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Abstract The ocean carbon reservoir controls atmospheric carbon dioxide (CO2) on millennial timescales.
Radiocarbon (14C) anomalies in eastern North Pacific sediments suggest a significant release of geologic 14C‐
free carbon at the end of the last ice age but without evidence of ocean acidification. Using inverse carbon cycle
modeling optimized with reconstructed atmospheric CO2 and 14C/C, we develop first‐order constraints on
geologic carbon and alkalinity release over the last 17.5 thousand years. We construct scenarios allowing the
release of 850–2,400 Pg C, with a maximum release rate of 1.3 Pg C yr−1, all of which require an approximate
equimolar alkalinity release. These neutralized carbon addition scenarios have minimal impacts on the
simulated marine carbon cycle and atmospheric CO2, thereby demonstrating safe and effective ocean carbon
storage. This deglacial phenomenon could serve as a natural analog to the successful implementation of gigaton‐
scale ocean alkalinity enhancement, a promising marine carbon dioxide removal method.

Plain Language Summary The ocean is the largest carbon reservoir on Earth's surface and, as such,
it controls the concentration of the greenhouse gas carbon dioxide (CO2) in the atmosphere over long time
periods. When CO2 was rising at the end of the last ice age, marine sediment evidence indicates a regional
carbon release into the ocean, due to a distinct carbon isotope fingerprint left behind. Using a carbon cycle
model and atmospheric data, we simulated different geologic carbon addition scenarios since the last ice age.
We find that substantial carbon addition to the ocean could have occurred (up to 1.3 billion tons per year)
without causing significant changes to the carbon cycle, but only if the carbon is neutralized by alkalinity in an
approximate 1:1 ratio. This neutralized release is similar to an approach of carbon removal called ocean
alkalinity enhancement (OAE), which aims to reduce atmospheric CO2 as a potential solution for climate
change. These findings suggest that neutralized carbon addition—in the form of “neutralized” bicarbonate ion
(HCO−

3 ) instead of “acidic” CO2—could explain the low levels of radiocarbon during the last deglaciation and
shows that large‐scale OAE is feasible without causing major changes to the marine carbon cycle.

1. Introduction
Global climate, the global carbon cycle, and the atmospheric concentration of the greenhouse gas carbon dioxide
(CO2) have been tightly coupled over recent ice age cycles (Siegenthaler et al., 2005), including the relatively
abrupt ice age terminations and deglacial periods (Marcott et al., 2014; Shakun et al., 2012). Coupled changes in
deep ocean circulation, polar ocean biological nutrient consumption, and air‐sea CO2 exchange are thought to be
the dominant drivers of the observed CO2 change (Khatiwala et al., 2019; Rafter et al., 2022; Sigman et al., 2021),
but changes in land carbon storage and seafloor carbon burial in direct response to climate change are also clearly
implicated (Cartapanis et al., 2018; Joos et al., 2001; Köhler et al., 2014). The primary challenge to all these
hypotheses comes from unexplained “anomalies” in the radiocarbon (14C) content within marine foraminifera
during deglacial CO2 rise in the atmosphere, between about 18,000 and 11,500 years before 1950 (18–11.5
thousand years before present or kyr BP, Figure 1). These deglacial records of 14C depletion (decay‐corrected
14C:12C ratio, expressed as ∆14C; Stuiver & Polach, 1977) have been uncovered throughout the intermediate‐
depth (>500 m & <1,000 m) eastern tropical North Pacific (ETNP) Ocean (Lindsay et al., 2016; Marchitto
et al., 2007; Rafter et al., 2018, 2019; Stott et al., 2009); associated with the weakly ventilated Pacific shadow
zone (Gehrie et al., 2006; Holzer et al., 2021).

These regional depletions in seawater ∆14C were initially attributed to a release of dissolved inorganic carbon
(DIC) that had been sequestered for thousands of years in the abyssal ocean, hinting at deglacial changes in ocean
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circulation (Bova et al., 2018; Broecker, 2009; Broecker & Barker, 2007;
Marchitto et al., 2007). However, this ocean release interpretation has two
main shortcomings (Hain et al., 2011): (a) the Last Glacial Maximum (LGM)
deep ocean was not sufficiently 14C‐depleted (dashed red line in Figure 1) to
be the source of the mid‐depth anomalies, and (b) once the isotopic signature
of anomalously 14C‐depleted carbon is transported to the mid‐depth Pacific it
would rapidly dissipate into the global carbon cycle via ocean circulation and
air‐sea gas exchange. This hypothesis is further contradicted by a new
compilation showing no appreciable 14C‐depletion at any depth for the basin‐
scale Pacific during the deglaciation (red lines in Figure 1; Rafter et al., 2022),
as would be required if the abyssal ocean caused the ETNP 14C anomalies.
Additionally, deep‐sea coral 14C records from the Galápagos with excellent
age model controls (Chen et al., 2020) and South Pacific 14C records bathed in
modern Antarctic Intermediate Water (De Pol‐Holz et al., 2010; Rose
et al., 2010; Siani et al., 2013; Zhao & Keigwin, 2018) show no 14C‐depletion
comparable to the ETNP anomalies. This lack of basin‐wide mid‐depth ∆14C
depletion is an important observational constraint we will consider below.

An alternative set of proposals suggests these anomalously low ∆14C values
reflect an addition of 14C‐free carbon from a geologic source (Rafter
et al., 2018, 2019; Ronge et al., 2016; Skinner & Bard, 2022; Stott et al., 2009;
Stott & Timmermann, 2011). A common objection to this hypothesis is the
potential for ocean acidification, which would contradict the evidence of
ETNP carbonate preservation during the last deglacial (Lindsay et al., 2015;
Marchitto et al., 2007; Ortiz et al., 2004; Rafter et al., 2019; Skinner &
Bard, 2022; Stott et al., 2009). However, if a proportional influx of alkalinity
neutralized the geologic carbon—e.g., carbon introduced in the form of
“neutralized” bicarbonate ion instead of “acidic” CO2—there would be muted
effects on seawater pH, CaCO3 burial, and atmospheric CO2 (Rafter
et al., 2019).

Neutralized 14C‐free carbon could be generated within marine sediments via
metamorphic or hydrothermal processes (Rafter et al., 2019; Skinner &
Bard, 2022). Subsequently, it would be transported and dispersed throughout
the ocean and atmosphere, leading to the dilution of the atmospheric 14C

reservoir and a reduction of atmospheric ∆14C. While the majority of the atmospheric ∆14C decline during the last
deglaciation has been attributed to Southern Ocean CO2 release, changes in Atlantic circulation, and a decline in
cosmogenic 14C production due to a strengthening of Earth's magnetic field (black line in Figure 1; Hain
et al., 2014; Skinner & Bard, 2022), these processes alone do not fully account for changes observed in recon-
structed atmospheric ∆14C records (Reimer et al., 2020). This discrepancy indicates a possible opportunity within
the planetary 14C budget for 14C‐free geologic carbon addition.

This study presents the first carbon cycle model results investigating the possibility of coupled geologic carbon and
alkalinity release during the last deglaciation. Our experiments build on the deglacial model scenario of Hain
et al. (2014) and test the sensitivity of our results to changes in terrestrial carbon storage. We use a stepwise nu-
merical model optimization method that assimilates observed atmospheric CO2 and ∆14C data to find the internally
consistent rates of geologic carbon and alkalinity release, permafrost carbon destabilization, and land biosphere
regrowth. This is intended to raise important questions relevant to different fields of research: can seafloor
spreading centers respond to climate change? What subsurface processes could mobilize carbon and alkalinity at
relevant specific rates? And do deglacial radiocarbon anomalies provide a natural analog for purposeful ocean
alkalinity enhancement (OAE) as a means of marine carbon dioxide removal (Bach & Boyd, 2021;
NASEM, 2021)?

Figure 1. Unexplained ∆14C anomalies from the intermediate‐depth
(>500 m and <1,000 m) eastern tropical North Pacific (ETNP). The ETNP
anomalies shown are foraminifera from Marchitto et al. (2007) (benthic;
circles), Stott et al. (2009) (benthic; diamonds), and Rafter et al. (2018)
(squares for benthic, triangles for planktic). The ETNP anomalies are
compared with compilation means from the Pacific (red lines; Rafter
et al., 2022). Solid and dashed lines represent mid‐depth and bottom water,
respectively, with red shading denoting the 95% confidence interval. The
atmospheric ∆14C for our CYCLOPS control simulation is shown as a solid
black line. Reconstructed atmospheric ∆14C (Reimer et al., 2020) and CO2
(Bereiter et al., 2015) are shown in gray. Individual ∆14C records are
overlaid on ocean bathymetry (blue contours) and tectonic spreading centers
(black lines) in the map inset.
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2. Materials and Methods
Motivated by the regional ETNP anomalies (Figure 1), we use the CYCLOPS global carbon cycle model (Hain
et al., 2010, 2011, 2014; Keir, 1988; see Text S1 in Supporting Information S1 for model configuration) to
simulate the flux of geologic carbon from Pacific mid‐ocean ridge systems. This involves four experiments,
progressively adding optimized open‐system carbon and alkalinity fluxes, along with an imposed initial 14C
inventory change (top row of Figure 2): (a) We invert for the optimal rates of carbon and alkalinity release to the
intermediate‐depth (200–1500m) North Pacific region of the model (experiment NP); (b) We add the possibility
of land carbon uptake to the optimization (experiment NP + LC); (c) We include the release of 14C‐free
permafrost carbon to the atmosphere (experiment NP + LC + PF); and (d) We adjust the initial LGM 14C in-
ventory by +3.5% to account for the uncertain history of Earth's magnetic field, 14C production, and reconstructed
Δ14C near the LGM (Figure 3a, Dinauer et al., 2020; Roth & Joos, 2013) (experiment NP + LC + PF + RC).

All experiments include the identical background forcings of the control run, based on the deglacial carbon cycle
scenario from Hain et al. (2014). Although this is an idealized model scenario, we use it as our starting point
because the LGM carbon cycle forcing of CYCLOPS is well documented (Hain et al., 2010) and consistent with
reconstructed surface ocean pH changes (Chalk et al., 2017; Hain et al., 2018). Additionally, the deglacial model
scenario agrees reasonably well with subsequent 14C measurements and data compilations (Rafter et al., 2022;
Zhao et al., 2018), as shown by the direct comparison for the Pacific and all other basins (Figure S1 in Supporting
Information S1). More in‐depth descriptions of each experiment can be found in Text S3 of Supporting Infor-
mation S1.

For all experiments, the optimized open‐system carbon and alkalinity fluxes were determined by a numerical
algorithm that minimizes the deviation between simulated atmospheric CO2 (CO2

model) and ∆14C (∆14Cmodel),
compared to reconstructed atmospheric CO2 (CO2

obs) from the most recent compilation of Antarctic ice core CO2

data (Bereiter et al., 2015) and ∆14C (∆14Cobs) from IntCal20 (Reimer et al., 2020). The algorithm's objective
function f is scaled to the 90ppm glacial/interglacial CO2 range and the ∼250‰ atmospheric ∆14C change after
accounting for Earth's magnetic field strengthening:

f (CO2,Δ14C) =

⃒
⃒COobs

2 − COmodel
2

⃒
⃒

90 ppm
+

⃒
⃒Δ14Cobs − Δ14Cmodel⃒⃒

250 ‰

We do not permit unrealistic ‘negative’ geologic fluxes, permafrost growth, or land carbon contraction that could
otherwise help the model align with the observations. For experiments that include land carbon uptake, we
included a deliberate heuristic favoring land carbon uptake during the Holocene. If CO2

model was greater than
CO2

obs and the atmospheric ∆14C model‐data misfit was less than 20‰, then the optimized carbon flux is added
to the terrestrial biosphere rather than the intermediate‐depth North Pacific (with an alkalinity flux of zero). For
experiments that include carbon release from permafrost destabilization, the optimized flux is only activated
when the optimization algorithm would otherwise add CO2 (ALK‐to‐DIC<0.5) into the intermediate‐depth North
Pacific, instead releasing the equivalent amount of CO2 directly to the atmosphere. Further algorithm details can
be found in Text S2 of Supporting Information S1.

3. Results
3.1. Atmospheric Constraints on Geologic Carbon Addition

All four simulations improve the overall CO2 and ∆14C model‐data misfit compared to the control run (blue vs.
black line, Figure 2). This model‐data misfit is progressively minimized as more open‐system carbon and
alkalinity fluxes are added, with the NP + LC + PF + RC simulating the smallest model‐data misfit. Each
simulation has two main pulses of geologic carbon, one during the deglaciation and one smaller pulse during the
Holocene. Our optimization triggers these geologic pulses when ∆14Cmodel rises above ∆14Cobs, which we call
14C opportunities. Most geologic carbon is added as bicarbonate ion (61%–84%, Table S1 in Supporting Infor-
mation S1), with net ALK‐to‐DIC ratios between 1.08 and 1.19 (Table S1 in Supporting Information S1) across
all four simulations.

For our first three experiments (NP, NP + LC, NP + LC + PF)–which include no adjustment to the initial 14C
inventory–a total of 846–929 Pg C geologic carbon was added over the 20‐kyrs (Table S1 in Supporting
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Information S1), with peak rates as large as 0.9 Pg C yr−1 (Figures 2i–2k) during the first pulse of addition
(∼15‐kyr BP). Of those experiments that included terrestrial regrowth (NP + LC, NP + LC + PF), simulated
carbon uptake is between 279 and 300 Pg C (Table S1 in Supporting Information S1), mainly during the
Holocene. When we include terrestrial carbon release from permafrost thaw (NP + LC + PF), 105 Pg C
(Figure 2k, Table S1 in Supporting Information S1) is released around 16‐kyr BP during the first pulse of
carbon addition. Our fourth experiment, NP + LC + PF + RC, includes an adjusted 14C inventory at the LGM
initial state alongside all the above open‐system fluxes. The higher initial ∆14Cmodel increases the opportunity
for the subsequent addition of 14C‐free carbon, leading to a greater amount of total carbon added (2,396 Pg C,
Table S1 in Supporting Information S1), higher release rates (up to 1.3 Pg C yr−1, Figure 2l), more land carbon
uptake (550 Pg C; Table S1 in Supporting Information S1), but a similar carbon release from permafrost thaw
around 16‐kyr BP (97 Pg C).

3.2. Regional and Bulk Ocean Impacts From Large‐Scale Geologic Carbon Addition

The most severe carbon cycle impacts should arise during our largest geologic carbon addition scenario
(NP + LC + PF + RC). However, only minor ∆14C anomalies are simulated in the intermediate‐depth North Pacific
box where the carbon is released (solid blue line, Figure 3a). Consequently, the simulated intermediate‐depth North
Pacific ∆14C is in broad agreement with the mean Δ14C from the mid‐depth (neutral density of 27.5–28 kg m−3)
Pacific, calculated from a new proxy 14C/C compilation (red line in Figure 3a and Rafter et al., 2022). Given that the
present‐day mid‐depth Pacific contains the oldest waters in the ocean, it serves as a conservative benchmark for
comparing our simulated intermediate‐depth results. Furthermore, the lack of severe ∆14C depletion in the

Figure 2. Simulated atmospheric response to optimized geologic carbon release scenarios. The top row illustrates our experimental design that progressively introduces
optimized and imposed open‐system fluxes (colored arrows). Subsequent rows illustrate simulation results for atmospheric ∆14C (a–d), atmospheric CO2 (e–h), and
carbon release/uptake rates (i–l). In panels (i–l), colored numbers represent the amounts of CO2 (red), HCO−

3 (yellow), and CO2−
3 (blue) released with each geologic

carbon pulse. Similarly, terrestrial carbon uptake (regrowth) is shown in green, and terrestrial carbon release (permafrost destabilization) is in red, all in units of Pg C. Gray
bars denote Heinrich Stadial 1 and Younger Dryas, while model‐data misfit is shaded in gray.
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NP + LC + PF + RC simulation is supported by a deep‐sea coral record considered representative of the 14C content
of intermediate waters near the Galápagos islands (red circles in Figure 3a and Chen et al., 2020).

Similarly, we find limited impacts on deep ocean [CO2−
3 ] –which largely determines CaCO3 saturation and thus

CaCO3 burial–when the geologic carbon is added as HCO−
3 (ALK‐to‐DIC ∼ 1). This is clear from Figure 3b and

as the NP + LC + PF + RC only simulates a moderate increase (∼5 μmol kg−1) in deep‐ocean [CO2−
3 ] compared

to the control simulation. With a deglacial increase in deep‐ocean [CO2−
3 ] due to a weakened biological pump and

a subsequent decrease in deep‐ocean [CO2−
3 ] from carbonate compensation, both the control and

NP + LC + PF + RC simulation broadly follow [CO2−
3 ] observations (Yu et al., 2010, 2013).

In addition to ∆14C impacts, geologic carbon will impact the ocean's stable isotope ratio of carbon (13C/12C,
reported as δ13C), but this ultimately depends on the source. We run an additional set of experiments by

Figure 3. Neutralized carbon release has limited impacts on basin scale ∆14C and deep ocean [CO2−
3 ] . In Panel a,

NP + LC + PF + RC drives mild ∆14C depletion from the control run (shaded blue area), consistent with various data sets:
deep‐sea coral near the Galápagos (red circles), mean ∆14C from Pacific mid‐depth and bottom water (solid and dashed red
line), and atmospheric ∆14C (solid gray and green, dotted yellow and blue). There is a notable discrepancy in ∆14C near the
Last Glacial Maximum in the last three IntCal iterations before converging when tree‐ring data becomes available (solid
green line). Panel b illustrates NP + LC + PF + RC causing an increase in [CO3

2‐] in the Indo‐Pacific deep ocean compared
to the control run (shaded yellow). Simulated [CO2−

3 ] align broadly with observations from the Indian (yellow triangle) and
Equatorial Pacific (yellow square and X). Gray bars represent Heinrich Stadial 1 and Younger Dryas.
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calculating the bulk ocean δ13C change for two endmember sources of neutralized geologic carbon (described in
Text S4 of Supporting Information S1): bicarbonate from anaerobic oxidation of thermogenic methane (AOM;
Rafter et al., 2019) and geologic CO2 neutralized by carbonate dissolution (Skinner & Bard, 2022), with δ13C
values of −25‰ and −2.5‰, respectively. When 2,396 Pg C is added (as suggested by our NP + LC + PF + RC
experiment), we simulate bulk δ13C ocean changes of −1.5‰ for AOM and −0.2‰ for carbonate dissolution.
Given that reconstructed oceanic δ13C values have not fluctuated more than ∼1‰ over the last 800‐kyrs (Hodell
et al., 2003), our simulations suggest geologic carbon from a methane source (δ13C ≤ −25‰) is unlikely for our
extreme carbon addition scenario of 2,396 Pg C. Considering the decoupled nature of neutralized geologic carbon
addition and atmospheric CO2, along with the limited impact on basin‐scale ∆14C, deep ocean [CO2−

3 ] , and bulk
ocean δ13C, these findings underscore that the global 14C budget is the strongest constraint available for assessing
geologic carbon addition at the global scale.

4. Discussion
The core outcome of our study is that atmospheric CO2 and CaCO3 burial are effectively blind to carbon release
neutralized by alkalinity in a ratio near 1:1, with the timely implication that OAE may be an effective pathway for
the mitigation of anthropogenic carbon emissions (NASEM, 2021). In the specific context of the deglacial period,
this insensitivity allows for large‐scale geologic carbon addition scenarios constrained most directly by the
planetary radiocarbon budget, as long as there was concomitant natural OAE. Additionally, our most extreme
carbon addition scenario is insufficient to drive significant ∆14C depletion across the North Pacific, which agrees
with observations representative of the North Pacific and Pacific basins. This supports the idea that the enigmatic
∆14C anomalies of the ETNP are likely regional or localized phenomena that could be exploited to derive a set of
local constraints on possible carbon and alkalinity release that would be completely independent of the global
CO2 and 14C budget constraints used in this study.

4.1. Large Amounts of Bicarbonate Allowable

We optimized our carbon cycle modeling simulations, which include different open‐system fluxes and changes to
the 14C inventory, with the addition of geologic carbon. The simulations show that up to 2,396 Pg of geologic
carbon, mainly as bicarbonate ion, can be consistent with the observed deglacial changes in atmospheric CO2 and
∆14C. Due to the alkalinity accompanying DIC during bicarbonate addition, geologic carbon in this form can be
added at rates as large as 1.3 Pg C yr−1 (Figure 2l) with limited impacts on atmospheric CO2 and deep‐
sea [CO2−

3 ] .

Prior work has estimated that deglacial geologic CO2 emissions from mantle decompression could have reached
up to 0.2 Pg C yr−1 (Cartapanis et al., 2018; Roth & Joos, 2012), much smaller than our maximum yearly rates.
However, these lower rates were derived assuming the geologic carbon came only as CO2 rather than as bicar-
bonate ion. When carbon is added without alkalinity (i.e., CO2), atmospheric CO2 and CaCO3 burial constraints
are highly sensitive to any carbon added to the system. However, when adding neutralized carbon (bicarbonate),
atmospheric CO2 and CaCO3 burial constraints become effectively blind to the carbon release, no longer con-
straining the carbon release rate or total. During bicarbonate addition, the constraining factor shifts to the
planetary 14C mass balance and its reflection in the atmospheric ∆14C record (via IntCal20, Reimer et al., 2020),
which can indirectly record the dilution of 14C‐enriched environmental carbon by 14C‐free geologic carbon. This
∆14Cobs constraint on bicarbonate release leads to an upper bound of 800–1,000 Pg C in our first three simulations
(NP, NP + LC, NP + LC + PF)—a 2%–2.5% increase of total ocean carbon inventory. Furthermore, if we take
into consideration the uncertainty in the planetary 14C mass balance (Dinauer et al., 2020; Roth & Joos, 2013) by
increasing the initial LGM 14C inventory by 3.5%, the opportunity for subsequent geologic carbon release in-
creases to ∼2,500 Pg C (6.5% increase of total ocean carbon inventory). In other words, a higher initial LGM 14C/
C can substantially increase the opportunity for 14C‐free geologic carbon release since the LGM.

Considering the idealized nature of our experiments and because of biases inherited from our control run (Hain
et al., 2014), our optimization results should not be taken as estimates of geologic carbon release or of other
simulated open‐system carbon fluxes (e.g., LC, PF). Instead, we argue that geologic carbon release greater than
800–1000 Pg C is rendered unlikely, and release greater than 2,400 Pg C is implausible in the face of ∆14Cobs.
Further, if indeed there was substantial geologic carbon release since the LGM, it must have been in the
neutralized form of bicarbonate ion with a net ALK‐to‐DIC ratio near 1, as proposed by Rafter et al. (2019), to
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avoid violating constraints from atmospheric CO2 and CaCO3 burial. Therefore, we argue that geologic carbon
release played only a minor role in raising CO2 at the end of the last ice age, even if the total amount of carbon
release was substantial. This contrasts with prior deglacial geologic carbon addition research, which attributes
glacial/interglacial CO2 variability to liquid CO2 release (Stott, Davy, et al., 2019; Stott, Harazin, & Kru-
pinski, 2019; Stott & Timmermann, 2011).

4.2. Geologic Carbon as an Explanation for ∆14C Anomalies?

When first discovered, the ∆14C anomalies in the ETNP were taken to be the signature of carbon release from the
deep ocean to the atmosphere (Marchitto et al., 2007). This earlier view of the ∆14C anomalies buttresses the
longstanding notion that stagnation of deep ocean circulation during the LGM created an isolated 14C‐deplete
reservoir for the sequestration of atmospheric CO2 (Broecker & Barker, 2007; Skinner et al., 2010)—and this
view remains prevalent (e.g., Bova et al., 2018). However, deep ocean carbon storage and its effect on atmo-
spheric CO2 is more closely tied to the degree of nutrient consumption in the polar ocean regions that form new
deep water (Hain et al., 2010, 2014; Ito & Follows, 2005; Marinov, Follows, et al., 2008; Marinov, Gnanadesikan,
et al., 2008b; Sigman et al., 2010, 2021; Sigman & Haug, 2003) rather than being a simple function of the rate of
deep ocean overturning. Further, a new compilation of global ocean ∆14C records reveals that the LGM 14C age of
the global deep ocean was about ∼1,000 years greater than today (Rafter et al., 2022), sufficient to explain a large
portion of the observed ∆14Cobs decline during the deglacial period (Broecker & Barker, 2007; Hain et al., 2014),
but not nearly 14C‐deplete enough to produce the ETNP ∆14C anomalies (Figure 3a). Rather than becoming a
plank in our evolving understanding of coupled glacial/interglacial changes in ocean circulation and the global
carbon cycle, the existence of these ∆14C anomalies has become its own vexing problem, defying conventional
explanations based on ocean circulation.

There are numerous reasons why a given sample would yield an anomalously low reconstructed 14C/C, but the
spatial‐temporal clustering of 14C anomalies in the upper 1 km of the ETNP water column is remarkable (e.g.,
Bova et al., 2018; Lindsay et al., 2015; Marchitto et al., 2007; Rafter et al., 2018, 2019; Stott, Davy, et al., 2019;
Stott, Harazin, & Krupinski, 2019), especially when contrasted with nearby records that broadly track atmo-
spheric 14C change without discernible 14C anomalies (e.g., Bova et al., 2018; Chen et al., 2020; De Pol‐Holz
et al., 2010; Rose et al., 2010; Siani et al., 2013; Zhao & Keigwin, 2018). Previous modeling of the problem
suggests that any 14C anomaly in the upper ocean would rapidly dissipate by ocean circulation and air‐sea gas
exchange (Hain et al., 2011) such that upper ocean ∆14C is expected to track atmospheric ∆14C change since the
LGM (Hain et al., 2014), as is observed in independently dated coral 14C records from the Atlantic and Pacific
(e.g., Chen et al., 2020) and other records outside the anomalous ETNP cluster. Our new results advance the
argument by demonstrating that even the release of >2,000 Pg C is insufficient to generate a significant 14C
anomaly on the basin scale resolved in our current model (Figure 3a), related to the rapid global dissipation of 14C
isotope anomalies in the global carbon cycle (Hain et al., 2011). That is, the absence of anomalies in most upper
ocean 14C reconstructions is normal and expected, even in the case of substantial simulated carbon release. The
caveat to the argument is that a small ∆14C reduction simulated at the basin scale would be consistent with a
severe 14C anomaly concentrated in a small sub‐region, such as observed in the ETNP.

The 14C anomalies of the ETNP may record carbon release associated with processes linked to spreading centers
separating the Cocos, Nazca, and Pacific plates that produce very high regional geothermal heat flux (>0.1 W m−2

throughout the region; Pollack et al., 1993). While we cannot usefully comment on whether these geologic
systems are dynamic enough to yield defined pulses of carbon release, our results highlight that only a neutralized
form of carbon release would be consistent with the atmospheric CO2 constraint and observations of good
(sometimes improved) seafloor carbonate preservation (Figure 3b; Yu et al., 2008, 2010, 2013) during the main
purported geologic carbon pulses. Indeed, the temporal coincidence of the 14C anomalies with stadial/interstadial
climate change, deglacial ocean heat uptake (Poggemann et al., 2018), and circulation change (e.g., McManus
et al., 2004; Rafter et al., 2022) may point to a climatic or environmental trigger of carbon release, rather than a
being a purely stochastic volcanogenic phenomenon.

However, why would severe 14C anomalies persist for millennia in the ETNP upper ocean water column if ocean
circulation and air‐sea gas exchange act to rapidly dissipate the anomalous carbon globally (Hain et al., 2011)? We
propose two alternative resolutions that we cannot distinguish based on our current model and existing data: Either
the anomalies are localized and reflect geologic carbon diffusion out of the underlying sediment stack rather than
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bottom water ∆14C, or the anomalies are regional and reflect the accumulation of geologic carbon in the ETNP
shadow zone of ocean circulation with a sharp and persistent chemical gradient to the open ocean mid‐depth
Pacific.

If the anomalies are localized, we might expect each anomalous record to differ in magnitude and timing. Finding
individual mid‐depth sites in the ETNP where 14C anomalies are missing (e.g., Bova et al., 2018; Chen
et al., 2020) alongside records with 14C anomalies that are only broadly similar would tend to support the localized
explanation. Conversely, if geologic carbon were added to a dynamically isolated region, such as the upper ocean
ETNP (Margolskee et al., 2019), seawater ∆14C might diverge substantially from the ∆14C of the open Pacific and
atmosphere. However, that regional signal would need to be shared by all radiocarbon records in the hydrody-
namic region (cf. Chen et al., 2020). If the anomalies did reflect the restricted regional ocean circulation of the
ETNP, it would seem plausible that the carbon release mechanism also operated in regions outside the ETNP (e.g.,
Bryan et al., 2010).

5. Conclusion
We document a set of carbon cycle model scenarios since the LGM that include substantial (800–2,400 Pg C)
release of geologic carbon broadly consistent with reconstructed atmospheric CO2 rise, ∆14C decline, and CaCO3

burial patterns. In all simulations, geologic carbon release is primarily released as bicarbonate ion (i.e., with an
ALK‐to‐DIC near 1), with minimal effect on the marine carbon cycle and atmospheric CO2. That is, we
demonstrate the possibility of climate‐neutral geologic carbon and alkalinity release during the deglacial period in
a way that is consistent with a dominant Southern Ocean control on climate‐carbon coupling over ice age cycles.
As such, we do not prove that such geologic carbon release happened, but rather we hope to expand what is
deemed possible. The central outcome of this study is that the deglacial ∆14C anomalies from the ETNP region
may represent a natural analog for the successful application of OAE as a means to neutralize anthropogenic
carbon emissions.

Introducing geologic carbon will dilute the planetary inventory of cosmogenic radiocarbon (14C) such that the
largest release of 14C‐free carbon (2,400 Pg C) can reduce the average ∆14C of environmental carbon by about
∼50‰. Therefore, the planetary 14C budget can be used to rule out the most extreme scenarios for geologic
carbon release, offering an upper‐bound constraint for carbon transfers from geologic and terrestrial carbon
reservoirs to the ocean/atmosphere carbon cycle. That is, our model scenarios are designed to explore the limit of
what appears to be possible in the context of global constraints from CO2 and 14C reconstructions. We find that
bicarbonate release was likely limited to less than 1,000 Pg C, but when considering uncertainty in the history of
cosmogenic 14C production, the limit for bicarbonate release may be as high as 2,400 Pg C.

The spatial cluster of deglacial ∆14C anomalies in the upper water column of the ETNP may be evidence for
geologic carbon release associated with the seafloor spreading center defining the East Pacific Rise (Figure 1;
Lindsay et al., 2015; Marchitto et al., 2007; Rafter et al., 2018, 2019; Stott et al., 2009). Confirming or rejecting
this hypothesis would have several implications: Without large‐scale carbon release, we lack an adequate
explanation for the ETNP ∆14C anomalies, suggesting an open gap in our understanding of the 14C‐proxy system
used to reconstruct ocean circulation changes in response to deglacial climate change. Alternatively, with large
pulses of geologic carbon release in the ETNP, we lack an adequate explanation for how bicarbonate is derived
from geologic carbon sources during the deglaciation, suggesting a gap in our understanding of glacial/inter-
glacial changes in seafloor spreading and its role in the global carbon cycle.

Data Availability Statement
Detailed model description and configuration are available in the Supporting Information. The plotting code and
simulation results are found on GitHub (https://github.com/RyanAGreen/Deglacial‐Neutralized‐Carbon‐14C)
and Zenodo (https://zenodo.org/badge/latestdoi/627637425; Green, 2023).
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