PAIRS OF DIAGONAL QUARTIC FORMS:
THE ASYMPTOTIC FORMULAE

JORG BRUDERN AND TREVOR D. WOOLEY

ABSTRACT. We establish an asymptotic formula for the number of integral so-
lutions of bounded height for pairs of diagonal quartic equations in 26 or more
variables. In certain cases, pairs in 25 variables can be handled.

1. INTRODUCTION
Once again we are concerned with the pair of Diophantine equations
a1zt + apxy + .. 4 szt = bia + oz + ...+ bzt =0, (1.1)

wherein the given coefficients a;,b; satisfy (a;,b;) € Z*\ {(0,0)} (1 < j < s).
While our focus was on the validity of the Hasse principle for such pairs in two
precursors of this article [6, 9], we now investigate the asymptotic density of integral
solutions. Denote by .4"(P) the number of solutions in integers x; with |z;| < P
(1 < j < s) to this system. Then, subject to a natural rank condition on the
coefficient matrix, one expects an asymptotic formula for .4 (P) to hold provided
that s is not too small. Indeed, following Hardy and Littlewood [11] in spirit, the
quantity P8=5.4"(P) should tend to a limit that is itself a product of local densities.
On a formal level, the densities are readily described. The real density, also known
as the singular integral, is defined by

T T S 1
3:Tlgréo/T/le‘[l/le((ajaerjﬁ)t;%) dt;dadp (1.2)

whenever the limit exists. Let M(q) denote the number of solutions x in (Z/qZ)*
satisfying (1.1). Then for primes p, the p-adic density is defined by

s, = lim p®=oha(ph), (1.3)

h—o0

assuming again that this limit exists. In case of convergence, the product & = Hp Sp
is referred to as the singular series, and the desired asymptotic relation can be
presented as the limit formula

lim P8°.¢(P) = 36. (1.4)

P—oo

Note that (1.4) can hold only when in each of the two equations comprising
(1.1) there are sufficiently many non-zero coefficients. Of course one may pass from
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(1.1) to an equivalent system obtained by taking linear combinations of the two
constituent equations. Thus, the invariant gy = go(a, b), defined by
a,b) = min card{1 < j < s:ca; + db; # 0},

0@ )= Bl ooy @ S s+ dby #.0F
must be reasonably large. Indeed, it follows from Lemmata 3.1, 3.2 and 3.3 in our
companion paper [9] that the conditions s > 16 and gy > 12 ensure that the limits
(1.2) and (1.3) all exist, that the product & is absolutely convergent, and that the
existence of non-singular solutions to the system (1.1) in each completion of the
rationals implies that J& > 0. A first result concerning the limit (1.4) is then
obtained by introducing the moment estimate

[ st

<P
derived as the special case u = 14 of Lemma 5.3 below, to a familiar method of Cook
[10] (see also [2]). Here we point out that the estimate (1.5) first occurs implicitly in
the proof of [15, Theorem 4.1], conditional on the validity of the (now proven) main
conjecture in Vinogradov’s mean value theorem (for which see [1] and [17, Corollary
1.3]). In this way, one routinely confirms (1.4) when s > 29 and ¢p > 15. This
result, although not explicitly mentioned in the literature, is certainly familiar to
experts in the area, and has to be considered as the state of the art today. It seems
worth remarking in this context that, at a time when the estimate (1.5) was not
yet available, the authors [3, 5] handled the case s > 29 with more restrictive rank
conditions. The main purpose of this memoir is to make three variables redundant.

da < P1OF (1.5)

Theorem 1.1. For pairs of equations (1.1) with s > 26 and qo > 15, one has
N (P) =3GP8 4 O(Ps—8-1/32),

Relaxing the rank condition gy > 15 appears to be a difficult enterprise, as we
now explain. Consider a pair of equations (1.1) with s > 29, and suppose that
b =a; = 0for 1 <7< 14 < j < s. These two equations are independent and
thus .4 (P) factorises as A (P) = N1(P)N2(P), where Ni(P) and No(P) denote
the number of integral solutions of the respective single equations

ax} 4 asxy + ..+ apzi, =0, (1.6)
with |z;] < P (1 <j<14), and
b15y% + b16y§ +...+ bsyﬁ_M =0, (17)

with |y;)] < P (1 < j < s —14). The equation (1.7) has at least 15 non-zero
coefficients, and so a straightforward application of the Hardy-Littlewood method
using the mean value (1.5) shows that P8~%Ny(P) tends to a limit as P — oo, with
this limit equal to a product of local densities analogous to J and s,. By choosing
bj = (—1)7 for 15 < j < s, we ensure that this limit is positive, and thus P®~*.4/(P)
tends to a limit as P — oo if and only if P7!N;(P) likewise tends to a limit.
From the definitions (1.2) and (1.3), it is apparent that the local densities J and
s, factorise into components stemming from the equations underlying Ny and N».
The relation (1.4) therefore holds for this particular pair of equations if and only
if P1°N;(P) tends to the product of local densities associated with the equation
(1.6). In particular, were (1.4) known to hold in any case where ¢y = 14 and s
is large, then it would follow that P~'Nj(P) tends to the limit suggested by a
formal application of the circle method, a result that is not yet known. This shows
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that relaxing the condition on ¢g would imply progress with single diagonal quartic
equations.

The invariant ¢g is a very rough measure for the entanglement of the two equations
present in (1.1). This can be refined considerably. The pairs (a;, b;) are all non-zero
in Z2, so they define a point (a; : b;) € P(Q). We refer to indices 4,5 € {1,2,...,s} as

equivalent if (a; : b;) = (a; : bj). This defines an equivalence relation on {1,2,...,s}.
Suppose that there are v equivalence classes with 71, ... 7, elements, respectively,
where r1 > r9 > ... > 7,. On an earlier occasion [5] we named the tuple (r1,...,7,)

the profile of the equations (1.1). Note that gy = s — 1, whence our assumed lower
bound ¢y > 15 implies that r; < s — 15 and v > 2. If more is known about the
profile, then we can save yet another variable.

Theorem 1.2. Suppose that s = 25 and that (r1,...,7,) is the profile of the pair of
equations (1.1). If o > 16 and v > 5, then A (P) = I&GP*~8 + O(P*—8-1/32),

For a pair (1.1) in “general position” one has ¥ = s and r; = 1, and in a quanti-
tative sense easily made precise, such pairs constitute almost all such Diophantine
systems. Hence, the conclusion of Theorem 1.2 applies to almost all pairs of equa-
tions of the shape (1.1).

We pointed out long ago [5] that a diffuse profile can be advantageous. However,
even with the estimate (1.5) in hand, the method of [5] only handles cases where
s > 27 and r; and r9 are not too large. Thus our results improve on all previous
work on the subject even if the input to the published versions is enhanced by the
newer mean value bound (1.5).

It is time to describe the methods, and in particular the new ideas involved in the
proofs. Our more recent results specific to systems of diagonal quartic forms [6, 8, 9]
all depend on large values estimates for Fourier coefficients of powers of Weyl sums,
and the current communication is no exception. The large values estimates provide
upper bounds for higher moments of these Fourier coefficients, and these in turn
yield mean value bounds for correlations of Weyl sums. We describe this link here
in a setting appropriate for application to pairs of equations. Consider a 1-periodic
twice differentiable function h : R — R. Its Fourier expansion

h(a) =Y h(n)e(an) (1.8)
nez
converges uniformly and absolutely. Hence, by orthogonality, one has

1,1
/ / h(a)h(B)h(—a — B)dadB =Y h(n)®. (1.9)
00 nez

The methods of [6, 8, 9] rest on this and closely related identities, choosing h(a) =
lg(a)|* with suitable quartic Weyl sums ¢g and a positive real number u. As a
service to future scholars, we analyse in some detail the differentiability properties
of functions like |g(a)|" in §3. It transpires that when u > 2 then the relation (1.9)
holds. We use (1.9) with h(a) = |f(«)|", where now

fla)= Z e(az?) (1.10)
<P

is the ordinary Weyl sum. We then obtain new entangled mean value estimates for
smaller values of u. This alone is not of strength sufficient to reach the conclusions
of Theorem 1.1.
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As experts in the field will readily recognise, for larger values of u the quality of
the aforementioned mean value estimates is diluted by major arc contributions, and
one would therefore like to achieve their removal. Thus, if n is a 1-periodic set of
real numbers with nN[0,1) a classical choice of minor arcs and 1, is the indicator
function of n, then one is tempted to apply the function h(a) = 1,(a)|f ()" in
place of |f(c)[* within (1.9). However, this function is no longer continuous. We
bypass this difficulty by introducing a smoothed Farey dissection in §4. This is
achieved by a simple and very familiar convolution technique that should be useful
in other contexts, too. In this way, in §5 we obtain a minor arc variant of the cubic
moment method developed in our earlier work [6]. Equipped with this and the mean
value bounds that follow from it, one reaches the conclusions of Theorem 1.1 in the
majority of cases under consideration. Unfortunately, some cases with exceptionally
large values of r; stubbornly deny treatment. To cope with these remaining cases,
we develop a mixed moment method in §6.

The point of departure is a generalisation of (1.9). If hy, ha, hs are functions that
qualify for the discussion surrounding (1.8) and (1.9), then by invoking orthogonality
once again, we see that

1,1
/0 /0 h(@)ha(B)hs(—a — B)dadB = 3 ha(mha(m)hs(n).  (111)

neL

By Holder’s inequality, the right hand side here is bounded in terms of the three
moments

> (). (1.12)

neZ

In all cases where hj(a) = |f(a)|" for some even positive integral exponent wu;
one has ﬁ](n) > 0, so (1.9) can be used in reverse to interpret (1.12) in terms
of the number of solutions of a pair of Diophantine equations. The purely analytic
description of the method has several advantages. First and foremost, one can break
away from even numbers u;, and still estimate all three cubic moments (1.12). This
paves the way to a complete treatment of pairs of equations (1.1) with s > 26 and
go = 15. Beyond this, the identity (1.11) offers extra flexibility for the arithmetic
harmonic analysis. Instead of the homogeneous passage from (1.11) to (1.12) one
could apply Holder’s inequality with differing weights. As an example of stunning
simplicity, we note that the expression in (1.11) is bounded above by

(3 tato?) " (> Mm‘*)w (St "

nez nel nez

If we apply this idea with hj(a) = |f(a)|" and u; a positive even integer, then
the first factor relates to a single diagonal Diophantine equation while the other
two factors concern systems consisting of three diagonal Diophantine equations.
This argument is dual (in the sense that we work with Fourier coefficients) to a
method that we described as complification in our work on systems of cubic forms
[7]. There is, of course, an obvious generalisation of (1.9) to higher dimensional
integrals that has been used here. This points to a complex interplay between
systems of diagonal equations in which the size parameters (number of variables
and number of equations) vary, and need not be restricted to natural numbers. We
have yet to explore the full potential of this observation.
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We briefly comment on the role of the Hausdorfl-Young inequality [18, Chapter
XII, Theorem 2.3] within this circle of ideas. In the notation of (1.11) this asserts

that . ,
S iy () < (/0 |hj<a>|3/2da) |

nez
Passing through (1.11) and (1.12), one then arrives at the estimate

/01/01 hi(a)ha(B)hs(—a — B) da dﬁ} < ﬁ</01 |hj(a)‘3/2 da> 2/3. (1.13)
j=1

However, by Hoélder’s inequality, one finds

[ m@ma@ns-a-manas| < T1 ([ il aaas)”

1<i<j<3

where, on the right hand side, one should read h; = hi(«), he = hao(8) and hg =
hs(—a — ). By means of obvious linear substitutions, this also delivers the bound
(1.13). This last method is essentially that of Cook [10]. Our approach is superior
because the methods are designed to remember the arithmetic source of the Weyl
sums when estimating moments of Fourier coefficients.

The proof of Theorem 1.2 requires yet another tool that is a development of
our multidimensional version of Hua’s lemma [3]. This somewhat outdated work
is based on Weyl differencing. An analysis of the method shows that whenever a
new block of differenced Weyl sums enters the recursive process, a new entry r; to
the profile of the underlying Diophantine system is needed. It is here where one
imports undesired constraints on the profile, as in Theorem 1.2. However, powered
with the new upper bound (1.5), the method just described yields a bound for a
two-dimensional entangled mean value over eighteen Weyl sums that outperforms
the cubic moments technique by a factor p/6 (compare Theorem 6.1 with Theorem
7.2). Within a circle method approach, this mean value is introduced via Hélder’s
inequality. In the complementary factor, we have available an abundance of Weyl
sums. Fortunately the cubic moments technique restricted to minor arcs presses
the method home. We point out that our proof of Theorem 1.2 constitutes the
first instance in which the cubic moments technique is successfully coupled with the
differencing techniques derived from [3].

One might ask whether more restrictive conditions on the profile allow one to
reduce the number of variables even further. As we demonstrate at the very end of
this memoir it is indeed possible to accelerate the convergence in (1.4), but even the
extreme condition ;1 = 1 seems insufficient to save a variable without another new
idea.

Once the new moment estimates are established, our proofs of Theorems 1.1 and
1.2 are fairly concise. There are two reasons. First, we may import the major arc
work, to a large extent, from [9]. Second, more importantly, our minor arc treatment
rests on a new inequality (Lemma 2.3 below) that entirely avoids combinatorial
difficulties associated with exceptional profiles. This allows us to reduce the minor
arc work to a single profile with a certain maximality property. We expect this
argument to become a standard preparation step in related work, and have therefore
presented this material in broad generality. We refer to §2 where the reader will also
find comment on previous attempts in this direction.
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Notation. Our basic parameter is P, a sufficiently large real number. Implicit
constants in Vinogradov’s familiar symbols < and > may depend on s and ¢ as
well as ambient coefficients such as those in the system (1.1). Whenever ¢ appears in
a statement we assert that the statement holds for each positive real value assigned
to . As usual, we write e(z) for e?™%%,

The authors are grateful to the referees of this paper for valuable comments.

2. SOME INEQUALITIES

This section belongs to real analysis. We discuss a number of inequalities for
products. As is familiar for decades, in an attempt to prove results of the type
described in Theorems 1.1 and 1.2 via harmonic analysis, it is desirable to simplify
to a situation where the profile is extremal relative to the conditions in hand, that is,
the multiplicities rq, 72, ... are as large as possible, and consequently v is as small as
is possible. In the past, most scholars have applied Holder’s inequality to achieve this
objective, often by an ad hoc argument that led to the consideration of several cases
separately. The purpose of this section is to make available general inequalities that
encapsulate the reduction step in a single lemma of generality sufficient to include
all situations that one encounters in practice.

The germ of our method is a classical estimate, sometimes referred to as Young’s
inequality: if p and ¢ are real numbers with p > 1 and

p q

then for all non-negative real numbers v and v one has
ub o

uw < — + —. (2.1)
p q

This includes the case r = 2 of the bound
1 T T
|Z1Z2...ZT|<;(|31| + .tz (2.2)

which holds for all 7 € N and all z; € C (1 < j < 7). Indeed, the general case of
(2.2) follows from (2.1) by an easy induction on 7.

In the following chain of lemmata we are given a number v € N and integral
exponents mj;, M; (1 < j <wv) with

m1>m2>>my>O, M1>M2>>MV>O (23)

and

L L v v
Zmlgle (1< L<v), Zml:ZMl' (2.4)
=1 =1 =1 =1

We write S, for the group of permutations on v elements. We refer to a function

w: S, — [0,1] with
> w(o)=1

ogESy,

as a weight on S,.
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Lemma 2.1. Suppose that the exponents m;, M; (1 < j < v) satisfy (2.3) and
(2.4). Then there is a weight w on S, with the property that for all non-negative
real numbers uy, us, ..., u, one has

ultun? - up < Z w(a)ug/fll)uiwé) - -uy(;). (2.5)
oESY
Proof. We define

D= Z |Ml —ml\
=1

and proceed by induction on v + D. In the base case of the induction one has
v+ D = 1. In this situation » = 1 and D = 0, and the claim of the lemma is
trivially true with o =id and w(o) = 1.

Now suppose that v+ D > 1. We consider two cases. First we suppose that there
is a number 1 with 1 < 11 < v and

141 141
> =3
=1 =1

We put
141 v
Dl:Z|Ml_ml|’ Dy = Z |M; —my|, vo=v—u.
=1 I=v1+1

Then (2.3) and (2.4) are valid with v; in place of v, and one has D; < D. Hence
1 + D1 < v+ D so that we may invoke the inductive hypothesis to find a weight
wy on Sy, with
v My, , M: M,
uPtul? gt < Z wl(o)ua(ll)ugé) Uy

o€y,

(2.6)

Similarly, in the current situation, the numbers m,,y;, M, 1+; (1 < j < v2) may
take the roles of m;, M; in (2.3) and (2.4) with v, in place of v. Again, we have
vy + Dy < v+ D. Now writing 7 for a permutation in S,, acting on the set
{r1+1,11+2,...,v}, we may invoke the inductive hypothesis again to find a weight
wg on Sy, with

My 1, Mug+2 m, Myy+1 ) Muyt2 M,
Uyy+1 Uy 42 Uy < E w2(T)uT(”1+1)uT(u1+2) UT(V). (27)
TESu2

We multiply the inequalities (2.6) and (2.7). It is then convenient to read permuta-
tions 0 on 1,2,...,v; and 7 on v; + 1,v1 + 2,...,v as permutations on 1,2,...,v
with o(j) = j for j > 11 and 7(j) = j for j < v1. Then, for permutations of the
type o7 in S, we put w(or) = wi(o)wa(7), and we put w(¢p) = 0 for the remaining
permutations ¢ € S,. With this function w the product of (2.6) and (2.7) becomes
(2.5), completing the induction in the case under consideration.

In the complementary case we have

L L
domi<d M (1<L<v) (2.8)
=1 =1

In particular, this shows that m; < M;j. Also, by comparing the case L = v — 1
of (2.8) with the equation corresponding to the case L = v in (2.4), we see that
my, > M, as a consequence of which we have m, > 1. We write m; = m, +r. In
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view of (2.3), we see that r > 0, and so an application of (2.1) with ¢ = r 4 2 leads
to the inequality

r+1 1
u7l“+1uy < s 71"+2 + p—” 2ulrl+2.
Recall that m, > 1, whence my —r — 1 =m, — 1 > 0. It follows that

_/r+1 1
ugnlu:/n,, <ugn1 r— lum 1( ur+2+ r+2)7

v r4+2 1 r42
and thus
r+1
m m m+1 mo, m my—1_m,—1
upt ey S oy g gy,
r—+2
1
+ +2u§”“ T T T
r
The chain of exponents mq + 1, mo, ms, ..., m,_1,m, — 1 is decreasing, and we have

mi+1 < M and m, — 1 > 0. Hence, in view of (2.8), the hypotheses (2.3) and
(2.4) are still met when we put my + 1 in place of m; and m, — 1 in place of m,,.
However, my + 1 is closer to M; than is my, and likewise m, — 1 is closer to M,
than is m,. The value of D associated with this new chain of exponents therefore
decreases, and so we may apply the inductive hypothesis to find a weight W on S,
with
u?fll-i-lurznzugns . L”u11umy 1 < Z W 0(1) (]T\/g) ..u%;).
geSy,

Interchanging the roles of u; and w,, and denoting by 7 the transposition of 1 and
v, we obtain in like manner the bound

mi+1, ma, m3  , Mu—1, my—1 _ m1+1 mg  mg Mu—1 my,—1
Uy Uy U3 Uy—y U Ur) Yr@)%r3) " Yrw-1)Urw)
My My M,
< Z W(O’OT)UU(I)UU(Q) Uy

O'ESU

Note here that we have made use of the observation that o o7 runs over all elements
of S, as o runs over all elements of S,,, and further (co7)o7 = o. If we now import
the last two inequalities into the inequality preceding them, we find that (2.5) holds
with

r+1 1
= w —W
and w is a weight on S,,. This completes the induction in the second case. O

Lemma 2.2. Suppose that mj, M; (1 < j < v) satisfy (2.3) and (2.4). For 1 <
Jj<vlethj:R" —=[0,00) denote a Lebesgue measurable function. Then

My M- M- M,
/h;nlh;fw < hpvdx < gne%):/ho(ll hoé c. hg(y) dx.

Proof. Choose u; = h; in Lemma 2.1 for 1 < j < v and integrate. O

For applications to systems of diagonal equations or inequalities, functions h;
come with an equivalence relation between them. This we encode as a partition of
the set of indices j in the final lemma of this section.

Lemma 2.3. Suppose that the exponents m;, Mj (1<j<v satisfy (2.3) and
(24). Let s = mi+ma+...+my, and for 1 < j < s, let hy : R" — [0,00)
denote a Lebesgue measurable functwn. Finally, suppose that Jy, Jg, ...,y are sets
with respective cardinalities my,ma, ..., m, that partition {1,2,...,s}. Then, there
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exists a tuple (i1,...,1,) and a permutation o € Sy, with iy € J,q) (1 <1 < v),
having the property that

/hth---hs dx < /h%lhfj?...hf‘fv dx. (2.9)

Proof. For each suffix [ with 1 <1 < v, it follows from (2.2) that

1 m
thgﬁthjJ.

JjEJ; JjEJ;

Multiplying these inequalities together yields the bound

1 mipm my
h1h2"'hs<m Z Z hjllhj22~~hjy .

Ve Jv€dy

Now integrate. One then finds that there exists a tuple (j1,...,j,), with j; € J;
(1 <1< ), for which

/hlhg---hsdx</h;’flhgz...hﬁ”dx.

Finally, we apply Lemma 2.2. One then finds that for some o € S, the upper bound
(2.9) holds with 4, = Jo(l) (1<i<w). ]

3. SMOOTH FAREY DISSECTIONS

In this section we describe a partition of unity that mimics the traditional Farey
dissection. With other applications in mind, we work in some generality. Through-
out this section we take X and Y to be real numbers with 1 < Y < %\/Y , and
then let M(q, a) denote the interval of all real « satisfying |go — a| < Y X 1. Define
N = MNx,y as the union of all N(g,a) with 1 < ¢ <Y, a € Z and (a,q) = 1.
Note that the intervals 9(q,a) comprising DN are pairwise disjoint. We also write
M = My y for the set NN [0,1]. For appropriate choices of the parameter Y,
the latter is a typical choice of major arcs in applications of the Hardy-Littlewood
method.

The set 91 has period 1. Its indicator function 1y has finitely many discontinuities
in [0,1), implying unwanted delicacies concerning the convergence of the Fourier
series of 1g. We avoid complications associated with this feature by a familiar
convolution trick, which we now describe.

Define the positive real number

1

K= / exp(1/(t* — 1)) dt,
~1

and the function K : R — [0, 00) by

[ rlexp(1/(t?2 - 1)) if |t <1,
K(t)—{o if 1] > 1.

As is well known, the function K (¢) is smooth and even. We scale this function with
the positive parameter X in the form

Kx(t) = 4X K(4Xt).
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Then Ky is supported on the interval |[¢] < 1/(4X) and satisfies the important

relation
/A@ t)dt = /}( (3.1)

We now define the function Nxy : R — [0, 1] by

[ee)

NX7y(Oé) = /OO In(a—t)Kx(t)dt = / In(t)Kx (o —t)dt. (3.2)

—0o0 —0o0

The main properties of this function N = Nx y are listed in the next lemma.

Lemma 3.1. The function N = Nx y is smooth, and for all o € R one has N(«) €
[0,1]. Further, whenever 2 <Y < %\/y, the inequalities

1§ﬁx,y/z (@) < N(a) < 1oty oy (@) (3.3)
and
N'(a) < X, N'(a) < X? (3.4)
hold uniformly in o € R.

Proof. The integrands in (3.2) are non-negative, so N(«) > 0, while (3.1) shows
that N(a) < 1. Since K is smooth and compactly supported, the second integral
formulation of N in (3.2) shows that N is smooth, and that the derivative is obtained
by differentiating the integrand. Thus, we obtain

0

whence )
IN'(a)| <4x/ K (1)) dt.
—1

This confirms the inequality for the first derivative in (3.4). The bound for the
second derivative follows in like manner by differentiating again.

We now turn to the task of establishing (3.3). First suppose that a € My y /.
Then, there is a unique pair of integers a € Z and ¢ € N with (a,q) = 1, ¢ < %Y
and |go — a| < 3Y XL For |t| < (4X)_1 we then have

Y Y
< + S+

4X 20X T gX’

Thus o — t € N(g,a) € Nxy. Slnce Kx is supported on [—1/(4X),1/(4X)], we
deduce from (3.1) and (3.2) that

N(a) > /OO Lovggu) (00 — 1) Ex (1) df = /Oo Kx(t)dt = 1.

—00

‘(a—t

It follows that one has N(a) = 1 for all & € 9y y /9. However, we know already that
N(«) is non-negative for all @ € R, and thus we have proved the first of the two
inequalities in (3.3).

We complete the proof of the lemma by addressing the second inequality in (3.3).
Suppose that N(«) > 0. Then, it follows from (3.2) that for some ¢t € R with
t| < (4X)7!, one has o — ¢ € Myy. Hence, there exist a € Z and ¢ € N with
(a,q) =1,¢<Y and |a —t — a/q| <Y/(¢X). By the triangle inequality,

’a _ 9’ <X 1
gl T gX T 4X T ¢X’
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This shows that a € My 2y. Since 0 < N(a) < 1, the second of the inequalities in
(3.3) also follows. O

We consider N = Nx y as a smooth model of the major arcs x y. It is convenient
to define corresponding minor arcs n = nxy, with nyy = R\ 9xy, and to write
m = [0, 1]\ 91 for the set of minor arcs complementary to 9. The smoothed version
of nyy is the function nxy : R — [0, 1] defined by

n(a) = /_ T o — K8 dt.

We trivially have 1m(a) + 1(a) = 1 for all @ € R, so it is a consequence of (3.1)
and (3.2) that n = nx y satisfies the identity

N(a) 4+ n(a) = 1. (3.5)

The properties of n can therefore be deduced from the corresponding facts concerning
N. In particular, Lemma 3.1 translates as follows.

Lemma 3.2. The function n = nxy is smooth, and for all o € R one has n(a) €
[0,1]. Further, whenever 2 <Y < %\/y, the inequalities
1“X,2Y (a) < n(a) < lnx,y/z (a)

and
n(a) < X, n’(a) < X?
hold uniformly in o € R.

4. FRACTIONAL POWERS OF WEYL SUMS

In this section we consider a trigonometric polynomial
T(a) = Z cpe(an) (4.1)
M<n<M+N

with complex coefficients ¢,. The associated ordinary polynomial

N
P() =Y earins" (4.2)
n=1
is related to T via the identity
T(a) = e(Ma)P(e(a)). (4.3)

Lemma 4.1. Let k € N. Then, for any real number u > k, the real function
QR =R, defined by Q, () = |T()|", is k times continuously differentiable.

Proof. In view of (4.3), we see that it suffices to prove this result in the special case
where M = 0. This reduction step noted, we proceed by a succession of elementary
exercises.

Let uw € R. We begin by considering the function 6, : R\ {0} — R defined by
0, (a) = |ar|*. This function is differentiable on R\ {0}, and one has

0! () = ulaa™! = uby(a)a".

By induction, it follows that for any [ € N the function 6, is | times differentiable,
and that the [-th derivative is

0D () =u(u—1)--(u—1+1)8,(a)a". (4.4)
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Now suppose that u > 0. Then, by putting 6,,(0) = 0 we extend 8, to a continuous
function on R. More generally, whenever u > [, then

lim 1C)

= =0.
a—0

By (4.4), this shows that whenever u > [ then 03 ) extends to a continuous function

on R by choosing 0&1 ) (0) =0, and that 0&1_1) is differentiable at 0 with derivative 0.
We summarize this last statement as follows:

(a) Let k € N and u > k. Then 0, is k times continuously differentiable on R.

Next, for u > 0, consider the function p, : R — R defined by putting p,(a) =
|sinTal*. For a € (0,1) one has sinma > 0, whence p,(a) = (sin7ma)*. Thus p,, is
smooth on (0,1). But p has period 1, so it suffices to examine its differentiability
properties at a = 0, a point at which p, is continuous. For all real a we have
sinTa = raE(«), where

E — S -1 jM
@) =2V oy

The function E is smooth on R with F(0) = 1. Hence E(«) > 0 in a neighbourhood
of 0 where we then also have
pula) = |l E(a)".

By applying the product rule in combination with our earlier conclusion (a), we
therefore conclude as follows:

(b) Let k € N and u > k. Then p, is k times continuously differentiable on R.

We now turn to the function 7" where we suppose that M = 0, as we may. The
sum in (4.1) defines a holomorphic function of the complex variable «, and hence
the function T': R — C is a smooth map of period 1. The sum

T(a) = Z cne(—an)
1<n<N

defines another trigonometric polynomial, and for a € R we have T(a) = T(a).
Consequently, for real o we have

() = T(a)T(e), (4.5)

whence the function |T|? : R — C, given by a ~ |T'()|?, is smooth on R with
d _ _
T IT(a)]* =T (a)T() + T(a)T' (). (4.6)

On noting that T'()7 is again a trigonometric polynomial for all j € N, we see that
|T ()% is smooth. Hence, from now on, we may suppose that u is a real number
but not an even natural number. Also, the conclusion of Lemma 4.1 is certainly true
in the trivial case where ¢, = 0 for all n. In the contrary case, the polynomial in
(4.2) has at most finitely many zeros. Therefore, the set

Z={aeR:T(a) =0}
is 1-periodic with Z N [0,1) finite, and consequently R\ Z is open.
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We next examine the function |T* : R\ Z — C, given by a +— |T(a)|*

(c) When u is real but not an even natural number, the function |T|" is smooth.

In order to confirm this assertion, note that |T'(a)|* = 0u/2(|T(o¢)\2). By applying
the chain rule in combination with the preamble to conclusion (a) and (4.6), we find
that |T'(«)[* is differentiable for o € R\ Z. Indeed,

% T ()| = 0,5 (IT()*)(T" ()T () + T() T (c))

= §\T(0<)I“*2(T’(Q)T(a) +T(a)T'(a)). (4.7)

Since the final factor on the right hand side here is smooth, we may repeatedly apply
the product rule to conclude that |T'(a)|* is smooth on R\ Z, as claimed.

Finally, we consider any element ag € Z. Then one has P(e(ap)) = 0. Since
P is not the zero polynomial, there exists r € N and a polynomial @ € C[z] with
Q(e(ap)) # 0 such that P(z) = (z — e(ag))"Q(2). Write U(a) = Q(e(w)) for the
trigonometric polynomial associated with Q. Then T(a) = (e(a) — e(ap)) U(a).
For v > 0 and all real a we then have

IT(@)]" = le(a) = e(ao) ™ |U()]* = [2sin (e — ) [™[U () [*.

There is an open neighbourhood of oy on which U(«) does not vanish. By our
conclusion (c) it is apparent that |U(a)[* is smooth on this neighbourhood. If
u > k, then the conclusion (b) implies that the function [2sin7(a — ap)|™ is k
times continuously differentiable. The conclusion of the lemma therefore follows by
application of the product rule. U

We mention in passing that if more is known about the zeros of P, then the
argument that we have presented shows more. For example, if all the zeros in Z are
double zeros and u > k, then |T'(«)|* is 2k times differentiable.

Lemma 4.2. Let W : R — R be a twice continuously differentiable function of
period 1, and let uw > 2. Forl € Z let

1
b = / W ()| T(0)|“e(—al) da. (4.8)
0
Then, for alll € Z\ {0}, one has

1 b a2
< o3 — T(a)]"
< oz | [ W)IT @)

Moreover, for all « € R one has the Fourier series expansion

— Zble(al)’ (4.10)

leZ

da. (4.9)

in which the right hand side converges absolutely and uniformly on R.

Proof. By (4.5) and Lemma 4.1, the condition u > 2 ensures that W(a)|T(a)|*
is twice continuously differentiable. Hence, the integral on the right hand side of
(4.9) exists, and the upper bound (4.9) follows from (4.8) by integrating by parts
two times. Furthermore, the upper bound (4.9) ensures that the series in (4.10)
converges absolutely and uniformly on R. Thus, by [18, Chapter I, Theorem 8.14],
this Fourier series sums to W («)|T'(c)|*. O
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In this paper Lemmata 4.1 and 4.2 will only be used with the quartic Weyl sum
f, as defined in (1.10), in the role of T. The weight W will be either constantly 1
or a smooth minor arc. Let v > 0 and define the Fourier coefficient

1
_ /0 F(a)["e(—an) da. (4.11)

Also, with a parameter Y at our disposal within the range 1 <Y < %PZ, we consider
the smooth minor arcs n(a) = npa y () and introduce the related Fourier coefficient

1
fuln) = /O n(@)]f(@)]"e(—an) da. (4.12)

Lemma 4.3. Suppose thatu > 2 and 1 <Y < %PQ. Then, for alln € Z\ {0}, one
has

|pu(n)| + [thu(n)| < P¥H8n=2.

Proof. We first compute the derivatives of |f(«)|*. Suppose temporarily that u is
not an even natural number. By (4.7), whenever f(«) # 0, we have

d w U w— . .
S f)]" = 5 L@ (f/(0)f(0) + () (@)
and we may differentiate again to confirm the identity

M) (@) F(e) + S (@)

+%|f(04)|“‘2(f( a)f(a) +2f () f'(e) + f(a) f"(a)).

These formulae hold for all & € R when « is an even natural number, and thus

(@)*7Hf ()]

If( I =

da2

= @)
and
@) < = D@27 (@ + (@) ).

Hence, the trivial estimates f(a) < P, f'(a) < P® and f’(a) < P? suffice to
conclude that the upper bounds

@|f(a)| < P¥t* and @|f(a)| < puts (4.13)

hold for all @« € R when either u = 2 or f(a) # 0. However, when u > 2 these
derivatives will be zero whenever f(«) = 0, so the inequalities (4.13) hold uniformly
in @ € R. The upper bound v, (n) < P**®n=2 is now immediate from Lemma 4.2.
Furthermore, an application of the product rule in combination with Lemma 3.2
and (4.13) shows that

d d?

n(@)]f(@)* < P and  — n(a)|f(a)|" < P**E.

da da?
The estimate ¢, (n) < P“t®n =2 therefore follows by invoking Lemma 4.2 once again,
and this completes the proof of the lemma. O
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5. CUBIC MOMENTS OF F'OURIER COEFFICIENTS

The principal results in this section are the upper bounds for cubic moments of
¢u(n) and ¥, (n) embodied in Theorem 5.1 below. The proof of these estimates
involves a development of the ideas underpinning the main line of thought in our
earlier paper [6]. For u > 0 it is convenient to define

0(u) = (25 — 3u) /6. (5.1)
In many of the computations later it is useful to note that
5 23
- o(u) = —u — —. 2
3u— 8+ d(u) 5%~ 5 (5.2)
Theorem 5.1. Let u be a real number with 6 < u < 25/3. Then
Z ‘¢u(n)|3 < plu—8+o(u)+e. (5_3)
nez
Further, when 2P Ly L P/16 and 6 < u < 11, one has
Z |¢u(n)|3 < p3u—8+d(u)te (5.4)
nez

When u > 6, the contribution from the major arcs to the sum in (5.3) is easily
seen to be of order P3*~8. Since §(u) is negative for u > 25/3, we cannot expect
that the upper bound (5.3) holds for such u. However, as is evident from (5.4),
a minor arcs version remains valid for v < 11. Before we embark on the proof of
this theorem, we summarize some mean value estimates related to the Weyl sum
(1.10). In the following two lemmata, we assume that 1 < Y < P/8 and write
MM = Mpsy and m = mpay. It is useful to note that mpsy = mps p/g U K, where
R=Mps pjg \ Mpay. Then, from [13, Lemma 5.1, we have the bounds

/ |f()|da < P?  and /|f(a)\6da < P¥yeTiA4, (5.5)
m R
Lemma 5.2. Suppose that P*/'® <Y < P/8. Then
/ |f(a)|20 da < P15+€.
m

Proof. For Y = P/8, the desired estimate is the case k = 4, w = 20 of Wooley [16,
Lemma 3.1]. For smaller values of Y, we make use of the case Y = P/8 and apply
the second bound of (5.5). On combining [14, Theorem 4.1] with [14, Lemma 2.8 and
Theorem 4.2], moreover, one readily confirms that the upper bound f(a) < PY ~1/4
holds uniformly for o € K. Consequently, one has the estimate

/|f(a)|20 da < })16}/5715/47
R

and the conclusion of the lemma follows. O
Lemma 5.3. When 8 < u < 14, one has

1
/ |f(@)|* dow < PE¥5Fe, (5.6)
0
Meanwhile, when 8 < u < 20, then uniformly in P15 Ly < P/8, one has

/ F@)]* da < PEu-3+=. 5.7)
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Proof. Tt is a consequence of Hua’s Lemma [14, Lemma 2.5] that

1
/ |f()]® dex g/o |f(a)|® dor < P52, (5.8)

One interpolates linearly between this estimate and the bound established in Lemma
5.2 via Hoélder’s inequality to confirm the upper bound (5.7) for 8 < u < 20. The
upper bound (5.6) then follows on noting that for 6 < u < 14, it follows from (5.5)
that

/ f(@)]*da < Pt < P35,
m
Since [0,1] = M U m, the desired conclusion follows at once. _

In the special case u = 14, the first conclusion of Lemma 5.3 assumes the simple
form already announced in (1.5).

Lemma 5.4. Let & be a set of Z integers. Then

/01 Ze(az) 2

2€¥
/ }Z az} 1f()|*da < P?Z + P+ 23/2,
zeZ

()>do < PZ + PY/2+ez3/2

and

Proof. This is essentially contained in [12, Lemma 6.1], where these estimates are
established in the case when 2 is contained in [0, P4]. As pointed out in [9, Lemma
2.2] this condition is not required. g

We now have available sufficient infrastructure to derive upper bounds for cubic
moments of ¢,(n) and ¥, (n).

The proof of Theorem 5.1. Let ¥,(n) denote one of ¢, (n), ¢, (n). On examining the
statement of the theorem, it is apparent that we may assume that in the former case
we have 6 < u < 25/3, and in the latter case 6 < u < 11 and 2P*1® <Y < P/16.
We begin with the observation that, by Lemma 4.3, one has ¥,(n) < P“"®n=2
Consequently, when u > 6, one has

S a3 [P < P74 PR ST o6 phei,

|n|>P7 |n|<P7 |n|>P7
|19u(”)\<1
It remains to consider the contribution of those integers n with |n| < P7 and

[Py (n)] > 1. We put ©(«) = 1 when ¢, = 1), and O(a) = n(« )whenﬁu—¢>u.
Then the definitions (4.11) and (4.12) take the common form
W= [ @lf@)lel-an)do (59
By Lemma 3.2, it follows that ©(«) € [0,1]. Thus, by Lemma 5.3, one finds that
[0u(n)| < 9,(0) < 1, (0) < peuste (8 <u<11).

In the missing cases where 6 < u < 8 one interpolates between (5.8) and the ele-
mentary inequality

[ et an < P, (5.10)
0
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also a consequence of Hua’s Lemma [14, Lemma 2.5], to conclude that
[Fu(m)] < 9(0) < 9, (0) < PO
Fix a number 7 with 0 < 7 < 107!? and define T, by
Piv=147 when 6 < u < 8,
To=19 5, 54
Pe"7 377 when 8 <u < 11.

Then, on recalling the upper bounds for J,(n) just derived, a familiar dyadic dis-
section argument shows that there is a number T € [1,Ty] with the property that

Do) < P (logP) Y [Wu(n)f?

nez |n|<P7
T<|[du(n)|<2T

< p3it 4 perdyz, (5.11)
where Z denotes the number of elements in the set
ZF={necZ:|n|<P and T < [9,(n)| <2T}.

For each n € % there is a complex number 7,,, with |n,| = 1, for which 7,9,(n) is
a positive real number. Write

= Z me(—an). (5.12)
neZ
Then one concludes from (5.9) and (5.12) that

TZ <Y nut( / O(a £ (c)[* da. (5.13)

neZ
Beyond this point our argument depends on the size of T. Our first argument
5 35
handles the small values T' < Ps“~1s. By (5.13) and Holder’s inequality, we obtain

the bound
1 1/3 1 1/6
TZ<11/2</ |K(a)2f(a)4da> (/ |K(a)|2da> , (5.14)
0 0

1 8
I= /0 O(c)?| ()" da
1
/|K(a)|2da:Z
0

and by a consideration of the underlying Diophantine equations, one deduces via
Lemma 5.4 that

where

By orthogonality, one has

/ K (a)f()*|da < P?Z 4 P2+ 73/2, (5.15)

Next we confirm the bound I < P3 u=gte, Indeed, in the case where © = 1 we
have 6 < u < 25/3. In such circumstances 8 < 2u — 8/3 < 14, and so (5.6) applies
and yields the claimed bound. In the case ® = n we have v < 11, and hence
2u —8/3 < 20. Write m = mpay/5. Then by Lemma 3.2, we have 0 < n(a) < 1y.
We therefore deduce that in this second case we have

1 8 8
I< /0 (@) f(@)2* dar < / F@)2* % do,
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and (5.7) confirms our claimed bound for 1.

Collecting these estimates together within (5.14), we now have

1/3
TZ < PE (P3Z+P223/2) Zl/6(P u——)1/2
On recalling (5.2), we find that this relation disentangles to yield the bound
T3Z<<P2+ (5 +€+TP2+ u——-‘rE
_ P3u78+6(u)+5 —|—TP§“7?7+6,

It transpires that in the range T' < P8v=1% the first term on the right hand side
dominates, so that we finally reach the desired conclusion 737 < P3u—8+o(u)+e Tp
view of (5.11), this is enough to complete the proof of Theorem 5.1 in the case that

T is small.
Our second approach is suitable for T of medium size, with

P& < T < P6" 6. (5.16)
We apply Schwarz’s inequality to (5.13), obtaining the bound

TZ < </ |K (o |da>1/2</ O(a)?|f(a)**~ 4da)1/2.

Note that when 6 < u < 11, one has 8 < 2u — 4 < 18, and when instead u < 25/3,
we have 2u — 4 < 14. Hence, as in the proof of our earlier estimate for I, it follows
from Lemma 5.3 that

1
/ @(oz)Q\f(a)|2“74doz < P%U75+E'
0

Applying this estimate in combination with (5.15), we conclude that
T7 < Pe(P?’ZJrP2Z3/2)1/2(P%“*5)1/2.
This bound disentangles to deliver the relation
T3Z <« TP5" 2t 4 71 psu-bte,

On recalling (5.2), we find that our present assumptions (5.16) concerning the size
of T deliver the estimate

T37 « phu—te | piu—Tete o plu—8+i(u)te,
The conclusion of Theorem 5.1 again follows in this case, by virtue of (5.11).

The analysis of the large values T satisfying P < T < Ty is more subtle.
Suppose temporarily that ¢, = 1, and hence that u < 25/3. Then, by (3.5) and
(5.13),

TZ < /0 N(a) K ()] f ()" da + /0 (@)K ()] f ()" da.

By hypothesis, we have v > 6. Also, from Lemma 3.1, we have N
that (5.5) yields the bound

/ N(a)K ()| f(0)|* da < Z / F(e)|* da < ZPP4+.
0

P4 P/8

S 1mP4,P/87 50
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Since u —4+ 7 < %u — %, for large enough P one has ZP* 47 < %TZ. Thus

1
TZ <</0 n(a)K ()| f(a)|" de. (5.17)

Note that this is exactly the inequality (5.13) in the case where ¥, = ¢,. Con-
sequently, the upper bound (5.17) holds for the large values of T currently under
consideration, irrespective of the choice of ¥,,. Now apply Schwarz’s inequality to
(5.17). Then, by Lemma 3.2, we deduce that

rz< ([ 1 IK(a)f(a)IQda)m ([ 1st@iP2aa) "

where again we write m = mpa1y/,. Note here that v < 11, so that 2u — 2 < 20.
Hence, by Lemmata 5.3 and 5.4, we have

TZ < P*(PZ + P222)"?(Piv=3)"2,
Consequently, our assumptions concerning the size of T' reveal that
T3Z « TP5“ 5+ 4 T-1p5u-i+e
< TyP3v—ste 4 piu-Fte, (5.18)

When 6 < u < 8, one has

Gu-1)+Gu-D=Fu-P<fu-2
whilst for 8 < u < 11,

(fu—13)+(Gu—3)
Then in either case one finds from (5.18) via (5.2) that 7327 < P3u=8+0(W+27 and

the conclusion of Theorem 5.1 follows in this final case, again by (5.11), on taking
7 sufficiently small. (|

23
=

5 5
qu—4 < 3Ju—

We close this section with a related but simpler result.

Theorem 5.5. One has
21/)4(”)3 < P13/2+€'

nez

Proof. By (4.11) and orthogonality, the Fourier coefficient 14(n) has a Diophantine
interpretation that shows on the one hand that 14(n) is a non-negative integer, and
on the other that 14(n) = 0 for all n € Z with |n| > 2P%. By (4.11) and (5.10), we
also have the bound ¥4(n) < 14(0) < P?*¢. Let 6 be any fixed positive number,
and suppose that P is sufficiently large in terms of 6. Then the argument leading
to (5.11) now shows that there is a number T with 1/2 < T < P29 having the
property that

S ha(n) <P YT u(n)® < PTZ, (5.19)
nezl |n|<2P4
T<ya(n)<L2T

where Z denotes the number of elements in the set

¥ ={n€Z:|n|<2P"and T < |yy(n)| < 2T}.
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As in the corresponding analysis within the proof of Theorem 5.1, we next find that
there are unimodular complex numbers 7, (n € 2) having the property that, with
K (o) defined via (5.12), one has

1
Tz</O K ()| f(e)| da.

We first handle small values of T. Here, an application of Schwarz’s inequality
leads via (5.8) to the bound

1 1/2 1 1/2
Z<< / |f<a>|8da) ( / |K<a>|2da) « Pt
0 0

This disentangles to yield T3Z < TP®"¢, proving the theorem for T < P3/2.
Next, when T is large, we apply Holder’s inequality in a manner similar to that
employed in the large values analysis of the proof of Theorem 5.1. Thus

rz< ([ 1K |da)1/2(/ e |4da)1/4< [ it |8da)1/47

TZ < P*(PZ + PY?73/2)1/2pT/4,

We now obtain the bound

and hence

T3Z < TP9/2+6+T71P8+5’

and in view of (5.19), this proves Theorem 5.5 in the complementary case P32 <
T < P29 since the positive number & can be taken arbitrarily small. (I

6. MEAN VALUES OF QUARTIC WEYL SUMS

In this section we estimate certain entangled moments of quartic Weyl sums,
and then apply them to obtain minor arc estimates for use within the proofs of
Theorems 1.1 and 1.2. Throughout this section and the next, let the pair of integers
¢i,d; (1 <1 < 5) satisfy the condition that the points (¢; : d;) € PY(Q) are distinct.
Define the linear forms M; = M;(«, 8) (1 < i < 5) by

Mi(a,ﬂ) = ¢+ d; 5. (6.1)

Let w > 0, and recall the definition of the exponent 6(u) from (5.1). Then, with
2PY15 Y < P/16 and n = npiy, we consider the mean values

1 ,1
L= /0 /0 F(ML) f (M) £ (M3)|* devdB,

Ju :// n(M;p)n(Ma2)n(M3z)|f(My)f(Mz) f(M3)[* dardf.
0o

Theorem 6.1. One has I, < P13/2t¢ and I, < P3u—8+5W+e (6 < u < 25/3).
Also, when 6 < u < 11, one has J, < P3u=8+(u)+e

Proof. It follows from Lemmata 3.2 and 4.2 that the function n(y)|f(7)|" has a
uniformly convergent Fourier series with coefficients ¢, (n). By orthogonality, we
conclude that

Jy = Z Gu(n1)du(n2)du(ns),

(n1,n2,n3)EN
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where N is the set of solutions in integers n1, no, ng of the linear system
ciny + cang + c3ng = diny + dang + dgng = 0.

Since the projective points (¢; : d;) are distinct, there exist non-zero integers [;,
depending only on the ¢;, d;, having the property that the solutions of this system
are precisely the triples (n1,n2,n3) = m(ly,l2,13) (m € Z). It therefore follows from
(2.2) that

Ju < % Y- (eultim)P + [dullzm)* + [@u(lzm)P) < Y |u(n)l.

meZ ne’

The desired bound for J, now follows from Theorem 5.1. The bounds for I, and
I, follow in the same way, but the argument has to be built on the cubic moment
estimates for v, (n) that are provided by Theorems 5.1 and 5.5. g

We now turn to related, less balanced mixed moments. With « and Y as before,
we define

K= | 1 / | FOM) £ (M) £ (M) e 5,

1 pl
Lu :/0/0 n(Mi)n(Mg)| f(My) f(Mz)["] f(M3)[® da B,

and put
19w

n(u) 6 3

Theorem 6.2. Subject to the hypotheses of this section, one has
K, < P2u=2nwte (6 <y <19/2),
L, < P2u72+n(u)+a (6 <u< 11).

Proof. We proceed as in the initial phase of the proof of Theorem 6.1. Using the
same notation, we obtain

Li= Y ¢u(ni)pu(ng)is(ns).
(n1,m2,m3)EN

Note here that 1g(m) counts solutions of a Diophantine equation, and consequently
is a non-negative integer. Hence

Losy Y o) (6um) +lou(m)P).
(n1,n2,n3)EN

By symmetry, we may therefore suppose that for appropriate non-zero integers lo
and [3, depending at most on ¢ and d, one has

Lo< Y te(na)louma)? = vslsm)|du(lom)|*. (6.2)

(n1,n2,n3)EN mEeZ

Next, first applying Holder’s inequality, and then Theorem 5.1 and (5.2), we obtain

the bound
Lo < (X wem?)” (3 sl
meZ

nez

2/3

< Pf (PIB—%)l/g' (Pgu—%’)z/3
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The estimate for L, recorded in Theorem 6.2 therefore follows on recalling the
definition of n(u).

The initial steps in the estimation of K, are the same, and one reaches a bound
for K, identical to (6.2) except that ¢, now becomes 1,,. We split into major and
minor arcs by inserting the relation 1 = N(a) + n(«), with parameters X = P* and
Y = PY/3 into (4.11). From (5.5) we obtain

| N(@)| ()] “e(—am) da

< / |f ()" da < P4,
m

Piy
Hence, we discern from (4.11) and (4.12) that
() < |pu(n)? + P>,
and so,
Koy <Y s(lam)|gu(lam)® + P78~ g (lgm).
meL meL

Here the first sum over m is the same as that occurring in the estimation of L, in
(6.2), and has already been estimated above. Thus, since

> ws(n) =1£(0)|° < PP,

nez

we conclude that

K’u, < P2u—2+77(u)+6 +P2u_821/)6(n) < P2u—2+77(u)+5 +P2u_2.
neZ

Provided that u < 19/2, which guarantees n(u) to be non-negative, this estimate
confirms the upper bound for K, claimed in the theorem. ([

Note that the mean values I, and J, involve s = 3u Weyl sums, at least for
integral values of u. By comparison, the number of Weyl sums in K, and L, is
s = 2u + 6. A short calculation shows that when applied with the same value of
s, with s > 18, the exponents of P in Theorems 6.1 and 6.2 coincide. Since almost
all of Theorem 6.1 may be recovered from Theorem 6.2 via Hélder’s inequality, and
since for fixed values of s the exponent u in Theorem 6.2 is at least as large, Theorem
6.2 is morally the stronger result. In our later application of the circle method, this
allows for larger values of r; in the profiles associated to the simultaneous equations
(1.1), and this is essential for our method to succeed. Another advantage is that in
L,, only two of the forms M; are on minor arcs, while in the mean value J,, all three
are constrained to minor arcs.

We continue with another result in which the profile is even farther out of balance.
We consider the integral

1 ,1
M—Aémmmwwmmvmﬁw%wmw.

Theorem 6.3. Given the hypotheses of this section, one has M < P8~1/18+¢

Proof. We again traverse the initial phase of the proof of Theorem 6.1 to confirm
the relation

M = Z o11(n1)p11(n2)1a(ng).

(n1,n2,n3)EN
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Then, just as in the argument of the proof of Theorem 6.2 leading to (6.2), we find
that for appropriate non-zero integers ls and 3, depending at most on ¢ and d, one
has
M <Y palzm)|gn (lam) .
meZ

Thus, an application of Hélder’s inequality in combination with Theorems 5.1 and
5.5, together with (5.2), yields the bound

M < (Z ¢4(n)3)1/3 (Z ‘¢11(n)|3) 2/3 < P* (P13/2)1/3 <P71/3)

nez neL

2/3

The desired conclusion follows a rapid computation. O

Finally, we transform the estimates for L,, and M into proper minor arc estimates.
In the interest of brevity we write I = DM ps p1/s and put

p=10, 1}2 \ (9% x ). (6.3)
Theorem 6.4. Suppose that 19/2 < u < 11. Then
J[ 1700 )10 daras < prozncoe, (6.4)
Further, one has p
[ 17001 102y () dads < P18 (6.5)
p

Proof. Let N = Nps po/7 and n =1 — N. Then

We note at once that whenever (o, 8) € p, one has N(M;)N(Mz) = 0. The expla-
nation for this observation is that whenever N(M;j)N(Mz) > 0, then it follows from
Lemma 3.1 that M; € Nps p2/7 (j = 1,2). By taking suitable linear combinations
of M; and My we find that o and 3 lie in Mpa 4 p2/7, with some A > 2 depending
only on the coefficients of My and M. But (a, 3) € [0,1]?, and so («, ) € 9 x M
for large enough P. This is not the case when (a, 8) € p, as claimed.

With this observation in hand, we apply (6.6) within the integral on the left hand
side of (6.5) to conclude that

/ﬂmm%mﬁ%ww®w<MMm+mm (6.7)
p

where Lo
My = [ [ NOI)ROL) ) M) () dads (68)

and M,y is the integral in (6.8) with M;, My interchanged.

By symmetry in M; and Mo, it now suffices to estimate My,. Recalling the
definition (6.1) of the linear forms M;, we put D = |cida — cady| and note that
D > 0. Consider the linear transformation from R? to R?, with («,8) — (o/, ),
defined by means of the relation

(5)=p (2 a)(s): (6.9)
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Then M; = Do/, My = Df’, and « and 3 are linear forms in o’ and 3’ with integer
coefficients. By applying the transformation formula as a change of variables, one
finds that

M= [ [ ND@(D) F(Da) H(DF) (A + B de’ a8
B

wherein A, B are non-zero integers and B is the image of [0, 1]? under the transfor-
mation (6.9). The parallelogram B is covered by finitely many sets [0, 1]? + t, with
t € Z2. Since the integrand in the last expression for My, is Z2-periodic it follows
that

1 r1
My < /0 /0 N(Da)n(DB)| f(Da) " f(DB)' f(Aa + BB)| devdf.

Here we have removed decorations from the variables of integration for notational
simplicity.

We now inspect all factors of the integrand in the latter upper bound that depend
on . By Hélder’s inequality, Lemma 5.3 and obvious changes of variable, one obtains
the estimate

1
/0 n(DA)F(DA)f (Ao + BB dB
5/7 2/7

< ( / (DB F(DB)T dB) ( / |f(da + BE)M d6>

< Ps(P67/6)5/7(P10)2/7 _ P65/6+s,

uniformly in o € R. Consequently, applying (5.5) in combination with yet another
change of variable, we finally arrive at the bound

1
My < P55 [ON(Da)l(Da)|" da < P10
0

We may infer thus far that My, + M,n < pis=1/6+e QOp substituting this estimate
into (6.7), noting also the bound M < P'$=1/18+¢ gupplied by Theorem 6.3, the
conclusion (6.5) is confirmed.

The proof of (6.4) is essentially the same, and we economise by making similar
notational conventions. The exponents 11 and 4 that occur in (6.5) must now be
replaced by u and 6, respectively. The initial phase of the preceding argument then
remains valid, and an appeal to Theorem 6.2 delivers the bound

/ / FOM)FOM) [ f(Ms) [ davdB < Ln + Lo + P20 (6.10)
p
where

Ly < /0 /0 N(Da)n(DB)|f(Da)f(DB)I*| f(Aa + BA)[S dadp.
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Here, we isolate factors of the integrand that depend on 8 and apply Hoélder’s in-
equality. Note that since u < 11 we have Tu/4 < 20. Thus, by Lemma 5.3,

1
/0 n(DB)|f(DB)" f(Aar + BB dB

4/7 3/7

1 1

<<(/ n(D5)|f<Dﬁ>|W4d6> ( / |f<Aa+Bﬂ>|”dﬂ>
0 0

< Ps(P%u—g)4/7(P10)3/7.

Applying this bound, which is uniform in o € R, together with (5.5), we arrive at
the estimate

5 1
Lnn < PEFH4 [T N(Da) | (Do) da < P
0

When u < 11, the definition of n(u) ensures that %u - % < 2u —2+n(u), and hence
Lnn + Loy < P2e=2+0(w)+e  The conclusion (6.4) now follows by substituting this
estimate into (6.10). O

7. ANOTHER MEAN VALUE ESTIMATE

This section is an update for quartic Weyl sums of our earlier work [3] on highly
entangled mean values. We now attempt to avoid independence conditions on linear
forms as far as the argument allows while incorporating the consequences of the
recent bound (1.5). We emphasise that throughout this section, we continue to
work subject to the overall assumptions made at the outset of the previous section.
We begin by examining the mean value

1 p1
G = /O /0 £ (M) f(Ms)?) dadB. (7.1)

Lemma 7.1. One has G1 < P°*¢.

Proof. This is essentially contained in [4, Section 2], but we give a proof for com-
pleteness. Recall the definition (6.1) of the linear forms M;. By orthogonality, the
integral GG is equal to the number of solutions of an associated pair of quartic equa-
tions. By taking suitable integral linear combinations of these two equations, we
may assume that they take the shape

a(x} — x3) = blay + 2 — a5 — xg) = (a7 + 2§ — a5 — 21), (7.2)

for suitable natural numbers a,b,c. Thus, we see that G1 is equal to the number
of solutions of the Diophantine system (7.2) with z; < P. For each of the O(P)
possible choices for z1 and zo with 1 = x4, it follows via orthogonality and (5.10)
that the number of solutions of this system in the remaining variables xs, ...,z is

equal to
1 2
(/ |f(a)|* da> < Pte,
0

Consequently, the contribution to G from this first class of solutions is O(P°*+¢).
Now consider solutions of (7.2) in which 1 # x5. By orthogonality, the total number
of choices for xs, ..., x10 satisfying the rightmost equation in (7.2) is

/0 £ (ba) f(ca)[* da.
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Schwarz’s inequality in combination with (5.8) shows this integral to be O(P5+).
However, for any fixed choice of x3,...,x10 in this second class of solutions, one
has #1 # 2, and hence the fixed integer N = b(x4 + 2] — 22 — x4) is non-zero.
But it follows from (7.2) that 23 — 23 and 2% + 23 are each divisors of N. Thus,
a standard divisor function estimate shows that the number of choices for z; and
x9 is O(P*), and we conclude that the contribution to G from this second class of
solutions is O(P°*¢). Adding these two contributions, we obtain the bound claimed

in the statement of the lemma. O

We next examine the mean value
1,1
GQ = / / |f(Ml)Qf(M2)4f(M3)4f(M4)4f(M5)4| da dﬁ. (7'3)
0Jo

Theorem 7.2. One has Gy < P11,

Note that in this result we require the five linear forms M; to be pairwise inde-
pendent. Therefore, the result will be of use only in cases where the profile of (1.1)
has r5 > 1. The mean value in Theorem 7.2 involves 18 Weyl sums and should
therefore be compared with the bound Iy < P57/+¢ provided by Theorem 6.1. The
extra savings that we obtain here are the essential stepping stone toward Theorem
1.2.

The proof of Theorem 7.2. As in the proof of Lemma 7.1, it follows from orthogo-
nality that the integral G is equal to the number of solutions of an associated pair
of quartic equations. Taking suitable integral linear combinations of these two equa-
tions, we reduce to the situation where ¢4 = d5 = 0, and consequently My = dy5 and
M5 = c5a. Motivated by this observation, we begin our deliberations by estimating
the auxiliary mean value

1,1
G3=/0/0 | F(M1)2f (Ma2)* £ (M3)* £ (da8)*| da dB.

The Weyl differencing argument [14, Lemma 2.3] shows that there are real num-
bers uy, with u;, < P for which

< PP+P > upe(vh). (7.4)
1<|h|<2P4
We apply this relation with v = My to the mean value G3 and infer that
G3 < P3G1+ PGy, (7.5)

where G is the mean value defined in (7.1), and

1,1
Gi= Y w /O /0 |F(M1)2 F(Ma)* £ (M) |e(dsh ) da B,

I<|hl<2P

By orthogonality, the double integral on the right hand side here is equal to the
number of solutions of the system of Diophantine equations

(2] — i) + calwy + 23 — v — y3) + (] + 25 — yi — ) =0 (7.6)
d 4 4 d 4 4 4 4 d 4 4 4 4 duh =
(2] — 1) +da(y + 25 — Yo —y3) +d3(vy + 25 —ys —y5) +dsh =0

with z; < P and y; < P. We may sum over h # 0 and replace u, by its upper
bound. Then we find that G4 < P*Gs5, where G5 is the number of solutions of the
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equation (7.6) with the same conditions on x; and y;. By orthogonality again, we
deduce that

1
Gs — /0 £ (c10)2 F(ca0) f(cs0) | dar.

For 1 < i < 3 the linear form M; is linearly independent of My = d4/f3, and thus
cieacz # 0. The trivial bound |f(cia)|*> < P? therefore combines with Schwarz’s
inequality and (5.8) to award us the bound

1
Gs < P2/0 If(y)Bdy < PTFe.

We therefore deduce that G4 < P7t?¢. Meanwhile, the estimate G < P°t¢ is
available from Lemma 7.1. On substituting these bounds into (7.5), we conclude
thus far that G3 < P%te.

We now repeat this argument with v = Mz in (7.4), applying the resulting in-
equality within the integral G defined in (7.3). Thus we obtain

Gy < P3G3 + PG, (7.7)

where G denotes the number of solutions of the Diophantine equation
dy (2] —y1) +do (w3 + 35— 3 — y3) + ds(ah + 5 — yi —ys5) +da(wg+ 27—y —y7) =0,
with x; < P and y; < P. By orthogonality,

1
G = /0 [F(d10)? f(doa)* f(d30)* f(ds0)*| dar

One may confirm that dydadsdy # 0 by arguing as above, and so an application of
(2.2) in combination with (1.5) reveals that

4 1 1
Go< Y [ I aa=1 [ 1P ay < PO
i=1 0 0

The conclusion of the theorem now follows on substituting this bound together with
our earlier estimate for G5 into (7.7). O

8. THE CIRCLE METHOD

In this section we prepare the ground to advance to the proofs of Theorems 1.1
and 1.2. A preliminary manceuvre is in order. Let £ = 0 or 1, and let N(P) = Ni
denote the number of solutions of the system (1.1) with £ < z; < P (1 < j < s).
Note that the equations (1.1) are invariant under the s mappings x; — —x;. This
observation shows that

2°Ny(P) < A (P) < 2°Ny(P). (8.1)
The goal is then to establish the formulae
lim 2°P®*N,(P) =36 (k=0,1), (8.2)
P—oo

since then (1.4) follows immediately from (8.1) and the sandwich principle. Thus,
we now launch the Hardy-Littlewood method to evaluate the counting functions
Ni(P). This involves the exponential sum

fela)= Y e(azt). (8.3)

k<x<P
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This sum is, of course, an instance of the sum (1.10), where we have been deliberately
imprecise about the lower end of the interval of summation. The results we have
formulated so far are indeed independent of the choice of k, and it is only now and
temporarily where this detail matters. We require the linear forms A; = Aj(a, 3),
defined by

Aj(a, B) = aja+b;B8 (1<) <s)
that are associated with the equations (1.1). We then put

Fr(a, B) = fe(A1) fe(A2) - - fe(As), (8.4)
and observe that, by orthogonality, one has
i) = [ [ Fie ) daas (5.5)
k = o Jo k&, o . .

Subject to conditions milder than those imposed in Theorems 1.1 and 1.2 we
reduce the evaluation of the integral (8.5) to the estimation of its minor arc part.
With this end in mind we define the major arcs 2 as the union of the rectangles

V(g a,b) = {(a, B) € [0,1)* : | —a/q| < P7*"/% and |8 — b/q| < P7*V/%},

with 0 < a,b < ¢, (a,b,q) =1 and 1 < g < P'/5,
Define the generating functions
q

P
S(q,c):Ze(ca,A/q) and U(’y)—/o e(ytt) dt.

=1

Then, given (o, 3) € [0,1]2, if we put v = a —a/q and § = 8 —b/q for some a,b € Z
and ¢ € N, one concludes from (8.3) and [14, Theorem 4.1] that

fielAy) = 0718 (4, Ag(a, ) 0 (457, 8)) + 0 (/241 + PA; (1, 5))Y2) . (86)

Note that the right hand side here is independent of k. We multiply these approxi-
mations for 1 < j < s. This brings into play the expressions

S

S(g,a,0) = ¢ T[S (a.A5(a.b) and ¥(3,6) = [Jv(4;(7,0)).

J=1 J=1

If (a, B) € V(q,a,b) C UV then the error term in (8.6) is O(Pl/S—i—e)’ and we infer
that
ﬂk(a,ﬁ) = f(q, a, b)’y(f}/’ 5) + O(Psf7/8+g).

Since 9 is a set of measure O(P~%9/8), when we integrate this formula for .% (e, 3)
over U, we obtain the asymptotic relation

// Fr(a, f)dads = 6(p1/8)3*(P1/8) + O(PS_33/4+’5),
bl

where, for 1 < Q < P we define

and 9(Q) = [~QP~1, QP12
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At this point, we require some more information concerning the matrix of coef-
ficients, and we shall suppose that ¢y > 15. Then s > 16, and we may apply [9,
Lemma 3.3] to conclude that &(Q) = & + O(Q°~!). Further, we have

P
/ e(vt*) dt = 2v(y),
-P

and thus [9, Lemma 3.1] shows that the limit (1.2) exists, and that we have 2°3*(Q) =
P83+ O(P*—8Q~'/*). We summarise these deliberations in the following lemma.

Lemma 8.1. Suppose that qo = 15 and that k € {0,1}. Then

/ Fr(a, B)dadp = 275 P83y + O(P5_8_1/32).
by}

The major arcs in Lemma 8.1 are certainly too slim for efficient use of Weyl type
inequalities on the complementary set. A pruning argument allows us to enlarge the
major arcs considerably. Let 20 denote the union of the rectangles

W(q, a,0) = {(e, ) € [0,1]* + g — a] < P~ and |8 — b < P},
with 1 < ¢ < P,0<a,b<qand (a,b,q) = 1. Then U C 2, and we proceed to
estimate the contribution from 20\ U to the integral (8.5). A careful application
of [14, Theorem 4.2] shows that S(q,c) < ¢*/*(q,¢)"/*. Further, if V(y) = P(1 +
P*y|)~1%, then by [14, Theorem 7.3], one has v(y) < V(7). Hence, whenever
(o, B) € W(q, a,b) with ¢ < P, one deduces from (8.6) that

Fu(A) < a7 (@, M@ b))V (Aj(a — a/q. B — bfg)) + PV

It is immediate that the first term on the right hand side here always dominates the
second, and therefore,

Filon, B) < g~ T (@ Aj(a, b)YV (Aj(a — a/q, B~ b/q)) .-

j=1
We integrate over 20 \ U. The result is a sum over ¢ < P in which we consider
the portion g < P/® separately. This yields the bound

/ Fi(a, B)dadf < Ki(PV®) + Ko(PV/®), (8.7)
2\Y

where for 1 < Q < P, we write

—s/4 , b)) 1/4 ) dads,
S IPIUE ) CRVCUILY/I ) (CIOTRXE

¢<Q a=1 b=1
(a,b,q)=1

with B(Q) = [-1, 1]2\11( ) and

= > qu—s/‘*ﬂ ¢.A5(a,b)) ”4//11]2 A;) dadg.

Q<g<P a=1 b=1
(a,b,q)=1

Still subject to the condition gp = 15, the proof of [9, Lemma 3.2] shows that

222(1—3/4]i[q7 ab 1/4<<qu 2<<Q51

>Q a=1 b= 1 >Q
(a,b,q)=
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and similarly, the proof of [9, Lemma 3.1] delivers the bounds

// [TV A))dads < P81/
B(Q) =1
and

S
A;) dad ps—8,
//1,1}2]‘1:[1‘/( j)dadf <

[

Thus we deduce that K1(PY/8) 4 Ky(P'/8) < Ps~8-1/32_ Substituting this estimate
into (8.7), and then recalling Lemma 8.1, we see that in the latter lemma we may
replace U by 20. This establishes the following theorem.

Theorem 8.2. Suppose that qo > 15 and that k € {0,1}. Then
// Fi(a, B)dadf =27 P~ 867 + O(ps—8—1/32)_
W

Let to = [0,1]? \ 20 denote the minor arcs. Then, in view of (8.2), (8.5) and
Theorem 8.2, whenever gy > 15, the asymptotic relation (1.4) is implied by the
minor arc estimate

/ / T, B) dadf < P~871/32, (8.8)

as P — oo, and in the next two sections we shall confirm this subject to the hy-
potheses imposed in Theorems 1.1 and 1.2.

9. THE PROOF OF THEOREM 1.1

At the core of the proof of Theorem 1.1 we require two minor arc estimates.
Throughout this section, we define the linear forms M; in accordance with equation
(6.1).

Lemma 9.1. Suppose that the linear forms M1 and Mgy are linearly independent.
Then

[ 1700 £0a) 1 daas < P21

o

Proof. Tt is immediate from (6.3) that w C p. Recall the initial argument within
the proof of Theorem 6.4. This shows that for (o, 3) € p, the forms My and My
cannot be in Nps po/7 simultaneously. By symmetry we may therefore suppose that

M1 € nps p2/7. Now apply the transformation formula as in (6.9). One finds that
for an appropriate non-zero integer D, depending at most on ¢ and d, one has

//m|f(M1)f(M2)|15dad5<</01/m|f(Da)f(Dﬁ)|15dad6,

where m = Mps p2/7. Thus, applying a trivial estimate for one factor f(Dg3), we
deduce via Lemma 5.3 that

// | £(M1) f(M2)|** dadB < P* <P65/6) (P") < p22—1/6+e

This completes the proof of the lemma. O
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Lemma 9.2. Suppose that the linear forms My, Mo, M3 are pairwise linearly inde-
pendent. Then

/ |f(M1)11f(M2)11f(M3)4| dadf <« pl8-1/18+¢

Proof. On recalling that to C p, the lemma is immediate from Theorem 6.4. ]

We are now fully equipped to complete the proof of Theorem 1.1. Suppose that
we are given a pair of equations (1.1) with s > 26, g9 > 15 and profile (r1,79,...,7,).
The parameter [ = s — r; — r9 determines our argument. In the notation of Section
8, we let .F = .%;, with k = 0 or 1 being the generating function defined in (8.4).

Small values of [ call for special attention. Initially, we consider the situation with
0 <1< 3. We apply Lemma 2.3 with v = 3, with J; and Jo the subsets of the set
of indices {1,2,...,s} counted by r; and ry, respectively, and with J3 the subset
consisting of the remaining indices. Then card(J3) = 1. We also choose

M1:S—15 M2:15—l and M?,:l

The condition gg > 15 ensures that vy < s—15, and 71 +7r9 = s—1 = M7+ M. Also,
we have M1 =s—15>15—1= My because ry > ro > 15—land s=r1 +ro +1 >
2ry +1 > 30 — . Finally, since 0 < [ < 3 it is apparent that My =15 —1 > | = Mj.
Therefore, Lemma 2.3 is indeed applicable and delivers the bound

// dadﬁ <</ |f 1\/[1 s— 15f( )157lf(M3)l|dOédﬁ,

where each of the M; is one of the linear forms A;, and any two of the M; are linearly
independent. We now reduce the exponent s — 15 to 15 — [ and then apply Holder’s
inequality. Thus

// dad6<<Ps 3O+l//|fM1 15 lf( )15 lf(M3)|dO[d,8

l/4~n1-1/4
< YAy

where

T, = / PO (M) (M) da B,

1o :/ | £(M1) f(M2)|"® dadB.
o
In this scenario, therefore, we deduce from Lemmata 9.1 and 9.2 that
/4 1-1/4
/ Z(a, B) dadB < Ps—30+i+e (P18—1/18> (P22—1/6)
iy

< PS—8—1/18+8. (91)

We may now suppose that [ > 4. Then ry < s—15and r{ +7r2 < s—4. In Lemma
2.3 we now take J; to be the subset of the set of indices {1,2,...,s} counted by 7;.
We also choose

M,=...=My=0, My=4, My=11 and M =s— 15,

and note that the hypothesis s > 26 ensures that M; > Ms. The conditions required
to apply Lemma 2.3 are consequently in play, and we deduce that

/ / 8)dadp < / |F O[] £ (Ma) |1 £ (Ms)[* da B,
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where again each of the M; is one of the linear forms A;, and any two of the M;
are linearly independent. Here s — 15 > 11 by the hypothesis s > 26, and we may
estimate excessive copies of f(M;y) trivially and apply Lemma 9.2. This confirms
that (9.1) also holds for [ > 4. In particular, we have (8.8) subject to the hypotheses
of Theorem 1.1. This completes the proof of Theorem 1.1.

10. THE PROOF OF THEOREM 1.2

We continue to use the notation introduced in §§8 and 9, but now suppose that
the hypotheses of Theorem 1.2 are met. Hence s = 25 and r; < s —qp < 9. We also
assume that r5 > 1. Our goal on this occasion is the estimate

// F(a, B) dadf < P12+, (10.1)

Once this is established, Theorem 1.2 follows in the same way as Theorem 1.1 was
deduced from (9.1).
We apply Lemma 2.3 with .J; the subset of the set of indices {1,2,..., s} counted
by r; for 1 < j < v. Also, we put m; = r; for each j and
ML,Z...ZM(;:O, M5=M4=l, M3:5 and M2=M1=9.
On recalling that r; < 9, it is immediate that (2.3) and (2.4) hold. Hence, Lemma

2.3 is applicable, and yields linear forms My, ..., M5 that are linearly independent
in pairs, where each M; is one of the A;, and where

/ /m F(,)dadp < / / FOML)? £ (M2)° £ (Ms)® £ (M) £ (Ms) | dar 4.

By Hoélder’s inequality, we find that

// B)dadp < TYAr34,

Yo= [ [ 1500 £ £ F ) (M) dar s
0J0

where

T4=/ | £ (M) f (M) [22/3) £ (M3)|® da dB.

Making use of the bounds supplied by Theorem 7.2 and Theorem 6.4 with v = 32/3,
we therefore infer that

// B)dadB <« P° (P11)1/4 <p19 1/18) 3/ « plT-1/2t+e

Thus the bound (10.1) is confirmed, and the proof of Theorem 1.2 is complete.

Finally, we briefly comment on the prospects of reducing the number of variables
further. Note that the estimates for the minor arcs and for the whole unit square
in Theorem 6.1 coincide for v = 25/3. Since §(25/3) = 0, therefore, when s = 25
our basic method narrowly fails to be applicable to the system of equations (1.1).
Further, it transpires that each additional variable contributes a factor P to the
major arc contribution, but only P?/6 to the minor arc versions of Theorems 6.1
and 6.2. As indicated in §1 already, it is worth comparing the 18th moment (u = 6)
in Theorem 6.1 with that in Theorem 7.2, the latter being superior by a factor
PY6. 1t transpires that even if it were possible to propagate this saving through
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the moment method, then we would still fail to handle cases of (1.1) with s = 24,
but only by a factor P°. However, at this stage, the only workable compromise
seems to be to apply Theorem 7.2 in conjunction with Theorems 6.1 or 6.4, via
Hélder’s inequality. If the profile of the equations (1.1) is even more illustrious
than in Theorem 1.2, then one can put more weight on the bound stemming from
Theorem 7.2. For example, if we suppose that s = 24 and r; < 5, then v > 5 and
r5 < 4, so that in hopefully self-explanatory notation, the minor arc contribution
can be reduced to something of the shape

/ / 8)dads < / FOML)P £ (Ma)? £(Ms)? £(Ma)? £(Ms)?| da dB.

One may then introduce the identity (3.5) with v = M; for all 1 < j < 5 simultane-
ously. The most difficult term that then arises is that Welghted with n(Ml) -+ -n(Ms).
A cascade of applications of Holder’s inequality together with Theorem 6.1 shows
this term to be bounded by

(T3)3/5(J11)2/5 < P16+1/15+E7

which is quite far from saving another variable.
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