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Abstract

Cavity quantum electrodynamics (QED) generalizations of time-dependent (TD) density

functional theory (DFT) and equation-of-motion (EOM) coupled-cluster (CC) theory are used

to model small molecules strongly coupled to optical cavity modes. We consider two types of

calculations. In the first approach (termed “relaxed”), we use a coherent-state-transformed

Hamiltonian within the ground- and excited-state portions of the calculations, and cavity-

induced orbital relaxation effects are included at the mean-field level. This procedure guaran-

tees that the energy is origin invariant in post-self-consistent-field calculations. In the second

approach (termed “unrelaxed”), we ignore the coherent-state transformation and the associ-

ated orbital relaxation effects. In this case, ground-state unrelaxed QED-CC calculations pick

up a modest origin dependence but otherwise reproduce relaxed QED-CC results within the

coherent-state basis. On the other hand, a severe origin dependence manifests in ground-state

unrelaxed QED mean-field energies. For excitation energies computed at experimentally re-

alizable coupling strengths, relaxed and unrelaxed QED-EOM-CC results are similar, while

significant differences emerge for unrelaxed and relaxed QED-TDDFT. First, QED-EOM-CC

and relaxed QED-TDDFT both predict that electronic states that are not resonant with the cav-

ity mode are nonetheless perturbed by the cavity. Unrelaxed QED-TDDFT, on the other hand,

fails to capture this effect. Second, in the limit of large coupling strengths, relaxed QED-

TDDFT tends to overestimate Rabi splittings, while unrelaxed QED-TDDFT underestimates

them, given splittings from relaxed QED-EOM-CC as a reference, and relaxed QED-TDDFT

generally does the better job of reproducing the QED-EOM-CC results.

Introduction

Chemical applications of strong light-matter interactions facilitated by optical cavities have gar-

nered a great deal of attention in recent years.1–4 This interest has been driven by experimental

studies offering evidence that strong light-matter coupling and polariton formation can be lever-

aged in chemical contexts,4–7 such as for catalyzing/inhibiting reactions8–12 or controlling reaction
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selectivity.13 Moreover, a large number of computational studies have predicted a range of phe-

nomena that are relevant to chemistry.2,4,14–19 Predictive electronic/polaritonic structure methods

will be crucial for discovering general design principles for cavity-mediated chemistry; as a result,

substantial effort has been dedicated to the generalization of familiar tools in quantum chemistry

for the polaritonic problem.

Proposed cavity quantum electrodynamics (QED) models incorporating an ab initio treatment

of molecular degrees of freedom have largely taken one of two complementary approaches. First,

given the success that density functional theory (DFT) has seen in standard quantum chemical

applications, a large body of work has considered quantum electrodynamical generalizations of

DFT20–23 and time-dependent DFT (TDDFT).19,24–31 QED-DFT and QED-TDDFT provide ac-

cess to orbital-specific quantities that cannot be directly probed with model Hamiltonians;32,33

because they inherit the favorable computational scaling of conventional DFT and TDDFT, these

methods can be applied to large cavity-embedded molecules or collections of molecules. At

the same time, the well-known issues that plague DFT34 and the small number of exchange–

correlation functionals that have been developed for the polaritonic problem35–37 have inspired

others to pursue correlated wave-function-based approaches to polaritonic structure,18,38–50 within

formalisms that resemble familiar coupled-cluster (CC)51–54 or configuration interaction (CI) ap-

proaches. Like QED-DFT and QED-TDDFT, QED generalizations of correlated wave-function

methods can provide insight into subtle cavity-induced changes to electronic structure, while also

offering the advantage of systematic improvability.

Straightforward polaritonic generalizations of ground-state CC and equation-of-motion (EOM)

CC54–57 have been put forth in Ref. 38. The QED-(EOM)-CC formalism developed therein has

subsequently been applied in a number of studies (illustrating, for example, how cavity interactions

can influence electron ionization/attachment40,41,43,44 reaction rates,18,47 and non-bonded interac-

tions42), and the family of QED-CC-inspired approaches also continues to grow. QED-(EOM)-CC

has been generalized to make use of non-particle-conserving operators,41 to employ unitary cluster

operators,43 for the description of chiral cavity modes,46 and for wave-function-in-DFT embed-
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ding protocols.45

As mentioned above, one of the attractive features of QED-based many-body theories such as

QED-CC (and QED-EOM-CC) relative to QED-DFT (and QED-TDDFT) is the systematic im-

provability of the former approach. An equally important but underappreciated aspect of QED-CC

is that it is robust against changes to the reference orbitals. This property is inherited from the

conventional (non-QED) formulation of CC theory and stems from the presence of the exponen-

tiated single excitation operator, eT̂ 1 , which closely resembles an orbital rotation operator (except

that it is not unitary). Indeed, it is well known that energies calculated at the CC with single and

double excitations (CCSD)58 level of theory often closely reproduce energies computed using the

Bruekner coupled-cluster doubles (BCCD) approach,59–61 which variationally optimizes the or-

bitals for the coupled-cluster doubles wave function. In the context of QED-CC, eT̂ 1 should be

able to account for orbital relaxation effects induced by the cavity in the underlying QED-HF wave

function should one choose to seed a QED-CC calculation with a non-QED Hartree-Fock reference

configuration (see Fig. 1); QED-EOM-CC results obtained in either case should then be similar.

A related matter derives from the fact that QED-CC calculations are typically carried out using

a coherent-state transformed Hamiltonian,38 which guarantees invariance of the QED-CC energy

with respect to the placement of the origin. The QED-CC cluster operator contains an exponenti-

ated boson creation operator term that should be able to mimic the effects of this transformation,

and thus we expect the origin dependence of QED-CC to be modest when using a Hamiltonian that

has not been transformed to the coherent-state basis. On the other hand, as we demonstrate below,

QED-TDDFT results are quite sensitive to whether or not the Kohn-Sham orbitals are allowed to

relax in the presence of the cavity and whether the Hamiltonian that enters the QED-TDDFT equa-

tions is represented within the coherent-state basis. This point is subtle, yet important, given that

a variety of QED-TDDFT prescriptions have been put forth and not all of them account for the

presence of the cavity self-consistently.29,30

In this work, we examine how cavity-induced changes to the orbitals and the coherent-state

transformation affect the energies of cavity-embedded molecules treated at the QED-EOM-CC
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and QED-TDDFT levels of theory. Before doing so, we present the theory underlying relaxed and

unrelaxed versions of these approaches, which differ in the treatment of the cavity at the mean-

field level. The details of our calculations are then provided in the Computational Details, and

numerical studies exploring the robustness of QED-TDDFT and QED-EOM-CC to the description

of cavity effects at the mean-field level can be found in the Results and Discussion. Lastly, we

conclude with a summary of the outcomes from our numerical studies.

Theory

In this Section, we outline some key details of the QED-EOM-CC and QED-TDDFT approaches.

Both of these methods model the physics of a cavity-embedded molecular system using the Pauli–

Fierz Hamiltonian,62,63 which we represent in the length gauge and within the dipole and Born-

Oppenheimer approximations. For a single-mode cavity, this Hamiltonian takes the form

ĤPF = Ĥe +ωcavb̂
†
b̂−

√︃
ωcav

2
(λ · µ̂)

(︂
b̂

†
+ b̂

)︂
+

1
2
(λ · µ̂)2

(1)

Here, Ĥe and ωcavb̂
†
b̂ are the Hamiltonians for the isolated many-electron system and the cavity

mode, respectively; ωcav is the frequency of the cavity mode, and b̂
†

(b̂) is a bosonic creation

(annihilation) operator. The third term in Eq. 1 describes the coupling between the molecular

degrees of freedom and the cavity mode, which is parametrized by the coupling strength, λ; the

symbol µ̂ represents the molecular dipole operator. The fourth term is the dipole self-energy

contribution. In the single-molecule coupling limit, the coupling strength is related to the effective

mode volume, Veff, as

λ= λ ê=

√︃
4π

Veff
ê (2)

where ê is a unit vector pointing along the cavity mode polarization axis.
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Cavity QED Coupled-Cluster Theory for Ground and Excited States

Cavity QED Hartree-Fock Theory

The cavity QED Hartree-Fock (HF) wave function is a product of a Slater determinant of molecular

spin orbitals, |0e⟩, and a zero-photon state, |0p⟩. Following Ref. 38, the zero-photon state can be

exactly represented using the coherent-state (CS) transformation

|0p⟩ = ÛCS|0⟩= exp
(︂

zb̂
† − z∗b̂

)︂
|0⟩ (3)

Here, |0⟩ is the photon vacuum, and

z =−λ · ⟨µ⟩√
2ω

(4)

The symbol ⟨µ⟩ represents the expectation value of the molecular dipole operator with respect to

|0e⟩. One can use ÛCS to transform the Hamiltonian to the coherent-state basis to give

ĤCS = Û†
CSĤÛCS

= Ĥe +ωcavb̂
†
b̂−

√︃
ωcav

2
(λ · [µ−⟨µ⟩])

(︂
b̂

†
+ b̂

)︂
+

1
2
(λ · [µ−⟨µ⟩])2 (5)

In the coherent-state basis, the QED-HF wave function has the simple form

|Φ0⟩= |0e⟩⊗ |0⟩ (6)

and |0e⟩ can be determined via a standard SCF procedure using ĤCS after integrating out the photon

degrees of freedom, i.e.,

⟨0|ĤCS|0⟩= Ĥe +
1
2
(λ · [µ−⟨µ⟩])2 (7)

We refer to a QED-HF wave function determined in this way as “relaxed,” in the sense that the

electronic spin orbitals account for the presence of the cavity (through the dipole self energy term
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in Eq. 7); the relaxed mean-field energy is the expectation value of Eq. 5 with respect to Eq. 6.

On the other hand, an “unrelaxed” QED-HF wave function has the same form (Eq. 6), but |0e⟩

is instead determined from an SCF procedure that considers only Ĥe. The unrelaxed mean-field

energy is the expectation value of Eq. 1 with respect to Eq. 6.

Ground-state QED-CC theory

The QED-CC wave function is defined as

|ΨCC⟩= eT̂ |Φ0⟩ (8)

where T̂ is the cluster operator. At the QED-CCSD-1 level of theory,38 T̂ includes up to products

of double electronic transitions and a single photon creation operator:

T̂ = ∑
ia

ta
i â†

aâi +
1
4 ∑

i jab
tab
i j â†

aâ†
bâ jâi

+ u0b̂
†
+∑

ia
ua

i â†
aâib̂

†
+

1
4 ∑

i jab
uab

i j â†
aâ†

bâ jâib̂
†

(9)

Here, â† and â represent fermionic creation and annihilation operators, respectively; the labels i /

j and a / b refer to spin-orbitals that are occupied or unoccupied in the QED-HF reference wave

function, respectively; and ta
i , tab

i j , u0, ua
i , and uab

i j are the cluster amplitudes. As mentioned above,

in the case of unrelaxed QED-CC, the exponentiated single excitation operator, eT̂ 1 , can mimic

the effects of cavity-induced orbital relaxation effects in relaxed QED-HF, and the term eu0b̂
†

is

important for capturing the effects of the coherent-state transformation operator ÛCS itself (see

Fig. 1).

The cluster amplitudes are determined using projective techniques, i.e., by solving

⟨µe|⊗ ⟨n|e−T̂ ĤAeT̂ |0⟩⊗ |0e⟩ = δµ0δn0ECC (10)
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Figure 1: The cluster operator and similarity-transformed Hamiltonian in relaxed and unrelaxed
QED-CCSD-1 (QED-CC with up to single and double electronic excitations plus single photon
creation operators).38 The single electron excitation and boson creation contributions to the clus-
ter operator can account for the effects of orbital relaxation in QED-HF and the coherent-state
transformation, respectively.

Here, ⟨µe| and ⟨n| represent a determinant of spin-orbitals and a photon-number state with n pho-

tons, respectively; ECC is the energy associated with |ΨCC⟩; and the subscript A refers to the

type of Hamiltonian. For relaxed QED-CC, ĤA = ĤCS; for unrelaxed QED-CC, ĤA = ĤPF. At the

QED-CCSD-1 level of theory, ⟨µe| can represent the reference or any singly- or doubly-substituted

determinant of spin-orbitals, and n can be zero or one.

Excited-state QED-EOM-CC theory

Given cluster amplitudes obtained by solving Eq. 10, excited states can be parametrized using the

QED-EOM-CC formalism.38 The left- and right-hand QED-EOM-CC wave functions are defined

by

⟨Ψ̃I|= ⟨Φ0|e−T̂ L̂I (11)

|ΨI⟩= R̂IeT̂ |Φ0⟩ (12)
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where the label I denotes the state. At the QED-EOM-CCSD-1 level,38 the operators L̂I and R̂I

take the form

L̂I = Il0 +∑
ai

Il
i
aâ†

i âa +
1
2 ∑

abi j

Il
i j
abâ†

i â†
j âbâa

+ Im0b̂+∑
ai

Im
i
aâ†

i âab̂+
1
2 ∑

abi j

Im
i j
abâ†

i â†
j âbâab̂ (13)

and

R̂I = Ir0 +∑
ai

Ir
a
i â†

aâi +
1
2 ∑

abi j

Ir
ab
i j â†

aâ†
bâ jâi

+ Is0b̂
†
+∑

ai

Is
a
i â†

aâib̂
†
+

1
2 ∑

abi j

Is
ab
i j â†

aâ†
bâ jâib̂

†
(14)

The l/m and r/s amplitudes are determined by solving left- and right-hand eigenvalue equations

⟨Φ0|L̂IH̄ = ⟨Φ0|L̂IEI (15)

and

H̄R̂I|Φ0⟩= EIR̂I|Φ0⟩ (16)

where H̄ = e−T̂ ĤAeT̂ is the similarity-transformed Hamiltonian, and EI represents the energy of

the Ith state. As in QED-CC, the choices ĤA = ĤCS and ĤA = ĤPF lead to relaxed and unrelaxed

forms of QED-EOM-CC, respectively.

Cavity QED Density Functional Theory

A large body of literature describes quantum electrodynamical generalizations of DFT and TDDFT

that differ in several aspects. First, for electronic degrees of freedom, some of these approaches

represent the electronic density in real space,27,31,36,64,65 whereas others use atom-centered Gaus-

sian basis functions.19,29,30,45 Second, photon degrees of freedom can be represented directly in
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real-space20,24,66 or in Fock space19,29–31,45 (in a basis of photon-number states). Third, as with

standard TDDFT, both real-time24,31 and linear-response19,27,29,30,65 formulations have been put

forward. In this work, we consider linear-response QED-TDDFT formulated in terms of Gaussian

basis functions and a Fock-space representation of the photon degrees of freedom. In analogy to

the relaxed and unrelaxed QED-EOM-CC methods described above, we consider both relaxed and

unrelaxed linear-response QED-TDDFT approaches that are equivalent to those described in Refs.

29 and 19.

Cavity QED Kohn-Sham DFT

The QED-HF procedure outlined above can easily be adapted to the case of QED Kohn-Sham

DFT. First, one can map the QED-DFT ground-state onto a non-interacting state of the form of

Eq. 6, where |0e⟩ now refers to a determinant of Kohn-Sham orbitals. Second, similar to the case

of QED-HF, a “relaxed” Kohn-Sham determinant can be determined from an SCF procedure that

makes use of the coherent-state Hamiltonian in Eq. 7, with the energy augmented by a standard

exchange-correlation functional. On the other hand, an “unrelaxed” QED-DFT state can be ob-

tained from an SCF procedure that neglects the dipole self-energy contribution to Eq. 7. Note

that our formulations of relaxed and unrelaxed QED-DFT both ignore electron-photon correlation

effects, such as those captured by the functionals described in Refs. 23,35–37.

Cavity QED Time-Dependent Density Functional Theory

Excited states in QED-TDDFT are parametrized as

|ΨI⟩= Ô
†
I |Φ0⟩ (17)

with

Ô
†
I = ∑

ia
(X I

iaâ†
aâi −Y i

iaâ†
i âa)+MI b̂

† −NI b̂ (18)
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In analogy to Rowe’s equation of motion method,67 this parameterization leads to a generalized

eigenvalue problem of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A+∆ B+∆′ g† g†

B+∆′ A+∆ g† g†

g g ωcav 0

g g 0 ωcav

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

X

Y

M

N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Ω

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

X

Y

M

N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(19)

Here, A and B are the same matrices that arise in the usual random phase approximation (RPA)

problem, e.g.,

⟨Φ0|[â†
i âa, [ĤA, â

†
bâ j]]|Φ0⟩= (A+∆)ai,b j (20)

etc., with exchange contributions of A and B replaced/augmented by appropriate derivatives of the

exchange-correlation functional for TDDFT. The symbols ∆ and ∆′ represent dipole self-energy

contributions of the form

∆ai,b j = daid jb −dabdi j (21)

∆
′
ai,b j = daidb j −da jdib (22)

where dai is a dressed dipole integral

dai =− ∑
ξ∈{x,y,z}

λξ

∫︂
φ
∗
a rξ φidτ (23)

Here, φ is a Kohn-Sham orbital, λξ is a cartesian component of λ, and rξ is a cartesian component

of the position vector [e.g., for r = (x,y,z), rx = x]. For relaxed QED-TDDFT, ĤA = ĤCS, and for

unrelaxed QED-TDDFT, ĤA = ĤPF. In order to recover the same equations as those used in the

unrelaxed QED-TDDFT formalism of Ref. 29, one must also neglect the exchange contributions

to ∆ and ∆′ in Eqs. 21 and 22.
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Computational Details

The QED-TDDFT and QED-EOM-CCSD-1 methods were implemented in hilbert,68 which is

a plugin to the PSI469 electronic structure package. Equations for the QED-CCSD-1 and QED-

EOM-CCSD-1 were generated using a locally-modified version of p†q,70 which is a library for

manipulating strings of second-quantized operators such as those that arise in coupled-cluster the-

ory. All QED calculations used the 6-311++G** basis set with Cholesky-decomposed two-electron

integrals and a tight decomposition threshold of 10−12 Eh. As mentioned in the Theory section,

QED-TDDFT calculations used standard density functional approximations from electronic struc-

ture theory that neglect electron-photon correlation effects. Geometries for all molecules were op-

timized at the DFT level of theory, using the 6-311++G** basis set, exact two-electron integrals,

and the PBE071 density functional. Excited-state calculations were carried out in the appropriate

basis of Sz = 0 determinants.

The excited state potential energy curves (PECs) in all QED figures of this work were analyzed

using SuaveStateScanner,72 which assigns consistent labels to multiple states along PECs by

enforcing the continuity of the excited-state energies and properties (e.g., transition dipole mo-

ments, oscillator strengths, and norms of the excitation operators). Having consistent state labels

greatly simplifies comparisons between the various QED approaches we use, particularly since all

of the calculations in this work are performed without enforcing spatial symmetry.

Results and Discussion

In this Section, we analyze the ground- and excited-state energies of a series of diatomic molecules

(molecular hydrogen, hydrogen fluoride, and lithium fluoride), coupled to a single-mode optical

cavity. We use bond lengths of 0.746 Å, 0.918 Å, and 1.582 Å for H2, HF, and LiF, respectively,

and the symmetry labels used to describe excited states correspond to the molecular axis oriented

in the z-direction.
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Ground-state energies of relaxed and unrelaxed QED-CCSD-1

We begin by considering the sensitivity of ground-state energies from QED-CCSD-1 to the treat-

ment of cavity effects at the mean-field level. That is, we wish to assess how well exponentiated

singles and boson creation operators in unrelaxed QED-CCSD-1 can mimic the effects of orbital

relaxation and the coherent-state transformation in relaxed QED-HF and QED-CCSD-1. Table

1 provides ground-state energies from relaxed QED-CCSD-1 for several molecules coupled to a

single-mode cavity with a coupling strength of λ = 0.05 atomic units (a comparable table for

λ = 0.1 a.u. can be found in the Supporting Information). The cavity mode is chosen to be polar-

ized along the molecular axis (resonant with the following states: 11B1u for H2, 21A1 for HF, and

31A1 for LiF) or perpendicular to the molecular axis (resonant with the following states: 11B2u

for H2 or 11B1 for HF and LiF). Also provided in Table 1 are errors in unrelaxed QED-CCSD-1

energies with respect to the relaxed ones. For H2, we see that unrelaxed and relaxed QED-CCSD-1

agree to at least 10−9 Eh, but errors on the order of 10−4 Eh are observed for HF and LiF; the largest

discrepancy between unrelaxed and relaxed QED-CCSD-1 energies is observed for LiF, with the

cavity mode polarized along the molecular axis and resonant with the 11A1 → 31A1 transition

(≈ 0.06× 10−3 Eh). Considering the substantial coupling strength used (λ = 0.05 atomic units),

the magnitudes of these differences suggest that exponentiated singles and boson creation opera-

tors do a reasonable job of capturing the effects of both orbital relaxation and the coherent-state

transformation in relaxed QED-CCSD-1.

We have also evaluated errors in relaxed and unrelaxed QED-CCSD-1 energies when ignor-

ing the exponentiated boson creation operator term, eu0b̂
†
, in the QED-CCSD-1 cluster operator

(labeled “error w/o u0” in Table 1). For relaxed QED-CCSD-1, we see negligible energy devia-

tions from full relaxed QED-CCSD-1; the largest deviations are on the order of 10−6 Eh. On the

other hand, this term is quite important for unrelaxed QED-CCSD-1, where energy errors as large

as 0.008 Eh are observed. The relative importance of the exponentiated boson creation operator

in relaxed and unrelaxed QED-CCSD-1 is reflected in the value of u0, which is also tabulated in

Table 1. We find that, when u0 is non-zero, it can be more than an order of magnitude larger in

13



the unrelaxed case. We also note that, with the exception of one case (H2 with the cavity mode

resonant with the 11B1u state), u0 is only non-zero when the cavity mode is polarized along the

molecular axis.
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Figure 2: Origin dependence of the ground-state QED-CCSD-1 energy (10−9Eh) for hydrogen
fluoride coupled to a cavity mode with a coupling strength of λ = 0.05.

Part of the motivation for the use of the coherent-state transformed Hamiltonian in relaxed

QED-CCSD-1 is that it lends the origin invariance of QED-HF to the correlated problem. On the

other hand, an unrelaxed QED-CCSD-1 protocol should not be strictly origin invariant, although

we expect the exponentiated boson creation operator to mitigate these effects. Figure 2 depicts

how the energy from ground-state QED-CCSD-1 changes as calculations are carried out at various

distances from the origin. We consider hydrogen fluoride with a fixed bond length of 0.918 Å cou-

pled to a cavity mode polarized along the molecular axis, resonant with the 21A1 state, and with a

coupling strength of λ = 0.05 a.u. The distance along the z-axis in Fig. 2 corresponds to the dis-

tance from the center of the bond to the origin, and the translation from the origin is carried out in

the direction of the polarization of the cavity mode. The change in the energy, ∆E, corresponds to

the difference between energies evaluated at the origin and away from it. These data show that the

relaxed QED-CCSD-1 energy is origin invariant, as expected. Two sets of unrelaxed QED-CCSD-

1 data are provided: one in which we include the exponentiated boson creation operator (labeled

“unrelaxed”) and one where we have neglected this term (labeled “unrelaxed w/o u0). We find

that the eu0b̂
†

term is necessary for preserving the origin invariance of unrelaxed QED-CCSD-1;

ignoring this term introduces a small origin dependence in the energy (on the order of 10−9–10−8

Eh). We note that Eqs. 3 and 4 show that the coherent-state transformation operator depends on
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the expectation value of the total QED-HF dipole moment, which should be origin invariant for

neutral species. By analogy, if eu0b̂
†

mimics the behavior of this term for unrelaxed QED-CCSD-1,

u0 itself should also be origin invariant; we have confirmed numerically that this is the case.

Figure 3 depicts a similar study for a charged species (HF+, with an H–F distance of 0.918 Å).

In this case, the QED-HF dipole moment should depend on the placement of the molecule relative

to the origin, and thus, we expect u0 to also acquire an origin dependence in unrelaxed QED-

CCSD-1. The energy from relaxed QED-CCSD-1 is strictly origin invariant and is not shown. For

unrelaxed QED-CCSD-1, if we include the exponentiated boson operator, the energy does pick up

a slight origin dependence; at 10 Å from the origin with λ = 0.05 a.u., the energy differs from that

at the origin by roughly 5 × 10−4 Eh [see panel (a)]. On the other hand, without contributions from

u0, this energy difference grows to almost 0.5 Eh [see panel (c)]. As for u0 itself, this quantity is

origin invariant in the case of relaxed QED-CCSD-1 (not depicted), but it acquires a strong origin

dependence in unrelaxed QED-CCSD-1 [see panel (b)]. The value of u0 changes by roughly 0.8

when the molecule is translated by 10 Å from the origin at λ = 0.05 a.u. As already mentioned, the

origin dependence of u0 is expected, as it mimics the coherent-state transformation; this transfor-

mation is defined by the mean-field dipole moment, which is strongly origin dependent for charged

species.

Before moving on to discuss excited-states from unrelaxed and relaxed QED methods, we

highlight the severe origin dependence of the energy for unrelaxed QED mean-field for cavity-

coupled HF+. Panel (d) of Fig. 3 depicts differences between the unrelaxed QED-HF energy

evaluated at various distances from the origin relative to that computed at the origin. Clearly, the

mean-field energy depends strongly on the choice of origin, and this dependence is of comparable

magnitude to that which we observed for unrelaxed QED-CCSD-1 when ignoring u0 [panel (c)].

This dependence is entirely due to the dipole self-energy contribution, and, since the dipole self

energy term is treated in the same way in unrelaxed QED-DFT, that method also suffers from the

same severe origin dependence.
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Figure 3: Origin dependence of unrelaxed QED-HF and QED-CCSD-1 at various coupling
strengths (λ ) and distances from the origin (10 Å) for charged species (HF+) with ωcav = 0.675019
Eh. Panel (a) depicts the how the unrelaxed QED-CCSD-1 energy differs at a given offset from
that at the origin. Panel (b) shows how u0 in unrelaxed QED-CCSD-1 changes as the molecule is
translated away from the origin. Panel (c) depicts similar information as panel (a), except that u0
has been excluded from the cluster operator in unrelaxed QED-CCSD-1. Panel (d) provides the
difference between the unrelaxed QED-HF energy at a given offset and that at the origin.
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Table 1: Ground-state energies (Eh) from relaxed QED-CCSD-1 and absolute energy errors
(10−3 Eh) from unrelaxed QED-CCSD-1, as well as from relaxed and unrelaxed QED-CCSD-
1 calculations that ignore u0. Also provided are u0 values from relaxed and unrelaxed QED-
CCSD-1 calculations. All calculations consider λ = 0.05 atomic units.

error error w/o u0 u0
system ωcav resonance relaxed unrelaxed relaxed unrelaxed relaxed unrelaxed

H2 0.466751 11B1u −1.167161 0.000000 0.000000 0.000000 0.000000 0.000000
H2 1.522218 11B2u −1.167070 0.000000 0.000000 0.000000 0.000000 0.000000
HF 0.531916 21A1 −100.296930 0.017471 0.002001 0.757147 −0.001815 0.037626
HF 0.375022 11B1 −100.296806 0.015717 0.000054 0.015663 0.000000 0.000000
LiF 0.308401 31A1 −107.233438 0.062602 0.005998 8.095084 0.003957 0.162599
LiF 0.232119 11B1 −107.220994 0.039174 0.000182 0.038991 0.000000 0.000000

Excitation energies of relaxed and unrelaxed QED-TDDFT and QED-EOM-

CCSD-1

We now consider the effects that orbital relaxation and the coherent-state transformation have on

excitation energies derived from QED-TDDFT and QED-EOM-CCSD-1. We have performed re-

laxed and unrelaxed QED-TDDFT and QED-EOM-CCSD-1 calculations on cavity-coupled molecules

with the cavity mode resonant with the following states: 11B1u and 11B2u for H2, 21A1 and 11B1

for HF, and 31A1 and 11B1 for LiF. We compare the computed excitation energies of the relaxed

and unrelaxed formulations of QED-TDDFT to QED-EOM-CCSD-1. Specifically, Figs. 4, 5, and

6 depict changes in excitation energies for H2, HF, and LiF, respectively, as the cavity coupling

strength is increased. Each figure assumes the following format:

• Panels on the left and right correspond to calculations for which the polarization of the cavity

mode was parallel to the molecular axis or perpendicular to it, respectively, with the cavity

frequency resonant with the appropriate cavity-free transition (see above for the specific

states we target).

• The top panels depict the vertical excitation energies (VEE) for several states, shifted by the

cavity frequency (ωcav), as a function of the cavity coupling strength (λ ).

• Relaxed and unrelaxed QED-TDDFT curves are purple and orange, respectively, while the
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green and black curves correspond to relaxed and unrelaxed QED-EOM-CC.

• Solid lines correspond to the polariton states, while dashed lines correspond to non-resonant

states that are nearby in energy. For clarity, QED-EOM-CC states with significant double

electronic transition character are not shown.

• The middle panels show how Rabi splittings from relaxed QED-TDDFT, unrelaxed QED-

TDDFT, and unrelaxed QED-EOM-CC deviate from those from relaxed QED-EOM-CC

(∆ΩR).

• The bottom panels present the deviation from relaxed QED-EOM-CC Rabi splittings as a

percentage.
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Figure 4: Excitation energies for H2 when coupling a cavity mode to the (a) 11B1u and (b) 11B2u (b)
states, using relaxed QED-TDDFT (purple), unrelaxed QED-TDDFT (orange), unrelaxed QED-
EOM-CCSD-1 (green), and relaxed QED-EOM-CCSD-1 (black). The dashed lines correspond to
non-resonant excited states [21Ag in panel (a) and 11B3u in panel (b)], while the solid lines cor-
respond to the polariton states. Panels (c) and (d) show the difference between the Rabi splittings
from relaxed QED-EOM-CCSD-1 to relaxed/unrelaxed QED-TDDFT and unrelaxed QED-EOM-
CCSD-1, and panels (e) and (f) depict these differences as a percentage.
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Figure 4 illustrates how the excited-state landscape of cavity-coupled H2 changes with the cou-

pling strength, for cavity modes that are resonant with the (a) 11B1u and (b) 11B2u states of cavity-

free H2. First, excitation energies from relaxed and unrelaxed QED-EOM-CC are indistinguishable

on the scale of this figure, but they are not numerically identical. In this case, QED-EOM-CCSD-1

is equivalent to the full CI in the electronic space, so we expect the approach to be invariant to

cavity-induced orbital relaxation effects. It is also equivalent to the full CI in the photon space, if

the photon space is truncated at two photon number states (0 and 1). This qualifying statement is

important, for the following reason. The coherent-state transformation of the Hamiltonian should

preserve the spectrum of the Hamiltonian, but the spectrum is only preserved in the limit that the

photon space is complete. Indeed, we do not see exact numerical agreement between relaxed and

unrelaxed QED-EOM-CCSD-1 for this reason (differences on the order of 10−6 Eh are observed

for λ = 0.1 a.u.; see Supporting Information). Nonetheless, relaxed and unrelaxed QED-EOM-CC

results are nearly indistinguishable in this case.

Curves corresponding to polariton formation involving the 11B1u state reveal significant dif-

ferences between QED-EOM-CC and both relaxed and unrelaxed QED-TDDFT. In the case of

relaxed QED-TDDFT, both the Rabi splitting (the difference in energy between the upper and

lower polariton states, ΩR) and the energies of the states that are not resonant with the cavity mode

are more sensitive to cavity effects in the strong coupling limit than the same quantities derived

from QED-EOM-CC calculations; this is a general trend we observe for all systems considered in

this work. For a cavity mode resonant with the 11B1u state, we can see that the λ -dependence of

the lower polariton state energy derived from QED-EOM-CC is in better agreement with unrelaxed

QED-TDDFT than with relaxed QED-TDDFT. On the other hand, these three methods predict no-

ticeably different trends in the λ -dependence of the upper polariton state. The shift in the upper

polariton energy from unrelaxed QED-TDDFT is too small, and that from relaxed QED-TDDFT

is too large; QED-EOM-CC splits the difference. In the large-λ limit, Figs. 4(c) and (e) indi-

cate that relaxed QED-TDDFT provides better Rabi splittings than unrelaxed QED-TDDFT, given

QED-EOM-CC results as a reference. The maximum deviation between relaxed QED-TDDFT
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and QED-EOM-CC Rabi splittings is 0.41 eV (13.8%) at λ = 0.1, while unrelaxed QED-TDDFT

and QED-EOM-CC splittings differ by −0.85 eV (−28.6%) at the same coupling strength. The

λ -dependence of the non-resonant states [indicated by dashed lines in Fig. 4(a)] is also interesting.

Here, we see the excitation energy of the non-resonant state is mostly unaffected by the cavity

mode in the case of unrelaxed QED-TDDFT. On the other hand, both relaxed QED-TDDFT and

QED-EOM-CC predict an increase in the excitation energy, and QED-TDDFT exaggerates this

effect. We conclude that, because this state does not directly interact to the cavity mode, these

changes with increasing coupling strength must stem from cavity-induced changes to the ground

state.

The curves for polariton formation with the 11B2u state of H2 are depicted in the right-hand

panels of Fig. 4. As was seen in panels (a), (c), and (e), relaxed and unrelaxed QED-EOM-CC

display nearly identical λ dependence, which is not surprising, given that QED-EOM-CCSD-1

is equivalent to the full CI (within the truncated photon space). Unlike in panels (c) and (e),

Rabi splittings from unrelaxed and relaxed QED-TDDFT both agree well with those from QED-

EOM-CC [panels (d) and (f)], with maximum deviations on the order of only 10−3 eV. Unrelaxed

QED-TDDFT displays slightly better agreement with QED-EOM-CC than relaxed QED-TDDFT,

but the deviations from QED-EOM-CC overall are small for both QED-TDDFT variants.

Hydrogen fluoride

Figure 5 provides similar data as Fig. 4, but for cavity-coupled hydrogen fluoride. The left panels

correspond to calculations with the cavity mode polarized along the molecular axis and the cavity

mode frequency resonant with the 21A1 state of cavity-free HF. The right panels consider a cavity

mode polarized perpendicular to the molecular axis and resonant with the 11B1 state of isolated

HF. The left panels show similar behavior as depicted in the left panels of Figure 4 for H2. First,

relaxed and unrelaxed QED-EOM-CC results are indistinguishable. Second, the λ -dependence of

the lower polariton from unrelaxed QED-TDDFT agrees well with that from QED-EOM-CC, while

relaxed QED-TDDFT appears to underestimate this dependence. Third, unrelaxed and relaxed
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Figure 5: Excitation energies for HF when coupling a cavity mode to the (a) 21A1 and (b) 11B1
states, using relaxed QED-TDDFT (purple), unrelaxed QED-TDDFT (orange), unrelaxed QED-
EOM-CCSD-1 (green), and relaxed QED-EOM-CCSD-1 (black). The dashed lines correspond to
non-resonant excited states[21B1 in panel (a) and 11B2 in panel (b)], while the solid lines corre-
spond to the polariton states. Panels (c) and (d) show the difference between the Rabi splittings
from relaxed QED-EOM-CCSD-1 to relaxed/unrelaxed QED-TDDFT and unrelaxed QED-EOM-
CCSD-1, and panels (e) and (f) depict these differences as a percentage.
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QED-TDDFT predict a λ -dependence for the upper polariton state that is too small or too large, as

compared to that from QED-EOM-CC, respectively. In terms of the Rabi splitting [panels (c) and

(e)], relaxed QED-TDDFT again provides a better description than unrelaxed QED-TDDFT, given

relaxed QED-EOM-CC as the reference. Here, relaxed and unrelaxed QED-TDDFT Rabi splittings

deviate from those of relaxed QED-EOM-CC by at most 0.20 eV (9.5%) and −0.31 eV (−14.8%),

respectively. The magnitudes of these deviations are smaller than in the case of H2 in the left panels

of Fig. 4 above, which could simply reflect the smaller magnitude of the Rabi splitting itself for the

21A1 state of HF, relative to the splitting for the 11B1u state in H2 (see Supporting Information).

Indeed, the oscillator strength for the 21A1 state of HF (0.1869) is much smaller than that for the

11B1u state of H2 (0.3069), which is consistent with the relative Rabi splittings. Lastly, as was

observed in Fig. 4(a), the excitation energies for the non-polariton states in Fig. 5(a) pick up a

λ -dependence in the case of both relaxed and unrelaxed QED-EOM-CC and for relaxed QED-

TDDFT, with a more pronounced dependence for QED-TDDFT. On the other hand, unrelaxed

QED-TDDFT predicts that these excitation energies are unaffected by the presence of the cavity.

The curves in the right panel of Fig. 5 depict the λ -dependence of excitation energies and Rabi

splittings when the cavity mode is resonant with the 11B1 state of isolated HF. The same qualitative

observations for the left panels Fig. 5 apply here, with the exception that the λ -dependence of the

lower polariton is not well-reproduced by unrelaxed QED-TDDFT. Note also that the behavior

here differs somewhat from the case of the cavity mode polarized perpendicular to the 11B2u of

isolated H2. In that case, all QED approaches provided comparable results, whereas, here, relaxed

QED-TDDFT does a better job of reproducing the λ -dependence of the Rabi splittings predicted by

QED-EOM-CC [panels (d) and (f)]; relaxed and unrelaxed QED-TDDFT Rabi splittings deviate

from relaxed QED-EOM-CC splittings by at most 0.046 eV (5.3%) and −0.067 eV (−7.7%),

respectively. The data in panel (b) also demonstrate that relaxed QED-TDDFT captures the same

qualitative λ -dependence of the non-resonant state predicted by relaxed and unrelaxed QED-EOM-

CC (albeit somewhat exaggerated by QED-TDDFT), whereas unrelaxed QED-TDDFT does not.
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Lithium fluoride

−2.00

−1.50

−1.00

−0.50

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00
(a)

V
E

E
 −

 ω
c
a

v
 (

e
V

)

LiF 3
1
A1

unrelaxed QED−CC

relaxed QED−CC

unrelaxed QED−TDDFT

relaxed QED−TDDFT

−0.75

−0.50

−0.25

 0.00

 0.25

 0.50

 0.75

 1.00
(b)

V
E

E
 −

 ω
c
a

v  (e
V

)

LiF 1
1
B1

−1.50

−0.75

0.00

0.75

1.50 (c)

∆
Ω

R
 (

e
V

)

−0.20

−0.10

 0.00

 0.10

 0.20(d) ∆
Ω

R
 (e

V
)

−100

 −50

   0

  50

 100

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

(e)

∆
Ω

R
 /
 Ω

RC
C

 (
%

)

λ (a.u.)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

−18.0
−12.0
−6.0
 0.0
 6.0

 12.0
 18.0(f)

∆
Ω

R
 / Ω

R C
C

 (%
)

λ (a.u.)

Figure 6: Excitation energies for LiF when coupling a cavity mode to the (a) 31A1 and (b)
11B1 states, using relaxed QED-TDDFT (purple), unrelaxed QED-TDDFT (orange), unrelaxed
QED-EOM-CCSD-1 (green), and relaxed QED-EOM-CCSD-1 (black). In panel (a), the curves
at λ = 0.00 a.u. correspond to the 21A1 and 31A1 states of LiF. The dashed lines in panel (b)
correspond to a non-resonant excited state [11B2], while the solid lines are the polariton states
formed from coupling the cavity mode to the 11B1 state. Panels (c) and (d) show the difference
between the Rabi splittings from relaxed QED-EOM-CCSD-1 to relaxed/unrelaxed QED-TDDFT
and unrelaxed QED-EOM-CCSD-1, and panels (e) and (f) depict these differences as a percentage.

Finally, we come to the case of lithium fluoride. Figure 6 illustrates the λ -dependence of the

excitation energies and Rabi splittings from QED-TDDFT and QED-EOM-CC, for a cavity mode

polarized along the molecular axis and resonant with the 31A1 of cavity-free LiF (left panels) and

for a cavity mode polarized perpendicular to the molecular axis and resonant with the 11B1 of the

isolated molecule (right panels). We note that 31A1 is the second bright 1A1 state of LiF, whereas,

in the previous examples, we had tuned the cavity to the lowest-energy bright state of the given

symmetry. We note that we have not depicted non-resonant excited states in Fig. 6(a) aside from

the 21A1 state for the sake of clarity (these other states have incompatible spatial or spin symmetry

to couple directly to the cavity mode). That said, for such states, we observe the same trends as

have been discussed in the context of the other systems; QED-EOM-CC and relaxed QED-TDDFT
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predict a λ -dependence in these states that is exaggerated by QED-TDDFT, and unrelaxed QED-

TDDFT fails to capture this effect.

In Fig. 6(a), we find that we can induce some interesting behavior by tuning to the second

A1 symmetry bright state of LiF (31A1), which leads to strong interactions between the lower

polariton state and the first bright state (21A1) at larger coupling strengths. Specifically, Fig. 6(a)

demonstrates a coupling-strength-induced avoided crossing between these states that appears at

coupling strengths of roughly λ = 0.070, λ = 0.115, and λ = 0.135 a.u. when modeling the system

with relaxed QED-TDDFT, relaxed QED-EOM-CC, and unrelaxed QED-EOM-CC, respectively.

The avoided crossing appears at smaller λ values for relaxed QED-TDDFT than for relaxed QED-

EOM-CC because, as in the previous cases, relaxed QED-TDDFT exaggerates the λ -dependence

of the states that are not resonant with the cavity mode. Notably, to a coupling strength of λ = 0.15

a.u., we do not observe this avoided crossing feature in unrelaxed QED-TDDFT because it fails

to capture the λ -dependence of the 21A1 state. Also noteworthy is that this example is the first

instance where we observe appreciable differences between relaxed and unrelaxed QED-EOM-

CC. Results from these methods are similar for coupling strengths up to λ = 0.05 a.u. but differ for

larger coupling strengths. These differences may not be terribly important in practical applications,

though, given that these large coupling strengths correspond to effective cavity mode volumes that

are significantly smaller than 1 nm3. For example, λ = 0.1 a.u. corresponds to an effective mode

volume of less than 0.2 nm3, which is smaller than any reported experimentally obtained value of

which we are aware.

One interesting aspect of the avoided crossing is that the character of the lower polariton state

is transferred to the lower-energy state beyond the avoided crossing, which points to potential am-

biguities in designating one and only one state as an upper or lower polariton state in systems with

dense energy manifolds. In order to compare Rabi splittings from each method before and after

the avoided crossing, we simply take the point at which the energy gap between the states is the

smallest as the point at which the crossing occurs; the kinks observed in the curves depicted in

panels (c) and (e) of Fig. 6 correspond to these points. These details aside, we find that neither
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unrelaxed QED-TDDFT nor relaxed QED-TDDFT do a particularly good job of reproducing the

λ -dependence or Rabi splittings from relaxed QED-EOM-CC; in particular, QED-TDDFT Rabi

splittings differ from relaxed QED-EOM-CC ones by roughly 2 eV at λ = 0.15 a.u. These de-

viations are much larger than those observed for other molecules, which reflects the complexity

of the excited-state energy landscape of LiF and calls into question the reliability of either form

of QED-TDDFT in this case. We also note that there are smaller λ values for which unrelaxed

QED-TDDFT Rabi splittings appear to be the better ones, relative to QED-EOM-CC. That said,

the trends in panel (a) suggest that QED-TDDFT does a better job of reproducing qualitative prop-

erties of relaxed QED-EOM-CC when the procedure accounts for the effects of orbital relaxation

and the coherent-state transformation. Aside from the poor behavior of QED-TDDFT, perhaps the

most notable difference here as compared to the earlier examples is the discrepancy between re-

laxed and unrelaxed QED-EOM-CC. The Rabi splittings from these methods differs by as much as

72.2 meV (3.32%) at λ = 0.15, which is larger by an order of magnitude than other systems in this

study (see Supporting Information). The λ -dependence for the 21A1 state is also underestimated

by unrelaxed EOM-QED-CC, which shifts the avoided crossing from λ = 0.115 a.u. to λ = 0.135

a.u.

Lastly, we consider LiF coupled to a cavity mode polarized perpendicular to the molecular axis

and resonant with the 11B1 state of the isolated molecule (right panels of Fig. 6). In this case, the

general trends are similar to what was observed when coupling a cavity mode to the 11B1 state of

HF (right panels of Fig. 5). Again, ignoring orbital relaxation and the coherent-state transformation

in QED-TDDFT decreases the ability of QED-TDDFT to reproduce relaxed QED-EOM-CC Rabi

splittings; at λ = 0.15 a.u., the Rabi splitting from relaxed QED-TDDFT differs from the relaxed

QED-EOM-CC value by 0.19 eV (14.6%); this deviation increases to −0.22 eV (−17.4%) for

unrelaxed QED-TDDFT. Also, as observed previously, unrelaxed QED-TDDFT fails to capture

the λ -dependence of states other than the upper and lower polariton states; this dependence is

captured by relaxed QED-TDDFT, but the sensitivity of these non-resonant states to the cavity

is overestimated, relative to QED-EOM-CC. We also note that, as was observed for polariton
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formation with the 31A1 state, small differences between relaxed and unrelaxed QED-EOM-CC

methods emerge at coupling strengths larger than λ = 0.05 a.u.

Conclusions

Recent intriguing experiments demonstrating the ability to manipulate chemical transformations

via vacuum field fluctuations and polariton formation have inspired the development of several

generalizations of standard electronic structure methods (e.g., coupled cluster theory, density func-

tional theory, configuration interaction, etc.) for the polariton problem. In this work, we have

explored the numerical consequences of some formal aspects of QED-DFT, QED-TDDFT, QED-

CCSD-1, and QED-EOM-CCSD-1. Specifically, we began by investigating the sensitivity of

ground-state energies from QED-CCSD-1 to the treatment of cavity effects at the mean-field

level. We have found that the inclusion of exponentiated single electron transitions and boson

creation operators in QED-CCSD-1 makes the approach robust with respect to the inclusion or

exclusion of cavity effects in the underlying QED-HF calculation; numerically, these terms do a

good job of mimicking the effects of orbital relaxation and the coherent-state transformation, re-

spectively. Exponentiated boson creation operators are particularly important for maintaining (or

nearly maintaining, in the case of charged species) origin invariance in unrelaxed QED-CCSD-1.

On the other hand, unrelaxed mean-field approaches display severe origin dependence for charged

species, which arises from the dipole self-energy contribution to the energy.

Beyond the ground state, we have also assessed the role that cavity effects at the mean-field

level can have on excited states computed using QED-TDDFT and QED-EOM-CCSD-1. Several

key details bear repeating. First, for the most part, excitation energies computed from unrelaxed

and relaxed QED-EOM-CC are similar; Rabi splittings differ by less than 9.3 meV (or less than

0.45%) in all cases considered in this work, except near the avoided-crossing for the 31A1 state of

LiF which reaches an error of 72.2 meV (3.32%) at the extreme case of λ = 0.15 a.u. (see Sup-

porting Information). Second, QED-EOM-CC and relaxed QED-TDDFT predict that the energies
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of electronic states that are not resonant with the cavity mode can be significantly perturbed in

the strong coupling limit, and relaxed QED-TDDFT exaggerates this effect. On the other hand,

unrelaxed QED-TDDFT fails to predict any λ dependence in non-resonant states. Third, Rabi

splittings from QED-EOM-CC are more closely reproduced by relaxed QED-TDDFT than by un-

relaxed QED-TDDFT. In the large coupling limit, relaxed QED-TDDFT tends to overestimate

the Rabi splitting, while unrelaxed QED-TDDFT underestimates this quantity. Lastly, the prox-

imity of multiple bright states having the appropriate symmetry to interact with the cavity mode

can lead to complex spectral features; specifically, we have located a coupling-strength-induced

avoided crossing in LiF between the lower polariton (formed from the admixture of the cavity

mode and the 31A1 state) and the 21A1 state. Of the methods studied, unrelaxed QED-TDDFT is

the least capable of describing this phenomenon, because it fails to capture the λ -dependence of

the non-resonant 21A1 state. Given these observations, we caution against the use of unrelaxed

QED-TDDFT.

Supporting Information Relaxed and unrelaxed QED-CCSD-1 energies for ground states of

molecular hydrogen, hydrogen fluoride, and lithium fluoride; Rabi splittings from relaxed QED-

EOM-CCSD-1 for these same molecules; deviations in Rabi splittings computed using relaxed and

unrelaxed QED-EOM-CCSD-1.
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(51) Čížek, J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wave-

function Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods.

J. Chem. Phys. 1966, 45, 4256–4266.
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