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ARTICLE INFO ABSTRACT

Keywords: The process-structure-property relationship in Large Area Additive Manufacturing (LAAM) technology is an
Lafge area additive manufacturing (LAAM) ongoing area of research as the inherent microstructural properties (chiefly fibers and voids) affect the perfor-
Microstructures mance of printed parts. Unfortunately, we currently lack adequate understanding of micro void nucleation and
Egzzﬁationm evolution during the LAAM and fused deposition modelling (FDM) processes. Modeling of the polymer melt flow
Modelling during the extrusion process is important in understanding the underlying microstructural formation and asso-

ciated properties of the print, that determines the part performance in service conditions. In this paper we
compute fiber-induced local pressure fluctuations which may promote void formation in the bead’s micro-
structure. On a macro-scale, we determine flow fields of a purely viscous, Newtonian planar polymer deposition
flow through a LAAM nozzle which are utilized on a micro-scale model where we simulate the evolution of a
single ellipsoidal fiber along streamlines obtained from the macro-model. On the micro-scale, we determine
instantaneous values of the translational and rotational velocities of the rigid ellipsoidal fiber that satisfies a
balance of hydrodynamic forces and couples on the fiber’s surface based on a Newton Raphson algorithm and we
track the fiber’s motion along the flow path via an explicit numerical iterative algorithm. Model verification is
achieved by benchmarking results with solutions from well-known Jeffery’s equation of motion of a particle in
homogeneous simple shear flow. We account for rotary diffusivity due to short-range fiber-fiber interaction in the
FEA simulation by determining an effective fluid domain size representative of the interaction coefficient of the
melt flow through a correlation analysis that yields an equivalent steady state orientation based on the Advani-
Tucker equation. We also consider different possible motions of the fiber along individual LAAM flow paths from
a given set of random initial fiber conditions to determine pressure bounds on the fiber surface along each
streamline. For improved computational efficiency, calculations are carried out with respect to the fiber’s local
coordinate axes to overcome the rigor of adaptive remeshing during the quasi-transient analysis. Results show
low pressure extremes near the fiber’s surface which varies across the printed bead as well as through its
thickness. Discussion is provided to gain insight into the effect of low-pressure extremes on micro void formation,
particularly at the nozzle exit and during die swell/expansion.

Finite element analysis (FEA)

1. Introduction AM technologies. While the addition of short carbon fibers in the poly-

mer feed stock yields improved thermo-mechanical properties in the

Polymer composite extrusion-deposition, which include small-scale
Fused Filament Fabrication (FFF) and large-scale Large Area Additive
Manufacturing (LAAM), has gained widespread attention among other
Additive Manufacturing (AM) technology because of its comparatively
high production speed and low production cost with extensive design
flexibility and material selection [1]. Knowledge of the microstructure
development during FFF and LAAM processing can be used to improve
the quality and performance of the composite parts produced by these
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printed part, fiber inclusions have also been shown to create micro-voids
within the microstructure of a printed bead that results in
lower-than-expected part quality and impaired part performance in
service [2-5]. Further, micro-voids within the LAAM bead microstruc-
ture have been shown to appear when fibers are present but do not occur
when neat polymers are used to produce beads under the same operating
conditions [5]. Vaxman et al. [6] identified micro-void nucleation
mechanisms in fiber-filled polymers, and micro-voids are more
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prevalent in higher fiber content composites [7]. Unfortunately,
micro-voids in LAAM polymer composite beads degrade their structural
integrity, but the influence of suspended fibers on micro-void formation
during the processing of LAAM beads is not well understood. This paper
considers mechanisms that promote intralayer micro-void nucleation
within polymer composite beads during the extrusion-deposition addi-
tive manufacturing process.

Voids within polymer extrusion-deposition parts primarily appear in
two forms: 1) interlayer voids that occur between beads, and 2) intra-
layer micro-voids that form within the microstructure of a bead during
processing. Most interlayer voids are prismatic shaped and can be
controlled somewhat with lateral bead space and post-deposition
compaction (i.e., with a tamper or roller). Of the two types of voids,
interlayer voids aligned in the loading direction are less detrimental to
the mechanical properties of the AM printed composite than intralayer
micro-voids within the bead microstructure (denoted as micro-voids in
this paper) [5]. Alternatively, intralayer micro-voids serve as sites of
stress concentration that reduce the load bearing capacity of the poly-
mer composite material.

Knowledge of the micro-void morphology within a composite can
provide useful insight into the originating source and type of micro-
voids [8]. For example, randomly dispersed ellipsoidal shaped
micro-voids that form at the fiber-matrix interface likely result from
compromised integrity of the sizing agent [8]. Alternatively, spherical
shaped micro-voids isolated within the matrix may result from several
process related mechanisms. Indeed, micro-void development within an
extrusion-deposition AM bead has been shown to depend on the polymer
melt material, operating conditions, in addition to other external factors
[6,9]. Encapsulation of low molecular weight substances within the raw
pellets during the compounding process is a known source of micro-void
formation within beads which can be reduced by adequate venting
measures [6,10].

A significantly important mechanism of micro-void development
within the polymer melt is that of bubble nucleation and growth [6]
where micro-void development is dependent on the local fluid pressure
of the polymer melt [11-14,16,17]. For example, in the moistur-
e/volatile absorption-desorption induced void formation mechanism
[11,12,14] which is based on classical nucleation theory, a requirement
for void nucleation is the occurrence of sufficiently low localized fluid
pressure below the vapor pressure of the gaseous phase of the dissolved
volatile contents. Detailed description of this mechanism has been
provided in Appendix I. Alternatively, in the theoretical development of
the restrained volume contraction nucleation mechanism which occurs
due to thermal stratification and non-uniform cooling across the extru-
date during solidification, void nucleation can occur at locations within
the flow where the local fluid pressure drops below the atmospheric
pressure [16-18]. Studies have shown that faster cooling rate during
extrudate solidification resulted in higher levels of micro-void contents
within the polymer composite [6,10]. Yang et al. [19] studied the dis-
tribution of the micro-void content across regions of the melt in a FFF
extruder and the deposited extrudate. Yang found insignificant void
content in the polymer melt within the filament feed and heating/ex-
trusion zones of the extruder and nozzle. Alternatively, he showed that
the micro-void content increased significantly near the nozzle exit which
then decreased upon deposition of the bead on the moving bed. The
two-phase nature of polymer melt fiber suspension suggests that the
dominant mode of micro-void formation is heterogenous [5,13,15]. The
mismatch in the coefficient of thermal expansion between the rein-
forcing fiber agent and the matrix have been shown to promote
micro-void formation at the fiber-matrix interface during cooling [19].
Vaxman et al. [6] showed that suspended fibers influence micro-void
nucleation and that micro-voids preferentially form at the ends of fi-
bers. He further showed that micro-void concentration depends on the
fiber’s aspect ratio, the rheological properties of the suspension and
extrusion-deposition operating conditions.

More recently, computational techniques including the finite-
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difference method (FDM), finite-volume method (FVM), finite element
method (FEM), smoothed particle hydrodynamics (SPH), and discrete
element method (DEM) etc. have been used to better understand the
extrusion-deposition process in an effort to characterize the polymer
melt flow behavior and obtain process parameters and field states. Xia
et al. [20] developed a FVM approach to simulate the polymer melt flow
and subsequent cooling in the FDM process. Heller et al. [21], Wang
et al. [22-24] and Russell et al. [25] used FEM to simulate the flow of
fiber filled polymer melt in a LAAM extruder nozzle to evaluate the
orientation state of suspended short carbon fibers and the resulting
thermo-mechanical properties. Phan et al. [26] used region dependent
modelling of the FFF process to understand the melting and pressuri-
zation mechanisms involved. He combined a generalized Newtonian
fluid (GNF) model in the heated region of the extruder with a visco-
elastic model for the nozzle region and showed that a significant pres-
sure drop occurs across the capillary section of the nozzle. Shadvar et al.
[27] used FEM to study the polymer melt behavior of ABS in the
extruder and die swell of the extrudate and compared flow fields from
the simulation with that obtained from experiments. This work showed
that the pressure-drop across the nozzle varied directly and inversely
with the temperature and flow rate of the extruded filament, respec-
tively. Yang et al. [28] used a coupled SPH and DEM particle method to
simulate the FFF process of carbon fiber reinforced polymers where the
focus was on fibers orientation and deformation. Ouyang et al. [29]
employed a coupled microstructure constitutive fiber model with SPH
considering temperature dependence to predict fiber orientation and
resulting thermo-mechanical properties.

Among pioneering efforts that simulate the motion of a single
ellipsoidal rigid particle suspended in a viscous fluid are works such as
model by Oberbeck [30] and Edwardes [31], where Jeffery’s model [32]
served as the basis for their notable work. Various extensions to Jeffery’s
model with added complexity have evolved over time to predict the
motion of suspended particles which considered various factors not
included in Jeffery’s model assumption. For example, Hinch et al. [33]
showed that particles which do not conform to the axisymmetric shape
of ellipsoidal solid suspended in simple shear viscous flow exhibit sig-
nificant deviation of its motion from Jeffery’s orbit. Zhang et al. [34]
used a coupled FEM - Brownian dynamic simulation (BDS) approach to
study the added effect of Brownian disturbance from surrounding fluid
molecules on the fiber’s motion via a Langevin approach and found its
contribution to be dependent on the Peclet number. Férec et al. [35]
studied the effect of shear-thinning on suspended particle motion in
simple shear flow of a dilute suspension with non-Newtonian rheolog-
ical properties based on a two-dimensional (2D) FEM analysis and
showed insignificant deviation from Jeffery’s orbit. A three-dimensional
(3D) analysis by Abhati et al. [36] based on an asymptotic solution
showed significant deviation from the Jeffery’s tumbling period while
identifying a sensitivity to initial conditions. The effect of a fiber’s
flexural properties and its back-coupling with interacting fluid has also
been investigated by various researchers. Most models for this purpose
employ a particle-based discretization technique using bead or rod
chains interlinked with joints having directional stiffness and failure
property definition to investigate the complex dynamics of the sus-
pended particle in viscous flow field. Examples of such models include
work by Skjetne et al. [37], Yamamoto et al. [38], and Yamanoi et al.
[39] which are included in the overview of existing element-based
simulations for fiber reinforced polymers by Kugler et al. [40]. The
primary focus of these earlier works has been on fiber motion with little
attention being given to the pressure field on and/or near the surface of a
suspended fiber.

Fiber suspension analysis, particularly that performed for polymer
composite melt extrusion-deposition processes, has almost exclusively
focused on fiber orientation and spatial distribution within the micro-
structure. However, little attention has been given to micro-void for-
mation and evolution during extrusion-deposition or to understand how
the suspended fibers influence micro-void development. The main
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objective of this article is to present a computational approach aimed at
understanding mechanisms that may promote moisture/volatile
induced micro-void nucleation on or near suspended fibers within the
bead microstructure produced by polymer extrusion-deposition process
via a multiscale modelling methodology. While our approach would be
applicable to both filament based FFF and LAAM systems and other
extrusion-based processes, our focus here is on the large scale polymer
composite deposition. In the macroscale model, we develop a two-
dimensional (2D) planar flow model for predicting melt flow velocity
and fiber orientation within the polymer melt during the extrusion-
deposition process in a LAAM extruder nozzle. Then a micro-scale
model is developed following the approach in Zhang et al. [41-43]
which is based on Jeffrey’s model assumptions for suspended particles
[30]. We simulate the evolution of a single ellipsoidal fiber along
streamlines of the polymer melt flow through the nozzle and onto the
print platform utilizing the field responses (velocity, velocity gradients
and pressure) obtained from the macroscale model which define
boundary conditions in the micro-model. Then, a single fiber’s trans-
lational and rotational velocities are computed by zeroing the net hy-
drodynamic forces and torques on the fiber’s surface where its
orientation and evolution along the flow path are updated based on an
explicit iterative numerical algorithm which incorporates velocities and
pressures from the macro-model. The micro-model is validated by
comparing results of fiber motion and pressure distribution on the fiber
surface with Jeffery’s analytical model equations [30] for the motion of
a single particle suspended in purely viscous shear flow. We account for
rotary diffusivity due to short-range fiber-fiber interaction in the
micro-model FEA simulation by determining an effective fluid domain
size that mitigates Jeffery’s rotation to match that predicted by the
Advani-Tucker fiber orientation evolution equation. We also consider
the fiber’s evolution along various flow paths based on a given set of
random initial fiber conditions to determine pressure bounds on the
fiber surface across the melt flow.

The pressure distribution on the fiber’s surface as it travels along
streamlines through the LAAM nozzle and onto the print bed, particu-
larly within the regions of die swell at the nozzle exit, provides insight
into a potential mechanism that could promote micro-void formation
within printed beads. Knowledge of the relationship between process
operating parameters and void formation and evolution can be used to
control the quality of printed parts [6,9].

2. Methodology

A multiscale modelling approach is developed in this work to better
understand micro-void initiation within the beads printed with the
LAAM extrusion-deposition process. The computational method here
includes a macro-scale model which is used to calculate velocities and
pressure along streamlines from the polymer melt flow solution in the
extrusion-deposition process, and a micro-scale model which simulates
the motion of a single rigid ellipsoidal particle based on the fluid flow
solution along the macro-model streamlines. Our approach is a one-way
coupling where computed velocities and pressures calculated along
macro-model streamlines serve as inputs to define boundary conditions
in the micro-model. A Newtonian fluid is assumed in both models. The
material properties of the polymer melt employed in this study are taken
from Heller et al. [21] and Wang et al. [23] which include a density of
1154kgm~3 and kinematic viscosity of 817Pa e s (i.e., 13% by weight
carbon fiber filled ABS at 230 °C with a shear rate of 100 s 1). In all of
the discussion to follow, a ‘fiber’ is a rigid two-dimensional ellipsoidal
solid having an aspect ratio of r, = a/b where a and b are the lengths of
the major and minor ellipsoidal axes.

2.1. Macro-model - 2D planar extrusion-deposition flow

A typical extrusion-deposition process of fiber filled polymer through
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a LAAM extrusion nozzle and the subsequent single bead deposition on a
translating substrate is shown in Fig. 1a. The internal nozzle geometry
used in this study is based on the Strangpresse (Strangpresse, LLC,
Youngstown, Ohio, USA) Model 19 LAAM single screw extruder nozzle
where an annotated schematic representation of its internal nozzle ge-
ometry appears in Fig. 1b. The 2D planar flow domain consists of the
internal nozzle geometry region and a single bead layer deposited on the
substrate that translates laterally with respect to the nozzle. (cf. Fig. 2a).
The FEM formulation is briefly described here where additional
modelling details of planar deposition flow can be found in Zhang, et al.
[44].

The governing equations for polymer melt flow within the nozzle and
the printed bead are defined by Stokes’s equation based on the as-
sumptions of no inertia in the fluid, the polymer melt is a creeping flow
with a low Reynolds number (i.e., Re<<1), and the polymer melt is an
isothermal, incompressible, Newtonian fluid. Based on these assump-
tions, the mass and momentum conservation equations reduce to [44].

Vev=0 @

Ves+f=0 )

where V is the gradient operator in 2D, v is the fluid velocity vector, f is
the body force vector, and ¢ is the Cauchy stress tensor given as:

3

IS
1L

In the above, p is the fluid hydrostatic pressure, I is the identity
tensor and z is the deviatoric stress tensor which is written for a New-
tonian fluid as:

z=2ul @

where y is the Newtonian viscosity and [ is the second-order rate of
deformation tensor. Note that Eq. (4) does not include the influence of
fiber orientation on the deviatoric stress.

The ANSYS Polyflow (Ansys, Canonsburg, PA, USA) commercial
software is used for the macro-model polymer melt flow extrusion-
deposition analysis. Fig. 2a illustrates the quasi-steady fluid domain
and boundary conditions for the 2D polymer melt flow model. Using
data from Heller et al. [21] and Wang et al. [23,43], the average normal
velocity of 24 mm/s is prescribed at the nozzle inlet I'1 and the velocity
of the moving substrate and deposited material is 101.6 mm/s in the
positive x-direction which is imposed on I'4 and I's. A no slip boundary
condition is imposed on the nozzle inner wall I'; and a free-surface
boundary condition is prescribed on the exposed surface I's of the
deposited material. Fig. 2b shows computed velocity streamlines that
form between the nozzle inlet I'; and the bead flow exit I's. Also shown
in Fig. 2b are feature streamlines 4, 10, and 18 in addition to zones of
interest 1, 2, and 3 to be discussed below.

The velocity magnitude |v| and scalar magnitude of deformation
tensor y = /2L : L appear in Figs. 3a, and 3b, respectively. Computed
velocities in Fig. 3a show an increase in velocity magnitude from the
edge of the nozzle to its center as expected. It follows that material along
streamlines near the edges of the nozzle have a higher extrusion-
deposition time compared to those closer to the center. The velocity
contours (see for example, Figs. 5 and 6 in Ref. [44]) show a parabolic
velocity distribution across transverse sections of extruder nozzle except
near the entrance and exit of the straight capillary portion of the nozzle.
Melt flow in these transition regions is characterized by sharp transitions
of velocity and velocity gradients along the inside wall of the extrusion
nozzle. Upon deposition onto the print bed, the melt flow attains a
uniform velocity throughout the bead material where all stresses reduce
to zero.

The plot of velocity gradient in Fig. 4 shows unusually high values
occurring at the sharp corners of the flow field due to singularities in the
velocity solution where the polymer melt flow transitions from a no-slip
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Fig. 1. a) Polymer deposition process, b) Extrusion die schematic. [21,22,44].

' I;: No-slip Wall

I'3: Free Surface

T'3: Free Surface
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x Pt I'y: Substrate
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~
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Fig. 2. 2D Planar extrusion-deposition flow model a) fluid domain and boundary conditions, b) velocity streamlines of the polymer flow through the nozzle with

feature streamlines highlighted.

to a free surface boundary condition, which we attribute a posteriori to
be responsible for unexpected behavior of the fiber’'s motion along
streamlines close to these locations. In this figure, as well as in all of the
micro-model results, v, and v, are the components of the velocity vector
v in the x- and y-directions, respectively. We see from Fig. 4 that the
velocity gradient component - dv, /dx dominates near the nozzle exit and
is seen to increase in magnitude when moving outward from the center
streamline towards those near the edge of the nozzle.

2.2. Micro-model — 2D single fiber motion

Simulation of a rigid ellipsoidal fiber motion along streamlines of the
polymeric melt flow is performed in this work using a custom FEM code
developed in MATLAB (MathWorks, Natick, MA, USA). The single fiber
micromodel is governed by Stokes’s assumption of negligible inertia and

negligible thermal effects and includes an isotropic homogenous New-
tonian fluid that is the same as that used in the extrusion-deposition
macro-model described above. Our algorithm for the micro-model
simulation of a single 2D rigid ellipsoidal particle is derived from the
work in Zhang et al. [41-43]. The flow domain for the 2D single fiber
micro-model appears in Fig. 5a where we assume no slip occurs on the
fiber surface and there is no flux across the fiber surface. Velocity, ve-
locity gradient and pressure computed along streamlines of the
extrusion-deposition macro-model described above are used to prescribe
boundary conditions on the micro-model flow boundaries as a function
of time. To impose these values in the micro-model, three essential
boundary conditions are prescribed with respect to the fiber’s local co-
ordinate axes (cf. Fig. 5b). FEM solutions are obtained by applying the
essential boundary conditions to a fixed mesh which is rotated with the
local fiber axes. Rotating the model in this manner significantly reduces
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Fig. 3. a) Velocity magnitude |v| b) scalar magnitude of second order deformation tensor for various streamlines with feature streamlines highlighted.'?
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Fig. 4. Velocity gradient contours near extrusion-deposition transition zones (a) dvy/dx, (b) vy /0x, (c) dv«/dy, (d) v, /dy. The units of the velocity gradients are s!.
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r=r,ur,
(a)

Fig. 5. Micro-model showing a) flow domain b) prescribed boundary conditions [41].

computation time by maintaining a constant FEA system matrix,
avoiding the need of remeshing the domain and/or recalculating the
system matrix and its decomposed form at each iteration time step.
The far-field velocities on the fluid domain boundary u®! of the
micro-model are defined from the streamline velocities and velocity
gradients obtained from the macro-model velocity solution at each time
t of the single fiber evolution solution. Referring to Fig. 5b, the pre-
scribed velocities uP¢! is defined in terms of the 2D transformation
matrix le as:
BCl _ T T BC1
W = TTu, +T7Vu, T 5)
where the velocity u,, for streamline y, the 2D gradient operator V, and
the position vector r are, respectively,

[ N } VT = [d/ox 3/dy] {x }
u = , V. = X y |, K =
- Uy 1y y

In the above, the transformation matrix L} is defined in terms of the
in-plane fiber orientation angle 6 is given as:

(6)

=0

_ cosf  sind
~ | —sinf cosf

A single prescribed pressure ppc, is defined according to Eq. 7 on a
far-field node BC2 located on the fluid domain surface where its value is
computed from the macro-model streamline pressure p, as:

Psc2 = Py 7

The prescribed velocities u® on the fiber’s surface are transformed

according to the equation of rigid body motion which is defined based

on the translational velocity u, and rotational velocity & of the fiber’s
center as:

WP = Thu, +0 x ®

Discretization of the micro-model fluid domain is achieved using a
radial seed of 60-unit cells with a unidirectional geometric bias of 1.1
and circumferential seed of 60-unit cells resulting in a total of 1800
triangular elements as shown in Fig. 6a. We employ a 6-node quadratic,

1y, here refers to streamline identifier (n) and starts at 1 from the left edge of
the nozzle increasing transversely to a maximum number of 22 at the right edge
of the nozzle.
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B(C1

(b)

iso-parametric triangle serendipity element (cf. Fig. 6b) which has been
found to give accurate results for low Reynolds number fluid flow
problems [45].

The element system matrices and force vectors are derived from a
mixed method representation of the Galerkin formulation [46] as:

/ ¢ "B dQu’ =0 ©)
Q°

/B;frﬂggfdﬂele*/Qerﬁedgelff/Piﬂ}idﬂe*/iﬂﬁre:o

Q Q Q re
(10$)
where.
¢° & N° are the pressure and velocity interpolation function matrices,
respectively,

B® & B¢ are strain-displacement matrices, respectively,

u® & p° are, respectively, the velocity and pressure degrees-of-
freedom (dof) at the respective element nodes,

I & €° are the element boundary surfaces and domain of integra-
tion, respectively, and.

fandt are the body force and surface traction vectors, respectively.

The mixed method in Eqs. (9) and (10) are derived in the usual
manner from the weak form of the governing equations (cf. Eqs. 1-4)
with velocity and pressure degrees-of-freedom as the primary nodal
variables. The geometric order of the element shape functions is
quadratic in velocity and linear in pressure. Following discretization, the
element matrices and vectors are assembled into a global system matrix
and force vector in the usual manner resulting in the linear algebraic
systems of equations:

KU=F an

where K is the global system ‘stiffness” matrix, U is the primary vari-
able vector containing nodal velocities and pressures, and F is the sec-
ondary variable vector containing ‘load’ terms and nodal reaction forces
and flow rates. The solution technique used in computing the unknown
velocities, pressures, and reactions at the nodes is based on partitioning
the system matrix into essential ‘¢’ and free 'f' degrees of freedom as:
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Pressure and Velocity
Velocity

2
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Fig. 6. Micro-model FEM: a) Fluid domain discretization b) Element selection with active dof.

K K U F
= B .
K, K ||u|"|E 12

It follows that the unknown free velocities and pressure dofs in Uy
and unknown reactions forces and flowrates in F, from Eqgs. 12 and 13
are computed, respectively, from:

U =K, "\ E-KU 13)

=fe—¢

F.=K, U +K,U, as)

To compute the motion of a single fiber in the micro-model, the fi-
ber’s translational and angular velocities are obtained through an
explicit numerical solution of the balance equations that zero the net
hydrodynamic force and couple on the fiber’s surface. The nonlinear
solution of translational and rotational fiber velocities is achieved via
Newton Raphson’s iteration as:

o+

X=X —Jw as)

where X contains the fiber velocities which includes the fiber center

. . . . 1T
translational velocities X, and its angular velocity 6, i.e., X = { X, 9]
and R is the residual vector containing the fiber’s hydrodynamic forces

T
Fy and couple My ie, R= [EH MH] which is a function of the

fiber velocity, i.e., R = R(X). The ‘+ * and ‘-’ superscript refers to the
current and previous iteration step of the Newton Raphson procedure.
The fiber velocity vector is transformed from global to local reference
frame according to the rotation matrix:

T 0
Iy = [679' 1} (16)
such that
X = ;XX 17)

where variables on the local reference frame are accented with a su-
perscript. The net force vector F; and couple My on the fiber’s sur-
face are calculated by vector summation of the nodal reactions forces
and torques according to:

Npc3 Npcs

Fy==3 FY My==3 1 xFY as)
k k

where r¥) is the position vector, F{¥) is the nodal reaction force vector at
the k™ node on the fiber’s surface (BC3), and Npcs is the total number of
nodes on BC3. The Jacobian J in Eq. 15 is computed by taking the

derivative of the components of the residual vector R with respect to
components of the fiber’s velocity vector X and is given as:

[

:a- :ai{EH A_’[H]T:

T
< X —= 19
— 0X =~ [).¢ (19)

I~
1<

|: Npc3 dEE,k) Nacs ® oF®)
- - r

The derivative of the nodal reaction force vector is obtained using the
chain rule and requires the differentiation of the partitioned stiffness
matrices in Eq. (14) with respect to the fiber’s velocity vector X as:

oF, 9K, oU, 0K o
Teo =Hy yg =L =ey 4 g = 20
X  oX 7 =Cox  ox ¢ =X (20)

Similarly, using the chain rule, the derivative of the ‘free’ degrees-of-
freedom U; with respect to the fiber’s velocity X is obtained by differ-
entiating Eq. (13) as:

ou oF, 0K oK
k= -, - U, -k W, (21)
X = |oXx oX 0X )¢

Upon consideration of Newtonian fluid model with solution-
indepenedent stiffness matrices and force vector (i.e., 65/62{ =0and o
Ef/()X = 0), combining Eq. (20) and Eq. (21) yields:

oF aUu,
==K -K K'K | == 22
oX —ee =ef =ff =fe aX ( )

which is substituted into Eq. 18 to compute J. Given the fiber position

and angle X/, and the fiber translational and rotational velocities )_(" at
time step j the fiber location and angle at time step j +1 is updated based
on an explicit fourth order Runge-Kutta method.

2.3. Validation of micro-model simulation approach

Jeffery [32] derived an analytical solution for the motion of an
ellipsoidal particle in a purely viscous Newtonian fluid through linear-
ization of the Navier-Stokes equations. The derivations by Jeffery were
an extension of the earlier work of Oberbeck [30] and Edwardes [31]
who in given order, developed the equations of motion for an ellipsoid in
viscous fluid translating along and rotating about one of its principal
axes. The extent of validity to Jeffery’s derivations is limited to the
assumption of low Reynold’s number creeping flows. Jeffery assumed
the particle center travels with the same velocity as the undisturbed fluid
and rotates due to shear and distortion of the surrounding fluid (cf.
Fig. 7). The equations for the particle’s motion were derived from
equilibrium equations of the resulting forces and torque acting on the
particle by the action of the surrounding fluids pressure on the particles
surface which were found to be periodic and dependent on the particle’s
initial orientation. Jeffery assumed laminar incompressible, purely
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Fig. 7. Fiber orientation angles: a) 3D coordinates used in fiber orientation tensor equations and b) 2D coordinates used in single fiber motion simulations.

viscous, simple shear flow with a Newtonian fluid for the particle sus-
pension (i.e., y = constant and v'y = v’z =0, v;( = jy.(cf. Fig. 7). By
assuming an average far-field pressure p; = 0, for the undisturbed flow,
he obtained an expression for the particle’s in-plane orientation ¢ and

angular velocity &  given respectively by [47].

ot = (VT 87— Gran{ (/211 - &1} ) ana )

= (7/2)[£cos20 + 1] (23)

where ¢ is the particle shape parameter given by ¢&
= (r,2 =1)/(r.> +1) and 7 is the shear rate. The particle’s orbital period
for complete tumbling is given as [47].

tp:4ﬂ'/}‘/\/lf§2

Jeffery [32] also derived a solution for fluid pressure from the Lap-
lace equation which can be expressed in Two-Dimensional (2D) form as:

(24)

rQ  IrQ . 0°Q
P*Po+2/4{AE+BE+(H+H)m} (25)

Definition for the Laplace Function Q&A and derivations for the
constants A,B,H,H based on the 2D contraction can be found in

0 [rad/s]

4 4 4 ' ' 4 4
t t t t t t t

0 5 18 15 20 25 30 35
t [s]

(a)

Appendix II

After choosing an appropriate fluid domain size such that the
boundary BC1 is sufficiently far from the fiber surface (cf. Figs. 5b and
6a), computed results using our FEM micro-model with simple shear
flow of a fiber’s in-plane orientation and rotational velocity are in good
agreement with Jeffery’s analytical solution in Egs. (22) through (25)
for a single complete tumbling period as shown in Fig. 8.

Fig. 9 shows the evolution of the maximum and minimum pressure
on the fiber surface over the tumbling period from Jeffery’s (blue) and
FEA simulation (red) results. A periodic drop and subsequent increase by
a magnitude of about 8kPa relative to the mean reference pressure is
seen which supports our hypothesis on the occurrence of low-pressure
sites along Jeffery’s orbit and suggests a propensity for void nucle-
ation at these orientations. Upon comparing Figs. 8 and 9, it can be seen
that the extreme point of low pressure occurs as the fiber rotates towards
alignment in the direction of fluid flow. The location of the pressure
extremes varies from point to point on the fiber’s surface during its
motion along Jeffery’s orbit. As a result, the pressure extreme depends
on the mesh refinement on the fiber surface which results in minor
discrepancies observed between the extreme pressure profiles obtained
from Jeffery’s exact solution and FEA simulation in Fig. 9a. We however
see that the pressure evolution on the fiber tip match closely (Fig. 9b).

Vaxman et al. [6] noted that the fiber geometry, operating condition
and the fluid rheological properties are important factors that influence

—— Jeffery
FEA

-1 t t t t f f T
0 5 10 15 20 25 30 35 4

t [s]
(b)

Fig. 8. Fiber’s in-plane orientation angle (a) and angular velocity (b) and for the FEA simulation (red) and Jeffery’s Solution (blue).
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Fig. 9. (a) Fiber surface maximum (continuous lines) and minimum (dashed lines) pressure (b) fiber tip pressure, evolution along Jeffery’s orbit for both FEA

simulation (red lines) and Jeffery’s solution (blue lines).

Pressure [kPa]

Orientation Angle [rad]
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Fig. 10. Maximum (upper curves P > 0) and minimum (lower curves P < 0)
fiber surface pressures for various aspect ratio in simple shear flow (7 = 1s71).

void formation. To better understand this relationship, we performed
sensitivity analysis on the fiber’s geometric aspect ratio r, which shows
that the magnitude of r, varies directly with the max and min pressures
on the fiber’s surface as it rotates through Jeffery’s orbit in simple shear
flow [48]. Fig. 10 illustrates that the minimum pressure on the fiber
surface drops as the shape of the ellipsoid oblates from a prolate
spheroid to a perfect sphere at which point there are no noticeable
pressure peaks on the fiber surface during its evolution, as expected. A
closer inspection of the pressure contour plots appearing in Fig. 11
shows the location of minimum pressure on the fiber surface and that
these low-pressure sites occur at the fiber tip consistent with the
conclusion of Vaxman et al. [6].

The shear rate magnitude and Newtonian viscosity is observed to
influence computed pressure response as that for fiber aspect ratio, i.e.,

Pressure [kPa]

Orientation Angle [rad]

| 4 = 0.25 4 =05 =1

5 =2 -‘y:s‘

Fig. 12. Maximum (upper curves P > 0) and minimum (lower curves P < 0)
fiber surface pressures for various shear rate values in simple shear flow (re=6).
The units for y are s — 1.

higher shear rate and viscosity result in a higher peak pressure at sites
where they occur on the fiber surface as shown in Figs. 12 and 13. These
factors (fiber aspect ratio, viscosity, and flow shear rate), however,
affect Jeffery’s period differently. While the period is observed to vary
directly with aspect ratio (i.e., implying faster tumbling for shorter fi-
bers) the reverse is the case with the shear rate magnitude (cf. Table 1)
which varies inversely with the period as higher shear rate results in
higher fiber angular velocities, as predicted by Jeffery. However, Jeff-
ery’s period is unaffected by the viscosity magnitude. In summary,
higher geometric aspect ratios, shear rate magnitude and viscosity result
in lower fiber surface pressure drops, thus an increase in these factors
provide favorable conditions that increase the propensity for voids to
nucleate for suspended fibers in simple shear flow.

Fig. 11. Pressure distribution around fiber’s surface for at the point of minimum pressure drop for different fiber’s aspect ratio.
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Fig. 13. Maximum (upper curves P > 0) and minimum (lower curves P< 0)
fiber surface pressure limits for various Newtonian viscosities in simple shear
flow (r. = 6). The units for y are Paes..

Table 1
Table comparing period of fibers tumbling motion obtained from Jeffery’s
approximation to FEA calculations for various aspect ratio and shear rate.

re Ty Tfea 7 Ty Tfea

ls] ls] [1/s] ls] [s]
1 12.57 12.87 0.25 154.99 157.49
3 20.94 21.24 0.5 77.49 78.76
6 38.75 39.53 1 38.75 39.53
8 51.05 52.32 2 19.37 19.99
10 63.46 65.34 5 7.75 7.89

2.4. Non-dilute fiber suspension motion

Jeffery’s model assumes a Newtonian fluid and is valid for dilute
suspension where fibers possess a relatively large radius of influence
with neighboring fibers and contribute independently to the dissipation
of energy in the form of a modified isotropic effective fluid viscosity u*
for the suspension, such that u*=pu (1+x8) [32], where « is the
modification factor dependent on the particles dimension which has
been accounted for in our extrusion-deposition macro-model appearing
above and 9 is the volume fraction of the ellipsoidal fiber in the sus-
pension. However, for semi-dilute and concentrated suspensions, there
exists some degree of stochasticity in an individual fiber’s behavior due
to momentum diffusion and fiber-fiber interactions as the distance be-
tween neighboring particles becomes small relative to its size. In this
case, neighboring fibers would introduce some degree of disturbance in
a particle’s surrounding fluid. As a result, particle-particle interaction
necessitates a coupling effect between fibers. In other words, in-
teractions between fibers reduce the effective radii of influence between
near neighbors, the proximity of which results in an increased energy
dissipation within each fiber’s sphere of influence [40,41].

As the fiber volume fraction and/or aspect ratio increases, collision
of particles creates momentum transfer between colliding particles.
Kugler et. al [40] classified fiber-fiber interaction into long-range and
short-range hydrodynamic interaction, the latter of which can be further
sub-divided into short range lubrication regimes, direct mechanical
contact and a transition regime. As a result of momentum diffusion, the
fibers eventually assume a steady state orientation that depends on the
initial condition in accordance with the indeterminacy described by
Jeffery. Folgar and Tucker [49] extended Jeffery’s analysis by ac-
counting for a collection of interacting suspended particles by incorpo-
rating a rotary diffusion term D,. The rotary diffusion term D, is defined
in terms of the scalar magnitude of deformation tensor y according to D,
= Cry, where C; is the interaction coefficient which is an empirical
constant. Kugler et. al [40] gives a review of existing orientation models
that accounts inter-particle interaction such as nematic model, aniso-
tropic and mold flow rotary diffusion model, retarding principal rate
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model, etc.

To capture fiber-fiber interactions in our single fiber model, we
develop a relation between the Folgar-Tucker interaction coefficient C;
and the effective radius of influence in our micro-model. Firstly, we
determine a relation between the stall angle of the fiber and the inter-
action coefficient C; based on equation of change of the 2nd order
orientation tensor by Advani and Tucker [50]. Here the stall angle is the
fiber angle at which rotary motion ceases which has been found to be a
function of the micro-model flow domain size (see e.g., Zhang et al.
[40]). Subsequently we obtained a relation between the flow domain
size and the fiber stall angle through a series of micro-model FEA sim-
ulations with fluid boundary domain BC1 of different sizes. As M de-
creases, the ends of the fiber become nearer to the prescribed boundary
BC1 such that the velocity field near the fiber tips hydrodynamically
interacts with the flow adjacent to BC1. The prescribed boundary creates
a flow disturbance as viewed from the fiber in a manner similar to that
which would be expected by neighboring fibers in a semi-concentrated
flow. We then determine the relationship between the steady-state
orientation tensor and the interaction coefficient C; for a given ellip-
soidal aspect ratio. A relationship between C; and the micro-model flow
domain size is then established by equating fiber stall angle in the
micro-model to the direction of the first eigenvector of the fiber orien-
tation tensor at steady state. This approach provides a means to
approximately account for the effect of fiber-fiber interaction in the FEA
simulation of the single fiber evolution along streamlines for a given
interaction coefficient.

Observations of the experimentally determined steady state orien-
tation [51] show that the fibers tend to align with streamlines of the flow
field irrespective of the initial conditions, contrary to Jeffery’s ideali-
zation where suspended particles continue to rotate in simple shear.
Saffman [51] shows that non-Newtonian properties of the fluid, not
considered by Jeffery, is responsible for a stall in the tumbling motion.
Other factors not accounted for in Jeffery’s model that adds to the in-
determinacy of a particle’s motion include the flexural tendency of the
particle which would depend on its inherent elastic property, aspect
ratio, fluid rheology of the medium and interacting flow field. Moreover,
the fibers may eventually break when subject to severe interacting
forces, however, fiber flexibility is beyond the scope of our work.

2.5. Determining effective fluid domain size

To quantify the effect of fiber-fiber interactions with our single fiber
model, we first establish a relationship between a suspension’s inter-
action coefficient Cy (cf. the Advani-Tucker model) and the stall angle in
our single fiber FEA micro-model. The steady state orientation tensor
values that correspond to a particular interaction coefficient can be
determined from the Advani-Tucker 2nd order orientation tensor
equation of change given as:

—

((Uim A — a[mwm/') Jr% (rim A, + 2L — 23[/UFM) +2D, (5,3/ — aa[,-)

a4 =5
(26)

where, a; and a;y; are the 2nd and 4th order fiber’s orientation tensors,
respectively, ¢ is the shape parameter defined above, I'; is the strain rate
tensor given as I'j = [Vi¥;+V;vi], wy is the vorticity tensor given as
wy = [V; —Vj»] and «a is a dimension factor (i.e., @ = 3 for 3D orien-
tation and a = 2 for 2D planar orientation). In the above, the fourth-
order orientation tensor aj; is computed from a; using a closure
approximation as is common in polymer composite suspension simula-
tions. We employ the orthotropic fitted closure of Verweyst et al. [52] in
all the calculations to follow. The symmetry properties of the orientation
tensors require that a; = a; and ajy = ajg = agj = gk = agy. The
normalization condition also requires that a; = 1 and ayg = a; where
repeated indices imply summation in the usual manner here and in the
following.
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We determine the steady state 2nd order orientation tensor that re-
sults in zero rate of change, i.e., 4; = 0 via a Newton Raphson iteration

scheme given as:

.t — q.— - -
Qi = 7Jmmj \Rmn

where the residual Ry,

Ry =

| —

(wmkalm - amkwkn) +

27)
= Ay iS:

2 (j/mk Un — Ak }./kn - 2}./klamnkl) +2D r (5mn - aamn)

(28)

and the Jacobian Jy,; is obtained by differentiating the residual with-
respect-to components of the 2nd order orientation tensor a; as.

J _ aRmn
"M Oay
o 1 6akn ()a,,,k 6 . 0akn
= ((Umk da;  oay wkn) +2 Yk da;
02y . - 02y,
-2 —2D, 29
+ Oa,-j Vin T daij @ da,»j ( )

The derivative of the 2nd order orientation tensor with respect to its
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individual components is simply:

0,

da,,,

= OmOsn (30)

where §; is the Kronecker delta. Derivatives of ayy with respect to
a; are provided elsewhere for various closures approximations that are
commonly used with Eq. (26) (cf. Awenlimobor and Smith [53], to
appear). We define a preferred direction of orientation as the principal
direction of the steady state a; computed from the nth eigenvector of
a;j(Pmn) corresponding to the maximum eigenvalue 1, which is obtained
from:

D Ay = Dpag Dy, e = A, A e fay — Auly] =0 31

Consider planar simple shear flow havingv, =7y and v, =v, =
0 (cf. Fig. 7) with a fiber at ¢y = 90° rotating in the xy-plane. For this flow
field, the in-plane steady state orientation angle 6 was evaluated using
Egs. (26) through (31) for various values of C; and for different closure
approximations as given in [53]. Alternatively, a series of FEA simula-
tions were performed for an ellipsoidal fiber rotating through a modified
Jeffery’s orbit in simple shear for various fluid boundary domain sizes

0 I =
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-0.015 | M=25
M=3
M=32
~, -0.02F M=35
L M=36
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Fig. 14. Single fiber angular motion and preferred orientation results for varying domain size M a) fiber orientation angleé through its stall angle b) fiber angular
velocity @ simulated through a stall angular velocity tolerance of ‘0| =1.x 10731/s ¢) relationship between fiber stall angle and domain size factor M from FEA

analysis, d) relationship between fiber steady state angle 6 and interaction coefficient C; (Aspect ratio r, = 6).

11



A. Awenlimobor et al.

(cf. Fig. 5). A corresponding pair of FEA simulation and orientation
tensor evaluations were performed using the same fiber geometry and
shear rate. Values of stall angle were then compared. Results of stall
angle as a function of micro-model domain size factor M = 2d/a (where
d is the diameter of the micromodel flow domain) and C; appear in
Fig. 14.

The influence of domain size appearing in Fig. 14c shows a nearly
linear relationship between the fiber stall angle and domain size from
the micro-model simulations, given by Eq. (32) below.

6 = 33839 — .022M — .0077M* (32)

Additionally, results of the orientation angle computed from the ei-
genvectors of the steady state orientation tensor a, show nonlinear
relationship between stall angle and interaction coefficient (cf. Fig. 14d)

which can be represented as:
0 =r/2—1.57+11.4C; — 183.5C; + 1773.4C; — 6680.1C; (33)

Combining results from Fig. 14c and Fig. 14d, we obtain a relation-
ship between the fluid boundary domain size in our single fiber micro-
model and Cj given as (cf. Fig. 15)

M= —1.4285

+ \/45.89 — 1.48 x 103C; +2.38 x 104C? —2.30 x 105C; +8.68 x 10°C;
(€2))

Assuming an ellipsoidal fiber aspect ratio r, = 6 which corresponds to
a shape parameter £ =0.9459 and given a volume fraction §; =8.4% by
volume (13% by weight) CF/ABS polymer composite, we obtain an
interaction coefficient of C;=0.0128 using Bay’s correlation that re-
lates C; to 9 and r. [54]. It follows from Eq. (34), that the effective
domain size based on our C; is M=4.08(~4.0) which we have used in
our simulations. Given that fiber suspensions are classified into 3 con-
centration regimes based on vs and r, as [37]:

.
9 < E dilute
< <8 <—  semi— dilute (35)
e ) Te
1
9y <— concentrated
r;

e

our simulations are within or nearly within the concentrated regime for
the suspension where C; = .0128and M = 4 are used in the results
section below.

Domain Size Factor - M

- N w
- N 0w
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o
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|

o
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o

0.01 0.07

Fig. 15. Fitted relationship between domain size factor M vs interaction coef-
ficient Cj.
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3. Results and discussion

The preceding sections describe the ability of our micro-model to
reproduce Jeffery’s result for single fiber motion, and the determination
of an effective single ellipsoidal fluid domain size that approximates the
effect of short-range fiber interaction in simple shear flow. All simula-
tions included here use a fiber half-length of a = 42um and an ellipsoidal
aspect ratio of r, = 6 which corresponds to a cylindrical geometric
aspect ratio of r. = 7.66 using Equation (2.21) in Zhang [41]. Here we
limit our discussion to results along streamlines y,, ¥4, and y;g to
capture effects along the lower, middle, and upper sections of the bead,
respectively (cf. Fig. 2b). The following simulations incorporate veloc-
ity, velocity gradients, and pressure computed in the 2D planar
extrusion-deposition macro-model to define far field boundary condi-
tions BC1 and BC2 in the single fiber micro-model. To assess the effect of
initial conditions in the single fiber analysis, we run multiple simula-
tions, each with its own initial fiber angle 6, over a range of
—n/2 < 6y < 7/2 in increments of #/12. Simulating fiber motion over
this range of initial angles and on various streamlines provides a
comprehensive assessment of possible fiber responses and correspond-
ing location where they occur across the extruder nozzle.

To better display streamline results, subsequent figures presented in
this section have been annotated to show three interest regions of the
nozzle geometry appearing in Fig. 2b which includes:

(i) Zone 1: The entrance to the small capillary section of the nozzle at
the point where the polymer- melt just exits the convergent zone.

(i) Zone 2: The exit from the nozzle where the polymer leaves the
nozzle and enters the region of die swell, and the external pres-
sure drops to atmospheric condition.

(iii) Zone 3: The exit of die swell region below and to the side of the
nozzle exit where the deposited material has made a complete
90° turn onto the translating bed below and attains a near uni-
form velocity equal to the print speed.

We consider the simulation of fibers in a concentrated suspension
with C; = 0.0128 using the reduced single fiber domain approach with
M =4 in the micro-model as described above. For each fiber motion
simulation result (i.e., a fiber moving along a specific streamline with a
designated initial angle), the overall minimum and maximum fiber
surface pressure is calculated and the difference between the streamline
pressure and overall minimum and maximum fiber surface pressures are
noted. In addition, the corresponding coordinate locations where the
minimum and maximum fiber surface pressures occur within extrusion-
deposition flow are identified. Fig. 16 shows a typical fiber surface
pressure result along streamline y,, (starting at the centerline of the
nozzle inlet) for a concentrated suspension where distinct extremes of
minimum and maximum pressures identified as AP, and AP,
respectively, are plotted as a function time along with the streamline
pressure from the macro-model. The first extreme pressure location,
denoted here as Loc. 1, and the second extreme location, denoted as Loc.
2, appear in the pressure history for all streamlines and 6, with varying
degrees of intensity and at slightly different locations as shown below.
Note that the position along the streamline for Loc. 1 and Loc. 2 will
occur at different locations depending on the streamline and initial fiber
angle.

The initial extreme in minimum fiber surface pressure at Loc. 1 is
observed to occur just prior to the entrance of the nozzle capillary sec-
tion (i.e., zone 1) while the second pressure drop at Loc. 2 occurs within
the die swell region between zones 2 & 3. Only at the latter extreme fiber
location does the absolute local minimum pressure on the fiber surface
drop to a value that is below zero atmosphere (reaching —0.4 MPa in the
simulation appearing in Fig. 16). This low pressure extreme is expected
to provide a favorable condition for void nucleation to occur based on
prior related research [11-17]. A closer inspection of the fiber’s surface
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Fig. 16. Selected computed results along center streamline vy, for the concentrated suspension (C; = 0.0128 and M = 4). Shown are the fiber’s surface (a) minimum
pressure (#° = 0°) (b) maximum pressure (§° = —90°) at peak locations (Loc. 1 & Loc. 2). Contour plot at the first location (Loc. 1) of minimum pressure drop

showing (c) Velocity magnitude (d) Pressure near the fiber.

pressure distribution at this location shows that the peak sites occur at
the fiber’s tips (cf. Fig. 16d) which is typical of all simulations presented
in this work.

To gain a better understanding of the effect of streamline location on
the fiber response during its motion through the extrusion-deposition
flow in the concentrated regime, we present results of time-varying
profiles for three select streamlines, one near the left edge - y,, the
center streamline - y,, and one at the far-right edge y4 (cf. Fig. 2b),
each with a range of initial fiber orientation as specified above. The
computed results show that the fiber surface extreme pressures on the
outer streamlines (y, and y,g) are less sensitive to initial fiber orien-
tation over the entire deposition time as compared to the center
streamline y,, where the initial fiber angle has much more pronounced
effect on the characteristic pressure peak values.

The results of the fiber orientation relative to the streamline direc-
tion presented in Fig. 17 shows that the particle eventually tends to align
with the streamlines of the flow irrespective of its initial starting angle
and the degree of fiber alignment increases from the center streamline
(y10) to streamlines closer to edges of the nozzle (y, and yg). The
asymmetry in the results of the orientation for edge streamlines y, & y;¢
shown in Fig. 17 a and c, respectively, signifies that fibers on these
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streamlines undergoes uneven rotation prior to flow alignment
depending on the degree and direction of initial misalignment relative to
the prevailing vortex direction (w) of the undisturbed flow which in turn
depends on the relative positioning of the streamline with respect to the
centerline.

To better depict the fiber rotation span for fibers initially inclined
unfavorably with the flow, the orientation transient profiles have been
vectorially added to 7 considering the fiber has no preferred ends (i.e.,
o(t) = —6(t) — m, 6y <0, w > 0 for streamline y, and 9(t) = —0(t) + =,
6o > 0, w < 0 for streamline y4). Alternatively, the fiber motion on the
outer streamlines is more sensitive to the initial fiber orientation and
possesses some degree of asymmetry with respect to the initial angle.
This is due to the relatively high velocity gradients for streamlines closer
to the nozzle edge as compared to the center streamline. Moreover, the
transition time in the die swell region between zones 2 and 3 increases
with streamline location from the right-hand edge to the left-hand edge
due to correspondingly larger radius of curvature (cf. Fig. 2b). Stream-
line 18 has a sharp 90° turn with negligible dwell time in the die swell
region as zones 2 and 3 almost nearly overlaps unlike streamline 4 and
10 which experiences relatively higher dwell in the die swell region as
the polymer melt gradually approaches the deposition plate surface.

For subsequent simulation results, we consider a range of initial fiber
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Fig. 17. Quasi-transient profile plots of the fiber minimum pressure, maximum pressure and relative orientation angle, including various initial fiber angles for
selected streamlines a) streamline-4 b) streamline-10 and c¢) streamline-18 (C; = 0.0128 and M = 4).
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orientation and report the computed overall minimum and maximum
pressure difference with respect to the streamline pressure across the
nozzle at the important extreme pressure locations (i.e., Loc. 1 and 2). In
addition, we report the corresponding spatial positions where the min-
imum and maximum pressure extremes occur within extrusion-
deposition flow for each of the various streamlines across the nozzle
section. Lastly, we report the fiber’s orientation relative to the stream-
line direction at three interest zones of the nozzle (zones 1-3).
Calculated results in Fig. 18 show that the extreme pressures on
center streamlines are more sensitive to initial fiber angle than that for
the outer streamlines. We observe a drop in average minimum pressure
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of — 0.5 MPa at the first extreme occurrence (Loc. 1) which is almost
uniform across all streamlines within the nozzle. Alternatively, the
second average pressure extreme occurrence (Loc. 2) has a minimum
streamline pressure of — 0.8 MPa at the left edge streamline and
— 0.1 MPa at the right edge (cf. Fig. 18b). The spatial position where the
first extreme in the minimum pressure drop occurs across the nozzle is
seen to be well-above the entrance to the straight nozzle capillary (zone
1) but at the second pressure extreme location, the mean minimum
extreme pressure occurs across the die swell region of the flow as shown
in Fig. 19b. This would indicate that the likelihood of void nucleation
decreases from the bottom to the upper free surface of the bead. The
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Fig. 18. Overall pressure extremes on the fiber surface over the complete period of deposition (the blue trendline represents the mean and the red trendline is the
median): (a) overall minimum at Loc. 1 (b) overall minimum at the Loc. 2 (¢) overall maximum at Loc. 1 (d) overall maximum at Loc. 2.
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Fig. 19. Distribution of location within the nozzle where the pressure extremes on the fiber surface occurs over the complete period of deposition and for all
computed streamlines: (a) overall minimum at Loc. 1 (b) overall minimum at the Loc. 2 (c¢) overall maximum at Loc. 1 (d) overall maximum at Loc. 2.

average extreme maximum pressure at the first peak location (Loc. 1)
across streamlines of the nozzle just before zone 1 is seen to be generally
less severe than pressure values at the second peak location (Loc. 2), and
the mean extreme pressure magnitudes decline asymmetrically with a
trough-like appearance from streamlines closer to the edges towards the
centerline (cf. Fig. 18c). The opposite behavior is observed at the second
extreme site (Loc. 2) where there is an unsymmetrical rise in the mean
extreme pressure magnitude from the edges to the centerline in a crest-
like manner (cf. Fig. 18d), and the spatial position where this occurs is
seen just after the nozzle exit, about .5 mm beneath zone 2 almost nearly
evenly across the flow (cf. Fig. 19d). This behavior may be attributed to
the relatively high shear rates at the wall just before exiting the nozzle
compared to the center streamline which transitions abruptly at the
edges.

The result of the fiber’s orientation distribution relative to the
streamline direction at the 3 regions of interest shows that the fiber is
almost nearly aligned with the streamlines of the flow across the nozzle
section and the degree of alignment increases towards the edge of the
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nozzle as we observe from Fig. 20(a-c). This is consistent with the
conclusion of Saffman [51] who observed that the fibers tend to align
with the flow. The error bounds of the fiber’s orientation across the
nozzle due to the variation of initial fiber angle in all three locations are
also similar.

4. Conclusion

A computational multiscale FEA methodology has been developed to
study the behavior of suspended rigid ellipsoidal fibers during polymer
composite melt extrusion-deposition flow through a LAAM nozzle.
Sensitivity analysis based on Jeffery’s model assumption reveals a direct
correlation between the extreme pressures on the fiber surface with its
geometry aspect ratio and the rheological properties of the flow (shear
rate and viscosity) and these pressure extremes are observed to occur at
the fiber’s tips. Further, extreme minimum pressures are shown to occur
at the fiber tips as the fiber rotates to become more aligned with the
flow. Results of the extrusion-deposition multi-scale analysis that
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Fig. 20. Distribution of fiber orientation angle at the region of interest within the extruder nozzle: (a) Zone 1 (b) Zone 2 (c) Zone 3.

considers the effect of rotary diffusion due to short-range fiber interac-
tion reveals a dependence of the severity and sensitivity of the fibers
extreme pressures to streamline location and the initial fiber orientation.
In addition, the effect of increasing fiber concentration and aspect ratio
increases the magnitude of the pressure extremes on the fiber surface. In
the extrusion-deposition flow, a significant minimum pressure extreme
occurs on the fiber surface which at the entrance to the straight capillary
section and across the die swell region immediately outside of the
extruder nozzle which indicates an increased likelihood for micro-voids
initiation at fiber ends in these regions. Results indicate that we would
expect a higher probability of occurrence of micro-voids closer to the
plate than the free surface. Results also confirm a high degree of the fiber
alignment in the extruded bead.
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The computational approach presented above predicts the pressure distribution on individual fibers and considers this as a means to assess the
likelihood of void formation within the composite melt. The motivation for evaluating pressure on the fiber surface stems from classical nucleation
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theory that addresses void initiation and growth within a polymer melt investigated by Han and Han [12], Stewart [13], and Han [14], who also
investigated the dynamics of void initiation in polymer melts under shear flow. Colton and Suh [15] distinguished between two mechanisms of
nucleation which includes 1) homogenous classification involving the formation of a new stable phase in a primary phase with dissolved secondary
components under critical conditions due to thermal fluctuations and molecular interaction and 2) a heterogenous classification involving the
crystallization of a third phase at the interface of two other phases, usually a liquid and a solid. Both forms of nucleation can coexist and occur
concurrently under a mixed classification. However, in a system such as a colloidal solution, depending on the volume fraction of the suspension, a
heterogenous nucleation is more likely to be dominant due to smaller activation energy barrier. The polymer melt material considered in the sim-
ulations above is composed of 13% filled carbon fiber ABS (Acrylonitrile Butadiene Styrene) such that a heterogenous dominant mode of nucleation is
expected to occur at the interface of the carbon fiber and polymer. Also, it is expected that the polymer material has some degree of absorbed moisture
or dissolved additives/volatile.

In the model development by Roychowdhury et. al. [11], a necessary requirement for potential homogenous void nucleation is the occurrence of
very low localized fluid pressure P, below the moisture vapor pressure Py i.e., P, < Py at process temperature 0,. The nucleation rate J, (i.e., J, > 1
for void nucleation) as modified by Colton and Suh [15] in heterogenous systems is:

2 1 3
Ty = Ny Hlexp| - 1071 g, (36)
m 3kg®(Py — PL)

where N, is the number of molecules per unit volume of the volatile phase, m is the molecular mass of the volatile phase, 7 is the surface tension at
characteristics temperature ®, and kg is the Boltzmann constant. In the above,

S(g) = (1/4)(2 4 cosep) (1 — cosg)” 37)

where ¢ is the wetting angle of the interface. Usually, the characteristics temperature of nucleation ®, stays well above the glass transition/melt
temperature ©, /0, (i.e., ®, ~ ©, > 0,/0,) and the phenomenon takes place almost instantaneously. Colton and Suh [15] determined the moisture
vapor pressure from the moisture concentration distribution in the polymer using Henry’s Law, Py = ¢/Hy where c is the concentration and Hy is
Henry’s constant for moisture in a polymer. Based on classical nucleation theory, the characteristics nucleation time ¢, is given by:

t=r/D (38)

where D is the moisture diffusivity defined by D = D,e~4#/®; and D, is the moisture diffusion constant within the polymer, A is an activation energy
related material constant, and © is the temperature. r. is the critical radius on nucleation given by:

re=2n/(Py —Py) (39)

The single fiber pressure solutions appearing above show that the calculated localized fluid pressure P; (i.e., the minimum pressure extremes
calculated in the micro-model) may fall below processing pressure P, which increases propensity for void nucleation at these sites.

An additional requirement for void nucleation is that the void nucleation time t, must be less than the streamline deposition time t;. i.e., t, < tg.
Han and Han [12] showed that the classical nucleation theory under predicts the propensity for void nucleation in polymer solutions with significant
proportion of dissolved volatile components. They observed nucleation at critical pressures P, above the vapor pressure Py and developed a more
applicable model incorporating the Flory Huggins theorem to account for reduced entropies due to restrictions posed by macromolecules in the solvent
yielding a nucleation rate of:

Ju = [N,][Br o273/ ma) -

where By is the frequency factor given by:

Bp = B, [D(®) /4zr? |exp( — B,/0©) (41)

and D(0) is the molecular diffusivity of the volatile phase which Han and Han [12] obtained using free volume theory of Vrentas and Duda given by:

D(®) = D,(1—2,:9,)(1 —8,) exp(— E/R(;@)exp(g(wl V: + wz\A/;q)/\A/:,F ) (42)
The free energy for critical void nucleation in polymer solutions AF, given by:

AF; = (16/3)mn* (Py — P.)* — nk,g@{ln (35—3) + 9, (1 - %) + x93 } 43)
In Egs. 41 through 43, B; & B, are empirical constants dependent on the polymer solution, w;, 9; and V; are the weight fraction, volume fraction and

molar volume of constituent i respectively, subscript i = 1 for solvent and i = 2 for solute. In our material systems, the proportion of molar volume of
the volatile phase in the polymer is much less than unity, i.e., V1 /V,<1, ¢ is the free volume overlap factor, g is the critical molar volume ratio of

jumping units of solvent to jumping units of polymer solution, and V;F is the average hole free volume per gram of mixture. y is the Flory Huggins
interaction parameter and P /Py defines the degree of saturation of the gas phase, P; being the pressure inside the critical bubble given as:

Pg = (3/2)p,ie 421/ re +4ptg (i /re) + Pr (44)

were r. is the growth rate at the onset of nucleation, p; is the liquid density and 4, is the viscosity at zero shear.
The surface tension 7 at the elevated temperature at which the polymers are processed is estimated using expression by Sugden [55] thus:
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(@) = (P,/V(©))' (45)

where P, is the Parachor and V(®) is the molar volume of the liquid. The consequence of this is that the surface tension at an elevated temperature can
be estimated with knowledge of the surface tension at a reference temperature through:

(@) = n(®y) E(Gz)r (46)

and the contact angle can be obtained from equation by Girifalco and Good [55].

_ _ _ el N,
cosrﬂ:2¢\/(m/m)—17¢:4[VS”3+V,1/3 V=" 47)

The details here provide a possible basis for estimating the potential for void nucleation within a polymer melt given a known amount of volatile
content in future research.

Appendix II. — Two-Dimensional (2D) Reduced Form of Jeffery’s Equation

The 2D contracted form of the Jeffery’s pressure and velocity [32] can be expressed by Eqs. (48) and (49) respectively given as:

rQ ra .\ 0Q

= 2U{A—— +B—+ (H+H)—— 48
p=po+ u{ 02x+ azy+( + )0x6y} (48)

s rQ rQ 0Q

W or | | axo r o
IR A P e B P R PR I

vy WL % rQ  Fo y oQ

dy oxdy 0> dy

Alternatively, this can be written as:

p=po+2uZ, :V.Q (50)
2:204»;1.2)()(34»2?(9 . {;}f.)_{} —Z, eV, Q (51)

Where py is the constant mean pressure at a distance from the ellipsoid, v = [vx vy ] T are the velocity components at arbitrary position (x,y) and v, =

T
{vg vﬂ is the velocity of the undisturbed fluid at (x,y) given as:

vy =VveX (52)

coefficient matrices %{ and Z, and the gradient and hessian operators Vy and z; are respectively given as:
0 ;7
ox 0 0xd
|:Y W:|7Z:|:A H:|’Vx: x7V2 !
=X 2 =X & 62

dy doyox  dy?

IN
I

The 2D strain deformation tensor in the local fiber reference frame Vv is decomposed in the usual way to obtain the 2D symmetric component " and
anti-symmetric components @ according to:

YWw=IC+w (53)
_ T _ & h o _ _ T _ -1
reverw' =} ) osegeme-wio=[, ] 0
The 2D Laplace Function Q that appears in Egs. (48) - (51) is defined as:
10 2 2
Q =[]-AR———+——-1
[ilaTe a1 =
4
where
A= {@+OE+ ) and ¢ X (56)
B R A

At the fiber’s surface where { = 0, the field velocity must equal the fiber’s surface velocity assuming no slip at the fiber’s surface, i.e.
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v =6GeX (57)
=0 =
The constants that appear in g){, Z, above are thus obtained as:
€ R ) h

A=-B=— H=H == Y =—— W=2(a+D)A (58)
4y, 2 a0 — Py Yo ( )

where ag, f, 7, 7o&5 retain their usual definition given [32]. The fibers angular velocity is derived as:

2 2
. a’—b )
P Gl (59)
(a® + %)
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