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This paper formulates a general cross validation framework for signal
denoising. The general framework is then applied to nonparametric regres-
sion methods such as Trend Filtering and Dyadic CART. The resulting cross
validated versions are then shown to attain nearly the same rates of conver-
gence as are known for the optimally tuned analogues. There did not exist any
previous theoretical analyses of cross validated versions of Trend Filtering or
Dyadic CART. To illustrate the generality of the framework we also propose
and study cross validated versions of two fundamental estimators; lasso for
high dimensional linear regression and singular value thresholding for matrix
estimation. Our general framework is inspired by the ideas in [8] (Chatterjee
and Jafarov, 2015) and is potentially applicable to a wide range of estimation
methods which use tuning parameters.

1. Introduction. Cross Validation (CV) is a general statistical technique for choosing
tuning parameters in a data driven way and is heavily used in practice for a wide variety of
statistical methods. In spite of this, there is very little theoretical understanding of most CV
algorithms used in practice. Within the nonparametric regression literature, rigorous theo-
retical guarantees for cross validated methods are limited to kernel smoothers, local linear
regression methods or ridge regression (see [50], [26], [14]) which are all linear functions of
the data y. There appears to be a need for theoretically backed general framework for build-
ing cross validation procedures for modern nonlinear regression methods. In this paper we
attempt to start filling this gap in the literature by providing a general recipe to build prov-
ably adaptive and rate optimal CV estimators for some nonparametric estimation methods of
current interest.

As an illustrative modern nonparametric regression method, we consider Trend Filtering
(TF), proposed by [24]; see [43] for a comprehensive overview. TF estimators, of order r > 1,
fit rth degree (discrete) splines (piecewise polynomials with certain regularity). In contrast to
classical nonparametric regression methods such as local polynomials, splines, kernels etc.,
TF is a spatially adaptive method as the knots of the piecewise polynomials are chosen in a
data driven fashion. The last few years have seen a flurry of research (e.g [42], [16], [31]) in
trying to understand the theoretical properties of TF. However, all the existing guarantees hold
when the tuning parameter is chosen in an optimal way depending on problem parameters
which are typically unknown. On the other hand, the practical applications of TF almost
always involves cross validating the tuning parameter. This motivates the following natural
question. Is it possible to define a cross validated version of Trend Filtering which provably
maintains all the risk guarantees known for optimally tuned Trend Filtering? This is an
important open question which motivates the study in this paper.

Our main focus is on developing theoretically tractable CV versions for modern fixed
design nonparametric regression/signal denoising methods such as Trend Filtering, Dyadic
CART, other image/matrix denoising methods, etc. Inspired by the idea underlying the cross
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validation method for Lasso, proposed by [8], we formalize a general cross validation frame-
work for estimators in the so called sequence model. This framework, a variant of K fold CV,
provides a unified, theoretically principled and computationally efficient way to design CV
versions for a variety of estimation methods. In particular, we establish a general result about
any CV estimator (which fits in our framework) in Theorem 2.1 which can then be used to
obtain rate optimal guarantees for different estimators of interest.

We use this framework to propose and study a cross validated version of Trend Filtering
with nearly matching theoretical guarantees known for the corresponding optimally tuned
version; thereby answering our main question (in bold) posed above in the affirmative. To
the best of our knowledge, before our work there has been no study done on the theoretical
properties of a cross validated version of Trend Filtering. In practice, a particular CV ver-
sion, implemented in the Rpackage Genlasso [1], is commonly used. However, no theoretical
guarantees are available for this particular version. We outline the differences and similarities
of our CV version with this one and present simulations which suggest that our CV version
exhibits competitive finite sample performance as compared to this version.

We then use this framework to propose and study a cross validated version of Dyadic
CART (DC), a classical regression tree method originally proposed in [12]. In a sense, DC
can be thought of as an ¢y penalized version of Trend Filtering which is an (generalized) ¢;
penalized least squares estimator. In [6], DC has been shown to be a computationally faster
and statistically competitive alternative to Trend Filtering and its multivariate versions such
as the Total Variation Denoising estimator (proposed by [37] and used heavily for image
processing). This makes it natural for us to consider Dyadic CART alongside Trend Filtering
in this paper. In spite of Dyadic CART being a classical nonparametric regression method
and having been applied in various settings over the years; all the available theoretical results
depend on a theoretical choice of the tuning parameter A which depends on unknown problem
parameters. We again show our cross validated version is able to attain nearly the same risk
bound as is known for the optimally tuned one.

Trend Filtering and Dyadic CART are the two prime examples considered in this paper
where we apply our general CV framework. However, our CV framework is quite general
and is potentially applicable to any other method which uses tuning parameters. To illustrate
the generality and flexibility of our CV framework, we further consider two fundamental es-
timation methods, Lasso for high dimensional regression and Singular Value Thresholding
for Matrix Estimation. We propose and study new cross validated versions of these funda-
mental methods. In the case of the Lasso, our cross validated version can be thought of as
the penalized counterpart of the estimator proposed in [8] which cross validates constrained
Lasso. We show our cross validated Lasso estimator enjoys both types of standard rates of
convergence known for optimally tuned Lasso. We finally consider matrix estimation by Sin-
gular Value Thresholding which is a canonical matrix estimation method; see [3], [11], [5].
We use our cross validation framework to derive a cross validated version of Singular Value
Thresholding and provide rigorous adaptivity guarantees for it.

To summarize, this paper gives a general framework for cross validation and presents one
general risk bound (Theorem 2.1) for any CV version of an estimation method which is built
within our framework. Then we consider four different estimation methods, namely a) Trend
Filtering, b) Dyadic CART, c) Lasso and d) Singular Value Thresholding. For each of these
methods, we show how to construct a CV version within our framework. Next, we show how
to apply Theorem 2.1 to our CV versions and establish rate optimality and adaptivity which
is only known for the optimally tuned analogues of these methods. Essentially, our results for
these estimators look like the one below (stated informally),
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THEOREM 1.1 (Informal). Let 0 be an optimally tuned estimation method (any one of
the four stated above). Let Ocvy be our CV version. Then, with high probability,

MSE(Ocy,0") < MSE(6,6*) p(logn)

where 0* denotes the true signal, M SE denotes the usual mean squared error and p(logn)
is a (low degree) polynomial factor of log n where n is the sample size.

Outline: This paper is organized as follows. In Section 2 we describe and explain our cross
validation framework in detail. We also give a general risk bound (see Theorem 2.1) for any
CV estimator which falls under the scope of our framework in this section. We also provide
a sketch of proof of Theorem 2.1 in this section. In Section 3 we propose a CV version of
Dyadic CART and establish an oracle risk bound for it which is only known for an optimally
tuned Dyadic CART. One of the attractive aspects of Dyadic CART is fast computation and
in this section we similarly establish fast computation for our CV version by providing an
algorithm in Section B in the supplementary file. In Section 4 we propose a CV version of
Trend Filtering and establish both the so-called slow and fast rates known for optimally tuned
Trend Filtering. In Sections 5 and 6 we propose CV versions of Singular Value Thresholding
(SVT) and Lasso, and establish that they enjoy similar theoretical guarantees as are known
for the optimally tuned versions. Section 7 discusses some matters naturally related to the
research in this article. Section 8 contains simulations done for the CV versions of Dyadic
CART and Trend Filtering proposed here.

The proofs of all our results are contained in the supplementary file. For instance, Sec-
tion A contains the proof of our general risk bound (which is Theorem 2.1). Sections C, D, E
and F contain the proofs of the risk bounds shown for Dyadic CART, Trend Filtering, SVT
and Lasso respectively. For the convenience of the reader, we have provided proof sketches
at the beginning of Sections C and D.

Notation: Throughout the paper we use the usual O(-) notation to compare sequences. We
write a,, = O(by,) if there exists a constant C' > 0 such that a,, < Cb,, for all sufficiently large
n. We also use a,, = O(by,) to denote a,, = O(by,(logn)®) for some C > 0. The O, notation
is the same as the O notation except it signifies that the constant factor while comparing two
sequences in n may depend on the underlying dimension d. For an event A, we will denote
1(A) to denote the indicator random variable of the event A.

We use C' to denote a universal constant throughout the paper. This will be a positive con-
stant independent of the problem parameters unless otherwise stated. The precise value of the
constant C' may change from line to line. We use [m] denote the set of positive integers from
1 to m. For any vector v € R, we denote its £ norm to be |[v]| = /> ", v?. Similarly, we
use ||v]|o, ||v]|1 and |v|s to denote its £p, 1 and £, norms respectively. Also, for any subset
S C [m], we use vg to denote the vector in RI! obtained by restricting v to the coordinates
in S. For any two vectors v,v’ € R™ we denote ||v — v'||? by SSE(v,v’) where SSE stands
for sum of squared errors. We denote the set of all positive real numbers by R, .

2. Cross Validation Framework. The precise setting we consider is that of signal de-
noising or fixed design regression where we observe y = 6* + ¢, where all these are n x 1
vectors or vectorized matrices/tensors. 8* is the true signal and € is the noise vector consisting
of i.i.d mean 0 subgaussian noise with subgaussian norm o. This model is sometimes called
the subgaussian sequence model and we will use the notation y ~ Subg(0*,?) to mean that
y arises from this probabilistic model. The precise distribution of the errors € could be any-
thing as long as subgaussianity is satisfied. The problem is to denoise or estimate the signal
0* after observing y. Many well known and popular methods to estimate 6* in this model
involve the use of tuning parameters. For such methods, we now lay out our general K fold
cross validation framework.



2.1. A General Framework of Cross Validation. The following 6 general steps consti-

tute our CV framework. This is a variant of K > 2 fold CV and is different from the typical
K fold CV in some respects. Let 0) be a given family of estimators (with tuning parameter
) for which a CV version is desired.

1.

Choose the number of folds K.

2. Partition [n] into K disjoint index sets or folds I3, I, ..., Ix. We allow this division to be

. For each j € [K] and any choice of a tuning parameter \; > 0, construct a version of 6(

done in a deterministic way or by using additional randomization. For any j € [K], denote
If to be the index set which excludes the indices in I}, thatis I = [n] \ I;.

Aj)
which only depends on the data y through the coordinates in I7 or in other words is a
function of yc. We denote this estimator by 6*15) € R™,

. For each j € [K], choose a finite set of possible candidate values of the tuning parameter

Aj, namely A;. The set A; can be chosen deterministically or even in a data driven way as
a function of yje.

. Forany j € [K ]7, denote the total squared prediction error (as a function of \) on the jth

fold by

(AI5)

N 2
CVERRj()\):"yIJ.—GI7 ; ‘

Define j\j to be the candidate in A; for which the prediction error on the jth fold is the
minimum, that is,

Aj:=argminCVERR;(\).
XEA,
Now define an intermediate estimator § € R” such that

~ (I8 .
(1) 91]:92. D jelx

. Define A\ = argmin,, [V — ]|> where A C R, is a deterministic set of candidate

tuning parameter values to be chosen by the user. Now define the final estimator Ocy € R"
to be

~

() Oy =0V,

We now discuss about various aspects of our K fold CV scheme and how it differs from

the typical K fold CV scheme.

 Dividing the dataset into folds is typically done randomly which is natural when the design

is random. Since our focus is on fixed design methods or signal denoising methods our
framework is a bit more general and allows deterministic folds as well. In our application
to Trend Filtering we prefer using a simple deterministic strategy to create the folds. This
avoids the use of extra randomization and makes our estimator conceptually simpler. In
other applications such as Low Rank Matrix Estimation and Lasso it is not clear if there
is a sensible way to create folds deterministically and thus we propose to create the folds
randomly.

In any cross validation procedure, one needs to predict on a part of the data based on
observations from the rest of the data. In our framework, the way one does this is by
constructing estimators which are a function of a strict subset of the data. In particular,
for each fold j € [K], the user needs to define estimators O € R™ of §* which are
functions only of y;-. Estimating the true signal §* based on only a subset of the data

y can be thought of as a completion problem. Thus, we refer to the estimators ONT5) ag
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completion estimators. One can use these completion estimators to define the predictions

on the jth fold as 0( 1) . As an example, if the estimation method under consideration is
Trend Filtering, then the user needs to design completion versions of Trend Filtering which
are based only on a strict subset of the data. How exactly can one define these completion
versions is problem specific and is described later.

* In our framework, for each fold j € [K], the user needs to build a finite set of candidate
tuning values A; which is allowed to depend on yre. This gives quite a bit of flexibility
to the user. For example, for Trend Filtering we can use a particular data driven choice
of A; (see the discussion in Section 7.3.1). However, it should be said here that for all of
our estimators, we find that setting A; = A = {1,2,22,. .., 2NV with N* = O(logn), a
simple deterministic exponentially growing grid, is sufficient for our purposes.

* In traditional K fold CV, a single optimized tuning parameter is commonly chosen by
taking A; = A and by minimizing the sum of prediction errors over all the folds, that is,

K

A = arg min Z CVERR;()N).

AEA J=1

In contrast, in our framework we first construct K optimized tuning parameters S\j (one

for each fold) which minimize the prediction error on each fold. We then construct an

intermediate interleaved estimator ¢ by gluing together the optimized fits on each of the

folds as in (1). Finally, we then come up with a single optimized tuning parameter by min-

imizing the squared distance of oA (over a set A) to the intermediate fit 6 as in (2). This

seemingly roundabout way of choosing ) makes our cross validation scheme theoretically
tractable; see our explanation in Section 2.3.

* The main advantage of our variant of K fold CV versus the traditional version of K fold
CV is mathematical tractability (see Theorem 2.1 below). We believe that ingredients of
the theoretical analysis of our variant could be a stepping stone towards a theoretical anal-
ysis of other CV versions used in practice. Furthermore, our simulations suggest that our
CV versions not only enjoy rigorous theoretical guarantees but are also practically useful,
providing good finite sample performance. For example, we found that in our simulations
for Trend Filtering (see Section 8), the practical performance of our CV variant is very
similar with the state of the art CV version implemented by the R package [1].

2.2. A General Result. We now describe the main theoretical result underlying our cross
validation framework. This result is our main tool and is used throughout the paper. This
result bounds the squared error loss of the cross validated estimator 6y defined in (2).

THEOREM 2.1. Let 6™ be a given family of estimators in the subgaussian sequence
model for a tuning parameter \ ranging in the set Ri. Then the K fold cross vali-
dated estimator Ocy defined in (2) satisfies for all x > 0, with probability not less than
1 — 2K exp(—x2/2), the following inequality:

. . log|Aj| 80Kz
— 6% < min ||§V) ML) g Vioe IA|
|6 — 6] < min [0 - o* u+4§e[Kj] min 0,7 67| + 8v20 %{] NN
i J

We now make explain the above theorem in more detail.

* The above theorem holds for all subgaussian error distributions. In the above theorem,
the stated high probability event holds under the joint distribution of the errors ¢ and the
(possibly) independently randomized assignment Iy, ..., [x.
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* Theorem 2.1 bounds the root sum of squared error (RSSE) of the cross-validated estimator
écv as a sum of four terms. The first term is minyep \/SSE(QA()‘), 0*). This is basically

the RSSE of the optimally tuned version of 6™ as long as A is chosen to contain the
theoretically optimal value of A. Clearly, this term is necessary as the CV version has
to incur RSSE atleast as much as what is incurred by the optimally tuned version. For
instance, considering the example of Trend Filtering, state of the art bounds for the RSSE
are known under appropriate choices of the tuning parameter (see [47], [45],[16]). As long
as A is chosen containing these ideal choices of the tuning parameter; this term will scale
exactly like the known bounds for Trend Filtering. The third term says that the dependence
on the cardinality of A; in the bound in Theorem 2.1 is logarithmic so as long as the
cardinalities of A; are bounded above by a polynomial in n our bound would only incur
an additional logn term. It is not hard to ensure that the cardinality of A; is at most a
polynomial in n as will be shown in our applications. The fourth term gives a parametric
O(1/+/n) rate which is always going to be a lower order term.

* The second term appearing in the bound in Theorem 2.1 is really the key term which arises
due to cross validation. Bounding this term becomes the central task in our applications.
The second term behooves us, for each j € [K], to bound CVERR;();) for some good
choice of the tuning parameter \; € A;.

* As per the earlier point, the main mathematical problem then facing us is to design com-
pletion estimators 05-15) and bound the prediction errors miny cr, CVERR;();). For
instance, a first trivial step could be to write

min OVERR;(A;) = min SSE(8;""

L0 ) < min SSE(N1) 6%
NEA; M EA; i

X EN;

where in the inequality we have just dropped the subscript I;. Now, the problem of bound-
ing the R.H.S min) ep, SSE(QAO‘J"I-? ),0*) looks similar to the problem of bounding the
SSE of the original estimator 6™ with one major difference. The estimator 615 is a
completion estimator, meaning that it is a function only of yfj in contrast with the origi-

nal estimator (optimally tuned) 6™ which is based on the full data. Nevertheless, we will
show that for several estimation methods, there exists a way to divide the data into folds
I, I, ..., Ik, design completion estimators 61 for j € [K] so that the prediction er-
rors minyep, CV ERR;(A;) scale like the usual SSE (possibly with an extra multiplicative
log factor) for the original estimation method with optimal tuning. In Sections 4, 3 we will
propose some specific ways to do this for Trend Filtering and Dyadic CART respectively.
A high level intuition why we can expect miny,cp, SSFE (éo‘j’*’; ), 0*) to have same rates

of convergence as miny,ca SSE(O™,6*) is the following. Observe that §*-1) is based
on yfi which has on the order of % data points if I, Is,. .., Ik is chosen to have roughly

equal size. On the other hand, 0™ is based on the full dataset with n points. A good es-
timator based on 7 representative samples should have the same rate of convergence as
a good estimator based on all the n samples with at most worse constants (since K is a
small constant).

REMARK 2.1. Theorem 2.1 is useful only when K is constant and not growing with n.
So it is not useful for leave one out cross validation for instance where K = n. A different
theory would be needed for that and we leave it as a topic for future research.

2.3. Why is our CV Estimator theoretically tractable?. In this section we explain what
makes our CV Estimator theoretically tractable. In particular, we give a proof sketch of The-
orem 2.1.
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Proof Sketch:
» Step 1: A simple argument (see Lemma A.1) shows

O — 0[] <2/ — 0 in || —o*|.
6cv | <2 ||+IA11€1£1H |

Therefore, this step reduces our problem to bounding the squared error of the interme-
diate estimator 6.
e Step 2:
We note that

K K 5

—_— o AAGT5) s

10 —6 1\2:ZCVERRj(A]-):ZSSE(9§j -),9;7,)~
i=1 =1

Therefore, this step reduces our problem to bounding SSE (ég\ﬂ] ), 02) for j =1 say,

as the same argument can be used for all j € [K].

* Step 3:
At this point, we make the crucial observation that conditionally on the (possibly ran-
dom) assignment of folds I1, ..., Ix and the noise variables ¢ re (on all folds except the

)

. . ~(Nj,I¢ . .
jth fold), the estimator H;J ?” can be seen as a least squares estimator (see Step 5 in
J

Section 2.1) over the finite set {ég“ g Aj € A;}. Note that this finite set becomes non
random, once we condition on [q,...,Ix and € Ie- This is because in our framework both
the estimator 01 and the set A; can only be functions of y;:. This allows us to use
an oracle risk bound for a least squares estimator over a finite set (see Lemma A.2) to
conclude a conditional high probability statement for all z > 0,
NOVN & NV L I A
P <SSE(0§_*“IJ),9;) <2 min |60 _ 07 || + av2o(y /28 Ay L 4 T
J 7 Aj EAj J 7 n \/ﬁ

Il,,...,IK,61]¢> Z

1 — 2exp(—x2/20?).

» Step 4: Note that the probability on the R.H.S in the above conditional high probability
statement does not depend on the conditioned variables. Hence, we realize that we can
actually drop the conditioning in the above statement which, along with the display in Step
1, then furnishes the statement in Theorem 2.1.

Let’s compare with the commonly used way of performing K fold CV where A; = A and

K
(3) \ = arg min Z CVERR;()\)

ACA ST

There does not seem to be a way to invoke a conditional least squares estimator intepretation
here as we are minimizing over the sum of prediction errors over all folds at once. In general,
the above method seems harder to analyze. The fact that we first construct K optimized
tuning parameters 5\]- (one for each fold) minimizing the prediction error on each fold is
critical to have this conditional least squares estimator interpretation which allows us to use
least squares theory and makes the theoretical analysis tractable.



3. Dyadic CART.

3.1. Background and Related Literature. The Dyadic CART estimator is a compu-
tationally feasible decision tree method proposed first in [12] in the context of regres-
sion on a two-dimensional grid design. This estimator optimizes a penalized least squares
criterion over the class of dyadic decision trees. Subsequently, several papers have used
ideas related to dyadic partitioning for regression, classification and density estimation; e.g
see [301, [39], [2], [49].

The two main facts about Dyadic CART are

* The Dyadic CART estimator attains an oracle risk bound; e.g see Theorem 2.1 in [6]. This
oracle risk bound can then be used to show that the Dyadic CART estimator is minimax
rate optimal (up to small log factors) for several function classes of interest.

* The Dyadic CART estimator can be computed very fast by a bottom up dynamic program
with computational complexity linear in the sample size, see Lemma 1.1 in [6].

These two properties of the Dyadic CART make it a very attractive signal denoising
method. However, this oracle risk bound is satisfied only when a tuning parameter is cho-
sen to be larger than a threshhold which depends on the unknown noise variance of the error
distribution. In practice, an user is naturally led to cross validate this tuning parameter. To the
best of our knowledge, there has been no rigorous study done so far on Dyadic CART when
the tuning parameter is chosen by cross validation. Our goal here is to propose a cross vali-
dated version of Dyadic CART in general dimensions which retain the two properties stated
above. We now set up notations, define the Dyadic CART estimator more precisely and state
the existing oracle risk bound.

3.2. Notations and Definitions. Letus denote the d dimensional lattice with N points by
Lan={1,...,n}? where N = n?. The lattice design is quite commonly used for theoretical
studies in multidimensional nonparametric function estimation (see, e.g. [29]) and is also
the natural setting for certain applications such as image denoising, matrix/tensor estimation.
Letting 8* denote the true signal, our observation model becomes

y=0"+e,

where y, 0%, € are real valued functions on L, ,, and hence are d dimensional arrays. Further-
more, € is a noise array consisting of i.i.d subgaussian errors with an unknown subgaussian
norm o > 0.

For any a < b € Z, let us define the interval of positive integers [a,b] :={i € Z; :a <
i < b} where Z, denotes the set of all positive integers. For a positive integer n we also
denote the set [1, 7] by just [n]. A subset R C Ly, is called an axis aligned rectangle if R is
a product of intervals, i.e. R = Hle [a;, b;]. Henceforth, we will just use the word rectangle
to denote an axis aligned rectangle. Let us define a rectangular partition of Lg ,, to be a set of
rectangles R such that (a) the rectangles in R are pairwise disjoint and (b) Ugrer R = Lg .

For a given rectangle R C Ly, and any 6 € REan let us denote the array obtained by
restricting 6 to R by . For a given array 0 € R, let k(0) denote the smallest positive
integer k such that a set of k rectangles R1, ..., Ry, form a rectangular partition of Ly, and
the restricted array O, is a constant array. In other words, k(0) is the cardinality of the
minimal rectangular partition of L ,, such that ¢ is piecewise constant on the partition.

3.2.1. Description of Dyadic CART. Let us consider a generic discrete interval [a, b]. We
define a dyadic split of the interval to be a split of the interval [a, b] into two equal intervals.
To be concrete, the interval [a, b] is split into the intervals [a,a — 1+ [(b —a + 1)/2]] and
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[a+ [(b—a+1)/2],b]. Now consider a generic rectangle R = H‘iizl [ai, b;]. A dyadic split
of the rectangle R involves the choice of a coordinate 1 < 5 < d to be split and then the jth
interval in the product defining the rectangle R undergoes a dyadic split. Thus, a dyadic split
of R produces two sub rectangles R; and Ry where R = R N R{ and R?; is of the following
form for some j € [d],

Jj—1 d
Ry = [las,bi] % laj a5 — 1+ [(b; —a; +1)/2]] x [T [ai,bil.
=1 i=j+1

Starting from the trivial partition which is just L ,, itself, we can create a refined partition
by dyadically splitting L ,,. This will result in a partition of Lg , into two rectangles. We can
now keep on dividing recursively, generating new partitions. In general, if at some stage we
have the partition IT = (R, ..., Ry), we can choose any of the rectangles R; and dyadically
split it to get a refinement of II with £ + 1 nonempty rectangles. A recursive dyadic partition
(RDP) is any partition reachable by such successive dyadic splitting. Let us denote the set
of all recursive dyadic partitions of Ly ,, as Prqp 4,,- Indeed, a natural way of encoding any
RDP of Lg,, is by a binary tree where each nonleaf node is labeled by an integer in [d]. This
labeling corresponds to the choice of the coordinate that was used for the split.

For a given array 6 € Rlan | et krap (@) denote the smallest positive integer k such that a
set of k rectangles Ry, ..., Ry form a recursive dyadic partition of Lq, and the restricted
array Og, is a constant array for all 1 < i < k. In other words, k,qp,(6) is the cardinality of
the minimal recursive dyadic partition of L, such that 6 is constant on every rectangular
partition.

By definition, we have for any § € RLan,

k(8) < krap(6).

We can now define the Dyadic CART estimator for a tuning parameter A > 0,

4) 6N = argmin (|ly — 0]|* + Meyap(6)).
geR d.n

Equivalently, we can also define o) = Ps_,,y, where 7

defined as

is a data dependent partition

#N .= argmin (Ily — Ps,ylI* + Alrl).
TEPrap,d,n
In the above, for any m € Prqp.a.n, Sx denotes the subspace of RLan which consists of all
arrays which are constant on every rectangle of m and Ps_ denotes the orthogonal projec-
tion matrix on that subspace. The discrete optimization problem in the last display can be
solved by a dynamic programming algorithm in O4(V) time which makes fast computation
of Dyadic CART possible.

3.2.2. Existing Oracle Risk Bound and its Implications. We now state the oracle risk
bound satisfied by the Dyadic CART estimator.

THEOREM 3.1. [Theorem 2.1 in [6]]

Suppose the error vector € is gaussian with mean 0 and covariance matrix o>I. Then
there exists an absolute constant C' > 0 such that if we set X\ > Co? log N, then we have the
following risk bound

E[[6W) — %2 < nf (3110 — 0%[|% + 2 kyap(0)] + Co®.
c N
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In the case when d = 2 the above oracle risk bound had already appeared in the original
paper [12], albeit up to an extra log factor. This oracle risk bound actually can be used to
show that the Dyadic CART estimator adaptively attains near optimal rates of convergence
for several function classes of interest. For instance, the above oracle risk bound was used
in [12] to show that Dyadic CART is minimax rate optimal over several bivariate anistropic
smoothness classes of functions. In [6], the above oracle risk bound was used to show that the
Dyadic CART estimator is minimax rate optimal over the class of bounded variation signals
in general dimensions and thus matches the known rates of convergence attained by the Total
Variation Denoising estimator; see [22], [38]. It has been explained in detail in [6] how the
above oracle risk bound (along with its fast computation) puts forward Dyadic CART as a
computationally faster alternative to Trend Filtering and its multidimensional versions while
essentially retaining (and even improving in some aspects) its statistical benefits.

The main question we consider here is the following.

Can a cross validated version of Dyadic CART still attain the oracle risk bound in The-
orem 3.1?

To the best of our knowledge, the above question is unanswered as of now. We answer
this question in the affirmative in this paper. Since our cross validated version of Dyadic
CART will also satisfy a result very similar to the oracle risk bound as in Theorem 3.1 it will
essentially inherit all the known results for the usual Dyadic CART mentioned above.

3.3. Description of the CVDCART estimator. We will follow our general scheme of
defining cross validated estimators as laid out in Section 2.1. Let §*) be the family of Dyadic
CART estimators with tuning parameter A > 0 as defined in (4).

1. Set K =2.

2. We divide L, randomly into two folds/subsets I, I as follows: Let W € RLan be a
random array consisting of i.i.d Bernoulli(1/2) entries. Now define

I :{(i17...,id) eLd,nZW(ilw--,id):l}.

The set I5 is just the complement of Iy in L ,.

3. Next, we define the estimators for j € {1,2},

6)) M) = argmin||ys, — 07, ||> + Merap(6).-
geRYd.n ' '

Note that 1) is a completion version of Dyadic CART because it only depends on yy, .

4. Consider an exponentially spaced finite grid of possible values of the tuning parameter
Aj, namely A; = {1,2,22,23 ... 2N"}, for j € {1,2}, where the choice of N* will be
determined later. Now define 5\]- to be the candidate in A; for which the prediction error
CV ERR; is the minimum, that is,

< AT | (2
Aj = argminHyIj - 92’[]) , je{L,2}.

XEA,

Now define an intermediate estimator 6 € RL4.» guch that

~ A2y, 0¢ .
©6) b, =0, jef12).
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5. Define

A = argmin || — 4|2

AEA
where A = {1,2,22,23,...,2V"}. Finally, our estimator (CVDCART) Ocv pe is defined
such that

(7 dcv e =60,

3.4. Computation of the CVDCART estimator. 'The major step in computing bcvpe
is to compute ML) for j = {1,2}. We present a lemma below stating the computational
complexity of 8oy pc.

LEMMA 3.2. Let I denote the set I1 or Is. The computational complexity of the comple-
tion estimators 01, i.e the number of elementary operations involved in computing o) g
bounded by C%ddN for some absolute constant C' > 0. Therefore, the overall computational
complexity of Ocv pc is bounded by CN*2¢dN. Since N* can be taken to be O(log N) (as
explained later), the overall computational complexity becomes Oq4(N log N) in this case.

REMARK 3.1. The above lemma ensures that our CVDCART estimator can also be com-
puted in near linear time in the sample size.

In Section B, we describe a bottom up dynamic programming based algorithm to compute
6D The underlying idea behind this algorithm is similar to the original algorithm given
in [12] to compute the original version of Dyadic CART based on the full data. The descrip-
tion of the algorithm in Section B also clarifies what is the computational complexity of the
algorithm, thereby proving Lemma 3.2.

3.5. Specification of 9. There may be multiple solutions to the optimization problem
defined in (5). For our main result (which is Theorem 3.3) to hold, we need to add one
more specification which will complete the definition of 6D for any given subset I C Lg .
Below, we use the notation ¥; to denote the mean of all entries of y in I.

In Section B, it is shown that the optimization problem in (5) can be solved by first solving
the following discrete optimization problem over the space of all recursive dyadic partitions

(8) #=argmin [ Y LRNI#D) > (yu—Trar) +Alr]]

m€Puapdn  Rex weRNI

where the notation ) _ .. means summing over all the constituent rectangles R of 7 and |r|
denotes the number of constituent rectangles of the partition 7.

It is then shown that a solution §*7) to the optimization problem (5) is a piecewise con-
stant array over the optimal partition 7. For all u € R, for each constituent rectangle R of 7
such that the set R N I is non empty,

) O =Gy

It is possible for a constituent rectangle R of the optimal partition 7 to not contain any
data point from I, i.e, the set R N I is empty. In that case, 6}/) can take any constant value
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within R and still be an optimal solution to the optimization problem (5). In such a case, for
all u € R, we set

(10) oM =7,

u

This fully specifies the estimator 6D which is a valid completion version of the Dyadic
CART estimator being a function of y; only.

REMARK 3.2. Note that the above specification still does not mean that o) s uniquely
defined. This is because 7 in (8) is not necessarily uniquely defined. However, as long as
we take a solution 7 to the optimization problem in (8) and then construct oD satisfying
both (9) and (10), Theorem 3.3 holds.

3.6. Main Result for the CVDCART estimator. Now we state an oracle risk bound for
our proposed CVDCART estimator in general dimensions. Before that, let us define the fol-
lowing quantities

R(O*,)\):= inf (3[|0— 0%+ 2\kap(0)), and
OcR dn

V(6*):= max |0 —0,].

w,WELg

THEOREM 3.3. Fix any o > 1 and any 6 > 0. There exists an absolute constant C > 0
such that if we set our grid Aj = A ={1,2,2%,... 27"} for j = {1,2}, satisfying

o2N" > Co?log N,

then we have the following bound
1,4 - o* 2
IEN\GCVDC—Q*Hzg?\f{(R(H*,CUZIOgn)—FozazlogN) (V(U)—i- logN> +a2log(4N*/5)}

with probability at least 1 — & — Cy log(V (0*)V/ N)N =%, where C, Cy, Ca, C3 are absolute
positive constants which may only depend on the underlying dimension d.

It is now worthwhile discussing some aspects of Theorem 3.3.

1. The above theorem basically ensures that the mean squared error (MSE) of our cross vali-
dated estimator 0oy pe can also essentially be bounded (up to additive and multiplicative
log factors) by the desired factor R(6*, 02 log N). The same bound holds for the optimally
tuned version of Dyadic CART as is stated in Theorem 3.1. The only essential difference
is that our bound contains an extra multiplicative factor (@ + /log N)2. The term
V(6*) captures the range of the underlying signal. For realistic signals, the range should
stay bounded. In these cases, this extra multiplicative factor would then be a logarithmic
factor.

2. Theorem 3.3 ensures that our cross validated estimator é()v pc (up to log factors) enjoys a
similar oracle risk bound as the optimally tuned version of Dyadic CART. Therefore, the
CVDCART estimator essentially inherits all the known statistical risk bounds for Dyadic
CART. In particular, CVDCART estimator would be minimax rate optimal (up to log
factors) for several function/signal classes of interest such as anisotropically smooth func-
tions (see [12]), piecewise constant signals on arbitrary rectangular partitions when d < 2
and signals with finite bounded variation (see [6]).
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3. The existing risk bound Theorem 3.1 says that the optimal tuning parameter choice is
Co?log N for some absolute constant C' > 0. Theorem 3.3 holds as long as such a choice
of A is included in A. This suggests that we would like to have the grid of choices A to be
dense enough so that we do not miss the optimal tuning value range. On the other hand,
we would like to have a sparse grid A because the computational complexity scales like
the cardinality of A times the complexity of computing one Dyadic CART estimator for a
given \.

Observe that our risk bound (in particular R(6*, X)) scales proportionally with A. This
implies that missing the optimal tuning value by a factor of 2 means that we pay at most
2 times the MSE of the ideally tuned version. This fact allows us to take a geometrically
growing grid A = {1,2,22,...,2V"}. Selecting such a sparse grid A then has obvious
computational benefits. The only disadvantage here is that N* then becomes like a tuning
parameter to be set by the user. However, in practice and in theory, this seems to be a minor
issue. Theorem 3.3 holds if 2V" is larger than the theoretically recommended choice of
A = Co?log N. Hence, plugging in even a gross overestimate oo, of o and choosing
N* = ' (loglog N +10g 04yerr) for a large enough constant C’ would suffice for any
realistic value of ¢. In our simulations we simply take N* = logy N.

4. Trend Filtering.

4.1. Background and Related Work. Trend Filtering, proposed by [24], is a univariate
nonparametric regression method that has become popular recently; see [43] for a compre-
hensive overview. For a given integer r > 1 and any tuning parameter A > 0, the rth order
trend filtering estimator Hy) is defined as the minimizer of the sum of squared errors when
we penalize the sum of the absolute r*" order discrete derivatives of the signal. Formally,

given a data vector y,

- 1

(11) o) = (argmin =|ly—0|I* + Anr—1||D<r>ey|1>
gern 2

where DU @ .= (03 — 61,03 —6s,...,0, —0,_1) and DM@, for r > 2, is recursively defined

as DG := DO D=1, For any positive integer > 1, let us now define the 7 order total

variation of a vector 6 as follows:

(12) TVO(9) =n "D (9)]1

where || - |1 denotes the usual ¢; norm of a vector.

REMARK 4.1. The n"~! term in the above definition is a normalizing factor and is writ-
ten following the convention adopted in the trend filtering literature; see for instance the
terminology of canonical scaling introduced in [38]. If we think of € as evaluations of a r
times differentiable function f : [0, 1] — R on the grid (1/n,2/n...,n/n) then the Riemann
approximation to the integral f[o,u | £ (t)|dt is precisely equal to TV (9). Here () de-
notes the rth derivative of f. Thus, for natural instances of €, the reader can imagine that
TV (9)=0(1).

A continuous version of these trend filtering estimators, where discrete derivatives are re-
placed by continuous derivatives, was proposed much earlier in the statistics literature by [27]
under the name locally adaptive regression splines. By now, there exists a body of litera-
ture studying the risk properties of trend filtering under squared error loss. There exists two
strands of risk bounds for trend filtering in the literature focussing on two different aspects.
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Firstly, it is known that for any > 1, a well tuned trend filtering estimator ég\r) attains a

P (e /e \ 2r/2r+1
MSE bound O (M)

n
{6 e R : TV(")(#) <V} for a given V > 0 and has been shown in [42] and [48] building on
earlier results by [27]. A standard terminology in this field terms this O(n‘QT/ 2r+1) rate as
the slow rate.

Secondly, it is also known that an ideally tuned Trend Filtering (of order r) estimator
can adapt to || D" (6)||o, the number of non zero elements in the " order differences, under
some assumptions on 0*. Such a result has been shown in [16] (for the constrained ver-
sion of Trend Filtering of all orders) and [31] (for the penalized version of Trend Filtering
with r < 4). In this case, the Trend Filtering estimator of order r attains the near paramet-
ric O(||D(")(6)]|o/n) rate which can be much faster than the O(n~2"/?"*1) rate. Standard
terminology in this field terms this as the fast rate.

The big problem is that the results described above are shown to hold only under theoreti-
cal choices of the tuning parameter. These choices depend on unknown problem parameters
and hence cannot be directly implemented in practice. Moreover different tuning is needed
to achieve slow or fast rates. A square root version of Trend Filtering was proposed by [33]
to mitigate this issue. It has been shown that the ideal choice of the tuning parameter for the
square root version does not depend on the noise variance. However, the tuning parameter
still needs to be set to a particular unspecified constant (differently depending on whether
slow or fast rates are desired) and thus does not really solve this problem.

Therefore, a version of Trend Filtering which chooses the tuning parameter in a data driven
way and attains both slow and fast rates is highly desirable. This naturally leads us to consider
cross validation. Practical usage of Trend Filtering almost always involves cross validation
to choose A; e.g, see [35]. However, no theoretical properties are known for a cross validated
version of Trend Filtering. We attempt to fill this gap in the literature by proposing a cross
validated version of Trend Filtering based on our general framework. Our goal here is to
show that our cross validated version nearly (atmost up to log factors) attains the risk (both
the slow rate and the fast rate) of the ideally tuned versions.

. This bound is minimax rate optimal over the space

4.2. Description of the CVTF Estimator. We will again follow our general scheme of
defining cross validated estimators as laid out in Section 2.1. Fix any r > 1 and let éf\r) be the
family of 7" order Trend Filtering estimators with tuning parameter A > 0 as defined in (11).

1. Set K =r+1.
2. Divide [n] deterministically into K disjoint index sets (ordered) Iy, I2,. .., I as follows.
Let ng = | 7 |. Then for any j € [K], define

Ii={Kt+j<n:t=0,1,...,n0}.
In words, data points K positions apart are placed into the same fold.
3. Forall j € [K], define §(I5) € R" by interpolating y;. as follows:
Yi ifiely
gI5)i = > (=) (D i ifi€ljandi4+r<n.
S (D) Dy ifieljandi+r>n
In words, yj(IJC) is defined in such a way that within the index set /7 it is same as y but for

any index in /j it is linearly interpolated from the neighbouring indices of y in I7 by a rth
order polynomial interpolation scheme.
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4. Next, we define the completion estimators

OIS . S TP L 1 H (r) ‘ .

0 : a%cgeg}}n2“y(lj) 0"+ An D\"o X Jj €Kl
Note that §*47) s a valid completion version as it is a function of y;. only.

5. Consider an exponentially spaced finite grid of possible values of the tuning parameter A,
namely A; = {1,2,22,23 ... 2N"} For any j € [K], define )\; to be the candidate in A,
for which the prediction error is the minimum, that is,

2

NI e K.

)?JIJ- - 9§j ’

Aj i=argmin
AEA;

Now define an intermediate estimator § € R” such that
(13) b, =070 e K.
6. Define

A = arg min Hég\r) —0)?
AEA

where A = {1,2,22,23 ...,2V"}. Finally, our estimator (CVTF) ég‘)/T = is defined such

that

(14) O =03

REMARK 4.2. A different yet valid choice of A; and j\j, A and X is described in Sec-
tion 7.3.1.

4.3. Main Results for the CVTF Estimator. Below we state both the slow rate and the
fast rate results for the proposed CVTF estimator.

THEOREM 4.1. [Slow Rate]
Fix any r > 1 and any § > 0. There exists a constant C,. only depending on r such that if
we take our grid A = {1,2,2%,23, ... 2N} satisfying

N > Cra(n log n) L/ @r+l)

then we have the following bound with probability at least 1 — 0,
2C,V*
n""

1 (7 * r) n*
E— 063 rr — 071 < D9

+ Cro? <n_2311(V* log(n/é))?r1j + N7+ log(1/0) log(1/5)> ;

n

where V* =n"~! HD(T)G*HI =TV"(6*).

THEOREM 4.2. [Fast Rate]

Fixany 1 <r <4 and any § > 0. Let s = |D"0*||o and S = {j : (D")6*); # 0}. Then
S can be represented as S = {t1,...,ts} C[n—r|, where 1 <t <--- <ty <n—r. Also,
let tg:=0 and ts11 :=n — r + 1. Next, we define n; :==t; — t;—1, i € [s + 1] and npyax =
maXic[s41] Ti-

Define the sign vector q* € {—1,+1}° containing the signs of the elements in (D")6*)sg,
that is, for every i € [s], ¢ := sign(D"@*),,, and the index set

ST ={2<i<s:q¢ ;=—-1}U{l,s+1}.



16

Suppose 0* satisfies the following minimum length assumption, for a constant ¢ > 1,
Numax < cng and ny > r(r + 2) for all i € S*.

Then there exists a constant C,. only depending on r such that if we take our grid A =
{1,21,22.23 .. 2N satisfying

N > 0 s (2172 nlogn

then we have the following bound with probability at least 1 — 0,

1 A(r) %112 QCTS ’ (r)
E—|6 — 0" < ——|D"O*
05001 < 2

2 *
+ C,o? (s lognlog(n/d) + N+10g(1/5)> .
o] n

n

We now make some remarks to explain certain aspects of the above theorems.

1. We have presented both our slow rate and the fast rate theorem following the notations and
presentation style adopted by [31] in Theorem 1.1 in their paper. We have done this mainly
because our proofs rely on the results developed by [31] and also to remain consistent
with the existing literature. The two theorems above ensure that the éCVTF estimator
essentially attains the slow rate and the fast rate (both implied by Theorem 1.1 in [31])
known for an ideally tuned penalized Trend Filtering estimator. The main difference in
both our bounds are the extra additive terms involving | D(")6*|... However, as we explain
below, this is typically a lower order term.

2. Both the bounds above involve the term |D(")6*| .. Note that under the canonical scal-
ing where V* = O(1), we have | D(")8*|, < || D")6*||; = O(n'~"). This means that the
terms involving | D(")6* |, in our bounds can again be considered to be of a lower order
for all > 1 under realistic regimes of V'*.

3. In light of the above two remarks, under the canonical scaling, the bound in Theorem 4.1

can be read as scaling like the near minimax rate O(nfﬁ) and the bound in Theorem
4.2 scales like the near parametric rate O(|D(")6*|y n=") up to additive lower order terms.
Thus, our bounds show that the CVTF estimator attains the slow rate and the fast rate, up
to log factors, and hence does not suffer too much in comparison to ideally tuned trend
filtering estimators, atleast in the context of rates of convergence.

4. We only state Theorem 4.2 for r € {1,2,3,4} and the assumptions on §* in Theorem 4.2
are identical to the assumptions made in Theorem 1.1 of [31]. This is because our proof
is based on the proof technique employed by [31], as explained in Section D.1. The fast
rate result in [31] also is shown to hold for r € {1,2,3,4}. To the best of our knowledge,
a complete proof of the fast rate for penalized trend filtering of order r > 4 is not yet
available in the literature. In contrast, fast rates have been established for an ideally tuned
constrained trend filtering of all orders; see [16]. It is possible to develop a cross validated
version of the constrained trend filtering using our framework and show that it will then
enjoy fast rates for all orders » > 1. However, in this paper we prefer considering the
penalized version due to its popularity and computational benefits.

5. The assumption 1,4, < cn; for a constant ¢ > 1 means that the length of each of the
blocks in S* are within a constant factor of each other. This kind of minimum length
assumption is standard and is also known to be necessary for fast rates to hold; see Remark
2.4 in [16]. Note that such a minimum length assumption is needed only for the blocks
in ST and not for all blocks. For example, when r = 1, the blocks in & + are either the
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first and last constant pieces of §* or those constant pieces of * which constitute a local
maxima stretch or a local minima stretch.

6. The ideal choice of the tuning parameter (as shown in Theorem 1.1 in [31]) depends on
whether we desire the slow rate or the fast rate. However, both these choices scale (with
n) like n® for some 0 < a < 1. Therefore, as long as 2V is chosen to be larger than
these idealized choices, both the theorems presented above will hold. By construction,
A contains an exponentially growing grid which means that N* can be chosen so that it
grows logarithmically in n, 0. Therefore, in the regime where ¢ stays bounded away from

00, the term 02%&3(”5) = O(logn/n) appearing in both of the above theorems is a
lower order term. In practice, one can choose 2N" — n, for instance, which will satisfy the

required condition for realistic sample sizes n and o.

5. Singular Value Thresholding for Matrix Estimation. Singular Value Thresholding
(SVT) is a fundamental matrix estimation and completion method; see [3], [11], [5]. It is
known that Singular Value thresholding is an all purpose matrix estimation method and per-
forms well in a wide variety of structured matrix estimation problems; see [5]. However, the
existing guarantees for this estimator depend on a thresholding parameter being chosen to
be larger than a cutoff value which depends on the noise variance. In practice, the choice of
the threshold matters in regards to the finite sample performance of the SVT estimator; see
Section 5 (simulations) in [9] where the authors were investigating the SVT estimator in the
context of estimating Nonparametric Bradley Terry Matrices. Thus, it is of both theoretical
and practical interest in using a cross validated version of the SVT estimator. To the best of
our knowledge, a theoretical analysis of a CV version of SVT is not available in the litera-
ture. Our goal here is to demonstrate that our CV framework is well suited to develop a cross
validated version of this fundamental estimator.

5.1. Background and Related Literature. The literature on SVT is vast. For our pur-
poses here, we will just consider one particular result known for an optimally tuned SVT.
We will then develop a CV version of SVT and show that this particular result continues to
hold for our CV version of SVT as well. We consider the basic denoising setting where we
observe

y=0"+¢

where 6* is an underlying n x n signal matrix and € is a n X n noise matrix consisting of
i.i.d subgaussian errors with unknown subgaussian norm ¢. Consider the data matrix y and
consider its singular value decomposition

n

_§ : t

Yy = SiUV; -
i=1

Let Sy = {i: |s;] > A} be the set of thresholded singular values of y with threshold level
A > 0. Define the estimator

(15) é()\) = Z siuivf.
€S

This is how a standard version of the SVT estimator is defined. Under this setting, the fol-
lowing lemma can be traced back at least to Lemma 3 in [40]. It is probable that this result is
even older. We use the notation ||M||,, to denote the operator norm of a n x n matrix M.
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LEMMA 5.1.  For any fixed ) > 0, if the threshold X is chosen such that A = (1 + n)T
with T > ||€||op then we have the following inequality:

16X — 6%||> < 8(1 + n)? me{T o),

where 0;(0%) is the jth largest singular value (in absolute value) of §*.

REMARK 5.1. The above lemma is purely a deterministic inequality; there is no notion
of randomness here.

The following is a standard bound on the maximum singular value of a random subgaus-
sian matrix quoted from [46].

THEOREM 5.2 (Theorem 4.4.5 from [46]). Let € be an n X n matrix whose entries are
independent mean 0 subgaussian random variables with subgaussian norm at most o. Then
there exists an absolute constant C' > 0 such that for any t > 0, we have

P (llellop < Co(vn+1)) > 1 —2exp(—t).

Combining Lemma 5.1 and Theorem 5.2 (after plugging in ¢ = \/n) immediately yields
the following theorem.

THEOREM 5.3. There exists an absolute constant C' > 0 such that if the threshold \ is
chosen satisfying A = C o+/n, then the following inequality holds with probability at least
1 —2exp(—n),

M Z min{no?, o3(0*)}

n2

This theorem reveals the adaptive nature of the SVT estimator. This is because the right
hand side is a deterministic quantity which only depends on the true signal 8*. Intuitively, this
term can be thought of as describing the spectral complexity of 8*. The above risk bound can
be used to derive the rates of convergence of the SVT estimator for several different types of
classes of matrices of interest. We mention two standard classes below. For more interesting
matrix classes where SVT can be applied; see [5].

1. Low Rank Matrices: If 0* has rank k, then ¢;(6*) = 0 for j > k and hence we obtain

a bound on the MSE which is C ,%2 It is well known that this is the minimax rate of
estimation for the class of n x n matrices of rank &.

2. Nonparametric Bradley Terry Matrices: For a general structured class of matrices, one
can typically show by an approximation theoretic argument that the singular values decay
at a certain rate, even if they do not become exactly 0 as in the exact low rank case. For
example, [40] showed that the right hand side in the above theorem scales like % for the
class of n x n Nonparametric Bradley Terry Matrices. These matrices are monotone in
both row and column, upto an unknown permutation and arise in modeling of pairwise
comparison data; see [40], [9].
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The important point to note here is that A needs to be set proportional to o/n for the
above theorem to hold. Since o is typically unknown and the constant C' is unspecified it is
natural to cross validate over \. Therefore, it would be highly desirable for a cross validated
version (where the tuning parameter is chosen in a data driven way) of the SVT estimator to
also satisfy a risk bound of the form given in Theorem 5.3. We propose such an estimator in
the next section.

5.2. Description of the CVSVT estimator. 'We will follow our general scheme of defin-
ing cross validated estimators as laid out in Section 2.1. Let 0V be the family of Singular
Value thresholding estimators with threshold parameter A > 0 as defined in (15).

1. Set K =2.

2. Divide [n] x [n] into I, I5 randomly as follows. Each entry (7, ) € [n] x [n] belongs to
I, or I, with probability 1/2 independently of other entries.

3. Let us denote I; by I and Iy by I°. Define the n x n binary matrix W which takes the
value 1 on the entries in I and 0 elsewhere. Now define 3(I) € R"*" as follows:

where o denotes the operation of entrywise multiplication of two matrices of the same
size. Similarly, define

g(I¢)=2yo (1 —-W).

Thus, §(I),y(I¢) are matrices obtained by zeroing out entries of y (corresponding to
entries in I or /°) and then doubling it.

4. Next, we define the completion estimator 9D to be the SVT estimator applied to the
matrix §(I) with threshold \. Define 6**) similarly using the matrix §(I¢). Note that by
definition, 6*1) is a function only of y7 and hence is a valid completion estimator.

5. Consider an exponentially spaced finite grid of possible values of the tuning parameter
Aj, namely A; = {1,2,22,23 ... 2"} for j € {1,2}. Now define )\; to be the candidate
in A; for which the test error is the minimum, that is,

) 2

" . SO0 IE
Aj = argmlnHy[] — GIJ_ !
AEA,;

, je{L,2}.

Now define an intermediate estimator 6 € RL» guch that
(16) b, =0, jef12).
6. Define

A =argmin||§M) — 4|2,
AEA

where A = {1,2,22,23 ... 2V"}. Finally, our estimator (CVSVT) Ocvsyr is defined
such that

17 Ocvsyr =W,

REMARK 5.2. The last two steps are same as for Dyadic CART and Trend Filtering.
The main difference here is in the way we construct the completion estimator. We essentially
construct ¢(I) as an unbiased estimator of 6* by randomly doubling or zeroing out each entry
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of y and then perform SVT on (/) to create our completion version of the SVT estimator.
This idea of randomly zeroing out and inflating other entries to preserve unbiasedness is
not new and appears in several matrix completion papers. We call this particular method of
creating completion estimators as the zero doubling method. This method is quite generic
and can be used for several other signal denoising methods, see Section 7.2 for more on this.

5.3. Main Result.

THEOREM 5.4. Fix any § > 0. There exists an absolute constant C > 0 such that if we
set our grid Aj = A ={1,2,2% ... 2"} for j = {1,2}, satisfying

2N > C(|0%]00 +0) V1,
then the following inequality holds with probability atleast 1 — 2 exp(—n) — 6,

é()\) _0* 2 C n . . . C .
H72H <=5 | D min{n (6%| +0)?, 07 (6%)} +ﬁ0210g(N /6).

n n

j=1
We now make some remarks about this theorem.

REMARK 5.3. The above theorem ensures that our CVSVT estimator also enjoys the
adaptive risk bound given in Theorem 5.3 with the only difference being that ¢ is replaced
by the term |6* |, + o. In realistic scenarios, the term |#*|, should remain bounded even if
n grows. Therefore, our CVSVT estimator essentially inherits all the implications of Theo-
rem 5.3 for various structured subclasses of matrices.

REMARK 5.4. As mentioned before, setting N* so that 2" is larger than C' (|6*|oc + o) v/
is a mild requirement as it is not hard usually to set upper bounds on the values of ¢ and |0*| .
Note that N* would scale logarithmically in 7, o and |0*| .

6. Lasso.

6.1. Background and Related Literature. The lasso, proposed by [41] is one of the most
popular tools for high dimensional regression. By now, there is a vast literature on analyzing
the mean squared error of lasso. The typical statement of the results say that if the tuning
parameter A is chosen appropriately depending on some problem parameters (which are typi-
cally unknown); then a certain MSE bound holds. However, in practice, the tuning parameter
is often chosen using cross validation. The literature giving rigorous theoretical analysis of
cross validated lasso is far thinner. As far as we are aware, the first few papers undertaking
theoretical analysis of cross validated lasso are [25], [20], [19], [21], [28]. Two papers which
contain the state of the art theoretical results on cross validated lasso are the papers [8], [10].
The paper [8] is the object of inspiration for the current article. They analyzed a two fold
cross validated version of the constrained or primal lasso proposed in [41]. Their result gives
the analogue of the so-called slow rate for Lasso (e.g, see Theorem 2.15 in [36]) in the fixed
design setup. On the other hand, the paper [10] analyzes a related but different cross validated
Lasso estimator and their main result gives an analogue of the fast rate for Lasso (e.g, see
Theorem 2.18 in [36]) under random design with certain assumptions on the distribution of
the covariates and the noise variables.

To the best of our knowledge, a single cross validated lasso estimator which attains both
the slow rate and the fast rate in the fixed design setup has not yet been proposed in the liter-
ature. Our goal here is to demonstrate that designing such a cross validated lasso is possible.
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We consider a two fold cross validated version Bwlasso of the penalized lasso and prove two
results. The first result, Theorem 6.1 gives the so-called slow rate under essentially no as-
sumptions on the design matrix. This extends the result of [8] to cross validated penalized
lasso. Our second result gives the fast rate for the same estimator (.,4s50 Under a standard
incoherence condition on the design matrix X. Thus, we are able to ensure that qualitatively
both the results of [8] and [10] hold for our ﬁcvlasso estimator. We now describe the Bwlasso
estimator precisely. We consider a well specified linear model y = X 5* + € where X is a
fixed n x p design matrix and € € R” is an error vector consisting of i.i.d mean 0 subgaussian
entries. We denote the standard lasso estimator with tuning parameter A by B (M), defined as
follows:
n

BN .= argmin Z(yi*$§5)2+)\||5||1 ,

peERy o

where z! is the ith row of the design matrix X.

6.2. Description of the CVLASSO estimator.

. Set K =2.

. Divide [n] into I;, I5 randomly as follows. Each entry i € [n] belongs to I; or Iy with
probability 1/2 independently of other entries.

3. For j € {1,2}, define

DN =

BN = argmin | 3 (yi — i) + 18]

BER? et

4. Consider a finite grid of possible values of the tuning parameter A, namely A =
{1,2,22,23,...,2V"} where N* is chosen by the user. For any j € {1,2}, define A; to be
the candidate in A for which the prediction error is the minimum, that is,

;\-::argmin Yi — T B()‘I)
pi= g ”

Note that IT = I3 and vice-versa.
5. Now define an intermediate estimator § € R™ such that for any j € {1,2}, if i € I; then

t; = xﬁﬁ(;\j’I;)-
6. Define
A :=argmin || X3 — 4|2
AEA

Finally, our estimator (CVLASSO) is defined to be

Bcvlasso = B(j\)
6.3. Main Results.

THEOREM 6.1. [Slow Rate] Suppose M > 0 is a number such that the design matrix X
satisfies

maxf X4<M
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Fix any 0 < § < 1. Suppose we take our grid A = {1,2,22,... 2N} such that

N > 4\/202M1/2n10gp+ \/202M1/2n10g 1/6.

Then we have the following bound with probability atleast 1 — 7 for an appropriate absolute
constant C > 0,

1,5 . C a2 /Ar— « *
EEHXBCUIU,SSO_XB HQSE |:HB ”% Mnlogp—i—HB HlU Mnlogp/6+02N +0210g1/6 :

REMARK 6.1. The above result is qualitatively similar to the result in Theorem 2.1 in [8].
The main difference is that while that result is about a cross validated version of the con-
strained lasso, our result is about the corresponding cross validated version of the penalized
lasso. There are certain advantages of using the penalized form of Lasso instead of the con-
strained form as mentioned in Remark 6.6.

REMARK 6.2. The bound in Theorem 6.1 basically says that the MSE of éwlas so Scales

like O(||8* 134/ 10%) with high probability if M and o are bounded away from co. Note

that, this result holds essentially without any assumptions on the design matrix. As mentioned
in [8], this MSE scaling agrees with the persistency condition for lasso (under random design)

defined in [15] which says that if || 3*||; = 0((@)1/ %) then persistency holds.

THEOREM 6.2. [Fast Rate] Suppose that the design matrix X satisfies an incoherence
condition

1
<
6k

where k = ||5*||o. Suppose M > 0 is a number such that the design matrix X satisfies

~ pXp

‘XtX

maxf X4<M

Assume that the sample size n is large enough so that
n
21080 < S1ggzp 2
Fix any 0 < § < 1. Suppose we take our grid A = {1,2,2% ...,2N"} such that

N > 4\/202M1/2n10gp—|— \/202M1/2n10g 1/6.

Then we have the following bound with probability atleast 1 — 66 — exp (—W) for an

appropriate absolute constant C > 0,

1,5 . C [k .

E— |1 X Bevtasso = X[ < — [ﬁMaog(p/é))S/ 2+ 0’k Mlog(p/d) + 0 N* + 0% log 1/6] :
REMARK 6.3. Assuming that M and o are terms bounded away from oo, the first term

(inside the brackets) in the bound given in Theorem 6.2 which scales like O ( G (log p)3/ 2)

is dominated by the second term O(klogp) as long as k < O(y/n/logp) which we can
readily check is the interesting regime where we can expect fast rates. This is because as soon
as k = O(y/n/logp), the fast SSE rate O(klogp) = O(v/nlogp) which matches the slow
rate. Therefore, when k£ > O(y/n/logp), one should use the slow rate result in Theorem 6.1.
To summarize, the above result in Theorem 6.2 is useful in the sparse reglme when k <

O(4/n/logp) in which case the MSE of Oupiasso scales like the fast rate O( logp with high
probability.
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REMARK 6.4. In Theorem 6.2, we need a slightly stronger (by a factor of 2) incoherence
condition than the standard one assumed for penalized Lasso in the literature. For example,

Theorem 2.18 in [36] assumes that ’X'TX —Ipxp| < ﬁ It is well known that weaker (than
incoherence) assumptions on the design matrix X such as the restricted isometry property
are also sufficient to ensure fast rates for the lasso. Such results are likely to be true for our
cross validated estimator éwlasso as well. However, we leave this for future research and
just consider the incoherence condition because of two reasons. Firstly, it seems to be the
simplest sufficient condition for fast rates available in the literature and is actually checkable
in practice in contrast to the restricted isometry type properties which are computationally
intractable to check. Secondly, our goal here is to simply demonstrate that both the slow rate
and the fast rate are attainable for a single cross validated lasso estimator. Thus, we prefer to
sacrifice some generality in exchange to demonstrate a phenomenon under a simpler sufficent
condition.

REMARK 6.5. For both of our theorems, the grid A = {1,2,2%,... 27"} needs to satisfy
that 2" > Co+/M1/2nlogyp for a specified constant C. This is a very mild condition to
ensure in practice. The parameter o is the only unknown term and as explained before, even a
gross over estimate can be plugged in without any serious consequences since our grid grows
exponentially. Thus, the number of grid points would be O(lognloglogp) which means
we would need to solve the lasso optimization problem O(lognloglogp) times to compute
éwlassg. In other words, the computational complexity of éwlasso would be O(log nloglogp)
times the computational complexity of computing a single instance of the penalized lasso
estimator.

REMARK 6.6. A potential advantage of the cross validated penalized lasso over con-
strained lasso is as follows. It is known that under certain nonsingularity conditions on the
design matrix X, to attain fast rates for the usual constrained lasso, it is sufficient that the
tuning parameter is chosen to be exactly equal to ||3*||1; see Theorem 2.1 in [4]. Clearly, this
is hard to achieve in practice. It is not known to what extent is this result robust to the choice
of this tuning parameter. For example, Theorem 2.1 in [4] further indicates that if the tuning
parameter is chosen to be ||5*||; £ 1 then it is not possible for the constrained lasso to attain
fast rates. In contrast, the penalized lasso seems to be more robust with respect to the choice
of its tuning parameter. For example, if one sets A to be twice the ideal choice of A known
to achieve fast rates for penalized lasso (e.g, see Theorem 2.18 in [36]), then the risk at most
doubles and hence the rate of convergence remains the same.

The upshot of this is that we can afford to have a grid of A growing exponentially and
still attain fast rates for our estimator 6.,;4ss0. This has significant computational advantages
as this means the cardinality of our grid A is only growing like O(lognloglogp) which
means we have to solve the lasso optimization problem at most O(lognloglogp) times to
compute écvlasso. In contrast, it is likely that the A grid needs to be much finer in resolution
(with cardinality growing like n® for some « > 0) for the cross validated constrained Lasso
proposed in [8] to attain fast rates.

REMARK 6.7. Like in [8] we have proposed a 2 fold cross validated version of Lasso.
However, if it is so desired, one can easily construct a similar K fold version as should be
clear from our general framework and the description of 6.,;,ss0. Similar risk bounds as in
Theorem 6.1 and Theorem 6.2 would hold for the K fold version as well.

7. Discussion. In this section we discuss some naturally related matters.
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7.1. Other Signal Denoising Methods. In this paper, we applied our CV framework to
produce CV versions of Trend Filtering, Dyadic CART, Singular Value Threshholding and
Lasso. Trend Filtering and Dyadic CART are the main focus of this paper. We considered
Singular Value Threshholding and Lasso to further illustrate the generality of our framework.
Our CV framework is based on a general principle and should be looked upon as provid-
ing a general recipe to develop theoretically tractable CV versions of potentially any other
estimator which uses a tuning parameter. For example, using our framework, one should be
able to develop theoretically tractable CV versions of the Total Variation Denoising estimator
proposed by [37] (also see [22], [38], [7]), the Hardy Krauss estimator (see [13], [32]), the
Optimal Regression Tree estimator proposed in [6], a higher dimensional version of Trend
Filtering of order 2 proposed in [23] and potentially many more. As a start, the Zero Doubling
method of constructing completion estimators alongwith using a geometrically doubling grid
of candidate tuning values should be useable in these problems.

7.2. Three Different Methods for Creating Completion Estimators. One of the main in-
gredients of the CV framework proposed here is in the construction of the completion esti-
mators. Basically, the user has to build a version of some estimator of interest which only
depends on a subset of the data, namely y;. In this paper, we have considered three different
strategies for constructing these completion estimators. In the Dyadic CART and the Lasso
examples, we basically restricted the squared error term in the optimization objective to only
be summed over the subset 1. Let us call this method Restricted Optimization (RO). In the
Trend Filtering example, we first constructed an interpolated data vector (1) € R™ by in-
terpolating on the subset of indices /€ using the values of y;. We then fed this interpolated
vector (1) into the Trend Filtering optimization objective. Let us call this method Interpo-
late then Optimize (10). In the Singular Value Threshholding example, we zeroed out entries
in /¢ and doubled the entries in I to create a new matrix §(/) and then used the singular value
threshholding operator on this matrix ¢(/). Let us call this method Zero Doubling (ZD). To
summarize, RO, IO and ZD are really three different ways to construct completion estima-
tors. In a given problem, the user can try any one of the three methods or even come up with
a different method. For example, the ZD method is extremely generic and could have been
used in the Trend Filtering or Dyadic CART examples as well. We did not do this because in
our numerical experiments we found that RO was performing better (in MSE) than ZD (for
Dyadic CART) by a factor of 2 or 3. Similarly, IO performed better than ZD in the case of
Trend Filtering.

7.3. Comparison with the R Package [1] Cross Validation Version of Trend Filtering. It
is instructive to compare the CVTF estimator proposed in this paper with the cross vali-
dation version of Trend Filtering implemented in the R package [1] (see the R command
cv.trendfilter). In particular, it is worth noting the similarities and the differences in the two
CV algorithms. Simulations comparing the finite sample performance of both these algo-
rithms is given in Section 8.

1. We construct the folds in the same way as in the R package. Once the user decides the
number of folds K, both methods choose K folds by placing every Kth point into the
same fold. However, for rth order Trend Filtering in this paper we specifically set the
number of folds to K = + 1. We do this mainly to enable our interpolation scheme to
create §(I) for j € [K] which then allows us to obtain the two inequalities stated in Step
3 of the proof sketch in Section D.1.
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2. In the R package implementation, the predictions for a given fold I; is made by perform-
ing trend filtering on the shortened data vector y; € RI% 1 and then the predicted value at
a point is given by the average of the fits at this point’s two neighbors (guaranteed to be in
a different fold). We do this in the reverse order. We first interpolate by a polynomial in-
terpolation scheme which is not the same as two neighbor averaging. We then apply trend
filtering to this interpolated data vector y(I{) € R™ and obtain the completion estimators
oI5 Our prediction at a point in [; is just given by the fit 6N I3) at this point.

3. The main point of difference of the two methods is how they choose the final data driven
value of the tuning parameter A. The R package implementation uses (3) to choose A
whereas our method is different as has been explained before.

4. The grid of candidate tuning values A; and A are chosen in a fully data driven way in the
R package implementation as explained in Section 7.3.1 below. We prefer to simply set
A;j=A=1{1,2,22,... 2"} for a large enough N* such that 2" = O(n). We could also
mimick the R package implementation in choosing A; and A and this will be perfectly in
accordance with our CV framework as explained below in Section 7.3.1.

7.3.1. An Alternative Way to Construct ég‘)/T - Recall that from Step 5 onwards, the
steps to construct the CVTF estimator is identical to the last few steps to construct the CVD-
CART estimator. However, unlike Dyadic CART, Trend Filtering is based on convex opti-
mization which brings with it its inherent advantages. For the discussion below let us fix
r = 1. Infact, (see [18]) for Trend Filtering of order 1 also known as Fused Lasso, the solu-
tion (as a function of \) is piecewise constant with a finite number of pieces. Moreover, the
entire path of solutions (for all A > 0) can be computed in O(nlogn) time and the number
of distinct solutions is always bounded by O(n).

The Rpackage implementing CV for Fused Lasso makes use of the above fact. The grid of
candidate tuning parameter values in this package is simply taken to be a (finite) set of tuning
values \’s which correspond to the set of all possible solutions.

We can mimick the Rpackage implementation in the last few steps and still stay within
our CV framework which gives us a different CV version of Fused Lasso. This is because we
can define A, for any j € [K], to be a finite set of tuning values, one for each of the distinct
solutions of the following optimization problem

1 2
in 5 [3015) — 0]* + 2t [ DO |
min o [[5(Z7) = 0" + An ,
This is allowed in our framework because this set only depends on Q(IJC) by definition. Sim-
ilarly, we can define A to be a set of tuning values, one for each of the distinct solutions of
the full optimization problem

1 2 -1
2y — r—1| p() H '
uin 5 lly =01 + 2w [ D]

Under these choices of A, A, our slow rate and fast rate theorems are still valid.

This is because, in view of Theorem 2.1, we would need to bound minyep SSE (Hg\r), 6%)
and minyen, SSEBNY 0%.), where I = I; for j € [K] = [r+1]. Note that minye, SSE(B(”, %) =

minycg SSE(égT),Q*) and thus we can use known bounds for the ideally tuned versions.

Bounding minycp, SSE (éﬁ"]’l) ,07.) can be accomplished for this data driven choice of \;

as well by again noting that minyen, SSE(@A%I’U,H}C) = minyep SSE(éﬁ’I’l),QTC) and

then simply following our existing proof. The only point to further consider would be the
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term involving log |A ;| because now this is random. Here, we can invoke the result of [18]

and use a deterministic bound (scaling like O(n)) on the cardinality of the random set |A;].
logn
n

Thus, the term involving log |A;| can be bounded by O(
lower order term.

The advantage of this particular variant is that the entire procedure is fully data driven and
one does not even need to set the value of N* as before. This furnishes a truly completely
data driven cross validated Fused Lasso estimator which attains both the slow rate and the
fast rate. To the best of our knowledge, such a version of Fused Lasso did not exist in the
literature before our work here.

One can also use this approach and choose A; and A similarly, for Trend Filtering of
any general order r > 1. This is because it is known (see Section 6.2 in [44]) that the entire
path of solutions (for all A > 0) can again be computed for Trend Filtering of any order r > 1.
Moreover, the solution (as a function of )) is piecewise linear and convex with a finite number
of knots. So one can simply take A; and A to be the finite set of knots of the appropriate
optimization problems. This would then produce fully data driven CV (within our framework)
versions of Trend Filtering of general order » > 1. To obtain a theoretical guarantee one can
then use Theorem 2.1. The only missing part is that a deterministic bound on log |A ;]| is not
known for » > 1. However, from simulations we are led to conjecture that the number of
distinct Trend Filtering solutions (of any order, w.r.t \) grows at most polynomially with n.
If this conjecture were true, we can then again conclude that the term involving log |A;| is
of a lower order term. We prefer to write our theorem for the current version because a) we
have a complete proof of a risk bound for all orders » > 1, b) practically the parameter N*
is not hard to set and in our simulations both these versions perform similarly when we set
N* =logyn.

) term which is going to be a

7.4. Heavy Tailed Errors. The proof of our main result in Theorem 3.1 relies heavily
on the errors being subgaussian. It would be interesting to explore the robustness of our CV
framework to heavy tailed errors. In particular, can one develop CV versions of correspond-
ing quantile versions of Dyadic CART and Trend Filtering (see [17] and [34]) using our
framework? We leave this question for future research.

8. Simulations.

8.1. Dyadic CART. We conduct a simulation study to observe the performance of the
proposed CV Dyadic CART estimator in three different scenarios each corresponding to a
different true signal 6*. In every case, the errors are generated from N (0, 1), the dimension
d =2 and we take n = 128,256,512. We estimate the MSE by 100 Monte Carlo replica-
tions and they are reported in Table 1. Overall, we see that our CV Dyadic CART estimator
performs pretty well.

1. Scenario 1 [Rectangular Signal]: The true signal 6* is such that for every (i1,i2) € Lo,
we have

(i1,82) =

N 1 if n/3 <iy,i2 <2n/3
0 otherwise '

The corresponding plots are shown in Figure 1 when n = 256.
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FIG 1. The first diagram refers to the true signal, the second one to the noisy signal and the third one to the
estimated signal by the CV Dyadic CART estimator.

2. Scenario 2 [Circular Signal]: The true signal 8* is such that for every (i1,i2) € Lo, we
have

.1 it /(i —n/2)%+ (ip —n/2)2 <n/4
(i:32) = otherwise )

The corresponding plots are shown in Figure 2 when n = 256.

FIG 2. The first diagram refers to the true signal, the second one to the noisy signal and the third one to the
estimated signal by the CV Dyadic CART estimator.

3. Scenario 3 [Smooth Signal]: The true signal 6* is such that for every (i1,42) € Lo ,, wWe
have 07; . = f(i1/n,iz/n), where

F.5) = 20exp (~5{( — 1/2)* + (y — 1/2)* ~ 09z — 1/2)(y —1/2)}), 0<zy< 1.

The corresponding plots are shown in Figure 3 when n = 256.
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FIG 3. The first diagram refers to the true signal, the second one to the noisy signal and the third one to the
estimated signal by the CV Dyadic CART estimator.

TABLE 1
MSE:s of CV Dyadic CART estimator in different scenarios

n Scenario 1 | Scenario 2 | Scenario 3
128 0.019 0.021 0.0005
256 0.005 0.014 0.0004
512 0.001 0.006 0.0003

8.2. Trend Filtering. We conduct a simulation study to observe the performance of the

proposed CV Trend Filtering estimator and compare it to the CV version implemented in
the R package genlasso [1]. The studies are carried out in four scenarios each corresponding
to different true signals 6*, where for any ¢ € [n], we have 6 = f(i/n) for some function

I

[0,1] — R, specified below and the errors are generated from N (0, 1). In every scenario

we consider the sample sizes n = 300,600, 1200, 2400, and in each case, we estimate the
MSE by 100 Monte Carlo replications. Furthermore, the comparison of MSEs in Scenarios
1, 2 and 3 are reported in Table 2.

1.

Scenario 1 [Piecewise Constant Signal]: We consider the piecewise constant function
fl@) =2(1(x € [1/5,2/5])) + 1(x € [2/5,3/5]) = 1(x € [3/5,4/5]) +2(1(x € [4/5,1])),

and consider the Trend Filtering estimator of order = 1. The corresponding plot is shown
in the first diagram of Figure 4 when n = 300.

. Scenario 2 [Piecewise Linear Signal]: We consider the piecewise linear function

f(z) =6x(1(x €[0,1/3])) + (=122 +6)1(x € [1/3,2/3]) + (x — 8/3)(1(z € [2/3,1])),

and consider the Trend Filtering estimator of order r = 2. The corresponding plot is shown
in the second diagram of Figure 4 when n = 300.

. Scenario 3 [Piecewise Quadratic Signal]: We consider the piecewise quadratic function

1822 if x€[0,1/3]
flz)=4¢ —36(x —1/2—-1/V12)(z —1/2+V12)  if z€[1/3,2/3].
18(x — 1)2 if z€[2/3,1]

and consider the Trend Filtering estimator of order = 3. The corresponding plot is shown
in the third diagram of Figure 4 when n = 300.
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4. Scenario 4 [Smooth Sinusoidal Signal]: We consider the smooth sinusoidal function
f(z) =sin2nwz 4 cos bz,

and consider Trend Filtering estimators of order r = 1,2, 3. The corresponding plots are
shown in Figure 5 when n = 300.

T
100 150 200 250 300

FIG 4. The first diagram refers to the fits of order 1, the second one to fits of order 2 and the third one to the fits
of order 3 in Scenarios 1, 2 and 3 respectively.

FI1G 5. The first diagram refers to the fits of order 1, the second one to fits of order 2 and the third one to the fits
of order 3 in Scenario 4.

TABLE 2
Comparison of MSEs between R package and CVTF in different scenarios.
Scenario 1 Scenario 2 Scenario 3
n RPackage Fit CVTF Fit | RPackage Fit CVTF Fit | RPackage Fit CVTF Fit
300 0.077 0.071 0.029 0.029 0.025 0.034
600 0.042 0.038 0.015 0.013 0.014 0.019
1200 0.023 0.022 0.007 0.006 0.007 0.006
2400 0.013 0.012 0.004 0.003 0.003 0.003

From Table 2, one can observe that the performance of our CV method is quite comparable
to the existing R package and in fact, in most cases, the MSE of our method is slightly less.
The results here are fully reproducible and our code is available upon request.
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SUPPLEMENTARY MATERIAL

Supplement A : Supplementary File to '""A Cross Validation framework for Signal
Denoising with Applications to Trend Filtering, Dyadic CART and Beyond"
This supplementary contains the proofs of all the main results presented in this paper.
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