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Abstract

We study wall-crossing for the Beauville-Mukai system of rank three on a general genus
two K3 surface. We show that such a system is related to the Hilbert scheme of ten points on
the surface by a sequence of flops, whose exceptional loci can be described as Brill-Noether
loci. We also obtain Brill-Noether type results for sheaves in the Beauville-Mukai system.
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1 Introduction

Irreducible holomorphic symplectic manifolds are generalizations of K3 surfaces. The first
higher-dimensional example was discovered by Fujiki [13] (the Hilbert scheme S of two
points on a K3 surface S), and soon generalized by Beauville [4] (the Hilbert scheme S [n]
of n > 2 points on §). An interesting question is: when is an irreducible holomorphic
symplectic manifold birational to a Lagrangian fibration, i.e., a fibration by complex tori that
are Lagrangian with respect to the holomorphic symplectic form? The conjectural solution
has come to be known as the Hyperkihler SYZ Conjecture (see [19, 31, 36]). For Hilbert
schemes S this question was considered by Markushevich [27] and the second author [32],
and a complete answer was given by Bayer and Macri [1, 2], verifying the Hyperkihler SYZ
Conjecture in this case (see also [6, 12, 16, 22] for some special cases). The Lagrangian
fibration that arises in this case is the compactified relative Jacobian of a complete linear
system of curves on a K3 surface, and is known as the Beauville-Mukai integrable system
[5, 28]. In fact, Markushevich [26] conjectured that any Lagrangian fibration whose fibres
are Jacobians of curves must be of this type, i.e., the family of curves must be a complete
linear system on a K3 surface. He proved this for genus two curves [25], and the second
author proved this for genus three, four, and five [35], and for all genera under an additional
assumption [34].

In the simplest cases, the Hilbert scheme S is actually isomorphic to a Beauville-Mukai
system. However, in most cases they are only birational. The birational map can take the form
of a Mukai flop [28], or a more complicated stratified elementary transform, as studied by
Markman [24]. The goal of this paper is to understand the birational map in a particular case.

We start with a general polarized K3 surface (S, H) of genus two, i.e., w : § — P%isa
double cover ramified over a general smooth sextic curve, H = w*(Op2(1)), and Pic(S) =
Z[H]. By the results mentioned above, [1, 2, 27, 32], for such a K3 surface the Hilbert
scheme S is birational to a Beauville-Mukai system if and only if n = m? + 1 is a perfect
square plus one. Here and throughout Beauville-Mukai systems will be identified with Mukai
moduli spaces M (0, m, k) of stable sheaves on S (semistable if m and k are not coprime).
Recall that the general element of M (0, m, k) looks like ¢, L where: : C < § is the inclusion
of a curve C € |mH| into the K3 surface, and L is a line bundle on C of degree k + m2.
The Fitting support gives a morphism M (0, m, k) — [mH| = IP””Z'H, and M (0, m, k) is
a compactification of the relative Jacobian Pick+m* (C/|ImH|) of the family of curves in the
linear system |m H |. The birational map

St s MO, m. —1)

is given by taking a general length m? + 1 subscheme & of S (consisting of m?2 + 1 distinct
points) to the line bundle

Oc(=§) ® Os(mH)|c

on the (unique) curve C € |m H | passing through the m? + 1 points. At the level of the derived
category of S, this birational map is induced by the autoequivalence ® : D?(S) — DP(S)
given by the composition of the spherical twist Tog (- i) and tensoring with the line bundle
Os(mH).

When m = 1, and thus n = 2, Mukai [28, Example 0.6] observed that the birational map

S5 M0, 1, -1)
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is simply the elementary transform which flops the plane in S1* parametrizing subschemes
a Y(p),pe IP2, to the zero sectionin M (0, 1, —1) — |H| parametrizing trivial line bundles
Oc. When m = 2, and thus n = 5, the birational map

SBT - M(0,2,-1)
was studied by Hellmann [18]. She decomposed it into flops.

Theorem 1.1 [18, Theorem 5.2] There are five smooth K -trivial birational models of NEN
or M := M(0, 2, —1). They are connected by a chain of flopping contractions

Bly, SP! Bly, X| Bl; X3 Blz, M

,\/ N/ \/\

Sts! Xi- s X<t o< oM
The exceptional loci W, C W3 C SBland Z; ¢ Z3 € M are described explicitly in [18];
they are either Brill-Noether loci or irreducible components of Brill-Noether loci.

Our paper is greatly inspired by Hellmann’s results, and may be seen as an extension to
the ‘next’ case. Namely, we consider the case m = 3, and thus n = 10, and we decompose
the birational map

SO 5 M(0,3, 1)
into flops.

Theorem 1.2 Let (S, H) be a general polarized K3 surface with Pic(S) = Z[H] and H?=2.
There are eleven smooth K -trivial birational models of SU9, or M := M(0, 3, —1). They
are connected by a chain of flopping contractions

[10]
Ble\ Bly, WUW Bly;,
[101777>—X1777>-X2777>-X3777>-X47777>-X5777>-X6~>
Bl BlZI; X9 Blz, M
NAYAYAYAY
6 " g 7 2 8 g8 Xo=<5

This is restated in greater detail as Theorem 4.8. In particular, the exceptional loci Wo C W C

Wy SUL Wy cwy c S Z, c Zyc Zgc M,and Zy € Z13 C Zg C M are
described explicitly there; they are once again Brill-Noether loci or irreducible components
of Brill-Noether loci.

To prove this theorem, we employ the powerful techniques developed by Bayer and Macri
[1, 2] for determining the birational models of a moduli space. The space of Bridgeland
stability conditions on S has a wall-and-chamber structure. Computing the walls typically
requires some work, as it involves solving Diophantine equations, though in our case these
reduce to certain Pell’s equations that have already been carefully analyzed by Cattaneo [9].
For the Hilbert scheme S0 = pm (1,0, —9), we consider moduli spaces M (v) of o-stable
objects with Mukai vector v = (1,0, —9). If we vary o in a single chamber the o-stable
objects do not change and the moduli spaces are isomorphic; one of the chambers corresponds
to the moduli space of Gieseker stable sheaves, i.e., S!'%. When o crosses a wall some o-
stable objects become unstable, while new o -stable objects appear. One can calculate these
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32 Page4of35 X. Qin, J. Sawon

loci of destabilized objects in the moduli spaces, and thus arrive at a precise description of
the resulting birational modification of the moduli space. In our case, there are six walls to
cross to reach X¢ from S (1o, Similarly, for the Mukai vector (0, 3, —1) there is a chamber
corresponding the Beauville—-Mukai system M := M (0,3, —1), and crossing four walls
takes us to X¢. Finally, the isomorphism ® : X¢ — X is induced the autoequivalence ® of
the same name mentioned earlier, which takes o -stable objects of Mukai vector (1, 0, —9)
to @, (0 )-stable objects of Mukai vector @, (1,0, —9) = (0, 3, —1). For a suitable choice of
o, we have Xg = M, (1,0, =9) and X; = Mo, (5)(0, 3, —1).

In some respects, our result is quite similar to Hellmann’s. We use the same strategy
of analyzing the wall-crossings and birational modifications from both the Hilbert scheme
and the Beauville-Mukai system sides, eventually reaching birational models (X¢ and X¢,
respectively) that can be identified by an isomorphism coming from the autoequivalence
®. Moreover, as in Hellmann’s analysis, all of the walls that we cross are ‘rank one’ (see
Remark 4.6), which makes it easier to describe the exceptional loci that are flopped. On
the other hand, there are some differences and added complications in our work. By [2,
Section 14], the exceptional locus of a flop corresponding to a wall-crossing has a natural
stratification given by the decomposition of the Mukai vector. In Hellmann’s work these
stratifications are always trivial and the flops are simple, or elementary modifications in
the terminology of Mukai [28]. By contrast, we encounter nontrivial stratifications for some
wall-crossings. Specifically, the exceptional loci for our fourth, fifth, and sixth wall-crossings
have nontrivial stratifications, and the resulting flops are stratified elementary modifications
in the terminology of Markman [24]. A priori, such loci could have several irreducible
components, and indeed this occurs for the fourth wall, whose exceptional locus has two
irreducible components. These differences make the analysis much more complicated; they
also inspired a second paper [30] where we analyze the general theory in low rank cases.

Regarding the Beauville-Mukai system, note that tensoring with Ogs(H) induces an iso-
morphism M(0,3,k) — M(0, 3,k + 6). Moreover, Hellmann [18, Lemma 2.1] proved
that

Ers &Y = ExtI (&, Oy)

induces an isomorphism M (0,3, —1) — M(0,3,1). As a result, the moduli spaces
M (0, 3, k) are all isomorphic for k = 1,5 (mod 6), and they are all isomorphic for k = 2, 4
(mod 6). However, M (0, 3, —1) is not isomorphic, nor even birational, to M (0, 3, —2), as
can easily be seen by applying the argument of [33, Proposition 15]. For k = 0,3 (mod 6)
the Mukai vector (0, 3, k) is divisible by 3 and the moduli space M (0, 3, k) is singular;
moreover, Kaledin et al. [23] proved that it does not admit a symplectic desingularization.
Thus there are essentially two distinct smooth rank three Beauville-Mukai systems on gen-
eral genus two K3 surfaces, where rank three is used in analogy with Hitchin systems, see
Donagi et al. [10] (also, M (0, 3, k) contains sheaves ¢,V where V is a rank three bundle on
acurve in |H|). We have chosen to study the birational geometry of M (0, 3, —1) because it
is birational to the Hilbert scheme S!191.

The paper is organized as follows. In Sect. 2 we review the preliminaries needed for the
rest of the paper. In Sect. 3 we study the Brill-Noether loci in 1'% and M (0, 3, —1). These
loci will later be identified with the exceptional loci of wall-crossings. Section4 contains the
main results of this paper: we use the machinery in [2] to identify the walls and give a careful
analysis of the wall-crossings. In Sect. 5 we collect auxiliary wall-crossing results needed
for Sect. 4.
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Notation and convention Throughout this paper, (S, H) will be a general polarized K3
surface of genus two, i.e. 7 : § — P2 is a double cover ramified over a general smooth
sextic curve, with H = 7*(Op2(1)) and Pic(S) = Z[H]. We will refer to curves in the linear
systems |H|, |2 H|, and |3 H| as lines, conics, and cubics, respectively.

We use Hj;, (S, Z) to denote the Mukai lattice H'(S, Z) ® NS(S) ® H*(S, Z) of S. We
use D?(S) to denote the bounded derived category of coherent sheaves on S.

Given v € H;lg(S, 7), we use Mg (v) and M}'_I’(V) to denote the moduli spaces of H-
semistable and H -stable sheaves with Mukai vector v, respectively. We will often omit the
subscript when no confusion will be caused. Given a Bridgeland stability condition o, we
use M, (v) and M3’ (v) to denote the moduli spaces of o -semistable and o -stable objects in
D?(S) with Mukai vector v, respectively.

The Grothendieck group of a triangulated category D is denoted by K (D). The
Grothendieck group of the derived category D?(X) is denoted by K (X).

Let F be a coherent sheaf on a scheme X. We use Supp(F) to denote the Fitting support
of F. For a closed subscheme Z C X, we use supp(Z) to denote the set-theoretic support of
Z.

2 Preliminaries
2.1 The linear systems |H|, |2H| and |3H]|

Our main object of interest is the Beauville-Mukai integrable system M (0, 3, —1) — |3H|,
which we will denote by f : M — B throughout. We refer the reader to [18, Section 2.1]
for a description of the linear systems |H| and |2H|. Regarding |3H |, we have

h0(S, 05(3)) = 11 = h°(P?, Op2 (3)) + 1.

We can think of the extra dimension as coming from the ramification locus of S. Let B
denote |[3H|. Let X denote the locus of non-integral curves in B. Let X1 1 1 denote the locus
of curves with three distinct irreducible components in B. Let X5 | denote the locus of curves
whose support is of the form 2L + L, where L; € |H| and L; # L;. Let X3 denote the
locus of curves whose support is of the form 3L with L € |H|. We have a chain of closed
subschemes

¥3C(E1UX3) C (2111 U1 UE3) C X CB.
Let x € B and use C to denote the corresponding curve.

e For x € B\, C is an integral cubic curve, and then f~!(x) parametrizes torsion free
rank one sheaves on C of degree 8.
e Forx € X\ (X1,1,1UZX3,1 UZX3),C is the union of an integral conic Q and a line L. Note
that /(Q N L) = 4. We have
0—>IQQL/L—>Oc—>OQ—>O

and

0 — Zonrjo - Oc — O — 0.
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32 Page6of35 X. Qin, J. Sawon

e Forx € ¥ 1 1, C isthe union of three distinct lines L;,i = 1, 2, 3. We have the following
filtration for Oc¢.

0 —— Z(wauLs)nLy/Ly — L(Lan(L1UL2))/(L1ULy) —> Oc

Z(LuL)NL)/Ly L(LonL3)/La OLs.

e For x € X5, C is the union of a first infinitesimal neighbourhood of a line L with a
line Ly # L. We have

0 — ZorinLyy/L, = Oc = O, — 0
with 0 — ILI/Ii1 — Oy, — O, — 0, or equivalently
0— ZornLy2L, = Oc — Op, — 0.
e For x € X3, C is the second infinitesimal neighbourhood of a line L. We have
0— (I1/T13)* = Oc — Oy — 0

with 0 — IL/II% — Oy — Op — 0.

2.2 Zero-dimensional closed subschemes

Recall that for any closed subscheme Y C S, we use supp(Y) to denote the support of Y.

Definition 2.1 Let & C S be a zero-dimensional closed subscheme. We say a closed sub-
scheme &' C £ is saturated if supp(Og /Ogr) N supp(£') = @.

We collect some notations and easy results about saturated subschemes.

Lemma/Definition 2.2 Let £ C S be a zero-dimensional closed subscheme and &' C & be a
saturated subscheme. Then

(1) Ot = Og @ (O /O¢), from now on we denote the subscheme of & corresponding to the
second summand by E\&'.

(2) €\&' C & is also a saturated subscheme.

(3) Suppose & C & is also saturated. Define §' U&" as the saturated subscheme of & whose

support is supp(¢") U supp(§”).
(4) For any subscheme ¢ C &, ¢\&' is defined as the maximal subscheme of ¢ whose support
does not intersect supp(&’).

2.3 Stability conditions on K3 surfaces

In this section we review some basics facts about (Bridgeland) stability conditions and their
moduli spaces on K3 surfaces. Let X be a K3 surface. Its algebraic cohomology group is

5e(X.2) .= H(X,Z) ®NS(X) @ H*(X, Z).
The Mukai vector v : K(X) — H;ig(X, Z) is given by

V(E) := ch(E)y/td(X) = (r(E), c1(E), cha(E) +r(E))
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for E € K(X), and the Mukai pairing (—, —) on H;"lg(X, Z) is defined by
((ryc1,9), (' ), s)) =cic) —rs' —r's € Z.

By Riemann-Roch, x(F, F') = —(v(F),Vv(F’)) for any F, F' € D’(X). The group
H:lg(X , Z) endowed with the Mukai pairing is called the algebraic Mukai lattice of X.

Mukai [28] showed that if My (v) is nonempty and smooth, then it has the structure of
a hyperkihler manifold. The movable cone of a hyperkéhler manifold M admits a locally
polyhedral chamber decomposition [17], where the chambers corresponds to K-trivial smooth
birational models of M (or hyperkéhler manifolds birational to M). For the rest of this paper,
we will simply refer to these hyperkihler manifolds as birational models of M.

We refer the readers to [ 7] for the definitions of slicings, hearts, general Bridgeland stability
conditions, and the complex manifold structure on the space of stability conditions. We note
that, for the rest of this paper, all stability conditions on any K3 surface X will be with respect
to the lattice H;jg (X, Z). We now review the notion of geometric stability conditions on X.
Fix B and w € NS(X)q with w ample.

Definition 2.3 For any coherent sheaf F, its slope with respect to (8, w) is

wc(F) _ of
Hpo(F) = | o~ ot T =0
’ 00 if r(F) =0.

We can define an abelian subcategory of D?(X) by tilting with respect to

Tp, = {F € Coh(X) | all HN factors F’ of F have slope g, (F') > 0},
Fg.w = {F € Coh(X) | all HN factors F" of F have slope pp ,(F") < 0}.

Proposition 2.4 [14] The category
Aﬂ,w = (773,a)a fﬁ,w[”)
is an abelian subcategory of D?(X) and the heart of a bounded t-structure on D? (X).

Consider the C-linear map with domain the numerical Grothendieck group (see Section 4 of

(81)
Zg.w : Knum(X) — C,
F — (e’g+‘/jl‘”, v(F)).
By [8, Lemma 6.2], the pair 0 o, = (Ag,«, Zp,w) defines a Bridgeland stability condition if

all spherical sheaves G on X satisfy Zg ,,(G) ¢ R<o (this condition is satisfied if w?* > 2).
From now on, assume (8, @) is chosen so that og ,, is a stability condition. We recall

Lemma 2.5 [7, Lemma 8.2] The group Aut(D” (X)) acts on the left on the space of stability
conditions Stab(X) by W (P, Z) = (¥ (P), Z o W), where ¥ € Aut(D?(X)), ¥, also
denotes the push forward on the Grothendieck group, P is the slicing, and Z is the central
charge of the stability condition. The universal cover GT; (R) of 2 x 2 matrices with real
coefficients and positive determinants acts on the right on Stab(X).

Any stability condition which is in the éi; (R) orbit of og, is called a geometric sta-
bility condition. Such stability conditions are characterized by the property that skyscraper
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32  Page8of35 X. Qin, J. Sawon

sheaves on X are stable. More generally, Bridgeland ( [8, Section 8]) constructed a connected
component Stab’(X) of the stability manifold Stab(X) that contains all geometric stability
conditions.

Fixing a Mukai vector v € H;lg(X , 7)), there exists a locally finite set of walls (real
codimension one submanifolds with boundary) in Stab’(X), determined solely by v, such
that the set of o -(semi)stable objects does not change within chambers. A stability condition
o is called generic with respect to v if it does not lie on a wall for v.

Theorem 2.6 [1, Theorem 1.3(a)] Let o € Stabf(X) be generic with respect to v. There
exists a coarse moduli space M (V) parametrizing o -semistable objects with Mukai vector
v. Moreover, My (V) is a normal irreducible projective variety.

If v is primitive then My (V) = M3 (V) is a projective hyperkéihler manifold and the Mukai
homomorphism induces an isomorphism

o IV = NS(My(v))  if v’ >0,
Yl vty S NS(M,(v) ifv? = 0.
We now take a closer look at wall-crossing. Let v be primitive with v2 > —2. Suppose

that W is a wall for v, oy € W does not lie on any other walls, and o and o_ are generic
stability conditions near o but on opposite sides of W.
Theorem 2.7 [1, Theorem 1.4(a)] The wall W induces birational contractions
nt: My, (v) — My,
+

where M 1. are normal projective varieties. The morphisms 7
objects that are S-equivalent with respect to oy.

contract curves parametrizing

Walls are classified as follows.
Definition 2.8 [2, Definition 2.20] The wall W is called

e afake wall if there are no curves of objects in M, (v) that are S-equivalent objects with
respect to op;

e aflopping wall if M = M _ and the induced birational map M, (V) --» M,_(v)isa
flop;

e a divisorial wall if the morphisms 7
My, (V) = My_(v).

General numerical criteria for locating walls were given in [2, Section 5]. We will describe
these for the Hilbert scheme of points in Sect. 4.
We will need the following result.

+ are both divisorial contractions; in this case

Proposition 2.9 [2, Proposition 2.11] The stability conditions og ., and c_g ., are dual to
each other: an object E € D?(X) is 0B,w-(semi)stable if and only if RHom(E, Ox)[1] is
0_p,w-(semi)stable.

Remark 2.10 We note that [2, Proposition 2.11] uses a shift by 2 on the dual of the object,
whereas we shift by 1. Our choice does not affect (semi)stability but is more suitable for its
application in Sect. 4.

We recall the comparison between Gieseker and Bridgeland stability when w is large
(sometimes called the “large volume limit”).

Theorem 2.11 [8, Proposition 14.2] Fix v € H:lg(X, Z) and sog € R. Let H € NS(X) be
ample with g, p 1 (V) > 0. Then MGSOH_,H (V) = My () fort > 0.
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3 Brill-Noether loci in S['%! and M

We define the Brill-Noether loci in S!'%1 and M by
BN/ (sU%) .= (£ € S| 10z (3)) = i + 1)  sU1¥
and

BN (M) :={€eM|hE =i+1}c M.

3.1 Brill-Noether loci in {19

We will focus on some special subsets in BN (S[101y We define
W; := {& € SU'9 | Jsaturated & C £ of length 10 — i and L € |H| such that &’ C L}
fori =0,1,2,3,4. Then W; is a locally closed subset of ST with closure
W; = {& € SU | 3¢ c & of length 10 — i and L € |H| such that &’ C L}.

Note that Wo = Wy, W; C W4 fori = 0,1,2,3, and W; < BN /(10 for i =
0,1,2,3,4.
We define

Wo = {& € SU |3 Q" € |2H| such that & C Q')
and
Wy = {& € SU'9 | Jsaturated £ C £ of length 9 and Q" € |2H| such that &’ c Q"}.
Note that W) is closed and W is locally closed with closure
Wi = (& € S| 3¢’ C & of length 9 and Q" € |2H]| such that &’ € Q")

Moreover, Wy C Wi and W; C BNZ_i(SIIO]) fori =0, 1.

Our next lemma provides bounds for the dimensions of spaces of lines/conics/cubics
containing a zero-dimensional closed subscheme. Our proof follows closely Hellmann’s
proof of [18, Lemma 4.1].

Lemma3.1 Letr& € S and ler & € S0~ fori =0,1,2,3,4,5.
(1) We have
0<hr’S,Ze(1) <1 and 1<h"S,Z:(3)) <6.

(2) IfhO(S, Ze (1)) = 1 then h°(S, Z¢ (3)) = 6.
(3) IfhO(S, Ze, (1)) = 1 then h°(S, T, (2)) = 3.
4) Ifh°(S, Ze (2)) > 2 then & € Wa.

Proof (1) For h°(S, Zg (1)), we note that any line in | H| is integral. Hence for L1, Ly € |H|
and L1 # Lo, L1 N Lj is a length 2 subscheme of S. As a result hO(S, Ze(1)) < 1.
The fact that h°(S, Z¢(3)) = 1 follows from the short exact sequence

0—Z:(3) = Os(3) = Og — 0.
Denote by B (&) the subspace of B consisting of cubics containing £. Suppose that B(§) C X;

then dim B(&) < 5 since there is no 6-dimensional linear subspace of B = P! in ¥. Hence
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32 Page100f35 X.Qin, J. Sawon

we can assume that there is an integral curve D € |3H| containing £. When D is smooth,
we have the following commutative diagram.

0 —=0=H"Ts) — H(Z:3))— H(Z:(3)|p) — ...

I T

0 — H%O5) — H°(05(3)) —— H(wp) ——0

We note that Z¢ (3)|p = wp(—&) ® O¢ and thus H(Z(3)|p) = H(wp(—&)) & H(Oy),
where the second summand is the kernel of f. As a result, we have

h(Ze (3)) < dimim(g) + h°(Os) < h°(D, wp(—£)) + 1 = (D, Op(§)) <6,

where the final inequality follows from Clifford’s theorem.

When D is singular the same argument applies, exceptin the final step we need an extension
of Clifford’s theorem to certain singular curves. This is provided by Franciosi and Tenni [11,
Theorem A]. Note that they require the curve to be reduced with planar singularities or
contained in a smooth surface, and they require it to be 2-connected; all of these hypotheses
are satisfied by D, as it is contained in the smooth K3 surface S and it is integral.

2) Let0 # 5 € HO(Ig(l)) and let L be the corresponding line. We have a short exact
sequence

0— 05(2) > Z:(3) = ker(Os(3)|1 — O) — 0.

Note that the right term is a torsion free sheaf of rank one on L with negative degree, and
thus we have an isomorphism HO(Ig 3)) = H%(0s5(2)).

(3)Let0 #£ s € H O(Zgi (1)) and let L’ be the corresponding line. We have a short exact
sequence

0 — Os(1) > T, (2) — ker(Os(2)| — O) — 0.

Again the right term is a torsion free sheaf of rank one on L” with negative degree, and thus
we have an isomorphism H%(Z;, (2)) = H*(Os(1)).

(4) Suppose KOs, Zg(2)) > 2. Then one can find a morphism f : 05(=2)%2 Ze whose
image has Og(—2) as a proper subsheaf. Note that both ker(f) and im(f) are torsion free
sheaves of rank one, hence stable. Combining this with the fact that ker(f) < (9?2(—2),
Os(=2) € im(f) C Z¢, and the stability of all sheaves involved, it is easy to see that
v(im(f)) = (1, —1,2 — p), where p can be 0, 1, or 2. If coker( f) is pure of dimension one
then & € Wp Otherwise & € W,y for some p’ < p.In any case, § € Ws. O

As a result of part (1) of the lemma, we see that BNO(sL10ly = §U0] 3pnd BNO(SHO = g,

In the next three propositions, we investigate the structure of the W;’s and WW;’s. Note that
the universal sheaves appearing below exist by [21, Corollary 4.6.7]. We first show that all
W; are generically P83~ _bundles.

Proposition 3.2 (1) The variety Wy is a P8-bundle over M(0, 1, —11). More precisely, let
11 be the universal sheaf on M (0, 1, —11) x S and define

& = pr«RHom(%-11, p;Os(—=1))[1]
where p1 and p> are the projections to the first and second factors, respectively. Then &

is a vector bundle of rank 9 on M (0, 1, —11) and Wy = P(&)).
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(2) Fori = 1,2,3 the variety W\W;_| is a P¥"-bundle over an open subset of SVl x
MO, 1,i —11).

Proof (1) The proof of the first part is same as the proof of [18, Proposition 4.4].

(2) Fixi € {1,2,3}.Let V; C SIJ x | H| be the open set parametrizing pairs (£, L) such that
£NL = (. Define U; to be the preimage of V; by the support map S x M0, 1,i—11) —
S % |H|. For & € W;\W;_, there exists a saturated subscheme ¢ of length i so that
&\¢ C L for some L € |H|. We claim that both ¢ and L are unique. Suppose ¢’ C &
satisfies [(¢') = i and E\¢’ C L' for L' € |H|. Then £\ (¢ U ¢’) is a subscheme of & so
that [(€\(¢ U¢’)) > 10 — 2i > 4. On the other hand, E\(¢ U¢) C LNL . IfL # L’
then L N L’ is a length two subscheme of S. This contradiction proves that L = L’. Next
note that £\¢’ C §\¢’ C L' = L, soif £\¢’ # @ then (§\¢) U (¢\¢') C L contradicts
our assumption that & ¢ W;_;. This proves the claim. As a result, we get a well-defined
morphism

Vi WA\Wi_ — SU x M(©,1,i —11),
§ = (8. Ze\oy/n)-

It is clear that the image is contained in U;. We now show that v; is surjective onto U;
and that the fiber over each point is isomorphic to P8~/. We first note that if y; (§) =
(¢, Z(g\¢)/1) then we have a short exact sequence

0—>TZ¢(—1) > Zg > Loy — 0.

On the other hand, it is easy to see that for any (n, &) € U;, Ext! (€, ,(=D) = co.
For any non-split extension

0—>Zy(-1) -1 - £ -0,

I must be a torsion-free sheaf with Mukai vector (1, 0, —9), since nNSupp(E) = ¥. Hence
I is the ideal sheaf of a length 10 subscheme &', with n C &’ as a saturated subscheme.
It is clear that &’ € W;. If & € W;_; then there would exist a subscheme n’ C &’ of
length 11 — i such that 1’ lies on a line. Consider n\n, which is a closed subscheme of
&\n C Supp(€) and has length > 11 — 2i > 5. Since any subscheme of length 3 or
more is contained in at most one line, we must have n” C Supp(€). This contradicts the
fact that n N Supp(€) = ¥, as [(§'\n) = 10 —i. Hence &’ € W;\W;_1. It follows that ;
is surjective onto U; and the fiber over any (1, £) € U; is P(Ext! (&, ,(=D)) = P8,
O

Remark 3.3 Similarly to part (i), the PO-bundle structure of Wz\Wl over U, can be realized
as the projectivization of a vector bundle on U,. More precisely, let %Z_9 be the universal
sheaf on M (0, 1, —9) x S and .#, be the universal ideal sheaf on § (2] x §. Define

& = pra« RHom(p33% -9, p5O0s(—1) ® pi32)[1],

where p12, p13, and p»3 are the obvious projections from Sl2 % M@0, 1,—-9) x S. Then
one can easily adapt the proof above to show that & is a vector bundle of rank 7 on U, and
Wo\W = P(&,).
For i = 1 and 3 we only have twisted universal sheaves on M (0, 1, —11 + i) x S. In
these cases W;\ W;_1 can be viewed as the projectivization of a twisted vector bundle on U;.
Next we describe W4 and W,. The reason for describing them together is that their strict
transforms are the two irreducible components of an exceptional locus in Theorem 4.8.
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Proposition 3.4 (1) The variety Wi\(Wo U W3) is a P*-bundle over an open subset in S™! x
M0, 1, —=7). More precisely, let %_7 be the universal sheaf on M (0, 1, —=7) x S and 94
the universal ideal sheaf on S'! x S. Define

&y := prasRHom(p53%_7, p50s(—1) ® pi324)[1].

Then &4 is a vector bundle of rank 5 on an open subset Uy C S % M, 1, =7) and
Wa\Wo U W3) = P(&4lu,).

(2) The variety WO\W‘; is generically a P> -bundle over M*'(0, 2, —14).

(3) Let N be the moduli space parametrizing pairs (€4, L) such that §&4 C L € |H| is a
subscheme of length 4. Then there is a P*-bundle P(& |us) over an open subset Us C N x
M0, 1, =7) and a generically injective morphism from P(&5|ys) onto Wp N W)\ Ws.

Proof (1) Let V4 C S x |H| be the open set parametrizing pairs (§, L) such that £ N
L =¢and H O(Ig(l)) = 0. Define Uy as the preimage of V4 by the support map SI* x
M(0, 1, —7) — S x |H|. Then one proceeds as before to show that & is a vector bundle
of rank 5 on Uy and that the universal extension defines a map

Y : P(&ly,) — SUO

whose image lies in Wy. o
We claim n that Y4 is an isomorphism onto W4\ (Wp U W3). First we show that im(y4) =
Wa\(Wo U W3). Assume & € im(4). Then Z fits into a short exact sequence

0 Te,(—1) > Tt > £ — 0

where & C & is a subscheme of length 4 and Supp(&4) N Supp(E) = @ (hence & C & is
saturated). As in the proof of Proposition 3.2(2), £ ¢ W3. Suppose & € Wy. By Lemma
3.1(3), any curve Q € |2H| containing &\&4 must be of the form L| 4+ Ly where L; € |H|
and L1 = Supp(E). As aresult, &4 must be a subscheme of L;. This contradicts our choice of
V4. We have shown that im(1/4) € W4\ (W U W3). Next suppose that £ € Waq\(Wp U W3).
Since £ € W4\ W3, we have a saturated subscheme £; C £ such that I fits into

0 T, (1) > T —> £— 0

where £ is pure of dimension one (hence stable) and Supp(&4) N Supp(E) = @. It remains to
show that H O(Ig;4 (1)) = 0. Suppose otherwise; then the composition of any nonzero (hence
injective) Og(—2) — Zg, (—1) with Zg, (—1) — Zg implies & € W.

Secondly, we note that Hom(Zg, (—1), &) = 0 for any (§4, ) € Us, so 4 is a local
isomorphism. Lastly, we show that ¥4 is injective. Suppose that 7, with ¢ € W4\(W)p UWws)
can be written as two different extensions, over (&, £) and (&', £’) in Uy. By the definition
of Uy, we can use ¢\ (§ U &) to denote the subscheme of ¢ supported on the complement
of the union of the support of & and &', and then [(¢\(§ U&")) > 2. If hO(I{\(gugz)(l)) =1
(for example, this happens when [(¢\(§ U &’)) > 3) then one can use the argument from
the proof of Proposition 3.2(2) to conclude injectivity. Suppose hO(I;\@Ug/)(l)) > 2 and
Supp(&) # Supp(£’). Then ¢ = £ UE"U (Supp(€) NSupp(£”)) and ¢ lies in a reducible curve
in |2H | whose support is Supp(€) U Supp(€’). Hence ¢ € W), contradicting our assumption
on{.

(2) Let £ € Wy\Ws4. By Lemma 3.1(4), there exists a unique (up to a scalar) injection
Os(—=2) — Z¢. Then Z¢ fits into an exact sequence

0— 0s(=2) > Zg = £ — 0.
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Note that £ must be pure of dimension one by the Bogomolov inequality (otherwise & would
contain a subsheaf with zero-dimensional support; the extension of this by Og(—2) is stable,
as a subsheaf of Z¢, but also unstable, as it would violate the Bogomolov inequality). If £
is not stable, let £” be its maximal destabilizing quotient. Then £” is supported on a curve
L € |H| and has Mukai vector v(£”) = (0, 1, —11 + i) for some integer i. Moreover, i can
be at most 4 (as the slope of £” can be at most the slope of £) and must be at least O (the
minimal case i = 0 corresponds to & C L and £” = Ty ). This would imply that £ € Wy,
which we are excluding.
Hence € € M*'(0, 2, —14) and we have a morphism

¢ Wo\Wy — M (0,2, —14).

For any £ € M*(0,2, —14), we have Ext](é’, O(=2)) = CO. If a non-split extension of
& anc&)(—Z) is torsion free, then it is the ideal sheaf of a length 10 subscheme &’ in S. If
& € Wy then there exists L € |H| and i € {0, 1, 2, 3, 4} such that we have

0— I;-/(—l) — Ig/ — Ié’ﬁL/L — 0, (35)

where &’ N L (§' xg L to be precise) is a subscheme of length 10 — i of both & and L, and

¢’ is of length i. By Lemma 3.1(3), the map Og(—2) — Zg factors through the morphism

Iy (—1) — Zg of (3.5). Hence £ has Zg/ny,; as a quotient, which contradicts Ee fact that

€ is stable and v(Zgnz 1) = (0, 1, —11 + 7). As a result, we see that & e Wo\Wa.
Suppose T is a non-split extension of £ and Og(—2),

0—>05(-2)—>T—E—0,

with nontrivial torsion part. Then T;,- C £ must have first Chern class H. Since T /Ty,
is torsion free, £/T;,, is pure of dimension one. Alternatively, we can write T as non-split
extensions

0— (OS(_z)eaTtor) - T — g/Ttor -0
and
0— Tior > T — Ty — 0,

where T is the torsion free quotient of 7', which is a non-split extension of £/T;,, by
Os(=2). By the stability of £ and Ty, we see that T;,, € M (0, 1, j) where —11 < j < —8.
We note that such an extension with nontrivial torsion part exists only when Supp(€) is
not integral. Let Mé’ (0,2, —14) denote the open subset in M*'(0, 2, —14) parametrizing
sheaves with integral support. Then the above shows that ¢|4-1( M (0.2,-14)) is surjective
onto M’ (0,2, —14) with fiber over each € being isomorphic to P(Ext! (£, O(-2))) = P°.
This proves that Wy\Wj is generically a P3-bundle over M*'(0, 2, —14). Note that over
the complement of Mg’(O, 2, —14), ¢ is surjective with fiber over £ being a subset of
P(Ext' (£, O(=2))) = P>.

(3) We describe N first. Let %/_7 be the universal sheaf on M (0, 1, —7) x S, and define

N = pruRHom(%-7, p; Os(=2))[1].

Itis easy to see that \ is a vector bundle of rank 30on M (0, 1, —7) and N = P(N) parametrizes
non-split extensions of the form

0—> 05(=2)>7Z—>E—0,
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where £ € M(0, 1, —7). As before, we see that 7 is torsion free, hence of the form Zg, (—1)
where £ C Supp(&) is a subscheme of length 4. Moreover, the natural morphism N — SI4!
is a closed embedding and N parametrizes length 4 subscheme of S lyingon aline L € |H|.
Note that if .# is the universal family on S1*! x S, then (%3 ® p5Os(—1))|yxs is a universal
family parametrizing 7 of the form above.

Let Us C N x M(0, 1, —7) be the open subscheme parametrizing pairs (&4, £'), where
& € Nand & € M(0, 1, —7), such that & N Supp(£’) = @. Define

55 = plz*R'H()m(p%%f% pT3((f4 ® p;OS(_l))|N><S))[1]~

It is easy to see that &% is a vector bundle of rank 5 on Us and P(&5|y5) parametrizes non-split
extensions of & with Zg, (—1) for (&, £') € Us. As in part (ii), we can show that a non-split
extension

0> Zg(-1) > T > E >0

is torsion free, and hence Z = 7, forsome ¢ € § (101 Moreover, we see that £ \& C Supp(E)
is a saturated subscheme of ¢, so ¢ € Wy. Since thereiian inclusion O(—-2) — Z, we also
have ¢ € Wj. By our choice of Us, we know that ¢ ¢ W3. So the universal extension defines
a map

¥s 1 P(&s|ys) — SUY

whose image is in (Wq N Wp)\W3. Since Hom(Zg, (—1), ') = 0 for (&, &) € Us, ¥rs
is a local isomorphism. We claim that ys maps onto (W4 N Wy)\W3. Suppose that ¢ €
(W4 N W)\ W3; then there exists a saturated subscheme ¢’ C ¢ of length 6 contained in a
line L, € |H|. By Lemma 3.1(iii), any conic containing ¢ (hence containing ¢") must be
of the form Ly + Lo, where Ly € |H| with L, # L. As L, must contain the length 4
subscheme ¢\¢’, the conic L + L is uniquely determined by the fact that it contains ¢. As
¢ ¢ W3, we have (¢£\¢) N Supp(L1) = @. There exists an inclusion

whose cokernel £’ is the ideal sheaf of ¢ in L. Thus £’ is pure of dimension one with Chern
character (0, 1, —7), and hence stable. To see that s is generically injective, we simply
notice that 5 fails to be injective on Z, only when ¢ = ¢ U { U &3, where ¢ and ¢, are
both saturated of length 4 and contained in lines L and L, respectively, and {3 = L1 N L.

O

Lastly, we give a description of ;. We will need a birational model X5 of S9! defined in
Sect. 4. It is obtained from SU'%! by a sequence of flops at the W;’s and W (see Theorem 4.8
for details).

Proposition 3.6 Let 7' be the universal sheaf on M (0,2, —13) x S and let . be the ideal
sheaf of the diagonal on S x S. Define

F' = pioxRHom(p33V', p5Os(=2) ® pi37a)[1].

Then F' is a vector bundle of rank 5 on an open subset U' C S x M(0,2, —13). More-
over, there exists a generically injective morphism P(F "lur) — X5 whose image contains
Wi\Wo U Wy) as an open subscheme.
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Proof Let V' C S x |2H| be the open set parametrizing pairs (p, Q) such that p ¢ Q. Define
U’ as the preimage of V' by the support map S x M (0,2, —13) — S x |2H|. It is easy to
see that if (p, £) € U’ then

CS ifi=1,

Ext' (£,7,(=2)) =
( r(=2) {O otherwise.

We conclude that %’ is a vector bundle of rank 5. If a non-split extension of £ and Z p(=2)
is torsion free then it must be an ideal sheaf of a length 10 subscheme & in S. It is clear that
E e Wi\Wp. If £ € Wy then there exists L € |H| and i € {0, 1, 2, 3, 4} such that we have

0— Zeg(—1) = Ie = Zenpy — O, 3.7

where £ N L (§ xgs L to be precise) is a subscheme of length 10 — i of both £ and L, and
& C & is a subscheme of length i. Now as (6 N L)\{p} has length at least 5, Lemma 3.1(3)
implies that Q = Supp(€) is of the form L + L' for L’ € |H|. Note that p ¢ L U L’ since
& ¢ Wo,and &' C L' U {p}. We see now that the map Z,(—2) — Z factors through the
morphism Zg/ (—1) — Zg of (3.7). Hence & has Zgny /1 as a quotient, which contradicts the
fact that £ is stable as v(Zgnrz /1) = (0, 1, —11+1). As aresult, we have £ € Wi\(Wp UWy).

Suppose T is a non-split extension of £ and Z),(—2) with nontrivial torsion part. We argue
as in the proof of Proposition 3.4(2) to show that T is of the form

0— Tior > T — Ty — 0,

where T;,r € M(0, 1, j) where —11 < j < —7. Note that such T lies in the exceptional
locus in X5 for g4 by the analysis of the fifth wall in the proof of Theorem 4.8.
Combining the previous two paragraphs, the associated universal extension defines a map

¢ P(F'ly) - Xs.

Since Hom(Z,(—2), £) = 0 for (p, &) € U’, ¢’ is a local isomorphism. Now suppose that
& € Wi\(Wp N Wy). Then there exists a conic Q € |2H| such that £ N Q is a saturated
subscheme of £ of length 9. There is a surjection Zz — &’ := Zpng/o whose kernel is
Z,(—2) for some point p ¢ Q. Now that we have short exact sequence

0> Z,(-2)—>I > & —0,

it remains to show that £’ is stable with Mukai vector (0, 2, —13). Note that if £’ is not pure
then & would be contained in a conic by the Bogomolov inequality, which contradicts our
assumption. Suppose £’ is not stable and let £” be the maximal destabilizing quotient. Then
v(E") = (0,1, —11 + i) where i € {0, 1, 2, 3, 4}. This would imply that & € Wi, violating
our assumption. So Wi\(Wp N Wy) is a subset of im(¢’). Moreover, Wi\Wo N Wy) is the
complement of the exceptional locus mentioned in the previous paragraph in im(¢’), and
thus Wi \(Woy N Wy) is open in im(¢’).
To see that ¢’ is generically injective define

W = (& € Wi\(Wp N Wy) | there is no length 8 subscheme &' C £ with HO(Is/(Z)) > 2}.

Then # is open in Wi \(Wy N W4), and hence open in im(¢’), which is irreducible. Suppose
that& € # can be expressed as an extension in two different ways, corresponding to elements
of Ext! (€,7p(=2))and Ext! (&, Z,(=2)). Then &\(pUp’)isalength 8 saturated subscheme
of & contained in both Supp(€) and Supp(&’). It follows from the definition of % that
Supp(&) = Supp(€’), and hence p = p’ and € = &'. |
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Remark 3.8 We note that in Propositions 3.2, 3.4 and 3.6, the open sets over which the
projective bundles are defined are the largest open sets with the given properties.

Remark 3.9 The dimension of W; is 12 + i for i € {0, 1, 2, 3, 4}. The dimension of W, is
15 +i fori € {0, 1}. The dimension of W4 N W) is 14.

3.2 Brill-Noether lociin M

Recall that M — B denotes that Beauville—Mukai integrable system M (0, 3, —1) — |3 H]|.
Let C — B be the universal curve and let C° — B° be its restriction to the locus B° C B of
smooth curves in B = |3H|. Let M (0, 3, k — 9)° be the preimage of B° for the support map
M(0, 3,k —9) — B. Recall that we defined

BN/ (M) :={€eM|h’E) =i+1}C M.
Now we also define
BNi(B®) :={L € M(0,3,k—9)° | h°%(L) > i+ 1} € M(0,3,k —9)°
and
Zi3:=1{LeM(,3,-7)° | L= Oc(p1 + p2 + p3 — ps) for some C € B° and p; € C}.
We are interested in the following sets:
Z := BNY(B°) C M(0,3, -7),
Z4 := BNJ(B°) C M(0,3, —5),
Zi3:=Z7;CM©,3,-7),
Zg := BNJ(B°) C M.
We will treat Z», Z4, and Z; 3 as subschemes of M via the following isomorphisms:

M©0,3,-7) = M, Er E®O0s(1),
M(©,3,—5) — M, &> Ext'(E, Os(=1)).

We also obtain an isomorphism
M(0,3,-7) = M(0,3,-5), &> Ext'(E, O5(-2))
by composing the first morphism above with the inverse of the second.

Lemma3.10 We have Z» C BN2(M) and Za, Z13 C BNY(M). We have Z, C Zs C Z3
and Zy C Z13 C Zg.

Proof Tt suffices to prove the lemma over C € B°. Let £, € Pic2(C) be a line bundle on C
with HO(C, £3) # 0. We have an injective morphism

Oc(1) = Oc(l) ® La.

Then h°(C, Oc(1) @ L£2) > 3 because h2(C, Oc (1)) = h(S, Os(1)) = 3. Thus Zy C
BN2(M).
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Let £4 € Pic*(C) be a line bundle on C with H(C, L4) # 0. Let & C C be the zero
divisor of a section of £4. We have a short exact sequence

0— Os(=1) = Zg, (2) — EZ(Z) — 0.

Then h%(C, £} (2)) > h°(S, Z¢, (2)) > 2. Thus Z4 C BN'(M).
Let £13 = Oc(p1 + p2 + p3 — pa) € Pic’(C) for p; € C. Then by [15, Lemma IV.5.5],

RO(L13® Oc (1)) = h2(Oc(p1 + p2 + p3)) + h°(Oc (1) ® Oc(—pa)) — 1
>14+2-—-1=2.

Thus Z; 3 € BN'(M).

Next we compare the Z;’s. To show that Z, C Z4 we need to show that for £, as above,
no(c, Lg(l)) = h'(C, £2(2)) # 0. Note that x(£2(2)) = 5. We can argue as in the first
paragraph to show that h10(C, £2(2)) > h°(C, Oc(2)) = 6. Thus h'(C, £2(2)) # 0. To
show that Z4 C Zg we need to show that with £4 as above, h9(C, EZ (2)) > 1. This has been
proved above. Finally, it is clear that Zy C Z1 3 C Zg. m]

Proposition 3.11 (1) Z; is a P8-bundle over S). In particular, Z is smooth of dimension
12.

(2) Zy is generically isomorphic to a P°-bundle over S™.

(3) Z; 3 is generically isomorphic to a PO-bundle over SI'1 x SBI.

(4) Zg is generically isomorphic to a P>-bundle over S'8).

Proof First some preliminaries. Fori > 1let Z; € S x S lil be the universal subscheme and
let .#z; be the ideal sheaf of Z;. Let p; and p> be the projections from S x Sl to its two
components. We have an inclusion

P2(Iz, ® piOs(3)) = pru(Ogysin @ piOs(3)) = HO(S, O5(3)) ® Ogi.

This defines a subscheme X; C B x SU1, which can be thought of as Hilb! (C /B). We note
that &; is irreducible. Similarly, one can construct X1 3 C B x S x § 13 parametrizing triples
(C, p,&3)where C € B,pe C,and & C C.

We claim that X is a P3-bundle over S12I. We need to show that for any & € § 21,
hO(Ig2 (3)) = 9. We have a long exact sequence

0— H(T,(3)) - H(0s(3)) > H*(Og,) = H'(Z&,(3)) — 0.

Since h°(O5(3)) = 11 and hO(O&) = 2, it remains to show that the map r is surjective.
Recall that H%(Og(3)) has the pull-backs of cubics H(P?, Op2(3)) as a 10-dimensional
subspace, along with an extra dimension generated by the reduced ramification locus R. If
& = pUgq with m(p) # 7 (q), then r is surjective by considering the cubics. If &, = p LI g
with p # g but 7(p) = m(q), then r is surjective by considering any cubic not passing
through 7 (p) and the section corresponding to R. If &> is supported at a point p ¢ R, then
r is surjective by considering pull-backs of a cubic not through 7 (p) and a cubic through
7 (p) but not in the direction given by & on P%. If &, is supported at a point p € R, then &,
is surjective by considering the pull-backs of cubics as above and the section corresponding
to R.

For 3 < i < 8 the restriction map H%(05(3)) — HO(O&.) will be surjective only for
general & € Sl Thus Xy is generically a P®-bundle over S, X 3 is generically a P°-
bundle over S x S13), and Xy is generically a P>-bundle over S!®!. Note that we have the short
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exact sequence on § x X; (we have an embedding § x X; — § x B x Sli)
0 — p},0sxB(—C) = pi3Fz, — Qi — 0.

Since Q; is flat over &; and v(Q;|sx(x}) = (0,3, —i — 9) for x € A;, we obtain rational
maps

Jit X --» M(0,3,—i = 9),
& cCcC) — IE;/C~

We define F; : A; --» M (0, 3,i — 9) as the composition of f; with the dual (iso)morphism
RHom(—, Os(=3)[1]: M (0,3, —i —9) — M(0,3,i —9).

Now we can prove the four statements of the proposition. We prove (1), (2), and (4) by
showing that F; induces a birational map (even an isomorphism for F») between X; and Z;.
We do something similar to prove (3).

(1) We claim that F, maps X, isomorphically onto Z;. First note that Z¢, /c can be unstable
only when C is not integral. One easily sees that Zg, /¢ is always stable: when C is not
integral, as described in Sect.2.1, the support of & can lie on different components, but
none of the resulting sheaves T, ,c can be destabilized by subsheaves with Mukai vector
(0,1, —) or (0,2, —). To see that F> is injective, note that C can be recovered as the support
of Zg, /c. We can show that Ext! (Ze,jc» Os(—3)) has a section by applying the dual functor
RHom(—, Os(—3))[1] to

0— Os(=3) —> Zg, > I,y — 0,
giving
0 — Hom(Zg,c, Os(=3)) — Hom(Zg,, Os(=3)) — Hom(Os(=3), Os(=3)) —
Ext'(Tgy 0, O5(=3)) — Ext! (Te,, Os(=3)) — Ext'(O5(=3), Os(=3)) — ....

The first and sixth terms vanish, and the second and fifth terms can be computed by applying
the dual functor to

0—>I§Z—>OS_)O§2_>O'
This gives
0= O5(=3) = Os — &xt' (Tg, /¢, O5(=3)) = O, — 0,

and thus Exr! (Zg,/c» Os(—3)) has a section. Moreover, Corollary 4.11(1) (that we will prove
in the next section) shows that this section is unique, up to a scalar. This means that & can
be recovered from Z¢, ,c via the cokernel of Og — Ext! (Zey )05 Os(=3)).

To see that F> induces an injection on the tangent space, we refer the readers to the proof
of [18, Proposition 4.7]. Note that &> has an open dense subset X7 consisting of pairs (C, &)
where C is smooth. It is clear that [ (X}) = BNg(BO). Since F> is a closed morphism,
F>(X3) = Z,. In turn, Z; is a P8-bundle over ST
(2) Let &) be the open subset of Xy parametrizing pairs (C, &4) where H O(I&(l)) = 0.
By Sect.2.1, we see that fy is defined on &}). Let X° be the open subset of A} where
we also require that C is smooth. Then F4(X;°) C BNQ(BO). Since the closure of X;°
in Xy is X} itself, we have Fyq(X;) C Zy4. Recall that Z; C Z4 C M(0, 3, -5). We
claim that F4(Xy) N Z; = ¢. It is easier to prove the claim with f4. The image of Z; in
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M (0, 3, —13) (which is isomorphic to M (0, 3, —5) by RHom (—, Os(—3))[1]) is of the form
Os(—1) ® Ext!(Zg, )0, Os(—3)). Suppose that
f1((C, &1)) = Ty 0 = Os(—1) ® Ext! (Te, ¢, Os(—3))

for some (C, &) € &7 and & C C. Applying the dual functor RHom(—, Os(=3))[1] to
0 — Zg,yc = Oc — Og, — 0, we obtain

0 — Ext'(Oc, O5(=3)) — Ext' (Tgyyc, O5(=3)) — Ext*(Og,, Os(—3)) — 0.

Noting that ExtH(O¢, Os(=3)) = O¢, we obtain an injection Oc(—1) < Zg,/c, contra-
dicting our assumption that HO(I&(I)) = 0. Hence F4(Xy) C Z4\Z3. Itis easy to see now
that Fy(Xg°) = BNQ(BO)\Zz. The injectivity of Fy4|xp follows from Corollary 4.11(2) by
arguing as in part (1). Like before, F4 induces an injection on the tangent space. As a result,
Z4\Zs is generically a P°-bundle over 4!

(3) Noting the embedding § x A13 — S x B x § x SBI we have on S x X3 the short
exact sequence

0— pTzOSxB(_C) - pT4Zz3 — Q3 — 0,

where Q3 is flat and parametrizes Zg, /¢ over X 3 with v(Q3|gx(x)) = (0,3, —12) forx €
X 3. Let Xf’ 5 be the open subset of & 3 parametrizing triples (C, p, &3) where HO (Zg, (1) =
Oand p ¢ &3. For any (C, p, §3) € A7, there is a unique nontrivial extension of O, by
T, c. Let P denote the universal extension

0= Qslsxap, > P = (P30n)|sxap, = 0.
where A denotes the diagonal in § x S. Then P is flat over A} ; and gives a rational map
fi3: &3 --» M(0,3, —11).

By Sect.2.1, fj 3 is in fact a morphism. Let F 3 be the composition of f7 3 with the isomor-
phism

RHom(—, Og(=3))[1] : M(0, 3, —11) — M (0, 3, =7).

Let 73 be the open subset of X7 where we also require that C is smooth. We have
Fi g()(l 3) C Z1 3> and hence F g()(l 3) C Zy13.

Let £ = f1,3((C p, &3)) for some (C, p,&) € X1°3‘ Then we have a distinguished
triangle

Isy — L — RHom(Z,, Os(=3)[1] — Zg[1].
Applying the dual functor RHom(—, Os(—2))[1] we obtain the distinguished triangle
Z,(1) — Ext! (L, 05(=2)) — RHom(Zgy, Os(=2)[1] — Z,(D[1].

Since £ € M(0, 3, —11), we have Exr' (L, Og(=2)) € M. By the proof of Theorem 4.8 for
the seventh wall, Ext1 (L, Og(—2)) is in the exceptional locus in Xg for g7. In particular,

Ext' (L, Os(=2)) € M N X3 = M\ Zy.

Thus F1 3(X73) C Z1,3\Z4. In fact, it is easy to see that F 3(A73) = Z7 3\ Z4.
To see that Fj 3| X0y is injective, with £ as above we obtain a distinguished triangle

I, — Ext' (L, 05(=3)) — RHom(Zgy, Os(=3))[1] = Zp[1]
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Applying Corollary 4.11(3) to Ext' (L, Og(=3)), we recover p and &;. As before, Fi3
induces an injection on the tangent space. As a result, Z1 3\ Zy is generically a P®-bundle
over § x SBI.
(4) Let Xg be the open subset of Ay parametrizing pairs (C, &) where H O(I‘g8 2) =0
and HO(Igl(l)) = 0 for any closed subscheme & C &g of length 5 <[ < 8. By Sect.2.1,
we see that fg is defined on Xg. Let A¢° be the open subset of AXg' where we also require
that C is smooth. Then Fg(Xg°) C BNg(B"). Since the closure of A in Xy is XY itself,
F3(XQ) C Zs.

Suppose that (C, &) € Ag. Then Fg((C, &3)) = Extl(Igs/c, Os(—=3)) € M. By our
assumption on &g and the proof of Theorem 4.8 for the sixth wall, any nontrivial extension
F of the form

Os - F — RHom(Zg, Os(—3))[1]

is in the exceptional locus in X7 for g¢. Applying the dual functor RHom(—, Os(—3)), we
obtain

Os(=3) = Igg — RHom(F, Os(=3))[1].

It is easy to see that F is determined by a nonzero map from Og(—3) to Zg,, thus we have
RHom(F, Os(—3))[1] = Zgc for some &g C C and F = Sxtl(Igg/c, Og(—3)). Since
this is true for any such extension, we see that Fg((C, &g)) is in the exceptional locus in X7
for ge. In particular,

gxll(Igs/c, Os(=3)) e M N X7 = M\(Z4 U Z1 3).

Hence Fg(Xg) C Zg\(Z4 U Z1 3). In fact, it is easy to see that Fg(Xg°) = BNQ(B°)\(Z4 U
Z1,3). By Corollary 4.11(4), Fg is injective on an open dense subset of Xg. As before,
Fg| x¢ induces an injection on the tangent space. As a result, Zg\(Z4 U Z; 3) is generically

a P2-bundle over S8. ]

Remark 3.12 The dimension of Z; is 12, both Z4 and Z; 3 are 14-dimensional, and the
dimension of Zg is 18.

4 Wall-crossing for S!'% and M

By our assumption, NS(S) = Z[H]. For x € Rand y € R, we use oy, to denote oy g,y g
as defined in Sect. 2.3. By [8, Lemma 6.2], we obtain a set of (geometric) stability conditions
parametrized by an open half plane.

Lemma4.1 Forany x € Randy > 1, oy y is a stability condition on S.

Remark 4.2 The restriction y > 1 is sufficient but not necessary for o, , to be a stability
condition. A more precise requirement is that Z,y yy (E) ¢ R<g for any spherical sheaf
E ([8, Lemma 6.2]). If v(E) = (r,ci1,s), then Zyy yy(E) ¢ R<o amounts to y > 1/r
when x = ¢ /r. As aresult, we see that for 0 < y < 1, 09,y is not a stability condition by
considering the spherical object Og[1]; while for x ¢ Q, oy, is a stability condition for all
y > 0.

In general, walls in the plane are (nested) semicircles. For the Hilbert scheme SI"1 =
M(1,0,1—n) withn > 2, we consider the Mukai vector v = (1, 0, 1 —n). For any o of the
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form oy, generic with respect to v, M, (v) is a projective hyperkihler manifold of dimension

2n (see Theorem 2.6). We have the Mukai morphism 6y : vi S NS(M, (v)) = Z2. We
will omit the subscript from 6, when there is no confusion. Bayer and Macri [2, Section 5]
showed that to each wall one can associate a rank two hyperbolic sublattice of H;lg(S , 7))
containing v. The following numerical criterion will help us find and characterize the walls
for v.

Theorem 4.3 [2, Theorems 12.1, 12.3], [9, Remark 2.8] (1) Divisorial walls are walls whose
lattices contain some a € H:lg(S , 7.) such that

e a2 =—2and (v,a) =0, or
° az=0and(v,a)=lor2.

Together the linear subﬂces 0 (v+Nal) cut out the movable cone Mov(S™) in the rational
(closed) positive cone POS(S[n])Q.
(2) Flopping walls are walls whose lattices contain some a € Haﬁg(S, Z) such that

eal=—2andl <(v,a)<n-—1,or

e a>?=0and3 < (v,a)<n—1,or
e 2<a’<land2a’+1<(v,a)<n-—1L

To analyze the wall-crossing for S, we first compute its movable cone.
Lemma 4.4 [2, Proposition 13.1] Let H= 00, —1,0) and B =0(—1,0, =9). Then

|
Mov(SHoh = <H, H— gB>.

We note that the two boundaries of the movable cone correspond to the Hilbert-Chow
morphism of SU'%! and the Lagrangian fibration of M, respectively. Recall that Mov (S has
a finite locally polyhedral chamber decomposition whose chambers corresponds to birational
models of S1'%1. The walls in Mov(S'1%) are given by rays through H—T B, forcertainI" € Q
satisfying 0 < I' < % To any wall W in Stab(S) for v = (1,0, —9), one can associate
a 'y so that the wall-crossing in Stab™ (S) and Mov(S!190) can be identified ( [2, Example
13.5]). We now claim that for any wall in Mov(SU%) given by H — T'B, there is a wall in
Stab’ () for v associated with I", hence establishing a one-to-one correspondence between
walls in Stab® (S) for v and in Mov(S1%)). We believe that the above claim is known to be
true among experts (for similar results see [1, Theorem 10.6, 10.8]), but we could not find a
proof for our case in the literature.

Proposition 4.5 All minimal models of S!'O arise as moduli spaces of stable objects with
Mukai vector v = (1,0, =9), and their birational transformations are induced by crossing
walls for (1,0, —9) in Stab’(S).
The above statements remain true if we replace v with v/ = (0, 3, —1).

Proof We need to show that for every wall in Mov(St%)), givenby # —I'B with0 < T" < 1,
there is a wall in Stab' () for v. We will use stability conditions oy, . Each wall in Stab™ ()
depends only on a hyperbolic rank two lattice { generated by v and a, and it is given by
setting the two complex numbers (e’““m Y, v)and (e* +V=Ty , b) to be real multiples of each
other, for any b € H. Since b only needs to be perpendicular to H — I'B = (I', —1, 9T"), we
can choose b = (0, I', —2). This gives

@V vy = (32 — x>+ 9) + V=1 (—2xy),
(V71 b) = 2I'x +2) + vV/—1(2I'y),
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which are real multiples of each other if and only if (x, y) lies on the semicircle

1, 1 0
(x + F) +y = 2 .
This is the intersection of a wall for v in Stab’(S) with the (x, y)-plane. Note that if [ > %
then this set is empty as y must be positive, and thus the wall in Stab’ (S) does not intersect
the (x, y)-plane, whereas if ' < O everything arises from I' > 0 by taking duals, as in
Proposition 2.3. Thus by looking at the walls in Stab'(S) we again see that 0 < T’ < % (We
prefer to work with I' > 0 because stable objects are ‘more likely to be’ sheaves rather than
complexes, or equivalently, H — I' B corresponds to a divisor in the movable cone.)

Let € be a small positive irrational number. By Remark 4.2, 03¢ y is a path of stability
conditions for 0 < y < 400. Arguing as in the proof of [1, Theorem 10.8], we see that
there exists a continuous path / : (0, +00) — Mov(S [101y, starting in the chamber for M and
ending on the ray given by H, so that M, 34, (V) is isomorphic to the model corresponding
tol(y). Since S (101 has Picard rank two, [ goes through all the chambers in Mov (S (101y Hence
all models of S can be realized as M;_,. ., (v) for some y, and all walls in Mov (S [IOJ)
come from walls in the (x, y)-plane. “

For the last statement of the theorem, note that since @, preserves the Mukai pairing, the
action of @, : StabT($) — Stab(S) induces a bijection between the walls for v and those
for v/ = (0,3, —1). Then each wall in Stab (S) for v’ can be associated to a I". If a wall for
v/ in Stab(S) is associated to I', with 0 < I < %, then it intersects the (x, y)-plane along

the semicircle
41 2 I S
X+ - =—4+ —0—.
6) 7Y T 36 6(1—30)

The last statement now follows by considering the path of stability conditions o, ,, where
0 < y < +oo and € is a small positive irrational number, and arguing as in the previous
paragraph. O

Applying Theorem 4.3, we give the full list of walls for v = (1, 0, —9) in Table 1. For
these calculations, we can first use [9, Remark 2.8] to limit the values of aZ and (a,v)toa
finite set of possibilities. Finding possible vectors a now corresponds to solving certain Pell’s
equations, as in [9, Lemma 2.5]. In our case, we get finitely many solutions a for each pair
of potential values of a> and (a, v); algebraic software is helpful for this step,'. Finally, for
each a we determine I" by requiring that H—TB=(,—1,9T)is perpendicular to a; note
that I only depends on the lattice H generated by v and a, not on the specific choice of a
(see [2, Example 13.5]). We remark that the column named “Wall’ lists the intersection of
the wall corresponding to a with the (x, y)-plane. This convention will be use throughout
the rest of this paper.

1 We are grateful to Nicolas Addington for verifying our calculations using a package he has developed for
Macaulay?2, https://pages.uoregon.edu/adding/K3nCones.pdf. Specifically, this package computes walls of
the movable and nef cones of varieties of K 3["]—type, as described in [2, Theorem 12.1 and Theorem 12.3]
which is exactly what we are doing here.
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Table 1 Walls of Mov(S!10])

r a a2 (v,a) Wall Type

0 0,0, —1) 0 1 x=0 Divisorial
& 1,-1,2) -2 7 24 1lx4+y2=-9 Flop

i 1,-1,1) 0 8 2+ 10x +y2=-9 Flop

3 1,-1,0) 2 9 249 +y2=-9 Flop

i 0,1, -8) 2 8 x2+8x+y2=-9 Flop

2 0,1,-7) 2 7 2 4Tx+y2=-9 Flop

& (1,-2,4) 0 5 2+ Bryyr=—9 Flop

5 (—1,3,-10) -2 1 2+ Rryyr=—9 Flop

s (=1,4,—16) 0 7 K+ Brt+y?=-9 Flop

B (2.-5.13) -2 5 24 4y?=-9 Flop

i3 (=2,7,-25) -2 7 2+ Briyr=—9 Flop

% (-1,3,-9) 0 0 Lagrangian fibration

Remark 4.6 In a forthcoming paper [30] we will introduce the notion of ‘rank one’ walls,
which roughly means that in the decomposition v = a + b of the Mukai vector at least one of
a and b must have rank one. In Hellmann’s analysis of the rank two Beauville—Mukai system
[18], all of the walls are of rank one. For the rank three Beauville-Mukai system, notice from
the above table that starting from S 1O all of the walls with slope I' < % have rank one.
Similarly, we will see shortly that starting from M, all of the walls with slope I' > % have
rank one. The wall I" = 14—3 has rank one when viewed from both the S!'% and the M sides.

The advantage of having rank one walls is that it is much easier to describe the exceptional
loci. However, it is not the case that all walls for degree two K3 surfaces have rank one. Indeed,
the rank four Beauville-Mukai system M (0, 4, —1) will have walls of higher rank.

Remark 4.7 In the fifth and sixth rows of the table one might expect the vectors (1, —1, —1)
and (1, —1, —2), and indeed they would define these walls. However, these are actually
the b vectors, and we instead use the generatorsa = v —b = (0, 1, —8) and (0, 1, —7),
respectively, as they satisfy the constraints of Theorem 4.3.

By Proposition 4.5, there are 11 chambers in Mov(SH1?), corresponding to 11 different
birational models of 1%, The 0 < T' < % chamber corresponds to S itself while the
% <TI < % chamber corresponds to M. We denote the remaining birational models by X;,
1 <i <9, with X corresponding to the % <TI < % chamber.

We also note that for I > % the corresponding walls have radii < 1. We choose to study
them from the M side, where the corresponding walls will have radii > 1. The wall with
= % can be studied from either side. We opt to study it from the M side also. This strategy
has the following advantages:

e The bound y > 1 on both sides will make the analysis of the moduli spaces arising from
the wall-crossings easier.

e Whether we start from S!'% or from M, the exceptional loci for walls with radii larger
than 1 have increasing dimensions, making them easier to describe.
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We now state the main theorem:

Theorem 4.8 Let (S, H) be a general polarized K3 surface with Pic(S) = Z[H]and H* = 2.
There are eleven birational models of SU'0 or M := M(0, 3, —1), respectively. They are
connected by a chain

of flopping contractions

BIWOS[il Bl i X2 Bl X Bl X Bl)p, Xs
stior X1 ey - 8 axs - e xg S
Bl X7 Bl  Xs Bl Xo Bly, M
ol NANANAN,
6 g 7 2 8 g8 X )

for some subvarieties Wy C W) C --- C W4 C SOV gnd Wy € Wi < SU9 such that

o Wy is a P8-bundle over M(0, 1, —11);

e W\W;_1isa P8~ -bundle over an open subset ofS[i] xM@,1,i —11) fori =1,2,3;

e Wi\Wo U W3) is a P* bundle over an open subset in S % M(0, 1, =7), while Wo\Wa
is generically a P3-bundle over M1 (0, 2, —14);

o WiI\(Wo U Wy) is generically a P*-bundle over S x M(0,2, —13);

and closed subvarieties Zy C Z4 C Zg C M and Zy C Z13 C Zg C M such that

Zrisa P3-bundle over S121;

Z4 is generically isomorphic to a P°-bundle over S

Z1 3 is generically isomorphic to a P°-bundle over S x SI!
Zg is generically isomorphic to a P*-bundle over S'8.

Here s denotes the strict transform of the set e under suitable birational maps. The model
X is isomorphic to X via ®.

Remark 4.9 One technical difficulty is the potential existence of totally semistable walls.
Fortunately, in our case we can avoid totally semistable walls by choosing the path of wall-
crossing properly (as we will do in the next proof). This issue was addressed in [30, Section
5] in greater generality and we refer the reader there for proofs.

Remark 4.10 By [2, Theorem 5.7(b)], in our case a decomposition v = a; + ... + a, of
the Mukai vector leads to an actual flopping wall if for all i the vector a; is a positive class
(i.e., ai2 > 0 and (v, a;) > 0) or an effective spherical class (see [2, Proposition 5.5] and
the paragraph following it). Given such a decomposition of v, a description of the geometry
of the flopping contraction associated to the flopping wall is given in [2, Section 14], i.e.,
the exceptional locus is described precisely; we refer the reader there for some notation and
results which will be useful for our analysis of flopping walls.

Proof There are ten flopping walls in Table 1. We label them the i-th wall fori =0, 1,...,9
with increasing I" (for example, the wall with I' = % is the O-th wall).

We study the first six flopping walls from the S!'% side (see Fig. 1). Consider the path of
stability conditions o; := 0_3; for t € (1, +00). For 0 < i < 5 the path intersects the i-th
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8,,
— T =4/13
71 _ r—
I =2/7
6 & —TI'=1/4
I'=2/9
w2 =1
< | r=2u
I@ \

] [ \\

—10 9—8—7—6—5— —3—2—1 0
Tr-axis
Fig. 1 First six walls for v = (1,0, —9)

wall at r = t;, where t; = /15 —3i for 0 < i < 4 and 15 = /3/2. Next we describe the
wall-crossings along o;.
The 0-th wall corresponds to the decomposition

(1,0,-9) =(1,-1,2) + (0, 1, —11).

By Appendix 5.1, near t = 19, My, (0, 1, —11) = My(0, 1, —11) (note that we are applying
the resultof Appendix 5.1to M (0, 1, —11), whichisisomorphicto M (0, 1, —1) and birational
to S21). An ideal sheaf Zg is in the exceptional locus Eq of g in S (101 i and only if it fits
into the short exact sequence

0— Os(—l)—>I§ —>€0—>0,

where & € My (0, 1, —11). This is equivalent to £ € Wy. Thus gg is the flop of Wy in Sio,
Fori =1, 2, and 3, the i-th wall corresponds to the decomposition of Mukai vectors

1,0, -9 =(1,-1,2-i)+ (0,1, =11 +1).

By Appendices 5.1, 5.2, and 5.5, near t = ¢;, we have My, (1,—-1,2 —i) = Sl and
My, (0,1, =11 +1i) = My(0,1, —11 + 7). Hence an ideal sheaf Z¢ is in the exceptional
locus E; of g; in X; if and only if Z¢ ¢ W;_; and it fits into the short exact sequence

0—=Zn(—=1) - I - & — 0,

where §; € § [land & € My (0,1, =11 +41i). This is equlvalent toé € W,\W, 1. Moreover,
the exceptional locus of g; in X; is the strict transform of W;, which we denote by W;.
The study of the fourth wall is more complicated. The fourth wall corresponds to the
decompositions of Mukai vectors
(1,0,-9=(1,-1,-2) + (0,1, -7)
= (1,-2,5 40,2, - 14)
=(1,-2,5+ (0,1, -7+ (0,1, =7,
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where the last decomposition is a refinement of the previous two. By [2, Section 14], the
exceptional locus E4 of g4 in X4 has a stratification E4 = E i LI EZ LI ES into locally closed

subsets, where E i corresponds to the j-th line in the decomposition above and Ei is in the
closure of both E i and E‘%. Thus E4 has two irreducible components given by E i UE 2 and
Ei U Ei. By Appendices 5.1, 5.3, and 5.6, near t = 14, we have M, (1, —2,5) = {Os(—-2)},
My, (0,1, =7) = Mpy(0,1,-7), and M (0,2, —14) = My (0,2, —14). For t > 1,
Mo, (1, =1, =2) = My (1, =1, =2) =S¥, but M} (1, =1, =2) = SN\ (&4 | n0(Zg, (1)) =
1}. Hence an ideal sheaf Z is in Eﬁ if and only if & ¢ W3 and for ¢ near 4 with ¢ > t4 it has
a HN-filtration (for o;)

0——=05(-2) —>F ——>T;

™ o \L S N L A3 N l
N Ny N
AN N ~ . N
Os(=2) & &>
where &, Sé € My (0, 1, —7). By stability, F is a nontrivial extension of & by Og(—2), and

hence F = T, (—1) for some ¢4 € S This is equivalent to & € (Wq N Wp)\W3.
Now Zg € E i if and only if £ ¢ W3 and it fits into a short exact sequence

0—>Z,,(-1) > T > & — 0,

where 74 € M;;(l, —-1,-2) = S[4]\{g4 | hO(I&(l)) > 1} and Sg € My(0,1,—7). This is

equivalent to & € W4\(Wo U W3). o
Similarly, Z¢ € EA% if and only if £ ¢ W3 and it fits into a short exact sequence

0— O5(=2) > Iz > F — 0,

where 7 € MJ!(0,2, —14) = Mj;(0. 2, —14). This is equivalentto £ € Wo\Wj. Altogether,
we see that E4 is the strict transform of W4 U W).
The fifth wall corresponds to the decompositions of Mukai vectors

1,0,-9) =(1,-2,4)+ (0,2, -13)
=(,-2,+{,-2,4)+ (-1,4,-17).

By [2, Section 14], the exceptional locus Es in X5 for g5 has a stratification E5 = ES] 11 Eg

where E 5/ corresponds to the j-th line of the decomposition above. Note that Eg is closed in
Es. Near t = t5, My, (1, =2,4) = S by 7,,(=2) — p, and by Appendix 5.7, for t > t5 we
have My, (0,2, —13) = My(0, 2, —13) and

Mf,fs 0,2,-13) = My (0,2, —=13)\{Zy/0(=2) | Q € |2H|and g € Q}.

On the other hand, near t = 15, {Z,/0(—2) | Q € |2 H| and ¢ € Q} parametrizes precisely
the eL&:nsions of Og(—4)[1] by Z,(—2). Altogether, an ideal sheaf 7 is in E5 if and only if
& ¢ W4 UW) and it fits into a short exact sequence

0>Z,(-2)—> I > F -0,

where p € S and F' € My(0,2, —13). This is equivalent to £ € Wi \(Wp U Wa).

We analyze the remaining walls from the M side. Let v/ = (0, 3, —1) = ®,v. The next
table describes the remaining walls from the M side, with a8’ = ®,a. Note that all circles
have radii larger than 1 (Fig.2, Table 2).
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2.5 %
—1I' =14/43
5 —TI =10/31
r=28/25
— I'=6/19
@ 1.5 ¢
"
7
N
1 — \
0.5 1 / \
0 - - {
-2 —-05 0 1.5
XT-axX1S
Fig.2 Last four walls for v/ = (0, 3, —1)
Table 2 Walls for M with radii larger than 1
r a’ (@)? (v, a") Wall Type
2 2
& a0 -2 1 (r+8) +2=(22) Flop
2 2
5 (1,1 0 7 (x—l—%) +y2:(%) Flop
2 2
L A N 5 (r+8) +2=(22) Flop
2 2
n (1,1,2) -2 7 (x—l—é) +y2=(§) Flop
% 0,0,1) 0 0 Lagrangian fibration

We keep the labeling of the walls from the SU% side; thus the walls corresponding to
r = % and % will be called the ninth and eighth walls, respectively. Consider the path
o/ = o1, fort € (1,400). For 6 < i <9, this path crosses the i-th wall at ¢/, where 1/ is
the radius of the i-th wall. We now describe the wall-crossings along o;.

The ninth wall corresponds to the decomposition of Mukai vectors

0,3, -1)=(1,1,2) + (-1,2, =3).

By Appendix 5.1, near t = 1§, S”*! = M,/(—1,2,—3) by & — RHom(Z,, Os5)(—2)[1].
Hence £ is in the exceptional locus Eg of g9 in M if and only if it fits into the (non-split)
distinguished triangle

Os(1) = £ - RHom(Zg,, Os)(—2)[1].
Note that there exists a short exact sequence

0 — Ext!'(RHom(Zg,, O5(—2))[1], Os(1)) — Hom(Os(—2), Os(1))
— Ext*(Og,, Os(1)) — 0.

@ Springer



32 Page28o0f35 X.Qin, J. Sawon

So £ is in the exceptional locus if and only if it fits into the exact sequence
0— 05(=2) 2 05(1) > € — O, = 0

where s9 # 0 and &; is contained in the cubic {s9 = 0}. When s9 corresponds to a smooth
cubic C € |3H|, this means precisely that £(—1) € BNg(BO). Since both the exceptional
locus and Z, are closed and irreducible, they must be the same.

The eighth wall corresponds to the decomposition of Mukai vectors

0,3, -1)=(,2,1)+ (1,1, =2).

By Appendix 5.3, we see that there are two birational models for SI*. Let *S*! denote the
other model, which is obtained by flopping at the locus parametrizing length four subschemes
onaline. Then near 1 = 1§, M,/(1,2, 1) = 514, We note that all points in *S!#! corresponds
to sheaves and they are torsion free if and only if they are not in the exceptional locus of the
flop of SI4.

By [2, Section 14], the exceptional locus Eg of gg in Xo is irreducible and £ € Ey if and
only if it fits into a (non-split) distinguished triangle

I — & — Os(—DI[1],

where I € Mgé (1, 2, 1). In particular, there exists an open dense subset Eg C Eg consisting
of £ fitting into a short exact sequence

0— Os(—1) 2> T5,(2) > £ — 0,

where hO(I&(l)) = 0 and sg corresponds to a smooth curve in |3H]|. It is easy to see that
€ € Egifandonlyif & € BNS(BO)\ZZ. Thus the exceptional locus of gg in Xg is the strict
transform of Z4.

The seventh wall corresponds to the decomposition of Mukai vectors

0,3, -)=(,1,1)+ (1,2, =2).

By Appendix 5.2, near t = 15, S = M/ (1, 1, 1) by p = Z,(1) and SP) = M,/ (1,2, -2)
generically by &3 = RHom(Zg;, Os)(—2)[1] for &3 not on a line. The exceptional locus E7
of g7 in Xy is irreducible and £ € Ejy if and only if it fits into a (non-split) distinguished
triangle

I,(1) > & —J,
where p € Sand J € M(,7r (—1,2, —=2). In particular, there exists an open dense subset
E7 C E7 consisting of £ fitting into
RHom (T, Os)(=2) 2> T,(1) — €,

where h0(153(1)) = 0, p ¢ &, and s7 corresponds to a smooth cubic in |3H| (assuming
the first two conditions, s7 corresponds to a cubic containing £3 U {p}). It is easy to see that
& € Ej if and only if & € Z7 ;\Z4. Thus the exceptional locus of g7 in Xg is the strict
transform of Z; 3.

The sixth wall corresponds to the decompositions of Mukai vectors

©0,3,-1)=(1,0,1)+ (-1,3,-2)
=(1,0,1)+(1,0,1) + (-2, 3, =3).
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We note that for ¢’ near té, My, (—1,3,-2) is birational to S8, Arguing as we did for the
fifth wall, we see that £ is in the exceptional locus E¢ of g in X7 if and only if it fits into a
(non-split) distinguished triangle

O —> & —> K,

where K € M,,(—1,3, =2) fort’ > t; and ' close to ;. By Appendix 5.4, there exists an
open dense subset E¢ C Eg consisting of £ fitting into

RHom(Tgg, Os(—3)) = O — &,

where hO(Ig8 2)) =0, hO(Igl (1)) = 0 for any subscheme & C &g of length 5 <[ < 8 (these
two conditions hold if and only if &g is not in the exceptional loci of any of the first four
flopping walls for SI8)), and s¢ corresponds to a smooth cubic in [3H|. It is easy to see that
£ e Egifandonlyif £ € BNg\(Z4 U Zj3). Thus the exceptional locus of g¢ in X7 is the
strict transform of Zg.

Lastly, we show that ® induces an isomorphism X¢ — X¢. Note that the point (x, y) =
(=3, 6/5) is below the wall with I = 5 on the S!%) side and satisfies y > 1 (in particular,
it is above the wall with I' = &); thus X¢ = M,
isomorphism

3.6/ By Lemma 2.5, ® induces an

MO'(,316/5)(17 Oa _9) = MCD*((T(,&(,/S))(O’ 37 _1)

We note that ®,(—1,3,-9) = (0,0, 1) and o(_3,6/5)-stable objects with Mukai vector
(=1, 3, =9) are of the form RHom(Z,, Os(—3))[1] for p € §. It is easy to check that

®(RHom(Zp, Os(=3)[1]D = O,

and thus all skyscraper sheaves are @4 (0(—3,6/5))-stable and @, (03 6/5)) is geometric. Since
the action of CF‘;I:; (R) does not change objects in the moduli space, Mo, (056 /5) ©0,3,—-1) =
Ms, 0,3, —1) for some x” € R and y’ > 0. It is clear that o,/ ,» must lie in a chamber

between the walls corresponding to I' = % and ' = 1% on the M side. Moreover, one can
check that ng/_v, ©,3,-1) = X’6. To conclude, we have an isomorphism

P
X6 = MU(*3,6/5)(1’ 03 _9) g M‘:D*((T(,3.6/5))(07 37 _1) = M(r,\‘/.y/ (Oa 3» _l) = Xé)
induced by ®. O

Corollary 4.11 Fori =2,4,and 8, let & € My (0,3,i —9).

(1) Ifh%(&) # 0, then h°(&) = 1.

(2) IfhO(&s) # 0 and hO(Ext' (&4, O5(=2))) = 0, then hO(&y) = 1.

3) Ifh%(&) = 0, h0(Ext! (&, O5(=2))) = 0, and & € Z13, then there exist a unique
p € Supp(&2) such that Hom(Z,, &) # 0. In fact, hom(Z,, &) = 1.

@) Ifh° (&) # 0, hO(Ext! (&g, Os(—1))) = 0, and Eg(—1) ¢ Z13, then h°(Eg) < 2.

Proof By looking at the possible decompositions of the Mukai vectors into effective classes
at the walls (see [2, Proposition 5.5]), one can obtain Brill-Noether type bounds (for example,
see [3, Section 3.2]).

(1) Suppose h9(&) # 0. Then & (1) € M is in the exceptional locus for the ninth wall. By
the decomposition corresponding to the wall, h1°(&) = 1.
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(2) Suppose h%(&4) # 0 and h0(Ext' (&4, Os(=2))) = 0. We have
Hom(&xt' (€4, Os(—1)), Os(=D[1]) # 0

by the local-to-global Ext spectral sequence [20, Equation (3.16)]. Thus Extl (&, Og(=1)) €
M is in the exceptional locus of gg in X9. By the decomposition corresponding to the
eighth wall, h0(&4) = 1.

(3) If h%(&) = 0, KO(Ext! (&2, Os(=2))) = 0, and & € Zj 3, then &(1) € M is in the
exceptional locus of g7 in Xg. Our claim now follows from the decomposition corre-
sponding to the seventh wall.

(4) If hO(&) # 0, hO(Ext! (&, Os(—1))) = 0, and Eg(—1) ¢ Z;3, then &g € M is in the
exceptional locus of gg in X7. By the decompositions of the Mukai vector corresponding
to the sixth wall, h°(&g) < 2.

O
Corollary 4.12 Let Xy, X7, Xy 3, X[ 5, X8, and Xg be as defined in Proposition 3.11. Then

(1) X2 is a PO-bundle over the open subset Us := {&4 | h°(Zg, (1)) = 0} in S1,

2) XﬂS is a P®-bundle over the open subset U3 :={(p, &) | hO(Ig3(1)) =0and p ¢ &}
in§ x SBI,

(3) Xy contains an open subset which is isomorphic to a P2-bundle over the open subset

h0(Zegg (2)) = 0, h'(Zg(3)) = 0, and }

Us = {58 hO(Zz, (1)) = 0 for any & C &g of length'5 <1 < 8

in S8,
As a result, Z; contains an open subscheme which is a PO~ -bundle over an open subset of
SUl for i = 4 and 8, and Z 3 contains an open subscheme which is a P®-bundle over an
open subset of S x SBI.
Proof Recall that we have embeddings X; < B x Sl and Xi3—= BxSx NE

(1) By definition X} = p{l (Uy). Tt suffices to show that hO(Ig4 (3)) = 7 for any &4 € Uy.
By the analysis of the eighth wall, we see that Og(—1)[1] and Z¢, (2) are aé—stable with
the same phase. Thus

h0(Z, (3)) = dim Bxt' (05 (= D[1], Z, (2)) = (v(Os(=DI1]), ¥(Zg, (2))) = 7.

(2) Note that Xﬁ3 = p2_31 (U1 3). It suffices to show that hO(I§3u{p} (3)) = 7forany (p, &) €
U1 ,3. By the analysis of the seventh wall, we see that 7,(1) and RHom (Zg,, Os(—2))[1]
are o;-stable with the same phase. Thus

dim Ext' (RHom(Zg,, Os(=2)[11, Z,(1)) = (V(RHom(Zz;, Os(=2)[1]), V(Z,(1))) = 7.
On the other hand, we have the short exact sequence
0— Extl(RHom(Ig3, Os(=2)[11,Z,(1)) = Hom(Os(—=2), Z,(1))
— Ext?(Og;, Z,(1)) — 0.

Noting Ext2((9§3, Z,(1)) = Hom(Z,(1), Og)*, we see that Extl(RH0m(153, Os(=2))
[1],Z,(1)) is the subspace of cubics containing both p and &3, hence it has dimension
h (Zeyu(p) 3.
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(3) Note that p; ! (Ug) is an open subset of Xg. It suffices to show that ho (Zg(3)) = 3 forany
&g € Ug. By the analysis of the sixth wall, we see that Og and RHom (Zg;, Os(—3))[1]
are Ué—stable with the same phase (we note that the new condition h! (Zg(3)) = 0is to
guarantee that RHom (Zg;, Os(—3))[1] is o-stable, instead of just o -semistable). Thus

dimExtl(RHom(Igg, Og(—=3)[1], Og) = (V(RHom(Igs, Os(=3)[1)]), V(Os)) =3.
On the other hand, we have the short exact sequence

0 — Ext!(RHom(Zg,, O5(=3))[1], Os) — Hom(O5(—3), Os5) — Ext?(Og, Os)

— 0.

Noting that Ext?(Og,, Os) =Hom(Os, Og)*, we see that Ext! (RHom (Zg,, Os(=3)[1],
Og) is the subspace of cubics containing &g, hence it has dimension hO(Ig8 3)).

[m}

Acknowledgements The authors would like to thank Nicolas Addington for verifying our wall calculations
using Macaulay2, Emanuele Macri for helpful discussions, and an anonymous referee for many helpful cor-
rections and suggestions. The second author gratefully acknowledges support from the Max Planck Institute
for Mathematics in Bonn and from the NSF, Grants DMS-1555206 and DMS-2152130.

5 Appendix

Here we collect some results about wall-crossings for the moduli spaces which have appeared
in previous sections.

5.1 Walls for 12!

We have v = (1,0, —1).

Lemma 5.1 [2, Proposition 13.1] Let H= 60, —1,0)and B =0(—1,0, —1). Then
Mov(s?hy = (H, H — B).

The full list of walls is given in Table 3.
The only other nontrivial birational model for S/ is M(0, 1, —1), obtained by performing
a flop of S along the locus parametrizing £ € S through which there passes a pencil of

2
lines. From the M (0, 1, —1) side, the flopping wall is given by (x + %)2 +y2 = (?) .

Table 3 Walls of Mov(S[2])

r a a2 (v, a) Wall Type
0 0,0,—1) 0 1 x=0 Divisorial
2 2
2 -1,1,-2) =2 1 (x+3) +?=(%) Flop
1 (-1,1,-1) 0 0 Lagrangian fibration
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Table4 Walls of Mov(S[3])

r a a (v, a) Wall Type
0 0,0,—1) 0 1 x=0 Divisorial
2

1 1,-1,2) -2 0 x+22+y2= (ﬁ) Divisorial

Table 5 Walls of Mov(S!4])

r a a2 (v,a) Wall Type

0 0,0,-1) 0 1 x=0 Divisorial
2 2

2 (1,-1,2) —2 1 (x+3) +»2= (D) Flop

1 a,-1,1) 0 2 x+2)2+y2=1 Divisorial

5.2 Walls for S'31

We have v = (1,0, —2)
Lemma 5.2 [2, Proposition 13.1] Let H=0(00,—1,0)and B =0(—1,0, —2). Then
(3] 7 1
Mov(S§©) = H’H_EB .
To understand the wall and chamber structure in Mov(S3), we apply [2, Theorem 5.7]. The
full list of walls is given in Table 4.

As aresult, SP has no other nontrivial birational models. Moreover, there are no other walls
with radii larger than 1.

5.3 Walls for S[4]

We have v = (1, 0, —3).
Lemma 5.3 [2, Proposition 13.1] Let H= 00, —1,0) and B =0(—1,0, =3). Then
S |
Mov(sH) = <H, H-— EB>.
The full list of walls is given in Table 5.
As a result, there are two birational models of S™!. If we use “S™ to denote the model

not isomorphic to S, then #5™! is obtained by performing a flop of S along the locus

{641 h0(Zg, (1)) # 0).

5.4 Walls for S8

Weletv = (1,0, =7).
Lemma 5.4 [2, Proposition 13.1] Let H= 60, —1,0)and B =0(—1,0, =7). Then

(8] o3
Mov(s'™) = (A, A - 2B).
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Table 6 Walls of Mov(S!8])

r a a (v,a) Wall Type
0 (0.0, 1) 0 1 =0 Divisorial
2 (1,-1,2) -2 5 (x+%)2+y2= (@)2 Flop
i a1,-1,1 0 6 x+4r4+y2=32 Flop
2 ©,1,-7) 2 7 (x+ %)2 +y? = (@)2 Flop
! 0,1, —6) 2 6 G +32+y2 = (ﬁ)2 Flop
5 (~1,3,-10) 2 3 (x+%)2+y2= (@)2 Flop
4 (1,-2,4) 0 3 (x+ BT‘)z +y2 = (%)2 Flop
1o 2.-5,13) 2 1 (x+ %—7)2 +y2 = (@09)2 Flop
3 (~1,3,-9) 0 2 (x+ _%)2 +y2 = (%)2 Divisorial

The full list of walls is given in Table 6.
As a result, there are eight birational models of S (81,

5.5 Walls forv = (0, 1, 0)

By [2, Theorem 5.7], there is no wall for (0, 1, 0) whose radius is larger than 1.

5.6 Walls forv = (0, 2, —2)

By [29, Theorem 5.3], the only wall for (0, 2, —2) whose radius is larger than 1 is a flopping
wall given by

5.7 Walls forv = (0, 2, —1)

These are computed in [18, Section 5]. There are two walls with radii larger than 1, given by
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