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A B S T R A C T   

The process-structure-property relationship in Large Area Additive Manufacturing (LAAM) technology is an 
ongoing area of research as the inherent microstructural properties (chiefly fibers and voids) affect the perfor
mance of printed parts. Unfortunately, we currently lack adequate understanding of micro void nucleation and 
evolution during the LAAM and fused deposition modelling (FDM) processes. Modeling of the polymer melt flow 
during the extrusion process is important in understanding the underlying microstructural formation and asso
ciated properties of the print, that determines the part performance in service conditions. In this paper we 
compute fiber-induced local pressure fluctuations which may promote void formation in the bead’s micro
structure. On a macro-scale, we determine flow fields of a purely viscous, Newtonian planar polymer deposition 
flow through a LAAM nozzle which are utilized on a micro-scale model where we simulate the evolution of a 
single ellipsoidal fiber along streamlines obtained from the macro-model. On the micro-scale, we determine 
instantaneous values of the translational and rotational velocities of the rigid ellipsoidal fiber that satisfies a 
balance of hydrodynamic forces and couples on the fiber’s surface based on a Newton Raphson algorithm and we 
track the fiber’s motion along the flow path via an explicit numerical iterative algorithm. Model verification is 
achieved by benchmarking results with solutions from well-known Jeffery’s equation of motion of a particle in 
homogeneous simple shear flow. We account for rotary diffusivity due to short-range fiber-fiber interaction in the 
FEA simulation by determining an effective fluid domain size representative of the interaction coefficient of the 
melt flow through a correlation analysis that yields an equivalent steady state orientation based on the Advani- 
Tucker equation. We also consider different possible motions of the fiber along individual LAAM flow paths from 
a given set of random initial fiber conditions to determine pressure bounds on the fiber surface along each 
streamline. For improved computational efficiency, calculations are carried out with respect to the fiber’s local 
coordinate axes to overcome the rigor of adaptive remeshing during the quasi-transient analysis. Results show 
low pressure extremes near the fiber’s surface which varies across the printed bead as well as through its 
thickness. Discussion is provided to gain insight into the effect of low-pressure extremes on micro void formation, 
particularly at the nozzle exit and during die swell/expansion.   

1. Introduction 

Polymer composite extrusion-deposition, which include small-scale 
Fused Filament Fabrication (FFF) and large-scale Large Area Additive 
Manufacturing (LAAM), has gained widespread attention among other 
Additive Manufacturing (AM) technology because of its comparatively 
high production speed and low production cost with extensive design 
flexibility and material selection [1]. Knowledge of the microstructure 
development during FFF and LAAM processing can be used to improve 
the quality and performance of the composite parts produced by these 

AM technologies. While the addition of short carbon fibers in the poly
mer feed stock yields improved thermo-mechanical properties in the 
printed part, fiber inclusions have also been shown to create micro-voids 
within the microstructure of a printed bead that results in 
lower-than-expected part quality and impaired part performance in 
service [2–5]. Further, micro-voids within the LAAM bead microstruc
ture have been shown to appear when fibers are present but do not occur 
when neat polymers are used to produce beads under the same operating 
conditions [5]. Vaxman et al. [6] identified micro-void nucleation 
mechanisms in fiber-filled polymers, and micro-voids are more 
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prevalent in higher fiber content composites [7]. Unfortunately, 
micro-voids in LAAM polymer composite beads degrade their structural 
integrity, but the influence of suspended fibers on micro-void formation 
during the processing of LAAM beads is not well understood. This paper 
considers mechanisms that promote intralayer micro-void nucleation 
within polymer composite beads during the extrusion-deposition addi
tive manufacturing process. 

Voids within polymer extrusion-deposition parts primarily appear in 
two forms: 1) interlayer voids that occur between beads, and 2) intra
layer micro-voids that form within the microstructure of a bead during 
processing. Most interlayer voids are prismatic shaped and can be 
controlled somewhat with lateral bead space and post-deposition 
compaction (i.e., with a tamper or roller). Of the two types of voids, 
interlayer voids aligned in the loading direction are less detrimental to 
the mechanical properties of the AM printed composite than intralayer 
micro-voids within the bead microstructure (denoted as micro-voids in 
this paper) [5]. Alternatively, intralayer micro-voids serve as sites of 
stress concentration that reduce the load bearing capacity of the poly
mer composite material. 

Knowledge of the micro-void morphology within a composite can 
provide useful insight into the originating source and type of micro- 
voids [8]. For example, randomly dispersed ellipsoidal shaped 
micro-voids that form at the fiber-matrix interface likely result from 
compromised integrity of the sizing agent [8]. Alternatively, spherical 
shaped micro-voids isolated within the matrix may result from several 
process related mechanisms. Indeed, micro-void development within an 
extrusion-deposition AM bead has been shown to depend on the polymer 
melt material, operating conditions, in addition to other external factors 
[6,9]. Encapsulation of low molecular weight substances within the raw 
pellets during the compounding process is a known source of micro-void 
formation within beads which can be reduced by adequate venting 
measures [6,10]. 

A significantly important mechanism of micro-void development 
within the polymer melt is that of bubble nucleation and growth [6] 
where micro-void development is dependent on the local fluid pressure 
of the polymer melt [11–14,16,17]. For example, in the moistur
e/volatile absorption-desorption induced void formation mechanism 
[11,12,14] which is based on classical nucleation theory, a requirement 
for void nucleation is the occurrence of sufficiently low localized fluid 
pressure below the vapor pressure of the gaseous phase of the dissolved 
volatile contents. Detailed description of this mechanism has been 
provided in Appendix I. Alternatively, in the theoretical development of 
the restrained volume contraction nucleation mechanism which occurs 
due to thermal stratification and non-uniform cooling across the extru
date during solidification, void nucleation can occur at locations within 
the flow where the local fluid pressure drops below the atmospheric 
pressure [16–18]. Studies have shown that faster cooling rate during 
extrudate solidification resulted in higher levels of micro-void contents 
within the polymer composite [6,10]. Yang et al. [19] studied the dis
tribution of the micro-void content across regions of the melt in a FFF 
extruder and the deposited extrudate. Yang found insignificant void 
content in the polymer melt within the filament feed and heating/ex
trusion zones of the extruder and nozzle. Alternatively, he showed that 
the micro-void content increased significantly near the nozzle exit which 
then decreased upon deposition of the bead on the moving bed. The 
two-phase nature of polymer melt fiber suspension suggests that the 
dominant mode of micro-void formation is heterogenous [5,13,15]. The 
mismatch in the coefficient of thermal expansion between the rein
forcing fiber agent and the matrix have been shown to promote 
micro-void formation at the fiber-matrix interface during cooling [19]. 
Vaxman et al. [6] showed that suspended fibers influence micro-void 
nucleation and that micro-voids preferentially form at the ends of fi
bers. He further showed that micro-void concentration depends on the 
fiber’s aspect ratio, the rheological properties of the suspension and 
extrusion-deposition operating conditions. 

More recently, computational techniques including the finite- 

difference method (FDM), finite-volume method (FVM), finite element 
method (FEM), smoothed particle hydrodynamics (SPH), and discrete 
element method (DEM) etc. have been used to better understand the 
extrusion-deposition process in an effort to characterize the polymer 
melt flow behavior and obtain process parameters and field states. Xia 
et al. [20] developed a FVM approach to simulate the polymer melt flow 
and subsequent cooling in the FDM process. Heller et al. [21], Wang 
et al. [22–24] and Russell et al. [25] used FEM to simulate the flow of 
fiber filled polymer melt in a LAAM extruder nozzle to evaluate the 
orientation state of suspended short carbon fibers and the resulting 
thermo-mechanical properties. Phan et al. [26] used region dependent 
modelling of the FFF process to understand the melting and pressuri
zation mechanisms involved. He combined a generalized Newtonian 
fluid (GNF) model in the heated region of the extruder with a visco
elastic model for the nozzle region and showed that a significant pres
sure drop occurs across the capillary section of the nozzle. Shadvar et al. 
[27] used FEM to study the polymer melt behavior of ABS in the 
extruder and die swell of the extrudate and compared flow fields from 
the simulation with that obtained from experiments. This work showed 
that the pressure-drop across the nozzle varied directly and inversely 
with the temperature and flow rate of the extruded filament, respec
tively. Yang et al. [28] used a coupled SPH and DEM particle method to 
simulate the FFF process of carbon fiber reinforced polymers where the 
focus was on fibers orientation and deformation. Ouyang et al. [29] 
employed a coupled microstructure constitutive fiber model with SPH 
considering temperature dependence to predict fiber orientation and 
resulting thermo-mechanical properties. 

Among pioneering efforts that simulate the motion of a single 
ellipsoidal rigid particle suspended in a viscous fluid are works such as 
model by Oberbeck [30] and Edwardes [31], where Jeffery’s model [32] 
served as the basis for their notable work. Various extensions to Jeffery’s 
model with added complexity have evolved over time to predict the 
motion of suspended particles which considered various factors not 
included in Jeffery’s model assumption. For example, Hinch et al. [33] 
showed that particles which do not conform to the axisymmetric shape 
of ellipsoidal solid suspended in simple shear viscous flow exhibit sig
nificant deviation of its motion from Jeffery’s orbit. Zhang et al. [34] 
used a coupled FEM - Brownian dynamic simulation (BDS) approach to 
study the added effect of Brownian disturbance from surrounding fluid 
molecules on the fiber’s motion via a Langevin approach and found its 
contribution to be dependent on the Peclet number. Férec et al. [35] 
studied the effect of shear-thinning on suspended particle motion in 
simple shear flow of a dilute suspension with non-Newtonian rheolog
ical properties based on a two-dimensional (2D) FEM analysis and 
showed insignificant deviation from Jeffery’s orbit. A three-dimensional 
(3D) analysis by Abhati et al. [36] based on an asymptotic solution 
showed significant deviation from the Jeffery’s tumbling period while 
identifying a sensitivity to initial conditions. The effect of a fiber’s 
flexural properties and its back-coupling with interacting fluid has also 
been investigated by various researchers. Most models for this purpose 
employ a particle-based discretization technique using bead or rod 
chains interlinked with joints having directional stiffness and failure 
property definition to investigate the complex dynamics of the sus
pended particle in viscous flow field. Examples of such models include 
work by Skjetne et al. [37], Yamamoto et al. [38], and Yamanoi et al. 
[39] which are included in the overview of existing element-based 
simulations for fiber reinforced polymers by Kugler et al. [40]. The 
primary focus of these earlier works has been on fiber motion with little 
attention being given to the pressure field on and/or near the surface of a 
suspended fiber. 

Fiber suspension analysis, particularly that performed for polymer 
composite melt extrusion-deposition processes, has almost exclusively 
focused on fiber orientation and spatial distribution within the micro
structure. However, little attention has been given to micro-void for
mation and evolution during extrusion-deposition or to understand how 
the suspended fibers influence micro-void development. The main 
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objective of this article is to present a computational approach aimed at 
understanding mechanisms that may promote moisture/volatile 
induced micro-void nucleation on or near suspended fibers within the 
bead microstructure produced by polymer extrusion-deposition process 
via a multiscale modelling methodology. While our approach would be 
applicable to both filament based FFF and LAAM systems and other 
extrusion-based processes, our focus here is on the large scale polymer 
composite deposition. In the macroscale model, we develop a two- 
dimensional (2D) planar flow model for predicting melt flow velocity 
and fiber orientation within the polymer melt during the extrusion- 
deposition process in a LAAM extruder nozzle. Then a micro-scale 
model is developed following the approach in Zhang et al. [41–43] 
which is based on Jeffrey’s model assumptions for suspended particles 
[30]. We simulate the evolution of a single ellipsoidal fiber along 
streamlines of the polymer melt flow through the nozzle and onto the 
print platform utilizing the field responses (velocity, velocity gradients 
and pressure) obtained from the macroscale model which define 
boundary conditions in the micro-model. Then, a single fiber’s trans
lational and rotational velocities are computed by zeroing the net hy
drodynamic forces and torques on the fiber’s surface where its 
orientation and evolution along the flow path are updated based on an 
explicit iterative numerical algorithm which incorporates velocities and 
pressures from the macro-model. The micro-model is validated by 
comparing results of fiber motion and pressure distribution on the fiber 
surface with Jeffery’s analytical model equations [30] for the motion of 
a single particle suspended in purely viscous shear flow. We account for 
rotary diffusivity due to short-range fiber-fiber interaction in the 
micro-model FEA simulation by determining an effective fluid domain 
size that mitigates Jeffery’s rotation to match that predicted by the 
Advani-Tucker fiber orientation evolution equation. We also consider 
the fiber’s evolution along various flow paths based on a given set of 
random initial fiber conditions to determine pressure bounds on the 
fiber surface across the melt flow. 

The pressure distribution on the fiber’s surface as it travels along 
streamlines through the LAAM nozzle and onto the print bed, particu
larly within the regions of die swell at the nozzle exit, provides insight 
into a potential mechanism that could promote micro-void formation 
within printed beads. Knowledge of the relationship between process 
operating parameters and void formation and evolution can be used to 
control the quality of printed parts [6,9]. 

2. Methodology 

A multiscale modelling approach is developed in this work to better 
understand micro-void initiation within the beads printed with the 
LAAM extrusion-deposition process. The computational method here 
includes a macro-scale model which is used to calculate velocities and 
pressure along streamlines from the polymer melt flow solution in the 
extrusion-deposition process, and a micro-scale model which simulates 
the motion of a single rigid ellipsoidal particle based on the fluid flow 
solution along the macro-model streamlines. Our approach is a one-way 
coupling where computed velocities and pressures calculated along 
macro-model streamlines serve as inputs to define boundary conditions 
in the micro-model. A Newtonian fluid is assumed in both models. The 
material properties of the polymer melt employed in this study are taken 
from Heller et al. [21] and Wang et al. [23] which include a density of 
1154kgm−3 and kinematic viscosity of 817Pa • s (i.e., 13% by weight 
carbon fiber filled ABS at 230 ◦C with a shear rate of 100 s−1). In all of 
the discussion to follow, a ‘fiber’ is a rigid two-dimensional ellipsoidal 
solid having an aspect ratio of re = a/b where a and b are the lengths of 
the major and minor ellipsoidal axes. 

2.1. Macro-model - 2D planar extrusion-deposition flow 

A typical extrusion-deposition process of fiber filled polymer through 

a LAAM extrusion nozzle and the subsequent single bead deposition on a 
translating substrate is shown in Fig. 1a. The internal nozzle geometry 
used in this study is based on the Strangpresse (Strangpresse, LLC, 
Youngstown, Ohio, USA) Model 19 LAAM single screw extruder nozzle 
where an annotated schematic representation of its internal nozzle ge
ometry appears in Fig. 1b. The 2D planar flow domain consists of the 
internal nozzle geometry region and a single bead layer deposited on the 
substrate that translates laterally with respect to the nozzle. (cf. Fig. 2a). 
The FEM formulation is briefly described here where additional 
modelling details of planar deposition flow can be found in Zhang, et al. 
[44]. 

The governing equations for polymer melt flow within the nozzle and 
the printed bead are defined by Stokes’s equation based on the as
sumptions of no inertia in the fluid, the polymer melt is a creeping flow 
with a low Reynolds number (i.e., Re<<1), and the polymer melt is an 
isothermal, incompressible, Newtonian fluid. Based on these assump
tions, the mass and momentum conservation equations reduce to [44]. 

∇ • v = 0 (1)  

∇ • σ + f = 0 (2)  

where ∇ is the gradient operator in 2D, v is the fluid velocity vector, f is 
the body force vector, and σ is the Cauchy stress tensor given as: 

σ = τ − pI (3) 

In the above, p is the fluid hydrostatic pressure, I is the identity 
tensor and τ is the deviatoric stress tensor which is written for a New
tonian fluid as: 

τ = 2μΓ (4)  

where μ is the Newtonian viscosity and Γ is the second-order rate of 
deformation tensor. Note that Eq. (4) does not include the influence of 
fiber orientation on the deviatoric stress. 

The ANSYS Polyflow (Ansys, Canonsburg, PA, USA) commercial 
software is used for the macro-model polymer melt flow extrusion- 
deposition analysis. Fig. 2a illustrates the quasi-steady fluid domain 
and boundary conditions for the 2D polymer melt flow model. Using 
data from Heller et al. [21] and Wang et al. [23,43], the average normal 
velocity of 24 mm/s is prescribed at the nozzle inlet Γ1, and the velocity 
of the moving substrate and deposited material is 101.6 mm/s in the 
positive x-direction which is imposed on Γ4 and Γ5. A no slip boundary 
condition is imposed on the nozzle inner wall Γ2 and a free-surface 
boundary condition is prescribed on the exposed surface Γ3 of the 
deposited material. Fig. 2b shows computed velocity streamlines that 
form between the nozzle inlet Γ1 and the bead flow exit Γ5. Also shown 
in Fig. 2b are feature streamlines 4, 10, and 18 in addition to zones of 
interest 1, 2, and 3 to be discussed below. 

The velocity magnitude |v| and scalar magnitude of deformation 
tensor γ̇ =

̅̅̅̅̅̅̅̅̅̅̅̅̅
2Γ : Γ

√
appear in Figs. 3a, and 3b, respectively. Computed 

velocities in Fig. 3a show an increase in velocity magnitude from the 
edge of the nozzle to its center as expected. It follows that material along 
streamlines near the edges of the nozzle have a higher extrusion- 
deposition time compared to those closer to the center. The velocity 
contours (see for example, Figs. 5 and 6 in Ref. [44]) show a parabolic 
velocity distribution across transverse sections of extruder nozzle except 
near the entrance and exit of the straight capillary portion of the nozzle. 
Melt flow in these transition regions is characterized by sharp transitions 
of velocity and velocity gradients along the inside wall of the extrusion 
nozzle. Upon deposition onto the print bed, the melt flow attains a 
uniform velocity throughout the bead material where all stresses reduce 
to zero. 

The plot of velocity gradient in Fig. 4 shows unusually high values 
occurring at the sharp corners of the flow field due to singularities in the 
velocity solution where the polymer melt flow transitions from a no-slip 
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to a free surface boundary condition, which we attribute a posteriori to 
be responsible for unexpected behavior of the fiber’s motion along 
streamlines close to these locations. In this figure, as well as in all of the 
micro-model results, vx and vy are the components of the velocity vector 
v in the x- and y-directions, respectively. We see from Fig. 4 that the 
velocity gradient component - ∂vy/∂x dominates near the nozzle exit and 
is seen to increase in magnitude when moving outward from the center 
streamline towards those near the edge of the nozzle. 

2.2. Micro-model – 2D single fiber motion 

Simulation of a rigid ellipsoidal fiber motion along streamlines of the 
polymeric melt flow is performed in this work using a custom FEM code 
developed in MATLAB (MathWorks, Natick, MA, USA). The single fiber 
micromodel is governed by Stokes’s assumption of negligible inertia and 

negligible thermal effects and includes an isotropic homogenous New
tonian fluid that is the same as that used in the extrusion-deposition 
macro-model described above. Our algorithm for the micro-model 
simulation of a single 2D rigid ellipsoidal particle is derived from the 
work in Zhang et al. [41–43]. The flow domain for the 2D single fiber 
micro-model appears in Fig. 5a where we assume no slip occurs on the 
fiber surface and there is no flux across the fiber surface. Velocity, ve
locity gradient and pressure computed along streamlines of the 
extrusion-deposition macro-model described above are used to prescribe 
boundary conditions on the micro-model flow boundaries as a function 
of time. To impose these values in the micro-model, three essential 
boundary conditions are prescribed with respect to the fiber’s local co
ordinate axes (cf. Fig. 5b). FEM solutions are obtained by applying the 
essential boundary conditions to a fixed mesh which is rotated with the 
local fiber axes. Rotating the model in this manner significantly reduces 

Fig. 1. a) Polymer deposition process, b) Extrusion die schematic. [21,22,44].  

Fig. 2. 2D Planar extrusion-deposition flow model a) fluid domain and boundary conditions, b) velocity streamlines of the polymer flow through the nozzle with 
feature streamlines highlighted. 
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Fig. 3. a) Velocity magnitude |v| b) scalar magnitude of second order deformation tensor for various streamlines with feature streamlines highlighted.11  

Fig. 4. Velocity gradient contours near extrusion-deposition transition zones (a) ∂vx/∂x, (b) ∂vy/∂x, (c) ∂vx/∂y, (d) ∂vy/∂y. The units of the velocity gradients are s−1.  
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computation time by maintaining a constant FEA system matrix, 
avoiding the need of remeshing the domain and/or recalculating the 
system matrix and its decomposed form at each iteration time step. 

The far-field velocities on the fluid domain boundary uBC1 of the 
micro-model are defined from the streamline velocities and velocity 
gradients obtained from the macro-model velocity solution at each time 
t of the single fiber evolution solution. Referring to Fig. 5b, the pre
scribed velocities uBC1 is defined in terms of the 2D transformation 
matrix Tθ as: 

u BC1 = T T
θ u ψ + T T

θ ∇u ψ T θr BC1 (5)  

where the velocity uψ for streamline ψ , the 2D gradient operator ∇, and 
the position vector r are, respectively, 

uψ =

[ ux

uy

]

ψ
, ∇T = [ ∂/∂x ∂/∂y ], r =

[ x

y

]

In the above, the transformation matrix T
θ 

is defined in terms of the 
in-plane fiber orientation angle θ is given as: 

T
θ

=

[
cosθ sinθ

−sinθ cosθ

]

(6) 

A single prescribed pressure pBC2 is defined according to Eq. 7 on a 
far-field node BC2 located on the fluid domain surface where its value is 
computed from the macro-model streamline pressure pψ as: 

pBC2 = pψ (7) 

The prescribed velocities uBC3 on the fiber’s surface are transformed 
according to the equation of rigid body motion which is defined based 

on the translational velocity uc and rotational velocity ̂̇θ of the fiber’s 
center as: 

uBC3 = TT
θ
uc +

̂̇θ × rBC3 (8) 

Discretization of the micro-model fluid domain is achieved using a 
radial seed of 60-unit cells with a unidirectional geometric bias of 1.1 
and circumferential seed of 60-unit cells resulting in a total of 1800 
triangular elements as shown in Fig. 6a. We employ a 6-node quadratic, 

iso-parametric triangle serendipity element (cf. Fig. 6b) which has been 
found to give accurate results for low Reynolds number fluid flow 
problems [45]. 

The element system matrices and force vectors are derived from a 
mixed method representation of the Galerkin formulation [46] as: 
∫

Ωe

ϕ eT B edΩeu e = 0 (9)  

∫

Ωe

B e
s

T μC
o
B e

s
dΩeu e −

∫

Ωe

B eT ϕ edΩep e −

∫

Ωe

ρN eT f dΩe −

∫

Γe
τ

N eT tdΓe = 0

(10)  

where. 
ϕe & Ne are the pressure and velocity interpolation function matrices, 

respectively, 
Be & Be

s are strain-displacement matrices, respectively, 

u e & p e are, respectively, the velocity and pressure degrees-of- 
freedom (dof) at the respective element nodes, 

Γe & Ωe are the element boundary surfaces and domain of integra
tion, respectively, and. 

f and t are the body force and surface traction vectors, respectively. 
The mixed method in Eqs. (9) and (10) are derived in the usual 

manner from the weak form of the governing equations (cf. Eqs. 1–4) 
with velocity and pressure degrees-of-freedom as the primary nodal 
variables. The geometric order of the element shape functions is 
quadratic in velocity and linear in pressure. Following discretization, the 
element matrices and vectors are assembled into a global system matrix 
and force vector in the usual manner resulting in the linear algebraic 
systems of equations: 

K U = F (11)  

where K is the global system ‘stiffness’ matrix, U is the primary vari
able vector containing nodal velocities and pressures, and F is the sec
ondary variable vector containing ‘load’ terms and nodal reaction forces 
and flow rates. The solution technique used in computing the unknown 
velocities, pressures, and reactions at the nodes is based on partitioning 
the system matrix into essential ′e′ and free ′f′ degrees of freedom as: 

Fig. 5. Micro-model showing a) flow domain b) prescribed boundary conditions [41].  

1 ψnhere refers to streamline identifier (n) and starts at 1 from the left edge of 
the nozzle increasing transversely to a maximum number of 22 at the right edge 
of the nozzle. 
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⎡

⎢
⎢
⎣

K
ff

K
fe

K
ef

K
ee

⎤

⎥
⎥
⎦

[
Uf
Ue

]

=

[
Ff
Fe

]

(12) 

It follows that the unknown free velocities and pressure dofs in Uf 

and unknown reactions forces and flowrates in Fe from Eqs. 12 and 13 
are computed, respectively, from: 

Uf = K
ff

−1

⎛

⎝Ff − K
fe

Ue

⎞

⎠ (13)  

Fe = K
ef

Uf + K
ee

Ue (14) 

To compute the motion of a single fiber in the micro-model, the fi
ber’s translational and angular velocities are obtained through an 
explicit numerical solution of the balance equations that zero the net 
hydrodynamic force and couple on the fiber’s surface. The nonlinear 
solution of translational and rotational fiber velocities is achieved via 
Newton Raphson’s iteration as: 

Ẋ+
= Ẋ−

− J−\R− (15)  

where Ẋ contains the fiber velocities which includes the fiber center 

translational velocities Ẋc and its angular velocity θ̇, i.e., Ẋ =
[

Ẋc θ̇
]T 

and R is the residual vector containing the fiber’s hydrodynamic forces 

FH and couple MH i.e., R =
[

FH MH

]T 
which is a function of the 

fiber velocity, i.e., R = R(Ẋ). The ‘+ ’ and ‘-’ superscript refers to the 
current and previous iteration step of the Newton Raphson procedure. 
The fiber velocity vector is transformed from global to local reference 
frame according to the rotation matrix: 

T
Ẋ

=

[
T

θ
0

0T 1

]

(16)  

such that 

Ẋ′ = T
Ẋ
Ẋ (17)  

where variables on the local reference frame are accented with a su
perscript. The net force vector FH and couple MH on the fiber’s sur
face are calculated by vector summation of the nodal reactions forces 
and torques according to: 

FH = −
∑NBC3

k
F (k)

e , MH = −
∑NBC3

k
r (k) × F (k)

e (18)  

where r(k) is the position vector, F(k)
e is the nodal reaction force vector at 

the kth node on the fiber’s surface (BC3), and NBC3 is the total number of 
nodes on BC3. The Jacobian J in Eq. 15 is computed by taking the 

derivative of the components of the residual vector R with respect to 
components of the fiber’s velocity vector Ẋ and is given as: 

J =
∂R
∂Ẋ

=
∂

∂Ẋ

[
FH MH

]T
=

[

−
∑NBC3

k

∂F(k)
e

∂Ẋ
−

∑NBC3

k
r(k) ×

∂F(k)
e

∂Ẋ

]T

(19) 

The derivative of the nodal reaction force vector is obtained using the 
chain rule and requires the differentiation of the partitioned stiffness 
matrices in Eq. (14) with respect to the fiber’s velocity vector Ẋ as: 

∂Fe

∂Ẋ
=

∂K
ef

∂Ẋ
Uf + K

ef

∂Uf

∂Ẋ
+

∂K
ee

∂Ẋ
Ue + K

ee

∂Ue

∂Ẋ
(20) 

Similarly, using the chain rule, the derivative of the ‘free’ degrees-of- 
freedom Uf with respect to the fiber’s velocity Ẋ is obtained by differ
entiating Eq. (13) as: 

∂Uf

∂Ẋ
= K−1

ff

⎛

⎜
⎜
⎝

∂Ff

∂Ẋ
−

∂K
ff

∂Ẋ
Uf −

∂K
fe

∂Ẋ
Ue − K

fe

∂Ue

∂Ẋ

⎞

⎟
⎟
⎠ (21) 

Upon consideration of Newtonian fluid model with solution- 
indepenedent stiffness matrices and force vector (i.e., ∂K/∂Ẋ = 0 and ∂ 
Ff /∂Ẋ = 0), combining Eq. (20) and Eq. (21) yields: 

∂Fe

∂Ẋ
=

⎛

⎝K
ee

− K
ef

K−1
ff

K
fe

⎞

⎠ ∂Ue

∂Ẋ
(22)  

which is substituted into Eq. 18 to compute J. Given the fiber position 

and angle Xj, and the fiber translational and rotational velocities Ẋj at 
time step j the fiber location and angle at time step j +1 is updated based 
on an explicit fourth order Runge-Kutta method. 

2.3. Validation of micro-model simulation approach 

Jeffery [32] derived an analytical solution for the motion of an 
ellipsoidal particle in a purely viscous Newtonian fluid through linear
ization of the Navier-Stokes equations. The derivations by Jeffery were 
an extension of the earlier work of Oberbeck [30] and Edwardes [31] 
who in given order, developed the equations of motion for an ellipsoid in 
viscous fluid translating along and rotating about one of its principal 
axes. The extent of validity to Jeffery’s derivations is limited to the 
assumption of low Reynold’s number creeping flows. Jeffery assumed 
the particle center travels with the same velocity as the undisturbed fluid 
and rotates due to shear and distortion of the surrounding fluid (cf.  
Fig. 7). The equations for the particle’s motion were derived from 
equilibrium equations of the resulting forces and torque acting on the 
particle by the action of the surrounding fluids pressure on the particles 
surface which were found to be periodic and dependent on the particle’s 
initial orientation. Jeffery assumed laminar incompressible, purely 

Fig. 6. Micro-model FEM: a) Fluid domain discretization b) Element selection with active dof.  
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viscous, simple shear flow with a Newtonian fluid for the particle sus
pension (i.e., μ = constant and v′

y = v′
z = 0, v′

x = γ̇y′.(cf. Fig. 7). By 
assuming an average far-field pressure p0 = 0, for the undisturbed flow, 
he obtained an expression for the particle’s in-plane orientation θ and 
angular velocity θ̇ given respectively by [47]. 

θ(t) = tan−1
(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 + ξ)/(1 − ξ)

√
tan

{

(γ̇/2)

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

t
})

and θ̇(t)

= (γ̇/2)[ξcos2θ + 1] (23) 

where ξ is the particle shape parameter given by ξ 
= (re

2 −1)/(re
2 +1) and γ̇ is the shear rate. The particle’s orbital period 

for complete tumbling is given as [47]. 

tp = 4π
/

γ̇
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

(24) 

Jeffery [32] also derived a solution for fluid pressure from the Lap
lace equation which can be expressed in Two-Dimensional (2D) form as: 

p = p0 + 2μ
{

A
∂2Ω
∂2x

+ B
∂2Ω
∂2y

+ (H + H′)
∂2Ω
∂x∂y

}

(25) 

Definition for the Laplace Function Ω&Δ and derivations for the 
constants A, B, H, H′ based on the 2D contraction can be found in 

Appendix II. 
After choosing an appropriate fluid domain size such that the 

boundary BC1 is sufficiently far from the fiber surface (cf. Figs. 5b and 
6a), computed results using our FEM micro-model with simple shear 
flow of a fiber’s in-plane orientation and rotational velocity are in good 
agreement with Jeffery’s analytical solution in Eqs. (22) through (25) 
for a single complete tumbling period as shown in Fig. 8. 

Fig. 9 shows the evolution of the maximum and minimum pressure 
on the fiber surface over the tumbling period from Jeffery’s (blue) and 
FEA simulation (red) results. A periodic drop and subsequent increase by 
a magnitude of about 8kPa relative to the mean reference pressure is 
seen which supports our hypothesis on the occurrence of low-pressure 
sites along Jeffery’s orbit and suggests a propensity for void nucle
ation at these orientations. Upon comparing Figs. 8 and 9, it can be seen 
that the extreme point of low pressure occurs as the fiber rotates towards 
alignment in the direction of fluid flow. The location of the pressure 
extremes varies from point to point on the fiber’s surface during its 
motion along Jeffery’s orbit. As a result, the pressure extreme depends 
on the mesh refinement on the fiber surface which results in minor 
discrepancies observed between the extreme pressure profiles obtained 
from Jeffery’s exact solution and FEA simulation in Fig. 9a. We however 
see that the pressure evolution on the fiber tip match closely (Fig. 9b). 

Vaxman et al. [6] noted that the fiber geometry, operating condition 
and the fluid rheological properties are important factors that influence 

Fig. 7. Fiber orientation angles: a) 3D coordinates used in fiber orientation tensor equations and b) 2D coordinates used in single fiber motion simulations.  

Fig. 8. Fiber’s in-plane orientation angle (a) and angular velocity (b) and for the FEA simulation (red) and Jeffery’s Solution (blue).  
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void formation. To better understand this relationship, we performed 
sensitivity analysis on the fiber’s geometric aspect ratio re which shows 
that the magnitude of re varies directly with the max and min pressures 
on the fiber’s surface as it rotates through Jeffery’s orbit in simple shear 
flow [48]. Fig. 10 illustrates that the minimum pressure on the fiber 
surface drops as the shape of the ellipsoid oblates from a prolate 
spheroid to a perfect sphere at which point there are no noticeable 
pressure peaks on the fiber surface during its evolution, as expected. A 
closer inspection of the pressure contour plots appearing in Fig. 11 
shows the location of minimum pressure on the fiber surface and that 
these low-pressure sites occur at the fiber tip consistent with the 
conclusion of Vaxman et al. [6]. 

The shear rate magnitude and Newtonian viscosity is observed to 
influence computed pressure response as that for fiber aspect ratio, i.e., 

higher shear rate and viscosity result in a higher peak pressure at sites 
where they occur on the fiber surface as shown in Figs. 12 and 13. These 
factors (fiber aspect ratio, viscosity, and flow shear rate), however, 
affect Jeffery’s period differently. While the period is observed to vary 
directly with aspect ratio (i.e., implying faster tumbling for shorter fi
bers) the reverse is the case with the shear rate magnitude (cf. Table 1) 
which varies inversely with the period as higher shear rate results in 
higher fiber angular velocities, as predicted by Jeffery. However, Jeff
ery’s period is unaffected by the viscosity magnitude. In summary, 
higher geometric aspect ratios, shear rate magnitude and viscosity result 
in lower fiber surface pressure drops, thus an increase in these factors 
provide favorable conditions that increase the propensity for voids to 
nucleate for suspended fibers in simple shear flow. 

Fig. 9. (a) Fiber surface maximum (continuous lines) and minimum (dashed lines) pressure (b) fiber tip pressure, evolution along Jeffery’s orbit for both FEA 
simulation (red lines) and Jeffery’s solution (blue lines). 

Fig. 10. Maximum (upper curves P > 0) and minimum (lower curves P < 0) 
fiber surface pressures for various aspect ratio in simple shear flow (γ̇ = 1s−1). 

Fig. 11. Pressure distribution around fiber’s surface for at the point of minimum pressure drop for different fiber’s aspect ratio.  

Fig. 12. Maximum (upper curves P > 0) and minimum (lower curves P < 0) 
fiber surface pressures for various shear rate values in simple shear flow (re=6). 
The units for γ are s − 1. 
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2.4. Non-dilute fiber suspension motion 

Jeffery’s model assumes a Newtonian fluid and is valid for dilute 
suspension where fibers possess a relatively large radius of influence 
with neighboring fibers and contribute independently to the dissipation 
of energy in the form of a modified isotropic effective fluid viscosity μ∗

for the suspension, such that μ∗ = μ
(
1 +κϑf

)
[32], where κ is the 

modification factor dependent on the particles dimension which has 
been accounted for in our extrusion-deposition macro-model appearing 
above and ϑf is the volume fraction of the ellipsoidal fiber in the sus
pension. However, for semi-dilute and concentrated suspensions, there 
exists some degree of stochasticity in an individual fiber’s behavior due 
to momentum diffusion and fiber-fiber interactions as the distance be
tween neighboring particles becomes small relative to its size. In this 
case, neighboring fibers would introduce some degree of disturbance in 
a particle’s surrounding fluid. As a result, particle-particle interaction 
necessitates a coupling effect between fibers. In other words, in
teractions between fibers reduce the effective radii of influence between 
near neighbors, the proximity of which results in an increased energy 
dissipation within each fiber’s sphere of influence [40,41]. 

As the fiber volume fraction and/or aspect ratio increases, collision 
of particles creates momentum transfer between colliding particles. 
Kugler et. al [40] classified fiber-fiber interaction into long-range and 
short-range hydrodynamic interaction, the latter of which can be further 
sub-divided into short range lubrication regimes, direct mechanical 
contact and a transition regime. As a result of momentum diffusion, the 
fibers eventually assume a steady state orientation that depends on the 
initial condition in accordance with the indeterminacy described by 
Jeffery. Folgar and Tucker [49] extended Jeffery’s analysis by ac
counting for a collection of interacting suspended particles by incorpo
rating a rotary diffusion term Dr. The rotary diffusion term Dr is defined 
in terms of the scalar magnitude of deformation tensor γ̇ according to Dr 
= CI γ̇, where CI is the interaction coefficient which is an empirical 
constant. Kugler et. al [40] gives a review of existing orientation models 
that accounts inter-particle interaction such as nematic model, aniso
tropic and mold flow rotary diffusion model, retarding principal rate 

model, etc. 
To capture fiber-fiber interactions in our single fiber model, we 

develop a relation between the Folgar-Tucker interaction coefficient CI 
and the effective radius of influence in our micro-model. Firstly, we 
determine a relation between the stall angle of the fiber and the inter
action coefficient CI based on equation of change of the 2nd order 
orientation tensor by Advani and Tucker [50]. Here the stall angle is the 
fiber angle at which rotary motion ceases which has been found to be a 
function of the micro-model flow domain size (see e.g., Zhang et al. 
[40]). Subsequently we obtained a relation between the flow domain 
size and the fiber stall angle through a series of micro-model FEA sim
ulations with fluid boundary domain BC1 of different sizes. As M de
creases, the ends of the fiber become nearer to the prescribed boundary 
BC1 such that the velocity field near the fiber tips hydrodynamically 
interacts with the flow adjacent to BC1. The prescribed boundary creates 
a flow disturbance as viewed from the fiber in a manner similar to that 
which would be expected by neighboring fibers in a semi-concentrated 
flow. We then determine the relationship between the steady-state 
orientation tensor and the interaction coefficient CI for a given ellip
soidal aspect ratio. A relationship between CI and the micro-model flow 
domain size is then established by equating fiber stall angle in the 
micro-model to the direction of the first eigenvector of the fiber orien
tation tensor at steady state. This approach provides a means to 
approximately account for the effect of fiber-fiber interaction in the FEA 
simulation of the single fiber evolution along streamlines for a given 
interaction coefficient. 

Observations of the experimentally determined steady state orien
tation [51] show that the fibers tend to align with streamlines of the flow 
field irrespective of the initial conditions, contrary to Jeffery’s ideali
zation where suspended particles continue to rotate in simple shear. 
Saffman [51] shows that non-Newtonian properties of the fluid, not 
considered by Jeffery, is responsible for a stall in the tumbling motion. 
Other factors not accounted for in Jeffery’s model that adds to the in
determinacy of a particle’s motion include the flexural tendency of the 
particle which would depend on its inherent elastic property, aspect 
ratio, fluid rheology of the medium and interacting flow field. Moreover, 
the fibers may eventually break when subject to severe interacting 
forces, however, fiber flexibility is beyond the scope of our work. 

2.5. Determining effective fluid domain size 

To quantify the effect of fiber-fiber interactions with our single fiber 
model, we first establish a relationship between a suspension’s inter
action coefficient CI (cf. the Advani-Tucker model) and the stall angle in 
our single fiber FEA micro-model. The steady state orientation tensor 
values that correspond to a particular interaction coefficient can be 
determined from the Advani-Tucker 2nd order orientation tensor 
equation of change given as: 

ȧij =
1
2

(
ωimamj − aimωmj

)
+

ξ
2

(
Γimamj + aimΓmj − 2aijklΓkl

)
+ 2Dr

(
δij − αaij

)

(26)  

where, aij and aijkl are the 2nd and 4th order fiber’s orientation tensors, 
respectively, ξ is the shape parameter defined above, Γij is the strain rate 
tensor given as Γij =

[
∇ivj +∇jvi

]
, ωij is the vorticity tensor given as 

ωij =
[
∇ivj −∇jvi

]
and α is a dimension factor (i.e., α = 3 for 3D orien

tation and α = 2 for 2D planar orientation). In the above, the fourth- 
order orientation tensor aijkl is computed from aij using a closure 
approximation as is common in polymer composite suspension simula
tions. We employ the orthotropic fitted closure of Verweyst et al. [52] in 
all the calculations to follow. The symmetry properties of the orientation 
tensors require that aij = aji and aijkl = ajikl = akijl = alijk = aklij. The 
normalization condition also requires that aii = 1 and aijkk = aij where 
repeated indices imply summation in the usual manner here and in the 
following. 

Fig. 13. Maximum (upper curves P > 0) and minimum (lower curves P< 0) 
fiber surface pressure limits for various Newtonian viscosities in simple shear 
flow (re = 6). The units for μ are Pa • s.. 

Table 1 
Table comparing period of fibers tumbling motion obtained from Jeffery’s 
approximation to FEA calculations for various aspect ratio and shear rate.  

re TJef Tfea  γ̇ TJef Tfea  

[s] [s] [1/s] [s] [s]

1  12.57  12.87  0.25  154.99  157.49 
3  20.94  21.24  0.5  77.49  78.76 
6  38.75  39.53  1  38.75  39.53 
8  51.05  52.32  2  19.37  19.99 
10  63.46  65.34  5  7.75  7.89  
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We determine the steady state 2nd order orientation tensor that re
sults in zero rate of change, i.e., ȧij = 0 via a Newton Raphson iteration 
scheme given as: 

aij
+ = aij

− − Jmnij
−\Rmn

− (27)  

where the residual Rmn = ȧmn is: 

Rmn =
1
2

(ωmkakn − amkωkn) +
ξ
2

(γ̇mkakn − amkγ̇kn − 2γ̇klamnkl) + 2Dr(δmn − αamn)

(28)  

and the Jacobian Jmnij is obtained by differentiating the residual with- 
respect-to components of the 2nd order orientation tensor aij as. 

Jmnij =
∂Rmn

∂aij

=
1
2

(

ωmk
∂akn

∂aij
−

∂amk

∂aij
ωkn

)

+
ξ
2

(

γ̇mk
∂akn

∂aij

+
∂amk

∂aij
γ̇kn −2γ̇kl

∂amnkl

∂aij

)

−2Drα
∂amn

∂aij
(29) 

The derivative of the 2nd order orientation tensor with respect to its 

individual components is simply: 

∂ars

∂amn
= δrmδsn (30)  

where δij is the Kronecker delta. Derivatives of aijkl with respect to 
aij are provided elsewhere for various closures approximations that are 
commonly used with Eq. (26) (cf. Awenlimobor and Smith [53], to 
appear). We define a preferred direction of orientation as the principal 
direction of the steady state aij computed from the nth eigenvector of 
aij(Φmn) corresponding to the maximum eigenvalue λnwhich is obtained 
from: 

Φ : Λij = ΦkiaknΦnj, λk = Λkk, λ : ϵijk
[
aij − λnIij

]
= 0 (31) 

Consider planar simple shear flow having v′
x = γ̇y′ and v′

y = v′
z =

0 (cf. Fig. 7) with a fiber at ϕ = 90◦ rotating in the xy-plane. For this flow 
field, the in-plane steady state orientation angle θ was evaluated using 
Eqs. (26) through (31) for various values of CI and for different closure 
approximations as given in [53]. Alternatively, a series of FEA simula
tions were performed for an ellipsoidal fiber rotating through a modified 
Jeffery’s orbit in simple shear for various fluid boundary domain sizes 

Fig. 14. Single fiber angular motion and preferred orientation results for varying domain size M a) fiber orientation angleθ through its stall angle b) fiber angular 

velocity θ̇ simulated through a stall angular velocity tolerance of 
⃒
⃒
⃒θ̇

⃒
⃒
⃒ = 1. × 10−31/s c) relationship between fiber stall angle and domain size factor M from FEA 

analysis, d) relationship between fiber steady state angle θ and interaction coefficient CI (Aspect ratio re = 6). 
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(cf. Fig. 5). A corresponding pair of FEA simulation and orientation 
tensor evaluations were performed using the same fiber geometry and 
shear rate. Values of stall angle were then compared. Results of stall 
angle as a function of micro-model domain size factor M = 2d/a (where 
d is the diameter of the micromodel flow domain) and CI appear in  
Fig. 14. 

The influence of domain size appearing in Fig. 14c shows a nearly 
linear relationship between the fiber stall angle and domain size from 
the micro-model simulations, given by Eq. (32) below. 

θ = .33839 − .022M − .0077M2 (32) 

Additionally, results of the orientation angle computed from the ei
genvectors of the steady state orientation tensor a2 show nonlinear 
relationship between stall angle and interaction coefficient (cf. Fig. 14d) 
which can be represented as: 

θ = π/2 − 1.57 + 11.4CI − 183.5C2
I + 1773.4C3

I − 6680.1C4
I (33) 

Combining results from Fig. 14c and Fig. 14d, we obtain a relation
ship between the fluid boundary domain size in our single fiber micro- 
model and CI given as (cf. Fig. 15) 

M = −1.4285

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

45.89 − 1.48 × 103CI + 2.38 × 104C2
I − 2.30 × 105C3

I + 8.68 × 105C4
I

√

(34) 

Assuming an ellipsoidal fiber aspect ratio re = 6 which corresponds to 
a shape parameter ξ = 0.9459 and given a volume fraction ϑf = 8.4% by 
volume (13% by weight) CF/ABS polymer composite, we obtain an 
interaction coefficient of CI = 0.0128 using Bay’s correlation that re
lates CI to ϑf and re [54]. It follows from Eq. (34), that the effective 
domain size based on our CI is M = 4.08(∼ 4.0) which we have used in 
our simulations. Given that fiber suspensions are classified into 3 con
centration regimes based on vf and re as [37]: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑf <
1
r2

e
dilute

1
r2

e
≤ ϑf <

1
re

semi − dilute

ϑf <
1
r2

e
concentrated

(35)  

our simulations are within or nearly within the concentrated regime for 
the suspension where CI = .0128and M = 4 are used in the results 
section below. 

3. Results and discussion 

The preceding sections describe the ability of our micro-model to 
reproduce Jeffery’s result for single fiber motion, and the determination 
of an effective single ellipsoidal fluid domain size that approximates the 
effect of short-range fiber interaction in simple shear flow. All simula
tions included here use a fiber half-length of a = 42μm and an ellipsoidal 
aspect ratio of re = 6 which corresponds to a cylindrical geometric 
aspect ratio of rc = 7.66 using Equation (2.21) in Zhang [41]. Here we 
limit our discussion to results along streamlines ψ4, ψ10, and ψ18 to 
capture effects along the lower, middle, and upper sections of the bead, 
respectively (cf. Fig. 2b). The following simulations incorporate veloc
ity, velocity gradients, and pressure computed in the 2D planar 
extrusion-deposition macro-model to define far field boundary condi
tions BC1 and BC2 in the single fiber micro-model. To assess the effect of 
initial conditions in the single fiber analysis, we run multiple simula
tions, each with its own initial fiber angle θ0 over a range of 
−π/2 ≤ θ0 ≤ π/2 in increments of π/12. Simulating fiber motion over 
this range of initial angles and on various streamlines provides a 
comprehensive assessment of possible fiber responses and correspond
ing location where they occur across the extruder nozzle. 

To better display streamline results, subsequent figures presented in 
this section have been annotated to show three interest regions of the 
nozzle geometry appearing in Fig. 2b which includes:  

(i) Zone 1: The entrance to the small capillary section of the nozzle at 
the point where the polymer- melt just exits the convergent zone.  

(ii) Zone 2: The exit from the nozzle where the polymer leaves the 
nozzle and enters the region of die swell, and the external pres
sure drops to atmospheric condition.  

(iii) Zone 3: The exit of die swell region below and to the side of the 
nozzle exit where the deposited material has made a complete 
900 turn onto the translating bed below and attains a near uni
form velocity equal to the print speed. 

We consider the simulation of fibers in a concentrated suspension 
with CI = 0.0128 using the reduced single fiber domain approach with 
M = 4 in the micro-model as described above. For each fiber motion 
simulation result (i.e., a fiber moving along a specific streamline with a 
designated initial angle), the overall minimum and maximum fiber 
surface pressure is calculated and the difference between the streamline 
pressure and overall minimum and maximum fiber surface pressures are 
noted. In addition, the corresponding coordinate locations where the 
minimum and maximum fiber surface pressures occur within extrusion- 
deposition flow are identified. Fig. 16 shows a typical fiber surface 
pressure result along streamline ψ10 (starting at the centerline of the 
nozzle inlet) for a concentrated suspension where distinct extremes of 
minimum and maximum pressures identified as ΔPmin and ΔPmax, 
respectively, are plotted as a function time along with the streamline 
pressure from the macro-model. The first extreme pressure location, 
denoted here as Loc. 1, and the second extreme location, denoted as Loc. 
2, appear in the pressure history for all streamlines and θ0 with varying 
degrees of intensity and at slightly different locations as shown below. 
Note that the position along the streamline for Loc. 1 and Loc. 2 will 
occur at different locations depending on the streamline and initial fiber 
angle. 

The initial extreme in minimum fiber surface pressure at Loc. 1 is 
observed to occur just prior to the entrance of the nozzle capillary sec
tion (i.e., zone 1) while the second pressure drop at Loc. 2 occurs within 
the die swell region between zones 2 & 3. Only at the latter extreme fiber 
location does the absolute local minimum pressure on the fiber surface 
drop to a value that is below zero atmosphere (reaching −0.4 MPa in the 
simulation appearing in Fig. 16). This low pressure extreme is expected 
to provide a favorable condition for void nucleation to occur based on 
prior related research [11–17]. A closer inspection of the fiber’s surface Fig. 15. Fitted relationship between domain size factor M vs interaction coef

ficient CI . 
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pressure distribution at this location shows that the peak sites occur at 
the fiber’s tips (cf. Fig. 16d) which is typical of all simulations presented 
in this work. 

To gain a better understanding of the effect of streamline location on 
the fiber response during its motion through the extrusion-deposition 
flow in the concentrated regime, we present results of time-varying 
profiles for three select streamlines, one near the left edge - ψ4, the 
center streamline - ψ10, and one at the far-right edge ψ18 (cf. Fig. 2b), 
each with a range of initial fiber orientation as specified above. The 
computed results show that the fiber surface extreme pressures on the 
outer streamlines (ψ4 and ψ18) are less sensitive to initial fiber orien
tation over the entire deposition time as compared to the center 
streamline ψ10 where the initial fiber angle has much more pronounced 
effect on the characteristic pressure peak values. 

The results of the fiber orientation relative to the streamline direc
tion presented in Fig. 17 shows that the particle eventually tends to align 
with the streamlines of the flow irrespective of its initial starting angle 
and the degree of fiber alignment increases from the center streamline 
(ψ10) to streamlines closer to edges of the nozzle (ψ4 and ψ18). The 
asymmetry in the results of the orientation for edge streamlines ψ4 & ψ18 
shown in Fig. 17 a and c, respectively, signifies that fibers on these 

streamlines undergoes uneven rotation prior to flow alignment 
depending on the degree and direction of initial misalignment relative to 
the prevailing vortex direction (ω) of the undisturbed flow which in turn 
depends on the relative positioning of the streamline with respect to the 
centerline. 

To better depict the fiber rotation span for fibers initially inclined 
unfavorably with the flow, the orientation transient profiles have been 
vectorially added to π considering the fiber has no preferred ends (i.e., 
θ(t) = −θ(t) − π, θ0 < 0, ω > 0 for streamline ψ4 and θ(t) = −θ(t) + π,

θ0 > 0, ω < 0 for streamline ψ18). Alternatively, the fiber motion on the 
outer streamlines is more sensitive to the initial fiber orientation and 
possesses some degree of asymmetry with respect to the initial angle. 
This is due to the relatively high velocity gradients for streamlines closer 
to the nozzle edge as compared to the center streamline. Moreover, the 
transition time in the die swell region between zones 2 and 3 increases 
with streamline location from the right-hand edge to the left-hand edge 
due to correspondingly larger radius of curvature (cf. Fig. 2b). Stream
line 18 has a sharp 90◦ turn with negligible dwell time in the die swell 
region as zones 2 and 3 almost nearly overlaps unlike streamline 4 and 
10 which experiences relatively higher dwell in the die swell region as 
the polymer melt gradually approaches the deposition plate surface. 

For subsequent simulation results, we consider a range of initial fiber 

Fig. 16. Selected computed results along center streamline ψ10 for the concentrated suspension (CI = 0.0128 and M = 4). Shown are the fiber’s surface (a) minimum 
pressure (θ0 = 00) (b) maximum pressure (θ0 = −900) at peak locations (Loc. 1 & Loc. 2). Contour plot at the first location (Loc. 1) of minimum pressure drop 
showing (c) Velocity magnitude (d) Pressure near the fiber. 
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Fig. 17. Quasi-transient profile plots of the fiber minimum pressure, maximum pressure and relative orientation angle, including various initial fiber angles for 
selected streamlines a) streamline-4 b) streamline-10 and c) streamline-18 (CI = 0.0128 and M = 4). 
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orientation and report the computed overall minimum and maximum 
pressure difference with respect to the streamline pressure across the 
nozzle at the important extreme pressure locations (i.e., Loc. 1 and 2). In 
addition, we report the corresponding spatial positions where the min
imum and maximum pressure extremes occur within extrusion- 
deposition flow for each of the various streamlines across the nozzle 
section. Lastly, we report the fiber’s orientation relative to the stream
line direction at three interest zones of the nozzle (zones 1–3). 

Calculated results in Fig. 18 show that the extreme pressures on 
center streamlines are more sensitive to initial fiber angle than that for 
the outer streamlines. We observe a drop in average minimum pressure 

of − 0.5 MPa at the first extreme occurrence (Loc. 1) which is almost 
uniform across all streamlines within the nozzle. Alternatively, the 
second average pressure extreme occurrence (Loc. 2) has a minimum 
streamline pressure of − 0.8 MPa at the left edge streamline and 
− 0.1 MPa at the right edge (cf. Fig. 18b). The spatial position where the 
first extreme in the minimum pressure drop occurs across the nozzle is 
seen to be well-above the entrance to the straight nozzle capillary (zone 
1) but at the second pressure extreme location, the mean minimum 
extreme pressure occurs across the die swell region of the flow as shown 
in Fig. 19b. This would indicate that the likelihood of void nucleation 
decreases from the bottom to the upper free surface of the bead. The 

Fig. 18. Overall pressure extremes on the fiber surface over the complete period of deposition (the blue trendline represents the mean and the red trendline is the 
median): (a) overall minimum at Loc. 1 (b) overall minimum at the Loc. 2 (c) overall maximum at Loc. 1 (d) overall maximum at Loc. 2. 
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average extreme maximum pressure at the first peak location (Loc. 1) 
across streamlines of the nozzle just before zone 1 is seen to be generally 
less severe than pressure values at the second peak location (Loc. 2), and 
the mean extreme pressure magnitudes decline asymmetrically with a 
trough-like appearance from streamlines closer to the edges towards the 
centerline (cf. Fig. 18c). The opposite behavior is observed at the second 
extreme site (Loc. 2) where there is an unsymmetrical rise in the mean 
extreme pressure magnitude from the edges to the centerline in a crest- 
like manner (cf. Fig. 18d), and the spatial position where this occurs is 
seen just after the nozzle exit, about .5 mm beneath zone 2 almost nearly 
evenly across the flow (cf. Fig. 19d). This behavior may be attributed to 
the relatively high shear rates at the wall just before exiting the nozzle 
compared to the center streamline which transitions abruptly at the 
edges. 

The result of the fiber’s orientation distribution relative to the 
streamline direction at the 3 regions of interest shows that the fiber is 
almost nearly aligned with the streamlines of the flow across the nozzle 
section and the degree of alignment increases towards the edge of the 

nozzle as we observe from Fig. 20(a-c). This is consistent with the 
conclusion of Saffman [51] who observed that the fibers tend to align 
with the flow. The error bounds of the fiber’s orientation across the 
nozzle due to the variation of initial fiber angle in all three locations are 
also similar. 

4. Conclusion 

A computational multiscale FEA methodology has been developed to 
study the behavior of suspended rigid ellipsoidal fibers during polymer 
composite melt extrusion-deposition flow through a LAAM nozzle. 
Sensitivity analysis based on Jeffery’s model assumption reveals a direct 
correlation between the extreme pressures on the fiber surface with its 
geometry aspect ratio and the rheological properties of the flow (shear 
rate and viscosity) and these pressure extremes are observed to occur at 
the fiber’s tips. Further, extreme minimum pressures are shown to occur 
at the fiber tips as the fiber rotates to become more aligned with the 
flow. Results of the extrusion-deposition multi-scale analysis that 

Fig. 19. Distribution of location within the nozzle where the pressure extremes on the fiber surface occurs over the complete period of deposition and for all 
computed streamlines: (a) overall minimum at Loc. 1 (b) overall minimum at the Loc. 2 (c) overall maximum at Loc. 1 (d) overall maximum at Loc. 2. 
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considers the effect of rotary diffusion due to short-range fiber interac
tion reveals a dependence of the severity and sensitivity of the fibers 
extreme pressures to streamline location and the initial fiber orientation. 
In addition, the effect of increasing fiber concentration and aspect ratio 
increases the magnitude of the pressure extremes on the fiber surface. In 
the extrusion-deposition flow, a significant minimum pressure extreme 
occurs on the fiber surface which at the entrance to the straight capillary 
section and across the die swell region immediately outside of the 
extruder nozzle which indicates an increased likelihood for micro-voids 
initiation at fiber ends in these regions. Results indicate that we would 
expect a higher probability of occurrence of micro-voids closer to the 
plate than the free surface. Results also confirm a high degree of the fiber 
alignment in the extruded bead. 
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Appendix I. – Void Formation Hypothesis 

The computational approach presented above predicts the pressure distribution on individual fibers and considers this as a means to assess the 
likelihood of void formation within the composite melt. The motivation for evaluating pressure on the fiber surface stems from classical nucleation 

Fig. 20. Distribution of fiber orientation angle at the region of interest within the extruder nozzle: (a) Zone 1 (b) Zone 2 (c) Zone 3.  
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theory that addresses void initiation and growth within a polymer melt investigated by Han and Han [12], Stewart [13], and Han [14], who also 
investigated the dynamics of void initiation in polymer melts under shear flow. Colton and Suh [15] distinguished between two mechanisms of 
nucleation which includes 1) homogenous classification involving the formation of a new stable phase in a primary phase with dissolved secondary 
components under critical conditions due to thermal fluctuations and molecular interaction and 2) a heterogenous classification involving the 
crystallization of a third phase at the interface of two other phases, usually a liquid and a solid. Both forms of nucleation can coexist and occur 
concurrently under a mixed classification. However, in a system such as a colloidal solution, depending on the volume fraction of the suspension, a 
heterogenous nucleation is more likely to be dominant due to smaller activation energy barrier. The polymer melt material considered in the sim
ulations above is composed of 13% filled carbon fiber ABS (Acrylonitrile Butadiene Styrene) such that a heterogenous dominant mode of nucleation is 
expected to occur at the interface of the carbon fiber and polymer. Also, it is expected that the polymer material has some degree of absorbed moisture 
or dissolved additives/volatile. 

In the model development by Roychowdhury et. al. [11], a necessary requirement for potential homogenous void nucleation is the occurrence of 
very low localized fluid pressure PL below the moisture vapor pressure PV i.e., PL < PV at process temperature Θp. The nucleation rate Jn (i.e., Jn ≥ 1 
for void nucleation) as modified by Colton and Suh [15] in heterogenous systems is: 

Jn = Nv

̅̅̅̅̅̅̅
2η
πm

√

exp

[

−
16πη3

3kBΘ(PV − PL)
2 S(φ)

]

(36)  

where Nv is the number of molecules per unit volume of the volatile phase, m is the molecular mass of the volatile phase, η is the surface tension at 
characteristics temperature Θ, and kB is the Boltzmann constant. In the above, 

S(φ) = (1/4)(2 + cosφ)(1 − cosφ)
2 (37)  

where φ is the wetting angle of the interface. Usually, the characteristics temperature of nucleation Θn stays well above the glass transition/melt 
temperature Θg/Θm (i.e., Θn ∼ Θp ≥ Θg/Θm) and the phenomenon takes place almost instantaneously. Colton and Suh [15] determined the moisture 
vapor pressure from the moisture concentration distribution in the polymer using Henry’s Law, PV = c/HV where c is the concentration and HV is 
Henry’s constant for moisture in a polymer. Based on classical nucleation theory, the characteristics nucleation time tn is given by: 

tn = r2
c

/
D (38)  

where D is the moisture diffusivity defined by D = Doe−AE/Θ; and Do is the moisture diffusion constant within the polymer, AE is an activation energy 
related material constant, and Θ is the temperature. rc is the critical radius on nucleation given by: 

rc = 2η/(PV − PL) (39) 

The single fiber pressure solutions appearing above show that the calculated localized fluid pressure PL (i.e., the minimum pressure extremes 
calculated in the micro-model) may fall below processing pressure Pψ which increases propensity for void nucleation at these sites. 

An additional requirement for void nucleation is that the void nucleation time tn must be less than the streamline deposition time td. i.e., tn < td. 
Han and Han [12] showed that the classical nucleation theory under predicts the propensity for void nucleation in polymer solutions with significant 
proportion of dissolved volatile components. They observed nucleation at critical pressures PL above the vapor pressure PV and developed a more 
applicable model incorporating the Flory Huggins theorem to account for reduced entropies due to restrictions posed by macromolecules in the solvent 
yielding a nucleation rate of: 

Jn = [Nv][BF ]e(−ΔF∗
p/nkBΘ) (40)  

where BF is the frequency factor given by: 

BF = B1
[
D(Θ)

/
4πr2

c

]
exp( − B2/Θ) (41)  

and D(Θ) is the molecular diffusivity of the volatile phase which Han and Han [12] obtained using free volume theory of Vrentas and Duda given by: 

D(Θ) = Do(1 − 2χFϑ1)(1 − ϑ1)
2exp( − E/RGΘ)exp

(
ς
(
w1 V̂

∗

1 + w2 V̂
∗

2q
)/

V̂
∗

HF

)
(42) 

The free energy for critical void nucleation in polymer solutions ΔF∗
p given by: 

ΔF∗
p = (16/3)πη3(PV − PL)

2
− nkBΘ

{

ln
(

ϑ1
PG

PV

)

+ ϑ2

(

1 −
V1

V2

)

+ χFϑ2
2

}

(43) 

In Eqs. 41 through 43, B1 & B2 are empirical constants dependent on the polymer solution, wi, ϑi and Vi are the weight fraction, volume fraction and 
molar volume of constituent i respectively, subscript i = 1 for solvent and i = 2 for solute. In our material systems, the proportion of molar volume of 
the volatile phase in the polymer is much less than unity, i.e., V1/V2≪1, ς is the free volume overlap factor, q is the critical molar volume ratio of 
jumping units of solvent to jumping units of polymer solution, and V̂

∗

HF is the average hole free volume per gram of mixture. χF is the Flory Huggins 
interaction parameter and PG/PV defines the degree of saturation of the gas phase, PG being the pressure inside the critical bubble given as: 

PG = (3/2)ρLṙ2
c + 2η/rc + 4μ0(ṙc/rc) + PL (44)  

were ṙc is the growth rate at the onset of nucleation, ρL is the liquid density and μ0 is the viscosity at zero shear. 
The surface tension η at the elevated temperature at which the polymers are processed is estimated using expression by Sugden [55] thus: 
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η(Θ) = (Pa/V(Θ) )
4 (45) 

where Pa is the Parachor and V(Θ) is the molar volume of the liquid. The consequence of this is that the surface tension at an elevated temperature can 
be estimated with knowledge of the surface tension at a reference temperature through: 

η(Θ2) = η(Θ1)

[
ρ(Θ2)

ρ(Θ1)

]4

(46)  

and the contact angle can be obtained from equation by Girifalco and Good [55]. 

cosφ = 2φ̂
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ηs/ηl)

√

− 1, φ̂ = 4
[
V−1/3

s + V−1/3
l

]−1
, V =

Nv

ρ (47) 

The details here provide a possible basis for estimating the potential for void nucleation within a polymer melt given a known amount of volatile 
content in future research. 

Appendix II. – Two-Dimensional (2D) Reduced Form of Jeffery’s Equation 

The 2D contracted form of the Jeffery’s pressure and velocity [32] can be expressed by Eqs. (48) and (49) respectively given as: 

p = p0 + 2μ
{

A
∂2Ω
∂2x

+ B
∂2Ω
∂2y

+ (H + H′)
∂2Ω
∂x∂y

}

(48)  

[
vx
vy

]

=

[
v0

x

v0
y

]

+

[
Y W

−W Y

]

⎡

⎢
⎢
⎢
⎣

∂χ3

∂x
∂χ3

∂y

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

∂2Ω
∂x2

∂2Ω
∂x∂y

∂2Ω
∂x∂y

∂2Ω
∂y2

⎤

⎥
⎥
⎥
⎥
⎦

[
A H
H′ B

]T [
x
y

]

−

[
A H
H′ B

]

⎡

⎢
⎢
⎢
⎣

∂Ω
∂x
∂Ω
∂y

⎤

⎥
⎥
⎥
⎦

(49) 

Alternatively, this can be written as: 

p = p0 + 2μZ
X

: ∇2
X
Ω (50)  

v = v0 + Zχ • ∇Xχ3 + ∇2
X
Ω •

⎡

⎣ZT
X

• X

⎤

⎦ − Z
X

• ∇XΩ (51)  

Where p0 is the constant mean pressure at a distance from the ellipsoid, v =
[
vx vy

]T are the velocity components at arbitrary position (x, y) and v0 =
[

v0
x v0

y

]T
is the velocity of the undisturbed fluid at (x, y) given as: 

v0 = ∇v • X (52)  

coefficient matrices Zχ and ZX and the gradient and hessian operators ∇X and ∇2
X are respectively given as: 

Z
χ

=

[
Y W

−W Y

]

, Z
X

=

[
A H
H′ B

]

, ∇X =

⎡

⎢
⎢
⎢
⎣

∂
∂x
∂
∂y

⎤

⎥
⎥
⎥
⎦

, ∇ 2
X

=

⎡

⎢
⎢
⎢
⎢
⎣

∂2

∂x2
∂2

∂x∂y

d2

∂y∂x
∂2

∂y2

⎤

⎥
⎥
⎥
⎥
⎦

The 2D strain deformation tensor in the local fiber reference frame ∇v is decomposed in the usual way to obtain the 2D symmetric component Γ and 
anti-symmetric components ω according to: 

∇v = Γ + ω (53)  

Γ = ∇v + ∇vT =

[
ε h
h −ε

]

, ω = ωG = ∇v − ∇vT , G =

[
−1

1

]

(54) 

The 2D Laplace Function Ω that appears in Eqs. (48) - (51) is defined as: 

Ω =

∫∞

ζ

1
Δ

{
x2

a2 + ζ
+

y2

b2 + ζ
− 1

}

dζ (55)  

where 

Δ =
{(

a2 + ζ
)(

b2 + ζ
)}1/2

, and, ζ :
x2

a2 + ζ
+

y2

b2 + ζ
= 1 (56) 

At the fiber’s surface where ζ = 0, the field velocity must equal the fiber’s surface velocity assuming no slip at the fiber’s surface, i.e. 
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v
⃒
⃒
⃒

ζ=0
= θ̇G • X (57) 

The constants that appear in Zχ , ZX above are thus obtained as: 

A = −B =
ε

4γ′′
0
, H = H′ =

1
2

[
ω − θ̇

α0 − β0

]

, Y = −
h
γ′

0
, W = 2

(
a2 + b2)

A (58)  

where α0, β0, γ′
0, γ′′

0&χ3 retain their usual definition given [32]. The fibers angular velocity is derived as: 

θ̇ = ω +

(
a2 − b2

)

(
a2 + b2

) h (59)  
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