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In high-dimensional classification problems, a commonly used approach
is to first project the high-dimensional features into a lower-dimensional
space, and base the classification on the resulting lower-dimensional projec-
tions. In this paper, we formulate a latent-variable model with a hidden low-
dimensional structure to justify this two-step procedure and to guide which
projection to choose. We propose a computationally efficient classifier that
takes certain principal components (PCs) of the observed features as pro-
jections, with the number of retained PCs selected in a data-driven way. A
general theory is established for analyzing such two-step classifiers based on
any projections. We derive explicit rates of convergence of the excess risk of
the proposed PC-based classifier. The obtained rates are further shown to be
optimal up to logarithmic factors in the minimax sense. Our theory allows the
lower dimension to grow with the sample size and is also valid even when the
feature dimension (greatly) exceeds the sample size. Extensive simulations
corroborate our theoretical findings. The proposed method also performs fa-
vorably relative to other existing discriminant methods on three real data ex-
amples.

1. Introduction. In high-dimensional classification problems, a widely used technique
is to first project the high-dimensional features into a lower-dimensional space, and base
the classification on the resulting lower-dimensional projections [3, 11, 17, 22, 24, 30, 31,
36–38, 41, 42]. Despite having been widely used for years, theoretical understanding of this
approach is scarce, and what kind of low-dimensional projection to choose remains unknown.
In this paper, we formulate a latent-variable model with a hidden low-dimensional structure
to justify the two-step procedure that takes leading principal components of the observed
features as projections.

Concretely, suppose our data consists of independent copies of the pair (X,Y ) with fea-
tures X ∈ R

p according to

X = AZ + W(1.1)

and labels Y ∈ {0,1}. Here, A is a deterministic, unknown p × K loading matrix, Z ∈ R
K

are unobserved, latent factors and W is random noise. We assume that:

(i) W is independent of both Z and Y ,
(ii) E[W ] = 0p ,

(iii) A has rank K .

This mathematical framework allows for a substantial dimension reduction in classification
for K � p. Indeed, in terms of the Bayes’ misclassification errors, we prove in Lemma 1 of
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Section 2.1 the inequality

R∗
x := inf

g
P

{
g(X) �= Y

} ≥ R∗
z := inf

h
P

{
h(Z) �= Y

}
,(1.2)

that is, it is easier to classify in the latent space R
K than in the observed feature space R

p . In
this work, we further assume that:

(iv) Z is a mixture of two Gaussians

Z|Y = k ∼ NK(αk, �Z|Y ),P(Y = k) = πk, k ∈ {0,1}(1.3)

with different means α0 := E[Z|Y = 0] and α1 := E[Z|Y = 1], but with the same covariance
matrix

�Z|Y := Cov (Z|Y = 0) = Cov (Z|Y = 1),(1.4)

assumed to be strictly positive definite.

We emphasize that the distributions of X given Y are not necessarily Gaussian as the distri-
bution of W could be arbitrary.

Within the above modeling framework, parameters related with the moments of X and Y ,
such as πk , E[X|Y ] and Cov(X|Y), are identifiable, while A, �Z|Y , αk and �W := Cov(W)

are not. For instance, we can always replace Z by Z′ = QZ for any invertible K × K matrix
Q and write α′

k = Qαk , �′
Z|Y = Q�Z|Y Q	 and A′ = AQ−1. Since we focus on classifica-

tion, there is no need to impose any conditions on the latter group of parameters that render
them identifiable. Although our discussion throughout this paper is based on a fixed nota-
tion of A, �Z|Y , �W and αk , it should be understood that our results are valid for all possible
choices of these parameters such that model (1.1) and (1.3) holds, including submodels under
which such parameters are (partially) identifiable.

Our goal is to construct a classification rule ĝx : Rp → {0,1} based on the training data
D := {X,Y } that consists of independent pairs (X1, Y1), . . . , (Xn,Yn) from model (1.1) and
(1.3) such that the resulting rule has small missclassification error P{ĝx(X) �= Y } for a new
pair of (X,Y ) from the same model that is independent of D. In this paper, we are particularly
interested in ĝx that is linear in X, motivated by the fact that the restriction of equal covariance
in (1.4) leads to a Bayes rule that is linear in Z when we observe Z (see display (1.6) below).

Linear classifiers have been popular for decades, especially in high-dimensional clas-
sification problems, due to their interpretability and computational simplicity. One strand
of the existing literature imposes sparsity on the coefficients β ∈ R

p in linear classifiers
g(x) = 1{β	x +β0 ≥ 0} for large p (p ≥ n); see, for instance, [18, 19, 27, 40, 43, 48, 52] for
sparse linear discriminant analysis (LDA) and [47, 51] for sparse support vector machines.
For instance, in the classical LDA-setting, when X itself is a mixture of Gaussians

X|Y = k ∼ Np(μk,�), P(Y = k) = πk, k ∈ {0,1}(1.5)

with � strictly positive definite, the Bayes classifier is linear with p-dimensional vector β =
�−1(μ1 − μ0). Sparsity of β is then a reasonable assumption when � is close to diagonal,
so that sparsity of β gets translated to that of the difference between the mean vectors μ1 −
μ0. However, in the high-dimensional regime, many features are highly correlated and any
sparsity assumption on β is no longer intuitive and becomes in fact questionable. This serves
as a main motivation for this work, in which we study a class of linear classifiers that no
longer requires the sparsity assumption on β , for neither construction of the classifier, nor its
analysis.
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1.1. Contributions. We summarize our contributions below.

1.1.1. Minimax lower bounds of rate of convergence of the excess risk. Our first contri-
bution in this paper is to establish minimax lower bounds of rate of convergence of the excess
risk for any classifier under model (1.1) and (1.3). The excess risk is defined relative to R∗

z in
(1.2), which we view as a more natural benchmark than R∗

x because our proposed classifier is
designed to adapt to the underlying low-dimensional structure in (1.1). The relation in (1.2)
suggests R∗

z is also a more ambitious benchmark than R∗
x .

Since the gap between R∗
x and R∗

z quantifies the irreducible error for not observing Z,
we start in Lemma 2 of Section 2.1 by characterizing how R∗

x − R∗
z depends on ξ∗ =

λK(A�Z|Y A	)/λ1(�W), the signal-to-noise ratio for predicting Z from X (conditioned on
Y ), and �2 = (α1 − α0)

	�−1
Z|Y (α1 − α0), the Mahalanobis distance between random vectors

Z|Y = 1 and Z|Y = 0. Interestingly, it turns out that R∗
x −R∗

z is small when either ξ∗ or � is
large, a phenomenon that is different from the setting when Y is linear in Z. Indeed, for the
latter case, the excess risk of predicting Y by using the best linear predictor of X relative to
the risk of predicting Y from E[Y |Z] is small only when ξ∗ is large [13].

In Theorem 3 of Section 2.2, we derive the minimax lower bounds of the excess risk for
any classifier with explicit dependency on the signal-to-noise ratio ξ∗, the separation distance
�, the dimensions K and p and the sample size n. Our results also fully capture the phase
transition of the excess risk as the magnitude of � varies. Specifically, when � is of constant
order, the established lower bounds are(

ω∗
n

)2 = K

n
+ �2

ξ∗ + �2

ξ∗
p

ξ∗n
.

The first term is the optimal rate of the excess risk even when Z were observable; the second
term corresponds to the irreducible error of not observing Z in R∗

x − R∗
z and the last term

reflects the minimal price to pay for estimating the column space of A. When � → ∞ as
n → ∞, the lower bounds become (ω∗

n)
2 exp(−�2/8) and get exponentially faster in �2.

When � → 0 as n → ∞, the lower bounds get slower as ω∗
n min{ω∗

n/�,1}, implying a more
difficult scenario for classification. In Section 5.3, the lower bounds are further shown to be
tight in the sense that the excess risk of the proposed PC-based classifiers have a matching
upper bound, up to some logarithmic factors.

To the best of our knowledge, our minimax lower bounds are both new in the literature
of factor models and the classical LDA. In the factor model literature, even in linear fac-
tor regression models, there is no known minimax lower bound of the prediction risk with
respect to the quadratic loss function. In the LDA literature, our results cover the minimax
lower bound of the excess risk in the classical LDA as a special case and are the first to fully
characterize the phase transition in � (see Remark 5 for details). The analysis of establish-
ing Theorem 3 is highly nontrivial and encounters several challenges. Specifically, since the
excess risk is not a semidistance, as required by the standard techniques of proving minimax
lower bounds, the first challenge is to develop a reduction scheme based on a surrogate loss
function that satisfies a local triangle inequality-type bound. The second challenge of our
analysis is to allow a fully nondiagonal structure of Cov(X|Y) under model (1.1), as opposed
to the existing literature on the classical LDA that assumes Cov(X|Y) to be diagonal or even
proportional to the identity matrix. To characterize the effect of estimating the column space
of A on the excess risk in deriving the third term of the lower bounds, our proof is based on
constructing a suitable subset of the parameter space via the hypercube construction that is
used for proving the optimal rates of the sparse PCA [50] (see the paragraph after Theorem 3
for a full discussion). Since the statistical distance (such as the KL-divergence) between thus
constructed hypotheses could diverge as p/n → ∞, this leads to the third challenge of pro-
viding a meaningful and sharp lower bound that is valid for both p < n and p > n.
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1.1.2. A general two-step classification approach and the PC-based classifier. Our sec-
ond contribution in this paper is to propose a computationally efficient linear classifier in
Section 3.2 that uses leading principal components (PCs) of the high-dimensional feature,
with the number of retained PCs selected in a data-driven way. This PC-based classifier is
one instance of a general two-step classification approach proposed in Section 3.1. To be
clear, it differs from naively applying standard LDA, using plug-in estimates of the Bayes
rule, on the leading PCs.

To motivate our approach, suppose that the factors Z were observable. Then the optimal
Bayes rule is to classify a new point z ∈R

K as

g∗
z (z) = 1

{
z	η + η0 ≥ 0

}
,(1.6)

where

η = �−1
Z|Y (α1 − α0), η0 = −1

2
(α0 + α1)

	η + log
π1

π0
.(1.7)

This rule is optimal in the sense that it has the smallest possible misclassification error.
Our approach in Section 3.1 utilizes an intimate connection between the linear discrimi-
nant analysis and regression to reformulate the Bayes rule g∗

z (z) as 1{z	β + β0 ≥ 0} with
β = �−1

Z Cov(Z,Y ) (and β0 is given in (3.1) of Section 3). The key difference is the use of
the unconditional covariance matrix �Z , as opposed to the conditional one �Z|Y in (1.7).
As a result, β can be interpreted as the coefficient of regressing Y on Z, suggesting to es-
timate z	β by z	(Z	�nZ)+Z	�nY via the method of least squares, again, in case Z =
(Z1, . . . ,Zn)

	 ∈ R
n×K and z ∈ R

K had been observed. Here, Y = (Y1, . . . , Yn)
	 ∈ {0,1}n,

�n = In − n−11n1	
n is the centering projection matrix and M+ denotes the Moore–Penrose

inverse of any matrix M throughout of this paper.
Since we only have access to x ∈ R

p , a realization of X, X = [X1 · · ·Xn]	 ∈ R
n×p and

Y ∈ {0,1}n, it is natural to estimate the span of z by B	x and to predict the span of �nZ by
�nXB , for some appropriate matrix B . This motivates us to estimate the inner-product z	β

by (
B	x

)	(
B	X	�nXB

)+
B	X	�nY := x	θ̂ .(1.8)

By using a plug-in estimator β̂0 of β0, the resulting rule ĝx(x) = 1{x	θ̂ + β̂0 ≥ 0} is a general
two-step, regression-based classifier and the choice of B is up to the practitioner.

In this paper, we advocate the choice B = U r ∈ R
p×r where U r contains the first r right-

singular vectors of �nX, such that the projections �nXB become the first r principal com-
ponents of X. Intuitively, this method has promise as [45] proves that when r is chosen as
K , the projection �nXUK accurately predicts the span of �nZ under model (1.1). Since in
practice K is oftentimes unknown, we further use a data-driven selection of K in Section 3.3
to construct our final PC-based classifier. The proposed procedure is computationally effi-
cient. Its only computational burden is that of computing the singular value decomposition
(SVD) of X. Guided by our theory, we also discuss a cross-fitting strategy in Section 3.2 that
improves the PC-based classifier by removing the dependence from using the data twice (one
for constructing U r and one for computing θ̂ in (1.8)) when p > n and the signal-to-noise
ratio ξ∗ is weak.

Retaining only a few principal components of the observed features and using them in
subsequent regressions is known as principal component regression (PCR) [45]. It is a popu-
lar method for predicting Y ∈ R from a high-dimensional feature vector X ∈ R

p when both
X and Y are generated via a low-dimensional latent factor Z. Most of the existing literature
analyzes the performance of PCR when both Y and X are linear in Z, for instance, [6, 7, 13,
32, 45, 46], just to name a few. When Y is not linear in Z, little is known. An exception is
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[29], which studies the model Y = h(ξ1Z, . . . , ξqZ; ε) and X = AZ + W for some unknown
general link function h(·). Their focus is only on estimation of ξ1, . . . , ξq , the sufficient pre-
dictive indices of Y , rather than analysis of the risk of predicting Y . As E[Y |Z] is not linear
in Z under our models (1.1) and (1.3), to the best of our knowledge, analysis of the misclas-
sifcation error under models (1.1) and (1.3) for a general linear classifier has not been studied
elsewhere.

1.1.3. A general strategy of analyzing the excess risk of ĝx based on any matrix B . Our
third contribution in this paper is to provide a general theory for analyzing the excess risk
of the type of classifiers ĝx that uses a generic matrix B in (1.8). In Section 4, we state our
result in Theorem 5, a general bound for the excess risk of the classifier ĝx based on a generic
matrix B . It depends on (i) how well we estimate z	β + β0 and (ii) a margin condition on
the conditional distributions Z|Y = k, k ∈ {0,1}, nearby the hyperplane {z|z	β + β0 = 0}.
This is a different approach than the usual one in the literature [26] that provides bounds
on the excess risk P{ĝ(X) �= Y |D} − R∗

z of a classifier ĝ : Rp → {0,1} by the expression
2E[|η(Z) − 1/2|1{ĝ(X) �= g∗

z (Z)}|D], with η(z) = P(Y = 1|Z = z), and involves analyzing
the behavior of η(Z) near 1/2 (see our detailed discussion in Remark 7). The analysis of The-
orem 5 is powerful in that it can easily be generalized to any distribution of Z|Y , as explained
in Remark 8. Our second main result in Theorem 7 of Section 4 provides explicit rates of con-
vergence of the excess risk of ĝx for a generic B and clearly delineates three key quantities
that need to be controlled as introduced therein. The established rates of convergence reveal
the same phase transition in � from the lower bounds. It is worth mentioning that the analysis
of Theorem 7 is more challenging under models (1.1) and (1.3) than the classical LDA setting
(1.5) in which the excess risk of any linear classifier in X has a closed-form expression.

1.1.4. Optimal rates of convergence of the PC-based classifier. Our fourth contribution
is to apply the general theory in Section 4 to analyze the PC-based classifiers. Consistency
of our proposed estimator of K is established in Theorem 8 of Section 5.1. In Theorem 9
of Section 5.2, we derive explicit rates of convergence of the excess risk of the PC-based
classifier that uses B = UK . The obtained rate of convergence exhibits an interesting inter-
play between the sample size n and the dimensions K and p through the quantities K/n,
ξ∗ and �. Our analysis also covers the low signal setting � = o(1), a regime that has not
been analyzed even in the existing literature of classical LDA. Our theoretical results are
valid for both fixed and growing K and are also valid even when p is much lager than n.
In Theorem 10 of Section 5.2, we also show that a PC-based LDA that uses either auxiliary
data or sample splitting could surprisingly yield faster rates of convergence of the excess risk
by removing the dependence between UK and X. These faster rates are further shown to
be minimax optimal, up to a logarithmic factor, in Corollary 11 of Section 5.3. The benefit
of using auxiliary data or sample splitting has also been recognized in other problems, such
as the problem of estimating the optimal instrument in sparse high-dimensional instrumen-
tal variable model [10] and the problem of inference on a low-dimensional parameter in the
presence of high-dimensional nuisance parameters [21].

1.1.5. Extension to multiclass classification. Our fifth contribution is to extend the gen-
eral two-step classification procedure in Section 3 to handle multiclass classification prob-
lems in Section 8. Rates of convergence of the excess risk of the proposed multiclass classifier
are derived in Theorem 12. PC-based classifiers are analyzed subsequently in Corollary 13.
Our theory is the first to explicitly characterize dependence of the excess risk on the number
of classes, and to cover the weak separation case when � → 0.

The paper is organized as follows. In Section 2.1, we provide an oracle benchmark that
quantifies the excess risk of the optimal classifier based on X. We state the minimax lower
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bounds of the excess risk for any classifier in Section 2.2. In Section 3, we present a connec-
tion between the linear discriminant classifier by using Z and regression of Y onto Z. This
key observation leads to our proposed PC-based classifier. Furthermore, we propose a data-
driven selection of the number of retained principal components. A general theory is stated
in Section 4 for analyzing the excess risk of the classifier ĝx that uses any B for the estimate
θ̂ in (1.8). In Section 5, we apply the general result to analyze the PC-based classifiers. Main
simulation results are presented in Section 6 and a real data analysis is given in Section 7.
Extension to multiclass classification is studied in Section 8. All the proofs and additional
simulation results are deferred to the Appendix [15].

Notation: We use the common notation ϕ(x) = exp(−x2/2)/
√

2π for the standard normal
density, and denote by �(x) = ∫

ϕ(t)1{t ≤ x}dt its c.d.f. For any positive integer d , we
write [d] := {1, . . . , d}. For any vector v, we use ‖v‖q to denote its �q norm for 0 ≤ q ≤ ∞.
We also write ‖v‖2

Q = v	Q−1v for any commensurate, invertible square matrix Q. For any
real-valued matrix M ∈ R

r×q , we use M+ to denote the Moore–Penrose inverse of M , and
σ1(M) ≥ σ2(M) ≥ · · · ≥ σmin(r,q)(M) to denote the singular values of M in nonincreasing
order. We define the operator norm ‖M‖op = σ1(M). For a symmetric positive semidefinite
matrix Q ∈ R

p×p , we use λ1(Q) ≥ λ2(Q) ≥ · · · ≥ λp(Q) to denote the eigenvalues of Q in
nonincreasing order. We write Q � 0 if Q is strictly positive definite. For any two sequences
an and bn, we write an � bn if there exists some constant C such that an ≤ Cbn. The notation
an � bn stands for an � bn and bn � an. For two numbers a and b, we write a∧b = min{a, b}
and a ∨ b = max{a, b}. We use I d to denote the d × d identity matrix and use 1d (0d ) to
denote the vector with all ones (zeroes). For d1 ≥ d2, we use Od1×d2 to denote the set of all
d1 × d2 matrices with orthonormal columns. Lastly, we use c, c′,C,C′ to denote positive and
finite absolute constants that unless otherwise indicated can change from line to line.

2. Excess risk and its minimax optimal rates of convergence. We start in Section 2.1
by introducing the oracle benchmark relative to which the excess risk is defined. Minimax
optimal rates of convergence of the excess risk are derived in Section 2.2.

2.1. Oracle benchmark. Since our goal is to predict the Bayes rule 1{z	η + η0 ≥ 0}
under model (1.3), it is natural to choose the oracle risk R∗

z in (1.2) as our benchmark, as
opposed to R∗

x . Furthermore, we always have the explicit expression

R∗
z = 1 − π1�

(
�

2
+ log π1

π0

�

)
− π0�

(
�

2
− log π1

π0

�

)
;(2.1)

see, for instance, [35], Section 8.3, pages 241–244. Here,

�2 := (α0 − α1)
	�−1

Z|Y (α0 − α1)(2.2)

is the Mahalanobis distance between the conditional distributions Z|Y = 1 ∼ NK(α1,�Z|Y )

and Z|Y = 0 ∼ NK(α0,�Z|Y ). In particular, when π0 = π1, the expression in (2.1) simplifies
to R∗

z = 1 − �(�/2).

REMARK 1. It is immediate from (2.1) that � → ∞ implies R∗
z → 0. The case of zero

Bayes error R∗
z represents the easiest classification problem and we can expect fast rates of

the excess risk. If � → 0, the Bayes risk R∗
z converges to min{π0, π1}. When π0 = π1 = 1/2,

the limit reduces to random guessing, which represents the hardest classification problem and
slow rates are to be expected. When π0 �= π1, we can expect fast rates, too, since the asymp-
totic Bayes rule always votes for the same label, to wit, the one with the largest unconditional
probability. Thus, in a way, � � 1 is the most interesting case to investigate.
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The lemma below shows that R∗
x ≥ R∗

z , implying that R∗
z is also an ambitious benchmark.

LEMMA 1. Under model (1.1) and (i)–(iii), we have

R∗
x = inf

g:Rp→{0,1}P
{
g(AZ + W) �= Y

} ≥ R∗
z = inf

h:RK→{0,1}
P

{
h(Z) �= Y

}
.

PROOF. See Appendix A.1.1. �

If W = 0p , the inequality in Lemma 1 obviously becomes an equality. More generally, if
the signal for predicting Z from X under model (1.1) is large, we expect the gap between R∗

x

and R∗
z to be small. To characterize such dependence, we introduce the following parameter

space of θ := (A,�Z|Y ,�W,α1, α0, π1, π0):

(2.3) �(λ,σ,�) = {
θ : λj (�W) � σ 2,∀j ∈ [p], λk

(
A�Z|Y A	) � λ,∀k ∈ [K], π0 = π1

}
and recall � from (2.2). For any θ ∈ �(λ,σ,�), the quantity λ/σ 2 can be treated as the
signal-to-noise ratio for predicting Z from X given Y under model (1.1). The following
lemma shows how the gap between R∗

x and R∗
z depends on λ/σ 2 and � in the special case

W ∼ Np(0p,�W).

LEMMA 2. Under model (1.1) and (i)–(iv), suppose W ∼ Np(0p,�W) with �W � 0.
For any θ ∈ �(λ,σ,�), we have

�

1 + (λ/σ 2)
exp

{
−�2

8

}
�R∗

x − R∗
z � �

1 + (λ/σ 2)
exp

{
−�2

8
+ �2

8(1 + λ/σ 2)

}
.

PROOF. See Appendix A.1.2. �

REMARK 2. The upper bound of Lemma 2 reveals that λ/σ 2 → ∞ implies R∗
x −R∗

z → 0
irrespective of the magnitude of �. Regarding to �, we also find that R∗

x − R∗
z → 0 in the

following scenarios: (1) if � → 0, irrespective of λ/σ 2, (2) if � → ∞ and λ/σ 2 �→ 0, (3) if
� � 1 and λ/σ 2 → ∞.

The lower bound of Lemma 2, on the other hand, establishes the irreducible error for not
observing Z. This term will naturally appear in the minimax lower bounds of the excess risk
derived in the next section.

2.2. Minimax lower bounds of the excess risk. In this section, we establish minimax
lower bounds of the excess risk Rx(ĝ) − R∗

z under model (1.1) and (1.3) for any classifier ĝ.
Here,

Rx(ĝ) := P
{
ĝ(X) �= Y |D}

(2.4)

is the (conditional) misclassification error, given the training data

D := (X,Y ) = {
(X1, Y1), . . . (Xn,Yn)

}
.

The results are established over the parameter space �(λ,σ,�) in (2.3), which is character-
ized by three quantities: λ, σ 2 and �, all of which are allowed to grow with the sample size
n. Our minimax lower bounds of the excess risk fully characterize the dependence on these
quantities, in addition to the dimensions K and p and the sample size n.

We use PD
θ to denote the set of all distributions of D parametrized by θ ∈ �(λ,σ,�) under

models (1.1) and (1.3). For simplicity, we drop the dependence on θ for both Rx(ĝ) and R∗
z .

Define

ω∗
n =

√
K

n
+ σ 2

λ
�2 + σ 2

λ

σ 2p

λn
�2.(2.5)
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The following theorem states the minimax lower bounds of the excess risk for any classifier
over the parameter space �(λ,σ,�).

THEOREM 3. Under model (1.1), assume (i)–(iv), K ≥ 2, K/(n ∧ p) ≤ c1, σ 2/λ ≤ c2
and σ 2p/(λn) ≤ c3 for some sufficiently small constants c1, c2, c3 > 0. There exists some
constants c0 ∈ (0,1) and C > 0 such that:

1. If � � 1, then

inf
ĝ

sup
θ∈�(λ,σ,�)

P
D
θ

{
Rx(ĝ) − R∗

z ≥ C
(
ω∗

n

)2} ≥ c0.

2. If � → ∞ and σ 2/λ = o(1) as n → ∞, then

inf
ĝ

sup
θ∈�(λ,σ,�)

P
D
θ

{
Rx(ĝ) − R∗

z ≥ C
(
ω∗

n

)2 exp
{
−

[
1

8
+ o(1)

]
�2

}}
≥ c0.

3. If � → 0 as n → ∞, then

inf
ĝ

sup
θ∈�(λ,σ,�)

P
D
θ

{
Rx(ĝ) − R∗

z ≥ C min
{
ω∗

n

�
,1

}
ω∗

n

}
≥ c0.

The infima in all statements are taken over all classifiers.

PROOF. The proof of Theorem 3 is deferred to Appendix B. �

The lower bounds in Theorem 3 consist of three terms: the one related with K/n is the op-
timal rate of the excess risk even when Z were observable; the second one related with σ 2/λ

is the irreducible error for not observing Z (see, Lemma 1); the last one involving σ 2p/(λn)

is the price to pay for estimating the column space of A. Although the third term could get
absorbed by the second term as σ 2p/(λn) ≤ c3, we incorporate it here for transparent inter-
pretation. The lower bounds in Theorem 3 are tight as we show in Section 5.3 that there exists
a classifier whose excess risk has a matching upper bound.

REMARK 3 (Phase transition in �). Recall from (2.2) that � quantifies the separation
between N(α0,�Z|Y ) and N(α1,�Z|Y ). We see in Theorem 3 a phase transition of the rates
of convergence of the excess risk as � varies. When � is of constant order, the excess risk
has minimax convergence rate

K

n
+ σ 2

λ
+ σ 2

λ

σ 2p

λn
.

When � → ∞, we see that the minimax rate of convergence of the excess risk gets faster ex-
ponentially in �2. For instance, if �2 ≥ C0 logn for some constant C0 > 0, then the minimax
rate already becomes polynomially faster in n as[

K

n
+ σ 2

λ
+ σ 2

λ

σ 2p

λn

]
1

nC1

for some C1 > 0 depending on C0. The condition σ 2/λ = o(1) for � → ∞ can be re-
moved, and the lower bound remains the same except the factor (1/8) gets replaced by
(1/8)(1/(1 + λ/σ 2)). Finally, when � → 0, a more challenging, yet important case, the
minimax convergence rate of the excess risk gets slower. It is worth noting that although the
oracle Bayes risk R∗

z → 1/2 when � → 0, the minimax excess risk still converges to zero at
least in ω∗

n-rate. If ω∗
n � �, the convergence gets faster as

K

n

1

�
+ σ 2

λ
� + σ 2

λ

σ 2p

λn
�.
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REMARK 4 (Proof technique). To prove Theorem 3, the three terms in the lower bound
are derived separately in the setting where X|Y is Gaussian. Since, for any classifier ĝ,

Rx(ĝ) − R∗
z = (

Rx(ĝ) − R∗
x

) + (
R∗

x − R∗
z

)
,

in view of Lemma 1, it suffices to prove the two terms related with K/n and σ 2p/(λn)

constitute the lower bounds of Rx(ĝ) − R∗
x . In fact, as a byproduct of our result, we also

derive minimax lower bounds of the excess risk relative to R∗
x . This derivation is based on

constructing subsets of �(λ,σ,�) by fixing either A or α0 and α1 separately. The choice of A

is based on the hypercube construction for matrices with orthonormal columns [50], Lemma
A.5. The analyses of both terms are nonstandard as the excess risk is not a semidistance,
as required by standard techniques of proving minimax lower bounds. Based on a reduction
scheme established in Appendix B, we show that proving Theorem 3 suffices to establish a
minimax lower bound of the following loss function:

Lθ(ĝ) := Pθ

{
ĝ(X) �= g∗

θ (X)|D}
.

Here, Pθ is taken with respect to X and g∗
θ (X) is the Bayes rule based on X that minimizes

Rx(g) over g : Rp → {0,1}. Since Lθ(ĝ) is shown to satisfy a local triangle inequality-type
bound such that a variant of Fano’s lemma can be applied [4], Proposition 2, we proved a
crucial result, in Lemmas B.5 and B.6 of Appendix B, that

inf
ĝ

sup
θ∈�(λ,σ,�)

P
D
θ

{
Lθ(ĝ) ≥ C

(√
K

n

1

�
+

√
σ 2

λ

σ 2p

λn

)
e−�2

8

}
≥ c0(2.6)

for some constant c0 ∈ (0,1) and C > 0.

REMARK 5 (Comparison with the existing literature). As mentioned above, a byproduct
of our proof of Theorem 3 is the minimax lower bounds of Rx(ĝ) − R∗

x in the setting where
X|Y is Gaussian, which have exactly the same form as Theorem 3 but without the second term
related with σ 2/λ. It is informative to put this lower bound of Rx(ĝ) − R∗

x in comparison to
the existing literature in this special setting.

Under the classical LDA model (1.5), [20] derives the minimax lower bounds of Rx(ĝ) −
R∗

x over a suitable parameter space for � � 1, which have the same form as ours with
K/n + σ 4p�2/(λ2n) replaced by s/n for s := ‖�−1(μ1 − μ0)‖0. In contrast, our lower
bounds reflect the benefit of considering an approximate lower-dimensional structure of X|Y
under (1.1) and (1.5) instead of directly assuming sparsity on �−1(μ1 − μ0). These two
lower bounds coincide in the low-dimensional setting (p < n) when there is no sparsity in
�−1(μ1 − μ0), that is, s = p, and when there is no low-dimensional hidden factor model
(i.e., X = Z with K = p, A = Ip and W = 0p). On the other hand, [19] only established
the phase transition between � � 1 and � → ∞ whereas we are able to derive the mini-
max lower bound for � → 0, a case that has not even been analyzed in the classical LDA
literature.

Technically, it is also worth mentioning that the latent model structure on X via (1.1) brings
considerable additional difficulties for establishing the lower bounds of Rx(ĝ) − R∗

x . Indeed,
for any θ ∈ �(λ,σ,�), the covariance matrix of X|Y is �(θ) = A�Z|Y A	 + �W , which
cannot be chosen as a diagonal matrix to simplify the analysis as done by [20]. Furthermore,
to derive the term σ 4p�2/(λ2n) in the lower bound for quantifying the error of estimating
the column space of A, we need to carefully choose the subset of �(λ,σ,�) via the hyper-
cube construction ([50], Lemma A.5) that has been used for proving the optimal rates of the
sparse PCA. Since the statistical distance (such as KL-divergence) between any two of thus
constructed hypotheses of �(λ,σ,�) is diverging whenever p/n → ∞ (see Lemma B.4 in
Appendix B), a different analysis than the standard one (for instance, in [4]) has to be used to
allow p > n and a large amount of work is devoted to provide a meaningful and sharp lower
bound that is valid for both p < n and p > n (see Lemma B.5 for details).
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3. Methodology. In this section, we describe our classification method based on n i.i.d.
observations from models (1.1) and (1.3). We first state a general method in Section 3.1
which is motivated by the optimal oracle rule g∗

z in (1.6) and (1.7), and is based on prediction
of the unobserved factors Z1, . . . ,Zn,Z in the features X1, . . . ,Xn,X by projections. In
Section 3.2, we state our proposed methods via principal component projections as well as
a cross-fitting strategy for high-dimensional scenarios. Selection of the number of principal
components is further discussed in Section 3.3.

3.1. General approach. The first idea is to change the classification problem into a re-
gression problem, at the population level. The close relationship between LDA and regres-
sion has been observed before; see, for instance, Section 8.3.3 in [33, 35] and [40]. Let
�Z = Cov(Z) be the unconditional covariance matrix of Z. Define

β = π0π1�
−1
Z (α1 − α0),

β0 = −1

2
(α0 + α1)

	β + π0π1
[
1 − (α1 − α0)

	β
]
log

π1

π0
.

(3.1)

PROPOSITION 4. Let η,η0 and β,β0 be defined in (1.7) and (3.1), respectively. Under
model (1.3) and assumption (iv), we have

z	η + η0 ≥ 0 ⇐⇒ z	β + β0 ≥ 0.

Furthermore,

β = �−1
Z Cov(Z,Y ).

PROOF. The proof of Proposition 4 can be found in Appendix A.2. �

REMARK 6. In fact, our proof shows that the first statement of Proposition 4 still holds
if we replace π0π1 in the definition of β by any positive value coupled with corresponding
modification of β0 (see Lemma A.1 in Appendix A.2 for the precise statement). The advan-
tage of using π0π1 in (3.1) is that β can be obtained by simply regressing Y on Z. For this
choice of β , our proof also reveals

z	η + η0 = 1

π0π1[1 − (α1 − α0)	β]
(
z	β + β0

) = 1 + π0π1�
2

π0π1

(
z	β + β0

)
,(3.2)

a key identity that will used later in Section 8 to extend our approach for handling multiclass
classification problems.

Proposition 4 implies the equivalence between the linear rules g∗
z (z) in (1.7) and

gz(z) := 1
{
z	β + β0 ≥ 0

}
(3.3)

based on, respectively, the half-spaces {z|z	η + η0 ≥ 0} and {z|z	β + β0 ≥ 0}. According
to Proposition 4, if Z = (Z	

1 , . . . ,Z	
n )	 ∈ R

n×K were observed, it is natural to use the least
squares estimator (Z	�nZ)+Z	�nY to estimate β . Recall that �n = In − n−11n1	

n is the
centering matrix and M+ is the Moore–Penrose inverse of any matrix M . Since in practice
only X = (X	

1 , . . . ,X	
n )	 ∈ R

n×p is observed, we propose to estimate z	β by

x	θ̂ := x	B(�nXB)+Y = x	B
(
B	X	�nXB

)+
B	X	�nY(3.4)
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with x ∈R
p being one realization of X from model (1.1). Here, in principal B ∈ R

p×q could
be any matrix with any q ∈ {1, . . . , p}. Furthermore, we estimate β0 by

β̂0 := −1

2
(μ̂0 + μ̂1)

	θ̂ + π̂0π̂1
[
1 − (μ̂1 − μ̂0)

	θ̂
]
log

π̂1

π̂0
(3.5)

based on standard nonparametric estimates

nk =
n∑

i=1

1{Yi = k}, π̂k = nk

n
, μ̂k = 1

nk

n∑
i=1

Xi1{Yi = k}, k ∈ {0,1}.(3.6)

Our final classifier is

ĝx(x) := 1
{
x	θ̂ + β̂0 ≥ 0

}
.(3.7)

Notice that θ̂ , β̂0 and ĝx(x) all depend on B implicitly.

3.2. Principal component (PC) based classifiers. Though the classifier in (3.7) can use
any matrix B , in this paper we mainly consider the choice B = U r ∈ R

p×r , for some r ∈
{1, . . . , p}, where the matrix U r consists of the first r right-singular vectors of �nX, the
centered X. In this case, x	θ̂ is the famous principal component regression (PCR) predictor
by using r principal components [34]. The optimal choice of r would be K , the number
of latent factors when it is known in advance. We analyze the classifier with B = UK in
Theorem 9 of Section 5.2.

Suggested by our theory, in the high-dimensional setting p > n, performance of the PC-
based classifiers can be improved either by using an additional data set or via data-splitting.

In several applications, such as semisupervised learning, researchers also have access to
an additional set of unlabeled data. Given an additional data matrix X̃ ∈ R

n′×p with i.i.d.
(unlabeled) observations from model (1.1) with n′ � n and independent of X in (3.4), it is
often beneficial to use B = ŨK based on the first K right singular vectors of �n′X̃. This
classifier is analyzed in Theorem 10 of Section 5.2.

When additional data is not available, we advocate to use a sample splitting technique
called k-fold cross-fitting [21]. First, we randomly split the data into k folds, and for each
fold, we use it as X̃ to construct Ũ r and use the remaining data as X and Y to obtain θ̂ and
β̂0 from (3.4) and (3.5), respectively. In the end, the final classifier is constructed via (3.7)
based on the averaged k pairs of θ̂ and β̂0. Theoretically, it is straightforward to show that
the resulting classifiers share the same conclusions as Theorem 10 for k =O(1). Empirically,
since this cross-fitting strategy ultimately uses all data points, it might mitigate the efficiency
loss due to sample splitting. Standard choices of k include k = 2 and k = 5 while the latter is
reported to have smaller standard errors [21].

3.3. Estimation of the number of retained PCs. When K is unknown, we propose to
estimate it by

K̂ := arg min
k∈{0,1,...,K̄}

∑
j>k σ 2

j

np − c0(n + p)k
, with K̄ :=

⌊
ν

2c0(1 + ν)
(n ∧ p)

⌋
,(3.8)

for absolute constants c0 and ν > 1. The latter is introduced to avoid division by zero and
can be set arbitrarily large. The choice of c0 = 2.1 is used in all of our simulations and has
overall good performance. The sum

∑
j σjujv

	
j , with nonincreasing σj , is the singular-value-

decomposition (SVD) of �nX or �nX̃.
Criterion (3.8) was originally proposed in [16] for selecting the rank of the coefficient

of a multivariate response regression model and is further adopted by [13] for selecting the
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number of retained principal components under the framework of factor regression models.
It also has close connection to the well-known elbow method, but is more practical in terms
of parameter tuning. The main computation of solving (3.8) is to compute the SVD of �nX
once. In Section 5.1, we show the consistency of K̂ , ensuring that the classifier with B = U K̂

shares the same theoretical properties as the one with B = UK .

4. A general strategy of bounding the excess classification error. In this section, we
establish a general theory for analyzing the excess risk of the classifier ĝx in (3.7) that uses
any matrix B for the estimate θ̂ in (3.4). The main purpose is to establish high-level conditions
that yield a consistent classifier constructed in Section 3 in the sense

Rx(ĝx) := P
{
ĝx(X) �= Y |D} → R∗

z , in probability, as n → ∞
and further to provide its rate of convergence. We recall that P is taken with respect to (X,Y ).

For convenience, we introduce the notation

Ĝx(x) := x	θ̂ + β̂0, Gz(z) := z	β + β0(4.1)

such that ĝx(x) = 1{Ĝx(x) ≥ 0} from (3.7) and, using the equivalence in Proposition 4,

g∗
z (z) = 1

{
Gz(z) ≥ 0

}
.(4.2)

Recall that ĝx depends on the choice of B via θ̂ and β̂0.
The following theorem provides a general bound for the excess risk of ĝx that uses any B

in (3.4). Its proof can be found in Appendix A.3.1.

THEOREM 5. Under model (1.1), assume (i)–(iv). For all t > 0, we have

Rx(ĝx) − R∗
z ≤ P

{∣∣Ĝx(X) − Gz(Z)
∣∣ > t |D} + c∗tP (t),(4.3)

where c∗ = �2 + (π0π1)
−1 and

P(t) = π0
[
�(R) − �(R − tc∗/�)

] + π1
[
�(L + tc∗/�) − �(L)

]
(4.4)

with

L = −�

2
− log π1

π0

�
, R = �

2
− log π1

π0

�
.

REMARK 7. The quantity P(t) in (4.4) is in fact

π0P
{−t < Gz(Z) < 0|Y = 0

} + π1P
{
0 < Gz(Z) < t |Y = 1

}
,

which describes the probabilistic behavior of the margin of the hyperplane {z : Gz(z) = 0}
that separates the distributions Z|Y = 0 and Z|Y = 1. Conditions that control the margin
between Z|Y = 0 and Z|Y = 1 are more suitable in our current setting and have a different
perspective than the usual margin condition in [49] that controls the probability P{|η(Z) −
1/2| < δ} for any 0 ≤ δ ≤ 1/2, with η(z) := P(Y = 1|Z = z).

REMARK 8 (Extension to nonlinear classifiers). The proof of Theorem 5 also allows us
to analyze more complex classifiers. Indeed, let �z(z) be the logarithm of the ratio between
P(Z = z,Y = 1) and P(Z = z,Y = 0), and let �̂x(x) be an arbitrary estimate of �z(z).
We can easily derive from our proof of Theorem 5 the following excess risk bound for the
classifier ĝx(x) = 1{�̂x(x) ≥ 0}:

Rx(ĝx) − R∗
z ≤ P

{∣∣�̂x(X) − �z(Z)
∣∣ > t |D}

(4.5)
+ tπ0P

{−t < �z(Z) < 0|Y = 0
} + tπ1P

{
0 < �z(Z) < t |Y = 1

}
,
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for any t > 0. Therefore, bound in (4.5) can be used as an initial step for analyzing any
classification problems, particularly suitable for situations where conditional distributions
Z|Y are specified. The remaining difficulty is to find a good estimator �̂x(x) and to con-
trol |�̂x(X) − �z(Z)|. For instance, when Z|Y = k, for k ∈ {0,1}, have Gaussian distribu-
tions with different means and different covariances, the Bayes rule of using Z (equivalently,
�z(Z)) becomes quadratic, leading to an estimator �̂x(x) that is quadratic in x as well. Since
both the procedure and the analysis are different, we will study this setting in a separate paper.

From (4.1), we find the identity

Ĝx(X) − Gz(Z) = Z	(
A	θ̂ − β

) + W	θ̂ + β̂0 − β0.(4.6)

To establish its deviation inequalities, our analysis uses the following distributional assump-
tion on W from (1.1). We assume that:

(v) W = �
1/2
W W̃ and W̃ is a mean-zero γ -sub-Gaussian random vector with E[W̃W̃	] =

Ip and E[exp(u	W̃ )] ≤ exp(γ 2/2), for all ‖u‖2 = 1.

We stress that the distributions of X|Y need not be Gaussian. In addition, we require that

(vi) π0 and π1 are fixed and bounded from below by some constant c ∈ (0,1/2].
The following proposition states a deviation inequality of |Ĝx(X) − Gz(Z)|, which holds

with high probability under the law P
D . It depends on three quantities:

r̂1 := ∥∥�1/2
Z

(
A	θ̂ − β

)∥∥
2, r̂2 := ‖θ̂‖2, r̂3 := 1√

n

∥∥W (PB − PA)
∥∥

op.(4.7)

For any matrix M , let PM denote the projection onto its column space. From (4.6), appearance
of the first two quantities in (4.7) is natural since Z and W are independent of θ̂ and β̂0, and
Z and W are sub-Gaussian random vectors under the distributional assumptions (iv) and (v).
The third quantity ‖W (PB − PA)‖op in (4.7) originates from β̂0 − β0 and reflects the benefit
of using a matrix B that estimates the column space of A well.

PROPOSITION 6. Under model (1.1), assume (i)–(vi) andK logn ≤ cn for some constant
c > 0. For any a ≥ 1, we have

P
D{

P
{∣∣Ĝx(X) − Gz(Z)

∣∣ ≥ ω̂n(a)|D}
� n−a} = 1 −O

(
n−1)

.(4.8)

Here, for some constant C > 0 depending on γ only,

ω̂n(a) = C

{√
a logn

(̂
r1 + ‖�W‖1/2

op r̂2
) + r̂2r̂3 +

√
logn

n

}
.(4.9)

PROOF. See Appendix A.3.2. �

Proposition 6 implies that we need to control ω̂n(a) whose randomness solely depends on
D. In view of Theorem 5 and Proposition 6, we have the following result.

THEOREM 7. Under model (1.1), assume (i)–(vi) and K logn ≤ cn for some constant
c > 0. For any a ≥ 1 and any sequence ωn > 0, on the event {ω̂n(a) ≤ ωn}, the following
holds with probability 1 −O(n−1) under the law P

D :

Rx(ĝx) − R∗
z � n−a +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω2

n if � � 1,

ω2
n exp

{−[
cπ + o(1)

]
�2}

if � → ∞ and ωn = o(1),

ω2
n exp

{−[
c′ + o(1)

]
/�2}

if � → 0, π0 �= π1 and ωn = o(1),

ωn min{1,ωn/�} if � → 0 and π0 = π1.

Here, cπ and c′ are some absolute positive constants and cπ = 1/8 if π0 = π1.
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Hence, it remains to find a deterministic sequence ωn → 0 such that PD{ω̂n(a) ≤ ωn} → 1
as n → ∞. Further, in view of (4.9), all we need is to find deterministic upper bounds of
r̂1, r̂2 and r̂3. In such way, Theorem 7 serves as a general tool for analyzing the excess risk of
the classifier constructed via (3.4)–(3.7) by using any matrix B .

Later in Section 5, we apply Theorem 7 to analyze several classifiers, including the prin-
cipal components based classifier by choosing B = UK and B = ŨK as well as their coun-
terparts based on the data-dependent choice K̂ . For these PC-based classifiers, we will find
a sequence ωn that closely matches the sequence ω∗

n in (2.5) under suitable conditions, up to
log(n), for our procedure. In view of Theorem 3, this rate turns out to be minimax-optimal
over a subset of the parameter space considered in Theorem 3, up to log(n) factors.

Although not pursued in this paper, it is worth mentioning some other reasonable choices
of B including, for instance, the identity matrix Ip , which leads to the generalized least
squares based classifier [14], the estimator of A in [12], the projection matrix from supervised
PCA [7, 9] and the projection matrix obtained via partial least squares regression [8, 42].

REMARK 9. We observe the same phase transition in Theorem 7 for � � 1 and � → ∞
as discussed in Remark 3. To the best of our knowledge, upper bounds of the excess risk in
the regime � = o(1) are not known in the existing literature. Our result in this regime relies
on a careful analysis, which does not require any condition on �, in contrast to the existing
analysis of the classical high-dimensional LDA problems. For instance, under model (1.5),
[19] assumes �2

x := (μ1 − μ0)
	�−1(μ1 − μ0) � 1 and �2

x(s logn/n) = o(1) to derive the
convergence rate of their estimator of �−1(μ1 −μ0) with s = ‖�−1(μ1 −μ0)‖0. As a result,
their results of excess misclassification risk only hold for �x � 1.

5. Rates of convergence of the PC-based classifier. We apply our general theory in
Section 4 to several classifiers corresponding to different choices of B = UK , B = U K̂ ,
B = ŨK and B = Ũ K̂ in (3.4). Since our analysis is beyond the parameter space �(λ,σ,�)

in (2.3), we first generalize the signal-to-noise ratio λ/σ 2 of predicting Z from X given Y by
introducing

ξ∗ := λK(A�Z|Y A	)

λ1(�W)
.(5.1)

We also need the related quantity

ξ := λK(A�Z|Y A	)

δW

,(5.2)

that characterizes the signal-to-noise ratio of predicting Z from X = ZA	 +W . Indeed, note
that we replaced λ1(�W) in (5.1) by

δW = λ1(�W) + tr(�W)

n
(5.3)

and the largest eigenvalue of the random matrix W	W/n is of order OP(δW ) under assump-
tion (v) (see, for instance, [13], Lemma 22).

5.1. Consistent estimation of the latent dimension K . Since in practice the true K is
often unknown, we analyze the estimated rank K̂ selected from (3.8).

Consistency of K̂ under the factor model (1.1) when Z is a zero-mean sub-Gaussian ran-
dom vector has been established in [13], Proposition 8. Here, we establish such property
of K̂ under (1.1) where Z follows a mixture of two Gaussian distributions. Let re(�W) =
tr(�W)/λ1(�W) denote the effective rank of �W .
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THEOREM 8. Let K̂ be defined in (3.8) for some absolute constant c0 > 0. Under model
(1.1), assume (i)–(vi), and, in addition,

K ≤ K̄, ξ ≥ C and re(�W) ≥ C ′(n ∧ p)

for some constants C,C′ > 0. Then

P
D{K̂ = K} = 1 −O

(
n−1)

.

PROOF. The proof is deferred to Appendix A.4.1. �

Theorem 8 implies that the classifier that uses B = U K̂ (B = Ũ K̂ ) has the same excess
risk bound as that uses B = UK (B = ŨK ). For this reason, we restrict our analysis in the
remaining of this section to B based on the first K principal components of U and Ũ .

The condition K ≤ K̄ holds, for instance, if K ≤ c′(n ∧ p) with c′ ≤ ν/(2c0(1 + ν)).
Condition re(�W) ≥ C ′(n ∧ p) holds, for instance, in the commonly considered setting

0 < c ≤ λp(�W) ≤ λ1(�W) ≤ C < ∞
while being more general.

The condition that ξ ≥ C is also needed in our subsequent derivation of the rates of the
excess risks for the classifiers using B = UK and B = ŨK . This essentially requires ξ∗ ≥ C

in the low-dimensional settings, and ξ∗ ≥ C(p/n) in the high-dimensional settings (see Re-
mark 12 below for details). Since the minimax lower bounds for the excess risk in Theorem 3
above contain the term min(1,�)/ξ∗, it is imperative that the signal-to-noise ratio ξ∗ is large
to guarantee good performance of the classifier, irrespective of the estimation of the latent
dimension K .

We investigate in Appendix E.1 the consequences of inconsistent estimates K̂ and found
that our proposed classifiers are robust against both underestimation and overestimation. This
is corroborated in our follow-up work [14], that proves that the classifier using θ̂ = (�nX)+Y

based on B = Ip (in other words, K̂ = p), often is minimax optimal and performing slightly
inferior to B = UK in finite sample simulations.

5.2. PC-based LDA by using the true dimension K . The following theorem states the
excess risk bounds of ĝx that uses B = UK . Its proof can be found in Appendix A.4.2.
Denote by κ the condition number λ1(A�ZA	)/λK(A�ZA	) of the matrix A�ZA	.

THEOREM 9. Under model (1.1), assume (i)–(vi). If K logn ≤ cn and ξ ≥ Cκ2 for some
constants c,C > 0, then for any a ≥ 1 and

ωn(a) =
(√

K logn

n
+ min{1,�}

√
1

ξ∗ +
√

κ

ξ2

)√
a logn,(5.4)

we have PD{ω̂n(a) � ωn(a)} = 1 − O(n−1). Hence, with this probability, the conclusion of
Theorem 7 holds for the classifier that uses B = UK for ωn(a) in (5.4).

Theorem 9 requires ξ ≥ Cκ2, which can be relaxed to ξ ≥ C, as shown in the proof (see
Remark 1 in Appendix A.4). However, the stronger condition can lead to a faster rate when
one has additional data set to construct B = ŨK , as stated in the theorem below. Its proof can
be found in Appendix A.4.4.
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THEOREM 10. Under the same conditions of Theorem 9, for any a > 0 and

ωn(a) =
(√

K logn

n
+ min{1,�}

√
1

ξ∗
)√

a logn,(5.5)

we have PD{ω̂n(a) � ωn(a)} = 1 − O(n−1). Hence, with this probability, the conclusion of
Theorem 7 holds for the classifier that uses B = ŨK for ωn(a) in (5.5).

REMARK 10 (Polynomially fast rates). In view of Theorems 9 and 10, fast rates (of the
order O(n−a) for arbitrary a ≥ 1) are obtained for both PC-based procedures, provided that
(a) �2 � logn or (b) 1/�2 � logn and π0 �= π1.

REMARK 11 (Advantage of using an independent data set or data splitting). Compared to
(5.4) in Theorem 9, the convergence rate of the excess risk of the classifier that uses B = ŨK

does not have the third term
√

κ/ξ2. This advantage only becomes evident when p > n and
ξ∗ is not sufficiently large. We refer to Remark 12 below for detailed explanation.

To understand why using ŨK , that is independent of X, yields a smaller excess risk, recall
that the third term in (5.4) originates from predicting Z from X and its derivation involves
controlling ‖W (PUK

− PA)‖op. Since UK is constructed from X, hence also depends on W ,
the dependence between W and UK renders a slow rate for ‖W (PUK

− PA)‖op. The fact
that auxiliary data can bring improvements (in terms of either smaller prediction/estimation
error or weaker conditions) is a phenomenon that has been observed in other problems, such
as the problem of estimating the optimal instrument in sparse high-dimensional instrumental
variable model [10] and the problem of making inference on a low-dimensional parameter in
the presence of high-dimensional nuisance parameters [21].

REMARK 12 (Simplified rates within �(λ,σ,�)). To obtain more insight from the re-
sults of Theorems 9 and 10, consider θ ∈ �(λ,σ,�) in (2.3) with � � 1 such that π0 = π1,
1/ξ∗ � σ 2/λ, 1/ξ � (σ 2/λ)(1 + p/n) and κ � 1. In this case, combining Theorems 7, 9 and
10 reveals that with probability 1 −O(n−1),

Rx(ĝx) − R∗
z �

[
K logn

n
+ σ 2

λ
+

(
p

n

σ 2

λ

)2]
logn, if B = UK ;(5.6)

Rx(ĝx) − R∗
z �

[
K logn

n
+ σ 2

λ

]
logn, if B = ŨK.(5.7)

We have the following conclusions.

(1) If p < n, the two rates above coincide and equal (5.7), whence consistency of both PC-
based classifiers requires that K log2 n/n → 0 and σ 2 logn/λ → 0.

(2) If p > n, it depends on the signal-to-noise ratio (SNR) λ/σ 2 whether or not consistency
of the classifier with B = UK requires an additional condition.
(a) If the SNR is large such that

λ

σ 2 � min
{(

p

n

)2
,

p√
nK logn

}
,(5.8)

the two rates in (5.6) and (5.7) also coincide and equal (5.7). In this case, there is no
apparent benefit of using an auxiliary data set.

(b) For relatively smaller values of SNR that fail (5.8), the effect of using B = ŨK based
on an independent data set X̃ is real as evidenced in Figure 1 where we keep λ/σ 2,
n and K fixed but let p grow.
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FIG. 1. Illustration of the advantage of constructing ŨK from an independent data set: PCLDA represents the
PC-based classifier based on B = UK while PCLDA-split uses B = ŨK that is constructed from an independent
X̃. Oracle-LS is the oracle benchmark that uses both Z and Z while Bayes represents the risk of using the oracle
Bayes rule. We fix n = 100 and K = 5 and keep λ/σ 2 fixed, while we let p grow. We refer to Section 6 for a
detailed data generating mechanism.

(c) It is worth mentioning that if the SNR is sufficiently large such that

λ

σ 2 � max
{(

p

n

)2
,

p√
nK logn

}
,

both errors due to not observing Z and estimation of the column space of the matrix
A are negligible compared to the parametric rate K/n, to wit, both rates in (5.6) and
(5.7) reduce to K log2 n/n.

Conditions λ� p and σ 2 =O(1) are common in the analysis of factor models with a diverg-
ing number of features [5, 28, 45]. For instance, λ � p holds when eigenvalues of �Z|Y are
bounded and a fixed proportion of rows of A are i.i.d. realizations of a sub-Gaussian random
vector with covariance matrix having bounded eigenvalues as well. In this case, the bounds
in (5.6) and (5.7) reduce to

K log2 n

n
+ logn

p
,

which decreases as p increases. Nevertheless, consistency of the PC-based classifiers only
requires λ/{σ 2 logn(1 + p/n)} → ∞ for B = UK and λ/(σ 2 logn) → ∞ for B = ŨK ,
which are both much milder conditions.

5.3. Optimality of the PC-based LDA by sample splitting. We now show that the PC-
based LDA by sample splitting achieves the minimax lower bounds in Theorem 3, up to
multiplicative logarithmic factors of n. Recalling that (2.3), for any θ ∈ �(λ,σ,�), one has
π0 = π1, 1/ξ∗ � σ 2/λ, 1/ξ � (σ 2/λ)(1 + p/n) and 1 � κ � 1 + �2. Based on Theorem 10,
we have the following corollary for the classifier that uses B = ŨK . Its proof can be found
in Appendix A.4.5. We use the notation � for inequalities that hold up to a multiplicative
logarithmic factor of n. Recall ω∗

n from (2.5).
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COROLLARY 11. Under model (1.1), assume (i)–(v), K logn ≤ cn, κ2σ 2/λ ≤ c′ and
κ2σ 2p/(λn) ≤ c′′ for some constants c, c′, c′′ > 0. For any θ ∈ �(λ,σ,�), with probability
1 −O(n−1), the classifier that uses B = ŨK satisfies the following statements:

(1) If � � 1, then

Rx(ĝx) − R∗
z �

(
ω∗

n

)2
.

(2) If � → ∞, and additionally, (logn + �2)K logn/n → 0 and (logn + �2)σ 2/λ → 0 as
n → ∞, then

Rx(ĝx) − R∗
z �

(
ω∗

n

)2 exp
{
−

[
1

8
+ o(1)

]
�2

}
.

(3) If � → 0 as n → ∞, then

Rx(ĝx) − R∗
z � min

{
ω∗

n

�
,1

}
ω∗

n.

In view of Theorem 3 and Corollary 11, we conclude the optimality of PC-based procedure
that uses B = ŨK over �(λ,σ,�). For � → ∞, if conditions in (2) are not met such as
�2 � n/K or �2 � λ/σ 2, the PC-based procedure still has n−a convergence rate of its excess
risk, for arbitrary large a ≥ 1, as commented in Remark 10.

Regarding the PC-based classifier that does not resort to sample splitting, according to
Theorems 3 and 9, its excess risk also achieves optimal rates of convergence when λ/σ 2 is
large in the precise sense that

λ

σ 2 � min
{

1

min{1,�}
(

p

n

)2
,

p√
nK logn

}
.

6. Simulation study. We conduct various simulation studies in this section to compare
the performance of our proposed algorithm with other competitors. For our proposed al-
gorithm, we call it PCLDA standing for the Principal Components based LDA. The name
PCLDA-K is reserved when the true K is used as input. When K is estimated by K̂ , we use
PCLDA-K̂ instead. We call PCLDA-CF-k the PCLDA with k-fold cross-fitting. We consider
k = 5 in our simulation as suggested by [21]. To set a benchmark for PCLDA-CF-k, we use
PCLDA-split that uses an independent copy of X to compute ŨK . On the other hand, we
compare with the nearest shrunken centroids classifier (PAMR) [48], the �1-penalized linear
discriminant (PenalizedLDA) [52] and the direct sparse discriminant analysis (DSDA) [40].
1 Finally, we choose the performance of the oracle procedure (Oracle-LS) as a benchmark in
which Oracle-LS uses both Z and Z to estimate β , β0 and the classification rule gz in (3.3).

We generate the data as follows. First, we set π0 = π1 = 0.5, α0 = 0K and α1 = 1K

√
η/K .

The parameter η controls the signal strength � in (2.2). We generate �Z|Y by independently
sampling its diagonal elements [�Z|Y ]ii from Unif(1,3) and set its off-diagonal elements as

[�Z|Y ]ij =
√

[�Z|Y ]ii[�Z|Y ]jj (−1)i+j (0.5)|i−j | for each i �= j .

The covariance matrix �W is generated in the same way, except we set diag(�W) = 1p . The
rows of W ∈ R

n×p are generated independently from Np(0,�W). Entries of A are generated
independently from N(0,0.32). The training data Z, X and Y are generated according to
models (1.1) and (1.3). In the same way, we generate 100 data points that serve as test data
for calculating the (out-of-sample) misclassification error for each algorithm.

1PAMR, PenalizedLDA and DSDA are implemented in the R packages pamr, penalizedLDA and TULIP, respec-
tively.
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FIG. 2. The averaged misclassification errors of each algorithm. We vary n in the left panel while we vary � in
the right panel.

In the sequel, we vary the dimensions n and p as well as the signal strength � in (2.2),
one at a time. For each setting, we repeat the entire procedure 100 times and averaged mis-
classification errors for each algorithm are reported.

6.1. Vary the sample size n. We set η = 5, K = 10, p = 300 and vary n within
{50,100,300,500,700}. The left-panel in Figure 2 shows the averaged misclassification er-
ror (in percentage) of each algorithm on the test data sets. Since K̂ consistently estimates K ,
we only report the performance of PCLDA-K . We also exclude the performance of PCLDA-
split and PCLDA-CF-5 since they all have similar performance as PCLDA-K .2 The blue
line represents the optimal Bayes error. All algorithms perform better as the sample size n

increases. As expected, Oracle-LS is the best because it uses the true Z and Z. Among the
other algorithms, PCLDA-K has the closest performance to Oracle-LS in all settings. The gap
between PCLDA-K and Oracle-LS does not close as n increases. According to Theorem 9,
this is because such a gap mainly depends on 1/ξ , which does not vary with n.

6.2. Vary the signal strength �2. We fix K = 5, n = 100, p = 300 and vary η within
{2,4,6,8,10}. As a consequence, the signal strength �2 varies within {3.1,6.3,9.4,12.6,

15.7}. The right panel of Figure 2 depicts the averaged misclassification errors of each algo-
rithm. For the same reasoning as before, we exclude PCLDA-K̂ , PCLDA-CF-5 and PCLDA-
split. It is evident that all algorithms have better performance as the signal strength � in-
creases. Among them, PCLDA-K has the closest performance to Oracle-LS and Bayes in all
settings.

6.3. Vary the feature dimension p. We examine the performance of each algorithm when
the feature dimension p varies across a wide range. Specifically, we fix K = 5, η = 5, n = 100
and vary p within {100,300,500,700,900}. Figure 3 shows the misclassification errors of
each algorithm. The performance of PCLDA-K improves and gets closer to that of Oracle-LS
as p increases, in line with Theorem 9. The gap between Oracle-LS and Bayes is due to the
fact that both n and � are held fixed.

2This is as expected since our data generating mechanism ensures ξ∗ � p in which case PCLDA-split has no
clear advantage comparing to PCLDA-K (see discussions after Theorem 10).
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FIG. 3. The averaged misclassification errors of each algorithm for various choices of p.

7. Real data analysis. To further illustrate the effectiveness of our proposed method,
we analyze three popular gene expression data sets (leukemia data, colon data and lung can-
cer data),3 which have been widely used to test classification methods; see, for instance, [2,
25, 42, 44] and also the more recent literature, [19, 27, 40]. These data sets contain thou-
sands or even over ten-thousand features with around one hundred samples (see Table 1). In
such challenging settings, LDA-based classifiers that are designed for high-dimensional data
not only are easy to interpret but also have competing and even superior performance than
other highly complex classifiers such as classifiers based on kernel support vector machines,
random forests and boosting [25, 40].

Since the goal is to predict a dichotomous response, for instance, whether one sample is
a tumor or normal tissue, we compare the classification performance of each algorithm. For
all three data sets, the features are standardized to zero mean and unit standard deviation. For
each data set, we randomly split the data, within each category, into 70% training set and
30% test set. Different classifiers are fitted on the training set and their misclassification er-
rors are computed on the test set. This whole procedure is repeated 100 times. The averaged
misclassification errors (in percentage) as well as their standard deviations of each algorithm
are reported in Table 2. Our proposed PC-based LDA classifiers have the smallest misclassifi-
cation errors over all data sets. Although PCLDA-CF-5 only has the second best performance
in colon and lung cancer data sets, its performance is very close to that of PCLDA-K̂ .

TABLE 1
Summary of three data sets

Data name p n n0 (category) n1 (category)

Leukemia 7129 72 47 (acute lymphoblastic leukemia) 25 (acute myeloid leukemia)
Colon 2000 62 22 (normal) 40 (tumor)
Lung cancer 12533 181 150 (adenocarcinoma) 31 (malignant pleural mesothelioma)

3Leukemia data is available at www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. Colon data is available from the
R package plsgenomics. Lung cancer data is available at www.chestsurg.org.

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
http://www.chestsurg.org
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TABLE 2
The averaged misclassification errors (in percentage). The numbers in parentheses are the standard deviations

over 100 repetitions

PCLDA-K̂ PCLDA-CF-5 DSDA PenalizedLDA PAMR

Leukemia 3.57 (0.036) 3.04 (0.032) 5.52 (0.044) 3.91 (0.043) 4.61 (0.039)
Colon 16.37 (0.077) 18.11 (0.082) 18.11 (0.07) 33.95 (0.086) 19.00 (0.089)
Lung cancer 0.55 (0.008) 0.60 (0.009) 1.69 (0.017) 1.80 (0.026) 0.91 (0.011)

8. Extension to multiclass classification. In this section, we discuss how to extend
the previously discussed procedure to multiclass classification problems in which Y has L

classes, L := {0,1, . . . ,L − 1}, for some positive integer L ≥ 2, and

Z|Y = k ∼ NK(αk,�Z|Y ), P(Y = k) = πk, k ∈ L.(8.1)

In particular, the covariance matrices for the L classes are the same.
For a new point z ∈ R

K , the oracle Bayes rule assigns it to k ∈ L if and only if

k = arg max
�∈L

P(Y = �|Z = z) = arg max
�∈L

log
P(Z = z,Y = �)

P(Z = z,Y = 0)

= arg max
�∈L

(
z	η(�) + η

(�)
0

) := arg max
�∈L

G(�|0)
z (z),

(8.2)

where

η(�) = �−1
Z|Y (α� − α0), η

(�)
0 = −1

2
(α0 + α�)

	η(�) + log
π�

π0
, ∀� ∈ L.(8.3)

Notice that G
(0|0)
z (z) = 0 and, for any � ∈ L \ {0}, the proof of (3.2) reveals that

G(�|0)
z (z) = z	η(�) + η

(�)
0 = 1

π̄0π̄�[1 − (α� − α0)	β(�)]
(
z	β(�) + β

(�)
0

)
(8.4)

with π̄0 = π0/(π0 + π�), π̄� = π�/(π0 + π�),

β(�) = [
Cov

(
Z|Y ∈ {0, �})]−1 Cov

(
Z,1{Y = �}|Y ∈ {0, �}),

β
(�)
0 = −1

2
(α0 + α�)

	β(�) + π̄0π̄�

(
1 − (α� − α0)

	β(�)) log
π̄�

π̄0
.

(8.5)

In view of (8.2) and (8.4), for a new point x ∈ R
p and any matrix B ∈ R

p×q with q ∈ [p], we
propose the following multiclass classifier

ĝ∗
x(x) = arg max

�∈L
Ĝ(�|0)

x (x),(8.6)

where Ĝ
(0|0)
x (x) = 0 and, for any � ∈ L \ {0},

Ĝ(�|0)
x (x) = 1

π̃0π̃�[1 − (μ̂� − μ̂0)	θ̂ (�)]
(
x	θ̂ (�) + β̂

(�)
0

)
(8.7)

with

π̃� = n�

n0 + n�

,

θ̂ (�) = B
(
�(n0+n�)X

(�)B
)+

Y (�),

β̂
(�)
0 = −1

2
(μ̂0 + μ̂�)

	θ̂ (�) + π̃0π̃�

(
1 − (μ̂� − μ̂0)

	θ̂ (�)) log
π̃�

π̃0
.
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Here, n� and μ̂� are the nonparametric estimates as (3.6) and both the submatrix X(�) ∈
R

(n0+n�)×p of X and the response vector Y (�) = {0,1}(n0+n�) correspond to samples with
label in {0, �}. Note that Y (�) is encoded as 1 for observations with label � and 0 otherwise.

To analyze the classifier ĝ∗
x in (8.6), its excess risk depends on

r̂1 = max
�∈L\{0}

∥∥[
�

(�)
Z

]1/2(
A	θ̂ (�) − β(�))∥∥

2, r̂2 = max
�∈L\{0}

∥∥θ̂ (�)
∥∥

2(8.8)

as well as r̂3 as defined in (4.7). Here, �
(�)
Z := Cov(Z|Y ∈ {0, �}). Analogous to (4.9), for

some constant C = C(γ ) > 0, define

ω̂n = C
√

logn

(
r̂1 + ‖�W‖1/2

op r̂2 + r̂2r̂3 +
√

L

n

)
.(8.9)

For ease of presentation, we also assume there exists some sequence � > 0 and some absolute
constants C > c > 0 such that

c� ≤ min
k,�∈L,k �=�

‖α� − αk‖�Z|Y ≤ max
k,�∈L,k �=�

‖α� − αk‖�Z|Y ≤ C�.(8.10)

The following theorem extends Theorem 7 to multiclass classification by establishing rates
of convergence of the excess risk of ĝ∗

x in (8.6) for a general B ∈ R
p×q .

THEOREM 12. Under model (1.1) and (8.1), assume (i)–(iii) and (8.10). Further, assume
c/L ≤ mink∈L πk ≤ maxk∈L πk ≤ C/L and LK logn ≤ c′n for some constants c, c′,C > 0.
Then, for any sequence ωn > 0 satisfying (1 + �2)ωn = o(1) as n → ∞, on the event {ω̂n ≤
ωn}, the following holds with probability at least 1 −O(n−1) under the law P

D :

(1) If � � 1, then

Rx

(
ĝ∗

x

) − R∗
z � Lω2

n.

(2) If � → ∞, then, for some constant c′′ > 0,

Rx

(
ĝ∗

x

) − R∗
z � Lω2

n exp
{−[

c′′ + o(1)
]
�2}

(3) If � = o(1), then

Rx

(
ĝ∗

x

) − R∗
z � Lωn min

{
ωn

�
,1

}
.

PROOF. The proof can be found in Appendix A.5. �

Condition (8.10) is only assumed to simplify the presentation. It is straightforward to de-
rive results based on our analysis when the separation ‖α� − αk‖�Z|Y is not of the same order
for all �, k ∈ L. For the third case, � = o(1), our proof also allows to establish different
convergence rates depending on whether or not πk and π� are distinct for each k �= �, anal-
ogous to the last two cases of Theorem 7. However, we opt for the current presentation for
succinctness.

Theorem 12 immediately leads to the following corollary for the PC-based classifiers that
use B = UK and B = ŨK . Furthermore, Theorem 8 also ensures that similar guarantees can
be obtained for the classifiers in (8.6) that use B = U K̂ and B = Ũ K̃ .

COROLLARY 13. Assume the conditions in Theorem 12 and ξ ≥ Cκ2 for some constant
C > 0. Then the conclusion of Theorem 12 holds for the classifier in (8.6) that uses:
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(1) B = UK with

ωn =
(√

LK logn

n
+ min{1,�}

√
1

ξ∗ +
√

κ

ξ2

)√
logn,

(2) B = ŨK with

ωn =
(√

LK logn

n
+ min{1,�}

√
1

ξ∗
)√

logn.

PROOF. See Appendix A.5.3. �

REMARK 13. Multiclass classification problems based on discriminant analysis have
been studied, for instance, by [20, 23, 39, 52]. Theoretical guarantees are only provided in
[39] and [20] under the classical LDA setting for moderate/large separation scenarios, �� 1,
and for fixed L, the number of classes; see also the work [1] that derives bounds for the mis-
classification error (rather than excess risk) in a set-up similar to LDA, and reports a similar
phase transition phenomenon between � � 1 and � → ∞. Our results fully characterize
dependence of the excess risk on L and also cover the weak separation case, � → 0.

REMARK 14. The classifier in (8.6) chooses Y = 0 as the baseline. In practice, we rec-
ommend taking each class as the baseline one at the time and averaging the predicted proba-
bilities. Specifically, it is easy to see that, for any baseline choice k ∈ L and for any � ∈ L,

P(Y = �|Z = z) = P(Z = z,Y = �)∑
k′∈L P(Z = z,Y = k′)

= exp{G(�|k)
z (z)}∑

k′∈L exp{G(k′|k)
z (z)}

,

where G
(�|k)
z (z) is defined analogous to (8.2) with k in lieu of 0. Therefore, for any new data

point x ∈ R
p , the averaged version of the classifier in (8.6) is

arg max
�∈L

1

L

∑
k∈L

exp{Ĝ(�|k)
x (x)}∑

k′∈L exp{Ĝ(k′|k)
x (x)}

with Ĝ
(�|k)
x (x) defined analogous to (8.7). This classifier tends to have better finite sample

performance, as revealed by the simulation study in Appendix E.3.
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SUPPLEMENTARY MATERIAL

Supplement to “Optimal discriminant analysis in high-dimensional latent factor
models” (DOI: 10.1214/23-AOS2289SUPP; .pdf). Appendices A and B contain the main
proofs for the results in Sections 2–5 and 8. Technical lemmas and auxiliary lemmas are
collected in Appendices C and D. Appendix E contains additional simulation results.

https://doi.org/10.1214/23-AOS2289SUPP


OPTIMAL DISCRIMINANT ANALYSIS 1255

REFERENCES

[1] ABRAMOVICH, F. and PENSKY, M. (2019). Classification with many classes: Challenges and pluses. J. Mul-
tivariate Anal. 174 104536. MR3995262 https://doi.org/10.1016/j.jmva.2019.104536

[2] ALON, U., BARKAI, N., NOTTERMAN, D. A., GISH, K., YBARRA, S., MACK, D. and LEVINE, A. J.
(1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon
tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96 6745–6750.

[3] ANTONIADIS, A., LAMBERT-LACROIX, S. and LEBLANC, F. (2003). Effective dimension reduction meth-
ods for tumor classification using gene expression data. Bioinformatics 19 563–570.

[4] AZIZYAN, M., SINGH, A. and WASSERMAN, L. (2013). Minimax theory for high-dimensional Gaus-
sian mixtures with sparse mean separation. In Advances in Neural Information Processing Systems
(C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Q. Weinberger, eds.) 26. Curran Asso-
ciates, Red Hook.

[5] BAI, J. and LI, K. (2012). Statistical analysis of factor models of high dimension. Ann. Statist. 40 436–465.
MR3014313 https://doi.org/10.1214/11-AOS966

[6] BAI, J. and NG, S. (2008). Forecasting economic time series using targeted predictors. J. Econometrics 146
304–317. MR2465175 https://doi.org/10.1016/j.jeconom.2008.08.010

[7] BAIR, E., HASTIE, T., PAUL, D. and TIBSHIRANI, R. (2006). Prediction by supervised prin-
cipal components. J. Amer. Statist. Assoc. 101 119–137. MR2252436 https://doi.org/10.1198/
016214505000000628

[8] BARKER, M. and RAYENS, W. (2003). Partial least squares for discrimination. J. Chemom. 17 166–173.
[9] BARSHAN, E., GHODSI, A., AZIMIFAR, Z. and JAHROMI, M. Z. (2011). Supervised principal component

analysis: Visualization, classification and regression on subspaces and submanifolds. Pattern Recognit.
44 1357–1371.

[10] BELLONI, A., CHEN, D., CHERNOZHUKOV, V. and HANSEN, C. (2012). Sparse models and methods for
optimal instruments with an application to eminent domain. Econometrica 80 2369–2429. MR3001131
https://doi.org/10.3982/ECTA9626

[11] BIAU, G., BUNEA, F. and WEGKAMP, M. H. (2005). Functional classification in Hilbert spaces. IEEE
Trans. Inf. Theory 51 2163–2172. MR2235289 https://doi.org/10.1109/TIT.2005.847705

[12] BING, X., BUNEA, F., NING, Y. and WEGKAMP, M. (2020). Adaptive estimation in structured fac-
tor models with applications to overlapping clustering. Ann. Statist. 48 2055–2081. MR4134786
https://doi.org/10.1214/19-AOS1877

[13] BING, X., BUNEA, F., STRIMAS-MACKEY, S. and WEGKAMP, M. (2021). Prediction under latent factor
regression: Adaptive PCR, interpolating predictors and beyond. J. Mach. Learn. Res. 22 Paper No.
177. MR4318533 https://doi.org/10.22405/2226-8383-2021-22-1-177-187

[14] BING, X. and WEGKAMP, M. (2022). Interpolating discriminant functions in high-dimensional Gaussian
latent mixtures. Available at arXiv:2210.14347.

[15] BING, X. and WEGKAMP, M. (2023). Supplement to “Optimal discriminant analysis in high-dimensional
latent factor models.” https://doi.org/10.1214/23-AOS2289SUPP

[16] BING, X. and WEGKAMP, M. H. (2019). Adaptive estimation of the rank of the coefficient matrix in
high-dimensional multivariate response regression models. Ann. Statist. 47 3157–3184. MR4025738
https://doi.org/10.1214/18-AOS1774

[17] BOULESTEIX, A.-L. (2004). PLS dimension reduction for classification with microarray data. Stat. Appl.
Genet. Mol. Biol. 3 Art. 33. MR2101480 https://doi.org/10.2202/1544-6115.1075

[18] CAI, T. and LIU, W. (2011). A direct estimation approach to sparse linear discriminant analysis. J. Amer.
Statist. Assoc. 106 1566–1577. MR2896857 https://doi.org/10.1198/jasa.2011.tm11199

[19] CAI, T. T. and ZHANG, L. (2019). High dimensional linear discriminant analysis: Optimality, adaptive
algorithm and missing data. J. R. Stat. Soc. Ser. B. Stat. Methodol. 81 675–705. MR3997097

[20] CAI, T. T. and ZHANG, L. (2021). A convex optimization approach to high-dimensional sparse quadratic
discriminant analysis. Ann. Statist. 49 1537–1568. MR4298872 https://doi.org/10.1214/20-aos2012

[21] CHERNOZHUKOV, V., CHETVERIKOV, D., DEMIRER, M., DUFLO, E., HANSEN, C., NEWEY, W. and
ROBINS, J. (2018). Double/debiased machine learning for treatment and structural parameters.
Econom. J. 21 C1–C68. MR3769544 https://doi.org/10.1111/ectj.12097

[22] CHIAROMONTE, F. and MARTINELLI, J. (2002). Dimension reduction strategies for analyzing global gene
expression data with a response. Math. Biosci. 176 123–144. MR1869195 https://doi.org/10.1016/
S0025-5564(01)00106-7

[23] CLEMMENSEN, L., HASTIE, T., WITTEN, D. and ERSBØLL, B. (2011). Sparse discriminant analysis. Tech-
nometrics 53 406–413. MR2850472 https://doi.org/10.1198/TECH.2011.08118

https://mathscinet.ams.org/mathscinet-getitem?mr=3995262
https://doi.org/10.1016/j.jmva.2019.104536
https://mathscinet.ams.org/mathscinet-getitem?mr=3014313
https://doi.org/10.1214/11-AOS966
https://mathscinet.ams.org/mathscinet-getitem?mr=2465175
https://doi.org/10.1016/j.jeconom.2008.08.010
https://mathscinet.ams.org/mathscinet-getitem?mr=2252436
https://doi.org/10.1198/016214505000000628
https://mathscinet.ams.org/mathscinet-getitem?mr=3001131
https://doi.org/10.3982/ECTA9626
https://mathscinet.ams.org/mathscinet-getitem?mr=2235289
https://doi.org/10.1109/TIT.2005.847705
https://mathscinet.ams.org/mathscinet-getitem?mr=4134786
https://doi.org/10.1214/19-AOS1877
https://mathscinet.ams.org/mathscinet-getitem?mr=4318533
https://doi.org/10.22405/2226-8383-2021-22-1-177-187
http://arxiv.org/abs/arXiv:2210.14347
https://doi.org/10.1214/23-AOS2289SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=4025738
https://doi.org/10.1214/18-AOS1774
https://mathscinet.ams.org/mathscinet-getitem?mr=2101480
https://doi.org/10.2202/1544-6115.1075
https://mathscinet.ams.org/mathscinet-getitem?mr=2896857
https://doi.org/10.1198/jasa.2011.tm11199
https://mathscinet.ams.org/mathscinet-getitem?mr=3997097
https://mathscinet.ams.org/mathscinet-getitem?mr=4298872
https://doi.org/10.1214/20-aos2012
https://mathscinet.ams.org/mathscinet-getitem?mr=3769544
https://doi.org/10.1111/ectj.12097
https://mathscinet.ams.org/mathscinet-getitem?mr=1869195
https://doi.org/10.1016/S0025-5564(01)00106-7
https://mathscinet.ams.org/mathscinet-getitem?mr=2850472
https://doi.org/10.1198/TECH.2011.08118
https://doi.org/10.1198/016214505000000628
https://doi.org/10.1016/S0025-5564(01)00106-7


1256 X. BING AND M. WEGKAMP

[24] DAI, J. J., LIEU, L. and ROCKE, D. (2006). Dimension reduction for classification with gene expression
microarray data. Stat. Appl. Genet. Mol. Biol. 5 Art. 6. MR2221299 https://doi.org/10.2202/1544-6115.
1147

[25] DETTLING, M. (2004). BagBoosting for tumor classification with gene expression data. Bioinformatics 20
3583–3593. https://doi.org/10.1093/bioinformatics/bth447

[26] DEVROYE, L., GYÖRFI, L. and LUGOSI, G. (1996). A Probabilistic Theory of Pattern Recognition. Ap-
plications of Mathematics (New York) 31. Springer, New York. MR1383093 https://doi.org/10.1007/
978-1-4612-0711-5

[27] FAN, J. and FAN, Y. (2008). High-dimensional classification using features annealed independence rules.
Ann. Statist. 36 2605–2637. MR2485009 https://doi.org/10.1214/07-AOS504

[28] FAN, J., LIAO, Y. and MINCHEVA, M. (2013). Large covariance estimation by thresholding princi-
pal orthogonal complements. J. R. Stat. Soc. Ser. B. Stat. Methodol. 75 603–680. MR3091653
https://doi.org/10.1111/rssb.12016

[29] FAN, J., XUE, L. and YAO, J. (2017). Sufficient forecasting using factor models. J. Econometrics 201
292–306. MR3717565 https://doi.org/10.1016/j.jeconom.2017.08.009

[30] GHOSH, D. (2001). Singular value decomposition regression models for classification of tumors from mi-
croarray experiments. In Biocomputing 2002 18–29. World Scientific, Singapore.

[31] HADEF, H. and DJEBABRA, M. (2019). Proposal method for the classification of industrial accident sce-
narios based on the improved principal components analysis (improved PCA). Prod. Eng. 13 53–60.

[32] HAHN, P. R., CARVALHO, C. M. and MUKHERJEE, S. (2013). Partial factor modeling: Predictor-dependent
shrinkage for linear regression. J. Amer. Statist. Assoc. 108 999–1008. MR3174679 https://doi.org/10.
1080/01621459.2013.779843

[33] HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2009). The Elements of Statistical Learning: Data Min-
ing, Inference, and Prediction, 2nd ed. Springer Series in Statistics. Springer, New York. MR2722294
https://doi.org/10.1007/978-0-387-84858-7

[34] HOTELLING, H. (1957). The relations of the newer multivariate statistical methods to factor analysis. Br. J.
Stat. Psychol. 10 69–79.

[35] IZENMAN, A. J. (2008). Modern Multivariate Statistical Techniques: Regression, Classification, and Man-
ifold Learning. Springer Texts in Statistics. Springer, New York. MR2445017 https://doi.org/10.1007/
978-0-387-78189-1

[36] JIN, D., HENRY, P., SHAN, J. and CHEN, J. (2021). Classification of cannabis strains in the Canadian
market with discriminant analysis of principal components using genome-wide single nucleotide poly-
morphisms. PLoS ONE 16 e0253387.

[37] LI, H. (2016). Accurate and efficient classification based on common principal components analysis for
multivariate time series. Neurocomputing 171 744–753.

[38] MA, Z., LIU, Z., ZHAO, Y., ZHANG, L., LIU, D., REN, T., ZHANG, X. and LI, S. (2020). An unsupervised
crop classification method based on principal components isometric binning. ISPRS Int.l J. Geo-Inf. 9
648.

[39] MAI, Q., YANG, Y. and ZOU, H. (2019). Multiclass sparse discriminant analysis. Statist. Sinica 29 97–111.
MR3889359

[40] MAI, Q., ZOU, H. and YUAN, M. (2012). A direct approach to sparse discriminant analysis in ultra-high
dimensions. Biometrika 99 29–42. MR2899661 https://doi.org/10.1093/biomet/asr066

[41] MALLARY, C., BERG, C., BUCK, J. R., TANDON, A. and ANDONIAN, A. (2022). Acoustic rainfall detec-
tion with linear discriminant functions of principal components. J. Acoust. Soc. Am. 151 A149–A149.

[42] NGUYEN, D. V. and ROCKE, D. M. (2002). Tumor classification by partial least squares using microarray
gene expression data. Bioinformatics 18 39–50.

[43] SHAO, J., WANG, Y., DENG, X. and WANG, S. (2011). Sparse linear discriminant analysis by thresh-
olding for high dimensional data. Ann. Statist. 39 1241–1265. MR2816353 https://doi.org/10.1214/
10-AOS870

[44] SINGH, D., FEBBO, P. G., ROSS, K., JACKSON, D. G., MANOLA, J., LADD, C., TAMAYO, P., REN-
SHAW, A. A., D’AMICO, A. V. et al. (2002). Gene expression correlates of clinical prostate cancer
behavior. Cancer Cell 1 203–209. https://doi.org/10.1016/s1535-6108(02)00030-2

[45] STOCK, J. H. and WATSON, M. W. (2002). Forecasting using principal components from a large
number of predictors. J. Amer. Statist. Assoc. 97 1167–1179. MR1951271 https://doi.org/10.1198/
016214502388618960

[46] STOCK, J. H. and WATSON, M. W. (2002). Macroeconomic forecasting using diffusion indexes. J. Bus.
Econom. Statist. 20 147–162. MR1963257 https://doi.org/10.1198/073500102317351921

[47] TARIGAN, B. and VAN DE GEER, S. A. (2006). Classifiers of support vector machine type with l1 com-
plexity regularization. Bernoulli 12 1045–1076. MR2274857 https://doi.org/10.3150/bj/1165269150

https://mathscinet.ams.org/mathscinet-getitem?mr=2221299
https://doi.org/10.2202/1544-6115.1147
https://doi.org/10.1093/bioinformatics/bth447
https://mathscinet.ams.org/mathscinet-getitem?mr=1383093
https://doi.org/10.1007/978-1-4612-0711-5
https://mathscinet.ams.org/mathscinet-getitem?mr=2485009
https://doi.org/10.1214/07-AOS504
https://mathscinet.ams.org/mathscinet-getitem?mr=3091653
https://doi.org/10.1111/rssb.12016
https://mathscinet.ams.org/mathscinet-getitem?mr=3717565
https://doi.org/10.1016/j.jeconom.2017.08.009
https://mathscinet.ams.org/mathscinet-getitem?mr=3174679
https://doi.org/10.1080/01621459.2013.779843
https://mathscinet.ams.org/mathscinet-getitem?mr=2722294
https://doi.org/10.1007/978-0-387-84858-7
https://mathscinet.ams.org/mathscinet-getitem?mr=2445017
https://doi.org/10.1007/978-0-387-78189-1
https://mathscinet.ams.org/mathscinet-getitem?mr=3889359
https://mathscinet.ams.org/mathscinet-getitem?mr=2899661
https://doi.org/10.1093/biomet/asr066
https://mathscinet.ams.org/mathscinet-getitem?mr=2816353
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1016/s1535-6108(02)00030-2
https://mathscinet.ams.org/mathscinet-getitem?mr=1951271
https://doi.org/10.1198/016214502388618960
https://mathscinet.ams.org/mathscinet-getitem?mr=1963257
https://doi.org/10.1198/073500102317351921
https://mathscinet.ams.org/mathscinet-getitem?mr=2274857
https://doi.org/10.3150/bj/1165269150
https://doi.org/10.2202/1544-6115.1147
https://doi.org/10.1007/978-1-4612-0711-5
https://doi.org/10.1080/01621459.2013.779843
https://doi.org/10.1007/978-0-387-78189-1
https://doi.org/10.1214/10-AOS870
https://doi.org/10.1198/016214502388618960


OPTIMAL DISCRIMINANT ANALYSIS 1257

[48] TIBSHIRANI, R., HASTIE, T., NARASIMHAN, B. and CHU, G. (2002). Diagnosis of multiple cancer types
by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. USA 99 6567–6572.

[49] TSYBAKOV, A. B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 135–166.
MR2051002 https://doi.org/10.1214/aos/1079120131

[50] VU, V. Q. and LEI, J. (2013). Minimax sparse principal subspace estimation in high dimensions. Ann.
Statist. 41 2905–2947. MR3161452 https://doi.org/10.1214/13-AOS1151

[51] WEGKAMP, M. and YUAN, M. (2011). Support vector machines with a reject option. Bernoulli 17 1368–
1385. MR2854776 https://doi.org/10.3150/10-BEJ320

[52] WITTEN, D. M. and TIBSHIRANI, R. (2011). Penalized classification using Fisher’s linear discriminant.
J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 753–772. MR2867457 https://doi.org/10.1111/j.1467-9868.
2011.00783.x

https://mathscinet.ams.org/mathscinet-getitem?mr=2051002
https://doi.org/10.1214/aos/1079120131
https://mathscinet.ams.org/mathscinet-getitem?mr=3161452
https://doi.org/10.1214/13-AOS1151
https://mathscinet.ams.org/mathscinet-getitem?mr=2854776
https://doi.org/10.3150/10-BEJ320
https://mathscinet.ams.org/mathscinet-getitem?mr=2867457
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x

	Introduction
	Contributions
	Minimax lower bounds of rate of convergence of the excess risk
	A general two-step classiﬁcation approach and the PC-based classiﬁer
	A general strategy of analyzing the excess risk of gx based on any matrix B
	Optimal rates of convergence of the PC-based classiﬁer
	Extension to multiclass classiﬁcation


	Excess risk and its minimax optimal rates of convergence
	Oracle benchmark
	Minimax lower bounds of the excess risk

	Methodology
	General approach
	Principal component (PC) based classiﬁers
	Estimation of the number of retained PCs

	A general strategy of bounding the excess classiﬁcation error
	Rates of convergence of the PC-based classiﬁer
	Consistent estimation of the latent dimension K
	PC-based LDA by using the true dimension K
	Optimality of the PC-based LDA by sample splitting

	Simulation study
	Vary the sample size n
	Vary the signal strength Delta2
	Vary the feature dimension p

	Real data analysis
	Extension to multiclass classiﬁcation
	Acknowledgments
	Funding
	Supplementary Material
	References

