
PAIRS OF DIAGONAL QUARTIC FORMS:

THE ASYMPTOTIC FORMULAE

JÖRG BRÜDERN AND TREVOR D. WOOLEY

Abstract. We establish an asymptotic formula for the number of integral so-
lutions of bounded height for pairs of diagonal quartic equations in 26 or more
variables. In certain cases, pairs in 25 variables can be handled.

1. Introduction

Once again we are concerned with the pair of Diophantine equations

a1x
4
1 + a2x

4
2 + . . .+ asx

4
s = b1x

4
1 + b2x

4
2 + . . .+ bsx

4
s = 0, (1.1)

wherein the given coefficients aj , bj satisfy (aj , bj) ∈ Z2 \ {(0, 0)} (1 6 j 6 s).
While our focus was on the validity of the Hasse principle for such pairs in two
precursors of this article [6, 9], we now investigate the asymptotic density of integral
solutions. Denote by N (P ) the number of solutions in integers xj with |xj | 6 P
(1 6 j 6 s) to this system. Then, subject to a natural rank condition on the
coefficient matrix, one expects an asymptotic formula for N (P ) to hold provided
that s is not too small. Indeed, following Hardy and Littlewood [11] in spirit, the
quantity P 8−sN (P ) should tend to a limit that is itself a product of local densities.
On a formal level, the densities are readily described. The real density, also known
as the singular integral, is defined by

I = lim
T→∞

∫ T

−T

∫ T

−T

s
∏

j=1

∫ 1

−1
e
(

(ajα+ bjβ)t
4
j

)

dtj dα dβ (1.2)

whenever the limit exists. Let M(q) denote the number of solutions x in (Z/qZ)s

satisfying (1.1). Then for primes p, the p-adic density is defined by

sp = lim
h→∞

p(2−s)hM(ph), (1.3)

assuming again that this limit exists. In case of convergence, the product S =
∏

p sp
is referred to as the singular series, and the desired asymptotic relation can be
presented as the limit formula

lim
P→∞

P 8−s
N (P ) = IS. (1.4)

Note that (1.4) can hold only when in each of the two equations comprising
(1.1) there are sufficiently many non-zero coefficients. Of course one may pass from
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(1.1) to an equivalent system obtained by taking linear combinations of the two
constituent equations. Thus, the invariant q0 = q0(a,b), defined by

q0(a,b) = min
(c,d)∈Z2\{(0,0)}

card{1 6 j 6 s : caj + dbj 6= 0},

must be reasonably large. Indeed, it follows from Lemmata 3.1, 3.2 and 3.3 in our
companion paper [9] that the conditions s > 16 and q0 > 12 ensure that the limits
(1.2) and (1.3) all exist, that the product S is absolutely convergent, and that the
existence of non-singular solutions to the system (1.1) in each completion of the
rationals implies that IS > 0. A first result concerning the limit (1.4) is then
obtained by introducing the moment estimate

∫ 1

0

∣

∣

∣

∣

∑

x6P

e(αx4)

∣

∣

∣

∣

14

dα ≪ P 10+ε, (1.5)

derived as the special case u = 14 of Lemma 5.3 below, to a familiar method of Cook
[10] (see also [2]). Here we point out that the estimate (1.5) first occurs implicitly in
the proof of [15, Theorem 4.1], conditional on the validity of the (now proven) main
conjecture in Vinogradov’s mean value theorem (for which see [1] and [17, Corollary
1.3]). In this way, one routinely confirms (1.4) when s > 29 and q0 > 15. This
result, although not explicitly mentioned in the literature, is certainly familiar to
experts in the area, and has to be considered as the state of the art today. It seems
worth remarking in this context that, at a time when the estimate (1.5) was not
yet available, the authors [3, 5] handled the case s > 29 with more restrictive rank
conditions. The main purpose of this memoir is to make three variables redundant.

Theorem 1.1. For pairs of equations (1.1) with s > 26 and q0 > 15, one has

N (P ) = ISP s−8 +O(P s−8−1/32).

Relaxing the rank condition q0 > 15 appears to be a difficult enterprise, as we
now explain. Consider a pair of equations (1.1) with s > 29, and suppose that
bi = aj = 0 for 1 6 i 6 14 < j 6 s. These two equations are independent and
thus N (P ) factorises as N (P ) = N1(P )N2(P ), where N1(P ) and N2(P ) denote
the number of integral solutions of the respective single equations

a1x
4
1 + a2x

4
2 + . . .+ a14x

4
14 = 0, (1.6)

with |xj | 6 P (1 6 j 6 14), and

b15y
4
1 + b16y

4
2 + . . .+ bsy

4
s−14 = 0, (1.7)

with |yj | 6 P (1 6 j 6 s − 14). The equation (1.7) has at least 15 non-zero
coefficients, and so a straightforward application of the Hardy-Littlewood method
using the mean value (1.5) shows that P 18−sN2(P ) tends to a limit as P → ∞, with
this limit equal to a product of local densities analogous to I and sp. By choosing
bj = (−1)j for 15 6 j 6 s, we ensure that this limit is positive, and thus P 8−sN (P )
tends to a limit as P → ∞ if and only if P−10N1(P ) likewise tends to a limit.
From the definitions (1.2) and (1.3), it is apparent that the local densities I and
sp factorise into components stemming from the equations underlying N1 and N2.
The relation (1.4) therefore holds for this particular pair of equations if and only
if P−10N1(P ) tends to the product of local densities associated with the equation
(1.6). In particular, were (1.4) known to hold in any case where q0 = 14 and s
is large, then it would follow that P−10N1(P ) tends to the limit suggested by a
formal application of the circle method, a result that is not yet known. This shows
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that relaxing the condition on q0 would imply progress with single diagonal quartic
equations.

The invariant q0 is a very rough measure for the entanglement of the two equations
present in (1.1). This can be refined considerably. The pairs (aj , bj) are all non-zero
in Z2, so they define a point (aj : bj) ∈ P(Q). We refer to indices i, j ∈ {1, 2, . . . , s} as
equivalent if (ai : bi) = (aj : bj). This defines an equivalence relation on {1, 2, . . . , s}.
Suppose that there are ν equivalence classes with r1, . . . , rν elements, respectively,
where r1 > r2 > . . . > rν . On an earlier occasion [5] we named the tuple (r1, . . . , rν)
the profile of the equations (1.1). Note that q0 = s− r1, whence our assumed lower
bound q0 > 15 implies that r1 6 s − 15 and ν > 2. If more is known about the
profile, then we can save yet another variable.

Theorem 1.2. Suppose that s = 25 and that (r1, . . . , rν) is the profile of the pair of

equations (1.1). If q0 > 16 and ν > 5, then N (P ) = ISP s−8 +O(P s−8−1/32).

For a pair (1.1) in “general position” one has ν = s and r1 = 1, and in a quanti-
tative sense easily made precise, such pairs constitute almost all such Diophantine
systems. Hence, the conclusion of Theorem 1.2 applies to almost all pairs of equa-
tions of the shape (1.1).

We pointed out long ago [5] that a diffuse profile can be advantageous. However,
even with the estimate (1.5) in hand, the method of [5] only handles cases where
s > 27 and r1 and r2 are not too large. Thus our results improve on all previous
work on the subject even if the input to the published versions is enhanced by the
newer mean value bound (1.5).

It is time to describe the methods, and in particular the new ideas involved in the
proofs. Our more recent results specific to systems of diagonal quartic forms [6, 8, 9]
all depend on large values estimates for Fourier coefficients of powers of Weyl sums,
and the current communication is no exception. The large values estimates provide
upper bounds for higher moments of these Fourier coefficients, and these in turn
yield mean value bounds for correlations of Weyl sums. We describe this link here
in a setting appropriate for application to pairs of equations. Consider a 1-periodic
twice differentiable function h : R → R. Its Fourier expansion

h(α) =
∑

n∈Z

ĥ(n)e(αn) (1.8)

converges uniformly and absolutely. Hence, by orthogonality, one has
∫ 1

0

∫ 1

0
h(α)h(β)h(−α− β) dα dβ =

∑

n∈Z

ĥ(n)3. (1.9)

The methods of [6, 8, 9] rest on this and closely related identities, choosing h(α) =
|g(α)|u with suitable quartic Weyl sums g and a positive real number u. As a
service to future scholars, we analyse in some detail the differentiability properties
of functions like |g(α)|u in §3. It transpires that when u > 2 then the relation (1.9)
holds. We use (1.9) with h(α) = |f(α)|u, where now

f(α) =
∑

x6P

e(αx4) (1.10)

is the ordinary Weyl sum. We then obtain new entangled mean value estimates for
smaller values of u. This alone is not of strength sufficient to reach the conclusions
of Theorem 1.1.
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As experts in the field will readily recognise, for larger values of u the quality of
the aforementioned mean value estimates is diluted by major arc contributions, and
one would therefore like to achieve their removal. Thus, if n is a 1-periodic set of
real numbers with n ∩ [0, 1) a classical choice of minor arcs and 1n is the indicator
function of n, then one is tempted to apply the function h(α) = 1n(α)|f(α)|u in
place of |f(α)|u within (1.9). However, this function is no longer continuous. We
bypass this difficulty by introducing a smoothed Farey dissection in §4. This is
achieved by a simple and very familiar convolution technique that should be useful
in other contexts, too. In this way, in §5 we obtain a minor arc variant of the cubic
moment method developed in our earlier work [6]. Equipped with this and the mean
value bounds that follow from it, one reaches the conclusions of Theorem 1.1 in the
majority of cases under consideration. Unfortunately, some cases with exceptionally
large values of rj stubbornly deny treatment. To cope with these remaining cases,
we develop a mixed moment method in §6.

The point of departure is a generalisation of (1.9). If h1, h2, h3 are functions that
qualify for the discussion surrounding (1.8) and (1.9), then by invoking orthogonality
once again, we see that

∫ 1

0

∫ 1

0
h1(α)h2(β)h3(−α− β) dα dβ =

∑

n∈Z

ĥ1(n)ĥ2(n)ĥ3(n). (1.11)

By Hölder’s inequality, the right hand side here is bounded in terms of the three
moments

∑

n∈Z

|ĥj(n)|3. (1.12)

In all cases where hj(α) = |f(α)|uj for some even positive integral exponent uj
one has ĥj(n) > 0, so (1.9) can be used in reverse to interpret (1.12) in terms
of the number of solutions of a pair of Diophantine equations. The purely analytic
description of the method has several advantages. First and foremost, one can break
away from even numbers uj , and still estimate all three cubic moments (1.12). This
paves the way to a complete treatment of pairs of equations (1.1) with s > 26 and
q0 > 15. Beyond this, the identity (1.11) offers extra flexibility for the arithmetic
harmonic analysis. Instead of the homogeneous passage from (1.11) to (1.12) one
could apply Hölder’s inequality with differing weights. As an example of stunning
simplicity, we note that the expression in (1.11) is bounded above by

(

∑

n∈Z

|ĥ1(n)|2
)1/2(

∑

n∈Z

|ĥ2(n)|4
)1/4(

∑

n∈Z

|ĥ3(n)|4
)1/4

.

If we apply this idea with hj(α) = |f(α)|uj and uj a positive even integer, then
the first factor relates to a single diagonal Diophantine equation while the other
two factors concern systems consisting of three diagonal Diophantine equations.
This argument is dual (in the sense that we work with Fourier coefficients) to a
method that we described as complification in our work on systems of cubic forms
[7]. There is, of course, an obvious generalisation of (1.9) to higher dimensional
integrals that has been used here. This points to a complex interplay between
systems of diagonal equations in which the size parameters (number of variables
and number of equations) vary, and need not be restricted to natural numbers. We
have yet to explore the full potential of this observation.
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We briefly comment on the role of the Hausdorff-Young inequality [18, Chapter
XII, Theorem 2.3] within this circle of ideas. In the notation of (1.11) this asserts
that

∑

n∈Z

|ĥj(n)|3 6
(
∫ 1

0
|hj(α)|3/2 dα

)2

.

Passing through (1.11) and (1.12), one then arrives at the estimate

∣

∣

∣

∣

∫ 1

0

∫ 1

0
h1(α)h2(β)h3(−α− β) dα dβ

∣

∣

∣

∣

6

3
∏

j=1

(
∫ 1

0
|hj(α)|3/2 dα

)2/3

. (1.13)

However, by Hölder’s inequality, one finds
∣

∣

∣

∣

∫ 1

0

∫ 1

0
h1(α)h2(β)h3(−α− β) dα dβ

∣

∣

∣

∣

6
∏

16i<j63

(
∫ 1

0
|hihj |3/2 dα dβ

)1/3

,

where, on the right hand side, one should read h1 = h1(α), h2 = h2(β) and h3 =
h3(−α − β). By means of obvious linear substitutions, this also delivers the bound
(1.13). This last method is essentially that of Cook [10]. Our approach is superior
because the methods are designed to remember the arithmetic source of the Weyl
sums when estimating moments of Fourier coefficients.

The proof of Theorem 1.2 requires yet another tool that is a development of
our multidimensional version of Hua’s lemma [3]. This somewhat outdated work
is based on Weyl differencing. An analysis of the method shows that whenever a
new block of differenced Weyl sums enters the recursive process, a new entry rj to
the profile of the underlying Diophantine system is needed. It is here where one
imports undesired constraints on the profile, as in Theorem 1.2. However, powered
with the new upper bound (1.5), the method just described yields a bound for a
two-dimensional entangled mean value over eighteen Weyl sums that outperforms
the cubic moments technique by a factor P 1/6 (compare Theorem 6.1 with Theorem
7.2). Within a circle method approach, this mean value is introduced via Hölder’s
inequality. In the complementary factor, we have available an abundance of Weyl
sums. Fortunately the cubic moments technique restricted to minor arcs presses
the method home. We point out that our proof of Theorem 1.2 constitutes the
first instance in which the cubic moments technique is successfully coupled with the
differencing techniques derived from [3].

One might ask whether more restrictive conditions on the profile allow one to
reduce the number of variables even further. As we demonstrate at the very end of
this memoir it is indeed possible to accelerate the convergence in (1.4), but even the
extreme condition r1 = 1 seems insufficient to save a variable without another new
idea.

Once the new moment estimates are established, our proofs of Theorems 1.1 and
1.2 are fairly concise. There are two reasons. First, we may import the major arc
work, to a large extent, from [9]. Second, more importantly, our minor arc treatment
rests on a new inequality (Lemma 2.3 below) that entirely avoids combinatorial
difficulties associated with exceptional profiles. This allows us to reduce the minor
arc work to a single profile with a certain maximality property. We expect this
argument to become a standard preparation step in related work, and have therefore
presented this material in broad generality. We refer to §2 where the reader will also
find comment on previous attempts in this direction.
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Notation. Our basic parameter is P , a sufficiently large real number. Implicit
constants in Vinogradov’s familiar symbols ≪ and ≫ may depend on s and ε as
well as ambient coefficients such as those in the system (1.1). Whenever ε appears in
a statement we assert that the statement holds for each positive real value assigned
to ε. As usual, we write e(z) for e2πiz.

The authors are grateful to the referees of this paper for valuable comments.

2. Some inequalities

This section belongs to real analysis. We discuss a number of inequalities for
products. As is familiar for decades, in an attempt to prove results of the type
described in Theorems 1.1 and 1.2 via harmonic analysis, it is desirable to simplify
to a situation where the profile is extremal relative to the conditions in hand, that is,
the multiplicities r1, r2, . . . are as large as possible, and consequently ν is as small as
is possible. In the past, most scholars have applied Hölder’s inequality to achieve this
objective, often by an ad hoc argument that led to the consideration of several cases
separately. The purpose of this section is to make available general inequalities that
encapsulate the reduction step in a single lemma of generality sufficient to include
all situations that one encounters in practice.

The germ of our method is a classical estimate, sometimes referred to as Young’s
inequality: if p and q are real numbers with p > 1 and

1

p
+

1

q
= 1,

then for all non-negative real numbers u and v one has

uv 6
up

p
+

vq

q
. (2.1)

This includes the case r = 2 of the bound

|z1z2 · · · zr| 6
1

r

(

|z1|r + . . .+ |zr|r
)

(2.2)

which holds for all r ∈ N and all zj ∈ C (1 6 j 6 r). Indeed, the general case of
(2.2) follows from (2.1) by an easy induction on r.

In the following chain of lemmata we are given a number ν ∈ N and integral
exponents mj , Mj (1 6 j 6 ν) with

m1 > m2 > . . . > mν > 0, M1 > M2 > . . . > Mν > 0 (2.3)

and
L
∑

l=1

ml 6

L
∑

l=1

Ml (1 6 L < ν),
ν

∑

l=1

ml =
ν

∑

l=1

Ml. (2.4)

We write Sν for the group of permutations on ν elements. We refer to a function
w : Sν → [0, 1] with

∑

σ∈Sν

w(σ) = 1

as a weight on Sν .
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Lemma 2.1. Suppose that the exponents mj, Mj (1 6 j 6 ν) satisfy (2.3) and

(2.4). Then there is a weight w on Sν with the property that for all non-negative

real numbers u1, u2, . . . , uν one has

um1

1 um2

2 · · ·umν
ν 6

∑

σ∈Sν

w(σ)uM1

σ(1)u
M2

σ(2) · · ·u
Mν

σ(ν). (2.5)

Proof. We define

D =
ν

∑

l=1

|Ml −ml|

and proceed by induction on ν + D. In the base case of the induction one has
ν + D = 1. In this situation ν = 1 and D = 0, and the claim of the lemma is
trivially true with σ = id and w(σ) = 1.

Now suppose that ν+D > 1. We consider two cases. First we suppose that there
is a number ν1 with 1 6 ν1 < ν and

ν1
∑

l=1

ml =

ν1
∑

l=1

Ml.

We put

D1 =

ν1
∑

l=1

|Ml −ml|, D2 =

ν
∑

l=ν1+1

|Ml −ml|, ν2 = ν − ν1.

Then (2.3) and (2.4) are valid with ν1 in place of ν, and one has D1 6 D. Hence
ν1 +D1 < ν +D so that we may invoke the inductive hypothesis to find a weight
w1 on Sν1 with

um1

1 um2

2 · · ·umν1
ν1 6

∑

σ∈Sν1

w1(σ)u
M1

σ(1)u
M2

σ(2) · · ·u
Mν1

σ(ν1)
. (2.6)

Similarly, in the current situation, the numbers mν1+j , Mν1+j (1 6 j 6 ν2) may
take the roles of mj , Mj in (2.3) and (2.4) with ν2 in place of ν. Again, we have
ν2 + D2 < ν + D. Now writing τ for a permutation in Sν2 acting on the set
{ν1+1, ν1+2, . . . , ν}, we may invoke the inductive hypothesis again to find a weight
w2 on Sν2 with

u
mν1+1

ν1+1 u
mν1+2

ν1+2 · · ·umν
ν 6

∑

τ∈Sν2

w2(τ)u
Mν1+1

τ(ν1+1)u
Mν1+2

τ(ν1+2) · · ·u
Mν

τ(ν). (2.7)

We multiply the inequalities (2.6) and (2.7). It is then convenient to read permuta-
tions σ on 1, 2, . . . , ν1 and τ on ν1 + 1, ν1 + 2, . . . , ν as permutations on 1, 2, . . . , ν
with σ(j) = j for j > ν1 and τ(j) = j for j 6 ν1. Then, for permutations of the
type στ in Sν we put w(στ) = w1(σ)w2(τ), and we put w(φ) = 0 for the remaining
permutations φ ∈ Sν . With this function w the product of (2.6) and (2.7) becomes
(2.5), completing the induction in the case under consideration.

In the complementary case we have

L
∑

l=1

ml <
L
∑

l=1

Ml (1 6 L < ν). (2.8)

In particular, this shows that m1 < M1. Also, by comparing the case L = ν − 1
of (2.8) with the equation corresponding to the case L = ν in (2.4), we see that
mν > Mν , as a consequence of which we have mν > 1. We write m1 = mν + r. In
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view of (2.3), we see that r > 0, and so an application of (2.1) with q = r + 2 leads
to the inequality

ur+1
1 uν 6

r + 1

r + 2
ur+2
1 +

1

r + 2
ur+2
ν .

Recall that mν > 1, whence m1 − r − 1 = mν − 1 > 0. It follows that

um1

1 umν
ν 6 um1−r−1

1 umν−1
ν

(r + 1

r + 2
ur+2
1 +

1

r + 2
ur+2
ν

)

,

and thus

um1

1 · · ·umν
ν 6

r + 1

r + 2
um1+1
1 um2

2 um3

3 · · ·umν−1

ν−1 umν−1
ν

+
1

r + 2
umν−1
1 um2

2 um3

3 · · ·umν−1

ν−1 um1+1
ν .

The chain of exponents m1+1,m2,m3, . . . ,mν−1,mν −1 is decreasing, and we have
m1 + 1 6 M1 and mν − 1 > 0. Hence, in view of (2.8), the hypotheses (2.3) and
(2.4) are still met when we put m1 + 1 in place of m1 and mν − 1 in place of mν .
However, m1 + 1 is closer to M1 than is m1, and likewise mν − 1 is closer to Mν

than is mν . The value of D associated with this new chain of exponents therefore
decreases, and so we may apply the inductive hypothesis to find a weight W on Sν

with
um1+1
1 um2

2 um3

3 · · ·umν−1

ν−1 umν−1
ν 6

∑

σ∈Sν

W (σ)uM1

σ(1)u
M2

σ(2) · · ·u
Mν

σ(ν).

Interchanging the roles of u1 and uν , and denoting by τ the transposition of 1 and
ν, we obtain in like manner the bound

um1+1
ν um2

2 um3

3 · · ·umν−1

ν−1 umν−1
1 = um1+1

τ(1) um2

τ(2)u
m3

τ(3) · · ·u
mν−1

τ(ν−1)u
mν−1
τ(ν)

6
∑

σ∈Sν

W (σ ◦ τ)uM1

σ(1)u
M2

σ(2) · · ·u
Mν

σ(ν).

Note here that we have made use of the observation that σ ◦ τ runs over all elements
of Sν as σ runs over all elements of Sν , and further (σ ◦ τ)◦ τ = σ. If we now import
the last two inequalities into the inequality preceding them, we find that (2.5) holds
with

w(σ) =
r + 1

r + 2
W (σ) +

1

r + 2
W (σ ◦ τ),

and w is a weight on Sν . This completes the induction in the second case. �

Lemma 2.2. Suppose that mj, Mj (1 6 j 6 ν) satisfy (2.3) and (2.4). For 1 6

j 6 ν let hj : R
n → [0,∞) denote a Lebesgue measurable function. Then
∫

hm1

1 hm2

2 · · ·hmν
ν dx 6 max

σ∈Sν

∫

hM1

σ(1)h
M2

σ(2) · · ·h
Mν

σ(ν) dx.

Proof. Choose uj = hj in Lemma 2.1 for 1 6 j 6 ν and integrate. �

For applications to systems of diagonal equations or inequalities, functions hj
come with an equivalence relation between them. This we encode as a partition of
the set of indices j in the final lemma of this section.

Lemma 2.3. Suppose that the exponents mj, Mj (1 6 j 6 ν) satisfy (2.3) and

(2.4). Let s = m1 + m2 + . . . + mν , and for 1 6 j 6 s, let hj : Rn → [0,∞)
denote a Lebesgue measurable function. Finally, suppose that J1, J2, . . . , Jν are sets

with respective cardinalities m1,m2, . . . ,mν that partition {1, 2, . . . , s}. Then, there
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exists a tuple (i1, . . . , iν) and a permutation σ ∈ Sν , with il ∈ Jσ(l) (1 6 l 6 ν),
having the property that

∫

h1h2 · · ·hs dx 6

∫

hM1

i1
hM2

i2
. . . hMν

iν
dx. (2.9)

Proof. For each suffix l with 1 6 l 6 ν, it follows from (2.2) that

∏

j∈Jl

hj 6
1

mj

∑

j∈Jl

h
mj

j .

Multiplying these inequalities together yields the bound

h1h2 · · ·hs 6
1

m1 · · ·mν

∑

j1∈J1

· · ·
∑

jν∈Jν

hm1

j1
hm2

j2
· · ·hmν

jν
.

Now integrate. One then finds that there exists a tuple (j1, . . . , jν), with jl ∈ Jl
(1 6 l 6 ν), for which

∫

h1h2 · · ·hs dx 6

∫

hm1

j1
hm2

j2
. . . hmν

jν
dx.

Finally, we apply Lemma 2.2. One then finds that for some σ ∈ Sν the upper bound
(2.9) holds with il = jσ(l) (1 6 l 6 ν). �

3. Smooth Farey dissections

In this section we describe a partition of unity that mimics the traditional Farey
dissection. With other applications in mind, we work in some generality. Through-
out this section we take X and Y to be real numbers with 1 6 Y 6 1

2

√
X, and

then let N(q, a) denote the interval of all real α satisfying |qα− a| 6 Y X−1. Define
N = NX,Y as the union of all N(q, a) with 1 6 q 6 Y , a ∈ Z and (a, q) = 1.
Note that the intervals N(q, a) comprising N are pairwise disjoint. We also write
M = MX,Y for the set N ∩ [0, 1]. For appropriate choices of the parameter Y ,
the latter is a typical choice of major arcs in applications of the Hardy-Littlewood
method.

The set N has period 1. Its indicator function 1N has finitely many discontinuities
in [0, 1), implying unwanted delicacies concerning the convergence of the Fourier
series of 1N. We avoid complications associated with this feature by a familiar
convolution trick, which we now describe.

Define the positive real number

κ =

∫ 1

−1
exp(1/(t2 − 1)) dt,

and the function K : R → [0,∞) by

K(t) =

{

κ−1 exp(1/(t2 − 1)) if |t| < 1,
0 if |t| > 1.

As is well known, the function K(t) is smooth and even. We scale this function with
the positive parameter X in the form

KX(t) = 4XK(4Xt).



10 JÖRG BRÜDERN AND TREVOR D. WOOLEY

Then KX is supported on the interval |t| 6 1/(4X) and satisfies the important
relation

∫ ∞

−∞
KX(t) dt =

∫ ∞

−∞
K(t) dt = 1. (3.1)

We now define the function NX,Y : R → [0, 1] by

NX,Y (α) =

∫ ∞

−∞
1N(α− t)KX(t) dt =

∫ ∞

−∞
1N(t)KX(α− t) dt. (3.2)

The main properties of this function N = NX,Y are listed in the next lemma.

Lemma 3.1. The function N = NX,Y is smooth, and for all α ∈ R one has N(α) ∈
[0, 1]. Further, whenever 2 6 Y 6 1

4

√
X, the inequalities

1NX,Y/2
(α) 6 N(α) 6 1NX,2Y

(α) (3.3)

and

N
′(α) ≪ X, N

′′(α) ≪ X2 (3.4)

hold uniformly in α ∈ R.

Proof. The integrands in (3.2) are non-negative, so N(α) > 0, while (3.1) shows
that N(α) 6 1. Since K is smooth and compactly supported, the second integral
formulation of N in (3.2) shows that N is smooth, and that the derivative is obtained
by differentiating the integrand. Thus, we obtain

N
′(α) =

∫

N

∂

∂α
KX(α− t) dt,

whence

|N′(α)| 6 4X

∫ 1

−1
|K ′(t)| dt.

This confirms the inequality for the first derivative in (3.4). The bound for the
second derivative follows in like manner by differentiating again.

We now turn to the task of establishing (3.3). First suppose that α ∈ NX,Y/2.

Then, there is a unique pair of integers a ∈ Z and q ∈ N with (a, q) = 1, q 6 1
2Y

and |qα− a| 6 1
2Y X−1. For |t| 6 (4X)−1 we then have

∣

∣

∣
(α− t)− a

q

∣

∣

∣
6

1

4X
+

Y

2qX
6

Y

qX
.

Thus α − t ∈ N(q, a) ⊆ NX,Y . Since KX is supported on [−1/(4X), 1/(4X)], we
deduce from (3.1) and (3.2) that

N(α) >

∫ ∞

−∞
1N(q,a)(α− t)KX(t) dt =

∫ ∞

−∞
KX(t) dt = 1.

It follows that one has N(α) = 1 for all α ∈ NX,Y/2. However, we know already that
N(α) is non-negative for all α ∈ R, and thus we have proved the first of the two
inequalities in (3.3).

We complete the proof of the lemma by addressing the second inequality in (3.3).
Suppose that N(α) > 0. Then, it follows from (3.2) that for some t ∈ R with
|t| 6 (4X)−1, one has α − t ∈ NX,Y . Hence, there exist a ∈ Z and q ∈ N with
(a, q) = 1, q 6 Y and |α− t− a/q| 6 Y/(qX). By the triangle inequality,

∣

∣

∣
α− a

q

∣

∣

∣
6

Y

qX
+

1

4X
6

2Y

qX
.
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This shows that α ∈ NX,2Y . Since 0 6 N(α) 6 1, the second of the inequalities in
(3.3) also follows. �

We consider N = NX,Y as a smooth model of the major arcsNX,Y . It is convenient
to define corresponding minor arcs n = nX,Y , with nX,Y = R \NX,Y , and to write
m = [0, 1]\M for the set of minor arcs complementary to M. The smoothed version
of nX,Y is the function nX,Y : R → [0, 1] defined by

n(α) =

∫ ∞

−∞
1n(α− t)KX(t) dt.

We trivially have 1N(α) + 1n(α) = 1 for all α ∈ R, so it is a consequence of (3.1)
and (3.2) that n = nX,Y satisfies the identity

N(α) + n(α) = 1. (3.5)

The properties of n can therefore be deduced from the corresponding facts concerning
N. In particular, Lemma 3.1 translates as follows.

Lemma 3.2. The function n = nX,Y is smooth, and for all α ∈ R one has n(α) ∈
[0, 1]. Further, whenever 2 6 Y 6 1

4

√
X, the inequalities

1nX,2Y (α) 6 n(α) 6 1nX,Y/2
(α)

and

n
′(α) ≪ X, n

′′(α) ≪ X2

hold uniformly in α ∈ R.

4. Fractional powers of Weyl sums

In this section we consider a trigonometric polynomial

T (α) =
∑

M<n6M+N

cne(αn) (4.1)

with complex coefficients cn. The associated ordinary polynomial

P (z) =
N
∑

n=1

cM+nz
n (4.2)

is related to T via the identity

T (α) = e(Mα)P (e(α)). (4.3)

Lemma 4.1. Let k ∈ N. Then, for any real number u > k, the real function

Ωu : R → R, defined by Ωu(α) = |T (α)|u, is k times continuously differentiable.

Proof. In view of (4.3), we see that it suffices to prove this result in the special case
where M = 0. This reduction step noted, we proceed by a succession of elementary
exercises.

Let u ∈ R. We begin by considering the function θu : R \ {0} → R defined by
θu(α) = |α|u. This function is differentiable on R \ {0}, and one has

θ′u(α) = u|α|uα−1 = uθu(α)α
−1.

By induction, it follows that for any l ∈ N the function θu is l times differentiable,
and that the l-th derivative is

θ(l)u (α) = u(u− 1) · · · (u− l + 1)θu(α)α
−l. (4.4)
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Now suppose that u > 0. Then, by putting θu(0) = 0 we extend θu to a continuous
function on R. More generally, whenever u > l, then

lim
α→0

θu(α)

αl
= 0.

By (4.4), this shows that whenever u > l then θ
(l)
u extends to a continuous function

on R by choosing θ
(l)
u (0) = 0, and that θ

(l−1)
u is differentiable at 0 with derivative 0.

We summarize this last statement as follows:

(a) Let k ∈ N and u > k. Then θu is k times continuously differentiable on R.

Next, for u > 0, consider the function ρu : R → R defined by putting ρu(α) =
| sinπα|u. For α ∈ (0, 1) one has sinπα > 0, whence ρu(α) = (sinπα)u. Thus ρu is
smooth on (0, 1). But ρ has period 1, so it suffices to examine its differentiability
properties at α = 0, a point at which ρu is continuous. For all real α we have
sinπα = παE(α), where

E(α) =

∞
∑

j=0

(−1)j
(πα)2j

(2j + 1)!
.

The function E is smooth on R with E(0) = 1. Hence E(α) > 0 in a neighbourhood
of 0 where we then also have

ρu(α) = πu|α|uE(α)u.

By applying the product rule in combination with our earlier conclusion (a), we
therefore conclude as follows:

(b) Let k ∈ N and u > k. Then ρu is k times continuously differentiable on R.

We now turn to the function T where we suppose that M = 0, as we may. The
sum in (4.1) defines a holomorphic function of the complex variable α, and hence
the function T : R → C is a smooth map of period 1. The sum

T̄ (α) =
∑

16n6N

c̄ne(−αn)

defines another trigonometric polynomial, and for α ∈ R we have T (α) = T̄ (α).
Consequently, for real α we have

|T (α)|2 = T (α)T̄ (α), (4.5)

whence the function |T |2 : R → C, given by α 7→ |T (α)|2, is smooth on R with

d

dα
|T (α)|2 = T ′(α)T̄ (α) + T (α)T̄ ′(α). (4.6)

On noting that T (α)j is again a trigonometric polynomial for all j ∈ N, we see that
|T (α)|2j is smooth. Hence, from now on, we may suppose that u is a real number

but not an even natural number. Also, the conclusion of Lemma 4.1 is certainly true
in the trivial case where cn = 0 for all n. In the contrary case, the polynomial in
(4.2) has at most finitely many zeros. Therefore, the set

Z = {α ∈ R : T (α) = 0}
is 1-periodic with Z ∩ [0, 1) finite, and consequently R \ Z is open.
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We next examine the function |T |u : R \ Z → C, given by α 7→ |T (α)|u.

(c) When u is real but not an even natural number, the function |T |u is smooth.

In order to confirm this assertion, note that |T (α)|u = θu/2(|T (α)|2). By applying
the chain rule in combination with the preamble to conclusion (a) and (4.6), we find
that |T (α)|u is differentiable for α ∈ R \ Z. Indeed,

d

dα
|T (α)|u = θ′u/2(|T (α)|2)

(

T ′(α)T̄ (α) + T (α)T̄ ′(α))

=
u

2
|T (α)|u−2

(

T ′(α)T̄ (α) + T (α)T̄ ′(α)). (4.7)

Since the final factor on the right hand side here is smooth, we may repeatedly apply
the product rule to conclude that |T (α)|u is smooth on R \ Z, as claimed.

Finally, we consider any element α0 ∈ Z. Then one has P (e(α0)) = 0. Since
P is not the zero polynomial, there exists r ∈ N and a polynomial Q ∈ C[z] with
Q(e(α0)) 6= 0 such that P (z) = (z − e(α0))

rQ(z). Write U(α) = Q(e(α)) for the
trigonometric polynomial associated with Q. Then T (α) =

(

e(α) − e(α0)
)r
U(α).

For u > 0 and all real α we then have

|T (α)|u = |e(α)− e(α0)|ru|U(α)|u = |2 sinπ(α− α0)|ru|U(α)|u.
There is an open neighbourhood of α0 on which U(α) does not vanish. By our
conclusion (c) it is apparent that |U(α)|u is smooth on this neighbourhood. If
u > k, then the conclusion (b) implies that the function |2 sinπ(α − α0)|ru is k
times continuously differentiable. The conclusion of the lemma therefore follows by
application of the product rule. �

We mention in passing that if more is known about the zeros of P , then the
argument that we have presented shows more. For example, if all the zeros in Z are
double zeros and u > k, then |T (α)|u is 2k times differentiable.

Lemma 4.2. Let W : R → R be a twice continuously differentiable function of

period 1, and let u > 2. For l ∈ Z let

bl =

∫ 1

0
W (α)|T (α)|ue(−αl) dα. (4.8)

Then, for all l ∈ Z \ {0}, one has

|bl| 6
1

(2πl)2

∫ 1

0

∣

∣

∣

d2

dα2
W (α)|T (α)|u

∣

∣

∣
dα. (4.9)

Moreover, for all α ∈ R one has the Fourier series expansion

W (α)|T (α)|u =
∑

l∈Z

ble(αl), (4.10)

in which the right hand side converges absolutely and uniformly on R.

Proof. By (4.5) and Lemma 4.1, the condition u > 2 ensures that W (α)|T (α)|u
is twice continuously differentiable. Hence, the integral on the right hand side of
(4.9) exists, and the upper bound (4.9) follows from (4.8) by integrating by parts
two times. Furthermore, the upper bound (4.9) ensures that the series in (4.10)
converges absolutely and uniformly on R. Thus, by [18, Chapter II, Theorem 8.14],
this Fourier series sums to W (α)|T (α)|u. �
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In this paper Lemmata 4.1 and 4.2 will only be used with the quartic Weyl sum
f , as defined in (1.10), in the role of T . The weight W will be either constantly 1
or a smooth minor arc. Let u > 0 and define the Fourier coefficient

ψu(n) =

∫ 1

0
|f(α)|ue(−αn) dα. (4.11)

Also, with a parameter Y at our disposal within the range 1 6 Y 6 1
4P

2, we consider
the smooth minor arcs n(α) = nP 4,Y (α) and introduce the related Fourier coefficient

φu(n) =

∫ 1

0
n(α)|f(α)|ue(−αn) dα. (4.12)

Lemma 4.3. Suppose that u > 2 and 1 6 Y 6 1
4P

2. Then, for all n ∈ Z \ {0}, one
has

|φu(n)|+ |ψu(n)| ≪ P u+8n−2.

Proof. We first compute the derivatives of |f(α)|u. Suppose temporarily that u is
not an even natural number. By (4.7), whenever f(α) 6= 0, we have

d

dα
|f(α)|u =

u

2
|f(α)|u−2

(

f ′(α)f̄(α) + f(α)f̄ ′(α)
)

,

and we may differentiate again to confirm the identity

d2

dα2
|f(α)|u =

u(u− 2)

4
|f(α)|u−4

(

f ′(α)f̄(α) + f(α)f̄ ′(α)
)2

+
u

2
|f(α)|u−2

(

f ′′(α)f̄(α) + 2f ′(α)f̄ ′(α) + f(α)f̄ ′′(α)
)

.

These formulae hold for all α ∈ R when u is an even natural number, and thus

∣

∣

∣

d

dα
|f(α)|u

∣

∣

∣
6 u|f(α)|u−1|f ′(α)|

and
∣

∣

∣

d2

dα2
|f(α)|u

∣

∣

∣
6 u(u− 1)|f(α)|u−2|f ′(α)|2 + u|f(α)|u−1|f ′′(α)|.

Hence, the trivial estimates f(α) ≪ P , f ′(α) ≪ P 5 and f ′′(α) ≪ P 9 suffice to
conclude that the upper bounds

d

dα
|f(α)|u ≪ P u+4 and

d2

dα2
|f(α)|u ≪ P u+8 (4.13)

hold for all α ∈ R when either u = 2 or f(α) 6= 0. However, when u > 2 these
derivatives will be zero whenever f(α) = 0, so the inequalities (4.13) hold uniformly
in α ∈ R. The upper bound ψu(n) ≪ P u+8n−2 is now immediate from Lemma 4.2.
Furthermore, an application of the product rule in combination with Lemma 3.2
and (4.13) shows that

d

dα
n(α)|f(α)|u ≪ P u+4 and

d2

dα2
n(α)|f(α)|u ≪ P u+8.

The estimate φu(n) ≪ P u+8n−2 therefore follows by invoking Lemma 4.2 once again,
and this completes the proof of the lemma. �
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5. Cubic moments of Fourier coefficients

The principal results in this section are the upper bounds for cubic moments of
φu(n) and ψu(n) embodied in Theorem 5.1 below. The proof of these estimates
involves a development of the ideas underpinning the main line of thought in our
earlier paper [6]. For u > 0 it is convenient to define

δ(u) = (25− 3u)/6. (5.1)

In many of the computations later it is useful to note that

3u− 8 + δ(u) =
5

2
u− 23

6
. (5.2)

Theorem 5.1. Let u be a real number with 6 6 u 6 25/3. Then
∑

n∈Z

|ψu(n)|3 ≪ P 3u−8+δ(u)+ε. (5.3)

Further, when 2P 4/15 6 Y 6 P/16 and 6 6 u 6 11, one has
∑

n∈Z

|φu(n)|3 ≪ P 3u−8+δ(u)+ε. (5.4)

When u > 6, the contribution from the major arcs to the sum in (5.3) is easily
seen to be of order P 3u−8. Since δ(u) is negative for u > 25/3, we cannot expect
that the upper bound (5.3) holds for such u. However, as is evident from (5.4),
a minor arcs version remains valid for u 6 11. Before we embark on the proof of
this theorem, we summarize some mean value estimates related to the Weyl sum
(1.10). In the following two lemmata, we assume that 1 6 Y 6 P/8 and write
M = MP 4,Y and m = mP 4,Y . It is useful to note that mP 4,Y = mP 4,P/8 ∪ K, where
K = MP 4,P/8 \MP 4,Y . Then, from [13, Lemma 5.1], we have the bounds

∫

M

|f(α)|6 dα ≪ P 2 and

∫

K

|f(α)|6 dα ≪ P 2Y ε−1/4. (5.5)

Lemma 5.2. Suppose that P 4/15 6 Y 6 P/8. Then
∫

m

|f(α)|20 dα ≪ P 15+ε.

Proof. For Y = P/8, the desired estimate is the case k = 4, w = 20 of Wooley [16,
Lemma 3.1]. For smaller values of Y , we make use of the case Y = P/8 and apply
the second bound of (5.5). On combining [14, Theorem 4.1] with [14, Lemma 2.8 and

Theorem 4.2], moreover, one readily confirms that the upper bound f(α) ≪ PY −1/4

holds uniformly for α ∈ K. Consequently, one has the estimate
∫

K

|f(α)|20 dα ≪ P 16Y ε−15/4,

and the conclusion of the lemma follows. �

Lemma 5.3. When 8 6 u 6 14, one has
∫ 1

0
|f(α)|u dα ≪ P

5

6
u− 5

3
+ε. (5.6)

Meanwhile, when 8 6 u 6 20, then uniformly in P 4/15 6 Y 6 P/8, one has
∫

m

|f(α)|u dα ≪ P
5

6
u− 5

3
+ε. (5.7)
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Proof. It is a consequence of Hua’s Lemma [14, Lemma 2.5] that
∫

m

|f(α)|8 dα 6

∫ 1

0
|f(α)|8 dα ≪ P 5+ε. (5.8)

One interpolates linearly between this estimate and the bound established in Lemma
5.2 via Hölder’s inequality to confirm the upper bound (5.7) for 8 6 u 6 20. The
upper bound (5.6) then follows on noting that for 6 6 u 6 14, it follows from (5.5)
that

∫

M

|f(α)|u dα ≪ P u−4 ≪ P
5

6
u− 5

3 .

Since [0, 1] = M ∪m, the desired conclusion follows at once. �

In the special case u = 14, the first conclusion of Lemma 5.3 assumes the simple
form already announced in (1.5).

Lemma 5.4. Let Z be a set of Z integers. Then
∫ 1

0

∣

∣

∣

∣

∑

z∈Z

e(αz)

∣

∣

∣

∣

2

|f(α)|2 dα ≪ PZ + P 1/2+εZ3/2

and
∫ 1

0

∣

∣

∣

∑

z∈Z

e(αz)
∣

∣

∣

2
|f(α)|4 dα ≪ P 3Z + P 2+εZ3/2.

Proof. This is essentially contained in [12, Lemma 6.1], where these estimates are
established in the case when Z is contained in [0, P 4]. As pointed out in [9, Lemma
2.2] this condition is not required. �

We now have available sufficient infrastructure to derive upper bounds for cubic
moments of φu(n) and ψu(n).

The proof of Theorem 5.1. Let ϑu(n) denote one of ψu(n), φu(n). On examining the
statement of the theorem, it is apparent that we may assume that in the former case
we have 6 6 u 6 25/3, and in the latter case 6 6 u 6 11 and 2P 4/15 6 Y 6 P/16.
We begin with the observation that, by Lemma 4.3, one has ϑu(n) ≪ P u+8n−2.
Consequently, when u > 6, one has

∑

|n|>P 7

|ϑu(n)|3 +
∑

|n|6P 7

|ϑu(n)|61

|ϑu(n)|3 ≪ P 7 + P 3u+24
∑

|n|>P 7

n−6 ≪ P 3u−11.

It remains to consider the contribution of those integers n with |n| 6 P 7 and
|ϑu(n)| > 1. We put Θ(α) = 1 when ϑu = ψu, and Θ(α) = n(α) when ϑu = φu.
Then the definitions (4.11) and (4.12) take the common form

ϑu(n) =

∫ 1

0
Θ(α)|f(α)|ue(−αn) dα. (5.9)

By Lemma 3.2, it follows that Θ(α) ∈ [0, 1]. Thus, by Lemma 5.3, one finds that

|ϑu(n)| 6 ϑu(0) 6 ψu(0) ≪ P
5

6
u− 5

3
+ε (8 6 u 6 11).

In the missing cases where 6 6 u < 8 one interpolates between (5.8) and the ele-
mentary inequality

∫ 1

0
|f(α)|4 dα ≪ P 2+ε, (5.10)
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also a consequence of Hua’s Lemma [14, Lemma 2.5], to conclude that

|ϑu(n)| 6 ϑu(0) 6 ψu(0) ≪ P 2+ 3

4
(u−4)+ε.

Fix a number τ with 0 < τ < 10−10 and define T0 by

T0 =

{

P
3

4
u−1+τ , when 6 6 u < 8,

P
5

6
u− 5

3
+τ , when 8 6 u 6 11.

Then, on recalling the upper bounds for ϑu(n) just derived, a familiar dyadic dis-
section argument shows that there is a number T ∈ [1, T0] with the property that

∑

n∈Z

|ϑu(n)|3 ≪ P 3u−11 + (logP )
∑

|n|6P 7

T<|ϑu(n)|62T

|ϑu(n)|3

≪ P 3u−11 + P εT 3Z, (5.11)

where Z denotes the number of elements in the set

Z = {n ∈ Z : |n| 6 P 7 and T < |ϑu(n)| 6 2T}.
For each n ∈ Z there is a complex number ηn, with |ηn| = 1, for which ηnϑu(n) is
a positive real number. Write

K(α) =
∑

n∈Z

ηne(−αn). (5.12)

Then one concludes from (5.9) and (5.12) that

TZ <
∑

n∈Z

ηnϑu(n) =

∫ 1

0
Θ(α)K(α)|f(α)|u dα. (5.13)

Beyond this point our argument depends on the size of T . Our first argument

handles the small values T 6 P
5

6
u− 35

18 . By (5.13) and Hölder’s inequality, we obtain
the bound

TZ 6 I1/2
(
∫ 1

0
|K(α)2f(α)4| dα

)1/3(∫ 1

0
|K(α)|2 dα

)1/6

, (5.14)

where

I =

∫ 1

0
Θ(α)2|f(α)|2u− 8

3 dα.

By orthogonality, one has
∫ 1

0
|K(α)|2 dα = Z,

and by a consideration of the underlying Diophantine equations, one deduces via
Lemma 5.4 that

∫ 1

0
|K(α)2f(α)4| dα ≪ P 3Z + P 2+εZ3/2. (5.15)

Next we confirm the bound I ≪ P
5

3
u− 35

9
+ε. Indeed, in the case where Θ = 1 we

have 6 6 u 6 25/3. In such circumstances 8 < 2u − 8/3 6 14, and so (5.6) applies
and yields the claimed bound. In the case Θ = n we have u 6 11, and hence
2u − 8/3 < 20. Write m = mP 4,Y/2. Then by Lemma 3.2, we have 0 6 n(α) 6 1m.
We therefore deduce that in this second case we have

I 6

∫ 1

0
n(α)|f(α)|2u− 8

3 dα 6

∫

m

|f(α)|2u− 8

3 dα,
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and (5.7) confirms our claimed bound for I.

Collecting these estimates together within (5.14), we now have

TZ ≪ P ε
(

P 3Z + P 2Z3/2
)1/3

Z1/6
(

P
5

3
u− 35

9

)1/2
.

On recalling (5.2), we find that this relation disentangles to yield the bound

T 3Z ≪ P 2+ 3

2
( 5
3
u− 35

9
)+ε + TP 2+ 5

3
u− 35

9
+ε

= P 3u−8+δ(u)+ε + TP
5

3
u− 17

9
+ε.

It transpires that in the range T 6 P
5

6
u− 35

18 the first term on the right hand side
dominates, so that we finally reach the desired conclusion T 3Z ≪ P 3u−8+δ(u)+ε. In
view of (5.11), this is enough to complete the proof of Theorem 5.1 in the case that
T is small.

Our second approach is suitable for T of medium size, with

P
5

6
u− 35

18 < T 6 P
5

6
u− 11

6 . (5.16)

We apply Schwarz’s inequality to (5.13), obtaining the bound

TZ 6

(
∫ 1

0
|K(α)2f(α)4| dα

)1/2(∫ 1

0
Θ(α)2|f(α)|2u−4 dα

)1/2

.

Note that when 6 6 u 6 11, one has 8 6 2u − 4 6 18, and when instead u 6 25/3,
we have 2u− 4 < 14. Hence, as in the proof of our earlier estimate for I, it follows
from Lemma 5.3 that

∫ 1

0
Θ(α)2|f(α)|2u−4 dα ≪ P

5

3
u−5+ε.

Applying this estimate in combination with (5.15), we conclude that

TZ ≪ P ε(P 3Z + P 2Z3/2)1/2(P
5

3
u−5)1/2.

This bound disentangles to deliver the relation

T 3Z ≪ TP
5

3
u−2+ε + T−1P

10

3
u−6+ε.

On recalling (5.2), we find that our present assumptions (5.16) concerning the size
of T deliver the estimate

T 3Z ≪ P
5

2
u− 23

6
+ε + P

5

2
u− 73

18
+ε ≪ P 3u−8+δ(u)+ε.

The conclusion of Theorem 5.1 again follows in this case, by virtue of (5.11).

The analysis of the large values T satisfying P
5

6
u− 11

6 < T 6 T0 is more subtle.
Suppose temporarily that ϑu = ψu, and hence that u 6 25/3. Then, by (3.5) and
(5.13),

TZ 6

∫ 1

0
N(α)K(α)|f(α)|u dα+

∫ 1

0
n(α)K(α)|f(α)|u dα.

By hypothesis, we have u > 6. Also, from Lemma 3.1, we have N 6 1NP4,P/8
, so

that (5.5) yields the bound
∫ 1

0
N(α)K(α)|f(α)|u dα 6 Z

∫

MP4,P/8

|f(α)|u dα < ZP u−4+τ .
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Since u− 4 + τ < 5
6u− 11

6 , for large enough P one has ZP u−4+τ < 1
2TZ. Thus

TZ ≪
∫ 1

0
n(α)K(α)|f(α)|u dα. (5.17)

Note that this is exactly the inequality (5.13) in the case where ϑu = φu. Con-
sequently, the upper bound (5.17) holds for the large values of T currently under
consideration, irrespective of the choice of ϑu. Now apply Schwarz’s inequality to
(5.17). Then, by Lemma 3.2, we deduce that

TZ ≪
(
∫ 1

0
|K(α)f(α)|2 dα

)1/2(∫

m

|f(α)|2u−2 dα

)1/2

,

where again we write m = mP 4,Y/2. Note here that u 6 11, so that 2u − 2 6 20.
Hence, by Lemmata 5.3 and 5.4, we have

TZ ≪ P ε
(

PZ + P
1

2Z
3

2

)1/2(
P

5

3
u− 10

3

)1/2
.

Consequently, our assumptions concerning the size of T reveal that

T 3Z ≪ TP
5

3
u− 7

3
+ε + T−1P

10

3
u− 17

3
+ε

≪ T0P
5

3
u− 7

3
+ε + P

5

2
u− 23

6
+ε. (5.18)

When 6 6 u < 8, one has
(

3
4u− 1

)

+
(

5
3u− 7

3

)

= 29
12u− 10

3 6 5
2u− 23

6 ,

whilst for 8 6 u 6 11,
(

5
6u− 5

3

)

+
(

5
3u− 7

3

)

= 5
2u− 4 < 5

2u− 23
6 .

Then in either case one finds from (5.18) via (5.2) that T 3Z ≪ P 3u−8+δ(u)+2τ , and
the conclusion of Theorem 5.1 follows in this final case, again by (5.11), on taking
τ sufficiently small. �

We close this section with a related but simpler result.

Theorem 5.5. One has
∑

n∈Z

ψ4(n)
3 ≪ P 13/2+ε.

Proof. By (4.11) and orthogonality, the Fourier coefficient ψ4(n) has a Diophantine
interpretation that shows on the one hand that ψ4(n) is a non-negative integer, and
on the other that ψ4(n) = 0 for all n ∈ Z with |n| > 2P 4. By (4.11) and (5.10), we
also have the bound ψ4(n) 6 ψ4(0) ≪ P 2+ε. Let δ be any fixed positive number,
and suppose that P is sufficiently large in terms of δ. Then the argument leading
to (5.11) now shows that there is a number T with 1/2 6 T 6 P 2+δ having the
property that

∑

n∈Z

ψ4(n)
3 ≪ P ε

∑

|n|62P 4

T<ψ4(n)62T

ψ4(n)
3 ≪ P εT 3Z, (5.19)

where Z denotes the number of elements in the set

Z = {n ∈ Z : |n| 6 2P 4 and T < |ψ4(n)| 6 2T}.
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As in the corresponding analysis within the proof of Theorem 5.1, we next find that
there are unimodular complex numbers ηn (n ∈ Z ) having the property that, with
K(α) defined via (5.12), one has

TZ <

∫ 1

0
K(α)|f(α)|4 dα.

We first handle small values of T . Here, an application of Schwarz’s inequality
leads via (5.8) to the bound

TZ 6

(
∫ 1

0
|f(α)|8 dα

)1/2(∫ 1

0
|K(α)|2 dα

)1/2

≪ P 5/2+εZ1/2.

This disentangles to yield T 3Z ≪ TP 5+ε, proving the theorem for T 6 P 3/2.

Next, when T is large, we apply Hölder’s inequality in a manner similar to that
employed in the large values analysis of the proof of Theorem 5.1. Thus

TZ 6

(
∫ 1

0
|K(α)2f(α)2| dα

)1/2(∫ 1

0
|f(α)|4 dα

)1/4(∫ 1

0
|f(α)|8 dα

)1/4

,

and hence

TZ ≪ P ε(PZ + P 1/2Z3/2)1/2P 7/4.

We now obtain the bound

T 3Z ≪ TP 9/2+ε + T−1P 8+ε,

and in view of (5.19), this proves Theorem 5.5 in the complementary case P 3/2 6

T 6 P 2+δ, since the positive number δ can be taken arbitrarily small. �

6. Mean values of quartic Weyl sums

In this section we estimate certain entangled moments of quartic Weyl sums,
and then apply them to obtain minor arc estimates for use within the proofs of
Theorems 1.1 and 1.2. Throughout this section and the next, let the pair of integers
ci, di (1 6 i 6 5) satisfy the condition that the points (ci : di) ∈ P1(Q) are distinct.
Define the linear forms Mi = Mi(α, β) (1 6 i 6 5) by

Mi(α, β) = ciα+ diβ. (6.1)

Let u > 0, and recall the definition of the exponent δ(u) from (5.1). Then, with

2P 4/15 6 Y 6 P/16 and n = nP 4,Y , we consider the mean values

Iu =

∫ 1

0

∫ 1

0
|f(M1)f(M2)f(M3)|u dα dβ,

Ju =

∫ 1

0

∫ 1

0
n(M1)n(M2)n(M3)|f(M1)f(M2)f(M3)|u dα dβ.

Theorem 6.1. One has I4 ≪ P 13/2+ε and Iu ≪ P 3u−8+δ(u)+ε (6 6 u 6 25/3).

Also, when 6 6 u 6 11, one has Ju ≪ P 3u−8+δ(u)+ε.

Proof. It follows from Lemmata 3.2 and 4.2 that the function n(γ)|f(γ)|u has a
uniformly convergent Fourier series with coefficients φu(n). By orthogonality, we
conclude that

Ju =
∑

(n1,n2,n3)∈N

φu(n1)φu(n2)φu(n3),
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where N is the set of solutions in integers n1, n2, n3 of the linear system

c1n1 + c2n2 + c3n3 = d1n1 + d2n2 + d3n3 = 0.

Since the projective points (ci : di) are distinct, there exist non-zero integers li,
depending only on the ci, di, having the property that the solutions of this system
are precisely the triples (n1, n2, n3) = m(l1, l2, l3) (m ∈ Z). It therefore follows from
(2.2) that

Ju 6
1

3

∑

m∈Z

(

|φu(l1m)|3 + |φu(l2m)|3 + |φu(l3m)|3
)

6
∑

n∈Z

|φu(n)|3.

The desired bound for Ju now follows from Theorem 5.1. The bounds for I4 and
Iu follow in the same way, but the argument has to be built on the cubic moment
estimates for ψu(n) that are provided by Theorems 5.1 and 5.5. �

We now turn to related, less balanced mixed moments. With u and Y as before,
we define

Ku =

∫ 1

0

∫ 1

0
|f(M1)f(M2)|u|f(M3)|6 dα dβ,

Lu =

∫ 1

0

∫ 1

0
n(M1)n(M2)|f(M1)f(M2)|u|f(M3)|6 dα dβ,

and put

η(u) =
19

6
− u

3
.

Theorem 6.2. Subject to the hypotheses of this section, one has

Ku ≪ P 2u−2+η(u)+ε (6 6 u 6 19/2),

Lu ≪ P 2u−2+η(u)+ε (6 6 u 6 11).

Proof. We proceed as in the initial phase of the proof of Theorem 6.1. Using the
same notation, we obtain

Lu =
∑

(n1,n2,n3)∈N

φu(n1)φu(n2)ψ6(n3).

Note here that ψ6(m) counts solutions of a Diophantine equation, and consequently
is a non-negative integer. Hence

Lu 6
1

2

∑

(n1,n2,n3)∈N

ψ6(n3)
(

|φu(n2)|2 + |φu(n1)|2
)

.

By symmetry, we may therefore suppose that for appropriate non-zero integers l2
and l3, depending at most on c and d, one has

Lu 6
∑

(n1,n2,n3)∈N

ψ6(n3)|φu(n2)|2 =
∑

m∈Z

ψ6(l3m)|φu(l2m)|2. (6.2)

Next, first applying Hölder’s inequality, and then Theorem 5.1 and (5.2), we obtain
the bound

Lu 6

(

∑

n∈Z

ψ6(n)
3
)1/3( ∑

m∈Z

|φu(m)|3
)2/3

≪ P ε
(

P 15− 23

6

)1/3
(

P
5

2
u− 23

6

)2/3
.
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The estimate for Lu recorded in Theorem 6.2 therefore follows on recalling the
definition of η(u).

The initial steps in the estimation of Ku are the same, and one reaches a bound
for Ku identical to (6.2) except that φu now becomes ψu. We split into major and
minor arcs by inserting the relation 1 = N(α) + n(α), with parameters X = P 4 and

Y = P 1/3, into (4.11). From (5.5) we obtain
∣

∣

∣

∣

∫ 1

0
N(α)|f(α)|ue(−αn) dα

∣

∣

∣

∣

6

∫

MP4,Y

|f(α)|u dα ≪ P u−4.

Hence, we discern from (4.11) and (4.12) that

|ψu(n)|2 ≪ |φu(n)|2 + P 2u−8,

and so,

Ku ≪
∑

m∈Z

ψ6(l3m)|φu(l2m)|2 + P 2u−8
∑

m∈Z

ψ6(l3m).

Here the first sum over m is the same as that occurring in the estimation of Lu in
(6.2), and has already been estimated above. Thus, since

∑

n∈Z

ψ6(n) = |f(0)|6 ≪ P 6,

we conclude that

Ku ≪ P 2u−2+η(u)+ε + P 2u−8
∑

n∈Z

ψ6(n) ≪ P 2u−2+η(u)+ε + P 2u−2.

Provided that u 6 19/2, which guarantees η(u) to be non-negative, this estimate
confirms the upper bound for Ku claimed in the theorem. �

Note that the mean values Iu and Ju involve s = 3u Weyl sums, at least for
integral values of u. By comparison, the number of Weyl sums in Ku and Lu is
s = 2u + 6. A short calculation shows that when applied with the same value of
s, with s > 18, the exponents of P in Theorems 6.1 and 6.2 coincide. Since almost
all of Theorem 6.1 may be recovered from Theorem 6.2 via Hölder’s inequality, and
since for fixed values of s the exponent u in Theorem 6.2 is at least as large, Theorem
6.2 is morally the stronger result. In our later application of the circle method, this
allows for larger values of rj in the profiles associated to the simultaneous equations
(1.1), and this is essential for our method to succeed. Another advantage is that in
Lu only two of the forms Mi are on minor arcs, while in the mean value Ju all three
are constrained to minor arcs.

We continue with another result in which the profile is even farther out of balance.
We consider the integral

M =

∫ 1

0

∫ 1

0
n(M1)n(M2)|f(M1)

11f(M2)
11f(M3)

4| dα dβ.

Theorem 6.3. Given the hypotheses of this section, one has M ≪ P 18−1/18+ε.

Proof. We again traverse the initial phase of the proof of Theorem 6.1 to confirm
the relation

M =
∑

(n1,n2,n3)∈N

φ11(n1)φ11(n2)ψ4(n3).
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Then, just as in the argument of the proof of Theorem 6.2 leading to (6.2), we find
that for appropriate non-zero integers l2 and l3, depending at most on c and d, one
has

M 6
∑

m∈Z

ψ4(l3m)|φ11(l2m)|2.

Thus, an application of Hölder’s inequality in combination with Theorems 5.1 and
5.5, together with (5.2), yields the bound

M 6

(

∑

n∈Z

ψ4(n)
3
)1/3(∑

n∈Z

|φ11(n)|3
)2/3

≪ P ε
(

P 13/2
)1/3

(

P 71/3
)2/3

.

The desired conclusion follows a rapid computation. �

Finally, we transform the estimates for Lu and M into proper minor arc estimates.
In the interest of brevity we write M = MP 4,P 1/3 and put

p = [0, 1]2 \ (M×M). (6.3)

Theorem 6.4. Suppose that 19/2 < u 6 11. Then
∫∫

p

|f(M1)f(M2)|u|f(M3)|6 dα dβ ≪ P 2u−2+η(u)+ε. (6.4)

Further, one has
∫∫

p

|f(M1)
11f(M2)

11f(M3)
4| dα dβ ≪ P 18−1/18+ε. (6.5)

Proof. Let N = NP 4,P 2/7 and n = 1− N. Then

1 =
(

N(M1) + n(M1)
)(

N(M2) + n(M2)
)

. (6.6)

We note at once that whenever (α, β) ∈ p, one has N(M1)N(M2) = 0. The expla-
nation for this observation is that whenever N(M1)N(M2) > 0, then it follows from
Lemma 3.1 that Mj ∈ NP 4,2P 2/7 (j = 1, 2). By taking suitable linear combinations
of M1 and M2 we find that α and β lie in NP 4,AP 2/7 , with some A > 2 depending

only on the coefficients of M1 and M2. But (α, β) ∈ [0, 1]2, and so (α, β) ∈ M×M

for large enough P . This is not the case when (α, β) ∈ p, as claimed.

With this observation in hand, we apply (6.6) within the integral on the left hand
side of (6.5) to conclude that

∫∫

p

|f(M1)
11f(M2)

11f(M3)
4| dα dβ 6 M +MNn +MnN, (6.7)

where

MNn =

∫ 1

0

∫ 1

0
N(M1)n(M2)|f(M1)

11f(M2)
11f(M3)

4| dα dβ (6.8)

and MnN is the integral in (6.8) with M1, M2 interchanged.

By symmetry in M1 and M2, it now suffices to estimate MNn. Recalling the
definition (6.1) of the linear forms Mi, we put D = |c1d2 − c2d1| and note that
D > 0. Consider the linear transformation from R2 to R2, with (α, β) 7→ (α′, β′),
defined by means of the relation

(

α′

β′

)

= D−1
(

c1 d1
c2 d2

)(

α
β

)

. (6.9)
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Then M1 = Dα′, M2 = Dβ′, and α and β are linear forms in α′ and β′ with integer
coefficients. By applying the transformation formula as a change of variables, one
finds that

MNn =

∫∫

B

N(Dα′)n(Dβ′)|f(Dα′)11f(Dβ′)11f(Aα′ +Bβ′)4| dα′ dβ′,

wherein A,B are non-zero integers and B is the image of [0, 1]2 under the transfor-
mation (6.9). The parallelogram B is covered by finitely many sets [0, 1]2 + t, with
t ∈ Z2. Since the integrand in the last expression for MNn is Z2-periodic it follows
that

MNn ≪
∫ 1

0

∫ 1

0
N(Dα)n(Dβ)|f(Dα)11f(Dβ)11f(Aα+Bβ)4| dα dβ.

Here we have removed decorations from the variables of integration for notational
simplicity.

We now inspect all factors of the integrand in the latter upper bound that depend
on β. By Hölder’s inequality, Lemma 5.3 and obvious changes of variable, one obtains
the estimate

∫ 1

0
n(Dβ)|f(Dβ)11f(Aα+Bβ)4| dβ

≪
(
∫ 1

0
n(Dβ)|f(Dβ)|77/5 dβ

)5/7(∫ 1

0
|f(Aα+Bβ)|14 dβ

)2/7

≪ P ε
(

P 67/6
)5/7

(P 10)2/7 = P 65/6+ε,

uniformly in α ∈ R. Consequently, applying (5.5) in combination with yet another
change of variable, we finally arrive at the bound

MNn ≪ P 65/6+ε

∫ 1

0
N(Dα)|f(Dα)|11 dα ≪ P 18−1/6+ε.

We may infer thus far that MNn +MnN ≪ P 18−1/6+ε. On substituting this estimate
into (6.7), noting also the bound M ≪ P 18−1/18+ε supplied by Theorem 6.3, the
conclusion (6.5) is confirmed.

The proof of (6.4) is essentially the same, and we economise by making similar
notational conventions. The exponents 11 and 4 that occur in (6.5) must now be
replaced by u and 6, respectively. The initial phase of the preceding argument then
remains valid, and an appeal to Theorem 6.2 delivers the bound

∫∫

p

|f(M1)f(M2)|u|f(M3)|6 dα dβ ≪ LNn + LnN + P 2u−2+η(u)+ε, (6.10)

where

LNn ≪
∫ 1

0

∫ 1

0
N(Dα)n(Dβ)|f(Dα)f(Dβ)|u|f(Aα+Bβ)|6 dα dβ.
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Here, we isolate factors of the integrand that depend on β and apply Hölder’s in-
equality. Note that since u 6 11 we have 7u/4 < 20. Thus, by Lemma 5.3,

∫ 1

0
n(Dβ)|f(Dβ)uf(Aα+Bβ)6| dβ

≪
(
∫ 1

0
n(Dβ)|f(Dβ)|7u/4 dβ

)4/7(∫ 1

0
|f(Aα+Bβ)|14 dβ

)3/7

≪ P ε
(

P
35

24
u− 5

3

)4/7(
P 10

)3/7
.

Applying this bound, which is uniform in α ∈ R, together with (5.5), we arrive at
the estimate

LNn ≪ P
5

6
u+ 10

3
+ε

∫ 1

0
N(Dα)|f(Dα)|u dα ≪ P

11

6
u− 2

3
+ε.

When u 6 11, the definition of η(u) ensures that 11
6 u− 2

3 6 2u−2+η(u), and hence

LNn + LnN ≪ P 2u−2+η(u)+ε. The conclusion (6.4) now follows by substituting this
estimate into (6.10). �

7. Another mean value estimate

This section is an update for quartic Weyl sums of our earlier work [3] on highly
entangled mean values. We now attempt to avoid independence conditions on linear
forms as far as the argument allows while incorporating the consequences of the
recent bound (1.5). We emphasise that throughout this section, we continue to
work subject to the overall assumptions made at the outset of the previous section.
We begin by examining the mean value

G1 =

∫ 1

0

∫ 1

0
|f(M1)

2f(M2)
4f(M3)

4| dα dβ. (7.1)

Lemma 7.1. One has G1 ≪ P 5+ε.

Proof. This is essentially contained in [4, Section 2], but we give a proof for com-
pleteness. Recall the definition (6.1) of the linear forms Mi. By orthogonality, the
integral G1 is equal to the number of solutions of an associated pair of quartic equa-
tions. By taking suitable integral linear combinations of these two equations, we
may assume that they take the shape

a(x41 − x42) = b(x43 + x44 − x45 − x46) = c(x47 + x48 − x49 − x410), (7.2)

for suitable natural numbers a, b, c. Thus, we see that G1 is equal to the number
of solutions of the Diophantine system (7.2) with xi 6 P . For each of the O(P )
possible choices for x1 and x2 with x1 = x2, it follows via orthogonality and (5.10)
that the number of solutions of this system in the remaining variables x3, . . . , x10 is
equal to

(
∫ 1

0
|f(α)|4 dα

)2

≪ P 4+ε.

Consequently, the contribution to G1 from this first class of solutions is O(P 5+ε).
Now consider solutions of (7.2) in which x1 6= x2. By orthogonality, the total number
of choices for x3, . . . , x10 satisfying the rightmost equation in (7.2) is

∫ 1

0
|f(bα)f(cα)|4 dα.
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Schwarz’s inequality in combination with (5.8) shows this integral to be O(P 5+ε).
However, for any fixed choice of x3, . . . , x10 in this second class of solutions, one
has x1 6= x2, and hence the fixed integer N = b(x43 + x44 − x45 − x46) is non-zero.
But it follows from (7.2) that x21 − x22 and x21 + x22 are each divisors of N . Thus,
a standard divisor function estimate shows that the number of choices for x1 and
x2 is O(P ε), and we conclude that the contribution to G1 from this second class of
solutions is O(P 5+ε). Adding these two contributions, we obtain the bound claimed
in the statement of the lemma. �

We next examine the mean value

G2 =

∫ 1

0

∫ 1

0
|f(M1)

2f(M2)
4f(M3)

4f(M4)
4f(M5)

4| dα dβ. (7.3)

Theorem 7.2. One has G2 ≪ P 11+ε.

Note that in this result we require the five linear forms Mj to be pairwise inde-
pendent. Therefore, the result will be of use only in cases where the profile of (1.1)
has r5 > 1. The mean value in Theorem 7.2 involves 18 Weyl sums and should
therefore be compared with the bound I6 ≪ P 67/6+ε provided by Theorem 6.1. The
extra savings that we obtain here are the essential stepping stone toward Theorem
1.2.

The proof of Theorem 7.2. As in the proof of Lemma 7.1, it follows from orthogo-
nality that the integral G2 is equal to the number of solutions of an associated pair
of quartic equations. Taking suitable integral linear combinations of these two equa-
tions, we reduce to the situation where c4 = d5 = 0, and consequently M4 = d4β and
M5 = c5α. Motivated by this observation, we begin our deliberations by estimating
the auxiliary mean value

G3 =

∫ 1

0

∫ 1

0
|f(M1)

2f(M2)
4f(M3)

4f(d4β)
4| dα dβ.

The Weyl differencing argument [14, Lemma 2.3] shows that there are real num-
bers uh with uh ≪ P ε for which

|f(γ)|4 ≪ P 3 + P
∑

16|h|62P 4

uhe(γh). (7.4)

We apply this relation with γ = M4 to the mean value G3 and infer that

G3 ≪ P 3G1 + PG4, (7.5)

where G1 is the mean value defined in (7.1), and

G4 =
∑

16|h|62P 4

uh

∫ 1

0

∫ 1

0
|f(M1)

2f(M2)
4f(M3)

4|e(d4hβ) dα dβ.

By orthogonality, the double integral on the right hand side here is equal to the
number of solutions of the system of Diophantine equations

c1(x
4
1 − y41) + c2(x

4
2 + x43 − y42 − y43) + c3(x

4
4 + x45 − y44 − y45) = 0 (7.6)

d1(x
4
1 − y41) + d2(x

4
2 + x43 − y42 − y43) + d3(x

4
4 + x45 − y44 − y45) +d4h = 0

with xi 6 P and yi 6 P . We may sum over h 6= 0 and replace uh by its upper
bound. Then we find that G4 ≪ P εG5, where G5 is the number of solutions of the
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equation (7.6) with the same conditions on xi and yi. By orthogonality again, we
deduce that

G5 =

∫ 1

0
|f(c1α)2f(c2α)4f(c3α)4| dα.

For 1 6 i 6 3 the linear form Mi is linearly independent of M4 = d4β, and thus
c1c2c3 6= 0. The trivial bound |f(c1α)|2 ≪ P 2 therefore combines with Schwarz’s
inequality and (5.8) to award us the bound

G5 ≪ P 2

∫ 1

0
|f(γ)|8 dγ ≪ P 7+ε.

We therefore deduce that G4 ≪ P 7+2ε. Meanwhile, the estimate G1 ≪ P 5+ε is
available from Lemma 7.1. On substituting these bounds into (7.5), we conclude
thus far that G3 ≪ P 8+ε.

We now repeat this argument with γ = M5 in (7.4), applying the resulting in-
equality within the integral G2 defined in (7.3). Thus we obtain

G2 ≪ P 3G3 + P 1+εG6, (7.7)

where G6 denotes the number of solutions of the Diophantine equation

d1(x
4
1−y41)+d2(x

4
2+x43−y42−y43)+d3(x

4
4+x45−y44−y45)+d4(x

4
6+x47−y46−y47) = 0,

with xi 6 P and yi 6 P . By orthogonality,

G6 =

∫ 1

0
|f(d1α)2f(d2α)4f(d3α)4f(d4α)4| dα.

One may confirm that d1d2d3d4 6= 0 by arguing as above, and so an application of
(2.2) in combination with (1.5) reveals that

G6 6

4
∑

i=1

∫ 1

0
|f(diα)|14 dα = 4

∫ 1

0
|f(γ)|14 dγ ≪ P 10+ε.

The conclusion of the theorem now follows on substituting this bound together with
our earlier estimate for G3 into (7.7). �

8. The circle method

In this section we prepare the ground to advance to the proofs of Theorems 1.1
and 1.2. A preliminary manœuvre is in order. Let k = 0 or 1, and let Nk(P ) = Nk

denote the number of solutions of the system (1.1) with k 6 xj 6 P (1 6 j 6 s).
Note that the equations (1.1) are invariant under the s mappings xj 7→ −xj . This
observation shows that

2sN1(P ) 6 N (P ) 6 2sN0(P ). (8.1)

The goal is then to establish the formulae

lim
P→∞

2sP 8−sNk(P ) = IS (k = 0, 1), (8.2)

since then (1.4) follows immediately from (8.1) and the sandwich principle. Thus,
we now launch the Hardy-Littlewood method to evaluate the counting functions
Nk(P ). This involves the exponential sum

fk(α) =
∑

k6x6P

e(αx4). (8.3)
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This sum is, of course, an instance of the sum (1.10), where we have been deliberately
imprecise about the lower end of the interval of summation. The results we have
formulated so far are indeed independent of the choice of k, and it is only now and
temporarily where this detail matters. We require the linear forms Λj = Λj(α, β),
defined by

Λj(α, β) = ajα+ bjβ (1 6 j 6 s)

that are associated with the equations (1.1). We then put

Fk(α, β) = fk(Λ1)fk(Λ2) · · · fk(Λs), (8.4)

and observe that, by orthogonality, one has

Nk(P ) =

∫ 1

0

∫ 1

0
Fk(α, β) dα dβ. (8.5)

Subject to conditions milder than those imposed in Theorems 1.1 and 1.2 we
reduce the evaluation of the integral (8.5) to the estimation of its minor arc part.
With this end in mind we define the major arcs V as the union of the rectangles

V(q, a, b) = {(α, β) ∈ [0, 1]2 : |α− a/q| 6 P−31/8 and |β − b/q| 6 P−31/8},
with 0 6 a, b 6 q, (a, b, q) = 1 and 1 6 q 6 P 1/8.

Define the generating functions

S(q, c) =

q
∑

x=1

e(cx4/q) and v(γ) =

∫ P

0
e(γt4) dt.

Then, given (α, β) ∈ [0, 1]2, if we put γ = α− a/q and δ = β − b/q for some a, b ∈ Z

and q ∈ N, one concludes from (8.3) and [14, Theorem 4.1] that

fk(Λj) = q−1S (q,Λj(a, b)) v (Λj(γ, δ)) +O
(

q1/2+ε(1 + P 4|Λj(γ, δ)|)1/2
)

. (8.6)

Note that the right hand side here is independent of k. We multiply these approxi-
mations for 1 6 j 6 s. This brings into play the expressions

S (q, a, b) = q−s
s
∏

j=1

S (q,Λj(a, b)) and V (γ, δ) =
s
∏

j=1

v (Λj(γ, δ)) .

If (α, β) ∈ V(q, a, b) ⊆ V then the error term in (8.6) is O(P 1/8+ε), and we infer
that

Fk(α, β) = S (q, a, b)V (γ, δ) +O(P s−7/8+ε).

Since V is a set of measure O(P−59/8), when we integrate this formula for Fk(α, β)
over V, we obtain the asymptotic relation

∫∫

V

Fk(α, β) dα dβ = S(P 1/8)J∗(P 1/8) +O(P s−33/4+ε),

where, for 1 6 Q 6 P we define

S(Q) =
∑

q6Q

q
∑

a=1

q
∑

b=1
(a,b,q)=1

S (q, a, b),

J∗(Q) =

∫∫

U(Q)
V (γ, δ) dγ dδ,

and U(Q) = [−QP−4, QP−4]2.
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At this point, we require some more information concerning the matrix of coef-
ficients, and we shall suppose that q0 > 15. Then s > 16, and we may apply [9,
Lemma 3.3] to conclude that S(Q) = S+O(Qε−1). Further, we have

∫ P

−P
e(γt4) dt = 2v(γ),

and thus [9, Lemma 3.1] shows that the limit (1.2) exists, and that we have 2sJ∗(Q) =

P s−8J+O(P s−8Q−1/4). We summarise these deliberations in the following lemma.

Lemma 8.1. Suppose that q0 > 15 and that k ∈ {0, 1}. Then
∫∫

V

Fk(α, β) dα dβ = 2−sP s−8SJ+O(P s−8−1/32).

The major arcs in Lemma 8.1 are certainly too slim for efficient use of Weyl type
inequalities on the complementary set. A pruning argument allows us to enlarge the
major arcs considerably. Let W denote the union of the rectangles

W(q, a, b) = {(α, β) ∈ [0, 1]2 : |qα− a| 6 P−3 and |qβ − b| 6 P−3},
with 1 6 q 6 P , 0 6 a, b 6 q and (a, b, q) = 1. Then V ⊂ W, and we proceed to
estimate the contribution from W \ V to the integral (8.5). A careful application

of [14, Theorem 4.2] shows that S(q, c) ≪ q3/4(q, c)1/4. Further, if V (γ) = P (1 +

P 4|γ|)−1/4, then by [14, Theorem 7.3], one has v(γ) ≪ V (γ). Hence, whenever
(α, β) ∈ W(q, a, b) with q 6 P , one deduces from (8.6) that

fk(Λj) ≪ q−1/4 (q,Λj(a, b))
1/4 V (Λj(α− a/q, β − b/q)) + P 1/2+ε.

It is immediate that the first term on the right hand side here always dominates the
second, and therefore,

Fk(α, β) ≪ q−s/4
s
∏

j=1

(q,Λj(a, b))
1/4 V (Λj(α− a/q, β − b/q)) .

We integrate over W \V. The result is a sum over q 6 P in which we consider

the portion q 6 P 1/8 separately. This yields the bound
∫∫

W\V
Fk(α, β) dα dβ ≪ K1(P

1/8) +K2(P
1/8), (8.7)

where for 1 6 Q 6 P , we write

K1(Q) =
∑

q6Q

q
∑

a=1

q
∑

b=1
(a,b,q)=1

q−s/4
s
∏

j=1

(q,Λj(a, b))
1/4

∫∫

B(Q)

s
∏

j=1

V (Λj) dα dβ,

with B(Q) = [−1, 1]2 \ U(Q), and

K2(Q) =
∑

Q<q6P

q
∑

a=1

q
∑

b=1
(a,b,q)=1

q−s/4
s
∏

j=1

(q,Λj(a, b))
1/4

∫∫

[−1,1]2

s
∏

j=1

V (Λj) dα dβ.

Still subject to the condition q0 > 15, the proof of [9, Lemma 3.2] shows that

∑

q>Q

q
∑

a=1

q
∑

b=1
(a,b,q)=1

q−s/4
s
∏

j=1

(q,Λj(a, b))
1/4 ≪

∑

q>Q

qε−2 ≪ Qε−1,
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and similarly, the proof of [9, Lemma 3.1] delivers the bounds

∫∫

B(Q)

s
∏

j=1

V (Λj) dα dβ ≪ P s−8Q−1/4

and
∫∫

[−1,1]2

s
∏

j=1

V (Λj) dα dβ ≪ P s−8.

Thus we deduce that K1(P
1/8)+K2(P

1/8) ≪ P s−8−1/32. Substituting this estimate
into (8.7), and then recalling Lemma 8.1, we see that in the latter lemma we may
replace V by W. This establishes the following theorem.

Theorem 8.2. Suppose that q0 > 15 and that k ∈ {0, 1}. Then
∫∫

W

Fk(α, β) dα dβ = 2−sP s−8SI+O(P s−8−1/32).

Let w = [0, 1]2 \ W denote the minor arcs. Then, in view of (8.2), (8.5) and
Theorem 8.2, whenever q0 > 15, the asymptotic relation (1.4) is implied by the
minor arc estimate

∫∫

w

Fk(α, β) dα dβ ≪ P s−8−1/32, (8.8)

as P → ∞, and in the next two sections we shall confirm this subject to the hy-
potheses imposed in Theorems 1.1 and 1.2.

9. The proof of Theorem 1.1

At the core of the proof of Theorem 1.1 we require two minor arc estimates.
Throughout this section, we define the linear forms Mi in accordance with equation
(6.1).

Lemma 9.1. Suppose that the linear forms M1 and M2 are linearly independent.

Then
∫∫

w

|f(M1)f(M2)|15 dα dβ ≪ P 22−1/6+ε.

Proof. It is immediate from (6.3) that w ⊂ p. Recall the initial argument within
the proof of Theorem 6.4. This shows that for (α, β) ∈ p, the forms M1 and M2

cannot be in NP 4,P 2/7 simultaneously. By symmetry we may therefore suppose that

M1 ∈ nP 4,P 2/7 . Now apply the transformation formula as in (6.9). One finds that
for an appropriate non-zero integer D, depending at most on c and d, one has

∫∫

w

|f(M1)f(M2)|15 dα dβ ≪
∫ 1

0

∫

m

|f(Dα)f(Dβ)|15 dα dβ,

where m = mP 4,P 2/7 . Thus, applying a trivial estimate for one factor f(Dβ), we
deduce via Lemma 5.3 that

∫∫

w

|f(M1)f(M2)|15 dα dβ ≪ P ε
(

P 65/6
)

(

P 11
)

≪ P 22−1/6+ε.

This completes the proof of the lemma. �
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Lemma 9.2. Suppose that the linear forms M1, M2, M3 are pairwise linearly inde-

pendent. Then
∫∫

w

|f(M1)
11f(M2)

11f(M3)
4| dα dβ ≪ P 18−1/18+ε.

Proof. On recalling that w ⊂ p, the lemma is immediate from Theorem 6.4. �

We are now fully equipped to complete the proof of Theorem 1.1. Suppose that
we are given a pair of equations (1.1) with s > 26, q0 > 15 and profile (r1, r2, . . . , rν).
The parameter l = s− r1 − r2 determines our argument. In the notation of Section
8, we let F = Fk with k = 0 or 1 being the generating function defined in (8.4).

Small values of l call for special attention. Initially, we consider the situation with
0 6 l 6 3. We apply Lemma 2.3 with ν = 3, with J1 and J2 the subsets of the set
of indices {1, 2, . . . , s} counted by r1 and r2, respectively, and with J3 the subset
consisting of the remaining indices. Then card(J3) = l. We also choose

M1 = s− 15, M2 = 15− l and M3 = l.

The condition q0 > 15 ensures that r1 6 s−15, and r1+r2 = s− l = M1+M2. Also,
we have M1 = s− 15 > 15− l = M2 because r1 > r2 > 15− l and s = r1 + r2 + l >
2r2 + l > 30− l. Finally, since 0 6 l 6 3 it is apparent that M2 = 15− l > l = M3.
Therefore, Lemma 2.3 is indeed applicable and delivers the bound

∫∫

w

F (α, β) dα dβ ≪
∫∫

w

|f(M1)
s−15f(M2)

15−lf(M3)
l| dα dβ,

where each of the Mj is one of the linear forms Λi, and any two of the Mj are linearly
independent. We now reduce the exponent s− 15 to 15− l and then apply Hölder’s
inequality. Thus

∫∫

w

F (α, β) dα dβ ≪ P s−30+l

∫∫

w

|f(M1)
15−lf(M2)

15−lf(M3)
l| dα dβ

≪ Υ
l/4
1 Υ

1−l/4
2 ,

where

Υ1 =

∫∫

w

|f(M1)
11f(M2)

11f(M3)
4| dα dβ,

Υ2 =

∫∫

w

|f(M1)f(M2)|15 dα dβ.

In this scenario, therefore, we deduce from Lemmata 9.1 and 9.2 that
∫∫

w

F (α, β) dα dβ ≪ P s−30+l+ε
(

P 18−1/18
)l/4 (

P 22−1/6
)1−l/4

≪ P s−8−1/18+ε. (9.1)

We may now suppose that l > 4. Then r1 6 s−15 and r1+r2 6 s−4. In Lemma
2.3 we now take Jj to be the subset of the set of indices {1, 2, . . . , s} counted by rj .
We also choose

Mν = . . . = M4 = 0, M3 = 4, M2 = 11 and M1 = s− 15,

and note that the hypothesis s > 26 ensures that M1 > M2. The conditions required
to apply Lemma 2.3 are consequently in play, and we deduce that

∫∫

w

F (α, β) dα dβ ≪
∫∫

w

|f(M1)|s−15|f(M2)|11|f(M3)|4 dα dβ,
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where again each of the Mj is one of the linear forms Λi, and any two of the Mj

are linearly independent. Here s − 15 > 11 by the hypothesis s > 26, and we may
estimate excessive copies of f(M1) trivially and apply Lemma 9.2. This confirms
that (9.1) also holds for l > 4. In particular, we have (8.8) subject to the hypotheses
of Theorem 1.1. This completes the proof of Theorem 1.1.

10. The proof of theorem 1.2

We continue to use the notation introduced in §§8 and 9, but now suppose that
the hypotheses of Theorem 1.2 are met. Hence s = 25 and r1 6 s− q0 6 9. We also
assume that r5 > 1. Our goal on this occasion is the estimate

∫∫

w

F (α, β) dα dβ ≪ P 17−1/24+ε. (10.1)

Once this is established, Theorem 1.2 follows in the same way as Theorem 1.1 was
deduced from (9.1).

We apply Lemma 2.3 with Jj the subset of the set of indices {1, 2, . . . , s} counted
by rj for 1 6 j 6 ν. Also, we put mj = rj for each j and

Mν = . . . = M6 = 0, M5 = M4 = 1, M3 = 5 and M2 = M1 = 9.

On recalling that r1 6 9, it is immediate that (2.3) and (2.4) hold. Hence, Lemma
2.3 is applicable, and yields linear forms M1, . . . ,M5 that are linearly independent
in pairs, where each Mj is one of the Λi, and where

∫∫

w

F (α, β) dα dβ 6

∫∫

w

|f(M1)
9f(M2)

9f(M3)
5f(M4)f(M5)| dα dβ.

By Hölder’s inequality, we find that
∫∫

w

F (α, β) dα dβ 6 Υ
1/4
3 Υ

3/4
4 ,

where

Υ3 =

∫ 1

0

∫ 1

0
|f(M1)f(M2)f(M4)f(M5)|4|f(M3)|2 dα dβ,

Υ4 =

∫∫

w

|f(M1)f(M2)|32/3|f(M3)|6 dα dβ.

Making use of the bounds supplied by Theorem 7.2 and Theorem 6.4 with u = 32/3,
we therefore infer that

∫∫

w

F (α, β) dα dβ ≪ P ε
(

P 11
)1/4

(

P 19−1/18
)3/4

≪ P 17−1/24+ε.

Thus the bound (10.1) is confirmed, and the proof of Theorem 1.2 is complete.

Finally, we briefly comment on the prospects of reducing the number of variables
further. Note that the estimates for the minor arcs and for the whole unit square
in Theorem 6.1 coincide for u = 25/3. Since δ(25/3) = 0, therefore, when s = 25
our basic method narrowly fails to be applicable to the system of equations (1.1).
Further, it transpires that each additional variable contributes a factor P to the
major arc contribution, but only P 5/6 to the minor arc versions of Theorems 6.1
and 6.2. As indicated in §1 already, it is worth comparing the 18th moment (u = 6)
in Theorem 6.1 with that in Theorem 7.2, the latter being superior by a factor
P 1/6. It transpires that even if it were possible to propagate this saving through
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the moment method, then we would still fail to handle cases of (1.1) with s = 24,
but only by a factor P ε. However, at this stage, the only workable compromise
seems to be to apply Theorem 7.2 in conjunction with Theorems 6.1 or 6.4, via
Hölder’s inequality. If the profile of the equations (1.1) is even more illustrious
than in Theorem 1.2, then one can put more weight on the bound stemming from
Theorem 7.2. For example, if we suppose that s = 24 and r1 6 5, then ν > 5 and
r5 6 4, so that in hopefully self-explanatory notation, the minor arc contribution
can be reduced to something of the shape

∫∫

w

F (α, β) dα dβ ≪
∫∫

w

|f(M1)
5f(M2)

5f(M3)
5f(M4)

5f(M5)
4| dα dβ.

One may then introduce the identity (3.5) with α = Mj for all 1 6 j 6 5 simultane-
ously. The most difficult term that then arises is that weighted with n(M1) · · · n(M5).
A cascade of applications of Hölder’s inequality together with Theorem 6.1 shows
this term to be bounded by

(Υ3)
3/5(J11)

2/5 ≪ P 16+1/15+ε,

which is quite far from saving another variable.
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