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Abstract: In this paper we propose and study a version of the Dyadic
Classification and Regression Trees (DCART) estimator from Donoho (1997)
for (fixed design) quantile regression in general dimensions. We refer to this
proposed estimator as the QDCART estimator. Just like the mean regres-
sion version, we show that a) a fast dynamic programming based algorithm
with computational complexity O(N logN) exists for computing the QD-
CART estimator and b) an oracle risk bound (trading off squared error
and a complexity parameter of the true signal) holds for the QDCART
estimator. This oracle risk bound then allows us to demonstrate that the
QDCART estimator enjoys adaptively rate optimal estimation guarantees
for piecewise constant and bounded variation function classes. In contrast
to existing results for the DCART estimator which requires subgaussianity
of the error distribution, for our estimation guarantees to hold we do not
need any restrictive tail decay assumptions on the error distribution. For
instance, our results hold even when the error distribution has no first mo-
ment such as the Cauchy distribution. Furthermore, we perform extensive
numerical experiments on both simulated and real data which illustrate the
usefulness of the proposed methods.
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1. Introduction

We consider the problem of nonparametric quantile regression in general di-
mensions and specifically consider the setting of fixed/lattice design regression
or array denoising. In this setting, we are given an array of independent ran-
dom variables y ∈ RLd,n where Ld,n is the d-dimensional square lattice or grid
graph with nodes indexed by {1, . . . , n}d. Then the goal is to estimate the true
τ quantile array θ∗ where

θ∗i = arg min
a∈R

E (ρτ (yi − a))

for all i ∈ Ld,n, τ ∈ (0, 1) is a fixed quantile level and where ρτ (x) = max{τx, (1−
τ)x} is the usual piecewise linear convex quantile loss function. For example,
when τ = 0.5, our setting here amounts to estimate the true median array of the
noisy array y. The model here can be called the quantile sequence model. This
generalizes the usual Gaussian sequence model where the quantile τ is taken
to be 0.5 and the distribution of y is taken to be multivariate normal with the
covariance matrix a multiple of identity.

Assuming lattice design is common practice for studying non parametric re-
gression estimators and clearly our setting is relevant for image denoising and
computer vision when d = 2 or 3. The problem of estimating the true signal θ∗
becomes meaningful when the true array satisfies some additional structure so
that the effective parameter size is much less even though the actual number of
unknown parameters is the same as the sample size. Structured signal denoising
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is a standard problem and arises in several scientific disciplines, e.g see appli-
cations in computer vision (e.g. Bian et al., 2017; Wirges et al., 2018), medical
imaging (e.g. Lang et al., 2014), and neuroscience (e.g. Tansey et al., 2018).

In this paper we are interested in scenarios where θ∗ is (or is close to) a
piecewise constant array on a rectangular partition of Ld,n. For mean regres-
sion, Dyadic classification and regression trees (DCART) method introduced in
Donoho (1997) is known to be computationally efficient while achieving adap-
tively minimax rate optimal rates of convergence for classes of signals which
are piecewise constant in a rectangular partition of Ld,n; see Chatterjee and
Goswami (2019) for a thorough study of statistical adaptivity of DCART. How-
ever, since we are interested in quantile regression, we would like to propose a
quantile version of Dyadic CART.

The most natural way to define the quantile version of Dyadic CART esti-
mator is as follows:

θ̂rdp = arg min
θ∈RLd,n





∑

i∈Ld,n

ρτ (yi − θi) + λkrdp(θ)




 , (1.1)

where we define krdp(θ) as the smallest natural number for which there exists
a dyadic partition Π of Ld,n such that θ is constant in each element of Π and
|Π| = krdp(θ). The estimator we propose and study in this article is a slightly
modified version of the above estimator in (1.1). We refer to this proposed
estimator as the QDCART estimator. The precise definition of our estimator
and the meaning of a dyadic rectangular partition of Ld,n and the complexity
parameter krdp(θ) will be given in Section 2.

The usual mean regression version of Dyadic CART estimator is a compu-
tationally feasible decision tree method proposed first in Donoho (1997) in the
context of regression on a two-dimensional grid design. This estimator opti-
mizes the same criterion as in (1.1) except that the quantile loss is replaced by
the usual squared loss. Subsequently after Donoho (1997), several papers have
used ideas related to dyadic partitioning for regression, classification and den-
sity estimation; e.g see Nowak et al. (2004), Scott and Nowak (2006), Blanchard
et al. (2007), Willett and Nowak (2007). Recently, the paper Chatterjee and
Goswami (2019) generalized the Dyadic CART estimator to general dimensions
and to higher orders and studied the ability of Dyadic CART to estimate piece-
wise constant signals of various types. Dyadic CART has also been recently used
for recovering level sets of piecewise constant signals; see Padilla et al. (2021). It
is fair to say that the two most important facts about the usual mean regression
version of Dyadic CART are:

• The Dyadic CART estimator attains an oracle risk bound; e.g see Theorem
2.1 in Chatterjee and Goswami (2019). This oracle risk bound can then
be used to show that the Dyadic CART estimator is nearly minimax rate
optimal for several function classes of interest.

• The Dyadic CART estimator can be computed by a bottom up dynamic
program with computational complexity linear in the sample size, see
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Lemma 1.1 in Chatterjee and Goswami (2019).
These two properties of the Dyadic CART make it a very attractive signal

denoising method. However, the oracle risk bound satisfied by Dyadic CART is
known to hold only under sub-Gaussian errors. A natural question is whether it
is possible to define a version of Dyadic CART which satisfies a result like The-
orem 2.1 in Chatterjee and Goswami (2019) without any tail decay assumptions
on the error distribution and still retains essentially linear time computational
complexity? This is the main question that motivated the research in this article
and naturally led us to study a quantile regression version of Dyadic CART. The
results in this paper answer our question as affirmative. We now summarize our
results.

• Theorem 1 gives an oracle risk bound for the QDCART estimator proposed
in this paper. The advantage of our risk bound is that it holds under an
extremely mild assumption (see Assumption 1 in Section 3) on the distri-
bution of the error or noise variables. For example, our risk bound holds
when the error distribution is heavy tailed like the Cauchy distribution
for which even the first moment does not exist. In contrast, Theorem 2.1
in Chatterjee and Goswami (2019) heavily relies on the subgaussian na-
ture of the errors. Therefore, our main contribution here is to establish
the robustness of the quantile version of Dyadic CART to heavy tailed
errors. The result in Theorem 1 can be thought of as generalizing The-
orem 2.1 in Chatterjee and Goswami (2019) to the heavy tailed setting.
First, we show in Lemma 1 that the estimator has bounded %∞ norm
with high probability. Then, in Lemma 2, we show a modified version of
Lemma 9.1 in Chatterjee and Goswami (2019), the first key empirical pro-
cess control in our analysis. Next we use symmetrization (Lemma 3) and
the contraction principle (Lemma 4) to control the second key empirical
process in our analysis (see Lemma 7). The latter is combined with a care-
ful peeling argument in the proof of Theorem 4 exploiting the properties
of the quantile loss as stated in Lemmas 5 and 8. Thus at a high level, our
proof has several extra steps in comparison to the analysis in Chatterjee
and Goswami (2019) as the authors there mainly had to focus on upper
bounding a empirical process as in Lemma 9.1 therein. These extra steps
are necessary precisely because we are allowing arbitrarily heavy tailed
errors. At a high level, what makes it possible to handle arbitrarily heavy
tailed errors are that we are doing penalized quantile loss regression and
not penalized square loss regression, the key empirical process comes out
in terms of Rademacher random variables irrespective of the original error
distribution, and sample quantiles concentrate (as long as the sample size
is not too few) for arbitrarily heavy tailed distributions.

• Once the oracle risk bound in Theorem 1 has been established, it has been
shown in Chatterjee and Goswami (2019) how this automatically implies
that the QDCART estimator would be minimax rate optimal for sev-
eral function/signal classes of interest. In particular, this opens the door
for us to establish minimax rate optimality of our QDCART estimator
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over the space of piecewise constant and/or bounded variation arrays. We
provide these results in Section 3.1. At the risk of reiterating, the state
of the art mean regression estimators for estimating piecewise constant
and/or bounded variation arrays typically require subgaussianity of the
errors while the QDCART estimator is robust to heavy tailed error distri-
butions. A natural competing quantile regression estimator to QDCART
is the Quantile Total Variation Denoising estimator studied in Padilla
and Chatterjee (2020). Just like for the corresponding mean regression
counterparts, we argue in Section 3.1 that the QDCART estimator has
certain advantages over the Quantile Total Variation Denoising estima-
tor, not least the fact that QDCART is computable in essentially linear
time in any dimension whereas Quantile Total Variation Denoising is not
known to have linear time computational complexity in multivariate set-
tings (d > 1).

• We explain in Section A that our proof technique for Theorem 1 can also
be used to derive similar risk bounds for other variants of the QDCART
estimator. For example, in Chatterjee and Goswami (2019) the Optimal
Regression Tree (ORT) estimator was introduced and studied for mean
regression. This ORT estimator is similar to the Dyadic CART estimator
with the same optimization objective function except that the optimiza-
tion is done over all decision trees or hierarchical partitions (not necessarily
dyadic). It was then shown in Chatterjee and Goswami (2019) that this
estimator attains a better risk bound than Dyadic CART in general. How-
ever, its computational complexity is slower and scales like O(N2+1/d) in d
dimensions in contrast to the O(N) computational complexity of Dyadic
CART. The proof techniques of this paper actually also imply that a
quantile version of the ORT estimator can be defined which will enjoy the
corresponding risk guarantee. We prefer to present our main results only
for QDCART to make the exposition short and because of its significantly
better computational complexity.

• We give a bottom up dynamic programming algorithm which can exactly
compute the QDCART estimator. This algorithm is similar to the orig-
inal one proposed for the DCART estimator in Donoho (1997), suitably
adapted to our setting. The computational complexity of our algorithm
is O(N(logN)d) (see Theorem 2) which is slightly slower than the O(N)
computational complexity of the DCART estimator. This extra log factor
in the computation seems unavoidable to us because of the need to com-
pute and propagate quantiles of various dyadic rectangles. Our algorithm
is described in detail in Section 5.

1.1. Outline

The rest of the paper is organized as follows. Section 2 presents the precise def-
inition of the QDCART estimator. The main theoretical result (Theorem 1) of
this paper is then presented in Section 3. We then provide implications of our
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main result (Theorem 1) to the class of bounded variation signals in Section 3.1,
and to the class of piecewise constant signals in Section 3.2. Section 4 is a dis-
cussion section. Section 5 provides the details of our algorithm for implementing
QDCART. Section 6 contains extensive numerical results in both simulated and
real data examples.

2. Description of QDCART estimator

In this section, we precisely describe the QDCART estimator we propose to
study. Let’s first introduce some notation which we will use throughout this
article. For any fixed dimension d ≥ 1, we denote our sample size by N = nd

which is the size of the lattice Ld,n. Let us denote the discrete interval of positive
integers as [a, b] := {i ∈ Z+ : a ≤ i ≤ b} where Z+ denotes the set of positive
integers. For a positive integer n we also denote the set [1, n] by just [n]. For
squences an and bn we write an = O(bn) if there exists a positive constant c > 0
such that an ≤ cbn. If instead an ≤ bn(logn)l for a positive constant l then we
write an = Õ(bn). A subset R ⊂ Ld,n is called an axis aligned rectangle if R is a
product of discrete intervals, i.e. R =

∏d
i=1[ai, bi]. Henceforth, we will just use

the word rectangle to denote an axis aligned rectangle. The size of a rectangle
R =

∏d
i=1[ai, bi] is denoted by |R| and defined as

|R| =
d∏

i=1
(bi − ai + 1).

Let us define a rectangular partition of Ld,n to be a set of rectangles R such
that (a) the rectangles in R are pairwise disjoint and (b) ∪R∈RR = Ld,n.

Let us consider a generic discrete interval [a, b]. We define a dyadic split of
the interval to be a split of the interval [a, b] into two intervals fo equal size.
We assume that the interval has even size for ease of exposition. If not, then
one can set forth a convention for defining the middle point and then follow
it throughout. A dyadic partition of Ld,n is constructed iteratively as follows.
Starting from the trivial partition which is just Ld,n itself, we can create a refined
partition by dyadically splitting Ld,n. This will result in a partition of Ld,n

into two rectangles. We can now keep on dividing recursively, generating new
partitions. In general, if at some stage we have the partition Π = (R1, . . . , Rk),
we can choose any of the rectangles Ri and dyadically split it to get a refinement
of Π with k+1 nonempty rectangles. A recursive dyadic partition (RDP) is any
partition reachable by such successive dyadic splitting. Let us denote the set of
all recursive dyadic partitions of Ld,n as Prdp(Ld,n). Figure 1 shows a depiction
of a dyadic partition.

For a given array θ ∈ RLd,n , let krdp(θ) denote the smallest positive integer
k such that a set of k rectangles R1, . . . , Rk form a recursive dyadic partition of
Ld,n and the restricted array θRi is a constant array for all 1 ≤ i ≤ k. In other
words, krdp(θ) is the cardinality of the minimal recursive dyadic partition of
Ld,n such that θ is piecewise constant on the partition. A visual representation
of krdp(θ) is given in Figure 2 for a signal θ ∈ RL2,n .



1212 O. H. Madrid Padilla and S. Chatterjee

Fig 1. From left to right the panels show an example of a sequence of three dyadic splits that
lead to a dyadic parition.

Fig 2. The left panel shows the representation of a θ ∈ RL2,n that takes on two values. The
right panel shows a dyadic partition with a minimal number of elements where θ is piecewise
constant. In this example krdp(θ) = 12, the number of rectangles in the dyadic partition in
the right panel.

To define our estimator, we will need a few more notations. If Π is any rect-
angular partition of Ld,n we let S(Π) be the linear subspace of RLd,n consisting
of vectors with constant values on each rectangle of Π. We also write R ∈ Π to
mean that the rectangle R is one of the constituent rectangles of the partition
Π. We now define OΠ,τ (·) be a function from RLd,n to S(Π) such that

(OΠ,τ (y))i = qτ (yR)

for i ∈ R, R ∈ Π, and where qτ (yR) is the empirical τ -quantile of the set of
values yR := (yi)i∈R.

Armed with the above notation we can reformulate the optimization problem
in (1.1) by noting that θ̂ defined in (1.1) is the same as OΠ̃,τ (y) where the
partition Π̃ is an optimal solution to the following discrete optimization problem:

min
Π∈Prdp(Ld,n)





∑

i∈Ld,n

ρτ (yi − (OΠ,τ (y))i) + λ|Π|




 . (2.1)

However, the estimator defined in (1.1) is not quite the estimator we propose
and study in this paper as we need to modify the estimator slightly. To describe
our QDCART estimator, which is the main object of study in this paper, we
now define for any fixed quantile level 0 < τ < 1,

θ̂rdp = OΠ̂,τ (y) (2.2)
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where

Π̂ := arg min
Π∈Prdp(Ld,n) : |R|≥γ ∀R∈Π





∑

i∈Ld,n

ρτ (yi − (OΠ,τ (y))i) + λ|Π|




 (2.3)

for tuning parameters λ, γ > 0.
Note that in view of (2.1), the above QDCART estimator is basically the same

as the estimator in (1.1) with a slight modification. We restrict the optimization
space to all partitions in Prdp(Ld,n) with the constraint that the size of each
of its constituent rectangles is larger than γ > 0. This restriction is needed to
avoid the estimator from being affected by large outliers. We say more on this
point in Remark 1.

3. Main results

We first state an assumption on the distribution of the coordinates of the data
vector y.
Assumption 1. There exist positive constants L, f and f such that for any
δ ∈ RLd,n satisfying ‖δ‖∞ ≤ L we have that for i ∈ Ld,n,

f |δi| ≥ |Fyi(θ∗i + δi) − Fyi(θ∗i )| ≥ f |δi|, (3.1)

where Fyi is the cumulative distribution function of yi.
Assumptions like the above are standard and commonly made in the quantile

regression literature. For instance, without the upper bound part, Assumption 1
(Equation (3.1)) also appeared in Padilla and Chatterjee (2020) and is a weaker
version of Condition 2 from He and Shi (1994), and is closely related to Condition
D.1 in Belloni and Chernozhukov (2011). The lower bound in Assumption 1 is
needed to ensure uniqueness of the τ quantiles of the marginal distributions of
the coordinates of y. We believe that Assumption 1 is very mild. For example,
sequences of distributions which are stochastically dominated by a distribution
with continuous density (w.r.t. Lebesgue measure) which is bounded away from
0 on any compact interval satisfy Assumption 1. If it is assumed that the errors
are i.i.d. (which is a commonly made assumption) then if the error distribution
itself has continous density (w.r.t Lebesgue measure) which is bounded away
from 0 on any compact interval then Assumption 1 is satisfied. In particular,
the error distributions could be i.i.d. Cauchy with no moments existing.

Before stating our main result we will need to make the following definition.
Definition 1. Let b > 1 be fixed and θ′ and θ′′ be arrays of the true τ/b-quantiles
and (1 − τ)/b-quantiles of y respectively, so that

θ′i = arg min
a∈R

E {ρτ/b(yi − a)}, and θ′′i = arg min
a∈R

E {ρ(1−τ)/b(yi − a)}.

Then we denote U := max{‖θ′‖∞, ‖θ′′‖∞}.
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Definition 1 simply quantifies the supremum norm of the τ/b-quantiles and
(1 − τ)/b-quantiles of y. We are now ready to state our main result for the
QDCART estimator.
Theorem 1. Suppose that Assumption 1 holds. There exists universal constants
c1, C1, C2, C3 > 0 such that for any 0 < ε < 1, if we set γ = c1 logN and
λ = C1 max{1, U} log(N) log(NU)/ε, then with probability at least 1 − C2ε,

‖θ̂rdp − θ∗‖2

N
≤ C3Qrdp(θ∗)

ε2
(3.2)

where
Qrdp(θ∗)

:= inf
θ∈RN

{
‖θ − θ∗‖2

N
+ krdp(θ)(max{1, U2} log2 (max{N,U}) + ‖θ‖2

∞ logN)
N

}
.

Theorem 1 provides the generalization of the oracle risk bound in Theorem
2.1 in Chatterjee and Goswami (2019) to the quantile setting. We now list the
differences of Theorem 1 with the oracle risk bound (Theorem 2.1 in Chatterjee
and Goswami (2019)) known for the mean regression counterpart.

1. Theorem 2.1 in Chatterjee and Goswami (2019) requires that Y − θ∗, the
vector of errors, consists of i.i.d. mean zero Gaussian random variables. In
contrast, Theorem 1 holds under Assumption 1 which does not require any
tail decay assumptions for the distributions of the coordinates of the error
vector (independence is still assumed). In particular, Assumption 1 allows
error distributions with no moments as well like the Cauchy distribution.

2. The result in Chatterjee and Goswami (2019) is stronger in the sense that
theirs is an upper bound in expectation, given as

E
(
‖θ̂ − θ∗‖2

N

)
≤ inf

θ∈RN

{ (1 − δ)
(1 + δ)

‖θ − θ∗‖2

N
+ Cσ2krdp(θ) logN

δ(1 − δ)N

}
,

(3.3)
for all δ ∈ (0, 1), and for some constant C > 0. Our result in Theorem 1
gives a tail probability inequality which does not ensure that ‖θ̂rdp−θ∗‖2

N
has a finite first moment. It does ensure however that

‖θ̂rdp − θ∗‖2

N
= ÕP(Qrdp(θ∗))

where P refers to an appropriately defined sequence of probability distri-
butions corresponding to denoising problems of increasing size.

3. In effect, the upper bound in Theorem 1 is only off by logarithmic factors
compared to the upper bound in Theorem 2.1 in Chatterjee and Goswami
(2019). Our bound in Theorem 1 contains some extra terms which are
benign. The factor U should scale like O(1) for any realistic error distri-
bution sequence. The factor ‖θ‖∞ inside the infimum in the definition of
Q(θ∗) essentially introduces another multiplicative factor of ‖θ∗‖∞ ≤ U .
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Remark 1. The choice of γ in Theorem 1 ensures that the QDCART estimator
will be well behaved in the sense of the %∞ norm, see Lemma 1. Such a restric-
tion on the size of the rectangles in the optimal partition is actually needed.
Otherwise, the QDCART estimator can be arbitrarily large in some locations
under the presence of heavy tailed errors. If one considers standard subGaussian
type assumptions on the errors, then this restriction on the size of the rectan-
gles can be removed, and U would need to be replaced with U ′ > 0 satisfying
U ′ = O(U +

√
logN), see Lemma 1.

Remark 2. Suppose that we construct our estimator for multiple quantile levels
τ ∈ Λ ⊂ (0, 1) where Λ is a finite set. Then, denoting by θ̂rdp(τ) and θ∗(τ) the
QDCART and the true signal respectively for the quantile level τ , Theorem 1
implies that

‖θ̂rdp(τ) − θ∗(τ)‖2

N
≤ C3Qrdp(θ∗(τ))

ε2
∀τ ∈ Λ, (3.4)

with probability at least 1 − C2ε|Λ|. One might wonder whether it is possible to
integrate over τ in Equation 3.4. Unfortunately, our main result in Theorem 1 is
basically a OP statement. Hence, in order to be able to integrate τ it would require
us to develop new theoretical tools to those from the Appendix, as we believe
solving this will require a new idea. Specifically, following our proof technique
as in Appendix B, we can denote the population and empirical losses for τ as
Mτ (θ) and M̂τ (θ) respectively. Then for a collection {tλ} of positive numers our
goal becomes to derive an upper bound for the quantity

P(∪τ∈Λ{‖θ̂rdp(τ) − θ∗(τ)‖2 > tτ}). (3.5)

Hence, the peeling argument in Appendix B implies that we would need to give
upper bounds for quantities of the form

Aj = P
( ⋃

τ∈Λ

{
sup

θ∈Θ:‖θ−θ∗(τ)‖2!2jt2τ

(
Mτ (θ) + M̂τ (θ̃(τ)) − M̂τ (θ) + λkrdp(θ̃(τ))−

λkrdp(θ)
)
> 2j−1t2τ

})

(3.6)
for j ∈ N, and reference elements θ̃(τ) ∈ Θ, and with Θ as in (C.3). For the
case |Λ| < ∞, the conclusion in (3.4) follows by using union bound on (3.6) and
then proceeding with the outline in Appendix B, bounding the terms for each τ
separately. However, for |Λ| that grows with n or that is infinite, the union
bound approach would not allows to make (3.5) small. Thus, the main challenge
becomes how to control (3.6) for general Λ, something that is not immediate
from our current tools.
Remark 3. A natural question that arises is whether the dependence on τ of
the upper bound in Theorem 1 can be tracked. The answer to this is yes, in
fact the only dependence through τ comes from the constant C3 which satisfies
C3 = O((Lf)−1), with L and f as in Assumption 1. Hence, in principle, we can
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allow τ → 0 or τ → 1, but in that case the quantity Qrdp(θ∗) would need to be
inflated by (Lf)−1.

We now turn to the issue of computation. In this article we also give an al-
gorithm to compute the QDCART estimator based on bottom up dynamic pro-
gramming. This algorithm is similar to the original algorithm given in Donoho
(1997) adapted to the quantile setting. We now state our computation result as
a theorem.

Theorem 2. There exists an absolute constant C > 0 (not depending on d, n)
such that the computational complexity, i.e. the number of elementary opera-
tions involved in the computation of the QDCART estimator in d dimensions is
bounded by C

(
N(logn)d + d 2dN

)
.

The description of the algorithm and the proof of its computational complex-
ity are given in Section 5.

3.1. Implications for bounded variation signals

It was shown in Donoho (1997) and Chatterjee and Goswami (2019) that an
oracle risk bound of the type shown in Theorem 1 implies minimax rate opti-
mality (up to log factors) for other function classes of interest as well. We now
proceed to discuss consequences of Theorem 1 for the class BVd,n(V ) of bounded
variation signals. This class of signals is defined as

BVd,n(V ) :=
{
θ ∈ RLd,n : TV(θ) ≤ V

}
,

where
TV(θ) :=

∑

(i,j)∈Ed,n

|θi − θj |,

and Ed,n is the edge set of the graph Ld,n.
The class of signals BVd,n(V ) is rich enough to contain signals that are smooth

in certain regions of their domain but discontinuous in other regions. The prob-
lem of estimation of a signal in the class BVd,n(V ) has attracted a lot of attention
in the statistics literature, see for instance Mammen and van de Geer (1997);
Tibshirani (2014); Sadhanala et al. (2016); Hutter and Rigollet (2016); Padilla
et al. (2018); Chatterjee and Goswami (2021); Ortelli and van de Geer (2019);
Guntuboyina et al. (2020).

We arrive at the next corollary by combining Theorem 1 with existing ap-
proximation theoretic results shown in Chatterjee and Goswami (2019) (see
Proposition 8.9 and Theorem 4.2 there)

Corollary 1. For any θ∗ ∈ BVd,n(V ), there exists a constant C > 0 only
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depending on the dimension d such that

Qrdp(θ∗) ≤






C
(

V 2/3 max{1,U2} log5/3(max{N,U})
N2/3 + max{1,U2} log2 max{N,U}

N

)

if d = 1
C
(

V max{1,U2} log2(max{N,U})
N + max{1,U2} log2 max{N,U}

N

)

if d > 1.

Therefore, under the same assumptions and the choice of λ and γ in Theorem 1,
the same probability tail bound as in (3.2) holds for any θ∗ ∈ BVd,n(V ) with
Qrdp(θ∗) replaced by the bound above.

The rates implied by Corollary 1 are minimax optimal, save for logarithmic
factors, in the class BVd,n(V ), see the discussion in Tibshirani (2014) for the case
d = 1 and the corresponding one in Hutter and Rigollet (2016), Sadhanala et al.
(2016) for the case d > 1. It was shown in Theorem 5.1 from Chatterjee and
Goswami (2019) that the mean regression version of Dyadic CART is minimax
rate optimal (up to log factors) in the class BVd,n(V ). Corollary 1 can be seen
as an extension of this result to the quantile setting which holds under much
weaker tail decay conditions.

3.2. Implications for piecewise constant signals

We now discuss consequences of Theorem 1 for the class of piecewise constant
signals in dimensions d = 1 and d = 2. Towards that end, given θ ∈ RLd,n ,
we define k(θ) as the size of the smallest rectangular partition Π of Ld,n such
that θ is constant in each rectangle of Π. By construction, k(θ) ≤ krdp(θ) for
all θ ∈ RLd,n . Furthermore, Proposition 3.9 in Chatterjee and Goswami (2019)
shows that there exists an absolute constant C > 0 such that for all θ ∈ RLd,n

it holds that
krdp(θ) ≤ Ck(θ) log

(
en

k(θ)

)
(3.7)

if d = 1 and
krdp(θ) ≤ C(logn)2k(θ) (3.8)

if d = 2.
Combining Theorem 1 with (3.7) and (3.8) we immediately obtain our next

corollary
Corollary 2. For any θ∗ ∈ RLd,n , there exists a constant C > 0 only depending
on the dimension d such that

Qrdp(θ∗) ≤





C
(

k(θ∗) max{1,U2} log2(max{N,U}) log(N/k(θ∗))
N

)
if d = 1

C
(

k(θ∗) max{1,U2} log2(max{N,U}) log2 N
N

)
if d = 2.

Therefore, under the same assumptions and the choice of λ and γ in Theorem 1,
the same probability tail bound as in (3.2) holds for any θ∗ ∈ RLd,n with Qrdp(θ∗)
replaced by the bound above.
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Notice that in Corollary 2, the resulting rate implied is Õ(k(θ∗)/N) which
is the usual parametric rate of estimation for a signal θ∗ consisting of k(θ∗)
pieces if one knows the locations of the end points of the constant pieces of
θ∗. Here, of course the QDCART estimator does not know the true partition
corresponding to the true signal. Corollary 2 can be seen as an extension of
Corollary 3.10 in Chatterjee and Goswami (2019) to the quantile setting which
holds even under heavy tailed error distributions.

Remark 4. The situation when d > 2 is more difficult as versions of (3.7)
and (3.8) are not known to hold in higher dimensions than 2. We refer the
reader to Chatterjee and Goswami (2019) where this issue has been thoroughly
discussed. We prefer therefore to just state our results for dimensions d ≤ 2.

Remark 5. All our theoretical guarantees are in the regime when d is held
fixed and n is growing. Our estimator and our results are practically useful
when d ∈ {1, 2, 3}.

4. Discussion

4.1. Comparison with quantile total variation denoising

We have shown that QDCART is computable in near linear time and enjoys at-
tractive statistical properties. We do not compare QDCART with correspond-
ing mean regression estimators simply because under heavy tails, the mean
regression estimators perform poorly while our results continue to hold; see
the simulations section in Padilla and Chatterjee (2020). Therefore, comparison
is appropriate with other quantile regression estimators. We believe that the
most natural competitor to QDCART is the Quantile Total Variation Denois-
ing (QTVD) estimator, proposed and studied in Padilla and Chatterjee (2020).
Actually, there are two versions of QTVD, the so called constrained and the
penalized version. In the univariate case, Padilla and Chatterjee (2020) refers
to the constrained version of this estimator as constrained quantile fused lasso
(CQFL), and to the penalized version as penalized quantile fused lasso (PQFL).
Both of these estimators were analyzed in Padilla and Chatterjee (2020).

In comparing Corollaries 1 and 2 with the existing results known for CQFL
and PQFL estimators, we make the following points.

1. The results proven in Padilla and Chatterjee (2020) for CQFL and PQFL
only need the lower bound portion in Assumption 1 while Corollaries 1
and 2 require also the upper bound in Assumption 1 to hold. However, this
is a very mild condition that leads to a guarantee for QDCART in terms
of the mean squared error, a stronger (and a much cleaner) result than
those for CQFL and PQFL which are based on the loss ∆2

N (·) defined as

∆2
N (v) := 1

N

∑

i∈Ld,n

min{|vi|, v2
i }, ∀v ∈ RLd,n . (4.1)
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Results under the squared error loss are not yet known for the CQFL and
PQFL estimators. The main reason for this is that the localization result
described in Step 1 in Section B is not available for CQFL and PQFL.

2. The dependence on the total variation of the true signal V in both Corol-
laries 1 and 2 are optimal in the sense that they match the right de-
pendence known in the mean regression case; see Sadhanala et al. (2016)
for lower bounds on bounded variation signal classes. The results for the
CQFL and PQFL estimators in Padilla and Chatterjee (2020) seem to
have sub optimal dependence on V . Thus, to the best of our knowledge,
our results on QDCART are the first quantile regression based estimators
which enjoy minimax rate optimality with respect to both the sample size
N and the total variation of the unknown signal V .

3. Our results for QDCART depend on the quantity U something that is
not the case for QTVD. However, in any realistic setting, we would have
U = O(1).

4. Corollary 2 gives a near parametric rate of convergence for piecewise con-
stant signals. In the univariate case, the corresponding result is known for
the CQFL and PQFL in Theorems 2 and 4 from Padilla and Chatterjee
(2020). However, these results need the true signal to satsify a minimal
spacing condition which is not needed for QDCART. This is potentially
a significant advantage of QDCART over QTVD, even in d = 1, as far as
attaining adaptively optimal rates of convergence for piecewise constant
signals is concerned.

5. In the mean regression problem, it is known that when d = 2, the TVD es-
timator cannot attain near parametric rates of convergence for a rectangu-
lar piecewise constant signal; see Theorem 2.3 in Chatterjee and Goswami
(2021). Therefore, it is expected that the QTVD estimator would also not
be the best tool for estimating rectangular piecewise constant signals. On
the other hand, the QDCART estimator does attain the Õ(k(θ∗)

N ) rate in
2 dimensions and seems to be the right tool for estimating rectangular
piecewise constant signals as well.

6. The QDCART estimator is computable in Õ(N) time in any dimensions.
In contrast, it is unknown and unlikely that the QTVD estimator is com-
putable in Õ(N) time in dimension larger than 1.

Remark 6. The last three points above show that the QDCART estimator is a
computationally faster alternative to the QTVD estimator while also enjoying
some statistical advantages. We perform numerical experiments to further com-
pare finite sample performance of QDCART and QTVD estimators in Section 6.

4.2. Background and related literature

Our work in this paper falls under the scope of nonparametric quantile re-
gression. We now briefly review some classical work on nonparametric quantile
regression. In the context of median regression some early works include Utr-
eras (1981), Cox (1983), and Eubank (1988). Koenker et al. (1994) proposed
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one dimensional quantile smoothing splines. These estimators were studied in
He and Shi (1994) under the assumption that the quantile function is Hölder
continuous.

Other related quantile nonparametric estimators include the bivariate quan-
tile smoothing splines studied in He et al. (1998), the tree based estimator
from Chaudhuri and Loh (2002), the quantile random forest proposed by Mein-
shausen and Ridgeway (2006), and the generalized random forest from Athey
et al. (2019). van de Geer (2003) developed general bounds for nonparametric
quantile regression. Brown et al. (2008) constructed a wavelet-based estimator
for median regression with Besov functions. Recently, Ye and Padilla (2021) de-
veloped the k-nearest neighbour quantile fused lasso approach and Padilla et al.
(2020) studied quantile regression with ReLU networks.

4.3. Future directions

There are different research directions that we leave for future work. A natural
extension is to consider piecewise polynomial structures in the estimator, simi-
larly to Chatterjee and Goswami (2019). However, we are currently unaware of
how to extend our theory to such a setting. The main bottleneck is that given
a fixed sub rectangle of Ld,n we do not know how to obtain an %∞ upper bound
when fitting quantile regression constrained to the class of polynomials of de-
gree r > 0. When r = 0 the latter can be done as in Corollary 1. This a crucial
ingredient in our proof that we do not know how to handle when dealing with
higher order piecewise polynomial signals.

Moreover, it would be worthwhile to mention here that all our theoretical
results hold under a theoretical choice of the tuning parameters. In our exper-
iments, following Yu and Moyeed (2001), we choose the tuning parameters by
Bayesian information criterion (BIC) for quantile regression. It would be in-
teresting to provide theoretical guarantees for an estimator which chooses the
tuning parameters in a data driven way, for example, by some form of cross
validation.

5. Computation of the QDCART estimator

The goal of this section is to develop a computationally efficient algorithm for
the QDCART estimator defined in( 2.2). In doing so, our construction will
imply the conclusion of Theorem 2. This algorithm is an adaptation of the
original algorithm given in Donoho (1997) (also see Lemma 1 in Chatterjee and
Goswami (2019)) to the quantile setting.

We have to solve the discrete optimization problem in (2.3). Let us first see
how we can solve the discrete optimization problem in (2.1) where there are no
constraints on the size of the rectangles.

In order to study the optimization problem (2.1), we first define a corre-
sponding subproblem for any rectangle R. For any rectangle R ⊂ Ld,n and a
partition Π ∈ Prdp(Ld,n), we let Π(R) := {A ∩R : A ∩R -= ∅, A ∈ Π} be the
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partition induced by Π in R. We then let Prdp(R) := {Π(R) : Π ∈ Prdp(Ld,n)}.
In words, Prdp(R) is the set of recursive dyadic partitions of the rectangle R.

Then we define the following subproblem and define its optimal value as

OPT(R) := min
Π∈Prdp(R)

{
∑

i∈R

ρτ (yi − (OΠ,τ (y))i) + λ|Π|
}
.

Clearly, OPT(Ld,n) is the optimal value of the objective function associated
with QDCART. The basic idea is to be able to solve smaller subproblems as
above and build these smaller solutions to solve the full optimization problem.
The following dynamic programming relation allows us to build up from bottom
up

OPT(R) := min
R1,R2 dyadic split ofR

{
OPT(R1)+OPT(R2),

∑

i∈R

ρτ (yi − qτ (yR))+λ

}
,

where by saying that “R1 and R2 dyadic split of R” we mean that R1 and R2
were obtained after performing a dyadic split of R. The above relation follows
because of the separable nature of our optimization objective and the second
term inside the minimum above corresponds to not splitting R at all.

We now proceed visiting dyadic rectangles bottom-up according to the length
of R. The length of R is defined as the sum of the lengths of the sides of the
rectangles. We will start from the minimum possible length d all the way to
nd. Our goal is to store OPT(R) and SPLIT(R) for each dyadic rectangle R,
where SPLIT(R) indicates the optimal split for rectangle R. Note that the total
number of possible splits is d (one for each dimension) and thus SPLIT(R) can
be represented by a single integer within the set [d].

For each dyadic rectangle R, let us denote

SQL(R) :=
∑

i∈R

ρτ (yi − qτ (yR)). (5.1)

where SQL stands for sum of quantile loss and qτ (yR) is an empirical τ quantile
of the set of observations in yR. Assume that we have succesfully computed
SQL(R) for each dyadic rectangle. Then, at each dyadic rectangle R, to compute
OPT(R) we have to compute the sum OPT(R1) + OPT(R2) for each possible
non trivial dyadic split of R into R1, R2 and then compute the minimum of
d + 1 numbers. Once OPT(R) is computed, SPLIT(R) is also automatically
calculated when we are computing the minimum of these d + 1 numbers.

Note that since we are visiting dyadic rectangles bottom up, we have already
computed OPT(R′) for all sub rectangles R′ ⊂)= R. Therefore, the computation
required for computing OPT(R) is d+1. The total number of dyadic rectangles
is at most 2dN . Therefore, the total computation required to compute OPT(R)
for all dyadic rectangles R is at most (d + 1)2dN .

Now we proceed to explain how to compute SQL(R) for each dyadic rectan-
gle R. We again do this by a bottom up scheme by visiting dyadic rectangles
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according to their length (small to large). Our aim here is to compute a sorted
list of observations within each dyadic rectangle R. We do this bottom up. For
each dyadic rectangle R we consider a particular dyadic split R1 and R2 which
is obtained by dyadically splitting (in dictionary order) the first coordinate of
R. In the case the first coordinate is a singleton, we use the second coordinate to
split and so on. Now on our bottom up visits, we iteratively compute sorted lists
for these dyadic rectangles. For instance, for a given dyadic rectangle R, we take
its corresponding dyadic split (in dictionary order) into R1, R2. Now we have
already created a sorted list for R1 and R2. To create a sorted list for R we just
need to merge two sorted lists. We can do this by the standard merge sort al-
gorithm. The computation required at this step is O(|R1|) + O(|R2|) = O(|R|).
Once we are able to construct the sorted list of observations within R, now
SQL(R) can be readily computed in O(|R|) time.

Now consider a dyadic rectangle R of a given size 2i1 × . . . × 2id . The total
number of dyadic rectangles of this size 2i1 × . . .× 2id is at most

n

2i1 × . . .
n

2id .

Therefore, the total computational work needed to compute SQL(R) for all
dyadic rectangles R with this given size is simply

O(2i1 × . . .× 2id × n

2i1 × . . .
n

2id ) = O(nd).

Now note that the total number of distinct sizes 2i1 × . . . × 2id is at most
(logn)d. Therefore, the total computational work needed to compute SQL(R)
for all dyadic rectangles of all sizes with our bottom up scheme is O(N(log n)d).

Finally, we see that the total computation required to compute OPT(R) and
SPLIT(R) for all dyadic rectangles R is O(N(log n)d + d2dN). After OPT(R)
and SPLIT(R) have been constructed, we can find the optimal partition by
going top-down. This would be a lower order computation.

Based on the discussion above, it is not hard to see that to compute (2.3) we
just have to modify the above algorithm slightly. We do not need to compute
OPT(R) and SPLIT(R) for rectangles R with |R| < γ. Thus, when we visit
dyadic rectangles bottom up according to its size, we just visit the feasible
rectangles. Also, for a given rectangle R, to compute OPT(R) we now have to
compute the sum OPT(R1)+OPT(R2) for each possible non trivial dyadic split
of R into R1, R2 where R1, R2 are both feasible and then compute the minimum
of these numbers and

∑
i∈R ρτ (yi − qτ (yR)).

Remark 7. Notice that if the goal is to find (2.1) for multiple τ ∈ Λ ⊂ (0, 1),
the bottom up calculations described before can be done simultaneously for each
τ . Specifically, we can compute OPT(R) and SPLIT(R) for all rectangles R and
all values of τ exploiting the sorted arrays for each rectangle R.
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6. Experiments

6.1. Comparisons in 1d

We now proceed to evaluate the performance of QDCART in the 1d setting. In
our simulations we consider as benchmarks the penalized quantile fused lasso
(PQFL) proposed in Brantley et al. (2019) and studied in Padilla and Chatter-
jee (2020), and the univariate mean regression DCART method from Donoho
(1997). For our evaluations in this subsection, for QDCART and DCART we
consider a grid of 25 values of λ given as {2−2, 2−1.75, . . . , 24} and we set γ = 8,
a choice that we find to work well in practice and the results of this sec-
tion are not sensitive to the choice of γ. As for PQFL, we take λ such that
log λ ∈ {1 + j(7.5−1)

99 : j ∈ {0, 1, . . . , 99}}. Then, for each method and choice of
tuning parameter we calculate the average mean squared error, averaging over
100 data sets generated from different scenarios and with n ∈ {512, 1024}. For
each method and each scenario we then report the optimal MSE. The only re-
maining ingredient is to explain the different scenarios for generating data that
we consider. These are described next.

For each scenario, we generate the data y ∈ RL1,n as yi = θ∗i +εi, for i ∈ L1,n
and some θ∗, ε ∈ RL1,n . We now explain the constructions of θ∗ and ε for the
different scenarios.

Scenario 1. (Large Segments). In this case θ∗ ∈ RL1,n satisfies

θ∗i =
{

1 if i ∈ [0n/51 + 1, 20n/51] ∪ [30n/51 + 1, n]
0 otherwise,

and we generate εi
ind∼ t(2.5) where t(2.5) denotes the t-distribution with 2.5

degrees of freedom.
Scenario 2. (Large and Small Segments). We generate ε as in Scenario

1 and set

θ∗i =






1 if i ∈ [0n/31 + 1, 0n/31 + 0n/321] ∪ [0n/31 + 20n/321 + 1,
0n/31 + 30n/321] ∪ [0n/31 + 40n/321 + 1, n],

0 otherwise.

Scenario 3. (Large Segments and Cauchy Errors). We take θ∗ ∈ RL1,n

as in Scenario 1 and generate εi
ind∼ Cauchy(0, 1).

Scenario 4. (Large and Small Segments, and Heteroscedastic Er-
rors). The vector θ∗ is the same as in Scenario 2 and ε satisfies for all i that

εi = νi ×
√

2i
n

+ 1,

where νi
ind∼ N(0, 1).

A visualization of data generated under each scenario is given in Figure 3.
The results of our comparisons are given in Table 1. Overall, we can see that
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Fig 3. True signal θ∗ and instances of data generated under each of the scenarios.

Table 1
Average mean squared error 1

n

∑n
i=1(θ∗i − θ̂i)2, averaging over 100 Monte carlo simulations

for the different methods considered. Captions are described in the text.

n Scenario PQFL QDCART DCART n Scenario PQFL QDCART DCART
512 1 0.124 0.094 3.08 512 3 0.177 0.252 249054.2

1024 1 0.047 0.066 2.52 1024 3 0.118 0.249 104763.3
512 2 0.084 0.063 3.17 512 4 0.090 0.070 0.114

1024 2 0.064 0.047 2.99 1024 4 0.077 0.054 0.106
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the QDCART estimator is competitive against PQFL. In Scenario 2, where
some of the constant pieces of the true signal are very small, we see that the
QDCART estimator performs better. This is in agreement with Corollary 2
where no minimum length assumption is needed for the QDCART to attain
near parametric rates. Observe that the mean regression DCART estimator
performs poorly under heavy tailed scenarios.

6.2. Comparisons in 2d

We now proceed to evaluate the performance of QDCART for 2d grid graphs
and use DCART and QTVD (PQFL) as benchmarks. For our experiments in
this subsection the tuning parameter λ for QDCART and DCART is taken such
that log10(λ) is in the set {−1 + 6.5j

59 : j ∈ {0, 1, . . . , 59}}. As for the tuning
parameter λ for QTVD we take it such that log2(λ) is in the set {−1 + 7j

19 :
j ∈ {0, 1, . . . , 19}}. As before, for each method and choice of tuning parameter
we calculate the average mean squared error, averaging over 100 data sets gen-
erated from different scenarios. We set d = 2 and n ∈ {64, 128, 256}. For each
method and each scenario we then report the optimal MSE. Next we describe
the different generative models, where in each case the data are generated as
yi,j = θ∗i,j + εi,j where εi,j

ind∼ t(2.5) for i, j ∈ {1, . . . , n} and with θ∗ ∈ Rn×n.
Scenario 5. We set

θ∗i,j =
{

1 if n/5 < i < 3n/5 and n/5 < j < 3n/5,
0 otherwise.

Scenario 6. Now we take θ∗ satisfying

θ∗i,j =






1 if (i− n/4)2 + (j − n/4)2 < (n/5)2,
−1 if (i− 3n/4)2 + (j − 3n/4)2 < (n/5)2,
0 otherwise.

Scenario 7. For this model we let

θ∗i,j =






1 if n/4 < i < 3n/4 and n/4 < j < n/4 + n/8,
1 if n/2 + n/8 < i < 3n/4 and n/4 + n/8 ≤ j < 3n/4,
−1 if i > 6n/8 and j > 6n/8,
0 otherwise.

Scenario 8. This is the same as Scenario 7, but unlike the previous scenarios,
we now generate εi,j

ind∼ N(0, 1).
A visualization of the data generated under Scenarios 5–7 is provided in

Figure 4. There we can see that QDCART can be competitive against QTVD.
A more comprehensive evaluation of performance comparisons is provided in

Table 2. In Scenario 6 where the level sets are non-rectangular, QTVD seems to
do better than QDCART. In Scenario 7, however, QDCART performs slightly
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Fig 4. From left to right, an instance of data, true signal and estimates for Scenarios 5 to 7.

better. We believe this is because the level set can be well represented by a dyadic
partition. We reiterate here that a potential practical advantage of QDCART
over QTVD in an image denoising setting is the fact that the QDCART estima-
tor can be computed in near linear time.QTVD algorithm, being the solution
of a convex optimization program, is slower and no near linear time algorithm
for solving it is known.



Quantile dyadic CART 1227

Table 2
Average mean squared error 1

n

∑n
i=1(θ∗i − θ̂i)2, averaging over 100 Monte carlo simulations

for the different methods considered and with data generated from Scenarios 5–7. Captions
are described in the text.

n Scenario QTVD QDCART DCART Scenario QTVD QDCART DCART
64 5 0.030 0.048 0.139 6 0.057 0.096 0.250

128 5 0.013 0.021 0.134 6 0.023 0.035 0.252
256 5 0.004 0.009 0.133 6 0.011 0.026 0.251
n Scenario QTVD QDCART DCART Scenario QTVD QDCART DCART

64 7 0.060 0.033 0.157 8 0.048 0.021 0.016
128 7 0.022 0.009 0.163 8 0.018 0.008 0.005
256 7 0.009 0.004 0.166 8 0.007 0.004 0.001

Finally, we also see in Table 2, that under Scenario 8, DCART is the best
method. This is not surprising since the error terms are Gaussian distributed.

6.3. Ion channels data

We conclude our experiments section with a real data example involving ion
channels data. Ion channels are a class of proteins expressed by all cells that
create pathways for ions to pass through the cell membrane. As explained in
Jula Vanegas et al. (2021), over time, the ion channel changes its gating behavior
by closing and reopening its pore which leads to a piecewise constant current
flow structure. The original data that we use was produced by the Steinem
Lab (Institute of Organic and Biomolecular Chemistry, University of Gottin-
gen), and it was recently analyzed by Jula Vanegas et al. (2021). It consists
of a single ion channel of the bacterial porin PorB, a bacterium that plays a
role in the pathogenicity of Neisseria gonorrhoeae. The original data is 600000
time instances. For our comparisons we focus on a portion of length 32511 and
construct a subsampled vector y ∈ R2048. Thus, our resulting signal is similar
to that in Cappello et al. (2021). A depiction of the data is shown in Figure 5.

Given the signal y ∈ R2048, we fit both PQFL and QDCART with values
τ ∈ {0.1, 0.5, 0.9}. For PQFL we consider values of the penalty parameter λ
such that log λ is in the set {1 + j6.5

99 : j ∈ {0, . . . , 99}}. As for QDCART we
take λ such that log2 λ is in {−2+ 7j

25 : j = 0, . . . , 25}. Then for both PQFL and
QDCART we choose the tuning parameter that minimizes the BIC for quantile
regression criteria from Yu and Moyeed (2001) given as

BIC := 2
σ

n∑

i=1
ρτ (yi − θ̂i) + v logn,

where as in Brantley et al. (2019) and Ye and Padilla (2021) we take σ =
1−|1−2τ |

2 , and where v is the estimated degrees of freedom. Motivated by Tib-
shirani and Taylor (2012), we let

v =
∣∣∣
{
j : |θ̂j − θ̂j+1| > 10−3

}∣∣∣ .
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Fig 5. The first two panels show the estimated PQFL and QDCART for τ ∈ {0.1, 0.5, 0.9}
when using the ion data. The last panel then shows the ion raw data.

With the above choice of tuning parameter for both PQFL and QDCART,
we compute the estimates which are displayed in Figure 5. There, we can see
that the estimators are roughly similar, validating our theoretical findings that
QDCART and PQFL have similar statistical properties.

Finally, in order to provide a clearer quantitative comparison, we proceed as
follows. We randomly choose 50% of the entries of the signal described above and
we use this as training. Then we use the remaining 50% of the data as testing,
and for each coordinate in the test set we make a prediction based on the closest
coordinate in the training set. With this in hand, for each competing method, we
compute prop0.5, the proportion of the test samples that are below its predicted
median. We also compute cov80%, the proportion of samples in the test set that
are between their predicted 0.1 and 0.9 quantiles. The quantities prop0.5 and
cov80% are then averaged over 100 repetitions and reported for PQFL and QD-
CART. For QDCART we obtain the values prop0.5 = 0.502 and cov80% = 0.781,
whereas for PQFL we obtain prop0.5 = 0.502 and cov80% = 0.772. These results
suggest that QDCART provides ever so slightly better prediction intervals than
PQFL.
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Appendix A: Quantile ORT estimator

The ORT estimator, introduced in Chatterjee and Goswami (2019) is a variant
of the Dyadic CART estimator which enjoys better statistical risk guarantees
in general but has significantly slower computational complexity; see Lemma 1
in Chatterjee and Goswami (2019). Just as we have proposed QDCART, it is
natural to extend the optimal regression tree (ORT) estimator to the quantile
setting as well. This leads us to define the quantile optimal regression tree
(QORT) estimator. Before giving the definition of QORT, we need to introduce
some additional notation.

Given a rectangle R =
∏d

j=1[aj , bj ] ⊂ Ld,n, a hierarchical split consists of
choosing a coordinate j ∈ {1, . . . , d} and then constructing the rectangles R1
and R2 with R = R1 ∪R2, R1 ∩R2 = ∅ and

R1 =
j−1∏

i=1
[ai, bi] × [aj , l] ×

d∏

i=j+1
[ai, bi],

with aj ≤ l ≤ bj and l ∈ Z+. Thus, the difference of a hierarchical split with a
dyadic split is that the former is not restricted to split an interval only at the
midpoint. Starting from Ld,n, one can keep on performing hierarchical splits
recursively, creating refined partitions. A hierarchical partition/decision tree is
any partition reachable by such successive hierarchical splits. Note that this is
the usual definition of a decision tree except we are carrying out everything on
the lattice Ld,n. We denote by Ptree(Ld,n) the set of hierarchical partitions of
Ld,n.

Given θ ∈ RLd,n , we denote by ktree(θ) the smallest number of elements of
any hierarchical partition in which θ is piecewise constant. It is clear that for
any θ ∈ RLd,n we must have

k(θ) ≤ ktree(θ) ≤ krdp(θ).

Armed with the notation above, we can now define the estimator

θ̂tree = OΠ̂tree,τ
(y) (A.1)

where

Π̂tree := arg min
Π∈Ptree(Ld,n) : |R|≥γ ∀R∈Π





∑

i∈Ld,n

ρτ (yi − (OΠ,τ (y))i) + λ|Π|




 (A.2)

for tuning parameters λ, γ > 0. By construction, θ̂tree is the quantile version of
the ORT estimator proposed and studied in Chatterjee and Goswami (2019).

With the notation above in hand, we are now ready to present our main
result for the QORT estimator.
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Theorem 3. Define for any θ ∈ RLd,n , the quantity

Qtree(θ∗)

:= inf
θ∈RN

{
‖θ − θ∗‖2

N
+ ktree(θ)(max{1, U2} log2 (max{N,U}) + ‖θ‖2

∞ logN)
N

}

Under the same assumptions and the choice of λ and γ in Theorem 1, the same
probability tail bound as in (3.2) holds for any θ∗ ∈ RLd,n with one difference;
Qrdp(θ∗) is replaced by Qtree(θ∗).

Remark 8. The above theorem basically says that 1
N ‖θ̂tree−θ∗‖2=OP(Qtree(θ∗)).

This is in general a better bound than saying 1
N ‖θ̂tree − θ∗‖2=OP(Qrdp(θ∗)) be-

cause ktree(θ∗) ≤ krdp(θ∗).
Theorem 3 generalizes to the quantile setting the general risk bound proven

in Chatterjee and Goswami (2019) for the ORT estimator. It is clear that the
implications presented for bounded variation and piecewise constant function
classes continue to hold for the QORT estimator as well. However, the QORT
estimator would have significantly worse computational complexity than the
QDCART estimator which is why we focus more on the QDCART estimator in
this paper. It should be possible to provide an algorithm demonstrating a com-
putational complexity result scaling like Õ(N2+1/d) for the QORT estimator,
analogous to Theorem 2. We do not carry this due to space considerations.

Appendix B: Proof technique

Our proof follows a M-estimation approach by viewing the QDCART estimator
as a penalized M estimator. This M estimation viewpoint was also used to ana-
lyze the Quantile version of Trend Filtering as in Padilla and Chatterjee (2020)
and we borrow some of the techniques from Padilla and Chatterjee (2020). The
mean regression version of Dyadic CART was throroughly analyzed in Chatter-
jee and Goswami (2019). We also use some proof techniques developed there
and adapt it to our setting. We now discuss a sketch of the proof of our main
result in Theorem 1. We have divided the proof sketch into several steps for the
convenience of the reader.

From the M estimation viewpoint, the natural loss function which arises is
the following population quantile loss function M : RLd,n → R

M(θ) :=
∑

i∈Ld,n

E (ρτ (yi − θi) − ρτ (yi − θ∗i )) .

Another loss function that plays a role in our proof is the following Huber
loss type function

∆2(θ) =
∑

i∈Ld,n

min{|θi|, |θi|2}.

The Huber loss function ∆2 is always upper bounded by the population
quantile loss; this is the content of Lemma 13 in Padilla and Chatterjee (2020)
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which says that, under Assumption 1, there exists an absolute constant c0 > 0
such that for all δ ∈ RLd,n it holds that

M(θ∗ + δ) ≥ c0∆2(δ). (B.1)

With the notation above in hand, we now proceed to sketch the different
steps involved in the proof of Theorem 1.

Step 1: (Preliminary Localization) We first show that ‖θ̂rdp‖∞ ≤ U with
high probability. The reader can think of this as a preliminary localization step.

Recall U from Definition 1. Within this proof sketch, we will assume U = O(1)
which is the regime of interest. For sequences an and bn, we will also use the
notation an ! bn to denote that an ≤ Cbn for an absolute constant C.

This preliminary localization step is crucial in our proof because it allows us
to conclude that

‖θ̂rdp − θ∗‖2 ! ∆2(θ̂rdp − θ∗) ! M(θ̂rdp) ! ‖θ̂rdp − θ∗‖2. (B.2)

The last inequality above follows from Lemma 8. The above means that the
loss functions M,∆2 are essentially equivalent (up to constants) to the squared
loss. In the reminder of the proof sketch all the events are intersected with
‖θ̂rdp‖∞ ≤ U as the complement event ‖θ̂rdp‖∞ > U has negligible probability
and can be handled separately.

Step 2: (Reduction to Bounding M loss) Because of (B.2), in order to
bound P(‖θ̂rdp − θ∗‖2 > t2) for any t > 0, it suffices for us to bound

P(M(θ̂rdp) > t2).

Step 3: (Peeling) To bound the required probability, we perform the peeling
step which is a standard step in empirical process theory. We write

P(M(θ̂rdp) > t2) =
J∑

j=1
pj , pj := P(2j−1t2 < M(θ̂rdp) ≤ 2jt2).

Again, because ‖θ̂rdp‖∞ ≤ U is true it follows that M(θ̂) ! ∆2(θ̂rdp−θ∗) ! N as
explained in (C.12). Therefore, we only need to sum up to J = O(logN) = Õ(1)
in our peeling step.

Step 4: (Basic Inequality, Suprema and Markov’s Inequality) For
i ∈ Ld,n, define the sample version of the quantile population loss function as a
random function M̂ : R → R such that

M̂(θ) :=
∑

i∈Ld,n

{ρτ (yi − θi) − ρτ (yi − θ∗i )} .

Now the so called basic inequality gives us

M̂(θ̃) − M̂(θ̂rdp) + λkrdp(θ̃) − λkrdp(θ̂rdp) ≥ 0 (B.3)

for any θ̃ ∈ Θ, with Θ the parameter space defined in (C.3).
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Now we can bound pj as follows. For any reference θ̃ ∈ Θ, notice that

pj = P(2j−1t2 < M(θ̂rdp),M(θ̂rdp) ≤ 2jt2, ) ≤
P(2j−1t2 < M(θ̂rdp) + M̂(θ̃) − M̂(θ̂rdp) + λkrdp(θ̃) − λkrdp(θ̂rdp)︸ ︷︷ ︸

−M(θ̃) + M(θ̃)︸ ︷︷ ︸,

M(θ̂rdp) ≤ 2jt2)

Above, we used the basic inequality and added and subtracted M(θ̃) because
we would like to obtain an oracle risk bound with respect to θ̃. Now we will just
“sup out” θ̂rdp to obtain

pj ≤ P
(

2j−1t2 < supθ∈Θ:‖θ−θ∗‖2!2jt2
(
M(θ) + M̂(θ̃) − M̂(θ)+

λkrdp(θ̃) − λkrdp(θ) −M(θ̃) + M(θ̃)
))

where again we used the equivalence of the squared loss and the M loss. Next,
we simply use Markov’s inequality to obtain pj ≤ T1,j + T2, where

T1,j := 1
2j−1t2 E

(
supθ∈Θ:‖θ−θ∗‖2!2jt2

(
M(θ) − M̂(θ) −M(θ̃) + M̂(θ̃)+

λkrdp(θ̃) − λkrdp(θ)
))

,

and
T2,j = M(θ̃)

2j−1t2
.

Step 5: (Symmetrization and Contraction) At this point, T1,j can be
viewed as the expected suprema of a penalized empirical process. To simplify
matters further, we use the tools of symmetrization (Lemma 3) and contraction
(Lemma 4) to convert a penalized empirical process to a penalized Rademacher
process. Specifically, we show that

T1,j ! T ′
1,j :=

1
2j−1t2

E
(

sup
θ∈Θ : ‖θ−θ∗‖2!2jt2

{
ξ+(θ − θ̃) + λ

2 (krdp(θ̃) − krdp(θ))
})

(B.4)
where ξ is a vector of independent Radamacher random variables, see Lemma 7.

Step 6: (Bounding Penalized Rademacher Complexity) At this point,
we are left with the task of bounding the penalized Rademacher complexity term
as in (B.4). This task has essentially been done in Proposition 8.9 in Chatterjee
and Goswami (2019), the only difference being that they bounded the corre-
sponding Gaussian complexity term. It is not hard to convert the ideas there to
our setting where we have Rademacher variables. In lemma 7 we show that

T ′
1,j = Õ

(
krdp(θ̃) + ‖θ̃ − θ∗‖2

2j−1t2

)
,
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provided that λ is chosen to be not less than O(log2 N).
Step 7: (Putting everything together) Next, we bound T2,j by the

squared error loss using Lemma 8, which shows that

M(θ̃) ! ‖θ̃ − θ∗‖2.

It follows from this and the previous steps that

P(‖θ̂rdp − θ∗‖2 > t2) ≤
J∑

j=1
pj !

J∑

j=1

1
2j−1

[
krdp(θ̃)

t2
+ 1

t2
‖θ̃ − θ∗‖2

]
,

and so we can take an infimum over θ̃ ∈ Θ on the right hand side above. A
simple approximation lemma (see Lemma 9) is now used to justify that we can
actually take an infimum over all θ̃ ∈ RLd,n in the previous display which leads
to

P(‖θ̂rdp − θ∗‖2 > t2) ! Q(θ∗)
t2

.

where
Qrdp(θ∗) ! inf

θ∈RLd,n

(
krdp(θ̃) + ‖θ̃ − θ∗‖2).

The above display implies that ‖θ̂rdp−θ∗‖2 = OP(Qrdp(θ∗)). This concludes the
proof.

Appendix C: Proofs

C.1. General estimator

Let S be a collection of linear subspaces of RN . For any subspace S ∈ S we
denote its dimension with Dim(S) and define a penalty function kS : RLd,n →
Z+ induced by S as

kS(θ) := min{Dim(S) : θ ∈ S, S ∈ S}, (C.1)

with the convention that the minimum of the empty set is ∞. We are interested
in subspaces of arrays which are piecewise constant on a rectangular partition
of Ld,n. We denote by ΠS the rectangular partition of Ld,n so that S is the
subspace of arrays which are constant on every rectangle of ΠS . We will denote
a generic rectangle of Ld,n by R. When we say R ∈ ΠS we are referring to a
rectangle R of the partition ΠS .

The collection of partitions Prdp or Phier will give rise to corresponding collec-
tions of linear subspaces S and the associated complexity measures krdp(θ) and
ktree(θ) respectively. For a collection of subspaces S corresponding to a collection
of rectangular partitions, we now define an additional function sS : RLd,n → Z+

as follows:
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Definition 2.

sS(θ) := min
R :R∈ΠS , θ∈S,S∈S, and kS(θ)=|ΠS |

|R|.

In words, sS(θ) is the size of the minimal rectangle of the minimal rectangular
partition ΠS within S ∈ S such that θ is constant on every rectangle of ΠS .

For a given collection of subspaces S corresponding to a collection of rect-
angular partitions of Ld,n and a constant c1 > 0, we will consider the general
0 < τ < 1 quantile estimator

θ̂(τ)
S,c1

= arg min
θ∈Θ





∑

i∈Ld,n

ρτ (yi − θi) + λkS(θ)




 , (C.2)

where λ > 0 is a tuning parameter and

Θ = (∪S∈SS) ∩
{
θ ∈ RLd,n : sS(θ) ≥ c1 logN

}
, (C.3)

C.2. Preliminary lemmas

Throughout the proof, without loss of generality we assume that τ ≤ 0.5. The
case τ > 0.5 can be handled similarly. Throughout we will suppose that As-
sumption 1 holds. We will also drop the subscript in θ̂S,c1 and just write θ̂ to
avoid notational clutter.
Definition 3. Let b > 1 be fixed and θ′, θ̃ ∈ RLd,n be vectors of τ/b-quantiles
and (1 − τ)/b-quantiles of the data vector y respectively, so that

θ′i = F−1
yi

(τ/b)

and
θ′′i = F−1

yi
((1 − τ)/b).

Then we denote
U := max{‖θ′‖∞, ‖θ′′‖∞}.

Remark 9. The sequence U is clearly a function of set of marginal distributions
of y. For realistic distributions the sequence U = O(1). For instance, if we
assume that the error distribution is i.i.d then U is a constant sequence.
Lemma 1. For any α > 0, if we set c1 ≥ (α+ 2)b2/(2(b− 1)2τ2) then we have

P(‖θ̂‖∞ ≤ U) ≥ 1 − 2N−α. (C.4)

Furthermore, if yi−θ∗i is subGaussian(v) for all i ∈ Ld,n and some v > 0, then,
the constraint |R| ≥ γ can be removed from the estimator and it holds that

P
(
‖θ̂‖∞ ≤ U ′

)
≥ 1 −N−α

for any α > 0, where U ′ = U + v
√

2(α + 1) logN .
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Proof. We first prove the general case in (C.4). Let Π̂ be the optimal partition
on which θ̂ is piecewise constant. Fix a v ∈ Ld,n and denote by R the rectangle
of the partition Π̂ containing v. We know that θ̂v is a sample τ quantile of the
observations in yR. Therefore, we can assert that

{
∃v ∈ Ld,n : θ̂v < min

u∈Ld,n

θ′u

}

⊂
⋃

R⊂Ld,n rectangle :|R|≥c1 logN

{∣∣∣∣

{
i ∈ R : yi ≤ min

u∈Ld,n

θ′u

}∣∣∣∣ > τ |R|
}
.

Now for any rectangle R with |R| ≥ c1 logN ,

P
(∣∣∣∣

{
i ∈ R : yi ≤ min

j=1,...,n
θ′j

}∣∣∣∣ > τ |R|
)

≤ P
(
∑

u∈R

1(yu ≤ θ′u) > τ |R|
)

≤ exp
(
−2(b− 1)2

b2
τ2|R|

)

≤ exp
(
−2(b−1)2

b2 τ2c1 logN
)
,

where the second inequality follows by Hoeffding’s inequality. By choosing c1 =
(α + 2)b2/(2(b− 1)2τ2) and by using the last two displays imply that

P(∃v : θ̂v < min
u∈Ld,n

θ′u) ≤ N−α.

The same bound can readily be shown for P(∃v : θ̂v > max
u∈Ld,n

θ′′u) by a similar
argument. Both these assertions with a further union bound finishes the proof
for the general case.

Let us now assume that yi − θ∗i is subGaussian(v) for all i ∈ Ld,n and some
v > 0 Then, by construction of θ̂, it holds that

‖θ̂‖∞ ≤ ‖y‖∞ ≤ ‖θ∗‖∞ + ‖y − θ∗‖∞ ≤ U + ‖y − θ∗‖∞

and by the subGaussian maximal inequality (e.g. see Theorem 1.14 in Rigollet
and Hütter (2015)) we have

P
(
‖y − θ∗‖∞ ≥ v

√
2(α + 1) logN

)
≤ 1

Nα

so the proof follows.
Our next result is a modified version of Lemma 9.1 in Chatterjee and Goswami

(2019) where we prove the corresponding result for rademacher random variables
instead of gaussian random variables.
Lemma 2 (Lemma 9.1 in Chatterjee and Goswami (2019)). Let θ̃ ∈ RLd,n be
a fixed array and ξ ∈ RLd,n be an array of independent Rademacher random
variables. Then there exists C > 0 such that if λ ≥ C logN then it follows that

E
(

sup
θ∈Θ

{(
ξ+

(θ − θ̃)
‖θ − θ̃‖

)2

− λkS(θ)
})

≤ 16.
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Proof. Let S ∈ S and OS be the orthogonal projection matrix onto S. Then,
following the arguments in the proof of Lemma 9.1 in Chatterjee and Goswami
(2019) it follows that

sup
v )=0,v∈S

ξ+(v − θ̃)
‖v − θ̃‖

≤ ξ+(I −OS)θ̃
‖(I −OS)θ̃‖

+ sup
v∈S,‖v‖≤1

ξ+v. (C.5)

Let vS,1, . . . , vS,mS an orthonormal basis of S with mS = dim(S). Then

sup
v∈S,‖v‖≤1

(ξ+v)2 = sup
v∈S,‖v‖≤1

(ξ+OSv)2

≤ sup
v∈S,‖v‖≤1

‖OSξ‖2 · ‖v‖2

= ‖OSξ‖2

=

∥∥∥∥∥∥

mS∑

j=1
(v+S,jξ)vj

∥∥∥∥∥∥

2

=
ms∑

j=1
|v+S,jξ|2

≤ mS max
j=1,...,mS

|Z(S)
j |2

where Z(S)
j := v+S,jξ is Sub-Gaussian(1). Therefore,

E
(

sup
v∈S,‖v‖≤1

ξ+v

)
≤

√
dim(S) · E

(
max

j=1,...,mS

|Z(S)
j |

)

≤
√

2 dim(S) logN,

(C.6)

where the second inequality holds by the usual expectation of maximum of sub-
Gaussian random variables inequality. Then from an application of McDiarmid’s
inequality inequality as in Page 62 of van Handel (2014), we obtain that for any
t > 0,

P
(

sup
v∈S,‖v‖≤1

(ξ+v)2 − 4 dim(S) logN ≥ 2t
)

≤ P
(

sup
v∈S,‖v‖≤1

(ξ+v) −
√

2 dim(S) logN ≥
√
t

)

≤ exp
(
− t

4

)
.

Hence, by union bound and the fact that |{S ∈ S,dim(S) = k}| ≤ N2k, we have
that

P
(

max
S∈S,dim(S)=k

{
sup

v∈S,‖v‖≤1
(ξ+v)2 − 20 dim(S) logN

}
≥2t

)

≤ exp
(
− t

4

)
.
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And so again, by union bound we obtain that

P
(

max
k=1,...,N

max
S∈S,dim(S)=k

{
sup

v∈S,‖v‖≤1
(ξ+v)2 − 28 dim(S) logN

}
≥ 2t

)

≤ exp
(
− t

4

)
.

(C.7)
Similarly,

P
(

max
k=1,...,N

max
S∈S,dim(S)=k

{(
ξ+(I −OS)θ̃
‖(I −OS)θ̃‖

)2

− 28 logN
}

≥ 2t
)

≤ exp
(
− t

4

)
.

(C.8)

The claim follows from (C.7) and (C.8) by simple integration.
Next, we recall some notations from Section B.

Definition 4. For u ∈ Ld,n, define the random function M̂u : R → R as follows:

M̂u(θu) := {ρτ (yu − θu) − ρτ (yu − θ∗u)} ,

Now define the random function M̂ : R → R

M̂(θ) :=
∑

u∈Ld,n

M̂u(θu),

and the deterministic function M : R → R as

M(θ) := E
(
M̂(θ)

)
.

Furthermore, let us denote

∆2(θ) =
∑

i∈Ld,n

min{|θi|, |θi|2}

and ∆2
N (θ) = ∆2(θ)/N .

Our analysis relies on viewing the estimator defined in (C.2) as a penalized M
estimator or a penalized empirical risk minimization estimator. Hence the nat-
ural loss function for us is the population quantile loss M function given above.
However, we would like to give risk bounds for the square loss function. For this
purpose, the ∆ function defined above plays an important role in converting
bounds in the M loss function to bounds for squared error loss.

We now proceed to state some results (Lemmas 8–11) involving involving the
functions M(·) and ∆2(·). These are results that also appeared in Padilla and
Chatterjee (2020), the only difference with the results in Padilla and Chatterjee
(2020) is that we now use the penalty function kS(θ) instead of the TV(θ)
function. We omit writing the proofs of these results since the proofs are very
similar to what is already given in Padilla and Chatterjee (2020).
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Lemma 3. (Symmetrization, Lemma 28 in Padilla and Chatterjee (2020)). For
any set K, θ̃ ∈ RLd,N , and λ > 0 it holds that

E

[
sup
θ∈K

{
M(θ) −M(θ̃) + M̂(θ̃) − M̂(θ) + λ(kS(θ̃) − kS(θ))

}]

≤ 2E



sup
θ∈K





∑

i∈Ld,n

ξi(M̂i(θi) − M̂i(θ̃i)) + λ

2 kS(θ̃) − λ

2 kS(θ)








 ,

where ξ1, . . . , ξn are independent Rademacher variables independent of {yi}ni=1.

Lemma 4. (Contraction principle, Lemma 29 in Padilla and Chatterjee (2020)).
Let h1, . . . , hn : R → R η-Lipschitz functions for some η > 0. Then for any
θ̃ ∈ RLd,n , any compact set K, and ξ1, . . . , ξn independent Rademacher variables
we have that

E



sup
θ∈K





∑

i∈Ld,n

ξihi(θi) + λ

2 kS(θ̃) − λ

2 kS(θ)










≤ E



sup
θ∈K




η
∑

i∈Ld,n

ξiθi + λ

2 kS(θ̃) − λ

2 kS(θ)










for any λ > 0.

Lemma 5. (Lemma 13 in Padilla and Chatterjee (2020)). Suppose that As-
sumption 1 holds. Then there exists a constant c0 such that for all δ ∈ Rn, we
have

M(θ∗ + δ) ≥ c0∆2(δ).

Lemma 6. (Lemma 17 in Padilla and Chatterjee (2020)). Let δ ∈ Rn. Then

‖δ‖2 ≤ max{‖δ‖∞, 1}∆2(δ). (C.9)

Our next lemma is key and controls the expected suprema of a penalized
empirical process.

Lemma 7. Let θ̃ ∈ Rn and t > 0. Then there exist a constant C > 0 such that
for any a > 0 if λ ≥ Ca logN , we have that

E
(

sup
θ∈Θ : ‖θ−θ∗‖2≤t2

{
M(θ) −M(θ̃) + M̂(θ̃) − M̂(θ) + λ(kS(θ̃) − kS(θ))

})

≤ C2a + 2t2
a

+ 2‖θ∗ − θ̃‖2

a
+ λkS(θ̃),

for a positive constant C2 > 0.
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Proof. Notice that if ξ ∈ RLd,n consists of independent Rademacher random
variables then

E
(

sup
θ∈Θ : ‖θ−θ∗‖≤t

{
M(θ) −M(θ̃) + M̂(θ̃) − M̂(θ) + λ(kS(θ̃) − kS(θ))

})

≤ 2 E
(

sup
θ∈Θ : ‖θ−θ∗‖≤t

{
ξ+(θ − θ̃) + λ

2 (kS(θ̃) − kS(θ))
})

≤ 2 E
(

sup
θ∈Θ : ‖θ−θ∗‖≤t

{
ξ+(θ − θ̃) − λ

2 kS(θ)
})

+ λkS(θ̃)

≤ 2 E
(

sup
θ∈Θ : ‖θ−θ∗‖≤t

{
a

2

(
ξ+

(θ − θ̃)
‖θ − θ̃‖

)2

− λ

2 kS(θ)
})

+2t2 + 2‖θ∗ − θ̃‖2

a
+ λkS(θ̃)

≤ aE
(

sup
θ∈Θ : ‖θ−θ∗‖≤t

{(
ξ+

(θ − θ̃)
‖θ − θ̃‖

)2

− CkS(θ) logN
})

+ 2t2
a

+ 2‖θ∗ − θ̃‖2

a

+λkS(θ̃)

≤ C2a + 2t2
a

+ 2‖θ∗ − θ̃‖2

a
+ λkS(θ̃)

where the first inequality follows as in Lemmas 3 and 4, the third by Cauchy
Schwarz inequality, and the last by Lemma 2.

Lemma 8. For θ̃ ∈ RN we have that

M(θ̃) ≤ f

2 ‖θ̃ − θ∗‖2.

Proof. Let δ := θ̃ − θ∗. We start by recalling by Equation (19) in Padilla and
Chatterjee (2020) which states that

Mi(θ̃i) =
∫ δi

0
(Fyi(θ∗i + z) − Fyi(θ∗i ))dz.

Hence,

M(θ̃) =
∑

i∈Ld,n

∫ δi

0
(Fyi(θ∗ + z) − Fyi(θ∗)) dz

≤
∑

i∈Ld,n

∫ δi

0
fzdz

= f

2 ‖δ‖
2

where the inequality follows from Assumption 1.
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C.3. General upper bound

Theorem 4. Suppose that Assumption 1 holds. There exists universal constants
c1, C1, C2, C3 > 0 such that for any 0 < ε < 1, if we set γ = c1 logN and

λ = C1
max{1, U} log(N) log(NU)

ε
,

implies that with probability at least 1 − C2ε,

‖θ̂ − θ∗‖2

N
≤ C3Q(θ∗)

ε2
, (C.10)

where

Q(θ∗) := inf
θ∈Θ

{
kS(θ)max{1, U2} log2 (max{N,U})

N
+ f‖θ∗ − θ‖2

N

}
.

Proof. Let t ∈ (0, 2N U) and notice that for δ̂ := θ̂ − θ∗ we have that for U as
in Definition 1 it holds that

P(∆2(δ̂) > t2) ≤ P(∆2(δ̂) > t2, ‖θ̂‖∞ ≤ U) + P(‖θ̂‖∞ > U), (C.11)

with ∆(·) as in Definition 3. Hence, from Lemma 1 it is enough to bound
P(∆2(δ̂) > t2, ‖θ̂‖∞ ≤ U). Towards that end we notice that ‖θ̂‖∞ ≤ U im-
plies

∆2(δ̂) ≤ ‖δ̂‖1 ≤ ‖θ̂‖1 + ‖θ∗‖1 ≤ 4N U (C.12)
and hence

P(∆2(δ̂) > t2, ‖θ̂‖∞ ≤ U) ≤ P(∆2(δ̂) > t2,∆2(δ̂) ≤ 4N U, ‖θ̂‖∞ ≤ U).
Now, we will undertake the so called peeling step. Letting

x = 4log(4N U/t2)/ log 25, (C.13)

we obtain that for any θ̃ ∈ Θ

P(∆2(δ̂) > t2, ‖θ̂‖∞ ≤ U)

≤
x∑

j=1
P
(
∆2(δ̂) > 2j−1t2,∆2(δ̂) ≤ 2jt2, ‖θ̂‖∞ ≤ U

)

≤
x∑

j=1
P
(
M(θ̂) > c02j−1t2,∆2(δ̂) ≤ 2jt2, ‖θ̂‖∞ ≤ U

)

=
x∑

j=1
P(M(θ̂) −M(θ̃) + M(θ̃) > c02j−1t2,∆2(δ̂) ≤ 2jt2,

‖θ̂‖∞ ≤ U)

≤
x∑

j=1
P(M(θ̂) −M(θ̃)+

{
M̂(θ̃) − M̂(θ̂) + λ(kS(θ̃) − kS(θ̂))

}
+ M(θ̃)

> c02j−1t2,∆2(δ̂) ≤ 2jt2, ‖θ̂‖∞ ≤ U)
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where the second inequality follows from Lemma 5, and the last by the optimal-
ity of θ̂, since

M̂(θ̃) − M̂(θ̂) + kS(θ̃) − kS(θ̂) ≥ 0.
We can now continue to write from the previous display,

P(∆2(δ̂) > t2, ‖θ̂‖∞ ≤ U)

≤
x∑

j=1
P
(

sup
θ∈Θ : ∆2(θ−θ∗)≤2jt2,‖θ‖∞≤U

{
M(θ) −M(θ̃) + M̂(θ̃) − M̂(θ)+

λ(kS(θ̃) − kS(θ)) + M(θ̃)
}

≥ c02j−1t2
)

≤
x∑

j=1
P
(

sup
θ∈Θ : ‖θ−θ∗‖2≤2j max{1,U}t2

{
M(θ) −M(θ̃) + M̂(θ̃) − M̂(θ)+

λ(kS(θ̃) − kS(θ)) + M(θ̃)
}

≥ c02j−1t2
)

≤
x∑

j=1

1
c02j−1t2

E
(

sup
θ∈Θ : ‖θ−θ∗‖2≤2j max{1,U}t2

{
M(θ) −M(θ̃)+

M̂(θ̃) − M̂(θ) + λ(kS(θ̃) − kS(θ))
})

+ 2M(θ̃)
c0t2

(C.14)
where the second inequality follows from Lemma 6, and the third inequality
follows from Markov’s inequality and summing up the geometric series.

Let ε ∈ (0, 1) be fixed. We notice that (C.14) and Lemma 8 imply that

P(∆2(δ̂) > t2, ‖θ̂‖∞ ≤ U)

≤
x∑

j=1

1
c02j−1t2

E
(

sup
θ∈Θ : ‖θ−θ∗‖2≤2j max{1,U}t2

{
M(θ) −M(θ̃)+

M̂(θ̃) − M̂(θ) + λ(kS(θ̃) − kS(θ))
})

+
2f
c0t2

‖θ̃ − θ∗‖2.

Next, for some a > 0 to be chosen later, we set λ = Ca logN . Hence, from
Lemma 7, we have that

P(∆2(δ̂) > t2, ‖θ̂‖∞ ≤ U)

≤
x∑

j=1

1
c02j−1t2

[
C2a + 2j+1 max{1, U}t2 + 2‖θ̃ − θ∗‖2

a
+ λkS(θ̃)

]

+ 2f
c0t2

‖θ̃ − θ∗‖2

≤ 2C2a

c0t2
+ 4 max{1, U}x

ac0
+ 2λkS(θ̃)

c0t2
+ 1

t2

( 4
ac0

+ 2f
c0

)
‖θ̃ − θ∗‖2.

(C.15)

Therefore, setting
a := max{1, U} log(NU)

ε
,
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t2 := C max{1, U, C2}kS(θ̃) log2(NU)
ε2c0

+ f‖θ̃ − θ∗‖2

2ε ,

and letting

θ̃ ∈ arg min
θ

{
kS(θ)max{1, U2} log2 (max{N,U})

N
+ f‖θ∗ − θ‖2

N

}

we obtain the conclusion in (C.10) by combining (C.11) and (C.15).

C.4. Proof of Theorem 1

In the rest of the proofs we denote θ̂rdp simply as θ̂.
Proof. From Theorem 4 we obtain that

‖θ̂ − θ∗‖2

N
= OP

(
inf
θ̃∈Θ

{
f‖θ̃ − θ∗‖2

N
+krdp(θ̃)max{1, U2} log2 (max{N,U})

N

})
.

(C.16)
However, for any θ ∈ RN by Lemma 9 there exists A(θ) ∈ Θ such that

krdp(A(θ)) ≤ krdp(θ) and

‖A(θ) − θ‖2 ≤ 4c1‖θ‖2
∞krdp(θ) logN.

It follows that

inf
θ̃∈Θ

{
f‖θ̃ − θ∗‖2

N
+ krdp(θ̃)max{1, U2} log2 (max{N,U})

N

}

≤ inf
θ∈RN

{
f‖A(θ) − θ∗‖2

N
+ krdp(A(θ))max{1, U2} log2 (max{N,U})

N

}

≤ inf
θ∈RN

{2f‖A(θ) − θ‖2

N
+

2f‖θ − θ∗‖2

N
+ krdp(A(θ))max{1, U2} log2 (max{N,U})

N

}

≤ inf
θ∈RN

{8fc1‖θ‖2
∞krdp(θ) logN

N
+ 2f‖θ − θ∗‖2

N
+

krdp(θ)max{1, U2} log2 (max{N,U})
N

}

(C.17)
where the second inequality follows from the Cauchy–Schwarz inequality, and
the third by the construction of A(·). The claim follows combining (C.16) with
(C.17).

C.5. Other lemmas

Lemma 9. Let θ ∈ RLd,n . Given c1 > 0 there exists a θ̃ ∈ RLd,n such that the
following holds:
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• krdp(θ̃) ≤ krdp(θ).
•

‖θ̃ − θ‖2 ≤ 4c1‖θ‖2
∞krdp(θ) logN.

• s(θ̃) ≥ c1 logN , where s(·) is the sS(·) corresponding to Dyadic partitions.
Proof. Let Π a minimal dyadic partition induced by θ. Then consider Π̃ the
dyadic partition obtained by performing the same splits as in the construction
of Π but only when each split produces rectangles of size at least c1 logN . Then
let θ̃ be constructed by averaging the values of θ on each rectangle of Π̃. Notice
that by construction the first and third claims of the lemma hold. To see why the
second claim holds, we observe that Π and Π̃ differ in at most krdp(θ) rectangles
each of which is of size at most 2c1 logN . The claim then follows.

C.6. Proof of Corollary 1

Proof. Case d = 1.
We proceed in two cases. First, if V = TV(θ∗) = 0 then krdp(θ∗) = 1 and

Theorem 1 implies that

1
N

∑

i∈Ld,N

(θ̂i − θ∗i )2 = OP

(max{1, U2} log2{N,U}
N

)
. (C.18)

Suppose now that V > 0. Then by Proposition 8.9 in Chatterjee and Goswami
(2019), for any η > 0 there exits θ such that for some positive constant C it
holds that krdp(θ) ≤ Cη−1 and

‖θ − θ∗‖∞ ≤ V η.

Then notice that ‖θ‖2
∞ ≤ 2V 2η2 + 2U2 and ‖θ − θ∗‖2 ≤ V 2η2N .

Next, we set

η := 1
V 2/3

( logN
N

)1/3

and notice that
•

‖θ‖2
∞krdp(θ) logN

N
≤ 2

(
V 2η2 + U2)Cη−1 logN

≤ 2CV 2η logN
N

+ 2CU2η−1 logN
N

= O

(
U2V 2/3 log2/3 N

N2/3

)
.

(C.19)

•

‖θ − θ∗‖2

N
= V 2η2 = V 2

(
1

V 2/3

( logN
N

)1/3)2

= V 2/3 log2/3 N

N2/3 .
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•
krdp(θ)max{1, U2} log2 (max{N,U})

N

≤ CV 2/3N1/3(log−1/3 N)max{1, U2} log2 max{N,U}
N

= CV 2/3 max{1, U2} log5/3 max{N,U}
N2/3 .

Combining the cases above we obtain the claim for d = 1.
Case d > 1. If case V = 0 we proceed as we did in the previous case. Suppose

now that V > 0. Then, by the proof of Theorem 4.2 in Chatterjee and Goswami
(2019), for any η > 0 there exists a θ such that

krdp(θ) ≤
C TV(θ∗) logN

η
,

‖θ‖∞ ≤ ‖θ∗‖∞,

and
‖θ − θ∗‖2 ≤ CηTV(θ∗) logN

for some positive constant C.
Next, let η = logN and notice that
•

‖θ‖2
∞krdp(θ) logN

N
≤ CV logN

η
· U

2 logN
N

= CV U2 logN
N

.

(C.20)

•
‖θ − θ∗‖2

N
= CV log2 N

N
. (C.21)

•
krdp(θ)max{1, U2} log2 (max{N,U})

N

≤ CV max{1, U2} log2 (max{N,U})
N

.
(C.22)

Therefore, combining (C.20)–(C.22) the claim follows.
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