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Nonlinear multistate tunneling dynamics in a spinor Bose-Einstein condensate
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We present an experimental realization of dynamic self-trapping and nonexponential tunneling in a multistate
system consisting of ultracold sodium spinor gases confined in moving optical lattices. Taking advantage of the
fact that the tunneling process between different momentum states in the sodium spinor system is resolvable
over a broader dynamic energy scale than previously observed in rubidium scalar gases, we demonstrate that
the tunneling dynamics in the multistate system strongly depends on an interaction induced nonlinearity and is
influenced by the spin degree of freedom under certain conditions. We develop a rigorous multistate tunneling
model to describe the observed dynamics. Combined with our recent observation of spatially manipulated spin
dynamics, these results open up prospects for alternative multistate ramps and state transfer protocols.
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I. INTRODUCTION

The phenomenon of tunneling has been widely studied in
a range of physical systems including Josephson junctions
[1,2], superfluid annular rings [3–5], waveguides [6], and
Bose-Einstein condensates (BECs) [7–14]. In each of these
examples, the tunneling description was reduced, after appro-
priate approximations, to a nonlinear two-state model wherein
a control parameter is ramped linearly at a rate α across a tran-
sition region where the two asymptotically uncoupled states
are coupled. In the absence of interactions, i.e., in a linear
two-state model, the diabatic transition between the states can
be described by the linear Landau-Zener (LZ) equation, which
provides the exponential probability of tunneling between two
neighboring energy levels [15,16]. Interactions between the
constituents of the system introduce a non-negligible non-
linearity γ that modifies the celebrated linear LZ formula
[6,7,10,17–19]. Specifically, the tunneling behavior separates
into three regions: (i) When γ → 0, the dynamics are well
described by the linear LZ model; (ii) when γ < 1 and finite,
the tunneling probability is (as for γ = 0) exponential but
dependent on the nonlinearity; and (iii) when γ > 1, non-
exponential tunneling is observed, which is associated with
dynamic self-trapping and swallowtails [8,12,20].

Nonlinear multistate tunneling has been primarily stud-
ied theoretically [21–24]. This paper reports an experimental
observation of nonexponential tunneling and dynamic self-
trapping in a multistate system realized by sodium spinor
BECs with multiple spin components in one-dimensional
(1D) moving lattices. We demonstrate that the tunneling
process in sodium spinor BECs strongly depends on the non-
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linearity induced by binary atomic interactions and find the
process is resolvable over a broader dynamic energy scale
than in prior experiments with rubidium scalar BECs [8].
Another interesting observation is that the tunneling process
in spinor gases is not always intertwined with the dynamics of
the spin degree of freedom, being spin independent for a range
of conditions. This is despite the fact that appreciable spin
dynamics appears simultaneously throughout the tunneling
process. These observations are well described by mean-
field Gross-Pitaevskii (GP) simulations. Our work establishes
spinor BECs as a platform to simulate nonlinear multistate
tunneling dynamics by exploiting the available control of spin
and spatial degrees of freedom. This also opens a path towards
studying tunneling in the context of multistate ramps or the
dependence on initial coherences, as well as investigating
related dynamical phase transitions such as macroscopic self-
trapping in nonlinear mean-field models [25–27].

We develop a six-state c-number tunneling model to
provide a conceptual framework for the tunneling physics
including the spin degree of freedom. The six discrete states of
our F = 1 spinor BECs are illustrated in Fig. 1, wherein each
spin component exhibits tunneling between p = 0 and p =
2h̄kL momentum states coupled by the moving lattice of depth
uL and speed v changed at a ramp rate α while the three spin
components are simultaneously coupled by spin-dependent
interaction c2. Here kL is the lattice wave vector and h̄ is
the reduced Planck constant. Spin-conserving interactions c0

and spin-changing interactions c2 both contribute to nonlinear
effects in the tunneling, with the contribution of the former
being, for some atomic species such as sodium and rubidium,
notably larger than the latter. The spin degree of freedom,
characterized by c2, can be thought of as introducing a distinct
second dimension that leads to an enlargement of the Hilbert
space from two dimensions in a spinless system (see the two
states encircled by the dashed box in Fig. 1) to (2F + 1) × 2
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FIG. 1. Schematic representation of 3 × 2 state tunneling model
for F = 1 spinor gases. Circles represent atoms with momentum p
in the |F = 1,m〉 states. States with different p but the same m are
coupled by a moving lattice, while states with different m are coupled
by spin-changing interactions c2.

dimensions in a spin-F spinor system. Our six-state c-number
model shows that the tunneling process in spinor BECs is fun-
damentally different from the tunneling of single-component
BECs even in the approximate scenario where corrections due
to spin-dependent interactions are neglected. This six-state
model can be reduced in some specific circumstances to an
effective two-state c-number model.

The remainder of this paper is structured as follows.
Section II introduces the experimental platform and obser-
vations along with comparisons to standard mean-field GP
simulations. Section III introduces the theoretical description
of tunneling in a multistate system incorporating spatial and
spin degrees of freedom, which is used to conceptually in-
terpret our experimental observations. Section IV discusses
applications of the multistate tunneling dynamics, for exam-
ple, on the control and coupling of spin and spatial degrees of
freedom.

II. EXPERIMENTAL RESULTS

We construct a 1D moving optical lattice with two nearly
orthogonal beams of time-dependent absolute frequency dif-
ference � f (t ) and lattice spacing λL = 0.81 µm. The lattice
has a speed v(t ) = λL� f (t ), a depth uL(t ), and a potential
Vlat (r, t ) = uL(t ) cos2[kL · r − 2πt� f (t )/4]. In this work, the
recoil energy ER = h × 3.3 kHz is much larger than the en-
ergy scales of our optical dipole trap (ODT), the mean-field
interactions, and the quadratic Zeeman shift q = h × 42 Hz
(see Table I in Appendix C). Here h is Planck’s constant.

Similar to our previous work [28–33], the experimental
sequences begin with an F = 1 spinor BEC of up to N =
1.0 × 105 sodium atoms in an ODT with angular frequencies
ωx,y,z = 2π × (120, 120, 160) Hz. We apply resonant radio-
frequency pulses to prepare an initial state with fractional
population ρ0 ≈ 0.5 in the |F = 1,m = 0〉 state and ρ±1 ≈
0.25 in the |F = 1,m = ±1〉 states. In this work we assume
the initial state is a spin coherent state [34] with average
fractional particle numbers of ρ−1, ρ0, and ρ1 for the three
corresponding m states. The relative phase between the com-
ponents is assumed to be zero. We then adiabatically load
atoms into the lattice via a sequence shown in Fig. 2(a). For

FIG. 2. (a) Solid (dashed) lines show the experimental ramp se-
quence for the lattice depth uL (t ) [the lattice speed v(t )]. The lattice
reaches its maximal depth uFL at t1 while reaching its maximum speed
v0 = λL� f F at t2. (b) Closed (open) markers show experimental Jm
versus the normalized ramp time tτ for the |F = 1,m = 0〉 (|F =
1,m = ±1〉) states at three different uFL and nonlinearities γ with
α = 4.5ER ms−1 and tF = t2: uFL = 0.3ER corresponds to γ = 1.4
with t∗τ = 0.2 [red (light gray)], uFL = 1.2ER corresponds to γ = 0.4
with t∗τ = 0.1 [blue (dark gray)], and uFL = 2.3ER corresponds to γ =
0.2 with t∗τ = 0.3 (black). Here t∗τ is extracted via the intersection of
a piecewise linear fit, which finds the maximum of a × tτ + b and
d via the function Jm(tτ ) = max(a × tτ + b, d ) with a, b, and d as
fitting parameters, to the experimental data from the beginning of
the transition region to tτ = 1.0, as exemplified by the dash-dotted
line for the data at m = 0 and γ = 1.4. Solid (dashed) lines show
spinor GP results for the m = 0 (m = ±1) components. (c) Dotted
(dashed) lines show J0 derived from the six-state c-number model
with c2 = 0 (c2 = 0.036c0 for our sodium system [28]). These two
lines are indistinguishable on the scale shown. Solid lines replot the
m = 0 spinor GP results from (b).

t � t1, the depth uL is increased linearly from 0 to uFL while
� f remains at 0 (i.e., lattices are stationary). For t1 � t � t2,
while keeping uL(t ) at uFL , we set the tunneling control pa-
rameter δ(t ) = −4ER + α(t − t1) by linearly ramping � f at
a rate α = h[� f (t2 )−� f (t1 )]

t2−t1
such that � f reaches its final value

� f F at t = t2. Here 4ER is the kinetic energy difference of the
p = 0 and p = 2h̄kL momentum states.

In the absence of interactions, a fully adiabatic ramp of � f
from 0 to 8ER/h transfers atoms in the initial p = 0 state to
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the final p = 2h̄kL state. The effective coupling between these
two momentum states is maximal halfway through the ramp
where � f = 4ER/h and δ = 0. At t = tF , we abruptly switch
off the lattice and ODT and let atoms ballistically expand for
a certain time of flight (TOF) before monitoring them via two-
step microwave imaging [28,31].

To study tunneling dynamics in the multistate system
possessing spin and spatial degrees of freedom, we experi-
mentally monitor the spin-resolved polarizations

Jm = Nm,p=0 − Nm,p�=0

Nm,p=0 + Nm,p�=0
. (1)

Here Nm,p=0 (Nm,p�=0) denotes the number of atoms with zero
(nonzero) momentum in the |F = 1,m〉 state. Our data indi-
cate that the measured Nm,p�=0 are dominated by the p = 2h̄kL
contribution.

Figure 2(b) shows measured polarizations Jm of |F =
1,m〉 spin components versus the normalized ramp time tτ =
α(t2−t1 )

4ER
− 1 for a constant rate α = 4.5ER ms−1 at various

experimental conditions. The experimental data at each con-
dition demonstrate that Jm are very close to 1 for negative tτ ,
change rapidly in a narrow transition region around tτ = 0
(where the p = 0 and p = 2h̄kL states are coupled maxi-
mally), and become approximately constant for positive tτ .
We therefore can extract a critical normalized ramp time t∗τ ,
via the intersection of a piecewise linear function as illustrated
by the dash-dotted line in Fig. 2(b), which demarcates the
end of the transition region from the final equilibration region
in which momentum state populations plateau. Interestingly,
our experimental data indicate that the observed transition
regions at various experimental conditions are narrower (i.e.,
have smaller t∗τ ) than those observed previously in a rubidium
system [8]. This is ascribed to the energy scales intrinsic to
the system, i.e., the larger recoil energy (see Appendix C).
Typical experimental examples are shown in Fig. 2(b) for
three different dimensionless spin-independent nonlinearities
γ = 2c0/uL [8,17]. This definition of γ ignores spin-
dependent corrections as c2 = 0.036c0 � c0 in our sodium
system [28] and enables direct comparisons with the nonlin-
ear two-state model and prior experiments on scalar BECs
[8]. The dependence of the tunneling process on γ is rather
pronounced. For example, at γ = 0.2 the lattice coupling
dominates and the tunneling is spin independent, result-
ing in the majority of the population residing in the p = 0
(p = 2h̄kL) state or Jm = 1 (Jm = −1) at tτ = −1 (tτ � t∗τ ).
However, for γ = 0.4 and 1.4 the nonlinearity has a non-
negligible effect with a significant fraction of atoms remaining
in the p = 0 state at the end of the ramp, i.e., the observed
Jm at tτ � t∗τ plateau at a value larger than −1. Such residual
p = 0 populations are consistent with nonvanishing tunneling
between the asymptotically decoupled eigenstates and, for
γ = 1.4, self-trapping due to the presence of swallowtails in
the adiabatic or instantaneous energy spectrum might be at
play [8,17,35]. Typically, for tτ < t∗τ differences between J0

and J±1 are small. However, for tτ > t∗τ we observe statis-
tically significant spin-dependent behavior, e.g., differences
between J0 and J±1 curves in Fig. 2(b) for γ = 0.4. We also
conduct parameter-free numerical simulations with the time-
dependent mean-field spinor GP equation using a reduced

2D geometry (see Appendix A) and find theory-experiment
agreement [see Fig. 2(b)], indicating the spinor dynamics is,
as expected, in the mean-field regime with negligible quantum
and thermal effects.

We repeat the experiments for various ramp rates α and
plot the measured spin-resolved tunneling rates

ln(Rm) = ln

(
Nm,p=0

Nm,p=0 + Nm,p�=0

)
(2)

as a function of the dimensionless inverse ramp rate x =
(πuFL )2/4αh for two values of γ in Fig. 3. The variable x is
chosen since ln[Rm(t )] depends linearly on x in the linear LZ
two-state model [6–8]. In Fig. 3(a), γ = 0.4 and the tunneling
rate is extracted at tτ = 1.3 � t∗τ . The experimental tunneling
rates agree with a linear fit [dashed lines in Fig. 3(a)] for
x � 1.4, indicating exponential tunneling in this region. The
experimental results for the |F = 1,m = 0〉 component are
also nicely reproduced by spinor GP simulations (solid lines
in Fig. 3), which include the density-dependent and spin-
dependent interaction coefficients. Interestingly, a splitting
occurs in the tunneling rates between the |F = 1,m = 0〉 and
|F = 1,m = ±1〉 spin components at x > 1. A qualitatively
similar but notably smaller splitting is also predicted by the
GP simulations. Discrepancies with the experimental observa-
tions for the |F = 1,m = ±1〉 component could be attributed
to limitations of our theoretical model, such as the fact that our
reduced 2D simulation geometry compromises the accuracy to
which the full 3D experimental system is captured. In contrast,
the data in Fig. 3(c), taken at a large nonlinearity (γ = 1.5)
and tτ ≈ t∗τ , clearly show evidence of interaction-induced
nonexponential behavior in the tunneling process [8]. This
nonexponential behavior is also not attributable to resonance-
enhanced tunneling as demonstrated in similar lattice systems
[36]. Another key finding from Fig. 3(c) is that the observed
tunneling process is spin independent. This result, when com-
bined with the spin-dependent behavior observed in Fig. 3(a),
indicates a spin-dependent multistate tunneling process that
collapses into a spin-independent process under certain con-
ditions, such as tτ < t∗τ or large α such as (πuFL )2/4αh < 1 for
γ = 0.4 in Fig. 3(a) and γ = 1.5 in Fig. 3(c). General condi-
tions for spin-dependent tunneling related to the timescales of
the system are elucidated further in Sec. III.

Figure 4 displays the time evolution of ρ0,0, the fractional
population of atoms with zero momentum in the |F = 1,m =
0〉 state, demonstrating that appreciable spin dynamics occur
alongside the tunneling process for three different ramp se-
quences with similar nonlinearities (γ > 1): Black diamonds
(blue circles) represent spin oscillations extracted from exper-
imental data shown in Fig. 2(b) [Fig. 3(c)], while red triangles
represent observations after an infinitely fast ramp, i.e., a
quench with the ramp rate of α = ∞. The apparent agreement
in spin dynamics between the three curves in Fig. 4 is strik-
ingly at odds with the observation of spin-dependent tunneling
dynamics only at large moving lattice speeds and small α in
Figs. 2(b) and 3(a). To reconcile these seemingly contradic-
tory observations, Sec. III introduces a six-state model that
provides a rigorous framework for interpreting the experimen-
tal results.
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FIG. 3. (a) Red (light gray) [blue (dark gray)] color marks spin-resolved tunneling rates ln(Rm ) for the |F = 1,m = 0〉 (|F = 1,m =
±1〉) states versus the normalized inverse ramp rate x = (πuFL )2/4αh for tF = t2 at uFL = 1.2ER corresponding to γ = 0.4 after sequences
of variable ramp rates 6.1ER ms−1 � α � 30.3ER ms−1 (scanned by setting � f F = 9.3ER/h) terminating at tτ � t∗τ . Markers represent the
experimental ln(Rm ), which are fit by linear functions (see the dashed lines). Solid lines show 2D spinor GP simulation results. (b) Solid (dotted)
lines represent spinor GP (six-state model) results for the experimental conditions shown in (a). (c) Similar to (a), except with uFL = 0.3ER

corresponding to γ = 1.5 after sequences of variable rates 1.2ER ms−1 � α � 30.3ER ms−1 (scanned by setting � f F = 4.6ER/h) terminating
at tτ = 0.2 [which is approximately equal to t∗τ for the ramp shown in Fig. 2(b) for a similar value of γ ; see also Appendix D]. (d) Solid (dotted)
lines represent spinor GP (six-state model) results for the experimental conditions shown in (c).

III. SIX-STATE c-NUMBER MODEL

As shown in Sec. II, the experimental results are overall
well captured by the mean-field spinor GP equation, which
accounts for both density-dependent and spin-dependent
interactions. Within this mean-field description (see
Appendix A for details), the dynamics are governed by
2F + 1 mean-field spinor components ψm(r, t ) that depend
on the spatial coordinate r and time t . These spin components
are normalized such that

∑
m=0,±1

∫ |ψm(r, t )|2dr = 1. This
section starts with the spinor GP equation and derives from it
a six-state c-number model for t > t1, providing a theoretical

FIG. 4. Experimental time evolution of the fractional spin pop-
ulation ρ0,0 at uFL = 0.3ER for three different ramp sequences with
similar nonlinearities: a sequence with a fixed finite α and t2 = tF
[black, extracted from red (light gray) curves in Fig. 2(b)], a sequence
with varying α such that � f F = 4.6ER/h at t2 = tF [blue (dark gray),
extracted from experimental data shown in Fig. 3(c)], and a quench
sequence with α = ∞ [red (light gray), � f F = 4.6ER/h]. The solid
line is a sine fit to the red (light gray) data for guiding the eye.

framework to interpret the observed tunneling dynamics and
to reconcile the observations of Figs. 2–4.

We start our derivation by introducing an ansatz for the spa-
tially and time-dependent mean-field wave function of each
spinor component,

ψm(r, t ) = φm,0(r, t ) + φm,2(r, t )e2ıkL ·r. (3)

This ansatz generalizes earlier work for the single-component
BECs [8,37]. Since the experiment populates predominantly
two distinct momentum states p = 0 and p = 2h̄kL, the ansatz
accounts only for these momentum components. Consistent
with the fact that the momentum width of the initial BEC is
small compared to h̄kL, we assume∫

[φm,0(r, t )]∗φm,2(r, t )e2ıkL ·rdr = 0. (4)

Inserting Eq. (3) into the spinor GP equation (see
Appendix A), with the assumption that φm,k (r, t ) with k = 0
and 2 follow a Thomas-Fermi profile and the ODT can be
neglected during the ramp protocol, the spatial dependence
can be integrated out to obtain an effective time-dependent
Schrödinger equation

ı h̄∂td(t ) = H (6)d(t ), (5)

where ∂t denotes the derivative with respect to time. In
Eq. (5), d(t ) = (d−1,0, d−1,2, d0,0, d0,2, d+1,0, d+1,2)T is the
state vector that collects the c-numbers dm,k (t ), which cor-
respond to the m = 0,±1 Zeeman and k = 0, 2 momentum
components, respectively. We employ the state normalization∑

m,k |dm,k (t )|2 = 1. Since the experiment predominantly oc-
cupies the p = 0 and 2h̄kL components, the experimentally
measured atom numbers Nm,p�=0 can be compared directly
with the six-state model populations N |dm,2|2.

The six-state c-number Hamiltonian H (6) can be divided
into two pieces H (6) = H (6,D) + H (6,S). The Hamiltonian
H (6,D) accounts for the optical lattice, the density-dependent
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(and spin-independent) interactions, and the quadratic Zee-
man energy q. The Hamiltonian H (6,S) accounts for the
spin-dependent interactions. The energy scale of H (6,S) is set
by the spin-dependent interaction coefficient c2 = g2nmean,
where g2 denotes the spin-dependent interaction coefficient
(see Appendix A) and the mean density is defined as

nmean = N
∫ ⎛

⎝ ∑
m=0,±1

|ψm(r)|2
⎞
⎠

2

dr. (6)

The Hamiltonian H (6,D)(t ) has the block-diagonal structure

H (6,D)(t ) =

⎛
⎜⎝H (2)

−1 (t ) 0 0
0 H (2)

0 (t ) 0
0 0 H (2)

+1 (t )

⎞
⎟⎠, (7)

where the 2 × 2 blocks H (2)
m (t ) on the diagonal are given by

H (2)
m (t ) = 1

2

(
δ(t ) + 2|m|q uFL

2 + 2A(d, t )
uFL
2 + 2A∗(d, t ) −δ(t ) + 2|m|q

)
. (8)

The control parameter δ(t ) = −4ER + α(t − t1) arises, as in
the nonlinear two-state c-number model for a scalar BEC
(see Ref. [8]), from the kinetic energy difference of the two
coupled momentum states and the fact that the lattice is mov-
ing. The additional |m|q terms on the diagonal are due to the
quadratic Zeeman shift. The quantity

A(d, t ) = c0

∑
m=±1,0

[dm,2(t )]∗dm,0(t ) (9)

denotes the nonlinearity that is associated with the
spin-independent interactions; here c0 = g0nmean (see
Appendix A). Note that A(d, t ) appears on the off-diagonals
as opposed to the diagonals as in the widely studied nonlinear
two-state model [6,7,10,17–19] (see below for further
discussion). To interpret the six-state c-number Hamiltonian,
we first assume that c2, which is about 28 times smaller than
c0 for sodium [28], can be set to zero, i.e., we neglect the
contribution of H (6,S). This assumption is, as confirmed by
numerical simulations [see Fig. 2(c) and discussion below],
well justified.

The Hamiltonian H (6,D)(t ) has the following characteris-
tics. (i) Even though the apparent block-diagonal structure
suggests that it decouples into three independent 2 × 2 blocks
(i.e., a set of independent two-state models, each associated
with a single Zeeman component), this is not, in general, the
case since the evaluation of A(d, t ) requires (as indicated by
the d argument) knowledge of the coefficients dm,k (t ) of all
three Zeeman components. Even when H (6,S) is neglected, the
description of tunneling in spin-1 BECs requires, in general, a
six-state model. (ii) Importantly, the nonlinearity A(d, t ) is the
same in each m subspace, i.e., the tunneling dynamics in the
different m channels is governed by the same nonlinearity. (iii)
The nonlinearity A(d, t ) in general depends on the coherences
(i.e., relative phases of the state vector elements) and not
just on population differences. Properties (i)–(iii) make the
tunneling of spinor BECs in a moving optical lattice funda-
mentally different from tunneling of single-component BECs
in a moving optical lattice even in the approximate scenario
where corrections due to the spin-dependent interactions are

neglected (i.e., in the case where c2 is set to zero). Property (ii)
also provides an explanation as to why the experimental and
spinor GP tunneling data in Figs. 2(b) and 3(c) are, for a good
number of parameter combinations and times, approximately
independent of m. Since the nonlinearity on the off-diagonals
of H (6,D) is the same in each m subspace, the spin dependence
of the tunneling dynamics should be small for certain condi-
tions.

We now formally show that the six-state c-number model
reduces for specific conditions, which are fulfilled to varying
degrees in our experiment, to an effective two-state model
that neglects the spin degrees of freedom. If we define new
coefficients bk (t ) through

bk (t ) =
√

1

|dm,0|2 + |dm,2|2 dm,k (t ), (10)

then the coefficients bk (t ) are, for each m, except for an overall
phase that does not impact the populations, governed by the
time-dependent two-state Schrödinger equation ı h̄∂tb(t ) =
H (2)(t )b(t ) with state vector b(t ) = (b0(t ), b2(t ))T and
Hamiltonian H (2)(t ),

H (2)(t ) = 1
2

(
δ(t ) − c0�b(t ) uFL

2
uFL
2 −δ(t ) + c0�b(t )

)
. (11)

Equation (11) reveals that the single-particle term δ(t ) is ac-
companied by a nonlinear detuning c0�b(t ), which depends
on the population difference �b(t ) = |b0(t )|2 − |b2(t )|2. This
nonlinear detuning is obtained by rewriting the original
A(d, t ) term of the six-state model. Thus, provided Eq. (10)
holds, the six-state model with H (6,S) set to zero formally
decouples into three independent, identical two-state mod-
els, i.e., the equations of motion and associated evolution
for each Zeeman component are identical up to a scaling
factor that is associated with the (conserved) fractional pop-
ulation of each Zeeman component. The Hamiltonian H (2)(t )
is the celebrated nonlinear two-state c-number Landau-Zener
Hamiltonian [6,7,10,17–19], which was experimentally real-
ized in Ref. [8] using rubidium.

The inclusion of the Hamiltonian H (6,S) leads to an ex-
plicit coupling between the different m channels, thereby
invalidating the above mapping to three independent 2 × 2
Hamiltonians. However, the coupling is negligible for a large
fraction of the parameter combinations considered in Figs. 2
and 3, for the following reasons. First, c2 is much smaller
than c0. Second, the length of the ramps is, in many cases,
sufficiently short such that c2(t2 − t1)/h is negligibly small.
Third, the experimentally prepared initial state has no phase
difference between the spin components (see Appendix E). In
what follows, we use the six- and two-state c-number models
to further interpret the experimental data and spinor GP results
shown in Figs. 2(b), 3(a), and 3(c).

For the ramps shown in Fig. 2(c), we note the follow-
ing key observations regarding the six-state model. (i) For
each of the three nonlinearities γ considered (γ = 0.2, 0.4,
and 1.4), the polarization J0 obtained from the six-state c-
number model with finite c2 (dashed lines) and that with c2

artificially set to zero (dotted lines) are essentially identical.
(ii) The polarizations J±1 for the m = ±1 components (not
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plotted) are essentially identical to the J0 result shown. These
two observations indicate that, within the c-number model,
the spin-mixing interactions of strength c2 have a negligible
impact on the tunneling populations for the ramps studied
in Fig. 2(c) (specifically, using α = 4.5ER ms−1). Since the
six-state c-number model reduces, for c2 = 0 and the initial
conditions considered in the experiment, to an effective two-
state model (see above), the agreement between the six-state
models with c2 �= 0 and c2 = 0 shows that the dependence
of Jm on γ is consistent with what has been observed for a
single-component BEC [8].

Next we compare the results shown in Fig. 2(c) for the
six-state model (dashed and dotted lines) and the spinor
GP simulations (solid lines). (i) While the overall agree-
ment between the two theories is quite good, the six-state
model predicts larger-amplitude oscillations for tτ > 0 than
the spinor GP simulations. These oscillations are a conse-
quence of the finite ramp window, i.e., the fact that the states
are not fully decoupled at tτ = 1 [8,38]. In-trap dynamics,
which is captured by the spinor GP equation but not by the
c-number Hamiltonian, washes these oscillations out. (ii) For
all three γ values considered, the polarizations obtained from
the six-state model lie slightly above those obtained from
the spinor GP simulations in the transition region, where J0

changes rapidly with increasing tτ . For example, focusing on
the γ = 0.2 case (black lines), the polarization J0 obtained
from the GP simulations (solid black line) reaches negative
values slightly earlier (around tτ ≈ −0.05) than those ob-
tained from the six-state model (dashed black line). This small
discrepancy is attributable to the broadening of the resonance
condition, i.e., where the two momentum components are
maximally coupled, in the spinor GP framework as a result
of the finite momentum width or, equivalently, the inhomoge-
neous spatial density profile of the condensate.

The dotted lines in Figs. 3(b) and 3(d) show the six-state
model tunneling rates ln(Rm) for γ = 0.4 and γ = 1.5, re-
spectively, as a function of the dimensionless inverse ramp
rate (πuFL )2/4αh for the same parameters as used in Figs. 3(a)
and 3(c). Figure 3(b) shows reasonably good quantitative
agreement between the six-state (dotted lines) and GP (solid
lines) results for fast ramps, i.e., (πuFL )2/4αh � 0.8 [here
“fast” refers to ramp sequences in absolute units (millisec-
onds) that are comparatively short; see also Appendix E].
Consistent with the spin independence of the polarizations
Jm as discussed in the context of Fig. 2(c), the tunneling
rates obtained using the two theories are approximately spin
independent [m = ±1 data are shown as blue (dark gray) lines
and m = 0 data as red (light gray) lines] for fast ramps. How-
ever, for “slower” ramps, (πuFL )2/4αh � 0.8, the c-number
model and spinor GP results deviate for primarily two rea-
sons. First, the c-number model displays large oscillations
that are centered approximately around the spinor GP predic-
tions. These arise, as discussed previously, due to the finite
ramp window and are washed out in the GP model due to
in-trap dynamics for which the timescale is set by the spin-
independent interactions of strength c0 and the ODT. These
are not accounted for in the c-number model. Second, while
the c-number model predicts slightly spin-dependent tunnel-
ing rates for (πuFL )2/4αh � 1.5, the spinor GP framework
yields a stronger splitting between the m = 0 and m = ±1

observables beginning from about (πuFL )2/4αh � 1.3. From
the perspective of the six-state model, the emergence of spin-
dependent observables can be understood from the fact that
data in this range correspond to a c2(t2 − t1)/h which is no
longer completely negligible (see also Appendix E). This
emphasizes that, even though c2/c0 is small, spin-dependent
processes can play a role in the observed tunneling dynamics.
We interpret the fact that the deviation between ln(R0) and
ln(R±1) is notably larger for the spinor GP than the c-number
results as an indicator that the precise details of the spatial
dynamics of the BEC become increasingly more important as
the ramp duration increases.

Comparing the c-number and GP predictions for γ =
1.5, Fig. 3(d) shows trends similar to those observed for
γ = 0.4. However, as the tunneling rates are obtained much
closer, at tτ ≈ t∗τ , to the region of maximal effective cou-
pling, the discrepancies between the spinor GP and six-state
c-number models are amplified. In particular, the previously
mentioned oscillations, which are a feature of the c-number
model for finite ramp windows, are primarily responsible for
the deviations between the models, which start to emerge
for (πuFL )2/4αh ≈ 0.2 and become increasingly larger as
(πuFL )2/4αh increases.

IV. CONCLUSION

We have observed nonexponential tunneling and dynamic
self-trapping in F = 1 spinor BECs that realize a six-state
c-number tunneling model. Our data have demonstrated that
the tunneling dynamics strongly depend on the nonlinearity
induced by interactions and are resolvable over a broader
dynamic energy scale than in prior experiments with rubidium
scalar BECs [8]. We have also found the tunneling process
is influenced by the spin degree of freedom under certain
conditions. Our work opens up exciting prospects for alter-
native multistate ramps and state transfer protocols, including
studies aimed at coupling the spatial and spin degrees of
freedom. The proposed six-state model is also applicable to
other analogous multistate systems, e.g., Josephson junctions.
In addition, we have introduced spinor BECs as a simulator
of nonlinear multistate quantum tunneling Hamiltonians, by
utilizing the magnetic or spin degree of freedom to enlarge
the Hilbert space, which may provide insights into the min-
imization of undesired nonadabiatic transitions for adiabatic
quantum computation [39].

The ramps utilized in this work complement earlier
sodium spinor BEC studies [31], in which the moving one-
dimensional optical lattice was quenched. While the quench
triggered significant spatial dynamics, including fracturing of
the BEC, the spatial dynamics did not destroy the coherent
spin dynamics. Together with our present work, these studies
suggest that the dynamical coupling of the spatial and spin
degrees of freedom may be exploited to produce effective two
or multistate tunneling systems dependent upon the choice of
initial conditions.
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APPENDIX A: GROSS-PITAEVSKII MODEL
OF A SPINOR BEC

At the mean-field level, the dynamics of a weakly interact-
ing F = 1 spinor BEC subject to a time-dependent potential
V (r, t ) is modeled by the time-dependent three-component or
spinor GP equation [34,40]

ih̄
∂

∂t

⎛
⎝ψ−1

ψ0

ψ1

⎞
⎠ =

(
− h̄2∇2

2MNa
+V (r, t ) + g0(N − 1)(|ψ−1|2 + |ψ0|2 + |ψ1|2)

)⎛
⎝ψ−1

ψ0

ψ1

⎞
⎠ +

⎛
⎝q 0 0

0 0 0
0 0 q

⎞
⎠

⎛
⎝ψ−1

ψ0

ψ1

⎞
⎠

+ g2(N − 1)

⎛
⎝|ψ−1|2 + |ψ0|2 − |ψ1|2 ψ∗

1 ψ0 0
ψ1ψ

∗
0 |ψ1|2 + |ψ−1|2 ψ−1ψ

∗
0

0 ψ∗
−1ψ0 |ψ1|2 + |ψ0|2 − |ψ−1|2

⎞
⎠

⎛
⎝ψ−1

ψ0

ψ1

⎞
⎠. (A1)

Here ψm(r, t ) is the mean-field GP wave function that is as-
sociated with the Zeeman component m (m = 0,±1) and MNa

denotes the mass of a 23Na atom. The two-body interactions
are split into a pair of distinct contributions: Density-density
(i.e., spin-independent) collisions are characterized by the in-
teraction coefficient g0, while spin-dependent collisions are
characterized by the coefficient g2. The coupling constants g0

and g2 are given by 4π h̄2/MNa, multiplied by the correspond-
ing scattering lengths. Specifically,

g0 = 4π h̄2(aS=0 + 2aS=2)

3MNa
, g2 = 4π h̄2(aS=2 − aS=0)

3MNa
,

(A2)

where aS=0 = 48.9a0 (aS=2 = 54.5a0) are the s-wave scatter-
ing lengths for the F = 0 (F = 2) states (a0 is the Bohr radius)
[28,41]. The external potential V (r, t ) contains the lattice
potentialVlat(r, t ) as well as the approximately harmonic ODT
(see Sec. II). For the experiments discussed in this paper, the
initial nmean is up to 6 × 1019 m−3.

The spinor GP simulation data shown in Figs. 2(b), 2(c),
and 3 are for N = 105 atoms and q/h = 42 Hz. We ex-
ploit the axial symmetry of the experimental system (ωx =
ωy) and construct, following the procedure discussed in
Ref. [31], an effective 2D system that accounts for the ODT,
moving lattice, and gravity. The initial state preparation mim-
ics what is done in the experiment. We first equilibrate a
single-component BEC in the absence of the lattice, then
“redistribute” population so that the m = −1, 0, and +1
states have fractional populations of 1

4 , 1
2 , and 1

4 , respec-
tively, and finally ramp the lattice with � f = 0 to its desired
value uFL at a rate 1.6 ER ms−1. Our procedure assumes that
the duration of the pulse that redistributes the population is
infinitely short; we checked that a finite pulse length does
not notably change the results. We solve the time-dependent
Gross-Pitaevskii equation for a reduced 2D geometry using
the fourth-order Runge-Kutta method implemented in the
XMDS2 software package [42]. We have extensively checked
our results to ensure that the chosen spatial grid (in terms
of both grid resolution and volume) and step size for the
numerical integrator (temporal resolution) produce results that

are converged within 1% relative error for the observables
reported. It is expected that simulations of the full 3D sys-
tem would differ quantitatively but not qualitatively from the
2D results presented. For typical scenarios (e.g., away from
geometry- or trapping potential-induced resonances), these
differences are expected to be small, although we do not have
a means to provide a quantitative estimate of their size.

APPENDIX B: c-NUMBER MODEL
OF MULTISTATE TUNNELING

Section III develops a six-state c-number model of the tun-
neling dynamics in a spinor BEC subject to an optical lattice,
which provides, compared to the spinor GP framework, a
much simplified description of the system. In deriving H (6),
we assume that the contribution from the external ODT to
the spinor GP equation can be set to zero, i.e., it is assumed
that the impact of the ODT on the spatial dynamics of the
spinor BEC during the ramp can be neglected. While this is
not strictly true, the approximation is reasonable for the lattice
ramps considered in Sec. II, which last up to a few millisec-
onds, corresponding to at most roughly one trap oscillation
period.

The frequency difference � f (t ) of the two moving lattice
beams enters via an energy splitting between the two momen-
tum components and takes the form

δ(t ) = −4ER + π h̄� f (t ) + π h̄
∂� f (t )

∂t
t . (B1)

For the linear ramp � f (t ) = α(t − t1)/h employed in the
experiment, δ(t ) reduces to the equation given in Sec. II.

The contribution H (6,S) to the six-state model can be
written as

H (6,S) =
(
S0 0
0 S2

)
, (B2)
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where the matrices S(0) and S(2) read

S0 =

⎛
⎜⎝

c2(|d0,0|2 + |d0,2|2) c2(d0,0d∗
1,0 + d−1,2d∗

0,2 + 2d0,2d∗
1,2) 0
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0,2d1,2) c2(|d−1,0|2 + |d1,0|2 + |d−1,2|2 + |d1,2|2) c2(d−1,0d∗

0,0 + d0,2d∗
1,2 + 2d−1,2d∗

0,2)

0 c2(d∗
−1,0d0,0 + d∗

0,2d1,2 + 2d∗
−1,2d0,2) c2(|d0,0|2 + |d0,2|2)

⎞
⎟⎠,

(B3)

S2 =

⎛
⎜⎝

c2(|d0,0|2 + |d0,2|2) c2(d0,2d∗
1,2 + d−1,0d∗

0,0 + 2d0,0d∗
1,0) 0

c2(d∗
0,2d1,2 + d∗

−1,0d0,0 + 2d∗
0,0d1,0) c2(|d−1,0|2 + |d1,0|2 + |d−1,2|2 + |d1,2|2) c2(d−1,2d∗

0,2 + d0,0d∗
1,0 + 2d−1,0d∗

0,0)

0 c2(d∗
−1,2d0,2 + d∗

0,0d1,0 + 2d∗
−1,0d0,0) c2(|d0,0|2 + |d0,2|2)

⎞
⎟⎠.

(B4)

The energy scale of H (6,S) is set by the spin-dependent in-
teraction coefficient c2. This implies that the contribution of
H (6,S) is much weaker than H (6,D), as c2 for sodium is about
28 times smaller than the spin-independent interaction scale
c0 [28,41]. However, as shown by the spin dynamics in Fig. 4,
we do probe timescales where the contribution from terms
proportional to c2 can, in principle, give rise to non-negligible
dynamics and thus it is not a priori clear that H (6,S) can be
neglected.

APPENDIX C: COMMENTS ON UNITS
AND PARAMETERS

The nonlinear six-state c-number model is characterized
by five energy scales, namely, the coupling strength uFL /2,
the density-dependent interaction energy c0, the recoil en-
ergy ER (which enters through the detuning), the quadratic
Zeeman shift q, and the spin-dependent interaction energy
c2 (see Table I). If we restrict ourselves to situations where
the six-state c-number model maps cleanly to the two-state
c-number model (see Appendixes B and E), the latter two
energy scales drop out of the problem: The resulting two-state
c-number model can be written in terms of two dimensionless
energy ratios, namely, γ = c0/(uFL /2) and (uFL /2)/4ER. The
dimensionless nonlinearity γ is used throughout this paper to
quantify the relative strength between the density-dependent
interaction c0 and the coupling strength uFL /2, which is equal
to the energy gap at zero detuning for c0 = 0. The competition
between the interactions and coupling is most prominent for

TABLE I. Summary of relevant energy scales of the sodium
simulator of six-state quantum tunneling. The parameters ER, uFL , c0,
q, and c2 enter into the six-state c-number model. The trap energy
scale h̄ω does not enter into the c-number six-state model but does
appear in the GP formulation that incorporates in-trap dynamics.

Parameter Energy/h Role

ER 3.3 kHz detuning in c-number model
uFL 1–8 kHz coupling in c-number model
c0 0.7–0.9 kHz nonlinearity and in-trap dynamics
h̄ω 130 Hz in-trap dynamics
q 42 Hz spin-mixing dynamics
c2 25–32 Hz spin-mixing dynamics

γ around one [8,17,18]; specifically, Figs. 2 and 3 consider γ

between 0.2 and 1.5.
The energy ratio (uFL /2)/4ER compares the energy gap at

zero detuning with the energy gap at the beginning of the
ramp, both calculated for c0 = 0. In the “ideal” nonlinear
two-state Landau-Zener model [17,18], where the detuning is
varied from −∞ to ∞, this energy ratio is equal to zero, i.e., it
drops out of the problem. In experimental implementations of
the nonlinear Landau-Zener model, this energy ratio is finite
but should be small. For our lattice-based tunneling simulator
results shown in Fig. 2, the ratio (uFL /2)/4ER varies from
about 0.3 for γ = 0.2 to 0.04 for γ = 1.4. The smaller this
energy ratio is, the more decoupled the two states are initially.
The interplay of the two energy ratios determines the width
t∗τ of the transition region, which we quantify empirically by
performing piecewise linear fits (see Sec. II). It should be
noted that the dimensionless transition width t∗τ is expressed
as a fraction of the total ramp time t2 − t1 for a given α. As
discussed in Ref. [8], the dimensionless nonlinearity γ and the
dimensionless ramp time are normalized using “inconsistent”
energy scales, namely, uFL /2 and α(t2 − t1), respectively.

It was commented in the discussion surrounding Fig. 2 that
the width of the transition region for our sodium tunneling
simulator is narrower, if expressed in terms of the dimen-
sionless ramp time that uses α(t2 − t1) (which depends on
ER) as the energy unit, than that for the rubidium tunneling
simulator realized by Guan et al. [8]. This can be understood
by noting that their (uFL /2)/4ER values range from 0.88 for
γ = 0.306 to 0.25 for γ = 1.07. The roughly 2.5 times larger
value of (uFL /2)/4ER in the rubidium realization compared to
our sodium realization is due to the about three times larger
recoil energy for the sodium than the rubidium experiment.
As a consequence, the sodium realization is closer to the
ideal nonlinear Landau-Zener model that is characterized by
(uFL /2)/4ER = 0.

APPENDIX D: INTERPRETATION OF TUNNELING RATES

Figures 3(c) and 3(d) show experimental and theoreti-
cal tunneling rates for ramps that terminate at tτ ≈ t∗τ and
not in the middle of the second Brillouin zone, where the
states are maximally decoupled. Primarily, this is motivated
by our desire to investigate a sufficiently large range of
values of the dimensionless inverse ramp rate (πuFL )2/4αh,
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FIG. 5. Spin-resolved tunneling rates ln(Rm ) obtained at tτ = 1
versus the normalized inverse ramp rate (πuFL )2/4αh for (a) γ = 0.4
and (b) γ = 1.5. Red (light gray) [blue (dark gray)] solid lines show
2D spinor GP simulation results for the m = 0 (m = ±1) compo-
nents. Red (light gray) [blue (dark gray)] dotted lines show six-state
model results for the m = 0 (m = ±1) components. Except for tτ , the
parameters are identical to those of Figs. 3(b) and 3(d).

which must be offset by technical considerations that limit
the absolute timescales over which tunneling dynamics can
be well resolved in our system. For context, the dimensionless
nonlinearity γ = 2c0/uFL is tuned in our experiment by vary-
ing the lattice depth uFL . A change of the lattice depth in turn
changes the dimensionless inverse ramp rate (πuFL )2/4αh.
Thus, to compare results for γ = 0.4 (uFL = 1.2ER) and γ =
1.5 (uFL = 0.3ER) at the same value of (πuFL )2/4αh, we must
use a ramp that is by a factor of 16 longer for γ = 1.5 than for
γ = 0.4.

To elucidate the challenges this poses [and to subsequently
motivate why we use tτ = 0.2 for the γ = 1.5 measurements
shown in Fig. 3(c)], Figs. 5(a) and 5(b) show the tunneling
rates Rm extracted at tτ = 1 from spinor GP (solid lines) and
six-state c-number (dotted lines) calculations for γ = 0.4 and
γ = 1.5, respectively. For γ = 0.4, no qualitative changes
are observed compared to the results shown in Fig. 3(b),
which uses tτ = 1.3. Notably, though, the spinor GP results at
tτ = 1 show a smaller spin dependence than those at tτ = 1.3,
suggesting that internal dynamics of the BEC (i.e., evolution
of the spatial density profile or in-trap motion) are enhanced
for larger ramp times. For γ = 1.5, in contrast, the behavior
displayed in Fig. 5(b) (tunneling rate extracted at tτ = 1)
deviates significantly from that in Fig. 3(d) [tunneling rate
extracted at tτ = 0.2, which is approximately equal to the
value of t∗τ extracted in Fig. 2(b)]. For (πuFL )2/4αh � 0.3,
which corresponds to ramps shorter than about t2 − t1 ≈ 2.4

ms, the tunneling rates for the six-state model oscillate around
those for the spinor GP framework. These oscillations, and
the lack thereof in the spinor GP calculations, are understood
analogously to the γ = 0.4 data presented in Figs. 5(a) and
3(b). However, the spinor GP framework yields tunneling
rates that abruptly upshift towards zero at (πuFL )2/4αh ≈ 0.3.
This upshift, which we attribute to non-negligible in-trap dy-
namics, is not captured by the more coarse-grained six-state
model.

Specifically, the finite-momentum component, which gets
populated by the moving lattice, undergoes significant decel-
eration due to the ODT, making the distinction between the
finite and the stationary p = 0 component more challenging
for longer ramp times. When this happens, the interpreta-
tion of the dynamics within the six-state model is no longer
possible. Moreover, in this regime [(πuFL )2/4αh � 0.3 for
γ = 1.5], the experiment no longer probes physics that can be
meaningfully interpreted within the framework of tunneling
physics. The data reported in Fig. 3(c) are thus taken at a tτ
value for which the momentum components can be resolved
clearly, while maintaining tτ � t∗τ . We note that the value
of t∗τ is specific to our experimental parameters; it exploits,
as explained in Appendix C, the relative narrowness of the
transition.

APPENDIX E: VALIDITY OF THE EFFECTIVE
TWO-STATE DESCRIPTION

The discussion of Fig. 2(c) shows that the six-state
c-number Hamiltonian yields essentially spin-independent re-
sults for finite c2 (using the value applicable for sodium). This
behavior is accompanied, as shown in Fig. 3, by tunneling
rates ln(Rm) that are independent of m for a good range
of parameters. In both circumstances, the spin-independent
predictions of the six-state model are essentially indistin-
guishable from those of the effective two-state c-number
model (not shown).

Figure 6 investigates how the breakdown of the map-
ping between the six- and two-state models emerges as the
relative contribution of the spin-dependent interactions, char-
acterized by c2/c0, is varied. Figure 6(a) shows the six-state
model tunneling rate ln(R0) with (i) spin-dependent interac-
tions turned off, i.e., c2/c0 = 0 [blue (dark gray) solid line];
(ii) c2/c0 = 0.036 (black dashed line); and (iii) c2/c0 = 1
[red (light gray) dashed line]. In all three cases, the spin-
independent nonlinearity γ is set to 0.4. Since the initial
state does not contain a phase factor, the c2/c0 = 0 curve
coincides with that for the two-state model (not shown).
The value c2/c0 = 0.036 describes the sodium system. In the
(πuFL )2/4αh → 0 limit, all three tunneling rate curves ap-
proach (as they should) zero. As the ramp rate is reduced [i.e.,
(πuFL )2/4αh is increased], the c2/c0 = 0 and 0.036 curves
are nearly indistinguishable for (πuFL )2/4αh � 0.3. In this
regime, the ramps are shorter than about t2 − t1 ≈ 0.2 ms
on an absolute scale, so that c2(t2 − t1)/h is very small;
correspondingly, the mixing of the different Zeeman states
by spin-dependent interactions is expected to be very weak
and insufficient to introduce an appreciable spin dependence
into the tunneling dynamics. As (πuFL )2/4αh increases fur-
ther, the tunneling rates for c2/c0 = 0 and 0.036 start to
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FIG. 6. (a) Spin-resolved tunneling rates ln(R0) for the m = 0
component obtained at tτ = 1 and γ = 0.4 versus the normalized in-
verse ramp rate (πuFL )2/4αh. All data are predictions of the six-state
model using c2/c0 = 0 [blue (dark gray) solid line], c2/c0 = 0.036
(black dashed line), and c2/c0 = 1 [red (light gray) dashed line].
(b) Tunneling rate ln(R0) obtained at fixed normalized inverse ramp
rate (πuFL )2/4αh = 0.5 as a function of the relative strength c2/c0

of the spin-dependent and spin-independent interactions. The pre-
dictions of the six-state model are shown as the black solid line. For
comparison, the horizontal blue (dark gray) dashed line shows the
c2/c0 = 0 result, which is equivalent to the two-state model for the
chosen initial state. Both panels use q/h = 42 Hz.

deviate. The tunneling rate for c2/c0 = 1 agrees quite well,
except for a phase shift, with those for the smaller c2/c0 for
(πuFL )2/4αh � 0.2 but breaks away from those for the smaller
c2/c0 for (πuFL )2/4αh � 0.2. Averaging over the oscillations
can be seen to yield nonexponential behavior for c2/c0 ≈ 1
at γ = 0.4.

Figure 6(b) shows the m = 0 tunneling rate ln(R0), calcu-
lated at tτ = 1, as a function of c2/c0 for (πuFL )2/4αh = 0.5.
For c2/c0 � 0.02, the six-state model tunneling rates (black
solid line) remain very close to the c2/c0 = 0 result (blue
dashed horizontal line), which coincides with the two-state
model tunneling rates. Increasing the spin-dependent inter-
actions beyond c2/c0 ≈ 0.02 leads to deviations between the
two- and six-state model tunneling rates, consistent with the
fact that the mapping from the six- to the two-state model is
expected to lose its meaning as c2(t2 − t1)/h or c2/c0 become
non-negligible.

FIG. 7. Polarization Jm, predicted by the six-state c-number
model with finite c2, as a function of the dimensionless time tτ for
an initial state with spinor phases θ0 = 0 and θ2 = −π at tτ = −1;
this is to be contrasted with all other simulations shown in this paper,
which initialize the system using θ0 = θ2 = 0 at tτ = −1. The black
solid, green dashed, and red dash-dotted lines show results for m = 0,
−1, and +1, respectively. The simulation parameters are uFL = 1.2 ER

(corresponding to γ = 0.4), q/h = 42 Hz, and α = 4.5ER ms−1. The
full ramp from tτ = −1 to tτ = 1 takes 1.8 ms. The dimensionless
inverse ramp rate (πuFL )2/4αh is equal to 2.6.

Section III points out that the two-state description as-
sumes a specific initial state. To demonstrate this explicitly,
Fig. 7 shows six-state model results for Jm as a function of
the normalized ramp time tτ for an initial state that differs
from what we have been using up to now, namely, for a state
that is characterized by a nonvanishing spinor phase θ2 =
−π and vanishing spinor phase θ0 = 0, where θk = α−1,k +
α1,k − 2α0,k and dm,k (t ) is equal to |dm,k (t )| exp[ıαm,k (t )]. To
allow for the phase imprinting, the initial state preparation
follows a modified protocol: Starting with a state character-
ized by d0,0 = 1 and all other dm,k = 0, the increase of the
lattice depth is simulated. Population is redistributed and the
finite phase θ2 is imprinted after the lattice depth has reached
its final value such that |d0,0|2 + |d0,2|2 = 1/2, |d±1,0|2 +
|d±1,2|2 = 1/4, θ0 = 0, and θ2 = −π . Figure 7 shows that the
nonzero value of c2 leads to a spin dependence of the polar-
izations Jm; specifically, the solid black line for m = 0 differs
from the green dashed and red dash-dotted lines for m = ±1.
This behavior cannot be captured by the effective two-state
c-number model. We emphasize that the nonvanishing spinor
phase θ2 is critical for observing the spin dependence.

The breakdown of the mapping between the six- and two-
state models can also be driven by factors that are beyond the
scope of a c-number model, e.g., evolution of the (inhomo-
geneous) density profile of the condensate, in-trap dynamics,
and the occupation of higher momentum states (i.e., out-
side the p = 0 and 2h̄kL components we consider). This is
consistent with observations throughout the main text and
Appendixes wherein spin-dependent tunneling dynamics is
more readily observed in spinor GP predictions as opposed
to those obtained from the c-number model.
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