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Abstract 

The formation and development of micro-voids within the bead microstructure of a 
polymer composite during the extrusion/deposition additive manufacturing process continues to 
be of interest given the adverse effect these features have on part quality. A computational method 
is employed here to investigate potential volatile-induced micro-void nucleation mechanism which 
simulates the evolution of a single rigid ellipsoidal fiber in purely viscous polymer 
extrusion/deposition flow through a Large Area Additive Manufacturing (LAAM) nozzle. Our 
previous studies on potential micro-void nucleation mechanisms have assumed a Newtonian fluid 
property definition for the polymer melt flow, the current study assesses the effect of assuming a 
generalized Newtonian fluid (GNF) model on the fiber’s response. Preliminary findings based on 
Jeffery’s flow assumption reveal the fiber’s orientation kinetics are unaffected by the shear-
thinning fluid behavior, however there is a reduction in the pressure distribution on the fiber’s 
surface as the power law index is decreased which is expected to reduce the likelihood for micro-
void nucleation. 

Introduction 

Investigation is currently ongoing into underlying mechanisms responsible for the 
formation and development of microstructural voids within parts printed from Large Area Additive 
Manufacturing (LAAM) process and contributory factors that may impact this phenomenon such 
as process parameters, fluid rheological properties, fiber fill percentage, and fibers thermo-
mechanical properties among others.  

Based on experimental studies presented in numerous literatures, various mechanisms exist 
that may be responsible for the nucleation and growth of these micro-voids during polymer 
composite processing such as uneven volume shrinkage mechanism during solidification [1,2], 
absorption of moisture and/or volatile contents during the bead pelletization or polymer 
extrusion/deposition process [2,3]. Literature suggests that the inclusion of fibers during polymer 
processing impact the development of these voids, for instance voids have been observed to 
preferentially segregate at the tip of fiber and the fiber’s shape and degree of flow alignment relates 
to the packing density and void content and characterization [2]. Studies have also shown that 
these micro-voids are more likely to develop near the die swell region of the nozzle exit during 
bead deposition on the moving bed [4]. 
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Modelling of the extrusion-deposition process to determine the polymer melt flow 
characteristics and flow-field states have employed various traditional techniques such as finite 
element method (FEM), smoothed particle hydrodynamics (SPH), finite-difference method 
(FDM*), finite-volume method (FVM), discrete element method (DEM) etc. For example, the 
FEM technique was utilized by Heller et al. [5], Wang et al. [6] and Russell et al. [7] among other 
researchers to simulate the deposition process and determine average orientation tensor response 
of short carbon fibers in polymer suspension flowing through a LAAM nozzle extruder in other to 
evaluate approximate thermo-mechanical properties. FVM technique was used by Xia et al. [8] to 
model coupled heat transfer and polymer flow deposition process.  

Most numerical studies on particle migration in homogeneous viscous flow have been 
based on the assumptions of negligible inertia effects, Newtonian fluid rheology and non-
deformable particle shape conventionally referred to as “standard conditions” [9]. Recent studies 
have focused on accounting for discrepancies in predictions of the kinematic behavior of 
suspended fibers theoretically having indeterminate motion when computed from analytical 
formulations that are based on standard conditions compared with actual experimental 
observations that reveals acquiescence of suspended particles to equilibrium configuration within 
a characteristics timescale or equilibrium rate of approach irrespective of their initial configuration 
due to the cumulative effect over time of small deviations from “standard conditions”.  Saffmann 
et al [10] showed that preferred configurations are not always a certainty however when they occur, 
of the possible effects that may be responsible for the observed deviations from theoretical 
predictions of particle motion, the non-linear contribution of the fluid inertial were infinitesimal 
as to significantly alter the motion in a finite timescale while neglected effects of the non-
Newtonian viscosity accounted mainly for the observed phenomenon. Other effects such as the 
particles inertia, confinement and end effect were deemed negligible.  

Various computational models that account for the neglected effects of non-Newtonian 
fluid rheology have been developed to investigate the degree of departure from theoretical 
predictions of fiber kinematics based on standard conditions. Ferec et al. [11] developed a two-
dimensional (2D) FEM model that simulates the motion of a single ellipsoidal fiber in an 
unconfined non-Newtonian power law fiber suspension simple shear viscous flow to evaluate the 
magnitude of departure of the predicted fiber kinematics responses from results of standard 
theoretical model based on Newtonian fluid assumptions. His model is based on minimization of 
the net force and couple acting on the particle due to the surrounding fluid pressure. He found that 
the shear-thinning effect only slightly affected the particle’s kinematic, and this impact diminishes 
with increasing fiber slenderness.  

While there has been significant research progress in the development of accurate 
experimental methods and numerical models to better understand the fiber dynamics in fiber-filled 
viscous suspension with non-Newtonian fluid rheology during polymer processing, there has been 
very little effort to study the formation and growth of voids within the bead’s microstructure of 
polymer composites materials and how the introduction of fibers interacts and influence the 
development of these voids. Besides the conventional 3D micro-CT-Scan techniques for 
investigating microstructural defects, various cost-saving, non-destructive, and non-intrusive 
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techniques have been developed [12, 13]. Sayah et al. [14] studied the void content, distribution, 
and their characterization within the microstructure of beads printed from a LAAM nozzle extruder 
and the relation between these void parameters and operating conditions. They observed decreased 
void content with increasing process temperature and print speed, and the void contents also 
decreased upon bead deposition. Recently, Awenlimobor et al. [15] used 2D FEM based 
minimization technique to study the evolution of the pressure distribution on a fibers surface in 
fiber suspension with Newtonian fluid rheology during the polymer/extrusion deposition process. 
They found that the minimum localized pressure distribution occurring at the fiber’s tip dropped 
well below the flow pressure which indicated the likelihood for potential void nucleation at these 
sites for polymers with non-zero vapor pressure. 

The present study is an extension to previous work by Awenlimobor et al [15]. Here, we 
perform FEM-based simulations to investigate the effect of a generalized Newtonian fluid (GNF) 
rheology on Jeffery’s orbit and potential volatile-induced micro-void nucleation mechanism by 
simulating the single fiber motion along streamlines of a polymer extrusion/deposition flow 
through a LAAM nozzle. We explore the contribution of various factors such as the fibers 
geometric aspect ratio, and initial fiber angle in addition to the effect of the shear-thinning fluid 
characteristics (power-law index and consistency index) on the particles motion and responses. A 
multiscale methodology similar to [15,16] is employed for the investigation. Firstly, a 2D planar 
deposition flow macro-model that simulates the polymer composite extrusion-deposition process 
within a LAAM nozzle extruder is developed to compute flow-fields and streamline data which 
then serves as inputs to a single fiber micromodel. The micromodel development is a GNF non-
linear extension to the formulations of Zhang et al.[17,18,19], and simulates the fibers motion 
along streamlines obtained from the macro-model. A power-law non-Newtonian fluid model is 
assumed for fiber suspension rheology. Newton Raphson iteration is used to compute the resulting 
translational and rotational velocities of the rigid fiber particle by zeroing the net force and couple 
acting on the fiber. The fiber’s instantaneous positions and orientations are then updated using a 
numerical ordinary differential equation (ODE) solution technique. FEA model validation is 
achieved by comparing steady state responses at a single time step of the quasi-transient analysis 
of a single fiber motion along Jeffery’s orbit obtained from our custom-built FEA simulation with 
results obtained from simulations using the COMSOL Multiphysics commercial software. The 
resulting effect of the shear thinning fluid behavior on the evolution of the pressure distribution 
response on the fibers’ surface as it travels along streamlines is an indication of the potential role 
of the fluid rheology in mitigating the micro-void nucleation in polymer suspension during 
processing. The results of this study strictly speaking are to be construed in a qualitative sense 
rather than an actual quantification analysis. 

Methodology 

The methodology used in the present study is analogous to that presented in [15,16] which 
is based on a one way coupling multiscale modelling approach to simulate the fiber-filled polymer 
composite bead printing process via a LAAM nozzle extrusion-deposition technology in order to 
better understand the development of micro-voids within the printed beads. The macro-scale model 
is developed to compute the flow fields and orientation tensors from the velocity solution along 

719



streamlines of the polymer melt flow process through the LAAM nozzle. The velocity and pressure 
responses computed from the macro-model analysis are used to extrapolate boundary conditions 
in the development of the micromodel which simulates the evolution of a single rigid ellipsoidal 
fiber along streamlines of the macro-model. A shear-thinning power law fluid model has been 
assumed for both micro-model and micro-model analysis with consistency index equal to the 
magnitude of the average Newtonian fluid viscosity. The study is performed for 13% carbon fiber 
filled ABS polymer melt material with a characteristic’s density of 1154 𝑘𝑘𝑘𝑘𝑚𝑚3 and kinematic 
viscosity of 817𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠  averaged at 230oC and a flowrate of 100𝑠𝑠−1.  

Macro-Model: Planar Extrusion-Deposition Flow Model 

The development of the 2D planar extrusion-deposition flow model of the fiber filled 
polymer composite material through the LAAM nozzle extruder has been provided in much details 
in Wang, et al [20]. The Strangpresse Model 19 LAAM single screw extruder nozzle design has 
been adopted for the internal nozzle geometry used in this study. The model equations describing 
the polymer melt flow within the LAAM nozzle and the single bead deposition on the moving bed 
are based on the Stokes assumption of creeping, incompressible, isothermal, steady state, low 
Reynolds number viscous flow and the mass and momentum conservation equations are given in 
Equations 1-2.  

∇𝑇𝑇𝑢𝑢 =  0 1 
∇𝑇𝑇𝜎𝜎 + 𝑓𝑓 = 0 2 

In Equations 1-2, above, ∇ is the gradient operator,  𝑢𝑢  is the flow velocity vector, 𝑓𝑓 is the body 
force vector, and 𝜎𝜎 is the Cauchy stress tensor given as : 

𝜎𝜎 = 𝜏𝜏 − 𝑝𝑝𝐼𝐼 3 
In Equation 3, 𝑝𝑝 is the hydrostatic fluid pressure, 𝐼𝐼 is the identity matrix, and 𝜏𝜏 is the deviatoric 
stress tensor defined in terms of the deformation tensor 𝛾̇𝛾 by the constitutive relation given as 

𝜏𝜏 = 2𝜂𝜂(𝛾̇𝛾)𝛾̇𝛾 4 

The viscosity 𝜂𝜂 in Equation 4 above is expressed in terms of an invariant of the deformations 
tensor 𝛾̇𝛾 by a power-law definition given as 

𝜂𝜂(𝛾̇𝛾) = 𝑚𝑚𝛾̇𝛾𝑛𝑛−1 5 
where 𝑚𝑚 is the consistency index, 𝑛𝑛 is th flow behavior index and 𝛾̇𝛾 is the scalar magnitude of the 

deformation tensor 𝛾̇𝛾  given as 𝛾̇𝛾 = �
1
2
𝛾̇𝛾: 𝛾̇𝛾. 

Figure 1a is a schematic representation of the flow domains where Ω1 represents the nozzle internal 
region, Ω2 is the die swell/expansion region where the bead exits the nozzle and Ω3 is the single 
bead layer of polymer composite material deposited on the laterally translating subtrate . The 
prescribed boundary conditions are also depicted in the figure. At the nozzle inlet Γ1, an average 
normal velocity of 24mm/s is imposed, at the nozzle inner wall lining Γ2, a no slip boundary 
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condition is defined and at the unbound surfaces of the single bead deposited layer Γ3, a free-
surface boundary condition is imposed. The single bead deposited layer translates together with 
the substrate with an average velocity of 101.6mm/s in the positive x-direction prescribed at the 
interface between the bead layer and substrate Γ4 and at the flow exit Γ5. 

Figure 1b shows computed streamlines obtained from the velocity solution of the macro-model 
analysis that form between the nozzle inlet Γ1 and the bead flow exit Γ5 with three (3) feature 
streamlines (𝜓𝜓4, 𝜓𝜓10, and 𝜓𝜓18) highlighted. ANSYS Polyflow (ANSYS Inc., Canonsburg, PA, 
USA) was used for macro-model analysis. A shear-thinning fluid with power law index of 𝑛𝑛 ≈
0.45 and a consistency coefficient of 𝑚𝑚 ≈ 104𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠𝑛𝑛 has been used (cf. Figure 2a). As 𝑛𝑛 
approaches 1, the viscosity approaches the Newtonian value equal to the consistency coefficient 
corresponding to a shear-rate of unity. The computed streamlines and resulting velocity profile 
distribution across sections of the nozzle for the non-Newtonian studies in comparison to results 
of the Newtonian analysis [20] are presented in Figure 1b. While the velocity profiles of the 
Newtonian analysis are parabolic in shape, the profiles of the non-Newtonian analysis are 
somewhat hyperbolic shaped with a velocity plateau towards the center tending towards a plug 
flow velocity distribution. Figure 2b & c shows that the velocity magnitudes and shear-rates are 
relatively higher at the nozzle edges (𝜓𝜓4 & 𝜓𝜓18) and lower towards the centerline (𝜓𝜓10) for the 
shear-thinning fluid compared to the Newtonian fluid. Correspondingly, the deposition times are 
relatively shorter for streamlines closer to the nozzle edge and relatively longer for streamlines 
closer to the centerline for the shear-thinning fluid compared to the Newtonian fluid. Likewise, 
Figure 2d shows that the pressure-drop and pressure gradients across the nozzle are less severe for 
the shear-thinning fluid compared to the Newtonian fluid. 

  
(a) (b) 

Figure 1: 2D Planar extrusion/deposition flow model a) fluid domain and boundary conditions, b) 
velocity streamlines of the polymer flow through the nozzle with feature streamlines highlighted. 
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(a) (b) 

  
(c) (d) 

Figure 2: showing a) relationship between shear-thinning fluid viscosity and flow shear-rate. Also 
shown are time-varying profiles along streamline 𝜓𝜓4 (blue),  𝜓𝜓10 (black) and  𝜓𝜓18 (pink) for the 
both Newtonian (continuous line) and non-Newtonian (dotted line) analysis results for b) velocity 
magnitude c) shear-rate scalar magnitude, and d) pressure distribution. 

Micro-Model: 2D Single Fiber Evolution Model 

In the micro-model analysis, we simulate the evolution of a single rigid ellipsoidal fiber along the 
streamlines of the polymer composite extrusion-deposition flow. The flow domain Ω for the single 
fiber evolution micromodel analysis is shown in Figure 3a. The micro-model formulations are non-
linear modifications to the model development by Zhang et. al. [17,18,19] and the governing 
equations are the same Stokes equations for mass and momentum conservation used in the macro-
model given in Equations 1-4, based on the same assumption of isothermal, incompressible, 
homogenous viscous flow with a non-Newtonian power-law fluid definition. The analysis is 
performed with a custom-built finite element analysis (FEA) script developed in MATLAB. We 
assume a non-porous fiber surface with zero slip allowance. The velocity boundary conditions are 
prescribed with respect to the fiber’s local coordinate reference axes (cf. Figure 3b). A typical 
schematic showing the configuration of the fibers’ axis with respect to simple shear flow-field in 
2D space is shown in Figure 3c. 
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(a) (b) (c) 
Figure 3: Micromodel showing (a) flow domain (b) prescribed boundary conditions, (c) fiber 
orientation with respect to flow-field. 

Similar to our previous Newtonian analysis [15], the velocities and velocity gradients of the 
streamline data obtained from velocity solutions of the micromodel are used to derive the far-field 
velocities on the fluid domain boundary 𝑈𝑈 

BC1 of the micromodel according to Equation  6 below.  

𝑈𝑈 
BC1 = 𝑅𝑅Ω𝑇𝑇𝑈𝑈𝜓𝜓 + 𝑅𝑅Ω𝑇𝑇∇𝑇𝑇 𝑈𝑈𝜓𝜓 𝑅𝑅Ω ∆𝑅𝑅𝐵𝐵𝐵𝐵1 6 

where the streamline velocity vector 𝑈𝑈𝜓𝜓, the gradient vector and the position vector ∆𝑅𝑅 are 
represented in terms of their components below. 

𝑈𝑈𝜓𝜓 = �
𝑢𝑢𝜓𝜓
𝑣𝑣𝜓𝜓� , ∇𝑇𝑇= �𝜕𝜕 𝜕𝜕𝜕𝜕� 𝜕𝜕

𝜕𝜕𝜕𝜕� � , ∆𝑅𝑅 = �∆𝑥𝑥
′

∆𝑦𝑦′� 
7 

The local to global transformation matrix 𝑅𝑅Ω  is defined in terms of the in-plane fiber orientation 
angle 𝜙𝜙  and is given as 

𝑅𝑅Ω = �     cos𝜙𝜙 sin𝜙𝜙 
− sin𝜙𝜙 cos𝜙𝜙 

� 8 

 
We compute the velocities on the fiber’s surface 𝑈𝑈 

BC3 from the fiber’s center translational and 
rotational velocities based on to the equation of rigid body motion which is given with respect to 
the fibers local reference axis as 

𝑈𝑈 
BC3 = 𝑅𝑅Ω𝑇𝑇𝑈𝑈𝑐𝑐 + 𝜙̇𝜙� × ∆𝑅𝑅𝐵𝐵𝐵𝐵3 9 

where the fibers translational velocity vector is given as 𝑈𝑈𝑐𝑐 = [𝑢𝑢𝑐𝑐 𝑣𝑣𝑐𝑐]𝑇𝑇 and 𝜙̇𝜙� is the in-plane 
angular velocity. A pressure point constraint 𝑝𝑝𝐵𝐵𝐵𝐵2 is imposed on a bounding node on the far-field 
fluid domain with a magnitude equal to the instantaneous streamline pressure 𝑝𝑝𝜓𝜓  derived from the 
macro-model outputs, i.e. 

𝑝𝑝𝐵𝐵𝐵𝐵2 = 𝑝𝑝𝜓𝜓  10 
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We retain the same fluid domain discretization for the base case with fiber’s geometric aspect ratio 
𝑟𝑟𝑒𝑒 = 6 however for the sensitivity analysis involving large fibers aspect ratio 𝑟𝑟𝑒𝑒 = 30, the 
MATLAB inbuilt PDE modeler is used to discretize the fluid domain with increasing mesh density 
towards the fiber and fibers tip (cf. Figure 4a & b). A 6-node quadratic, iso-parametric triangular 
serendipity element shown in Figure 4c has been used for the FEA simulation. 

   
(a) (b) (c) 

Figure 4: (a) Fluid domain discretization (b) magnified view of the domain mesh around the rigid 
fiber (c) element selection with active dof. 

The nonlinear finite element algebraic equations are written in terms of the solution variable (𝑢𝑢) 
typically represented in terms of the global system residual vector R given as: 

𝑅𝑅 = 𝐾𝐾 
 �𝑢𝑢�𝑢𝑢 − 𝑓𝑓   11 

where 𝐾𝐾 is the global system ‘stiffness’ matrix, 𝑢𝑢 is the primary variable vector containing nodal 
velocities and pressures degrees of freedom and 𝑓𝑓 is the secondary variable vector containing the 
associated nodal reaction forces and flow rates. To simplify the solution procedure, the global 
system matrix is partitioned into essential  ′𝑒𝑒′ (unknown) and free ′𝑓𝑓′ (known) degrees of freedom 
as. 

𝑅𝑅 = �
𝑅𝑅𝑓𝑓
𝑅𝑅𝑒𝑒
� = �

𝐾𝐾𝑓𝑓𝑓𝑓 𝐾𝐾𝑓𝑓𝑓𝑓
𝐾𝐾𝑒𝑒𝑒𝑒 𝐾𝐾𝑒𝑒𝑒𝑒

� �
𝑢𝑢𝑓𝑓
𝑢𝑢𝑒𝑒
� − �

𝑓𝑓𝑓𝑓
𝑓𝑓𝑒𝑒 + 𝑟𝑟𝑒𝑒

� 12 

 

The unknown free velocities and pressures dofs in 𝑢𝑢𝑓𝑓 are computed via a Newton Raphson iterative 
algorithm by zeroing the free residual vector 𝑅𝑅𝑓𝑓. i.e 𝑢𝑢𝑓𝑓 is iteratively updated until it approaches 
the actual solution according to  

𝑢𝑢𝑓𝑓
+ = 𝑢𝑢𝑓𝑓

− − 𝐽𝐽𝑓𝑓𝑓𝑓−1𝑅𝑅𝑓𝑓 13 
The Tangent Stiffness Matrix (TSM) or Jacobian  𝐽𝐽𝑓𝑓𝑓𝑓 in Equation 13 above is obtained by 

differentiating the free residual vector 𝑅𝑅𝑓𝑓 with respect to the free degrees of freedom 𝑢𝑢𝑓𝑓 in the 
usual manner folloing a procedure similar to that given in [15,16]. Details are omitted here for 
conciseness.  
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Given the initial condition of the fiber  𝑋𝑋 
𝑗𝑗−1 at any instant with an associated velocity 𝑋̇𝑋 

𝑗𝑗−1 at 

each jth time step, we update fiber’s position and orientation 𝑋̇𝑋 
 
 
 

 

𝑗𝑗
 using on an explicit fourth order 

Runge-Kutta method.  

Results and Discussion 

Micro Model Analysis Validation 

The micro model development is validated by benchmarking pressure response obtained 
from the custom-built MATLAB FEA simulation for a single steady state condition and fiber 
configuration with outputs obtained from a similar simulation developed with COMSOL 
Multiphysics software using same model input. A fibers geometric aspect ratio 𝑟𝑟𝑒𝑒 = 6 is used for 
the validation exercise, and a simple shear flow field with a shear rate of 𝛾̇𝛾 = 1 𝑠𝑠−1 is imposed. 
We consider two different power law fluid definition with different flow behavior index  𝑛𝑛, for the 
first case (a) 𝑛𝑛 = 0.2, and for the second case (b) 𝑛𝑛 = 1. ,  both cases having a consistency 
coefficient 𝑚𝑚 = 1 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠𝑛𝑛. An initial fiber configuration corresponding to an orientation 𝜙𝜙0 =
−0.7762 𝑟𝑟𝑟𝑟𝑟𝑟 and angular velocity of 𝜙̇𝜙0 = −0.5087 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠−1 has been used for the steady state 
analysis which is where the first minimum pressure peak occurs on the fibers surface during its 
evolution along Jeffery’s orbit. 

The result of the pressure distribution for both cases presented in Figure 5 shows good 
agreement between COMSOL simulation and inbuilt MATLAB FEA simulations. We observe a 
maximum discrepancy in pressure limits of about 6%. 

  
(a) (b) 

Figure 5: Figure showing pressure distribution around the fiber for power law index corresponding 
to (a) 𝑛𝑛 = 0.2, (b) 𝑛𝑛 = 1.0, for COMSOL (left of each case) and MATLAB (right of each case) 
simulations. 
 

 𝑛𝑛 = 0.2 𝑛𝑛 = 1.0 
Min Max Min Max 

MATLAB 
FEA 

-2.83 1.11 -7.65 1.17 

COMSOL -3.01 1.10 -7.55 1.17 
Table 1: Table comparing results of minimum and maximum fiber surface pressure obtained 
from both COMSOL and inbuilt MATLAB FEA simulations or both cases of power law indices 
(i.e., 𝑛𝑛 = 0.2, & 𝑛𝑛 = 1.0) 
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Single Fiber Evolution Along Jeffery’s Orbit 

The result for the evolution of the rigid ellipsoidal fiber along Jeffery’s orbit in viscous 
fiber suspension simple shear flow with shear thinning fluid rheology having flow behavior index 
ranging from 0.2 to 1.0 are presented in Figure 6 below for two (2) cases of fibers geometric aspect 
ratio, i.e., a prolate spheroid with geometric ratio 𝑟𝑟𝑒𝑒 = 6 and a slender fiber with geometric ratio 
𝑟𝑟𝑒𝑒 = 30. For the first case, a shear rate of 𝛾̇𝛾 = 1 𝑠𝑠−1 is used however to reduce the orbit period for 
the case with high aspect, a shear rate of 𝛾̇𝛾 = 3 𝑠𝑠−1 was used given the definition of the Jeffery’s 
orbit period i.e.  

𝑇𝑇 =
2𝜋𝜋
𝛾̇𝛾
�𝑟𝑟𝑒𝑒 +

1
𝑟𝑟𝑒𝑒
� 14 

The result in Figure 6a & b shows that irrespective of the fibers aspect ratio, the fiber’s motion is 
unaffected by the shear-thinning fluid rheology in agreement with the findings of numerous 
literatures [11]. Although only a single periodic motion was computed, there was no significant 
effect of the shear thinning fluid rheology observed on the fiber’s motion that would result in a 
departure from Jeffery’s orbit within a finite timescale. The minimum and maximum pressure 
peaks on the fiber’s surface were however observed to increase proportionally with the flow 
behavior index for both fiber aspect ratio cases (cf. Figure 6c & d). 

  
(a) (c) 

  
(b) (d) 

Figure 6: Figure showing results of evolution of fibers angular velocity in time along Jeffery’s 
orbit for (a) fiber with aspect ratio 𝑟𝑟𝑒𝑒 = 6, and flow with shear rate 𝛾̇𝛾 = 1 𝑠𝑠−1  (b) fiber with aspect 
ratio 𝑟𝑟𝑒𝑒 = 30, and flow with shear rate 𝛾̇𝛾 = 3 𝑠𝑠−1.  Also shown are results of evolution of fibers 
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limit surface pressure in time along Jeffery’s orbit for (c) fiber with aspect ratio 𝑟𝑟𝑒𝑒 = 6, and flow 
with shear rate 𝛾̇𝛾 = 1 𝑠𝑠−1  (d) fiber with aspect ratio 𝑟𝑟𝑒𝑒 = 30, and flow with shear rate 𝛾̇𝛾 = 3 𝑠𝑠−1.  
(Results are presented for different shear-thing fluid with flow behavior index ranging from 𝑛𝑛 =
0.2 − 1.0). 

In Figure 7 below, we show that the fibers’ initial condition does not alter the trajectory of the 
fiber, nor does it modify the limit pressure peaks on the fiber’s surface in a shear-thinning fluid 
with strong non-Newtonian characteristics (flow behavior index 𝑛𝑛 = 0.2). 

 
 

(a) (b) 
Figure 7: Figure showing results of (a) evolution of the fibers angular velocity in space along 
Jeffery’s orbit (b) evolution of fibers limit surface pressure in space along Jeffery’s orbit. Results 
are presented for different fiber initial orientation ( 𝜃𝜃0 = 00, 300, 600, 900 ) and for flow shear rate 
𝛾̇𝛾 = 1 𝑠𝑠−1, fiber aspect ratio 𝑟𝑟𝑒𝑒 = 6, and flow behavior index 𝑛𝑛 = 0.2. 

The flow behavior index of the shear-thinning fluid has an effect analogous to the inflence 
of a Newtonian fluid viscosity on the pressure response on the fiber surface. Figure 8 (a) below 
shows the variation of the fibers surface limit pressure response with the Newtonian viscosity 𝜇𝜇 
(or consistency coeffiicient 𝑚𝑚 for power law fluid with behavior index of 𝑛𝑛 = 1). We see that the 
pressure magnitude on the fibers surface increases with increasing Newtonian viscosity similar to 
the influence of the flow behavior index on the pressure response. This suggests the occurrence of 
regions of low and high viscosities extremes on the fibers surface during the fibers tumbling 
motion within the non-Newtonian fluid. Figure 8 (b) shows extracted data points (blue dots) of the 
instantaneous  shear viscosity and shear rate scalar magnitude on the fibers surface over the 
complete period of fiber tumbling motion and for a power law index 𝑛𝑛 = 0.2. The average 
viscosity 𝜂𝜂1 and the viscosity corresponding to the average shear rate magnitude 𝜂𝜂2 on the fibers 
surface over the entire period are also shown. From both values, 𝜂𝜂2 is observed to be a better 
representation (definition) of the ‘effective’mean viscosity on the fibers surface with an order of 
magnitude similar to the flow viscosity due to the imposed shear rate on the flowfield. 
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(a) (b) 

Figure 8: Figure showing (a) the evolution of fibers limit surface pressure in time along Jeffery’s 
orbit for the Newtonian Studies and for Newtonian viscosity ranging from 𝜇𝜇 = 0.2 − 1.0. (b) 
Scatter plot of the shear rates and resulting shear viscosities on the fibers surface over the complete 
period of fiber tumbling motion. Indicated on the plot are the mean value points (1 & 2) of the 
shear rate and viscosities. 

To gain a better understanding on the dynamics of the shear viscosities on the fiber surface during 
its tumbling motion and its influence on the fibers surface limit pressures, we present transient 
profiles of the evolution of the effective mean shear viscosity 𝜂𝜂2 and the corresponding viscosity 
limits at each time interval for different flow behavior index (cf. Figure 9). 

 

 

 

 
(a)  (b) 
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(c)  (d) 
Figure 91: Figure showing time evolution of the average and limits of the non-Newtonian viscosity 
on the fiber’s surface for different flow behavior index (a) 𝑛𝑛 = 0.2, (b) 𝑛𝑛 = 0.4, (c) 𝑛𝑛 = 0.6, (d) 
𝑛𝑛 = 0.8. For the Newtonian case, all upper & lower limits of the viscosities and effective mean 
viscosity transient profile all coincide with the far-field viscosity at 𝜂𝜂0=1. 

From the profiles, we see that although the limits of shear rates magnitudes and resulting 
viscosities  increases with decreasing low behavior index, the effective mean viscosity 𝜂𝜂2 on the 
fibers surface only slightly shifts below the actual farfield viscosity 𝜂𝜂0. Following the effect of the 
Newtonian viscosity observed on the pressure limits on the fiber surface (cf. Figure 8(a)), we can 
infer in a qualitative sense that the decreasing trend in the effective mean viscosities with 
decreasing flow behavior index observed ovr the tumbling period in Figure 9a-d above are 
responsible for the low pressure limit magnitudes on the fiber surface.  

Single Fiber Evolution in Extrusion-Deposition Flow 

We present results of the rigid ellipsoidal fiber’s motion and surface limit pressure 
evolution along streamlines of the extrusion-deposition flow for a single fiber suspended in a 
shear-thinning viscous fluid based on the micro-model non-Newtonian analyis. The results are 
presented for three (3) feature streamlines i.e. streamline 𝜓𝜓4 closer the left edge of the nozzle, 
streamline 𝜓𝜓10 at the nozzle center and streamline 𝜓𝜓18 at the right edge of the nozzle (cf. Figure 
2b) 

Like the Jeffery studies, we see from Figure 10a-c that the fibers angular velocities are 
unaffected by the shear-thinning fluid rheology irrespective of the non-uniform veloity gradients 
that characterizes the extrusion-deposition flowfield especially at the nozzle edges and a 
Newtonian analysis is sufficient to predict fiber’s motion. This is evident from the overlap of the 
angular velocity profles for all flow-behavior indices considered. On streamline 𝜓𝜓4, the fiber 
experiences a spin reversal upon exiting the nozzle within the region of die swell due to counter-
rotation in the 90o bend that opposes the local shear-vorticity direction at the left innerwall of the 
straight capillary before returning to steady state during bed deposition. On streamline 𝜓𝜓10, the 
fiber’s motion is steady within the straight capillary due to the uniform flow-field at the center 
streamline however the angular velocity peaks within the die-swell region due to the change in 
flow direction. On streamline 𝜓𝜓18  the fiber experiences two (2) significant peaks in the angular 
velocity along the flowpath. The first peak occurs as a result of the severe velocity gradient at the 
right edge of the nozzle while the latter occurs due to abrupt change in flow direction at the sharp 
notch where the polymer exits the nozzle. Figure 10d-e shows that the shear-thinning fluid 
rheology reduces the magnitude of the fibers surface pressure peaks as the flow behavior index is 
reduced. The implication of this is that we expect lower probability of void nucleation with higher 
void formation times for fiber suspension with strong shear-thinning fluid characteristics than for 
weakly non-Newtonian fiber suspension. The magnitude of minimum pressure drops on the fiber 

 
1 The plots indicate viscosity limits on the fiber surface are exacerbated as the flow behavior index decreases due 

to the power law relationship. i.e.,  lim
𝑛𝑛→0
𝛾𝛾→∞̇

𝜂𝜂 → 0 and lim
𝑛𝑛→0
𝛾𝛾→0̇

𝜂𝜂 → ∞.  
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surface are observed to be significantly higher on edge streamlines (𝜓𝜓4, & 𝜓𝜓18) compared to the 
center streamline (𝜓𝜓10). The net pressure extremes with respect to the instantaneous streamline 
pressure are observed to be higher at the second peak location for streamlines (𝜓𝜓4, & 𝜓𝜓10) except 
on streamline 𝜓𝜓18 where the net pressure magnitude is seen to be higher at the first peak location. 

  
(a) (d) 

 
(b) (e) 

  
(c) (f) 

Figure 10: Figure showing the time evolution of the net fiber orientation relative to the streamline 
direction for (a) streamline 𝜓𝜓4, (b) streamline 𝜓𝜓10 and (c) streamline 𝜓𝜓18. Also shown is the time 
evolution of the extreme pressure distribution on the fibers surface for (d) streamline 𝜓𝜓4, (e) 
streamline 𝜓𝜓10 and (f) streamline 𝜓𝜓18. Results are presented for flow behavior index ranging from 
𝑛𝑛 = 0.2 − 1.0 
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Figure 11 shows that like the Newtonian case, the peak sites of minimum pressure drop are 
observed to occur at the fiber’s tips when they do occur. Moreover, the deposition times at which 
the peak pressure magnitudes occur are only slightly modified by the shear-thinning fiber 
suspension. For the edge streamlines at the second peak location of minimum pressure drop, the 
time of occurrence are slightly shifted downstream the extrusion-deposition flow while for the 
center streamline, the time of occurrence is slightly shifted upstream the flow. As such the 
orientation angle at which the second peak minimum pressure drop on the fibers surface occurs is 
slightly modified. 

 
(a) 

 
(b) 

 
(c) 

Figure 11: Figure showing the pressure distribution around the vicinity of the fiber at the second 
peak location of minimum pressure drop on the fibers surface for different flow behavior index 
ranging from 𝑛𝑛 = 0.2 − 1.0 and (a) streamline 𝜓𝜓4, (b) streamline 𝜓𝜓10 and (c) streamline 𝜓𝜓18. 

Conclusion 

This paper presents a non-linear 2D FEM-based multiscale modelling approach to 
investigate the effect of a shear-thinning rheology on potential volatile-induced micro-void 
development within beads printed from LAAM extrusion-deposition process. Our findings reveal 
that 2D fiber motion is unaffected by the shear-thinning rheology for a fiber in unconfined viscous 
suspension flow irrespective of the fibers shape or initial conditions agreeing with the conclusion 
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of Férec et al [11]. The only non-linear contribution of the shear-thinning fiber suspension 
rheology on the fiber’s response is a reduction in the fiber’s surface pressure extremes which 
decreases as the power-law index decreases. Based on the classical nucleation theory, we expect 
lower probability of void nucleation and higher void formation times for strongly non-Newtonian 
fiber suspension and vice versa. The non-uniform velocity gradient that characterizes the LAAM 
nozzle extrusion-deposition flow does not influence the observed effect of the shear-thinning fluid 
rheology on the fiber dynamics or fiber responses and the peak sites of minimum pressure drop 
occurs at the fiber’s tips similar to previous Newtonian studies [15,16]. However, the time interval 
and corresponding fiber orientation angle at which the peak pressure magnitudes occur are slightly 
modified in the shear-thinning simulations. Our findings provide insight into potential micro-void 
mitigation strategies that could exploit the fluid rheological behavior to improve component part 
quality. In future revisions, a 3D extension to the current 2D non-Newtonian fiber suspension 
studies would be carried out. 
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