, such loci could have several irreducible
components, and indeed this occurs for the fourth wall, whose exceptional locus has two
irreducible components. These differences make the analysis much more complicated; they
also inspired a second paper [30] where we analyze the general theory in low rank cases.

Regarding the Beauville–Mukai system, note that tensoring with OS(H) induces an iso-
morphism M(0, 3, k) → M(0, 3, k + 6). Moreover, Hellmann [18, Lemma 2.1] proved
that

E �→ E∨ := Ext1(E,OS)

induces an isomorphism M(0, 3,−1) → M(0, 3, 1). As a result, the moduli spaces
M(0, 3, k) are all isomorphic for k ≡ 1, 5 (mod 6), and they are all isomorphic for k ≡ 2, 4
(mod 6). However, M(0, 3,−1) is not isomorphic, nor even birational, to M(0, 3,−2), as
can easily be seen by applying the argument of [33, Proposition 15]. For k ≡ 0, 3 (mod 6)
the Mukai vector (0, 3, k) is divisible by 3 and the moduli space M(0, 3, k) is singular;
moreover, Kaledin et al. [23] proved that it does not admit a symplectic desingularization.
Thus there are essentially two distinct smooth rank three Beauville–Mukai systems on gen-
eral genus two K3 surfaces, where rank three is used in analogy with Hitchin systems, see
Donagi et al. [10] (also, M(0, 3, k) contains sheaves ι∗V where V is a rank three bundle on
a curve in |H |). We have chosen to study the birational geometry of M(0, 3,−1) because it
is birational to the Hilbert scheme S[10].

The paper is organized as follows. In Sect. 2 we review the preliminaries needed for the
rest of the paper. In Sect. 3 we study the Brill–Noether loci in S[10] and M(0, 3,−1). These
loci will later be identified with the exceptional loci of wall-crossings. Section4 contains the
main results of this paper: we use the machinery in [2] to identify the walls and give a careful
analysis of the wall-crossings. In Sect. 5 we collect auxiliary wall-crossing results needed
for Sect. 4.
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Notation and convention Throughout this paper, (S, H) will be a general polarized K3
surface of genus two, i.e. π : S → P

2 is a double cover ramified over a general smooth
sextic curve, with H = π∗(OP2(1)) and Pic(S) = Z[H ]. We will refer to curves in the linear
systems |H |, |2 H |, and |3 H | as lines, conics, and cubics, respectively.

We use H∗
alg(S, Z) to denote the Mukai lattice H0(S, Z) ⊕ NS(S) ⊕ H4(S, Z) of S. We

use Db(S) to denote the bounded derived category of coherent sheaves on S.
Given v ∈ H∗

alg(S, Z), we use MH (v) and Mst
H (v) to denote the moduli spaces of H -

semistable and H -stable sheaves with Mukai vector v, respectively. We will often omit the
subscript when no confusion will be caused. Given a Bridgeland stability condition σ , we
use Mσ (v) and Mst

σ (v) to denote the moduli spaces of σ -semistable and σ -stable objects in
Db(S) with Mukai vector v, respectively.

The Grothendieck group of a triangulated category D is denoted by K (D). The
Grothendieck group of the derived category Db(X) is denoted by K (X).

Let F be a coherent sheaf on a scheme X . We use Supp(F) to denote the Fitting support
of F . For a closed subscheme Z ⊂ X , we use supp(Z) to denote the set-theoretic support of
Z .

2 Preliminaries

2.1 The linear systems |H|, |2H| and |3H|

Our main object of interest is the Beauville–Mukai integrable system M(0, 3,−1) → |3H |,
which we will denote by f : M → B throughout. We refer the reader to [18, Section 2.1]
for a description of the linear systems |H | and |2H |. Regarding |3H |, we have

h0(S,OS(3)) = 11 = h0(P2,OP2(3)) + 1.

We can think of the extra dimension as coming from the ramification locus of S. Let B
denote |3H |. Let � denote the locus of non-integral curves in B. Let �1,1,1 denote the locus
of curves with three distinct irreducible components in B. Let�2,1 denote the locus of curves
whose support is of the form 2L1 + L2 where Li ∈ |H | and L1 �= L2. Let �3 denote the
locus of curves whose support is of the form 3L with L ∈ |H |. We have a chain of closed
subschemes

�3 ⊂ (�2,1 ∪ �3) ⊂ (�1,1,1 ∪ �2,1 ∪ �3) ⊂ � ⊂ B.

Let x ∈ B and use C to denote the corresponding curve.

• For x ∈ B\�, C is an integral cubic curve, and then f −1(x) parametrizes torsion free
rank one sheaves on C of degree 8.

• For x ∈ �\(�1,1,1 ∪�2,1 ∪�3), C is the union of an integral conic Q and a line L . Note
that l(Q ∩ L) = 4. We have

0 → IQ∩L/L → OC → OQ → 0

and

0 → IQ∩L/Q → OC → OL → 0.

123



   32 Page 6 of 35 X. Qin, J. Sawon

• For x ∈ �1,1,1,C is the union of three distinct lines Li , i = 1, 2, 3.We have the following
filtration for OC .

0 I((L2∪L3)∩L1)/L1 I(L3∩(L1∪L2))/(L1∪L2) OC

I((L2∪L3)∩L1)/L1 I(L2∩L3)/L2 OL3 .

• For x ∈ �2,1, C is the union of a first infinitesimal neighbourhood of a line L1 with a
line L2 �= L1. We have

0 → I(2L1∩L2)/L2 → OC → O2L1 → 0

with 0 → IL1/I2
L1

→ O2L1 → OL1 → 0, or equivalently

0 → I(2L1∩L2)/2L1 → OC → OL2 → 0.

• For x ∈ �3, C is the second infinitesimal neighbourhood of a line L . We have

0 → (IL/I2
L)2 → OC → O2L → 0

with 0 → IL/I2
L → O2L → OL → 0.

2.2 Zero-dimensional closed subschemes

Recall that for any closed subscheme Y ⊂ S, we use supp(Y ) to denote the support of Y .

Definition 2.1 Let ξ ⊂ S be a zero-dimensional closed subscheme. We say a closed sub-
scheme ξ ′ ⊂ ξ is saturated if supp(Oξ /Oξ ′) ∩ supp(ξ ′) = ∅.
We collect some notations and easy results about saturated subschemes.

Lemma/Definition 2.2 Let ξ ⊂ S be a zero-dimensional closed subscheme and ξ ′ ⊂ ξ be a
saturated subscheme. Then

(1) Oξ = Oξ ′ ⊕ (Oξ /Oξ ′), from now on we denote the subscheme of ξ corresponding to the
second summand by ξ\ξ ′.

(2) ξ\ξ ′ ⊂ ξ is also a saturated subscheme.
(3) Suppose ξ ′′ ⊂ ξ is also saturated. Define ξ ′ ∪ ξ ′′ as the saturated subscheme of ξ whose

support is supp(ξ ′) ∪ supp(ξ ′′).
(4) For any subscheme ζ ⊂ ξ , ζ\ξ ′ is defined as the maximal subscheme of ζ whose support

does not intersect supp(ξ ′).

2.3 Stability conditions on K3 surfaces

In this section we review some basics facts about (Bridgeland) stability conditions and their
moduli spaces on K3 surfaces. Let X be a K3 surface. Its algebraic cohomology group is

H∗
alg(X , Z) := H0(X , Z) ⊕ NS(X) ⊕ H4(X , Z).

TheMukai vector v : K (X) → H∗
alg(X , Z) is given by

v(E) := ch(E)
√
td(X) = (r(E), c1(E), ch2(E) + r(E))
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for E ∈ K (X), and the Mukai pairing (−,−) on H∗
alg(X , Z) is defined by

((r , c1, s), (r
′, c′

1, s
′)) = c1c

′
1 − rs′ − r ′s ∈ Z.

By Riemann-Roch, χ(F, F ′) = −(v(F), v(F ′)) for any F, F ′ ∈ Db(X). The group
H∗
alg(X , Z) endowed with the Mukai pairing is called the algebraic Mukai lattice of X .
Mukai [28] showed that if MH (v) is nonempty and smooth, then it has the structure of

a hyperkähler manifold. The movable cone of a hyperkähler manifold M admits a locally
polyhedral chamber decomposition [17],where the chambers corresponds toK-trivial smooth
birational models ofM (or hyperkähler manifolds birational toM). For the rest of this paper,
we will simply refer to these hyperkähler manifolds as birational models of M.

We refer the readers to [7] for the definitions of slicings, hearts, generalBridgeland stability
conditions, and the complex manifold structure on the space of stability conditions. We note
that, for the rest of this paper, all stability conditions on any K3 surface X will be with respect
to the lattice H∗

alg(X , Z). We now review the notion of geometric stability conditions on X .
Fix β and ω ∈ NS(X)Q with ω ample.

Definition 2.3 For any coherent sheaf F , its slope with respect to (β, ω) is

μβ,ω(F) :=
{

ω·c1(F)

ω2r(F)
− ω·β

ω2 if r(F) > 0,

+∞ if r(F) = 0.

We can define an abelian subcategory of Db(X) by tilting with respect to

Tβ,ω := {F ∈ Coh(X) | all HN factors F ′ of F have slope μβ,ω(F ′) > 0},
Fβ,ω := {F ∈ Coh(X) | all HN factors F ′ of F have slope μβ,ω(F ′) ≤ 0}.

Proposition 2.4 [14] The category

Aβ,ω := 〈Tβ,ω,Fβ,ω[1]〉
is an abelian subcategory of Db(X) and the heart of a bounded t-structure on Db(X).

Consider the C-linear map with domain the numerical Grothendieck group (see Section 4 of
[8])

Zβ,ω : Knum(X) → C,

F �→ (eβ+√−1ω, v(F)).

By [8, Lemma 6.2], the pair σβ,ω = (Aβ,ω, Zβ,ω) defines a Bridgeland stability condition if
all spherical sheaves G on X satisfy Zβ,ω(G) /∈ R≤0 (this condition is satisfied if ω2 > 2).
From now on, assume (β, ω) is chosen so that σβ,ω is a stability condition. We recall

Lemma 2.5 [7, Lemma 8.2] The group Aut(Db(X)) acts on the left on the space of stability
conditions Stab(X) by 
∗(P, Z) = (
(P), Z ◦ 
−1∗ ), where 
 ∈ Aut(Db(X)), 
∗ also
denotes the push forward on the Grothendieck group, P is the slicing, and Z is the central
charge of the stability condition. The universal cover G̃L

+
2 (R) of 2 × 2 matrices with real

coefficients and positive determinants acts on the right on Stab(X).

Any stability condition which is in the G̃L
+
2 (R) orbit of σβ,ω is called a geometric sta-

bility condition. Such stability conditions are characterized by the property that skyscraper
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sheaves on X are stable. More generally, Bridgeland ( [8, Section 8]) constructed a connected
component Stab†(X) of the stability manifold Stab(X) that contains all geometric stability
conditions.

Fixing a Mukai vector v ∈ H∗
alg(X , Z), there exists a locally finite set of walls (real

codimension one submanifolds with boundary) in Stab†(X), determined solely by v, such
that the set of σ -(semi)stable objects does not change within chambers. A stability condition
σ is called generic with respect to v if it does not lie on a wall for v.

Theorem 2.6 [1, Theorem 1.3(a)] Let σ ∈ Stab†(X) be generic with respect to v. There
exists a coarse moduli space Mσ (v) parametrizing σ -semistable objects with Mukai vector
v. Moreover, Mσ (v) is a normal irreducible projective variety.

If v is primitive then Mσ (v) = Mst
σ (v) is a projective hyperkähler manifold and theMukai

homomorphism induces an isomorphism

θv :
{
v⊥ ∼−→ NS(Mσ (v)) if v2 > 0,

v⊥/v
∼−→ NS(Mσ (v)) if v2 = 0.

We now take a closer look at wall-crossing. Let v be primitive with v2 ≥ −2. Suppose
that W is a wall for v, σ0 ∈ W does not lie on any other walls, and σ+ and σ− are generic
stability conditions near σ0 but on opposite sides of W .

Theorem 2.7 [1, Theorem 1.4(a)] The wall W induces birational contractions

π± : Mσ±(v) → M±,

where M± are normal projective varieties. Themorphismsπ± contract curves parametrizing
objects that are S-equivalent with respect to σ0.

Walls are classified as follows.

Definition 2.8 [2, Definition 2.20] The wall W is called

• a fake wall if there are no curves of objects in Mσ±(v) that are S-equivalent objects with
respect to σ0;

• a flopping wall if M+ ∼= M− and the induced birational map Mσ+(v) ��� Mσ−(v) is a
flop;

• a divisorial wall if the morphisms π± are both divisorial contractions; in this case
Mσ+(v) ∼= Mσ−(v).

General numerical criteria for locating walls were given in [2, Section 5]. We will describe
these for the Hilbert scheme of points in Sect. 4.

We will need the following result.

Proposition 2.9 [2, Proposition 2.11] The stability conditions σβ,ω and σ−β,ω are dual to
each other: an object E ∈ Db(X) is σβ,ω-(semi)stable if and only if RHom(E,OX )[1] is
σ−β,ω-(semi)stable.

Remark 2.10 We note that [2, Proposition 2.11] uses a shift by 2 on the dual of the object,
whereas we shift by 1. Our choice does not affect (semi)stability but is more suitable for its
application in Sect. 4.

We recall the comparison between Gieseker and Bridgeland stability when ω is large
(sometimes called the “large volume limit”).

Theorem 2.11 [8, Proposition 14.2] Fix v ∈ H∗
alg(X , Z) and s0 ∈ R. Let H ∈ NS(X) be

ample with μs0H ,H (v) > 0. Then Mσs0H ,t H (v) = MH (v) for t � 0.
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3 Brill–Noether loci in S[10] andM

We define the Brill–Noether loci in S[10] and M by

BNi (S[10]) := {ξ ∈ S[10] | h0(Iξ (3)) ≥ i + 1} ⊂ S[10]

and

BNi (M) := {E ∈ M | h0(E) ≥ i + 1} ⊂ M .

3.1 Brill–Noether loci in S[10]

We will focus on some special subsets in BNi (S[10]). We define

Wi := {ξ ∈ S[10] | ∃ saturated ξ ′ ⊂ ξ of length 10 − i and L ∈ |H | such that ξ ′ ⊂ L}
for i = 0, 1, 2, 3, 4. Then Wi is a locally closed subset of S[10] with closure

Wi = {ξ ∈ S[10] | ∃ ξ ′ ⊂ ξ of length 10 − i and L ∈ |H | such that ξ ′ ⊂ L}.
Note that W0 = W0, Wi ⊂ Wi+1 for i = 0, 1, 2, 3, and Wi ⊂ BN5−i (S[10]) for i =
0, 1, 2, 3, 4.

We define

W0 = {ξ ∈ S[10] | ∃ Q′ ∈ |2H | such that ξ ⊂ Q′}
and

W1 = {ξ ∈ S[10] | ∃ saturated ξ ′ ⊂ ξ of length 9 and Q′′ ∈ |2H | such that ξ ′ ⊂ Q′′}.
Note that W0 is closed and W1 is locally closed with closure

W1 = {ξ ∈ S[10] | ∃ ξ ′ ⊂ ξ of length 9 and Q′′ ∈ |2H | such that ξ ′ ⊂ Q′′}.
Moreover, W0 ⊂ W1 and Wi ⊂ BN2−i (S[10]) for i = 0, 1.

Our next lemma provides bounds for the dimensions of spaces of lines/conics/cubics
containing a zero-dimensional closed subscheme. Our proof follows closely Hellmann’s
proof of [18, Lemma 4.1].

Lemma 3.1 Let ξ ∈ S[10] and let ξi ∈ S[10−i] for i = 0, 1, 2, 3, 4, 5.

(1) We have

0 ≤ h0(S, Iξ (1)) ≤ 1 and 1 ≤ h0(S, Iξ (3)) ≤ 6.

(2) If h0(S, Iξ (1)) = 1 then h0(S, Iξ (3)) = 6.
(3) If h0(S, Iξi (1)) = 1 then h0(S, Iξi (2)) = 3.
(4) If h0(S, Iξ (2)) ≥ 2 then ξ ∈ W2.

Proof (1) For h0(S, Iξ (1)), we note that any line in |H | is integral. Hence for L1, L2 ∈ |H |
and L1 �= L2, L1 ∩ L2 is a length 2 subscheme of S. As a result h0(S, Iξ (1)) ≤ 1.

The fact that h0(S, Iξ (3)) ≥ 1 follows from the short exact sequence

0 → Iξ (3) → OS(3) → Oξ → 0.

Denote by B(ξ) the subspace of B consisting of cubics containing ξ . Suppose that B(ξ) ⊂ �;
then dim B(ξ) ≤ 5 since there is no 6-dimensional linear subspace of B = P

10 in �. Hence
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we can assume that there is an integral curve D ∈ |3H | containing ξ . When D is smooth,
we have the following commutative diagram.

0 0 = H0(Iξ ) H0(Iξ (3))

g

H0(Iξ (3)|D)

f

. . .

0 H0(OS) H0(OS(3)) H0(ωD) 0

We note that Iξ (3)|D = ωD(−ξ) ⊕ Oξ and thus H0(I(3)|D) = H0(ωD(−ξ)) ⊕ H0(Oξ ),
where the second summand is the kernel of f . As a result, we have

h0(Iξ (3)) ≤ dim im(g) + h0(OS) ≤ h0(D, ωD(−ξ)) + 1 = h0(D,OD(ξ)) ≤ 6,

where the final inequality follows from Clifford’s theorem.
When D is singular the sameargument applies, except in thefinal stepweneed an extension

of Clifford’s theorem to certain singular curves. This is provided by Franciosi and Tenni [11,
Theorem A]. Note that they require the curve to be reduced with planar singularities or
contained in a smooth surface, and they require it to be 2-connected; all of these hypotheses
are satisfied by D, as it is contained in the smooth K3 surface S and it is integral.

(2) Let 0 �= s ∈ H0(Iξ (1)) and let L be the corresponding line. We have a short exact
sequence

0 → OS(2)
s−→ Iξ (3) → ker(OS(3)|L → Oξ ) → 0.

Note that the right term is a torsion free sheaf of rank one on L with negative degree, and
thus we have an isomorphism H0(Iξ (3)) = H0(OS(2)).
(3) Let 0 �= s′ ∈ H0(Iξi (1)) and let L ′ be the corresponding line. We have a short exact
sequence

0 → OS(1)
s−→ Iξi (2) → ker(OS(2)|L ′ → Oξi ) → 0.

Again the right term is a torsion free sheaf of rank one on L ′ with negative degree, and thus
we have an isomorphism H0(Iξi (2)) = H0(OS(1)).
(4) Suppose h0(S, Iξ (2)) ≥ 2. Then one can find a morphism f : OS(−2)⊕2 → Iξ whose
image has OS(−2) as a proper subsheaf. Note that both ker( f ) and im( f ) are torsion free
sheaves of rank one, hence stable. Combining this with the fact that ker( f ) ⊆ O⊕2

S (−2),
OS(−2) � im( f ) ⊆ Iξ , and the stability of all sheaves involved, it is easy to see that
v(im( f )) = (1,−1, 2− p), where p can be 0, 1, or 2. If coker( f ) is pure of dimension one
then ξ ∈ Wp . Otherwise ξ ∈ Wp′ for some p′ < p. In any case, ξ ∈ W2. ��

As a result of part (1) of the lemma, we see that BN0(S[10]) = S[10] and BN6(S[10]) = ∅.
In the next three propositions, we investigate the structure of theWi ’s andW j ’s. Note that

the universal sheaves appearing below exist by [21, Corollary 4.6.7]. We first show that all
Wi are generically P

8−i -bundles.

Proposition 3.2 (1) The variety W0 is a P
8-bundle over M(0, 1,−11). More precisely, let

U−11 be the universal sheaf on M(0, 1,−11) × S and define

E0 := p1∗RHom(U−11, p
∗
2OS(−1))[1]

where p1 and p2 are the projections to the first and second factors, respectively. Then E0
is a vector bundle of rank 9 on M(0, 1,−11) and W0 ∼= P(E0).
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(2) For i = 1, 2, 3 the variety Wi\Wi−1 is a P
8−i -bundle over an open subset of S[i] ×

M(0, 1, i − 11).

Proof (1) The proof of the first part is same as the proof of [18, Proposition 4.4].
(2) Fix i ∈ {1, 2, 3}. Let Vi ⊂ S[i] × |H | be the open set parametrizing pairs (ξ, L) such that

ξ∩L = ∅. DefineUi to be the preimage of Vi by the supportmap S[i]×M(0, 1, i−11) →
S[i] × |H |. For ξ ∈ Wi\Wi−1, there exists a saturated subscheme ζ of length i so that
ξ\ζ ⊂ L for some L ∈ |H |. We claim that both ζ and L are unique. Suppose ζ ′ ⊂ ξ

satisfies l(ζ ′) = i and ξ\ζ ′ ⊂ L ′ for L ′ ∈ |H |. Then ξ\(ζ ∪ ζ ′) is a subscheme of ξ so
that l(ξ\(ζ ∪ ζ ′)) ≥ 10 − 2i ≥ 4. On the other hand, ξ\(ζ ∪ ζ ′) ⊂ L ∩ L ′. If L �= L ′
then L ∩ L ′ is a length two subscheme of S. This contradiction proves that L = L ′. Next
note that ζ\ζ ′ ⊂ ξ\ζ ′ ⊂ L ′ = L , so if ζ\ζ ′ �= ∅ then (ξ\ζ ) ∪ (ζ\ζ ′) ⊂ L contradicts
our assumption that ξ /∈ Wi−1. This proves the claim. As a result, we get a well-defined
morphism

ψi : Wi\Wi−1 → S[i] × M(0, 1, i − 11),

ξ �→ (ζ, I(ξ\ζ )/L).

It is clear that the image is contained in Ui . We now show that ψi is surjective onto Ui

and that the fiber over each point is isomorphic to P
8−i . We first note that if ψi (ξ) =

(ζ, I(ξ\ζ )/L) then we have a short exact sequence

0 → Iζ (−1) → Iξ → I(ξ\ζ )/L → 0.

On the other hand, it is easy to see that for any (η, E) ∈ Ui , Ext1(E, Iη(−1)) ∼= C
9−i .

For any non-split extension

0 → Iη(−1) → I → E → 0,

I must be a torsion-free sheafwithMukai vector (1, 0,−9), sinceη∩Supp(E) = ∅. Hence
I is the ideal sheaf of a length 10 subscheme ξ ′, with η ⊂ ξ ′ as a saturated subscheme.
It is clear that ξ ′ ∈ Wi . If ξ ′ ∈ Wi−1 then there would exist a subscheme η′ ⊂ ξ ′ of
length 11 − i such that η′ lies on a line. Consider η′\η, which is a closed subscheme of
ξ ′\η ⊂ Supp(E) and has length ≥ 11 − 2i ≥ 5. Since any subscheme of length 3 or
more is contained in at most one line, we must have η′ ⊂ Supp(E). This contradicts the
fact that η ∩ Supp(E) = ∅, as l(ξ ′\η) = 10− i . Hence ξ ′ ∈ Wi\Wi−1. It follows that ψi

is surjective onto Ui and the fiber over any (η, E) ∈ Ui is P(Ext1(E, Iη(−1))) ∼= P
8−i .

��
Remark 3.3 Similarly to part (i), the P

6-bundle structure of W2\W1 over U2 can be realized
as the projectivization of a vector bundle on U2. More precisely, let U−9 be the universal
sheaf on M(0, 1,−9) × S and I2 be the universal ideal sheaf on S[2] × S. Define

E2 := p12∗RHom(p∗
23U−9, p

∗
3OS(−1) ⊗ p∗

13I2)[1],
where p12, p13, and p23 are the obvious projections from S[2] × M(0, 1,−9) × S. Then
one can easily adapt the proof above to show that E2 is a vector bundle of rank 7 on U2 and
W2\W1 ∼= P(E2|U2).

For i = 1 and 3 we only have twisted universal sheaves on M(0, 1,−11 + i) × S. In
these cases Wi\Wi−1 can be viewed as the projectivization of a twisted vector bundle onUi .

Next we describe W4 and W0. The reason for describing them together is that their strict
transforms are the two irreducible components of an exceptional locus in Theorem 4.8.
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Proposition 3.4 (1) The variety W4\(W0 ∪W3) is a P
4-bundle over an open subset in S[4] ×

M(0, 1,−7). More precisely, letU−7 be the universal sheaf on M(0, 1,−7)× S andI4

the universal ideal sheaf on S[4] × S. Define

E4 := p12∗RHom(p∗
23U−7, p

∗
3OS(−1) ⊗ p∗

13I4)[1].
Then E4 is a vector bundle of rank 5 on an open subset U4 ⊂ S[4] × M(0, 1,−7) and
W4\(W0 ∪ W3) = P(E4|U4).

(2) The variety W0\W4 is generically a P
5-bundle over Mst (0, 2,−14).

(3) Let N be the moduli space parametrizing pairs (ξ4, L) such that ξ4 ⊂ L ∈ |H | is a
subscheme of length 4. Then there is aP

4-bundleP(E5|U5) over an open subsetU5 ⊂ N×
M(0, 1,−7) and a generically injective morphism from P(E5|U5) onto (W0 ∩ W4)\W3.

Proof (1) Let V4 ⊆ S[4] × |H | be the open set parametrizing pairs (ξ, L) such that ξ ∩
L = ∅ and H0(Iξ (1)) = 0. Define U4 as the preimage of V4 by the support map S[4] ×
M(0, 1,−7) → S[4] × |H |. Then one proceeds as before to show that E4 is a vector bundle
of rank 5 on U4 and that the universal extension defines a map

ψ4 : P(E4|U4) → S[10]

whose image lies in W4.
We claim that ψ4 is an isomorphism onto W4\(W0 ∪ W3). First we show that im(ψ4) =

W4\(W0 ∪ W3). Assume ξ ∈ im(ψ4). Then Iξ fits into a short exact sequence

0 → Iξ4(−1) → Iξ → E → 0

where ξ4 ⊂ ξ is a subscheme of length 4 and Supp(ξ4) ∩ Supp(E) = ∅ (hence ξ4 ⊂ ξ is
saturated). As in the proof of Proposition 3.2(2), ξ /∈ W3. Suppose ξ ∈ W0. By Lemma
3.1(3), any curve Q ∈ |2H | containing ξ\ξ4 must be of the form L1 + L2 where Li ∈ |H |
and L1 = Supp(E). As a result, ξ4 must be a subscheme of L2. This contradicts our choice of
V4. We have shown that im(ψ4) ⊆ W4\(W0 ∪ W3). Next suppose that ξ ∈ W4\(W0 ∪ W3).
Since ξ ∈ W4\W3, we have a saturated subscheme ξ4 ⊂ ξ such that Iξ fits into

0 → Iξ4(−1) → Iξ → E → 0

where E is pure of dimension one (hence stable) and Supp(ξ4) ∩ Supp(E) = ∅. It remains to
show that H0(Iξ4(1)) = 0. Suppose otherwise; then the composition of any nonzero (hence
injective) OS(−2) → Iξ4(−1) with Iξ4(−1) → Iξ implies ξ ∈ W0.

Secondly, we note that Hom(Iξ4(−1), E) = 0 for any (ξ4, E) ∈ U4, so ψ4 is a local
isomorphism. Lastly, we show that ψ4 is injective. Suppose that Iζ with ζ ∈ W4\(W0 ∪W3)

can be written as two different extensions, over (ξ, E) and (ξ ′, E ′) in U4. By the definition
of U4, we can use ζ\(ξ ∪ ξ ′) to denote the subscheme of ζ supported on the complement
of the union of the support of ξ and ξ ′, and then l(ζ\(ξ ∪ ξ ′)) ≥ 2. If h0(Iζ\(ξ∪ξ ′)(1)) = 1
(for example, this happens when l(ζ\(ξ ∪ ξ ′)) ≥ 3) then one can use the argument from
the proof of Proposition 3.2(2) to conclude injectivity. Suppose h0(Iζ\(ξ∪ξ ′)(1)) ≥ 2 and
Supp(E) �= Supp(E ′). Then ζ = ξ ∪ξ ′ ∪(Supp(E)∩Supp(E ′)) and ζ lies in a reducible curve
in |2H | whose support is Supp(E)∪Supp(E ′). Hence ζ ∈ W0, contradicting our assumption
on ζ .
(2) Let ξ ∈ W0\W4. By Lemma 3.1(4), there exists a unique (up to a scalar) injection
OS(−2) → Iξ . Then Iξ fits into an exact sequence

0 → OS(−2) → Iξ → E → 0.
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Note that E must be pure of dimension one by the Bogomolov inequality (otherwise E would
contain a subsheaf with zero-dimensional support; the extension of this byOS(−2) is stable,
as a subsheaf of Iξ , but also unstable, as it would violate the Bogomolov inequality). If E
is not stable, let E ′′ be its maximal destabilizing quotient. Then E ′′ is supported on a curve
L ∈ |H | and has Mukai vector v(E ′′) = (0, 1,−11 + i) for some integer i . Moreover, i can
be at most 4 (as the slope of E ′′ can be at most the slope of E) and must be at least 0 (the
minimal case i = 0 corresponds to ξ ⊂ L and E ′′ = Iξ/L ). This would imply that ξ ∈ W4,
which we are excluding.

Hence E ∈ Mst (0, 2,−14) and we have a morphism

φ : W0\W4 → Mst (0, 2,−14).

For any E ∈ Mst (0, 2,−14), we have Ext1(E,O(−2)) ∼= C
6. If a non-split extension of

E and O(−2) is torsion free, then it is the ideal sheaf of a length 10 subscheme ξ ′ in S. If
ξ ′ ∈ W4 then there exists L ∈ |H | and i ∈ {0, 1, 2, 3, 4} such that we have

0 → Iζ ′(−1) → Iξ ′ → Iξ ′∩L/L → 0, (3.5)

where ξ ′ ∩ L (ξ ′ ×S L to be precise) is a subscheme of length 10 − i of both ξ ′ and L , and
ζ ′ is of length i . By Lemma 3.1(3), the map OS(−2) → Iξ ′ factors through the morphism
Iζ ′(−1) → Iξ ′ of (3.5). Hence E has Iξ ′∩L/L as a quotient, which contradicts the fact that
E is stable and v(Iξ∩L/L) = (0, 1,−11 + i). As a result, we see that ξ ′ ∈ W0\W4.

Suppose T is a non-split extension of E and OS(−2),

0 → OS(−2) → T → E → 0,

with nontrivial torsion part. Then Ttor ⊂ E must have first Chern class H . Since T /Ttor
is torsion free, E/Ttor is pure of dimension one. Alternatively, we can write T as non-split
extensions

0 → (OS(−2) ⊕ Ttor ) → T → E/Ttor → 0

and

0 → Ttor → T → Tt f → 0,

where Tt f is the torsion free quotient of T , which is a non-split extension of E/Ttor by
OS(−2). By the stability of E and Tt f , we see that Ttor ∈ M(0, 1, j) where −11 ≤ j ≤ −8.
We note that such an extension with nontrivial torsion part exists only when Supp(E) is
not integral. Let Mst

0 (0, 2,−14) denote the open subset in Mst (0, 2,−14) parametrizing
sheaves with integral support. Then the above shows that φ|φ−1(Mst

0 (0,2,−14)) is surjective

onto Mst
0 (0, 2,−14) with fiber over each E being isomorphic to P(Ext1(E,O(−2))) ∼= P

5.
This proves that W0\W4 is generically a P

5-bundle over Mst (0, 2,−14). Note that over
the complement of Mst

0 (0, 2,−14), φ is surjective with fiber over E ′ being a subset of
P(Ext1(E ′,O(−2))) ∼= P

5.
(3) We describe N first. Let U−7 be the universal sheaf on M(0, 1,−7) × S, and define

N := p1∗RHom(U−7, p
∗
2OS(−2))[1].

It is easy to see thatN is a vector bundle of rank3onM(0, 1,−7) and N = P(N )parametrizes
non-split extensions of the form

0 → OS(−2) → I → E → 0,
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where E ∈ M(0, 1,−7). As before, we see that I is torsion free, hence of the form Iξ4(−1)
where ξ4 ⊂ Supp(E) is a subscheme of length 4. Moreover, the natural morphism N → S[4]
is a closed embedding and N parametrizes length 4 subscheme of S lying on a line L ∈ |H |.
Note that ifI4 is the universal family on S[4] × S, then (I4 ⊗ p∗

2OS(−1))|N×S is a universal
family parametrizing I of the form above.

Let U5 ⊂ N × M(0, 1,−7) be the open subscheme parametrizing pairs (ξ4, E ′), where
ξ4 ∈ N and E ′ ∈ M(0, 1,−7), such that ξ4 ∩ Supp(E ′) = ∅. Define

E5 := p12∗RHom(p∗
23U−7, p

∗
13((I4 ⊗ p∗

2OS(−1))|N×S))[1].
It is easy to see that E5 is a vector bundle of rank 5 onU5 and P(E5|U5) parametrizes non-split
extensions of E ′ with Iξ4(−1) for (ξ4, E ′) ∈ U5. As in part (ii), we can show that a non-split
extension

0 → Iξ4(−1) → I → E ′ → 0

is torsion free, and hence I = Iζ for some ζ ∈ S[10]. Moreover, we see that ζ\ξ4 ⊂ Supp(E ′)
is a saturated subscheme of ζ , so ζ ∈ W4. Since there is an inclusion O(−2) → Iζ , we also
have ζ ∈ W0. By our choice ofU5, we know that ζ /∈ W3. So the universal extension defines
a map

ψ5 : P(E5|U5) → S[10]

whose image is in (W4 ∩ W0)\W3. Since Hom(Iξ4(−1), E ′) = 0 for (ξ4, E ′) ∈ U5, ψ5
is a local isomorphism. We claim that ψ5 maps onto (W4 ∩ W0)\W3. Suppose that ζ ∈
(W4 ∩ W0)\W3; then there exists a saturated subscheme ζ ′ ⊂ ζ of length 6 contained in a
line L1 ∈ |H |. By Lemma 3.1(iii), any conic containing ζ (hence containing ζ ′) must be
of the form L1 + L2, where L2 ∈ |H | with L2 �= L1. As L2 must contain the length 4
subscheme ζ\ζ ′, the conic L1 + L2 is uniquely determined by the fact that it contains ζ . As
ζ /∈ W3, we have (ζ\ζ ′) ∩ Supp(L1) = ∅. There exists an inclusion

Iζ\ζ ′(−1) ↪→ Iζ

whose cokernel E ′ is the ideal sheaf of ζ ′ in L1. Thus E ′ is pure of dimension one with Chern
character (0, 1,−7), and hence stable. To see that ψ5 is generically injective, we simply
notice that ψ5 fails to be injective on Iζ only when ζ = ζ1 ∪ ζ2 ∪ ζ3, where ζ1 and ζ2 are
both saturated of length 4 and contained in lines L1 and L2, respectively, and ζ3 = L1 ∩ L2.

��

Lastly, we give a description ofW1. We will need a birational model X5 of S[10] defined in
Sect. 4. It is obtained from S[10] by a sequence of flops at theWi ’s andW0 (see Theorem 4.8
for details).

Proposition 3.6 Let V ′ be the universal sheaf on M(0, 2,−13) × S and let I� be the ideal
sheaf of the diagonal on S × S. Define

F ′ := p12∗RHom(p∗
23V

′, p∗
3OS(−2) ⊗ p∗

13I�)[1].
Then F ′ is a vector bundle of rank 5 on an open subset U ′ ⊂ S × M(0, 2,−13). More-
over, there exists a generically injective morphism P(F ′|U ′) → X5 whose image contains
W1\(W0 ∪ W4) as an open subscheme.
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Proof Let V ′ ⊂ S×|2H | be the open set parametrizing pairs (p, Q) such that p /∈ Q. Define
U ′ as the preimage of V ′ by the support map S × M(0, 2,−13) → S × |2H |. It is easy to
see that if (p, E) ∈ U ′ then

Exti (E, Ip(−2)) ∼=
{

C
5 if i = 1,

0 otherwise.

We conclude that F ′ is a vector bundle of rank 5. If a non-split extension of E and Ip(−2)
is torsion free then it must be an ideal sheaf of a length 10 subscheme ξ in S. It is clear that
ξ ∈ W1\W0. If ξ ∈ W4 then there exists L ∈ |H | and i ∈ {0, 1, 2, 3, 4} such that we have

0 → Iξ ′(−1) → Iξ → Iξ∩L/L → 0, (3.7)

where ξ ∩ L (ξ ×S L to be precise) is a subscheme of length 10 − i of both ξ and L , and
ξ ′ ⊂ ξ is a subscheme of length i . Now as (ξ ∩ L)\{p} has length at least 5, Lemma 3.1(3)
implies that Q = Supp(E) is of the form L + L ′ for L ′ ∈ |H |. Note that p /∈ L ∪ L ′ since
ξ /∈ W0, and ξ ′ ⊂ L ′ ∪ {p}. We see now that the map Ip(−2) → Iξ factors through the
morphism Iξ ′(−1) → Iξ of (3.7). Hence E has Iξ∩L/L as a quotient, which contradicts the
fact that E is stable as v(Iξ∩L/L) = (0, 1,−11+ i). As a result, we have ξ ∈ W1\(W0∪W4).

Suppose T is a non-split extension of E and Ip(−2)with nontrivial torsion part. We argue
as in the proof of Proposition 3.4(2) to show that T is of the form

0 → Ttor → T → Tt f → 0,

where Ttor ∈ M(0, 1, j) where −11 ≤ j ≤ −7. Note that such T lies in the exceptional
locus in X5 for g4 by the analysis of the fifth wall in the proof of Theorem 4.8.

Combining the previous two paragraphs, the associated universal extension defines a map

φ′ : P(F ′|U ′) → X5.

Since Hom(Ip(−2), E) = 0 for (p, E) ∈ U ′, φ′ is a local isomorphism. Now suppose that
ξ ∈ W1\(W0 ∩ W4). Then there exists a conic Q ∈ |2H | such that ξ ∩ Q is a saturated
subscheme of ξ of length 9. There is a surjection Iξ → E ′ := IQ∩ξ/Q whose kernel is
Ip(−2) for some point p /∈ Q. Now that we have short exact sequence

0 → Ip(−2) → Iξ → E ′ → 0,

it remains to show that E ′ is stable with Mukai vector (0, 2,−13). Note that if E ′ is not pure
then ξ would be contained in a conic by the Bogomolov inequality, which contradicts our
assumption. Suppose E ′ is not stable and let E ′′ be the maximal destabilizing quotient. Then
v(E ′′) = (0, 1,−11 + i) where i ∈ {0, 1, 2, 3, 4}. This would imply that ξ ∈ W4, violating
our assumption. So W1\(W0 ∩ W4) is a subset of im(φ′). Moreover, W1\(W0 ∩ W4) is the
complement of the exceptional locus mentioned in the previous paragraph in im(φ′), and
thus W1\(W0 ∩ W4) is open in im(φ′).

To see that φ′ is generically injective define

W = {ξ ∈ W1\(W0 ∩ W4) | there is no length 8 subscheme ξ ′ ⊂ ξ with H0(Iξ ′(2)) ≥ 2}.
ThenW is open inW1\(W0 ∩W4), and hence open in im(φ′), which is irreducible. Suppose
that ξ ∈ W can be expressed as an extension in two different ways, corresponding to elements
of Ext1(E, Ip(−2)) andExt1(E ′, Ip′(−2)). Then ξ\(p∪p′) is a length 8 saturated subscheme
of ξ contained in both Supp(E) and Supp(E ′). It follows from the definition of W that
Supp(E) = Supp(E ′), and hence p = p′ and E = E ′. ��
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Remark 3.8 We note that in Propositions 3.2, 3.4 and 3.6, the open sets over which the
projective bundles are defined are the largest open sets with the given properties.

Remark 3.9 The dimension of Wi is 12 + i for i ∈ {0, 1, 2, 3, 4}. The dimension of Wi is
15 + i for i ∈ {0, 1}. The dimension of W4 ∩ W0 is 14.

3.2 Brill–Noether loci inM

Recall that M → B denotes that Beauville–Mukai integrable system M(0, 3,−1) → |3 H |.
Let C → B be the universal curve and let C◦ → B◦ be its restriction to the locus B◦ ⊂ B of
smooth curves in B = |3H |. Let M(0, 3, k − 9)◦ be the preimage of B◦ for the support map
M(0, 3, k − 9) → B. Recall that we defined

BNi (M) := {E ∈ M | h0(E) ≥ i + 1} ⊂ M .

Now we also define

BNi
k(B

◦) := {L ∈ M(0, 3, k − 9)◦ | h0(L) ≥ i + 1} ⊂ M(0, 3, k − 9)◦

and

Z◦
1,3 := {L ∈ M(0, 3,−7)◦ | L ∼= OC (p1 + p2 + p3 − p4) for some C ∈ B◦ and pi ∈ C}.

We are interested in the following sets:

Z2 := BN0
2(B

◦) ⊂ M(0, 3,−7),

Z4 := BN0
4(B

◦) ⊂ M(0, 3,−5),

Z1,3 := Z◦
1,3 ⊂ M(0, 3,−7),

Z8 := BN0
8(B

◦) ⊂ M .

We will treat Z2, Z4, and Z1,3 as subschemes of M via the following isomorphisms:

M(0, 3,−7) → M, E �→ E ⊗ OS(1),

M(0, 3,−5) → M, E �→ Ext1(E,OS(−1)).

We also obtain an isomorphism

M(0, 3,−7) → M(0, 3,−5), E �→ Ext1(E,OS(−2))

by composing the first morphism above with the inverse of the second.

Lemma 3.10 We have Z2 ⊂ BN2(M) and Z4, Z1,3 ⊂ BN1(M). We have Z2 ⊂ Z4 ⊂ Z8

and Z2 ⊂ Z1,3 ⊂ Z8.

Proof It suffices to prove the lemma over C ∈ B◦. Let L2 ∈ Pic2(C) be a line bundle on C
with H0(C,L2) �= 0. We have an injective morphism

OC (1) ↪→ OC (1) ⊗ L2.

Then h0(C,OC (1) ⊗ L2) ≥ 3 because h0(C,OC (1)) = h0(S,OS(1)) = 3. Thus Z2 ⊂
BN2(M).
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Let L4 ∈ Pic4(C) be a line bundle on C with H0(C,L4) �= 0. Let ξ4 ⊂ C be the zero
divisor of a section of L4. We have a short exact sequence

0 → OS(−1) → Iξ4(2) → L∨
4 (2) → 0.

Then h0(C,L∨
4 (2)) ≥ h0(S, Iξ4(2)) ≥ 2. Thus Z4 ⊂ BN1(M).

Let L1,3 = OC (p1 + p2 + p3 − p4) ∈ Pic2(C) for pi ∈ C . Then by [15, Lemma IV.5.5],

h0(L1,3 ⊗ OC (1)) ≥ h0(OC (p1 + p2 + p3)) + h0(OC (1) ⊗ OC (−p4)) − 1

≥ 1 + 2 − 1 = 2.

Thus Z1,3 ⊂ BN1(M).
Next we compare the Zi ’s. To show that Z2 ⊂ Z4 we need to show that for L2 as above,

h0(C,L∨
2 (1)) = h1(C,L2(2)) �= 0. Note that χ(L2(2)) = 5. We can argue as in the first

paragraph to show that h0(C,L2(2)) ≥ h0(C,OC (2)) = 6. Thus h1(C,L2(2)) �= 0. To
show that Z4 ⊂ Z8 we need to show that with L4 as above, h0(C,L∨

4 (2)) ≥ 1. This has been
proved above. Finally, it is clear that Z2 ⊂ Z1,3 ⊂ Z8. ��
Proposition 3.11 (1) Z2 is a P

8-bundle over S[2]. In particular, Z2 is smooth of dimension
12.

(2) Z4 is generically isomorphic to a P
6-bundle over S[4].

(3) Z1,3 is generically isomorphic to a P
6-bundle over S[1] × S[3].

(4) Z8 is generically isomorphic to a P
2-bundle over S[8].

Proof First some preliminaries. For i ≥ 1 let Zi ⊂ S × S[i] be the universal subscheme and
let IZi be the ideal sheaf of Zi . Let p1 and p2 be the projections from S × S[i] to its two
components. We have an inclusion

p2∗(IZi ⊗ p∗
1OS(3)) ↪→ p2∗(OS×S[i] ⊗ p∗

1OS(3)) ∼= H0(S,OS(3)) ⊗ OS[i] .

This defines a subscheme Xi ⊂ B × S[i], which can be thought of as Hilbi (C/B). We note
thatXi is irreducible. Similarly, one can constructX1,3 ⊂ B× S× S[3], parametrizing triples
(C, p, ξ3) where C ∈ B, p ∈ C , and ξ3 ⊂ C .

We claim that X2 is a P
8-bundle over S[2]. We need to show that for any ξ2 ∈ S[2],

h0(Iξ2(3)) = 9. We have a long exact sequence

0 → H0(Iξ2(3)) → H0(OS(3))
r−→ H0(Oξ2) → H1(Iξ2(3)) → 0.

Since h0(OS(3)) = 11 and h0(Oξ2) = 2, it remains to show that the map r is surjective.
Recall that H0(OS(3)) has the pull-backs of cubics H0(P2,OP2(3)) as a 10-dimensional
subspace, along with an extra dimension generated by the reduced ramification locus R. If
ξ2 = p � q with π(p) �= π(q), then r is surjective by considering the cubics. If ξ2 = p � q
with p �= q but π(p) = π(q), then r is surjective by considering any cubic not passing
through π(p) and the section corresponding to R. If ξ2 is supported at a point p /∈ R, then
r is surjective by considering pull-backs of a cubic not through π(p) and a cubic through
π(p) but not in the direction given by ξ2 on P

2. If ξ2 is supported at a point p ∈ R, then ξ2
is surjective by considering the pull-backs of cubics as above and the section corresponding
to R.

For 3 ≤ i ≤ 8 the restriction map H0(OS(3)) → H0(Oξi ) will be surjective only for
general ξi ∈ S[i]. Thus X4 is generically a P

6-bundle over S[4], X1,3 is generically a P
6-

bundle over S× S[3], andX8 is generically a P
2-bundle over S[8]. Note that we have the short
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exact sequence on S × Xi (we have an embedding S × Xi → S × B × S[i])

0 → p∗
12OS×B(−C) → p∗

13IZi → Qi → 0.

Since Qi is flat over Xi and v(Qi |S×{x}) = (0, 3,−i − 9) for x ∈ Xi , we obtain rational
maps

fi : Xi ��� M(0, 3,−i − 9),

(ξi ⊂ C) �→ Iξi /C .

We define Fi : Xi ��� M(0, 3, i − 9) as the composition of fi with the dual (iso)morphism

RHom(−,OS(−3))[1] : M(0, 3,−i − 9) → M(0, 3, i − 9).

Now we can prove the four statements of the proposition. We prove (1), (2), and (4) by
showing that Fi induces a birational map (even an isomorphism for F2) between Xi and Zi .
We do something similar to prove (3).
(1) We claim that F2 maps X2 isomorphically onto Z2. First note that Iξi /C can be unstable
only when C is not integral. One easily sees that Iξ2/C is always stable: when C is not
integral, as described in Sect. 2.1, the support of ξ2 can lie on different components, but
none of the resulting sheaves Iξ2/C can be destabilized by subsheaves with Mukai vector
(0, 1,−) or (0, 2,−). To see that F2 is injective, note that C can be recovered as the support
of Iξ2/C . We can show that Ext1(Iξ2/C ,OS(−3)) has a section by applying the dual functor
RHom(−,OS(−3))[1] to

0 → OS(−3) → Iξ2 → Iξ2/C → 0,

giving

0 → Hom(Iξ2/C ,OS(−3)) → Hom(Iξ2 ,OS(−3)) → Hom(OS(−3),OS(−3)) →
Ext1(Iξ2/C ,OS(−3)) → Ext1(Iξ2 ,OS(−3)) → Ext1(OS(−3),OS(−3)) → . . . .

The first and sixth terms vanish, and the second and fifth terms can be computed by applying
the dual functor to

0 → Iξ2 → OS → Oξ2 → 0.

This gives

0 → OS(−3) → OS → Ext1(Iξ2/C ,OS(−3)) → Oξ2 → 0,

and thus Ext1(Iξ2/C ,OS(−3)) has a section.Moreover, Corollary 4.11(1) (that we will prove
in the next section) shows that this section is unique, up to a scalar. This means that ξ2 can
be recovered from Iξ2/C via the cokernel of OS → Ext1(Iξ2/C ,OS(−3)).

To see that F2 induces an injection on the tangent space, we refer the readers to the proof
of [18, Proposition 4.7]. Note thatX2 has an open dense subsetX ◦

2 consisting of pairs (C, ξ2)

where C is smooth. It is clear that F2(X ◦
2 ) = BN0

2(B
◦). Since F2 is a closed morphism,

F2(X2) = Z2. In turn, Z2 is a P
8-bundle over S[2].

(2) Let X ◦
4 be the open subset of X4 parametrizing pairs (C, ξ4) where H0(Iξ4(1)) = 0.

By Sect. 2.1, we see that f4 is defined on X ◦
4 . Let X ◦◦

4 be the open subset of X ◦
4 where

we also require that C is smooth. Then F4(X ◦◦
4 ) ⊂ BN0

4(B
◦). Since the closure of X ◦◦

4
in X ◦

4 is X ◦
4 itself, we have F4(X ◦

4 ) ⊂ Z4. Recall that Z2 ⊂ Z4 ⊂ M(0, 3,−5). We
claim that F4(X ◦

4 ) ∩ Z2 = ∅. It is easier to prove the claim with f4. The image of Z2 in
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M(0, 3,−13) (which is isomorphic toM(0, 3,−5) by RHom(−,OS(−3))[1]) is of the form
OS(−1) ⊗ Ext1(Iξ2/C ,OS(−3)). Suppose that

f4((C, ξ4)) = Iξ4/C = OS(−1) ⊗ Ext1(Iξ2/C ,OS(−3))

for some (C, ξ4) ∈ X ◦
4 and ξ2 ⊂ C . Applying the dual functor RHom(−,OS(−3))[1] to

0 → Iξ2/C → OC → Oξ2 → 0, we obtain

0 → Ext1(OC ,OS(−3)) → Ext1(Iξ2/C ,OS(−3)) → Ext2(Oξ2 ,OS(−3)) → 0.

Noting that Ext1(OC ,OS(−3)) = OC , we obtain an injection OC (−1) ↪→ Iξ4/C , contra-
dicting our assumption that H0(Iξ4(1)) = 0. Hence F4(X ◦

4 ) ⊂ Z4\Z2. It is easy to see now
that F4(X ◦◦

4 ) = BN0
4(B

◦)\Z2. The injectivity of F4|X ◦
4
follows from Corollary 4.11(2) by

arguing as in part (1). Like before, F4 induces an injection on the tangent space. As a result,
Z4\Z2 is generically a P

6-bundle over S[4].
(3) Noting the embedding S × X1,3 ↪→ S × B × S × S[3], we have on S × X1,3 the short
exact sequence

0 → p∗
12OS×B(−C) → p∗

14IZ3 → Q3 → 0,

where Q3 is flat and parametrizes Iξ3/C over X1,3 with v(Q3|S×{x}) = (0, 3,−12) for x ∈
X1,3. LetX ◦

1,3 be the open subset ofX1,3 parametrizing triples (C, p, ξ3)where H0(Iξ3(1)) =
0 and p /∈ ξ3. For any (C, p, ξ3) ∈ X ◦

1,3, there is a unique nontrivial extension of Op by
Iξ3/C . Let P denote the universal extension

0 → Q3|S×X ◦
1,3

→ P → (p∗
13O�)|S×X ◦

1,3
→ 0,

where � denotes the diagonal in S × S. Then P is flat over X ◦
1,3 and gives a rational map

f1,3 : X ◦
1,3 ��� M(0, 3,−11).

By Sect. 2.1, f1,3 is in fact a morphism. Let F1,3 be the composition of f1,3 with the isomor-
phism

RHom(−,OS(−3))[1] : M(0, 3,−11) → M(0, 3,−7).

Let X ◦◦
1,3 be the open subset of X ◦

1,3 where we also require that C is smooth. We have
F1,3(X ◦◦

1,3) ⊂ Z◦
1,3, and hence F1,3(X ◦

1,3) ⊂ Z1,3.
Let L = f1,3((C, p, ξ3)) for some (C, p, ξ3) ∈ X ◦

1,3. Then we have a distinguished
triangle

Iξ3 → L → RHom(Ip,OS(−3))[1] → Iξ3 [1].
Applying the dual functor RHom(−,OS(−2))[1] we obtain the distinguished triangle

Ip(1) → Ext1(L,OS(−2)) → RHom(Iξ3 ,OS(−2))[1] → Ip(1)[1].
Since L ∈ M(0, 3,−11), we have Ext1(L,OS(−2)) ∈ M . By the proof of Theorem 4.8 for
the seventh wall, Ext1(L,OS(−2)) is in the exceptional locus in X8 for g7. In particular,

Ext1(L,OS(−2)) ∈ M ∩ X8 = M\Z4.

Thus F1,3(X ◦
1,3) ⊂ Z1,3\Z4. In fact, it is easy to see that F1,3(X ◦◦

1,3) = Z◦
1,3\Z4.

To see that F1,3|X ◦
1,3

is injective, with L as above we obtain a distinguished triangle

Ip → Ext1(L,OS(−3)) → RHom(Iξ3 ,OS(−3))[1] → Ip[1]
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Applying Corollary 4.11(3) to Ext1(L,OS(−3)), we recover p and ξ3. As before, F1,3
induces an injection on the tangent space. As a result, Z1,3\Z4 is generically a P

6-bundle
over S × S[3].
(4) Let X ◦

8 be the open subset of X8 parametrizing pairs (C, ξ8) where H0(Iξ8(2)) = 0
and H0(Iξl (1)) = 0 for any closed subscheme ξl ⊂ ξ8 of length 5 ≤ l ≤ 8. By Sect. 2.1,
we see that f8 is defined on X ◦

8 . Let X ◦◦
8 be the open subset of X ◦

8 where we also require
that C is smooth. Then F8(X ◦◦

8 ) ⊂ BN0
8(B

◦). Since the closure of X ◦◦
8 in X ◦

8 is X ◦
8 itself,

F8(X ◦
8 ) ⊂ Z8.

Suppose that (C, ξ8) ∈ X ◦
8 . Then F8((C, ξ8)) = Ext1(Iξ8/C ,OS(−3)) ∈ M . By our

assumption on ξ8 and the proof of Theorem 4.8 for the sixth wall, any nontrivial extension
F of the form

OS → F → RHom(Iξ8 ,OS(−3))[1]
is in the exceptional locus in X7 for g6. Applying the dual functor RHom(−,OS(−3)), we
obtain

OS(−3) → Iξ8 → RHom(F,OS(−3))[1].
It is easy to see that F is determined by a nonzero map from OS(−3) to Iξ8 , thus we have
RHom(F,OS(−3))[1] ∼= Iξ8/C for some ξ8 ⊂ C and F ∼= Ext1(Iξ8/C ,OS(−3)). Since
this is true for any such extension, we see that F8((C, ξ8)) is in the exceptional locus in X7

for g6. In particular,

Ext1(Iξ8/C ,OS(−3)) ∈ M ∩ X7 = M\(Z4 ∪ Z1,3).

Hence F8(X ◦
8 ) ⊂ Z8\(Z4 ∪ Z1,3). In fact, it is easy to see that F8(X ◦◦

8 ) = BN0
4(B

◦)\(Z4 ∪
Z1,3). By Corollary 4.11(4), F8 is injective on an open dense subset of X ◦

8 . As before,
F8|X ◦

8
induces an injection on the tangent space. As a result, Z8\(Z4 ∪ Z1,3) is generically

a P
2-bundle over S[8]. ��

Remark 3.12 The dimension of Z2 is 12, both Z4 and Z1,3 are 14-dimensional, and the
dimension of Z8 is 18.

4 Wall-crossing for S[10] andM

By our assumption, NS(S) ∼= Z[H ]. For x ∈ R and y ∈ R>0, we use σx,y to denote σxH ,yH

as defined in Sect. 2.3. By [8, Lemma 6.2], we obtain a set of (geometric) stability conditions
parametrized by an open half plane.

Lemma 4.1 For any x ∈ R and y > 1, σx,y is a stability condition on S.

Remark 4.2 The restriction y > 1 is sufficient but not necessary for σx,y to be a stability
condition. A more precise requirement is that ZxH ,yH (E) /∈ R≤0 for any spherical sheaf
E ( [8, Lemma 6.2]). If v(E) = (r , c1, s), then ZxH ,yH (E) /∈ R≤0 amounts to y > 1/r
when x = c1/r . As a result, we see that for 0 < y ≤ 1, σ0,y is not a stability condition by
considering the spherical object OS[1]; while for x /∈ Q, σx,y is a stability condition for all
y > 0.

In general, walls in the plane are (nested) semicircles. For the Hilbert scheme S[n] =
M(1, 0, 1− n) with n ≥ 2, we consider the Mukai vector v = (1, 0, 1− n). For any σ of the
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form σx,y , generic with respect to v,Mσ (v) is a projective hyperkählermanifold of dimension

2n (see Theorem 2.6). We have the Mukai morphism θv : v⊥ ∼−→ NS(Mσ (v)) ∼= Z
2. We

will omit the subscript from θv when there is no confusion. Bayer and Macrì [2, Section 5]
showed that to each wall one can associate a rank two hyperbolic sublattice of H∗

alg(S, Z)

containing v. The following numerical criterion will help us find and characterize the walls
for v.

Theorem 4.3 [2, Theorems 12.1, 12.3], [9, Remark 2.8] (1)Divisorial walls are walls whose
lattices contain some a ∈ H∗

alg(S, Z) such that

• a2 = −2 and (v, a) = 0, or
• a2 = 0 and (v, a) = 1 or 2.

Together the linear subspaces θ(v⊥ ∩a⊥) cut out the movable coneMov(S[n]) in the rational
(closed) positive cone Pos(S[n])Q.

(2) Flopping walls are walls whose lattices contain some a ∈ H∗
alg(S, Z) such that

• a2 = −2 and 1 ≤ (v, a) ≤ n − 1, or
• a2 = 0 and 3 ≤ (v, a) ≤ n − 1, or
• 2 ≤ a2 < n−1

2 and 2a2 + 1 ≤ (v, a) ≤ n − 1.

To analyze the wall-crossing for S[10], we first compute its movable cone.

Lemma 4.4 [2, Proposition 13.1] Let H̃ = θ(0,−1, 0) and B = θ(−1, 0,−9). Then

Mov(S[10]) =
〈
H̃ , H̃ − 1

3
B

〉
.

We note that the two boundaries of the movable cone correspond to the Hilbert-Chow
morphism of S[10] and the Lagrangian fibration ofM , respectively. Recall thatMov(S[10]) has
a finite locally polyhedral chamber decomposition whose chambers corresponds to birational
models of S[10]. Thewalls inMov(S[10]) are given by rays through H̃−�B, for certain� ∈ Q

satisfying 0 < � < 1
3 . To any wall W in Stab†(S) for v = (1, 0,−9), one can associate

a �W so that the wall-crossing in Stab†(S) and Mov(S[10]) can be identified ( [2, Example
13.5]). We now claim that for any wall in Mov(S[10]) given by H̃ − �B, there is a wall in
Stab†(S) for v associated with �, hence establishing a one-to-one correspondence between
walls in Stab†(S) for v and in Mov(S[10]). We believe that the above claim is known to be
true among experts (for similar results see [1, Theorem 10.6, 10.8]), but we could not find a
proof for our case in the literature.

Proposition 4.5 All minimal models of S[10] arise as moduli spaces of stable objects with
Mukai vector v = (1, 0,−9), and their birational transformations are induced by crossing
walls for (1, 0,−9) in Stab†(S).

The above statements remain true if we replace v with v′ = (0, 3,−1).

Proof We need to show that for every wall inMov(S[10]), given by H̃ −�B with 0 < � < 1
3 ,

there is a wall in Stab†(S) for v. We will use stability conditions σx,y . Each wall in Stab†(S)

depends only on a hyperbolic rank two lattice H generated by v and a, and it is given by
setting the two complex numbers (ex+

√−1y, v) and (ex+
√−1y,b) to be real multiples of each

other, for any b ∈ H. Since b only needs to be perpendicular to H̃ − �B = (�,−1, 9�), we
can choose b = (0, �,−2). This gives

(ex+
√−1y, v) = (y2 − x2 + 9) + √−1(−2xy),

(ex+
√−1y,b) = (2�x + 2) + √−1(2�y),
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which are real multiples of each other if and only if (x, y) lies on the semicircle
(
x + 1

�

)2

+ y2 = 1

�2 − 9.

This is the intersection of a wall for v in Stab†(S) with the (x, y)-plane. Note that if � ≥ 1
3

then this set is empty as y must be positive, and thus the wall in Stab†(S) does not intersect
the (x, y)-plane, whereas if � < 0 everything arises from � > 0 by taking duals, as in
Proposition 2.3. Thus by looking at the walls in Stab†(S) we again see that 0 < � < 1

3 . (We
prefer to work with � > 0 because stable objects are ‘more likely to be’ sheaves rather than
complexes, or equivalently, H̃ − �B corresponds to a divisor in the movable cone.)

Let ε be a small positive irrational number. By Remark 4.2, σ−3+ε,y is a path of stability
conditions for 0 < y < +∞. Arguing as in the proof of [1, Theorem 10.8], we see that
there exists a continuous path l : (0,+∞) → Mov(S[10]), starting in the chamber for M and
ending on the ray given by H̃ , so that Mσ−3+ε,y (v) is isomorphic to the model corresponding
to l(y). Since S[10] has Picard rank two, l goes through all the chambers inMov(S[10]). Hence
all models of S[10] can be realized as Mσ−3+ε,y (v) for some y, and all walls in Mov(S[10])
come from walls in the (x, y)-plane.

For the last statement of the theorem, note that since �∗ preserves the Mukai pairing, the
action of �∗ : Stab†(S) → Stab†(S) induces a bijection between the walls for v and those
for v′ = (0, 3,−1). Then each wall in Stab†(S) for v′ can be associated to a �. If a wall for
v′ in Stab†(S) is associated to �, with 0 < � < 1

3 , then it intersects the (x, y)-plane along
the semicircle

(
x + 1

6

)2

+ y2 = 1

36
+ �

6(1 − 3�)
.

The last statement now follows by considering the path of stability conditions σε′,y , where
0 < y < +∞ and ε′ is a small positive irrational number, and arguing as in the previous
paragraph. ��

Applying Theorem 4.3, we give the full list of walls for v = (1, 0,−9) in Table 1. For
these calculations, we can first use [9, Remark 2.8] to limit the values of a2 and (a, v) to a
finite set of possibilities. Finding possible vectors a now corresponds to solving certain Pell’s
equations, as in [9, Lemma 2.5]. In our case, we get finitely many solutions a for each pair
of potential values of a2 and (a, v); algebraic software is helpful for this step,1. Finally, for
each a we determine � by requiring that H̃ − �B = (�,−1, 9�) is perpendicular to a; note
that � only depends on the lattice H generated by v and a, not on the specific choice of a
(see [2, Example 13.5]). We remark that the column named ‘Wall’ lists the intersection of
the wall corresponding to a with the (x, y)-plane. This convention will be use throughout
the rest of this paper.

1 We are grateful to Nicolas Addington for verifying our calculations using a package he has developed for
Macaulay2, https://pages.uoregon.edu/adding/K3nCones.pdf. Specifically, this package computes walls of
the movable and nef cones of varieties of K3[n]-type, as described in [2, Theorem 12.1 and Theorem 12.3]
which is exactly what we are doing here.
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Table 1 Walls of Mov(S[10])

� a a2 (v, a) Wall Type

0 (0, 0, −1) 0 1 x = 0 Divisorial
2
11 (1, −1, 2) − 2 7 x2 + 11x + y2 = −9 Flop
1
5 (1, −1, 1) 0 8 x2 + 10x + y2 = −9 Flop
2
9 (1, −1, 0) 2 9 x2 + 9x + y2 = −9 Flop
1
4 (0, 1, −8) 2 8 x2 + 8x + y2 = −9 Flop
2
7 (0, 1, −7) 2 7 x2 + 7x + y2 = −9 Flop
4
13 (1, −2, 4) 0 5 x2 + 13

2 x + y2 = −9 Flop

6
19 (−1, 3, −10) − 2 1 x2 + 19

3 x + y2 = −9 Flop

8
25 (−1, 4, −16) 0 7 x2 + 25

4 x + y2 = −9 Flop

10
31 (2, −5, 13) − 2 5 x2 + 31

5 x + y2 = −9 Flop

14
43 (−2, 7,−25) − 2 7 x2 + 43

7 x + y2 = −9 Flop
1
3 (−1, 3, −9) 0 0 Lagrangian fibration

Remark 4.6 In a forthcoming paper [30] we will introduce the notion of ‘rank one’ walls,
which roughly means that in the decomposition v = a+b of the Mukai vector at least one of
a and bmust have rank one. In Hellmann’s analysis of the rank two Beauville–Mukai system
[18], all of the walls are of rank one. For the rank three Beauville–Mukai system, notice from
the above table that starting from S[10], all of the walls with slope � ≤ 4

13 have rank one.
Similarly, we will see shortly that starting from M , all of the walls with slope � ≥ 4

13 have
rank one. The wall � = 4

13 has rank one when viewed from both the S[10] and the M sides.
The advantage of having rank one walls is that it is much easier to describe the exceptional

loci. However, it is not the case that all walls for degree twoK3 surfaces have rank one. Indeed,
the rank four Beauville–Mukai system M(0, 4,−1) will have walls of higher rank.

Remark 4.7 In the fifth and sixth rows of the table one might expect the vectors (1,−1,−1)
and (1,−1,−2), and indeed they would define these walls. However, these are actually
the b vectors, and we instead use the generators a = v − b = (0, 1,−8) and (0, 1,−7),
respectively, as they satisfy the constraints of Theorem 4.3.

By Proposition 4.5, there are 11 chambers in Mov(S[10]), corresponding to 11 different
birational models of S[10]. The 0 < � < 2

11 chamber corresponds to S[10] itself while the
14
43 < � < 1

3 chamber corresponds to M . We denote the remaining birational models by Xi ,
1 ≤ i ≤ 9, with X1 corresponding to the 2

11 < � < 1
5 chamber.

We also note that for � ≥ 8
25 the corresponding walls have radii < 1. We choose to study

them from the M side, where the corresponding walls will have radii > 1. The wall with
� = 6

19 can be studied from either side. We opt to study it from the M side also. This strategy
has the following advantages:

• The bound y > 1 on both sides will make the analysis of the moduli spaces arising from
the wall-crossings easier.

• Whether we start from S[10] or from M , the exceptional loci for walls with radii larger
than 1 have increasing dimensions, making them easier to describe.
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We now state the main theorem:

Theorem 4.8 Let (S, H) be a general polarizedK3 surfacewithPic(S) = Z[H ] and H2 = 2.
There are eleven birational models of S[10] or M := M(0, 3,−1), respectively. They are
connected by a chain

of flopping contractions

BlW0 S
[10] BlW̃1

X1 BlW̃2
X2 BlW̃3

X3 Bl
˜W4∪W0

X4 BlW̃1
X5

S[10] g0
X1

g1
X2

g2
X3

g3
X4

g4
X5

g5
X6

�−→
Bl Z̃8

X7 Bl Z̃1,3
X8 Bl Z̃4

X9 BlZ2 M

�−→ X ′
6 X7g6

X8g7
X9g8

M
g9

for some subvarieties W0 ⊂ W1 ⊂ · · · ⊂ W4 ⊂ S[10] and W0 ⊂ W1 ⊂ S[10] such that

• W0 is a P
8-bundle over M(0, 1,−11);

• Wi\Wi−1 is a P
8−i -bundle over an open subset of S[i] × M(0, 1, i − 11) for i = 1, 2, 3;

• W4\(W0 ∪W3) is a P
4 bundle over an open subset in S[4] × M(0, 1,−7), whileW0\W4

is generically a P
5-bundle over Mst (0, 2,−14);

• W1\(W0 ∪ W4) is generically a P
4-bundle over S × M(0, 2,−13);

and closed subvarieties Z2 ⊂ Z4 ⊂ Z8 ⊂ M and Z2 ⊂ Z1,3 ⊂ Z8 ⊂ M such that

• Z2 is a P
8-bundle over S[2];

• Z4 is generically isomorphic to a P
6-bundle over S[4];

• Z1,3 is generically isomorphic to a P
6-bundle over S × S[3];

• Z8 is generically isomorphic to a P
2-bundle over S[8].

Here •̃ denotes the strict transform of the set • under suitable birational maps. The model
X6 is isomorphic to X ′

6 via �.

Remark 4.9 One technical difficulty is the potential existence of totally semistable walls.
Fortunately, in our case we can avoid totally semistable walls by choosing the path of wall-
crossing properly (as we will do in the next proof). This issue was addressed in [30, Section
5] in greater generality and we refer the reader there for proofs.

Remark 4.10 By [2, Theorem 5.7(b)], in our case a decomposition v = a1 + . . . + an of
the Mukai vector leads to an actual flopping wall if for all i the vector ai is a positive class
(i.e., a2i ≥ 0 and (v, ai ) > 0) or an effective spherical class (see [2, Proposition 5.5] and
the paragraph following it). Given such a decomposition of v, a description of the geometry
of the flopping contraction associated to the flopping wall is given in [2, Section 14], i.e.,
the exceptional locus is described precisely; we refer the reader there for some notation and
results which will be useful for our analysis of flopping walls.

Proof There are ten flopping walls in Table 1. We label them the i-th wall for i = 0, 1, . . . , 9
with increasing � (for example, the wall with � = 2

11 is the 0-th wall).
We study the first six flopping walls from the S[10] side (see Fig. 1). Consider the path of

stability conditions σt := σ−3,t for t ∈ (1,+∞). For 0 ≤ i ≤ 5 the path intersects the i-th
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Fig. 1 First six walls for v = (1, 0,−9)

wall at t = ti , where ti = √
15 − 3i for 0 ≤ i ≤ 4 and t5 = √

3/2. Next we describe the
wall-crossings along σt .

The 0-th wall corresponds to the decomposition

(1, 0,−9) = (1,−1, 2) + (0, 1,−11).

By Appendix 5.1, near t = t0, Mσt (0, 1,−11) = MH (0, 1,−11) (note that we are applying
the result ofAppendix 5.1 toM(0, 1,−11),which is isomorphic toM(0, 1,−1) andbirational
to S[2]). An ideal sheaf Iξ is in the exceptional locus E0 of g0 in S[10] if and only if it fits
into the short exact sequence

0 → OS(−1) → Iξ → E0 → 0,

where E0 ∈ MH (0, 1,−11). This is equivalent to ξ ∈ W0. Thus g0 is the flop of W0 in S[10].
For i = 1, 2, and 3, the i-th wall corresponds to the decomposition of Mukai vectors

(1, 0,−9) = (1,−1, 2 − i) + (0, 1,−11 + i).

By Appendices 5.1, 5.2, and 5.5, near t = ti , we have Mσt (1,−1, 2 − i) ∼= S[i] and
Mσt (0, 1,−11 + i) = MH (0, 1,−11 + i). Hence an ideal sheaf Iξ is in the exceptional
locus Ei of gi in Xi if and only if Iξ /∈ Wi−1 and it fits into the short exact sequence

0 → Iζi (−1) → Iξ → Ei → 0,

where ζi ∈ S[i] and Ei ∈ MH (0, 1,−11+ i). This is equivalent to ξ ∈ Wi\Wi−1. Moreover,
the exceptional locus of gi in Xi is the strict transform of Wi , which we denote by W̃i .

The study of the fourth wall is more complicated. The fourth wall corresponds to the
decompositions of Mukai vectors

(1, 0,−9) = (1,−1,−2) + (0, 1,−7)

= (1,−2, 5) + (0, 2,−14)

= (1,−2, 5) + (0, 1,−7) + (0, 1,−7),
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where the last decomposition is a refinement of the previous two. By [2, Section 14], the
exceptional locus E4 of g4 in X4 has a stratification E4 = E1

4

∐
E2
4

∐
E3
4 into locally closed

subsets, where E j
4 corresponds to the j-th line in the decomposition above and E3

4 is in the
closure of both E1

4 and E2
4 . Thus E4 has two irreducible components given by E1

4 ∪ E3
4 and

E2
4 ∪ E3

4 . By Appendices 5.1, 5.3, and 5.6, near t = t4, we have Mσt (1,−2, 5) = {OS(−2)},
Mσt (0, 1,−7) = MH (0, 1,−7), and Mst

σt
(0, 2,−14) = Mst

H (0, 2,−14). For t > t4,
Mσt (1,−1,−2) = MH (1,−1,−2) ∼= S[4], but Mst

σt4
(1,−1,−2) ∼= S[4]\{ξ4 | h0(Iξ4(1)) ≥

1}. Hence an ideal sheaf Iξ is in E3
4 if and only if ξ /∈ W3 and for t near t4 with t > t4 it has

a HN-filtration (for σt )

0 OS(−2) F Iξ

OS(−2) E6 E ′
6,

where E6, E ′
6 ∈ MH (0, 1,−7). By stability, F is a nontrivial extension of E6 byOS(−2), and

hence F = Iζ4(−1) for some ζ4 ∈ S[4]. This is equivalent to ξ ∈ (W4 ∩ W0)\W3.
Now Iξ ∈ E1

4 if and only if ξ /∈ W3 and it fits into a short exact sequence

0 → Iη4(−1) → Iξ → E ′′
6 → 0,

where η4 ∈ Mst
σt4

(1,−1,−2) = S[4]\{ξ4 | h0(Iξ4(1)) ≥ 1} and E ′′
6 ∈ MH (0, 1,−7). This is

equivalent to ξ ∈ W4\(W0 ∪ W3).
Similarly, Iξ ∈ E2

4 if and only if ξ /∈ W3 and it fits into a short exact sequence

0 → OS(−2) → Iξ → F → 0,

whereF ∈ Mst
σt

(0, 2,−14) = Mst
H (0, 2,−14). This is equivalent to ξ ∈ W0\W4. Altogether,

we see that E4 is the strict transform of W4 ∪ W0.
The fifth wall corresponds to the decompositions of Mukai vectors

(1, 0,−9) = (1,−2, 4) + (0, 2,−13)

= (1,−2, 4) + (1,−2, 4) + (−1, 4,−17).

By [2, Section 14], the exceptional locus E5 in X5 for g5 has a stratification E5 = E1
5

∐
E2
5

where E j
5 corresponds to the j-th line of the decomposition above. Note that E2

5 is closed in
E5. Near t = t5, Mσt (1,−2, 4) ∼= S by Ip(−2) �→ p, and by Appendix 5.7, for t > t5 we
have Mσt (0, 2,−13) = MH (0, 2,−13) and

Mst
σt5

(0, 2,−13) = MH (0, 2,−13)\{Iq/Q(−2) | Q ∈ |2H | and q ∈ Q}.
On the other hand, near t = t5, {Iq/Q(−2) | Q ∈ |2 H | and q ∈ Q} parametrizes precisely
the extensions of OS(−4)[1] by Iq(−2). Altogether, an ideal sheaf Iξ is in E5 if and only if
ξ /∈ W4 ∪ W0 and it fits into a short exact sequence

0 → Ip(−2) → Iξ → F ′ → 0,

where p ∈ S and F ′ ∈ MH (0, 2,−13). This is equivalent to ξ ∈ W1\(W0 ∪ W4).

We analyze the remaining walls from the M side. Let v′ = (0, 3,−1) = �∗v. The next
table describes the remaining walls from the M side, with a′ = �∗a. Note that all circles
have radii larger than 1 (Fig. 2, Table 2).
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Fig. 2 Last four walls for v′ = (0, 3, −1)

Table 2 Walls for M with radii larger than 1

� a′ (a′)2 (v′, a′) Wall Type

6
19 (1, 0, 1) − 2 1

(
x + 1

6

)2 + y2 =
(√

37
6

)2
Flop

8
25 (1, 1, 1) 0 7

(
x + 1

6

)2 + y2 =
(
7
6

)2
Flop

10
31 −(1, −1, 2) − 2 5

(
x + 1

6

)2 + y2 =
(√

61
6

)2
Flop

14
43 (1, 1, 2) − 2 7

(
x + 1

6

)2 + y2 =
(√

85
6

)2
Flop

1
3 (0, 0, 1) 0 0 Lagrangian fibration

We keep the labeling of the walls from the S[10] side; thus the walls corresponding to
� = 14

43 and 10
31 will be called the ninth and eighth walls, respectively. Consider the path

σ ′
t := σ− 1

6 ,t for t ∈ (1,+∞). For 6 ≤ i ≤ 9, this path crosses the i-th wall at t ′i , where t ′i is
the radius of the i-th wall. We now describe the wall-crossings along σ ′

t .
The ninth wall corresponds to the decomposition of Mukai vectors

(0, 3,−1) = (1, 1, 2) + (−1, 2,−3).

By Appendix 5.1, near t = t ′9, S[2] ∼= Mσ ′
t
(−1, 2,−3) by ξ2 �→ RHom(Iξ2 ,OS)(−2)[1].

Hence E is in the exceptional locus E9 of g9 in M if and only if it fits into the (non-split)
distinguished triangle

OS(1) → E → RHom(Iξ2 ,OS)(−2)[1].
Note that there exists a short exact sequence

0 → Ext1(RHom(Iξ2 ,OS(−2))[1],OS(1)) → Hom(OS(−2),OS(1))

→ Ext2(Oξ2 ,OS(1)) → 0.
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So E is in the exceptional locus if and only if it fits into the exact sequence

0 → OS(−2)
s9−→ OS(1) → E → Oξ2 → 0

where s9 �≡ 0 and ξ2 is contained in the cubic {s9 = 0}. When s9 corresponds to a smooth
cubic C ∈ |3H |, this means precisely that E(−1) ∈ BN0

2(B
◦). Since both the exceptional

locus and Z2 are closed and irreducible, they must be the same.
The eighth wall corresponds to the decomposition of Mukai vectors

(0, 3,−1) = (1, 2, 1) + (−1, 1,−2).

By Appendix 5.3, we see that there are two birational models for S[4]. Let �S[4] denote the
other model, which is obtained by flopping at the locus parametrizing length four subschemes
on a line. Then near t = t ′8, Mσ ′

t
(1, 2, 1) ∼= �S[4]. We note that all points in �S[4] corresponds

to sheaves and they are torsion free if and only if they are not in the exceptional locus of the
flop of S[4].

By [2, Section 14], the exceptional locus E8 of g8 in X9 is irreducible and E ∈ E8 if and
only if it fits into a (non-split) distinguished triangle

I → E → OS(−1)[1],
where I ∈ Mσ ′

8
(1, 2, 1). In particular, there exists an open dense subset E◦

8 ⊂ E8 consisting
of E fitting into a short exact sequence

0 → OS(−1)
s8−→ Iξ4(2) → E → 0,

where h0(Iξ4(1)) = 0 and s8 corresponds to a smooth curve in |3H |. It is easy to see that
E ∈ E◦

8 if and only if E ∈ BN0
4(B

◦)\Z2. Thus the exceptional locus of g8 in X9 is the strict
transform of Z4.

The seventh wall corresponds to the decomposition of Mukai vectors

(0, 3,−1) = (1, 1, 1) + (−1, 2,−2).

By Appendix 5.2, near t = t ′7, S ∼= Mσ ′
t
(1, 1, 1) by p �→ Ip(1) and S[3] ∼= Mσ ′

t
(−1, 2,−2)

generically by ξ3 �→ RHom(Iξ3 ,OS)(−2)[1] for ξ3 not on a line. The exceptional locus E7

of g7 in X8 is irreducible and E ∈ E8 if and only if it fits into a (non-split) distinguished
triangle

Ip(1) → E → J ,

where p ∈ S and J ∈ Mσ ′
7
(−1, 2,−2). In particular, there exists an open dense subset

E◦
7 ⊂ E7 consisting of E fitting into

RHom(Iξ3 ,OS)(−2)
s7−→ Ip(1) → E,

where h0(Iξ3(1)) = 0, p /∈ ξ3, and s7 corresponds to a smooth cubic in |3H | (assuming
the first two conditions, s7 corresponds to a cubic containing ξ3 ∪ {p}). It is easy to see that
E ∈ E◦

7 if and only if E ∈ Z◦
1,3\Z4. Thus the exceptional locus of g7 in X8 is the strict

transform of Z1,3.
The sixth wall corresponds to the decompositions of Mukai vectors

(0, 3,−1) = (1, 0, 1) + (−1, 3,−2)

= (1, 0, 1) + (1, 0, 1) + (−2, 3,−3).

123



Birational geometry of Beauville–Mukai systems I: the rank... Page 29 of 35    32 

We note that for t ′ near t ′6, Mσt ′ (−1, 3,−2) is birational to S[8]. Arguing as we did for the
fifth wall, we see that E is in the exceptional locus E6 of g6 in X7 if and only if it fits into a
(non-split) distinguished triangle

OS → E → K ,

where K ∈ Mσt ′ (−1, 3,−2) for t ′ > t ′6 and t ′ close to t ′6. By Appendix 5.4, there exists an
open dense subset E◦

6 ⊂ E6 consisting of E fitting into

RHom(Iξ8 ,OS(−3))
s6−→ OS → E,

where h0(Iξ8(2)) = 0, h0(Iξl (1)) = 0 for any subscheme ξl ⊂ ξ8 of length 5 ≤ l ≤ 8 (these
two conditions hold if and only if ξ8 is not in the exceptional loci of any of the first four
flopping walls for S[8]), and s6 corresponds to a smooth cubic in |3H |. It is easy to see that
E ∈ E◦

6 if and only if E ∈ BN0
8\(Z4 ∪ Z1,3). Thus the exceptional locus of g6 in X7 is the

strict transform of Z8.
Lastly, we show that � induces an isomorphism X6 → X ′

6. Note that the point (x, y) =
(−3, 6/5) is below the wall with � = 4

13 on the S[10] side and satisfies y > 1 (in particular,
it is above the wall with � = 6

19 ); thus X6 = Mσ(−3,6/5) . By Lemma 2.5, � induces an
isomorphism

Mσ(−3,6/5) (1, 0,−9) ∼= M�∗(σ(−3,6/5))(0, 3,−1).

We note that �∗(−1, 3,−9) = (0, 0, 1) and σ(−3,6/5)-stable objects with Mukai vector
(−1, 3,−9) are of the form RHom(Ip,OS(−3))[1] for p ∈ S. It is easy to check that

�(RHom(Ip,OS(−3))[1]) ∼= Op,

and thus all skyscraper sheaves are�∗(σ(−3,6/5))-stable and�∗(σ(−3,6/5)) is geometric. Since

the action of G̃L
+
2 (R) does not change objects in themoduli space,M�∗(σ(−3,6/5))(0, 3,−1) =

Mσx ′,y′ (0, 3,−1) for some x ′ ∈ R and y′ > 0. It is clear that σx ′,y′ must lie in a chamber

between the walls corresponding to � = 4
13 and � = 6

19 on the M side. Moreover, one can
check that Mσx ′,y′ (0, 3,−1) = X ′

6. To conclude, we have an isomorphism

X6 = Mσ(−3,6/5) (1, 0,−9)
�−→ M�∗(σ(−3,6/5))(0, 3,−1) = Mσx ′,y′ (0, 3,−1) = X ′

6

induced by �. ��
Corollary 4.11 For i = 2, 4, and 8, let Ei ∈ MH (0, 3, i − 9).

(1) If h0(E2) �= 0, then h0(E2) = 1.
(2) If h0(E4) �= 0 and h0(Ext1(E4,OS(−2))) = 0, then h0(E4) = 1.
(3) If h0(E2) = 0, h0(Ext1(E2,OS(−2))) = 0, and E2 ∈ Z1,3, then there exist a unique

p ∈ Supp(E2) such that Hom(Ip, E2) �= 0. In fact, hom(Ip, E2) = 1.
(4) If h0(E8) �= 0, h0(Ext1(E8,OS(−1))) = 0, and E8(−1) /∈ Z1,3, then h0(E8) ≤ 2.

Proof By looking at the possible decompositions of the Mukai vectors into effective classes
at thewalls (see [2, Proposition 5.5]), one can obtain Brill–Noether type bounds (for example,
see [3, Section 3.2]).

(1) Suppose h0(E2) �= 0. Then E2(1) ∈ M is in the exceptional locus for the ninth wall. By
the decomposition corresponding to the wall, h0(E2) = 1.
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(2) Suppose h0(E4) �= 0 and h0(Ext1(E4,OS(−2))) = 0. We have

Hom(Ext1(E4,OS(−1)),OS(−1)[1]) �= 0

by the local-to-globalExt spectral sequence [20,Equation (3.16)]. ThusExt1(E4,OS(−1)) ∈
M is in the exceptional locus of g8 in X9. By the decomposition corresponding to the
eighth wall, h0(E4) = 1.

(3) If h0(E2) = 0, h0(Ext1(E2,OS(−2))) = 0, and E2 ∈ Z1,3, then E2(1) ∈ M is in the
exceptional locus of g7 in X8. Our claim now follows from the decomposition corre-
sponding to the seventh wall.

(4) If h0(E8) �= 0, h0(Ext1(E8,OS(−1))) = 0, and E8(−1) /∈ Z1,3, then E8 ∈ M is in the
exceptional locus of g6 in X7. By the decompositions of the Mukai vector corresponding
to the sixth wall, h0(E8) ≤ 2.

��
Corollary 4.12 Let X4, X ◦

4 , X1,3, X ◦
1,3, X8, and X ◦

8 be as defined in Proposition 3.11. Then

(1) X ◦
4 is a P

6-bundle over the open subset U4 := {ξ4 | h0(Iξ4(1)) = 0} in S[4],
(2) X ◦

1,3 is a P
6-bundle over the open subset U1,3 := {(p, ξ3) | h0(Iξ3(1)) = 0 and p /∈ ξ3}

in S × S[3],
(3) X ◦

8 contains an open subset which is isomorphic to a P
2-bundle over the open subset

U8 :=
{
ξ8

∣∣∣∣
h0(Iξ8(2)) = 0, h1(Iξ8(3)) = 0, and

h0(Iξl (1)) = 0 for any ξl ⊂ ξ8 of length 5 ≤ l ≤ 8

}

in S[8].

As a result, Zi contains an open subscheme which is a P
10−i -bundle over an open subset of

S[i] for i = 4 and 8, and Z1,3 contains an open subscheme which is a P
6-bundle over an

open subset of S × S[3].

Proof Recall that we have embeddings Xi ↪→ B × S[i] and X1,3 ↪→ B × S × S[3].

(1) By definition X ◦
4 = p−1

2 (U4). It suffices to show that h0(Iξ4(3)) = 7 for any ξ4 ∈ U4.
By the analysis of the eighth wall, we see that OS(−1)[1] and Iξ4(2) are σ ′

8-stable with
the same phase. Thus

h0(Iξ4(3)) = dim Ext1(OS(−1)[1], Iξ4(2)) = (
v(OS(−1)[1]), v(Iξ4(2))

) = 7.

(2) Note thatX ◦
1,3 = p−1

23 (U1,3). It suffices to show that h0(Iξ3∪{p}(3)) = 7 for any (p, ξ3) ∈
U1,3. By the analysis of the seventh wall, we see that Ip(1) and RHom(Iξ3 ,OS(−2))[1]
are σ ′

7-stable with the same phase. Thus

dim Ext1(RHom(Iξ3 ,OS(−2))[1], Ip(1)) = (
v(RHom(Iξ3 ,OS(−2))[1]), v(Ip(1))

) = 7.

On the other hand, we have the short exact sequence

0 → Ext1(RHom(Iξ3 ,OS(−2))[1], Ip(1)) → Hom(OS(−2), Ip(1))

→ Ext2(Oξ3 , Ip(1)) → 0.

Noting Ext2(Oξ3 , Ip(1)) = Hom(Ip(1),Oξ3)
∗, we see that Ext1(RHom(Iξ3 ,OS(−2))

[1], Ip(1)) is the subspace of cubics containing both p and ξ3, hence it has dimension
h0(Iξ3∪{p}(3)).
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(3) Note that p−1
2 (U8) is an open subset ofX ◦

8 . It suffices to show that h0(Iξ8(3)) = 3 for any
ξ8 ∈ U8. By the analysis of the sixth wall, we see that OS and RHom(Iξ8 ,OS(−3))[1]
are σ ′

6-stable with the same phase (we note that the new condition h1(Iξ8(3)) = 0 is to
guarantee that RHom(Iξ8 ,OS(−3))[1] is σ ′

6-stable, instead of just σ
′
6-semistable). Thus

dim Ext1(RHom(Iξ8 ,OS(−3))[1],OS) = (
v(RHom(Iξ8 ,OS(−3))[1]), v(OS)

) = 3.

On the other hand, we have the short exact sequence

0 → Ext1(RHom(Iξ8 ,OS(−3))[1],OS) → Hom(OS(−3),OS) → Ext2(Oξ8 ,OS)

→ 0.

Noting thatExt2(Oξ8 ,OS)=Hom(OS,Oξ8)
∗,we see thatExt1(RHom(Iξ8 ,OS(−3))[1],

OS) is the subspace of cubics containing ξ8, hence it has dimension h0(Iξ8(3)).
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5 Appendix

Here we collect some results about wall-crossings for themoduli spaces which have appeared
in previous sections.

5.1 Walls for S[2]

We have v = (1, 0,−1).

Lemma 5.1 [2, Proposition 13.1] Let H̃ = θ(0,−1, 0) and B = θ(−1, 0,−1). Then

Mov(S[2]) = 〈H̃ , H̃ − B〉.
The full list of walls is given in Table 3.
The only other nontrivial birational model for S[2] is M(0, 1,−1), obtained by performing
a flop of S[2] along the locus parametrizing ξ2 ∈ S[2] through which there passes a pencil of
lines. From the M(0, 1,−1) side, the flopping wall is given by

(
x + 1

2

)2 + y2 =
(√

5
2

)2
.

Table 3 Walls of Mov(S[2])

� a a2 (v, a) Wall Type

0 (0, 0,−1) 0 1 x = 0 Divisorial

2
3 (−1, 1,−2) − 2 1

(
x + 3

2

)2 + y2 =
(√

5
2

)2
Flop

1 (−1, 1,−1) 0 0 Lagrangian fibration
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Table 4 Walls of Mov(S[3])

� a a2 (v, a) Wall Type

0 (0, 0,−1) 0 1 x = 0 Divisorial

1
2 (1,−1, 2) − 2 0 (x + 2)2 + y2 =

(√
2
)2

Divisorial

Table 5 Walls of Mov(S[4])

� a a2 (v, a) Wall Type

0 (0, 0, −1) 0 1 x = 0 Divisorial

2
5 (1, −1, 2) − 2 1

(
x + 5

2

)2 + y2 =
(√

13
2

)2
Flop

1
2 (1, −1, 1) 0 2 (x + 2)2 + y2 = 1 Divisorial

5.2 Walls for S[3]

We have v = (1, 0,−2)

Lemma 5.2 [2, Proposition 13.1] Let H̃ = θ(0,−1, 0) and B = θ(−1, 0,−2). Then

Mov(S[3]) =
〈
H̃ , H̃ − 1

2
B

〉
.

To understand the wall and chamber structure in Mov(S[3]), we apply [2, Theorem 5.7]. The
full list of walls is given in Table 4.
As a result, S[3] has no other nontrivial birational models. Moreover, there are no other walls
with radii larger than 1.

5.3 Walls for S[4]

We have v = (1, 0,−3).

Lemma 5.3 [2, Proposition 13.1] Let H̃ = θ(0,−1, 0) and B = θ(−1, 0,−3). Then

Mov(S[4]) =
〈
H̃ , H̃ − 1

2
B

〉
.

The full list of walls is given in Table 5.
As a result, there are two birational models of S[4]. If we use �S[4] to denote the model
not isomorphic to S[4], then �S[4] is obtained by performing a flop of S[4] along the locus
{ξ4 | h0(Iξ4(1)) �= 0}.

5.4 Walls for S[8]

We let v = (1, 0,−7).

Lemma 5.4 [2, Proposition 13.1] Let H̃ = θ(0,−1, 0) and B = θ(−1, 0,−7). Then

Mov(S[8]) =
〈
H̃ , H̃ − 3

8
B

〉
.
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Table 6 Walls of Mov(S[8])

� a a2 (v, a) Wall Type

0 (0, 0, −1) 0 1 x = 0 Divisorial

2
9 (1, −1, 2) − 2 5

(
x + 9

2

)2 + y2 =
(√

53
2

)2
Flop

1
4 (1, −1, 1) 0 6 (x + 4)2 + y2 = 32 Flop

2
7 (0, 1,−7) 2 7

(
x + 7

2

)2 + y2 =
(√

21
2

)2
Flop

1
3 (0, 1,−6) 2 6 (x + 3)2 + y2 =

(√
2
)2

Flop

6
17 (−1, 3, −10) − 2 3

(
x + 17

6

)2 + y2 =
(√

37
6

)2
Flop

4
11 (1, −2, 4) 0 3

(
x + 11

4

)2 + y2 =
(
3
4

)2
Flop

10
27 (2, −5, 13) − 2 1

(
x + 27

10

)2 + y2 =
(√

29
10

)2
Flop

3
8 (−1, 3, −9) 0 2

(
x + 8

3

)2 + y2 =
(
1
3

)2
Divisorial

The full list of walls is given in Table 6.
As a result, there are eight birational models of S[8].

5.5 Walls for v = (0, 1, 0)

By [2, Theorem 5.7], there is no wall for (0, 1, 0) whose radius is larger than 1.

5.6 Walls for v = (0, 2,−2)

By [29, Theorem 5.3], the only wall for (0, 2,−2) whose radius is larger than 1 is a flopping
wall given by

(
x + 1

2

)2

+ y2 =
(√

5

2

)2

.

5.7 Walls for v = (0, 2,−1)

These are computed in [18, Section 5]. There are two walls with radii larger than 1, given by

(
x + 1

4

)2

+ y2 =
(
5

4

)2

,

(
x + 1

4

)2

+ y2 =
(√

17

4

)2

.
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