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New Risk Bounds for 2D Total Variation Denoising
Sabyasachi Chatterjee and Subhajit Goswami

Abstract— 2D Total Variation Denoising (TVD) is a widely
used technique for image denoising. It is also an important
nonparametric regression method for estimating functions with
heterogenous smoothness. Recent results have shown the TVD
estimator to be nearly minimax rate optimal for the class of
functions with bounded variation. In this paper, we complement
these worst case guarantees by investigating the adaptivity of
the TVD estimator to functions which are piecewise constant
on axis aligned rectangles. We rigorously show that, when the
truth is piecewise constant with few pieces, the ideally tuned
TVD estimator performs better than in the worst case. We also
study the issue of choosing the tuning parameter. In particular,
we propose a fully data driven version of the TVD estimator
which enjoys similar worst case risk guarantees as the ideally
tuned TVD estimator.

Index Terms— Nonparametric regression, total variation
denoising, tuning free estimation, estimation of piecewise constant
functions, tangent cone, gaussian width, recursive partitioning.

I. INTRODUCTION

TOTAL variation denoising (TVD) is a standard technique
to do noise removal in images. This technique was first

proposed in [33] and has since then been heavily used in
the image processing community. It is well known that TVD
gets rid of unwanted noise and also preserves edges in the
image (see [37]). For a survey of this technique from an image
analysis point of view; see [6] and references therein.

The success of the TVD technique as a denoising mech-
anism motivates us to revisit this problem from a statistical
perspective. In this paper, we are interested in the following
statistical estimation problem. Consider observing y = θ∗+σZ
where y ∈ Rn×n is a noisy matrix/image, θ∗ is the true
underlying matrix/image, Z is a noise matrix consisting of
independent standard Gaussian entries and σ is an unknown
standard deviation of the noise entries. Thus, in this setting,
the image denoising problem is cast as a Gaussian mean
estimation problem. Before defining the TVD estimator in this
context, let us define total variation of an arbitrary matrix.

Let us denote the n×n two dimensional grid graph by Ln

and denote its edge set by En. More precisely, the vertices in
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Ln correspond to the pairs (i, j) ∈ [n]× [n] and its edge set
En consists of:

all ((i, j), (k, #)) ∈ Ln × Ln with |i− j| + |k − #| = 1 .

We will use Ln interchangeably for the graph as well as the
underlying set of vertices. Now, thinking of θ ∈ Rn×n as a
function on Ln let us define

TVnorm(θ) :=
1
n

∑

(u,v)∈En

|θu − θv| =
1
n
‖Dθ‖1 (I.1)

where D is the usual edge vertex incidence matrix of size
2n(n−1)×n2. The 1/n factor is just a normalizing factor so
that if θij = f(i/n, j/n) for some underlying differentiable
function on the unit square then TVnorm(θ) is precisely
the discretized Riemann approximation for

∫
[0,1]2

∣∣∂f(x,y)
∂x

∣∣ +
∣∣∂f(x,y)

∂y

∣∣. This 1/n scaling is termed as the canonical scaling
in [34]. The above notion of total variation extends the
definition of variation from differentiable functions on the
unit square to arbitrary matrices. We can now define the TVD
estimator, which is our main object of study.

θ̂V := argmin
θ∈Rn×n:TVnorm(θ)≤V

‖y − θ‖2

where ‖.‖ throughout this paper will denote the usual Frobe-
nius norm for matrices. The TVD estimator is actually a family
of estimators indexed by the tuning parameter V > 0. We
will measure the performance of our estimator in terms of its
normalized mean squared error (MSE) defined as

MSE(θ̂V, θ∗) := Eθ∗
‖θ̂V − θ∗‖2

N

where throughout this paper we denote N = n2.
We defined the TVD estimator in its constrained form,

however the penalized version is also popular in the literature,
which is defined as follows:

θ̂λ := argmin
θ∈Rn×n

‖y − θ‖2 + λ TVnorm(θ)

where λ > 0 is a tuning parameter. In this paper, we focus on
the analysis of the constrained version.

A. Background and Motivation

The 1D version of this problem is a well studied problem
(see, e.g. [38]) in nonparametric regression. In this setting,
we again have y = θ∗ +σZ as before, where y, θ∗, Z are now
vectors instead of matrices. The total variation of a vector
v ∈ Rn can now be defined as

TV(v) :=
n−1∑

i=1

|vi+1 − vi|.
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Again the above definition can be seen as a discrete Riemann
approximation to

∫
[0,1]

∣∣f ′
(x)

∣∣dx when vi = f(i/n) for some
differentiable function f. The constrained and the penalized
versions of the TVD estimator can now be defined analo-
gously. The penalized form seems to be more popular in the
existing literature; in this case the TVD estimator is often
referred to as fused lasso (see [38], [32]). In this 1D setting,
it is known (see, e.g. [13], [26]) that the TVD estimator is
minimax rate optimal on the class of all bounded variation
signals {θ : TV(θ) ≤ V} for V > 0. It is also shown in [13]
that no estimator, which is a linear function of y, can attain
this minimax rate.

It is also worthwhile to mention here that TVD in the
1D setting has been studied as part of a general family
of estimators which penalize discrete derivatives of different
orders. These estimators have been studied in [36], [39] and
by [21] who coined the name trend filtering. A continuous
version of these estimators, where discrete derivatives are
replaced by continuous derivatives, was proposed much earlier
in the statistics literature by [26] under the name locally
adaptive regression splines.

Total variation of a signal can actually be defined over
an arbitrary graph as the sum of absolute differences of the
signal across edges of the graph. Trend Filtering on general
graphs has been a popular research topic in the recent past;
see [41], [25]. A more recent paper, [27], studies TVD on tree
graphs. The 1D setting corresponds to the chain graph on n
vertices whereas the 2D setting corresponds to the 2D lattice
graph on n2 = N vertices.

The 2D TVD problem, while being much less studied than
in its 1D counterpart, has enjoyed a recent surge of interest.
Worst case performance of the TVD estimator has been studied
in [19], [34], [29]. These results show that like in the 1D
setting, the 2D TVD estimator is nearly minimax rate optimal
over the class {θ ∈ Rn×n : TVnorm(θ) ≤ V} of bounded
variation signals. In fact, [34] also generalize the result of [13]
and prove that no linear function of y can attain the minimax
rate in the 2D setting as well. A representative of the state
of the art risk bound for the TVD estimator in 2D setting is
due to [19] (see also [29]). They studied the penalized form
of the TVD estimator and proved that there exist universal
constants C, c > 0 such that by setting λ = cσ log n (where
σ is known), one gets

Theorem I.1 (Hütter and Rigollet):

MSE(θ̂λ, θ∗) ≤ C(log n)2 A

where

A = min{σTVnorm(θ∗)√
N

, σ2 ‖Dθ∗‖0
N

}

and ‖ · ‖0 is the usual #0 norm.
For convenience, we will henceforth use the usual O(·)

notation to compare sequences. We write an = O(bn) if
there exists a constant C > 0 such that an ≤ C bn for
all sufficiently large n. We also use an = Õ(bn) to denote
an = O(bn(log n)C) for some C > 0.

In words, the bound in Theorem I.1 is a minimum of two
terms. The first term gives the #1 rate scaling like O(1/

√
N)

for bounded variation functions. The second one is the #0

rate which can be much faster than the O(1/
√

N) rate if
|Dθ∗|0 is small enough. In spite of the above works, there
are still a couple of unexplored aspects regarding 2D TVD,
specifically its adaptivity to piecewise constant signals and
minimax optimality without tuning, which are the focus of
the present paper. We discuss them now.

1) Adaptivity to Piecewise Constant Signals: Observe that
the total variation semi norm is a convex relaxation for the
number of times the true signal θ∗ changes values along the
neighbouring vertices. This fact suggests that the TV estimator
might perform very well if the true signal is indeed piecewise
constant. This phenomenon is now fairly well understood in
the 1D setting. In this setting, suppose that the true vector θ∗

is piecewise constant with k + 1 contiguous pieces or blocks.
Given data y ∼ Nn(θ∗, σ2 In), an oracle estimator, which
knows the locations of the jumps, would just estimate the
signal θ∗ by the mean of the data vector y within each block. It
can be easily checked that the oracle estimator will have MSE
bounded by σ2(k+1)/n. Recent works (see [12], [25]) studied
the penalized TVD estimator and showed that if the minimum
length of the blocks where θ∗ is constant is not too small
(scales like O(n/k)) and if the tuning parameter λ is set to be
equal to an appropriate function of the unknown σ and n, then
an oracle risk O(k/n) could be achieved up to some additional
logarithmic factors in k and n. In [17], this adaptive behaviour
was established for the ideally tuned constrained form of the
estimator with slightly better log factors. Thus, we can say that
in the 1D setting, the TVD estimator is optimally adaptive to
piecewise constant signals.

This motivates us to wonder whether similar adaptivity
holds in the 2D setting. In this paper, we investigate adap-
tivity to signals/matrices which are piecewise constant on
k << N axis aligned rectangles. Such adaptivity of the 2D
TVD estimator has not been explored at all in the literature.
Estimation of functions which are piecewise constant on axis
aligned rectangles are naturally motivated by methodologies
such as CART (see e.g [3]) which produce outputs of the same
form. Recently, adaptation to piecewise constant structure on
rectangles has been of interest in the nonparametric shape con-
strained function estimation literature also (see Theorem 2.3
in [10] and Theorems 2 and 5 in [18]). See Section III-E where
we discuss some even more recent (which appeared after
we uploaded this paper) works about estimating piecewise
constant functions on axis aligned rectangles. Here is the main
question that we address in this paper.

Q1: If the underlying θ∗ is piecewise constant on at most
k << N axis aligned rectangles; can the ideally tuned
TVD estimator attain a faster rate of convergence than the
Õ(1/

√
N) rate?

Basically we are asking the question whether the ideally
tuned TVD estimator adapts to truths which are piecewise
constant on a few axis aligned rectangles, which is a different
notion of sparsity than the sparsity constraint of ‖Dθ∗‖0 being
small. As a simple instance of θ∗ being piecewise constant on
rectangles, consider θ∗ to be of the following form:

θ∗ =
[

0n×n/2 1n×n/2

]
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In this case, we have ‖Dθ∗‖0 = O(
√

N) and
TVnorm(θ∗) = O(1). Note that the #0 bound of [19] will
give us an upper bound on the MSE scaling like Õ(1/

√
N)

which is already given by the #1 bound. Thus, the result of [19]
does not help in answering our question and suggests there is
no adaptation. In Theorem II.2 of this paper, we show that
the ideally tuned TVD estimator indeed adapts to piecewise
constant matrices on axis aligned rectangles and provably
attains a rate of convergence scaling like Õ(1/N3/4) which is
strictly faster than the #1 rate Õ(1/

√
N). However, we also

show that this Õ(1/N3/4) rate is tight and thus the TVD
estimator is not able to attain the Õ(1/N) parametric rate that
would be achieved by an oracle estimator. This is the main
contribution of this paper and is the first result of its type in
the literature as far as we are aware.

2) Minimax Rate Optimality Without Tuning: Existing
results such as Theorem I.1, along with minimax lower
bounds shown in [34], show that the Õ( V√

N
) rate attained

by the penalized TVD estimator is near minimax rate optimal.
Thus we can say that the penalized TVD estimator is near
minimax rate optimal over the parameter space {θ ∈ Rn×n :
TVnorm(θ) ≤ V}, simultaneously over V and N . However,
this penalized TVD estimator needs to set a tuning parameter
λ which depends on the unknown σ and an implicit constant
C which can be potentially difficult to set in practice. This
naturally raises a question which is unresolved in the literature
so far as we are aware:
Q2: Does there exist a completely data driven estimator
which does not depend on any unknown parameters of the
problem and yet achieves MSE scaling like Õ( V√

N
), thus being

simultaneously minimax rate optimal over V and N?
In Theorem II.7 of this paper we answer this question in the

affirmative by constructing such a fully data driven estimator.
The rest of the paper is organised as follows. In Section II,

we state our main results. Then in Section III, we discuss
connections of our results with some recent works and also
present simulation studies which support and verify our main
theorems. The proofs of our main results involve sharp bounds
on the Gaussian widths (see (II.1) in Section II-B1) for some
special classes of matrices. We obtain these bounds based
on a generic approach which we detail in Section IV. The
next five sections describe the proofs of our main theorems
and intermediate results. Section IX-B is the appendix which
contains proofs of some auxiliary results.

Instructions for the reader
In all the proofs of our results from Section V onwards,

we will use TV(·) to denote the unnormalized version of (I.1).
More precisely, for a n× n matrix θ we denote

TV(θ) :=
∑

(u,v)∈En

|θu − θv|. (I.2)

We adopt this convention because we believe it is easier to
read and interpret the proofs with the unnormalized definition
while it is instructive to use the normalized version for our
theorems to facilitate interpretation of the risk bounds as a
function of the sample size N = n2. Also we will generically
use V to denote the unnormalized total variation whereas in

Sections I–III we use bold V to denote the corresponding
normalized total variation. In all our theorems presented in
the next section we use bold V∗ to denote TVnorm(θ∗) where
θ∗ is the underlying true matrix and in all our proofs we use
V ∗ = TV(θ∗) for the corresponding unnormalized version.

II. MAIN RESULTS

A. Constrained TVD

Our first result states a risk bound of θ̂V under the bounded
variation constraint.

Theorem II.1: Let θ∗ be an arbitrary n × n matrix and
N = n2. Suppose the tuning parameter is chosen such that
V ≥ V∗. Then the following risk bound is true for a universal
constant C > 0:

MSE(θ̂V, θ∗) ≤ C
(
σ

V√
N

(log eN)5/2 +
σ2

N

)
.

Remark II.1: The above result is similar to the #1 bound
of [19], the difference being the above risk bound holds
for the constrained TVD estimator while the existing result
of [19] holds for the penalized estimator. For any sequence
of V > 0 (possibly growing with n although the canonical
scaling is when V = O(1)), the minimax lower bound
results (mentioned earlier) of [34] now imply the minimax rate
optimality (up to log factors) of the constrained TVD estimator
θ̂V over the parameter space {θ ∈ Rn×n : TVnorm(θ) ≤ V}.

Remark II.2: As is made clear in Section V, our technique
for proving Theorem II.1 is completely different from the
technique used to prove the result of [19]. While they analyze
the properties of the pseudo-inverse of the edge incidence
matrix D, our proof relies on computing relevant Gaussian
widths by recursive partitioning. Moreover, ingredients and
ideas from this proof are also used crucially in the proofs of
our other results.

B. Adaptive Risk Bound

Now we come to the main result of this paper which is
about proving adaptive risk bounds for θ∗ which are piecewise
constant on at most k axis aligned rectangles where k is a
positive integer much smaller than N. We call a subset R ⊂
Ln a (axis aligned) rectangle if it is a product of two intervals.
For a generic rectangle R = ([a, b]∩N)×([c, d]∩N), we define
nrow(R) and ncol(R) to be the cardinalities of [c, d] ∩ N and
[a, b] ∩ N respectively. In words, nrow(R) and ncol(R) are
simply the numbers of rows and columns of R respectively if
one views R as a two-dimensional array of points. Then we
define its aspect ratio to be A(R) := max{nrow(R)

ncol(R) , ncol(R)
nrow(R)}.

For a given matrix θ ∈ Rn×n we define k(θ) to be the
cardinality of the minimal partition of Ln into rectangles
R1, . . . , Rk(θ) such that θ is constant on each of the rectangles.
Next we state our main result for the 2D TVD estimator.

Theorem II.2: Let θ∗ ∈ Rn×n be the underlying true
matrix with TVnorm(θ∗) > 0 and R∗

1, . . . , R
∗
k(θ∗) be its

rectangular level sets which form a partition of the 2D grid
Ln. In addition, suppose the rectangles R∗

i have bounded
aspect ratio, that is there exists a constant c > 0 such that
maxi∈[k(θ∗)] A(R∗

i ) ≤ c. Then we have the following risk
bound:

MSE(θ̂V, θ∗) ≤ CA
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where

A =
[
(V −V∗)2 + σ2(log en)9

k(θ∗)5/4

N3/4

]

and C is a constant that only depends on c.
Remark II.3: Theorem II.2 is really a statement about

an ideally tuned constrained TVD estimator. One way to
interpret it is that if the tuning parameter V is cho-
sen such that (V −V∗)2 ≤ Cσ2(log en)9 k(θ∗)5/4

N3/4 then the

Õ( k(θ∗)5/4

N3/4 ) rate of convergence holds.
Remark II.4: One consequence of the above theorem is that

when k(θ∗) = O(1) then the ideally tuned TVD estimator
attains a Õ(N−3/4) rate. This rate is faster than the Õ(N−1/2)
rate that is available in the literature. Our main focus here
has been to attain the right exponent for N . The exponent of
k(θ∗) and log n may not be optimal. Since the current proof
of this theorem is fairly involved technically, obtaining the
best possible exponents of k(θ∗) and log n is left for future
research endeavors. See Section III for more discussions about
the proof of the above theorem and comparisons with existing
results.

Remark II.5: We think a bounded aspect ratio condition
would actually be necessary for the O(N−3/4) rate to hold in
the above theorem; see Section III-D for more on this issue.

A natural question is whether our upper bound in Theo-
rem II.2 is tight. Our next theorem says that, in the low σ
limit, the N−3/4 rate is not improvable even if k(θ∗) = 2.

Theorem II.3: Let θ∗ij = 1 if j > n/2 and 0 otherwise.
Thus, θ∗ is of the following form:

θ∗ =
[

0n×n/2 1n×n/2

]

Clearly k(θ∗) = 2. In this case, we have a lower bound to the
risk of the ideally constrained TVD estimator.

lim
σ→0

1
σ2

MSE(θ̂V∗ , θ∗) ≥ c

N3/4
.

Here c > 0 is a universal constant.
1) Gaussian Width Bounds: Proving Theorem II.2 and

Theorem II.3 requires upper and lower bounds on the Gaussian
width of a certain family of matrices as we now explain. The
Gaussian width of a set K ⊂ Rn is defined as

GW(K) = E sup
θ∈K
〈Z, θ〉 (II.1)

where Z = Zn ∼ N(0n, I) and 〈· , ·〉 is the usual Euclidean
inner product between two vectors. We use Bm,n(t) to denote
the usual Euclidean ball of radius t in Rm×n. For any
A ⊂ Rn×n we denote the smallest cone containing A by
Cone(A) and the closure of A by Closure(A). The tangent
cone TK∗(θ∗) ⊂ Rn×n at θ∗ with respect to the closed convex
set K∗ := {θ ∈ Rn×n : TVnorm(θ) ≤ V∗} is defined as
follows:

TK∗(θ∗) :=
Closure(Cone({θ ∈ Rn×n : θ∗ + θ ∈ K∗}) ) . (II.2)

By definition, TK∗(θ∗) is a closed convex cone. Informally,
TK∗(θ∗) represents all directions in which one can move
infinitesimally from θ∗ while still remaining in K∗.

Roughly speaking, the problem of bounding the MSE
from both directions is equivalent to bounding the square of
GW

(
TK∗(θ∗) ∩ Bn×n(1)

)
when θ∗ is a piecewise constant

matrix on rectangles. The precise connection of MSE to
Gaussian widths is detailed in Section VI where the proofs of
Theorem II.2 and Theorem II.3 are also given. This connection
prompts us to investigate how these tangent cones look like in
the first place. The major technical contribution of this paper
is to give upper and lower bounds on the Gaussian width
of the tangent cone at a piecewise constant matrix which we
encapsulate in the following two results.

Proposition II.4: Let θ ∈ Rn×n be a given matrix and
R1, . . . , Rk(θ) be its rectangular level sets which form a
partition of the 2D grid Ln. In addition, let us assume that
the rectangles Ri have bounded aspect ratio, that is there
exists a constant c > 0 such that maxi∈[k] A(Ri) ≤ c. Let
K := {v ∈ Rn×n : TVnorm(v) ≤ TVnorm(θ)} and TK(θ)
be the tangent cone at θ with respect to K. Then there is a
universal constant C > 0 such that

GW(TK(θ) ∩Bn,n(1)) ≤ C(log n)4.5k(θ)5/8n1/4.

Proposition II.5: Consider θ∗ which is piecewise constant
on two rectangles and is of the following form:

θ∗ =
[

0n×n/2 1n×n/2

]

Then, there exists a universal constant c > 0 such that we
have the following lower bound:

GW(TK∗(θ∗) ∩Bn×n(1)) ≥ cn1/4 .

The proofs of Proposition II.4 and Proposition II.5 are given
in Sections VIII and VII respectively.

It should be mentioned here that bounding the Gaussian
width of the tangent cone is a fundamental task in a different
but related problem of signal recovery from a given number
of measurements; see [7] and [1]. Matrix recovery using
2D Total Variation has been studied in the signal processing
literature; see for instance [4], [16] and [20]. Our bounds on
the Gaussian widths given in Proposition II.4, Proposition II.5
and Theorem II.6 (see below) appear to be new and are poten-
tially of independent interest as stand alone results. Especially
our use of optimized partitioning schemes (see Section VIII-F
for details) in the proof of Proposition II.4 can be a useful
strategy to attack other problems of similar flavor. See also
Section III-B for further discussion on the novelty of our
proof.

2) Impossibility of Adaptation to Non Rectangular Level
Sets: Theorem II.2 shows that the O(N−3/4) rate is achievable
when θ∗ is piecewise constant on a few rectangles. A question
arises here as to what rate is achievable when θ∗ is piecewise
constant but the level sets are not rectangular. The following
theorem says that for a simple matrix θ∗ whose level sets are
triangular, the Õ(N−1/2) rate cannot be improved. Below and
in the rest of the paper we use I{· ∈ S} to denote the indicator
function for the set S (often stated as a condition defining its
elements), i.e., it takes the value 1 when its argument lies in
the set S and is 0 otherwise.
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Theorem II.6: Consider the signal matrix θ∗ := I{i+
j > n}. Then, there exists a universal constant c > 0 such
that we have the following lower bound:

GW(TK∗(θ∗) ∩Bn×n(1)) ≥ cn1/2 .

Further, this implies a lower bound to the risk of the ideally
constrained TVD estimator as follows:

lim
σ→0

1
σ2

MSE(θ̂V∗ , θ∗) ≥ c

N1/2
.

Here c > 0 is a universal constant.
Remark II.6: The proof of the above theorem should be

extendable when θ∗ is the indicator of a circle or a regular n
sided (n > 4) polygon or any other shape which is sufficiently
non rectangular. See Remark VII.1 for more on this issue.
Therefore, it seems that the rectangular shape of the level sets
is crucial for the faster Õ(N−3/4) rate to hold.

C. Tuning Free TVD

We now state our final result which relates to the question
we posed about removing the tuning parameter and still
retaining a risk bound which is essentially the same as in
Theorem II.1. Choosing the tuning parameter is an important
issue in applying the TVD methodology for denoising. The
usual way out is to do some form of cross validation. There are
some proposals available in the literature; see [35], [30], [22].
Soon after we uploaded our paper, a different tuning parameter
free method appeared in [29] which also achieves the optimal
worst case Õ(V/

√
N) rate of convergence. See Section III-C

for a comparison of our method with the one proposed in [29].
Our goal here is to construct a tuning parameter free

estimator of θ∗ which adapts to the true value of TVnorm(θ∗).
The inspiration for this task comes from [8] where the author
gives a general recipe to construct tuning parameter free
estimators in Gaussian mean estimation problems when the
truth is known to have small value of some known norm.
Even though the total variation functional is not a norm but a
seminorm, the general idea in [8] can be extended as we will
show. However, the estimator of [8] is a randomized estimator
whereas in our case we construct a non randomized version.
The following is a description of our tuning free estimator.

Let 1 denote the n×n matrix consisting solely of ones. For
any matrix θ ∈ Rn×n, we define θ := 1

n2

∑n
i=1

∑n
j=1 θ[i, j]

to be the mean of θ. Define the estimator

θ̂notuning := y 1 +
argmin

{v∈Rn×n: v=0, ‖y−y 1−v‖2≤(n2−1)σ̂2}
TVnorm(v) (II.3)

where σ̂ is an estimator of σ defined as follows:

σ̂ :=
TVnorm(y)

E TVnorm(Z)
=
√

π TVnorm(y)
4 (n− 1)

. (II.4)

The intuition behind the estimator defined above is as
follows. The estimation of θ∗ is done by estimating the two
orthogonal parts θ∗ 1 and θ∗ − θ∗1 separately. The first part
is estimated by y 1. To estimate θ∗ − θ∗1, we use a Dantzig
Selector type (see [5]) version of the TVD estimator, which
computes a zero mean matrix with the least total variation sub-
ject to being within a Euclidean ball of a suitable radius around

the centered data matrix y− y 1. A good choice of this radius
actually depends on the true σ and hence as an intermediate
step, we have to estimate σ in the process which is denoted
by σ̂. The main idea behind our construction of σ̂ here is the
fact that TVnorm(θ∗) is small compared to TVnorm(Z) and
hence TVnorm(y) = TVnorm(θ∗ + σZ) approximately equals
σTVnorm(Z). We can then use concentration properties of the
TVnorm(Z) statistic to show that TVnorm(Z)

ETVnorm(Z) is approximately
equal to 1. The following theorem supplies a risk bound for
θ̂notuning.

Theorem II.7: We have the following risk bound for our
tuning free estimator:

MSE(θ̂notuning, θ
∗) ≤ CA

where

A =
(
σ

V∗
√

N
log(en)5/2 +

(V∗)2

N
+

σ2

√
N

)

and C is a universal constant.
Remark II.7: Note that the above bound is meaningful only

when limN→∞
V∗
√

N
= 0. Therefore in this regime, (V∗)2

N is
a lower order term. Thus, Theorem II.7 basically says that
the MSE of θ̂notuning, up to multiplicative log factors and an
additive factor σ√

N
, scales like V∗

√
N

. In light of Remark II.1

we can say that θ̂notuning is minimax rate optimal (up to log
factors) over {θ ∈ Rn×n : TVnorm(θ) ≤ V}, simultaneously
for any sequence of V (depending on n) which is bounded
below by a constant and above by

√
N . To the best of

our knowledge, this is the first result demonstrating such an
estimator which is completely tuning free.

III. COMPARISON WITH EXISTING RESULTS, SIMULATION

STUDIES AND DISCUSSIONS

To place our theorems in context, it is worthwhile to
compare and relate our results with a couple of recent papers.
We also discuss some issues related to our results.

A. Comparison With [19]

Let us compare our risk bound in Theorem II.2 to the
adaptive risk bound (Theorem I.1) of [19] when the truth θ∗ is
piecewise constant on a few axis aligned rectangles. Both of
these theorems prove statements about tuned TVD estimators.
Considering the very simple case when θ∗ is of the following
form:

θ∗ =
[

0n×n/2 1n×n/2

]

we have already mentioned in Section I that ‖Dθ∗‖0 =
O(
√

N). Thus, Theorem I.1 gives us an upper bound on
the MSE scaling like Õ(1/

√
N) whereas our Theorem II.2

gives a faster rate of convergence scaling like Õ(1/N3/4).
More generally, if θ∗ is piecewise constant on k axis aligned
rectangles with bounded aspect ratio and roughly equal size,
it can be checked that ‖Dθ∗‖0 ≈

√
k∗N. This means that

Theorem I.1 gives us an upper bound on the MSE scaling like
Õ(

√
k∗/N). Compare this to Theorem II.2 which gives a rate

of convergence scaling like Õ((k∗)5/4/N3/4). Thus, in the
small k∗ regime when k∗ < N1/3, Theorem II.2 provides a
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faster rate of convergence. This is the main contribution of
this paper and to the best of our knowledge is the first of its
kind in the literature.

B. Comparison With [17]

As mentioned in Section I, one of our motivating factors
behind investigating adaptivity of the 2D TVD estimator was
its success in optimally estimating piecewise constant vectors
in the 1D setting. Theorem 2.2 in [17] gives a Õ(k∗/n) rate
for the ideally tuned constrained 1D TVD estimator when
the truth θ∗ is piecewise constant with k∗ pieces or blocks
and each block satisfies a certain minimum length condition.
In a sense, our Theorem II.2 is a natural successor, giving the
corresponding result in the 2D setting. Our bounded aspect
ratio condition is the 2D version of the minimum length
condition. A consequence of Theorem II.2 and Theorem II.3
is that, in contrast to the 1D setting, the ideally tuned con-
strained TVD estimator can no longer obtain the oracle rate
of convergence Õ(k∗/n) in the 2D setting.

The proof of Theorem 2.2 in [17] was done by bounding
the Gaussian widths of certain tangent cones. Our proof of
Theorem II.2 also adopts the same strategy and precisely
characterizes the tangent cone TK(V ∗)(θ∗) (defined in (II.2))
for piecewise constant θ∗ and then bounds its Gaussian
width. The main idea in [17] was to observe that any unit
norm element of the tangent cone is nearly made up of two
monotonic blocks in each constant block of θ∗. Then the
available metric entropy bounds for monotone vectors were
used to bound the Gaussian width. A crucial ingredient in
this proof is the well-known fact that any univariate function
of bounded variation has a canonical representation as a
difference of two monotonic functions. However, it is not
clear at all how to adapt such a strategy to the 2D setting.
In particular, it is not nearly as natural and convenient to
express a matrix of bounded variation as a difference of two
bi-monotone matrices. Our computation of Gaussian width of
the tangent cone is therefore essentially two dimensional and
involves judicious recursive partitioning in both dimensions.
We believe that our Gaussian width computations, especially
the proof of Proposition VIII.9, consist of new techniques and
are potentially useful for problems of similar flavor.

C. Comparison With [29]

At the latter stages of preparation of this manuscript we
became aware of an independent work by [29] which is related
to our manuscript. In [29], the authors give a general technique
to derive slow (#1) and fast (#0) rates for penalized TVD
estimators and its square root version on general graphs. Thus,
there seems to be two routes for obtaining fast rates for TVD.
One goes through the route of bounding Gaussian width of an
appropriate tangent cone to derive fast rates for the constrained
TVD estimator; as done here in this manuscript as well as
in [17]. The other route; followed by [19] and generalized
by [29] is based on bounding the so called compatibility
factor. [29] show how to bound this compatibility factor for
specific graphs such as the 1d grid graph and the 1d cycle

graph. To the best of our knowledge, bounding the compati-
bility factor for piecewise constant functions on axis aligned
rectangles for a 2d grid remains an open problem. Thus, as far
as we are aware, the work in this manuscript proving fast
rates of convergence on 2d grid graph for piecewise constant
functions on axis aligned rectangles is the first of its type in
the literature.

The work in [29] also proposes a general technique to obtain
slow rates for a square root version of the TVD estimator.
Similar to our paper, [29] also considers the case when the
noise variables are i.i.d. Gaussian. The advantage of using
this square root version is that the tuning parameter does
not need to depend on the unknown parameter σ. While the
theoretically recommended choice of the tuning parameter λ
in [29, Corollary 4.13] does not depend on the noise variance
σ2, there is however the presence of an unspecified large
universal constant C. It is not clear to us whether this C
can be explicitly specified. On the other hand, our tuning
free estimator is explicitly specified and involves no unknown
constants. We think the analysis of our tuning free estimator is
also reasonably clean with the sources of the various possible
errors made transparent in the proof. This is why we believe
that our tuning free estimator provides a theoretically valid
and possibly useful alternative to the square root regularization
approach. Just to be clear, we are not claiming any optimality
of our tuning free method, our intention is to demonstrate one
theoretically valid way to obtain a minimax rate optimal tuning
free estimator.

D. Necessity of Bounded Aspect Ratio Condition in
Theorem II.2

We think a bounded aspect ratio condition would actually
be necessary for the O(N−3/4) rate to hold in Theorem II.2.
For instance, consider the sequence of matrices θ∗ such that
θ∗[i, j] = I{j = n}. Clearly, the rectangular level sets of the
sequence of matrices θ∗ do not satisfy the bounded aspect ratio
condition. By an argument similar to the one used to prove our
lower bound results in Theorem II.3 and Theorem II.6, one can
show that the MSE(θ̂V∗ , θ∗) ≥ cN−1/2. We have also verified
this scaling of the MSE in our numerical experiments.

The bounded aspect ratio condition says that the rectangular
level sets of θ∗ should not be too skinny or too long. In our
proof, the bounded aspect ratio is needed for similar reasons
as a minimum length condition is needed for the length of the
pieces in the 1D setting; see [17], [12].

E. On Obtaining the Oracle Rate for Piecewise Constant
Signals

In light of Theorem II.2 and Theorem II.3 we can say the
following statement. When the truth θ∗ is piecewise constant
on k∗ axis aligned rectangles, the TVD estimator cannot
attain the oracle rate of convergence scaling like O(k∗/N).
The question that now arises is whether there exists any
estimator which attains the Õ(k∗/N) rate of convergence
for all piecewise constant truths as well as the minimax
rate Õ(V∗/

√
N)? Furthermore, can this estimator be chosen

so that it is computationally efficient? These questions led
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us to examine decision tree estimators which are different
from the TVD type estimators. We would like to point out
here that in the paper [9] we have been able to demonstrate
computationally efficient estimators which attain both the
aforementioned goals.

Apart from [9], some other recent papers have also sprung
up which target piecewise rectangular signals. The papers
[28] and [15] study a different version of the TVD estimator
which is also termed as the Hardy Krause estimator. As far
as we understand, this estimator is well suited for estimating
piecewise rectangular signals as it actually fits piecewise
rectangular estimates. For a general signal with k∗ rectangular
pieces (with some regularity conditions on the rectangular
pieces), the rate proved by [28] is Õ((k∗)3/2/N) which is
better than Õ

(
(k∗)5/4/N3/4

)
. Notice that the Õ((k∗)3/2/N)

rate still does not match the near oracle rate Õ(k∗/N) which
has been obtained in [9].

F. Constrained Vs Penalized

In this paper, we have focussed on the constrained version
of the 2D TVD estimator. As mentioned in the introduction,
the penalized version is also quite popular. In the low σ limit,
it can be proved that the constrained estimator θ̂V with V =
V∗ = TVnorm(θ∗) is better than the penalized estimator for
every deterministic choice of λ. More precisely, we have for
all λ ≥ 0,

lim
σ↓0

1
σ2

MSE(θ̂V∗ , θ∗) < lim
σ↓0

1
σ2

MSE(θ̂λ, θ∗).

The above inequality follows from the results of [31] as
described in Section 5.2 in [17]. Since our main question
here is whether faster/adaptive rates are possible for piecewise
constant matrices, it is therefore natural to first study the
constrained version with ideal tuning. A possible next step
is to investigate whether a similar N−3/4 rate is atttained by
the penalized TVD estimator and if so, for what range of the
tuning parameter λ.

G. Simulation Studies

We consider three distinct sequences of matrices to facilitate
comparison. We consider the simplest piecewise constant
matrix θtwo ∈ Rn×n where θtwo := I{j > n/2}. Hence θtwo

just takes two distinct values. The next matrix θfour is a block
matrix with four constant blocks.

θfour :=
[

1n/2×n/2 2n/2×n/2

0n/2×n/2 1n/2×n/2

]

Finally, we also consider a n×n matrix θworst := I{i+j > n}.
Clearly, θworst does not have a block constant structure. For
the matrix θworst we incur the worst case rate Õ(N−1/2) as
shown in Theorem II.6; hence the name. The noise variance
has been set to 1 for all the numerical experiments reported
in this section.

The dependence of the MSE with N = n2 can be experi-
mentally checked as follows. We can estimate the MSE for a
fixed n by Monte Carlo repetitions and then iterate this for a
grid of n values. We then plot log of the estimated MSE with

Fig. 1. The MSE of the ideally tuned TVD estimator θ̂V∗ is estimated with
50 Monte carlo repetitions for a grid of n =

√
N ranging from 500 to 700 in

increments of 20. The true matrices were taken to be θtwo (blue), θfour (red)
and θworst (black). In each case, we have chosen the ideal tuning parameter
to allow fair comparison. We plot log of estimated MSE versus log N where
log is taken in base e. The points are the estimated log MSE and the dotted
lines are the least squares line fitted to the points. The least squares slope for
θtwo is −0.73 and for θfour is −0.68 which is considerably lower than the
slope for the matrix θworst which is −0.52..

log N and fit a least squares line to the plot. The slope of
the least squares line then gives an indication of the correct
exponent of N in the MSE. Figure 1 is such a plot for the
ideally tuned constrained TVD estimator.

In Figure 1, the risk is seen to be minimum for θtwo

followed by θfour and then θworst. The slope for θtwo and
θfour came out to be −0.73 and −0.68. This agrees well
with Theorem II.2 and Theorem II.3 which says that the MSE
decays at the rate n−0.75 upto log factors. For the matrix θworst

the slope turned out be −0.52 which is in agreement with the
worst case Õ(N−1/2) rate given in Theorem II.6.

To investigate the dependence of MSE with the number
of rectangular level sets k(θ∗), we took four matrices. The
first two are θtwo, θfour and the last two are obtained by
further binary division so that the number of rectangular level
sets is 8, 16 respectively. We normalized the matrices such
that V∗ = 1. We fixed n = 800 and did 50 iterations
of Monte Carlo simulations for each of the four matrices.
We then plotted log MSE versus log2 k (see Figure 2) where
k = 2, 4, 8, 16. The slope of the least squares line we got is
0.81. This suggests that our exponent of k (= 1.25) in the
risk bound in Theorem II.2 may not be optimal.

To assess the risk of our fully data driven estimator
θ̂notuning, we again consider the three matrices θtwo, θfour and
θworst respectively. Figure 3 is a plot of log MSE versus log n.

The simulations in Figure 3 suggest that our estimator has
MSE decaying at a O(1/

√
N) rate for all three matrices.

The slope of all three least squares lines are reasonably
close to −0.5. This matches the rate given in Theorem II.7.
However, our tuning free estimator does not seem to be
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Fig. 2. The MSE of the ideally tuned TVD estimator is estimated with 50
Monte carlo repetitions when n = 800. The true matrices were taken to be
such that the number of rectangular level sets is 2, 4, 8, 16. In each case,
we have chosen the ideal tuning parameter to allow fair comparison. We have
also normalized the matrices so that V∗ = 1. We plot log of estimated MSE
versus log2 k where k = 2, 4, 8, 16. The points are the estimated log MSE
and the dotted lines are the least squares line fitted to the points. The least
squares slope is 0.81..

Fig. 3. The MSE of our tuning free estimator is estimated with 50 Monte
carlo repetitions for a grid of n =

√
N ranging from 160 to 250 in increments

of 10. The true matrices were taken to be θtwo (blue), θfour (red), and θworst

(black). We plot log of estimated MSE versus log N where log is taken in
base e. The circular points are the estimated log MSE and the dotted lines
are the least squares line fitted to the points. The slopes of the least squares
lines are −0.47,−0.51,−0.40 for θtwo , θfour, θworst respectively.

adaptive to piecewise constant structure like the constrained
TVD estimator with ideal tuning.

To investigate the dependence of the risk of our tuning free
estimator on V∗, for each of the three matrices θtwo, θfour,
θworst, we normalized the matrix such that V∗ = 1, 2, . . . , 10.
We fixed n = 200 and did 50 iterations for each V∗ and each

Fig. 4. The MSE of the tuning free TVD estimator is estimated with 50
Monte carlo repetitions for a grid of V∗ ∈ [10] and n = 200. The true
matrices were taken to be θtwo (blue), θfour (red) and θworst (black) properly
normalized. We plot log of estimated MSE versus log N where log is taken
in base e. The points are the estimated log MSE and the dotted lines are the
least squares line fitted to the points. The least squares slope for θtwo is 1.16,
for θfour is 1.07 and for the matrix θworst it is 0.94..

matrix. We then plotted log MSE versus log V∗ (see Figure 4)
and fitted a least squares line. The slopes for each of these
three matrices came out to be 1.16, 1.07, 0.94 respectively.
This suggests that the right exponent of V ∗ is 1 and our risk
bound has the right dependence on V∗.

IV. A GENERIC APPROACH TOWARDS BOUNDING

GAUSSIAN WIDTHS

Let us recall from Section II-B1 that the Gaussian width of
a set K ⊂ Rn is defined as

GW(K) = E sup
θ∈K
〈Z, θ〉

where Z = Zn ∼ N(0n, I) and 〈· , ·〉 is the usual Euclidean
inner product between two vectors. Our principal result in this
section provides an upper bound on GW(K) in terms of the
numbers and dimensions of its covering (linear) subspaces.
This result executes and adapts the idea of chaining (see, e.g.,
[40, Theorem 5.24]) to the case when the covering sets are
linear subspaces of Rn. To this end let us define, for any
ε > 0, an ε subspace cover of K to be any finite collection S
of linear subspaces of Rn such that

sup
θ∈K

dist
(
θ,

⋃

S∈S
S

)
≤ ε

where dist(A, B) denotes the Euclidean distance between the
sets A and B. We denote by diam(K) the diameter of K
which we assume to be finite. Also for any t > 0, we denote
by Bn(t) the t-Euclidean ball {θ ∈ Rn : ‖θ‖ ≤ t} where ‖.‖
is the Euclidean norm. We will often drop the subscript n and
just write B(t) when the dimension is clear from the context.
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Proposition IV.1 (Gaussian Width Bound): For every ε ∈
(0, diam(K)), let Sε be an ε subspace cover of K . Also
let k1 > k0 be integers with k0 being the smallest integer
satisfying 2−k0 ≥ diam(K). Then we have

GW(K) ≤
√

n 2−k1 +

3
k1∑

k=k0+1

2−k
[

max
S∈S2−k

√
2 dim(S) + 2

√
log |S2−k | + 1

]
.

Proof: For any θ ∈ K and integer k such that 2−k <
diam(K), let θk denote a point in Nk := ∪S∈S2−k S such that

dist(θ, θk) = dist(θ,Nk).

Such a point always exists since Nk is a finite union of
linear subspaces. When diam(K) ≥ 2−k, on the other hand,
we simply choose θk to be some fixed but arbitrary point θK

in K . By definition, we thus have

‖θ − θk‖ ≤ 2−k (IV.1)

for all k ∈ Z. Let us now write for every θ ∈ K ,

θ = θK +
k1∑

k=k0+1

(θk − θk−1) + (θ − θk1)

so that

GW(K) = E sup
θ∈K
〈Z, θ〉 ≤ E〈Z, θK〉+

k1∑

k=k0+1

E sup
θ∈K
〈Z, θk − θk−1〉+ E sup

θ∈K
〈Z, θ − θk1〉.

The first term on the right hand side above is 0, whereas the
third time is bounded by

√
n2−k1 in view of the Cauchy-

Schwarz inequality, display (IV.1) and the standard bound
E‖Z‖ ≤

√
n. Therefore we can conclude the proof if we

can show

E sup
θ∈K
〈Z, θk − θk−1〉 ≤

3 · 2−k
[

max
S∈S2−k

√
2 dim(S) + 2

√
log |S2−k |

]

for every integer k satisfying 2−k < diam(K). To this end
observe that

‖θk − θk−1‖ ≤ ‖θk − θ‖+ ‖θk−1 − θ‖ ≤ 3 · 2−k

in view of (IV.1) and θk − θk−1 ∈Mk where Mk := {S1 +
S2 : S1 ∈ N2−k , S2 ∈ N2−(k−1)} is another finite collection
of linear subspaces of Rn. It is also clear from the definition
that |Mk| ≤ |N2−k ||N2−(k−1) |. All these observations bring
us to the setting of:

Lemma IV.2 (Gaussian Width for Union of Subspaces): Let
S be a finite collection of linear subspaces of Rn and Θ =
∪S∈SS ⊂ Rn. In words, Θ is the union of subspaces in S.
Then we have

GW(Θ ∩B(t)) ≤ t
[
max
S∈S

√
dim(S) +

√
2 log |S| + 1

]
.

Using Lemma IV.2, we can immediately deduce that

E sup
θ∈K
〈Z, θk − θk−1〉 ≤ 3 · 2−kM

where

M :=
[

max
S1∈S2−k ,S2∈S2−(k−1)

√
dim(S1) + dim(S2)+

√
2 log |S2−k | + 2 log |S2−(k−1) | + 1

]
.

Now we can assume without any loss of generality that
|S2−(k−1) | ≤ |S2−k | as well as

max
S∈S2−(k−1)

dim(S) ≤ max
S∈S2−k

dim(S),

which finishes the proof of the proposition.

Let us now return to the proof of Lemma IV.2. Since Θ =
t Θ, it follows from the definition of Gaussian widths that
GW(Θ∩B(t)) = tGW(Θ∩B(1)) meaning we only need to
work with t = 1. We will use the following lemma involving
only one linear subspace:

Lemma IV.3: For any linear subspace S of Rn and u ≥ 0,
we have with probability at least 1− exp(−u2

2 ),

sup
θ∈S∩B(1)

〈Z, θ〉 ≤
√

dim(S) + u. (IV.2)

Proof: We will use the well-known concentration inequal-
ity for Lipschitz functions of a Gaussian vector (see, e.g. [23,
Theorem 7.1]). First of all notice that the random variable
f(Z) := supθ∈S∩B(1)〈Z, θ〉 is a Lipschitz function of Z with
Lipschitz constant 1. It follows from the observation that, for
any z, z′ ∈ Rn and θ ∈ B(1),

〈z, θ〉 − 〈z′, θ〉 = 〈z − z′, θ〉 ≤ ‖z − z′‖‖θ‖ ≤ ‖z − z′‖

where in the last but one step we used the Cauchy-Schwarz
inequality. Therefore by the Gaussian concentration inequality
mentioned in the beginning, we have for any u ≥ 0

P(f(Z)− Ef(Z) ≥ u) ≤ exp(−u2

2
).

Hence we can deduce the lemma upon showing that Ef(Z) ≤√
dim(S). To this end notice that f(Z) = ‖PSZ‖ where PS

is the orthogonal projector onto the subspace S. Therefore,
f(Z)2 is a chi squared random variable whose degree of
freedom equals dim(S) whence we get

Ef(Z) ≤
√

Ef(Z)2 ≤
√

dim(S).

Now, using a union bound followed by Lemma IV.3 we get

P
(

sup
θ∈Θ∩B(1)

〈Z, θ〉 ≥ max
S∈S

√
dim(S) + u

)

≤
∑

S∈S
P
(

sup
θ∈S∩B(1)

〈Z, θ〉 ≥ max
S∈S

√
dim(S) + u

)

≤ |S| exp(−u2

2
).

Plugging in u =
√

2 log |S| + v2 we obtain

P
(

sup
θ∈Θ∩B(1)

〈Z, θ〉 ≥ max
S∈S

√
dim(S) +

√
2 log |S|+

v
)
≤ exp(−v2

2
).

Integrating the above tail bound finishes the proof of
Lemma IV.2.



CHATTERJEE AND GOSWAMI: NEW RISK BOUNDS FOR 2D TOTAL VARIATION DENOISING 4069

Remark IV.1: A general and perhaps more standard way
of bounding the Gaussian width of a set is through Dudley’s
entropy integral inequality (see [14]). In this approach one first
finds a “good” covering set corresponding to any given radius
r for the underlying set to obtain upper bounds on covering
numbers which then enter an integral (after being transformed
appropriately) bounding the Gaussian width. Proposition IV.1
provides an alternative way when the covering sets are con-
tained in finite unions of linear subspaces with compara-
ble dimensions. For the purpose of the current article, this
approach would save us some extraneous log factors in our
bounds.

V. PROOF OF THEOREM II.1

We first set up some notations which would henceforth be
used throughout the paper. For a positive integer n, we will
denote the subset of positive integers {1, . . . , n} by [n]. Recall
that in all the proofs of our results, we are going to use TV to
denote the unnormalized version of (I.1) as defined in (I.2).
Also we will use V for the unnormalized total variation instead
of the bold V used for the corresponding normalized version.

Let us recall that the estimator θ̂V is the least squares
estimator on the set

Kn(V ) := {θ ∈ Rn×n : TV(θ) ≤ V }. (V.1)

We will often drop the subscript n and just write K(V ) when
the dimension is clear from the context. Below we adopt
the standard approach of using the basic inequality defining
least squares estimators to reduce our problem to controlling
Gaussian widths.

Lemma V.1: Under the same conditions as in the statement
of Theorem II.1 we have

E‖θ̂V − θ∗‖2 ≤ 2 σ E sup
θ:TV(θ)≤2V, θ=0

〈Z, θ〉+ 2 σ2.

Proof: Since V ≥ V ∗ we have the basic inequality ‖y −
θ̂V ‖2 ≤ ‖y − θ∗‖2. Substituting y = θ∗ + σZ gives us

‖θ∗ − θ̂V ‖2 ≤ 2〈θ̂V − θ∗, y − θ∗〉 = 2〈θ̂V − θ∗, σ Z〉
= 2 σ 〈θ̂V − y1− (θ∗ − θ∗1), Z〉+ 2 σ 〈y1− θ∗1, Z〉
≤ 2 σ sup

v:TV(v)≤2V, v=0
〈Z, v〉+ 2 σ 〈y1− θ∗1, Z〉.

where the last inequality follows because θ̂V = y and 1 refers
to the n × n matrix whose all elements equal 1. Now taking
expectation on both sides of the above display and noting that

E〈y1− θ∗1, Z〉 = σ n2EZ
2 = σ

finishes the proof.
Let us define

K0(V ) = K0
n(V ) :=

{θ ∈ Rn×n : TV(θ) ≤ V, θ = 0} .

In view of Lemma V.1, all we need is to evaluate the Gaussian
width of the set K0(2V ) to which end we will use Proposi-
tion IV.1. But for that we need to find “efficient” subspace
covers of the set K0(V ) corresponding to any distance ε.

Our next proposition will be crucial for this purpose. Below
we denote, for any rectangular partition P of Ln, the linear
subspace of Rn×n comprising only matrices that are constant
on each (rectangular) block of P by SP .

Proposition V.2: For every η, V > 0, there exist a set of
rectangular partitions P(V, n, η) of Ln (recall the definition
from Section II-B) and a universal constant C > 0 such that

• For any θ ∈ K(V ) (recall the definition from (V.1)), there
exists a partition P ∈ P(V, n, η) satisfying

(dist(θ, Sp))2 ≤ V η log n + η2.

• Any partition P ∈ P(V, n, η) has number of (rectangular)
blocks bounded by

|P | ≤ 1 + C
V

η
log n.

• The cardinality of P(V, n, η) is bounded as

log |P(V, n, η)| ≤ C
V

η
(log n)2.

Before we prove this proposition, let us finish the proof of
Theorem 2.1 assuming it.

Proof of Theorem II.1: Throughout this proof, we will
use C to denote an unspecified but universal positive constant
whose exact value may change from one line to the next. For
any ε, V > 0, let ηε := min( ε2

2V log n , ε√
2
) and consider the set

of rectangular partitions P(V, n, ηε) given by Proposition V.2.
Next define a collection Sε of linear subspaces of Rn×n as
follows:

Sε := {SP : P ∈ P(V, n, ηε)}.

By Proposition V.2 it can be seen that Sε forms an ε subspace
cover of K(V ) and hence of K0(V ) as well. Also, from
the second and third properties of P(V, n, η) we get

max
S∈Sε

dim(S) ≤ 1 + C max
(V 2(log n)2

ε2
,
V log n

ε

)

and

log |Sε| ≤ C max
(V 2(log n)3

ε2
,
V (log n)2

ε

)
.

We now have all the ingredients to apply Proposition IV.1
except for an upper bound on the diameter of K0(V ). To this
end we use Proposition V.3 — which we are going to state in
the next subsection — to deduce that t := diam(K0(V )) ≤
C V . We thus obtain from Proposition IV.1, with k0 =
/− log2 t0 and k1 = 1log2( n

V )2,

GW(K0(V ))

≤ C
k1∑

k=k0+1

2−k
(V (log n)3/2

2−k
+ (log en)1/2

)
+ n 2−k1

≤ C V (k1 − k0)(log n)3/2 + C · 2−k0(log en)1/2 + V

≤ C
(
log

( tn

V
∨ e

)
V (log en)3/2 + t(log en)1/2

)

≤ CV (log en)5/2. (V.2)

Theorem II.1 now follows immediately from Lemma V.1
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A. Proof of Proposition V.2

Given any partition P of Ln into rectangles, it is clear that
the orthogonal projection of θ onto SP , i.e., the unique matrix
θ̂P ∈ SP satisfying ‖θ − θ̂P ‖ = dist(θ, SP ), is constant on
every rectangle R of P with the common value being the
mean of θ|R — the restriction of θ to R. Therefore, with θ̄|R
denoting the mean of θ|R,

dist(θ, SP )2 = ‖θ − θ̂P ‖2 =
∑

R∈P

‖θ|R − θ̄|R1R‖2 ≤ |P | max
R∈P
‖θ|R − θ̄|R1R‖2 (V.3)

where 1R ∈ RR consists only of 1’s. Our next result provides
a way to bound the squared Frobenius distance between θ|R
and θ̄|R1R in terms of the total variation of θ|R. This result,
which is a discrete analogue of the Gagliardo-Nirenberg-
Sobolev inequality for compactly supported smooth functions,
will be crucial for deriving the first condition stipulated in
Proposition V.2 for the particular partitioning scheme we are
going to propose in this regard.

Proposition V.3 (Discrete Gagliardo-Nirenberg-Sobolev
Inequality): Let θ ∈ Rm×n and θ :=

∑m
i=1

∑n
j=1 θ[i, j]/mn

be the average of the elements of θ. Then we have, with a∧ b
denoting the minimum of the (real) numbers a and b,

m∑

i=1

n∑

j=1

(θ[i, j]− θ)2 ≤ (5 +
4mn

n2 ∧m2
)TV(θ)2 .

So in particular when m = n, we have
n∑

i=1

n∑

j=1

(θ[i, j]− θ)2 ≤ 9TV(θ)2 .

Remark V.1: Although the Gagliardo-Nirenberg-Sobolev
inequality is classical for Sobolev spaces (see, e.g., Chap-
ter 12 in [24]), we are not aware of any discrete version in
the literature that applies to arbitrary matrices of finite size.
Also it is not clear if the inequality in this exact form follows
directly from the classical version.

Now we give a scheme for subdividing θ in multiple steps
until the total variation of each of the resulting submatrices is
bounded above by η.
A greedy partitioning scheme: For convenience of expo-
sition we will assume that n is an integer power of 2. The
general n can then be accommodated from the following
observation. For any t > 0, let Bn,n(t) denote the t-Euclidean
(Frobenius) ball in Rn×n and consider θ ∈ Kn(V ) ∩Bn,n(t)
(recall from our proof of Theorem II.1 that we actually bound
GW(Kn(V ) ∩ Bn,n(CV )) for some universal constant C).
Now let n′ denote the smallest integer power of 2 that is
larger than or equal to n and partition θ as

θ =
[

θ11 θ12

θ21 θ22

]

where θ22 ∈ R(n′−n)×(n′−n). Also define a n′ × n′ matrix
f(θ) as

f(θ) =




θ11 θ12

←−
θ12

θ21 θ22
←−
θ22

θ21 ↑ θ22 ↑
←−
θ22 ↑





where
←−
M , for any matrix M , denotes the matrix obtained by

reversing the order of its columns whereas M ↑ is obtained by
reversing the order of its rows. It is clear from the definition
that f(θ) ∈ Kn′(4V ) ∩Bn′,n′(t) and also

GW(Kn(V ) ∩Bn,n(t))
≤ E sup

θ∈Kn(V ):‖θ‖≤t
〈Zn′,n′ , f(θ)〉

≤ GW(Kn′(4V ) ∩Bn′,n′(2t))

where Zn′,n′ ∼ N(0n′×n′ , I).
Let us now describe the scheme which is of the same

flavor as the breadth-first exploration of a quaternary tree.
The root node of the tree represents Ln and the nodes at any
level (or depth) i ∈ [log2 n] represent (disjoint) rectangles of
side-length n2−i with the property that the leaves of the tree
truncated at level i form a partition of Ln. Given level i− 1,
the i-th level is constructed (or explored) as follows. For every
leaf, i.e., rectangle R at level i − 1 satisfying TV(θ|R) > η,
we add four children of R, namely R11, R12, R21 and R22,
to the tree where

R =
[

R11 R12

R21 R22

]

and nrow(R11) = ncol(R11) = nrow(R)/2. If the set of such
leaves is empty or if i− 1 = log2 n, we stop.

Let us denote the final rectangular partition of Ln obtained
by applying the (TV, η) scheme to η as Pθ,η and the set of
partitions {Pθ,η : θ ∈ Rn×n, TV(θ) ≤ V } as P(V, n, η).
In our next result we verify that P(V, n, η) satisfy the last
two properties stipulated in Proposition V.2.

Lemma V.4: There exists a universal constant C > 0 such
that for any θ ∈ Rn×n and η > 0, we have

|Pθ,η| ≤ 1 + C TV(θ)η−1 log n.

Furthermore, for any V > 0 we have

log |P(V, n, η)| ≤ C V η−1(log n)2 .

Proof: The basic idea of the proof hinges on super-
additivity of the TV functional over disjoint rectangles. Let ni

denote the number of leaves in the tree formed by the scheme
truncated at level i. In other words, ni is the cardinality of
the partition Pi formed by the rectangles corresponding to
the leaves of the tree truncated at level i. Also let si denote
the number of leaves R at level i satisfying TV(θ|R) > η.
Clearly n0 = 1 and ni+1 = ni + 3 si. Notice that, due to
super-additivity of the TV functional, we must have

si ≤
TV(θ)

η
. (V.4)

This implies in particular that

ni ≤ 1 + 3i
TV(θ)

η
. (V.5)

Since i ≤ log2 n by construction, it then follows

|Pθ,η| ≤ 1 + 3 log2 n
TV(θ)

η
.
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Next we bound the number of possible partitions Pθ,η when
TV(θ) ≤ V . The number of distinct ways of adding leaves
at level i + 1 is at most

(
1 + 3 iV

η

)V
η in light of the displays

(V.4) and (V.5). Therefore

log |P(V, n, ε)| ≤ C
V

η
(log n)2

for some universal constant C > 0.
With Lemma V.4 and Proposition V.3 in hand, we are now

in a position to finish the proof of Proposition V.2.
Proof of Proposition V.2: For any given θ ∈ K(V ), run

the (TV, η) greedy scheme to obtain the partition Pθ,η. Within
every rectangle of the partition Pθ,η the total variation of θ
is at most η. Also, the number of rectangles in Pθ,η is at
most 1 + C V

η log n. Then by Proposition V.3 and (V.3) we
can conclude

‖θ̃ − θ‖2 ≤ CV η log n + η2.

Also, by Lemma V.4, as θ varies in K(V ), the number of
distinct partitions Pθ,η that can be obtained is bounded by
V
η log n. This finishes the proof.

Finally it remains to give the proof of Proposition V.3.
Proof of Proposition V.3: For any (i, j) ∈ [m] × [n], we

have

(θ[i, j]− θ)2 ≤
∑

j′∈[j]

|θ[i, j′]− θ[i, j′ − 1]|
∑

i′∈[i]

|θ[i′, j]− θ[i′ − 1, j]|

where θ[i, 0] = θ[0, j] = θ for all (i, j) ∈ [m]× [n]. Summing
this over all i and j we get

i∈[m],j∈[n]

(θ[i, j] − θ)2

≤
i′∈[m],j′∈[n]i≥i′,j≥j′

|θ[i, j′] − θ[i, j′ − 1]|×|θ[i′, j] − θ[i′−1, j]|

≤
i′∈[m],j′∈[n]i∈[m],j∈[n]

|θ[i, j′] − θ[i, j′−1]|×|θ[i′, j]−θ[i′−1, j]|

=
i∈[m],j∈[n]

|θ[i, j] − θ[i, j − 1]|
i∈[m],j∈[n]

|θ[i, j] − θ[i − 1, j]|

= TVrow(θ) +
i∈[m]

|θ[i, 1] − θ| TVcol(θ) +
j∈[n]

|θ[1, j] − θ| .

(V.6)

Here the total variation TVrow(θ) along rows is defined as

TVrow(θ) :=
∑

i∈[m]

∑

j∈[n−1]

|θ[i, j + 1]− θ[i, j]|

and TVcol(θ) := TVrow(θT ). Now let us try to bound |θ[i, 1]−
θ|.

|θ[i, 1]− θ|

=
1

mn

∑

i′∈[m],j′∈[n]

|θ[i, 1]− θ[i′, j′]|

≤ 1
mn

∑

i′∈[m],j′∈[n]

(|θ[i, 1]− θ[i, j′]| + |θ[i, j′]− θ[i′, j′]|)

≤ 1
n

∑

j′∈[n]

|θ[i, 1]− θ[i, j′]|+ 1
mn

∑

i′∈[m],j′∈[n]

|θ[i, j′]−θ[i′, j′]|

≤ TV(θ[i, ]) +
1

mn

∑

j′∈[n]

∑

i′∈[m]

TV(θ[, j′])

≤ TV(θ[i, ])+
1
n

∑

j′∈[n]

TV(θ[, j′])=TV(θ[i, ])+
1
n

TV(θ).

Hence ∑

i∈[m]

|θ[i, 1]− θ| ≤ (1 +
m

n
)TV(θ) .

Similarly
∑

j∈[n]

|θ[1, j]− θ| ≤ (1 +
n

m
)TV(θ) .

Plugging these bounds into the last expression in (V.6), we get
sumi∈[m],j∈[n](θ[i, j]− θ)2 is at most

(2 +
m

n
)(2 +

n

m
)TV(θ)2 ≤ (5 +

4mn

n2 ∧m2
)TV(θ)2 .

VI. PROOFS OF THEOREM II.2 AND THEOREM II.3

We first describe the precise connection between MSE and
Gaussian widths. Recall that use Bm,n(t) to denote the usual
Euclidean ball of radius t in Rm×n. The statistical dimension
of a closed convex cone K ⊂ RN = Rn×n is defined as

δ(K) := E‖ΠK(Z)‖2 where Z ∼ N(0, I)

and ΠK(Z) := argmin
u∈K

‖Z − u‖2 is the Euclidean projection

of Z onto K . The terminology of statistical dimension is due
to [1] and we refer the reader to this paper for many properties
of the statistical dimension. The statistical dimension δ(K) is
closely related to the Gaussian width of K ∩ Bn,n(1). It has
been shown in [1, Proposition 10.2] that

[
GW(K ∩Bn,n(1))

]2 ≤
δ(K) ≤

[
GW(K ∩Bn,n(1))

]2 + 1 (VI.1)

for every closed convex cone K .
The connection of the statistical dimension of tangent cones

to the risk of θ̂ is the content of the following result due to [2,
Corollary 2.2].

Theorem VI.1 ([2]): Suppose Y ∼ N(θ∗, σ2 I) for some
θ∗ ∈ RN . Then

MSE(θ̂V , θ∗) ≤ A

where

A = inf
θ∈K(V )

[
1
N
‖θ − θ∗‖2 +

σ2

N
δ(TK(V )(θ))

]
.

Another result that is of use to us is the following result
of [31] (Theorem 2.1). It says that the upper bound provided
in Theorem VI.1 is essentially tight. Recall from Section II-B1
that K∗ = {θ ∈ Rn×n : TV(θ) ≤ TV(θ∗)}.

Theorem VI.2 ([31]):

lim
σ→0

1
σ2

MSE(θ̂V ∗ , θ∗) =
1
N

δ(TK∗(θ∗)) ≥
1
N

[
GW(TK∗(θ∗) ∩Bn,n(1))

]2
.
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Remark VI.1: To clarify, Theorem 2.1 in [31] actually says
that

lim
σ→0

1
σ2

MSE(θ̂V∗ , θ∗) =

E dist2(Z, Polar(TK∗(θ∗))) .

Here Z , as usual, refers to a matrix of independent N(0, 1)
entries, Polar(TK∗(θ∗)) refers to the Polar Cone of TK∗(θ∗)
and dist refers to the Euclidean Distance between two sets.
Letting K denote a general cone and ΠK denote the Euclidean
projection operator onto K , the standard Pythagorean Theo-
rem for cones implies

dist2(Z, Polar(K)) = ‖ΠK(Z)‖2 .

Also, it holds that ‖ΠK(Z)‖ = supθ∈K:‖θ‖≤1〈Z, θ〉. A proof
of the above fact is available in Lemma A.3 in [11]. The-
orem VI.2 now follows from applying the above facts to
Theorem 2.1 in [31] and then using the elementary inequality
EX2 ≥ (EX)2.

In light of the above facts and armed with Proposition II.4
and Proposition II.5 we are now ready to prove Theorem II.2
and Theorem II.3 respectively.

Proof of Theorem II.2: Theorem VI.1 along with (VI.1)
gives us

MSE(θ̂V , θ∗) ≤

inf
θ∈K(V )

[
1
N
‖θ − θ∗‖2 +

σ2

N
+

σ2

N

[
GW(TK(V )(θ))

]2
]

.

(VI.2)

With V ∗ = TV(θ∗) > 0, define

θ := θ∗1 +
V

V ∗
(
θ∗ − θ∗1).

By definition, TV(θ) = V and θ is piecewise constant on
the same partition of Ln as is θ∗. By Proposition V.3 we can
assert that

‖θ − θ∗‖2 = (V − V ∗)2
‖θ∗ − θ∗1‖2

(V ∗)2
≤ 9(V − V ∗)2.

Therefore, in view of (VI.2), we obtain

MSE(θ̂V , θ∗) ≤ 9
N

(V − V ∗)2 +
σ2

N
+

σ2

N
C(log en)9 k(θ∗)5/4N1/4

where we have also used Proposition II.4 and the fact that
k(θ) = k(θ∗).

Proof of Theorem II.3: The proof of Theorem II.3 is
immediate once we use Theorem VI.2 along with Proposi-
tion II.5.

VII. PROOFS OF PROPOSITION II.5 AND THEOREM II.6

A. Tangent Cone Characterization

We fix a θ∗ ∈ Rn×n and proceed to investigate the tangent
cone TK∗(θ∗). Notice that K∗ is same as K(V ∗) defined in
Section II-B1 (see (V.1)). Let R∗ = (R∗

1, R
∗
2, . . . , R∗

k∗) be a
partition of [n]× [n] into k∗ rectangles where k∗ = k(θ∗).

Recall that the vertices in the grid graph Ln correspond to
the pairs (i, j) ∈ [n]× [n] and its edge set En consists of:

all ((i, j), (k, #)) ∈ Ln × Ln such that |i− j| + |k − #| = 1 .

For any edge e ∈ En, we denote by e+ and e− the vertices
associated with e with respect to the natural partial order. For
any θ ∈ RLn , we will use ∆eθ as a shorthand notation for
the (discrete) edge gradient θ(e+) − θ(e−). Thus TV(θ) =∑

e∈En
|∆eθ|. For a general rectangle R := ([a1, a2] ×

[b1, b2]) ∩ Z2 ⊂ Ln, we define its right boundary as follows:

∂right(R) := {(i, j) ∈ R : j = b2} .

While defining the above set, we are using the matrix con-
vention for indexing the vertices of Ln. Thus, the top-left
vertex in the two-dimensional array Ln is indexed by (1, 1)
and the bottom-right vertex by (n, n). Similarly we define the
left, top and bottom boundaries of R and denote them by
∂left(R), ∂top(R) and ∂bottom(R) respectively. The boundary
of R, denoted by ∂R, is defined as

∂R := ∂right(R) ∪ ∂left(R) ∪ ∂top(R) ∪ ∂bottom(R) .

1) Starting From the Definition: The tangent cone
TK(V ∗)(θ∗) is the smallest closed, convex cone containing
all the elements θ in Rn×n such that θ∗ + θ ∈ K(V ∗) for
V ∗ = TV(θ∗). Let A∗ := {e ∈ En : |∆eθ∗| > 0} and
(A∗)c = En \ A. Observe that |∆e(θ∗ + θ)| − |∆e(θ∗)| =
|∆eθ|−0 = |∆eθ| for every edge e in (A∗)c. Thus in order for
θ∗+θ ∈ K(V ∗), the increments in the absolute edge gradients
of θ∗ + θ from the edges in (A∗)c must be compensated by
an equal or greater amount of decrease in the absolute edge
gradients for the edges in A∗. The precise statement is the
content of

Lemma VII.1: We have the following set equality:

TK(V ∗)(θ∗) =
{
θ ∈ Rn×n :

∑

e∈(A∗)c

|∆eθ| ≤ −
∑

e∈A∗

sgn(∆eθ
∗)∆eθ

}

(VII.1)

Here, sgn(x) := I{x > 0} − I{x < 0} is the usual sign
function.

Proof: Let T be the set on the right side of (VII.1). Let
us first prove that TK(V ∗)(θ∗) ⊂ T . An important feature of
T is that it is a closed convex cone. Hence it suffices to show
that θ ∈ T whenever θ∗ + θ ∈ K(V ∗). To this end let θ be
such that TV(θ∗ + θ) ≤ TV(θ∗). Since K(V ∗) is a convex
set, we have

TV(θ∗ + cθ) = TV
(
c(θ∗ + θ) + (1− c)θ∗

)
≤ TV(θ∗)

for any 0 ≤ c ≤ 1. Now observing that

TV(θ∗ + cθ) =
∑

e∈A∗

|∆eθ
∗ + c∆eθ| + c

∑

e∈(A∗)c

|∆eθ| ,



CHATTERJEE AND GOSWAMI: NEW RISK BOUNDS FOR 2D TOTAL VARIATION DENOISING 4073

we can write

TV(θ∗ + cθ) =
∑

e∈A∗

[
sgn(∆eθ

∗)∆eθ
∗ + c sgn(∆eθ

∗)∆eθ
]
+

c
∑

e∈(A∗)c

|∆eθ| ≤ TV(θ∗) (VII.2)

whenever c is small enough satisfying sgn(∆eθ∗ + c∆eθ) =
sgn(∆eθ∗) for all e ∈ A∗. By definition,

TV(θ∗) =
∑

e∈A∗

sgn(∆eθ
∗)∆eθ

∗

which together with (VII.2) gives us θ ∈ T .
It remains to show that T ⊂ TK(V ∗)(θ∗). It suffices to show

that for any θ ∈ T there exists a small enough c > 0 such
that TV(θ∗ + cθ) ≤ V ∗. This can be shown using the same
reasoning given after (VII.2).

With the above characterization of the tangent cone, we are
now ready to prove our lower bound to the risk given in
Theorem II.3.

B. Proof of Proposition II.5

Recall that here we consider θ∗ which is piecewise constant
on two rectangles and is of the following form:

θ∗ =
[

0n×n/2 1n×n/2

]

Proof: Consider n to be even and a perfect square (i.e.,√
n is an integer) for simplicity of exposition. Also for a

generic n×n matrix θ we will denote θ(1) to be the submatrix
formed by the first n/2 − 1 columns, v(θ) to be the n/2-
th column and θ(2) to be the submatrix formed by the last
n/2 columns. Also, for two matrices θ and θ

′
with the same

number of rows, we will denote [θ : θ
′
] to be the matrix

obtained by concatenating the columns of θ and θ
′
.

We can now use Lemma VII.1 to characterize the tangent
cone TK(V ∗)(θ∗).

TK(V ∗)(θ∗) =
{
θ ∈ Rn×n : TV([θ(1) : v(θ)]) + TV(θ(2)) ≤
n∑

i=1

θ[i, n/2]− θ[i, n/2 + 1]
}

In this proof, we will actually lower bound the Gaussian
width of a convenient subset of TK(V ∗)(θ∗). To this end,
for constants c1, c2 ∈ (0, 1) to be specified later, let us
define

S :=
{
θ ∈ TK(V ∗)(θ∗) : θ(1) =

c1

n
1n×(n/2−1),

θ(2) = 0n×n/2, v(θ) ∈ {c1/n, c2/
√

n}n
}
.

In words, for θ ∈ S, the first n/2−1 columns are all equal to
c1/n, the last n/2 columns of θ are 0 and the entries in the
n/2-th column can take two values; either c2/

√
n or c1/n.

Also, for any such matrix θ,

TV([θ(1) : v(θ)]) ≤
n∑

i=1

v(θ)
i ⇐⇒ θ ∈ S. (VII.3)

Before going further, let us define the set of indices Bj :=
{(j − 1)

√
n + 1, (j − 1)

√
n + 2, . . . , j

√
n} for j ∈ [

√
n]. In

words, we divide [n] into
√

n many equal contiguous blocks
and Bj refers to the jth block. Now, for any realization of
a random Gaussian matrix Z , let us define the matrix ν so
that ν(1) := c1

n 1n×(n/2−1) and ν(2) := 0n×n/2. Moreover,
we define v(ν) as follows:

v(ν)
i :=

∑

j∈[
√

n]:Bj-i

(
I{

∑
k∈Bj

Z[k, n/2] > 0} c2√
n

+ I{
∑

k∈Bj
Z[k, n/2] < 0}c1

n

)
.

In words, the vector v(ν) is defined so that it is constant on
each of the blocks Bj . If

∑
i∈Bj

Z[i, n/2] > 0, the value on
Bj is c2√

n
, otherwise the value is c1

n . Now we claim that the
following are true for some appropriate choice of c1 and c2:

a) ν ∈ S for any Z.
b) ‖ν‖ ≤ 1.
Taking the above claims to be true we can write

GW
(
TK(V ∗)(θ∗) ∩Bn,n(1)

)
≥ GW

(
S ∩Bn,n(1)

)

= E sup
θ∈S∩Bn,n(1)

〈θ, Z〉 ≥ E〈ν, Z〉

= E〈ν(1), Z(1)〉+ E〈ν(2), Z(2)〉+ E
n∑

i=1

v(ν)
i Z[i, n/2]

= E
n∑

i=1

v(ν)
i Z[i, n/2]

where we used the fact that ν(1), ν(2) are constant matrices
and Z has mean zero entries.

Now let us denote Zj :=
∑

i∈Bj
Z[i, n/2]. Note that

(Z1, . . . ,Z√
n) are independent mean zero Gaussians with

standard deviation n1/4. Therefore

E
n∑

i=1

v(ν)
i Z[i, n/2] =

∑

j∈[
√

n]

E
(
I{Zj > 0}Zj

c2√
n

+ I{Zj < 0}Zj
c1

n

)

=
∑

j∈[
√

n]

(
c2√
n
− c1

n
)n1/4φ = (c2 −

c1√
n

)φn1/4

where for a standard Gaussian random variable z, we denote
φ = E zI{z > 0}.

It remains to choose c1, c2 so that the two claims hold as
well as c2− c1√

n
is positive. To this end notice that for validating

the first claim it suffices to show, in view of the definition of ν,
that the first inequality in (VII.3) holds for ν, i.e., the following
is true

TV([ν(1) : vν ]) ≤
n∑

i=1

vν
i . (VII.4)

Now entries of vν can take two values, either c2√
n

or c1
n . In

either case it can be checked that when c2 ≥ c1√
n

we have for
each row index i ∈ [n]

vν
i − TV(ν(1)[i, 1], . . . , ν(1)[i, n− 1], vν

i ) =
c1

n
. (VII.5)
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Along with the fact that

TV([ν(1) : vν ]) =
n∑

i=1

TV(ν(1)[i, 1], . . . , ν(1)[i, n− 1], vν
i ) + TV(vν) ,

(VII.5) implies that in order to verify (VII.4) it suffices to show
TV(vν) ≤ c1. But vν is a piecewise constant vector with at
most

√
n jumps of size c2√

n
. Thus we have TV(vν) ≤ c2.

Hence ensuring c2 ≤ c1 is sufficient to obtain the first claim.
The second claim is trivially satisfied if c2 ≤

√
1− c2

1. Thus,
choosing c1 = c2 = 1/

√
2 we can satisfy both claims as well

as c2 − c1√
n

= 1√
2
(1− 1/

√
n) > 0 for all n ≥ 2.

The task now is to obtain a “matching” upper bound on
the gaussian width, which would eventually lead to the proof
of Theorem II.2 in view of Theorem VI.1. Since the proof is
lengthy and somewhat technical, for the benefit of the reader
we first provide an informal roadmap of the proof before
starting it formally in Section VIII.

C. Proof of Theorem II.6

Proof: Consider the signal matrix θ∗ := I{i + j >
n}. From the characterization of the tangent cone given by
Lemma VII.1, we have

TK(V ∗)(θ∗) =
{
θ ∈ Rn×n :

∑

e∈(A∗)c

|∆eθ| ≤ −
∑

e∈A∗

∆eθ
}

where every edge e in A∗ is either of the form ((i, n −
i), (i, n−i+1)) or ((i, n−i), (i+1, n−i)) for some i ∈ [n−1].

Now consider the family T ∗ of matrices defined below:

T ∗ :=
{θ ∈ Rn×n

+ : θ[i, j] = 0 ∀ (i, j) satisfying i + j := n}.
It is not difficult to check that T ∗ ⊆ TK(V ∗)(θ∗). It is also
clear that T ∗ is (linearly) isomorphic to Rn−1

+ . Therefore

GW(TK(V ∗)(θ∗) ∩Bn×n(1)) ≥ GW(T ∗ ∩Bn×n(1))
= GW(Rn−1

+ ∩Bn−1(1)) ≥ c
√

n.

where Bm(r) denotes the usual Euclidean ball of radius r
in Rm and c > 0 is a universal constant. Now an application
of Theorem VI.2 along with the above Gaussian width lower
bound also furnishes a lower bound to the limiting MSE.

Remark VII.1: The vertex boundary of a set A ⊂ Ln is
defined to be the set of vertices which share an edge with Ac.
Consider the level sets of θ∗ which are the sets A = {(i, j) ∈
Ln : i + j > n} and Ac. The simple argument presented in
the proof of Theorem II.6 relies crucially on the fact that the
vertex boundary of the level sets A and Ac are not connected
in the graph Ln. One can now consider other signals of the
form θ∗ = I{A} for a general subset A ⊂ Ln. One can check
that if A is of the shape of a circle or a square rotated by
45 degrees then also the vertex boundary of the level sets
will contain O(n) connected components which are singletons.
Therefore, a similar argument will give a O(n) lower bound
to GW(TK(V ∗)(θ∗). We believe that it might be possible to
formalize the intuition that whenever A is sufficiently far from
being a rectangle, GW(TK(V ∗)(θ∗) is lower bounded by O(n).

VIII. PROOF OF PROPOSITION II.4

A. Informal Roadmap

The proof of Proposition II.4 can be divided into three
major steps which we now describe. Recall that θ∗ is the true
signal which is piecewise constant on axis aligned rectangles
R∗

1, . . . , R
∗
k(θ∗) which partition Ln.

Step 1: We have to bound GW(TK(V ∗)(θ∗)∩Bn×n(1)). To
do this, we show that if a matrix θ is in TK(V ∗)(θ∗)∩Bn×n(1)
then each rectangular submatrix θR∗

i
satisfies the property that

TV(θR∗
i
) is at most the #1 norm of its four boundaries plus a

small wiggle room δ > 0. Such matrices are denoted later
in (VIII.2) as M4. This fact then reduces our problem to
bounding the Gaussian width for the class of matrices M4.
Corollary VIII.1, Lemma VIII.2 and Lemma VIII.3 are part
of this step.

Step 2: Before starting the Gaussian width calculations,
we found it convenient to further simplify the class of matrices
M4. In this step, we show that if a matrix θ lies in M4 then
we can subdivide it further into several submatrices which
now satisfy a simpler property. The property is that the total
variation of these submatrices are at most the #1 norm of
only one or none of its boundaries (instead of four) plus
an appropriately small “wiggle room” δ > 0. These sets of
matrices are denoted by M1 and M0 respectively and are
defined just before Lemma VIII.4. Along with Lemma VIII.4,
Lemmata VIII.5–VIII.7 are also parts of this step.

Step 3: This is the step where we actually compute the
metric entropies of the classes of matrices M1 and M0 and
finally bring all the pieces together. Proposition VIII.9 and
Lemmata VIII.8–VIII.14 are all parts of this step.

B. Towards Simplifying the Tangent Cone

We first want to split θ into submatrices each of which
satisfies a separate constraint. This and the next subsection
are devoted to this goal. Let us revisit Lemma VII.1. Since θ∗

is constant on each rectangle R∗
i ∈ R∗ it follows that

A∗ = {e ∈ En : e+ ∈ R∗
i and

e− ∈ R∗
j for some i := j ∈ [k∗]}.

As a consequence we get the following corollary:
Corollary VIII.1: Fix θ∗ ∈ Rn×n. We have

TK(V ∗)(θ∗) ⊂{
θ ∈ Rn×n :

∑

i∈[k∗]

TV(θR∗
i
) ≤

∑

i∈[k∗]

∑

u∈∂R∗
i

|θ(u)|
}

.

The first step towards obtaining a decomposition where
each submatrix satisfies some constraint is to separate the
constraints for R∗

i ’s. More precisely we would like

TV(θR∗
i
) ≤

∑

u∈∂R∗
i

|θ(u)| (VIII.1)

for each i ∈ [k∗]. As we will see below that this is “almost”
the truth when we consider matrices in the tangent cone which
are of unit norm.



CHATTERJEE AND GOSWAMI: NEW RISK BOUNDS FOR 2D TOTAL VARIATION DENOISING 4075

Let us make precise the notion of an “almost” version of
(VIII.1). To this end we introduce for any δ, t > 0:

M4(m′, n′, δ, t) :=

{θ ∈ Rm′×n′
: TV(θ) ≤ ‖θleft‖1 + ‖θright‖1 + (VIII.2)

‖θtop‖1 + ‖θbottom‖1 + δ, ‖θ‖ ≤ t} ,

where θleft := θ[ , 1], θright := θ[ , n′], θtop := θ[1, ] and
θbottom := θ[m′, ]. In plain words, M4(m′, n′, δ, t) consists
of matrices of norm at most t whose total variation is bounded
by the total #1 norm of its four boundaries plus an extra wiggle
room δ > 0. In our next result we show that for any θ in
TK(V ∗)(θ∗) intersected with the unit Euclidean ball Bn×n(1),
the restriction θ|R∗

i
of θ to R∗

i lies in M4(mi, ni, δi, ti) for
each i ∈ [k] with mi := nrow(R∗

i ), ni := ncol(R∗
i ) and ti’s

and δi’s satisfying some upper bounds on their #2 and #1-norms
respectively.

Lemma VIII.2: We have the set inclusion

TK(V ∗)(θ∗) ∩Bn×n(1) ⊂
⋃

δ∈Sk∗,∆(θ∗)

⋃

t2∈Sk∗,1

{θ ∈ Rn×n :

θ|R∗
i
∈M4(mi, ni, δi, ti), ∀i ∈ [k∗]}

where Sk∗,r := {a ∈ Rk∗

+ :
∑

i∈[k∗] ai ≤ r} is the
non negative simplex with radius r > 0, t2 is the vector
(t21, . . . , t2k∗) ∈ Rk∗

+ and

∆(θ∗) =
√

2
∑

i∈[k∗]

(mi

ni
+

ni

mi

)
.

Remark VIII.1: By virtue of Lemma VIII.2, we achieve
our objective of obtaining a characterization of TK(V ∗)(θ∗)
where we have separate constraints for each R∗

i ∈ R∗. The
constraints are now coupled together by the wiggle room
vector δ ∈ Sk∗,∆(θ∗) and the (squared) #2-norm vector t2.

Proof: We will start with a claim.
Claim VIII.1: Let θ ∈ TK(V ∗)(θ∗) ∩ Bn×n(1). Then for

each i ∈ [k∗] and any fixed choice of rows and columns ri, ci

in R∗
i , we have θ|R∗

i
∈M4(mi, ni, δi, ti) where

∑
i∈[k∗] t

2
i ≤

1 and (δ1, . . . , δk∗) =: δ ∈ Rk∗

+ satisfies

‖δ‖1 ≤ 2
∑

i∈[k∗]

( ∥∥θ|ci

∥∥
1
+

∥∥θ|ri

∥∥
1

)
,

where θ|ci
(or θ|ri

) is the vector obtained by restricting θ to
the row ci (respectively the column ri).

Let us first deduce the lemma assuming our claim. Consider
a θ ∈ TK(V ∗)(θ∗) such that ‖θ‖2 ≤ 1 and for each i ∈ [k∗], let
ri and ci denote the rows and columns such that the #1 norms
of θ|ri

and θ|ci
are minimum. Then by Claim VIII.1, each

θ|R∗
i
∈M4(mi, ni, δi, ti) with t2 ∈ Sk∗,1 and δ satisfying

‖δ‖1 ≤ 2
∑

i∈[k∗]

min
c: c is a column of R∗

i ,
r: r is a row of R∗

i

(∥∥θ|c
∥∥

1
+

∥∥θ|r
∥∥

1

)
.

(VIII.3)

Now for each i ∈ [k∗], we have

min
c: c is a column of R∗

i

∥∥θ|c
∥∥

1
≤

√
mi min

c:c is a column of R∗
i

∥∥θ|c
∥∥

2
≤

√
mi

ni
‖θ|R∗

i
‖2 .

The first inequality is an application of the Cauchy-Schwarz
inequality and the second inequality follows from the “min-
imum is less than the average” principle. Similarly, one can
obtain the row version of these inequalities and together they
give us

min
c: c is a column of R∗

i ,
r: r is a row of R∗

i

(∥∥θ|c
∥∥

1
+

∥∥θ|r
∥∥

1

)
≤

(√
mi

ni
+

√
ni

mi

)
‖θ|R∗

i
‖2.

Summing the above inequality over all i ∈ [k∗] and subse-
quently using the Cauchy-Schwarz inequality as well as the
fact that ‖θ‖2 ≤ 1, we get in view of (II.2)

‖δ‖1 ≤
√

2
∑

i∈[k∗]

(mi

ni
+

ni

mi

)
= ∆(θ∗) ,

thus yielding the lemma.

Proof of Claim VIII.1. The constraint on ti’s is clear and
therefore all we need to show is the constraint on δi’s. Recall
from the definition in (VIII.2) that δi can be chosen, for any
i ∈ [k∗], as

δi :=
(
TV(θ|R∗

i
)−

∑

u∈∂R∗
i

|θ(u)|
)
+

(VIII.4)

where a+ := max{a, 0} for any a ∈ R. Now fix i ∈ [k∗] and
consider a generic row ri of R∗

i . Treating ri as a horizontal
path in the graph Ln, let us denote its two end-vertices by u
and w with u ∈ ∂left(R∗

i ) and w ∈ ∂right(R∗
i ). Now denoting

the vertex in ri ∩ ci by v, we see that v occurs between the
vertices u and w in the row ri. Therefore we can write

TV(θr) ≥ |θ(u)| + |θ(w)| − 2|θ(v)| .

Summing the above inequality for every row in the rectangle
R∗

i gives us

TVrow(θ|R∗
i
) ≥

∑

u∈∂left(R∗
i )

|θ(u)| +
∑

w∈∂right(R∗
i )

|θ(w)| − 2 ‖θci‖1 .

By a similar argument applied to the columns of R we obtain

TVcol(θ|R∗
i
) ≥

∑

u∈∂top(R∗
i )

|θ(u)| +
∑

w∈∂bottom(R∗
i )

|θ(w)| − 2 ‖θri‖1 .

Summing the previous two displays we get the following
inequality:

TV(θ|R∗
i
) ≥

∑

u∈∂R∗
i

|θ(u)|− 2 ‖θri‖1 − 2 ‖θci‖1 .
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Now if θ ∈ TK(V ∗)(θ∗), then as a consequence of Corol-
lary VIII.1 we also have

∑

i∈[k∗]

TV(θ|R∗
i
) ≤

∑

i∈[k∗]

∑

u∈∂R∗
i

|θ(u)| .

Hence an application of Lemma A.1 (stated and proved in
the appendix) to fi = TV(θ|R∗

i
), gi =

∑
u∈∂R∗

i
|θ(u)|, hi =

2(‖θri‖1 + ‖θci‖1) and wi = δ = 0, would give us the claim
in view of (VIII.4).

With the help of Lemma VIII.2 we can now deduce the
following lemma.

Lemma VIII.3: With the notation described in this section,
we have the following upper bound:

GW(TK(V ∗)(θ∗) ∩Bn,n(1)) ≤
max

∆(θ∗)δ:δ∈Sk∗,2∩Hk∗
max

t2∈Sk∗,2∩Hk∗

[

∑

i∈[k∗]

GW(M4(mi, ni, ∆(θ∗)δi, ti))
]

+ C
√

k∗.

where Hk∗ := { 1
k∗ , 2

k∗ , . . . , 1}k∗
and C > 0 is a universal

constant.
Proof: Using Lemma VIII.2 we can write

E sup
θ∈TK(V ∗)(θ∗):‖θ‖≤1

〈Z, θ〉 ≤

E sup
δ∈Sk∗,∆(θ∗)

sup
t2∈Sk∗,1

[

∑

i∈[k∗]

sup
θ∈TK(V ∗)(θ∗):‖θ‖≤1

〈Z|R∗
i
, θ|R∗

i
〉
]

≤ E sup
δ∈Sk∗,∆(θ∗)

sup
t2∈Sk∗,1

[

∑

i∈[k∗]

sup
θi∈M4(mi,ni,δi,ti)

〈Z, θi〉
]

(VIII.5)

where, by a slight abuse of notation, Z always refers to
a matrix of independent standard normals with appropriate
number of rows and columns.

At this point, we would like to convert the supremum over
δ, t2 (or, equivalently t) in the non negative simplex to a
maximum over a finite net of δ, t We can accomplish this
by the following trick. Fix any δ ∈ Sk∗,∆(θ∗). Then we can
define a vector q = q(δ) ∈ Rk∗

such that

qi :=
1
k∗

⌈ k∗δi

∆(θ∗)
⌉
.

It is clear that q ∈ Hk∗∩Sk∗,2. It is also clear that δ ≤ q∆(θ∗)
element-wise. Due to similar reason, for any t2 ∈ Sk∗,1 there
exists w = w(t) ∈ Hk∗ ∩ Sk∗,2 such that t2 ≤ w element-
wise. Since the collections M4(mi, ni, δi, ti) are increasing
in (δi, ti) (with respect to set inclusion), it follows from the

previous discussion that

E sup
δ∈Sk∗,∆(θ∗)

sup
t2∈Sk∗,1

∑

i∈[k∗]

sup
θi∈M4(mi,ni,δi,ti)

〈Z, θi〉

≤E max
∆(θ∗)δ:δ∈Sk∗,2∩Hk∗

max
t2∈Sk∗,2∩Hk∗

∑

i∈[k∗]

[

sup
θi∈M4(mi,ni,∆(θ∗)δi,ti)

〈Z, θi〉
]
. (VIII.6)

Since Z is a matrix with i.i.d N(0, 1) entries, the first two
maximums in the right hand side of the above display can
actually be taken outside the expectation upto an additive term.
This follows from the well known concentration properties of
suprema of gaussian random variables. In particular, we now
apply Lemma A.2 (stated in the appendix), true for suprema
of gaussians, to obtain for a universal constant C,

E max
∆(θ∗)δ:δ∈Sk∗,2∩Hk∗

max
t2∈Sk∗,2∩Hk∗

[

∑

i∈[k∗]

sup
θi∈M4(mi,ni,∆(θ∗)δi,ti)

〈Z, θi〉
]

≤ max
∆(θ∗)δ:δ∈Sk∗,2∩Hk∗

max
t2∈Sk∗,2∩Hk∗

[

∑

i∈[k∗]

E sup
θi∈M4(mi,ni,∆(θ∗)δi,ti)

〈Z, θi〉
]

+

C
√

log |Hk∗ ∩ Sk∗,2|. (VIII.7)

To bound the log cardinality log |Hk∗ ∩Sk∗,2|, note that for
any positive integer k∗, the cardinality |Hk∗ ∩ Sk∗,2| is the
same as the number of k∗ tuples of positive integers summing
up to at most 2k∗. By standard combinatorics, we have

|Hk∗ ∩ Sk∗,2| =
2k∗∑

s=k∗

(
s− 1
k∗ − 1

)
.

Since ( s
k∗−1

)
( s−1
k∗−1

) =
s

s− k∗ + 1
≥ 2k∗ − 1

k∗

for all s ∈ {k∗, . . . , 2k∗ − 1}, it follows that

|Hk∗ ∩ Sk∗,2| ≤ 3
(

2k∗ − 1
k∗ − 1

)
≤ CeCk∗

for some positive absolute constant C.
Using (VIII.5), (VIII.6), (VIII.7) and the above cardinality

bound, we can finally finish the proof by writing

GW(TK(V ∗)(θ∗) ∩Bn,n(1)) =
E sup

θ∈TK(V ∗)(θ∗):‖θ‖≤1
〈Z, θ〉

≤ max
∆(θ∗)δ:δ∈Sk∗,2∩Hk∗

max
t2∈Sk∗,2∩Hk∗

[

∑

i∈[k∗]

E sup
θi∈M4(mi,ni,∆(θ∗)δi,ti)

〈Z, θi〉
]

+ C
√

k∗ .

Operationally, the above lemma reduces the task of upper
bounding the Gaussian width of TK(V ∗)(θ∗) ∩ Bn,n(1) to
upper bounding the Gaussian width of M4 with appropriate
parameters. However, it would be convenient for us to bound
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the Gaussian width when the number of boundaries involved
in the constraint is at most one instead of four. The results in
the next subsection makes this possible.

C. Further Simplification: From Four Boundaries to One

We now proceed to the second step, i.e., reducing the
number of boundaries involved in the constraints from
four to one (or zero). Thus, we will keep on subdividing
each θ|Ri

until we obtain submatrices satisfying constraints
similar to (VIII.2), albeit with the #1-norm of at most one
boundary vector appearing on the right hand side of the
bound on total variation. This is the content of this subsection.

Taking the cue from the the previous subsection, let us
define

Mtop(m′, n′, δ, t) :=

{θ ∈ Rm′×n′
: TV(θ) ≤ ‖θtop‖1 + δ, ‖θ‖ ≤ t}.

We can define Mbottom(m′, n′, δ, t), Mleft(m′, n′, δ, t) and
Mright(m′, n′, δ, t) in a similar fashion. Notice that the con-
straint satisfied by the total variation of the members of
Mright(m′, n′, δ, t) is “almost” identical to (VII.3). By abuse
of notation we will refer to any of the four families of matrices
described above by a generic notation which is M1(m′, n′,
δ, t). The reason behind this is that our ultimate concerns
would be the Gaussian widths of these families which, for
m′ and n′ close enough to each other, are expected to be of
similar order by symmetry. Using a single notation for them
would thus minimize the notational clutter. In a similar vein
we define

M0(m′, n′, δ, t) :=

{θ ∈ Rm′×n′
: TV(θ) ≤ δ, ‖θ‖ ≤ t} .

Having defined the relevant families of matrices, we can
now state our main result for this subsection.

Lemma VIII.4: Fix positive integers m, n and positive
numbers δ, t. Define for each integer j ≥ 1,

δ(j) := δ + 16 (j + 1) t
(√m

n
+

√
n

m

)
. (VIII.8)

Then we have the following bound for a universal constant
C > 0,

GW(M4(m, n, δ, t))

≤ C
( K∑

j=1

(
GW(M1(

m

2j
,

n

2j
, δ(j), t))+

GW(M0(
m

2j
,

n

2j
, δ(j), t)

))
.

Here, to simplify notations, we use m/2j , for m, j ∈ N,
to denote any (but fixed in any given context) integer m′

between m2−(j+1) and m2−j . The similar definition for n
instead of m is denoted by n/2j. K equals the number of
binary divisions of [m] × [n] on both axes that are possible
and equals min{log2 m, log2 n} up to a universal constant.

The above lemma bounds the Gaussian width of M4 in
terms of Gaussian widths of simpler classes of matrices M1

and M0. We devote the next subsection to its proof.

D. Proof of Lemma VIII.4

We need some intermediate lemmas. We start with the
following lemma. The notation convention is same as in
Lemma VIII.4.

Lemma VIII.5: There exists a rectangular partition R
of [m] × [n] with the following property. For any θ ∈
M4(m, n, δ, t), there exists non negative real numbers tR for
every rectangle R ∈ R such that:

• R =
⋃

j∈[K], k∈[2] Rj,k where Rj,k’s are disjoint sets
of rectangles and all the rectangles in Rj,k are of size
mi/2j × ni/2j .

• |Rj,1| ≤ 8 and for any R ∈ Rj,1 we have θ|R ∈
M1(m/2j, n/2j, δ(j), tR).

• |Rj,2| ≤ 4 and for any R ∈ Rj,2 we have θ|R ∈
M0(m/2j, n/2j, δ(j), tR).

•
∑

R∈R t2R = t2

Proof of Lemma VIII.4: The proof of Lemma VIII.4 fol-
lows directly from Lemma VIII.5 and the sub-additivity of the
Gaussian width functional.

The task now is to prove Lemma VIII.5. The proof of
Lemma VIII.5 is divided into two steps where we state and
prove two intermediate lemmas. In the first step we reduce the
number of “active” boundaries, i.e., the number of boundary
vectors involved in the bound on total variation, from four to
two and in the second step we reduce them from two to one
or zero. The main idea of the proofs is essentially same as
that of Lemma VIII.2.

Remark VIII.2: While lemma VIII.5 is true for any integers
m, n, the reader can safely read on as if m, n are powers of
2. The essential aspects of the proof of Lemma VIII.5 all go
through in this case. Writing the general case would make
the notations messy. For the sake of clean exposition, we thus
write the entire proof when m and n are powers of 2. At the
end, we mention the modifications needed when m, n are not
powers of 2.

Four to two boundaries.
In order to state this result let us define for any δ > 0,

Mtopright(m, n, δ, t) := {θ ∈ Rm×n :
TV(θ) ≤ ‖θright‖1 + ‖θtop‖1 + δ, ‖θ‖ ≤ t}.

Similarly we can define the families
Mtopleft(· · · ), Mbottomleft(· · · ) and Mbottomright(· · · ).
Likewise M1(m, n, δ, t), we will refer generically to any of
these four families of matrices by M2(m, n, δ, t). Below we
call a partitioning of a matrix θ ∈ Rm×n as an equal dyadic
partitioning if each submatrix lies in Rm/2×n/2 and is formed
by adjacent rows and columns of θ as θtopleft, θtopright,
θbottomleft and θbottomright in the obvious order.

Lemma VIII.6: Take any θ ∈M4(m, n, δ, t). Let us denote
the four submatrices obtained by an equal dyadic partitioning
of θ. Then the submatrix θab, where a ∈ {top, bottom} and
b ∈ {left, right}, itself satisfies

TV(θab) ≤ ‖θab
a ‖1 + ‖θab

b ‖1 + δ + 16 t
(√m

n
+

√
n

m

)
.

In words, if a matrix θ ∈ M4(m, n, δ, t) is dyadically
partitioned into four equal sized submatrices, each of these
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four submatrices lies in M2(m/2, n/2, δ′, t) where δ′ :=
δ + 16 t(

√
m
n +

√
n
m ); furthermore the boundaries that are

active for these submatrices are the ones that they share with θ.
Proof: Since ‖θ‖2 ≤ t, there exists 1 ≤ i ≤ m/2 < i′ ≤

m and 1 ≤ j ≤ n/2 < j′ ≤ n such that

max{‖θ[i, ]‖ , ‖θ[i′, ]‖} ≤ 2t√
m

max{‖θ[, j]‖, ‖θ[, j′]‖} ≤ 2t√
n

.

The previous display and the Cauchy-Schwarz inequality
together imply

max{‖θ[i, ]‖1, ‖θ[i′, ]‖1} ≤ 2t

√
n

m

max{‖θ[ , j]‖1, ‖θ[ , j′]‖1} ≤ 2t

√
m

n
. (VIII.9)

Now consider the submatrix θtopleft for which we have

TVrow(θtopleft) ≥ ‖θtopleft[ , 1]‖1 − ‖θtopleft[ , j]‖1 =

‖θtopleft
left ‖1 − ‖θ[1 : m/2 , j]‖1 ,

where in the last step we used the fact that θtopleft[ , j] =
θ[1 : m/2, j]. A similar argument gives us

TVcol(θtopleft) ≥ ‖θtopleft
top ‖1 − ‖θ[i , 1 : n/2 ]‖1 .

Analogous lower bounds for TVrow and TVcol of the other
three submatrices can be derived involving the #1 norms of
appropriate boundaries and (partial) rows or columns of θ.
Adding all these together and using (VIII.9), we obtain

∑

a∈{top,bottom},
b∈{left,right}

(TVrow(θab) + TVcol(θab)) ≥

∑

a∈{top,bottom},
b∈{left,right}

(‖θab
a ‖1 + ‖θab

b ‖1)

− 16 t
(√m

n
+

√
n

m

)
.

On the other hand, since θ ∈M4(m, n, δ, t) we have
∑

a∈{top,bottom},
b∈{left,right}

(TVrow(θab) + TVcol(θab)) ≤

TV(θ) ≤
∑

c∈{top,bottom,left,right}

‖θc‖1 + δ

=
∑

a∈{top,bottom},
b∈{left,right}

(‖θab
a ‖1 + ‖θab

b ‖1) + δ .

An application of Lemma A.1 now finishes the proof of the
lemma from the previous two displays.

Two to one or zero boundary.
Let us start by stating the following lemma which one can

think of as a version of Lemma VIII.6 applied to an element
of M2(m, n, δ, t). The proof is very similar and we leave it
to the reader to verify.

Lemma VIII.7: Let θ ∈ Mab(m, n, δ, t) for some a ∈
{top, bottom} and b ∈ {left, right}. We can partition θ into

equal sized four submatrices θtopleft, θtopright, θbottomleft and
θbottomright in the obvious manner such that the submatrix
θcd, where c ∈ {top, bottom} and d ∈ {left, right}, satisfies

TV(θcd) ≤ ‖θcd
c ‖1I{a = c} + ‖θcd

d ‖1I{b =

d} + δ + 16 t
(√m

n
+

√
n

m

)
.

In words, if a matrix θ ∈ M2(m, n, δ, t) is dyadically
partitioned into four equal sized submatrices, then each of
these four submatrices has at most two active boundaries and
a wiggle room of at most δ + 16t(

√
m
n +

√
n
m ); furthermore

the active boundaries are the ones that they share with one of
the active boundaries of θ.

We are now ready to conclude the proof of Lemma VIII.5.
Proof of Lemma VIII.5: Recall that we are assuming

m, n are powers of 2 for simplicity of exposition.
Step 0: Partition [m] × [n] dyadically into four equal

rectangles so that for any such rectangle S, θ|S ∈
M2(m/2, n/2, δ(0),

∥∥θ|S
∥∥) by Lemma VIII.6 where

δ(0) = δ + 16 t
(√m

n
+

√
n

m

)
.

Step 1: Let S (there are four of them) be a generic rectan-
gle obtained from the previous step. Using Lemma VIII.7,
we now partition θ|S into four equal parts (rectangles).
We then get two matrices in M1(m/4, n/4, δ(1), t), one
matrix in M0(m/4, n/4, δ(1), t) and the remaining one from
M2(m/4, n/4, δ(1), t). Here,

δ(1) = δ(0) + 16 t(
√

m

n
+

√
n

m
) = δ + 32 t(

√
m

n
+

√
n

m
) .

Steps j≥2: From the last step we get exactly one matrix in
M2(m/4, n/4, δ(1), t), for each of the 4 rectangles S. For each
S, we now recursively use Lemma VIII.7 by partitioning this
matrix again into four exactly equal parts in a dyadic fashion
and continue the same procedure with the matrix obtained in
each step with two active boundaries until we end up with
matrices only with 0 or 1 active boundary. Observe that in the
very last step we arrive at a submatrix with exactly one row
or column in place of the one with two active boundaries.

For each j ≥ 1, define Rj,1 as the collection of rectangles
R obtained in step j such that θ|R has exactly 1 active
boundary. From Lemma VIII.7, we know that there are exactly
two such rectangles for any given S (from step 0) and
therefore |Rj,1| ≤ 8. For any j ≥ 1, and any rectangle
R ∈ Rj,1, repeated application of Lemma VIII.7 yields that
θ|R ∈M1(m/2j , n/2j, δ(j),

∥∥θ|R
∥∥) where

δ(j) = δ + 16(j + 1) t(
√

m

n
+

√
n

m
).

Now defining Rj,2 as the collection of rectangles R obtained
in step j such that θ|R has no active boundary, we can deduce
in a similar way that |Rj,2| ≤ 4. Also for such rectangles
R and j ≥ 1 we have θ|R ∈ M0(m/2j, n/2j, δ(j),

∥∥θ|R
∥∥).

Finally, notice that
∑

j≥1

∑

R∈Rj,1∪Rj,2

∥∥θ|R
∥∥2 = ‖θ‖2 ≤ t2 .
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Thus the collection of rectangles {Rj,k : j ≥ 1, k ∈ [2]}
satisfies all the conditions of Lemma VIII.5.

Remark VIII.3: For the statement of Lemma VIII.4 to hold,
the important thing in the proof of Lemma VIII.5 is that in
every step 1 ≤ j ≤ K , the aspect ratio of the submatrices does
not change significantly. The reader can check that at every
step, both the number of rows and columns halve, thus keeping
the aspect ratio constant. At every step, the dimensions of the
submatrices halve and thus decrease geometrically, while the
allowable wiggle room increases additively by the factor (does
not change with j) 16 t(

√
m
n +

√
n
m ).

Remark VIII.4: Let us discuss the case when m, n are not
necessarily powers of 2 in the proof of Lemma VIII.5. The
first step of reducing the number of active boundaries from
four to two, by applying Lemma VIII.6, can be carried out in
the same way by splitting at the point /m/20 and /n/20. Next,
we come to the stage when we are applying Lemma VIII.7
to reduce the number of active boundaries from two to one,
on the four submatrices obtained from the previous step. Let
us denote the dimensions of these 4 submatrices generically by
m′, n′. Recall, in the first step of subdivision, we get exactly
one submatrix with 2 active boundaries. The others have 1 or
0 active boundaries. At this step, we can subdivide such that
the submatrix with two active boundaries has dimensions
which are exactly powers of 2. For instance, we can split
at the unique power of 2 between m′/4 and m′/2 on one
dimension and do the exact same thing for the other dimension.
Once we have this submatrix with two active boundaries to
have dimensions which are exactly powers of 2, we can carry
out the rest of the steps as in the proof of Lemma VIII.5. It can
be checked that, in this case, all the inequalities we deduce
while proving Lemma VIII.4 goes through with the possible
mutiplication of a universal constant.

E. Upper Bounds on Gaussian Widths and the Proof of
Proposition II.4

Now that we have reduced the problem of bounding
the gaussian width of TK(V ∗)(θ∗) ∩ Bn,n(1) to that of
M0(m, n, δ, t) and M1(m, n, δ, t), we need to obtain upper
bounds on these quantities in order to conclude the proof of
Theorem II.2. Our next lemma provides an upper bound on the
gaussian width of M0(m, n, δ, t) which we henceforth denote
as GW0(m, n, δ, t).

Lemma VIII.8: Fix δ > 0 and t ∈ (0, 1]. For positive
integers m and n such that max{m/n, n/m} ≤ c for some
c > 0, we have the following upper bound on the Gaussian
width:

GW0(m, n, δ, t) ≤

C
(
log

( tn

δ
∨ e

)
δ(log en)3/2 + t(log en)1/2

)

where C is a constant depending only on c.
Proof: Since m and n are of the same order, the bound

computed in (V.2) from Section V remains valid in this case.

In our next proposition, we provide an upper bound on
GW1(m, n, δ, t), i.e., the gaussian width of M1(m, n, δ, t).

This is the main result in this subsection and one of the main
technical contributions of this paper.

Proposition VIII.9: Fix δ ∈ (0, n] and t ∈ (0, 1]. Then for
positive integers m, n satisfying the conditions of the previous
lemma, we have the following upper bound on the Gaussian
width:

GW1(m, n, δ, t) ≤ C(log en)9/2n1/4
√

(t + δ)2↓+

C
(
(log en)4t + n−9

)
. (VIII.10)

Here x2↓ := x+x2 and C > 0 is a constant depending solely
on c.

We will prove the above proposition slightly later.
Lemma VIII.8 and Proposition VIII.9 together with
Lemma VIII.4 now imply (with GW4(m, n, δ, t) denoting the
gaussian width of M4(m, n, δ, t))

Lemma VIII.10: Under the same condition as in the previous
proposition, we have

GW4(m, n, δ, t) ≤ C(log en)9/2n1/4(
√

t +
√

δ + δ)
+ C

(
(log en)5t + n−9 log en

)

where C > 0 is a universal constant.
The proof just involves collecting all the relevant terms and

adding them up. The reader can safely skip the proof in the
first reading.

Proof: In this proof, we write a ! b to mean a ≤ C b for
some positive constant C — depending at most on the aspect
ratio c — whose exact value can change from line to line.
Recall that Lemma VIII.4 implies for K ! log n,

GW4(m, n, δ, t) !
K∑

j=1

[
GW1(

m

2j
,

n

2j
, δ(j), t) + GW0(

m

2j
,

n

2j
, δ(j), t)

]
.

First we compute, in view of Proposition VIII.9,

K∑

j=1

GW1(
m

2j
,

n

2j
, δ(j), t) !

(log en)9/2
K∑

j=1

(
n

2j
)1/4

(√
t + δ(j) + t + δ(j)

)

+ (log en)5t + n−9 log en

! (log en)9/2
K∑

j=1

(
n

2j
)1/4

(√
t +

√
δ(j) + t + δ(j)

)

+ (log en)5t + n−9 log n ! (log en)9/2

K∑

j=1

(
n

2j
)1/4

(√
t +

√
δ + jt + t + δ + jt

)

+ (log n)5t + n−9 log en

! (log en)9/2n1/4
(√

t +
√

δ + δ
)

+ (log en)5t + n−9 log en

where we have repeatedly used
√

a + b ≤
√

a +
√

b and in
the last inequality we have summed up the geometric series.



4080 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

On the other hand, Lemma VIII.8 implies

K∑

j=1

GW0(
m

2j
,

n

2j
, δ(j), t) !

(log n)5/2
K∑

j=1

(δ + jt) ! δ(log en)7/2 + (log en)9/2t .

We can now deduce the lemma from the last two displays.
With the help of the above lemma we can now conclude

the proof of Proposition II.4.
Proof of Proposition II.4: Throughout this proof we will

use the notation C to denote some positive constant —
depending at most on the aspect ratio c like in the previous
proof — whose exact value may change from one line to the
next. Also we will use “a ! b” to mean “a ! Cb”. Recall that
by Lemma VIII.3, GW(TK(V ∗)(θ∗) ∩Bn,n(1)) is at most

max
∆(θ∗)δ:δ∈Sk∗,2∩Hk∗

max
t2∈Sk∗,2∩Hk∗

∑

i∈[k∗]

[

GW4(mi, ni, ∆(θ∗)δi, ti)
]
+ C

√
k∗. (VIII.11)

Now we plug in the bound from Lemma VIII.10 to obtain
a bound on the sum inside the two maximums in the above
display:

∑

i∈[k∗]

GW4(mi, ni, ∆(θ∗)δi, ti)

! (log n)9/2
∑

i∈[k∗]

n1/4
i

(√
ti + (∆(θ∗)δi)1/2 + ∆(θ∗)δi

)

+ (log n)5
∑

i∈[k∗]

ti + k∗n−9 log n .

Since the aspect ratios of each of the rectangular level sets of
θ∗ are bounded by a constant, we have

∑k∗

i=1 ni
2 ! n2. This

can be seen as follows:
k∗∑

i=1

n2
i !

k∗∑

i=1

nimi ! mn ! n2.

Therefore, we can repeatedly apply the Cauchy-Schwarz
inequality to deduce for δ, t2 ∈ Sk∗,2,

k∗∑

i=1

n1/4
i

√
ti ! (k∗)5/8n1/4 ,

k∗∑

i=1

n1/4
i δ1/2

i ! (k∗)3/8n1/4 ,

k∗∑

i=1

n1/4
i δi ! n1/4 and

k∗∑

i=1

ti !
√

k∗ .

Also because of constant aspect ratio, we have

∆(θ∗) =

√√√√
k∗∑

i=1

2
(mi

ni
+

ni

mi

)
!
√

k∗ .

Combining the last two displays we notice that
(log n)9/2(k∗)5/8n1/4 emerges as the dominant term

and hence
∑

i∈[k∗]

GW4(mi, ni, ∆(θ∗)δi, ti) !

(log n)9/2(k∗)5/8n1/4 .

Together with (VIII.11) this finishes the proof.
All that remains towards the proof of Proposition II.4 is

Proposition VIII.9. The proof of this proposition is fairly
involved. The rest of this section is devoted to its proof.

F. Proof of Proposition VIII.9

By symmetry, it is enough to bound
GW(Mright(m, n, δ, t)). To this end, let us introduce a
new class of matrices as follows:

A(m, n, u, v, t) :=
{θ ∈ Rm×n : TVrow(θ) ≤ u, TVcol(θ) ≤ v, ‖θ‖ ≤ t}

where, let us recall, that the total variation TVrow(θ) along
rows is defined as

TVrow(θ) :=
∑

i∈[m]

∑

j∈[n−1]

|θ[i, j + 1]− θ[i, j]|

and TVcol(θ) := TVrow(θT ).
The following lemma gives an upper bound of GW(Mright)

in terms of the Gaussian widths of A with appropriate para-
meters.

Lemma VIII.11: Let k denote the smallest integer satisfying
(1 + 2 + . . . 2k) ≥ n. Then we have the following inequality:

GWright(m, n, δ, t) ≤
∑

j∈[k]

GW(A(m, nj , 2t
√

m/nj + δ, t
√

m/n + δ, t)) ,

where nj = 2j for j ∈ [k − 1] and n =
∑

j∈[k] nj .
Proof: The proof proceeds by dividing the n columns

into blocks of geometrically increasing length and showing
that for any θ ∈ Mright(m, n, δ, t) the submatrices defined
by the blocks live in A with appropriate parameters. Let
θ ∈ Mright(m, n, δ, t) and subdivide θ into submatrices
[θ(k)|θ(k−1)| · · ·|θ(1)] where θ(j) has nj many columns. There-
fore it suffices to prove that

θ(j) ∈ A(m, nj , t
√

m/nj−1 + δ, t
√

m/n + δ, t)

for all j ∈ [k] as
√

nj/nj−1 < 2. Since
∥∥θ(j)

∥∥ ≤ ‖θ‖ ≤ t,
we only need to verify the required bounds on TVcol(θ(j))
and TVrow(θ(j)).

Verifying the bound on TVcol(θ(j)) . We will prove the
stronger statement TVcol(θ) ≤ t

√
m/n + δ. Since ‖θ‖ ≤ t

and ‖θ‖2 =
∑

)∈[n] ‖θ[ , #]‖2, it follows that ‖θ[ , #∗]‖ ≤
t/
√

n for some #∗ ∈ [n] and hence ‖θ[ , #∗]‖1 ≤ t
√

m/n
by the Cauchy-Schwartz inequality. Now using the condi-
tion that TV(θ) ≤ ‖θ[ , n]‖1 + δ (from the definition of
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Mright(m, n, δ, t)), we get

‖θ[ , n]‖1 + δ − TVcol(θ) ≥ TV(θ) − TVcol(θ) =
TVrow(θ) ≥ ‖θ[ , n]− θ[ , #∗]‖1
≥ ‖θ[ , n]‖1 − ‖θ[ , #∗]‖1 ≥ ‖θ[ , n]‖1 − t

√
m/n .

(VIII.12)

Thus TVcol(θ) ≤ δ + t
√

m/n.

Verifying the bound on TVrow(θ(j)) . Let us start with
θ(1). By the Cauchy-Schwartz inequality, ‖θ[ , n]‖1 ≤√

m ‖θ[ , n]‖2 ≤ t
√

m and thus

TVrow(θ(1)) ≤ TV(θ) ≤ ‖θ[ , n]‖1 ≤ t
√

m .

Next consider θ(j) for some j ≥ 2. Since
∥∥θ(j−1)

∥∥2

2
≤ t and it

has nj−1 columns, there is a column of θ(j−1) whose #2-norm
is at most t/

√
nj−1. Suppose this column is θ[ , a]. Then a

calculation similar to (VIII.12) yields,

‖θ[ , n]‖1 + δ ≥ TV(θ) ≥ TVrow(θ) ≥

TVrow([θ(j−1)|θ(j−2)| · · ·|θ(1)]) + TVrow(θ(j))

≥ ‖θ[ , n]− θ[ , a]‖1 + TVrow(θ(j)) ≥

‖θ[ , n]‖1 − ‖θ[ , a]‖1 + TVrow(θ(j)).

But this implies, along with the Cauchy-Schwartz inequality,
that

TVrow(θ(j)) ≤ ‖θ[ , a]‖1 + δ ≤
√

m ‖θ[ , a]‖2 + δ ≤ t
√

m/nj + δ .

It therefore suffices, in view of the previous lemma,
to bound the gaussian width of each A(m, nj , 2t

√
m/nj +

δ, t
√

m/n + δ, t) from above in order to bound
GWright(m, n, δ, t). Defining a =

√
m/nj , we can write

A(m, nj , 2t
√

m/nj + δ, t
√

m/n + δ, t) =

A(m, m/a2, 2ta + δ, t
√

m/n + δ, t) =: Aa .

Notice that we suppressed the dependence on m, n, δ and t
which henceforth refer to the corresponding parameters in
Proposition VIII.9.

In our next result, which is crucial for the proof of
Proposition VIII.9, we give a subspace cover for the set Aa

corresponding to any distance τ between 1/m and 1.
Lemma VIII.12: Let t ≤ 1, τ ∈ [1/m, 1] and a ≥ c be such

that m/a2 is a positive integer between 1 and n. Here c is
from the statement of Proposition VIII.9. Then there exists a
τ subspace cover Sτ of A, depending on m, n, a, δ and t in
addition to τ , and a constant C > 0 depending solely on c
such that

max(log |Sτ |, max
S∈Sτ

dim(S)) ≤

C(log(em))3Lm

(
1 +
√

mCm,n,δ,t

τ2

)

where L(x) := x log(e log(em)2 x) and

Cm,n,δ,t := log(em)
(
t

√
m

n
+ t + δ

)2↓

(recall that x2↓ := x + x2).
Remark VIII.5: Notice that L(x) is linear in x ignoring

the log factors. Thus it is helpful to read the above bound
as scaling like

√
m

τ2 up to log factors and the lower order
terms. This

√
m-scaling is crucial for us in order to derive

the 1/4 exponent of n in Proposition VIII.9 and subsequently
the correct exponent of n in Theorem II.2.

Remark VIII.6: The reason for assuming a polynomial
lower bound (in m) on τ is that we want log(1/τ) to be at
most O(log m). Hence the bounds of Lemma VIII.12 remain
valid, with appropriate changes in C, as long as τ ≥ 1/mc

for some universal constant c > 0.
With Lemma VIII.12 we can now finish the proof of

Proposition VIII.9.
Proof of Proposition VIII.9: An important feature of the

bounds in Lemma VIII.12 is that it does not depend on a.
Hence an application of Proposition IV.1 would yield the same
bound on each Gaussian width appearing inside the summation
in the statement of Lemma VIII.11. From this we can deduce
Proposition VIII.9 in a straightforward manner. The detailed
computation is given below. In the remainder of the proof we
will use C to denote any positive constant depending at most
on c whose exact value may change from one line to the next.

Applying Proposition IV.1 with k0 = /− log2 2t0 and k1 =
−1log2 ν2 where ν = t/m∨m−10 and using Lemma VIII.12
subsequently to bound the relevant terms (see Remark VIII.5),
we get

GW(Aa) ≤

C
k1∑

k=k0+1

2−k(log(em))1.5
√
Lm

(
1 + 22k

√
m Cm,n,δ,t

)

+
√

mn ν .

Now recalling the definition of Lm(·), we can write

Lm

(
1 + 22k√mCm,n,δ,t

)
=

(
1+22k√mCm,n,δ,t

)(
1+log log(em)2+log 22k√mCm,n,δ,t

)

≤
(
1+22k√mCm,n,δ,t

)(
1+log log(em)2+log(m21Cm,n,δ,t)

)

≤ C log(em(1 + δ)) (1 + 22k√mCm,n,δ,t)

where in the last inequality we used the fact that Cm,n,δ,t ≤
C(1 + δ) log(em) since t ≤ 1 and m/n is assumed to be
bounded by a constant. The last two displays therefore imply

GW(Aa) ≤ C(log(em))1.5
√

log(em(1 + δ))

(t + m1/4 log(em)
√

Cm,n,δ,t )

+
√

tn/m +
√

n/m20

≤ C(log en)3.5n1/4
√

(t + δ)2↓+

C(log en)3 t + Cn−9.5

where in the final step we used the fact that δ ∈ (0, n] as well
as max{m/n, n/m} ≤ c. The proposition now follows from
summing this bound over k as in Lemma VIII.11.
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The thing that remains to be done is the proof of
Lemma VIII.12. An important ingredient is the following
weaker analogue for the general case.

Lemma VIII.13: Let k, m, n be positive integers with 1 ≤
k ≤ m (not to be confused with the parameters in Lem-
mata VIII.11 – VIII.12). Also let t ≤ 1 and u, v, τ > 0.
Then there exists a τ subspace cover Sτ of A(m, n, u, v, t),
depending on m, n, k, u, v and t in addition to τ , and a
universal constant C > 0 such that

max(log |Sτ |, max
S∈Sτ

dim(S)) ≤

C
(
Jk +

√
Jk

v
√

m

τ
√

k

)
log

(
emJk + em

√
Jk

v
√

m

τ
√

k

)

when k < m, whereas for k = m

max(log |Sτ |, max
S∈Sτ

dim(S)) ≤ CJk log(emJk).

Here

Jk := C log(en)
(
k +

u
√

nk

τ

)
.

Remark VIII.7: Lemma VIII.13, by itself, is not sufficient
to prove Lemma VIII.12. To see this, let us plug in n = m/a2

and u = 2ta in the expression for Jk. One can easily check
that while this makes Jk free from a, the principal terms in
the bounds on the dimension and cardinality do not attain the
required

√
m-scaling for any choice of k.

In the course of proving Lemma VIII.13, we will repeatedly
use a subdivision scheme based on the value of either TVrow

or TVcol. We will also use it in the proof of Lemma VIII.12
and therefore describe it here in a general setting. Let us point
out that a very similar scheme was described in Section V-A
in the context of proving Theorem II.1.

A greedy partitioning scheme: Consider a set S and
a function T : ∪n∈NSn <→ R≥0 satisfying T (AB) ≥
T (A) + T (B) for all A, B ∈ ∪n∈NSn where AB denotes
the concatenation of A and B. Also suppose for any singleton
s ∈ S, the function T satisfies T (s) = 0. To relate this to
a concrete example, the reader may consider the case where
S = Rm so that Sn ≡ Rm×n and T is the function TVrow.
Now for any ε > 0, the (T, ε) scheme subdivides an element
U of ∪n∈NSn as U1U2 · · ·UK such that T (Ui) ≤ ε for all
i ∈ [K]. This is achieved in several steps of binary division
as follows. In the first step, we check whether T (U) ≤ ε.
If so, then stop and output U. Else, divide U as U ′

1U
′
2 into

two almost equal parts. This means |U ′
1| = /|U |/20 and

|U ′
2| = |U ′| − |U ′

1|. In each step, we have a representation
of U of the form U ′

1U
′
2 · · ·U ′

K′ . We consider each i ∈ [K ′]
such that T (U ′

i) > ε and subdivide U ′
i into two almost equal

parts. We repeat this procedure until each part U ′ in the current
representation satisfies T (U ′) ≤ ε.

Suppose that |U | = n. The subdivision of U produced by the
(T, ε) scheme corresponds to a partition of [n] into contiguous
blocks, say, PU ;T,ε. Let |PU ;T,ε| denote the number of blocks
of the partition PU ;T,ε. Now for t > 0, let P(t, n, ε, T ) denote
the set of partitions {PU ;T,ε : U ∈ Sn, T (C) ≤ t}. A key
ingredient in the proof of Lemma VIII.13 (and subsequently
Lemma VIII.12) is the following universal upper bound on the
cardinality of PU ;T,ε.

Lemma VIII.14: Then for the (T, ε) division scheme we
have

max
P∈P(t,n,ε,T )

|PU ;T,ε| ≤ log2(4n)(1 +
t

ε
) .

The proof of Lemma VIII.14 is very similar to that of
Lemma V.4. Nevertheless, for the sake of completeness,
we provide its proof in the appendix (see Section A-B).
We also defer the proof of Lemma VIII.13 to the end of
this subsection and finish the proof of Lemma VIII.12
assuming it.

Proof of Lemma VIII.12: Take any θ ∈ Aa and fix ε ∈
(0, 1) whose precise value based on τ would be chosen later.
Let us denote the m′ × n′ two dimensional grid (graph) by
Lm′,n′ and subdivide Lm,m/a2 as

Lm,m/a2 =





R1

R2
...

RK




(VIII.13)

where TVcol(θ|Ri
) ≤ ε for all i ∈ [K] and K ≤ log2(4m)(1+

TVcol(θ)ε−1). We achieve this by applying the (TVcol, ε)
division scheme to the rows of θ (see Lemma VIII.14).
Denoting the set of all possible partitions of Lm,m/a2 obtained
in this manner by P , we deduce

|P| ≤ mlog2(4m)(1+ (t
m
n +δ)ε−1) . (VIII.14)

Corresponding to the partition P = P (θ) in (VIII.13), let
SP,row denote the linear subspace of Rm×m/a2

comprising
only matrices having identical rows in each Ri. It is clear that
the orthogonal projection of θ onto SP,row is given by

θ̂SP,row = θ̃ =





θ̃1

θ̃2
...

θ̃K





where each row of θ̃i := θ̃|Ri
is equal to the average row of

θRi . By repeated application of Lemma A.3 (stated and proved
in the appendix), we obtain

dist(θ, SP,row) = ‖θ − θ̃‖2 ≤
√

mε . (VIII.15)

Also by standard properties of orthogonal projections, it fol-
lows that ‖θ̃‖2 ≤ ‖θ‖2 ≤ t. We further claim that θ̃ ∈
Aa ≡ A(m, m

a2 , 2 ta + δ, t
√

m
n + δ, t). Hence to establish

this claim we only need to show that TVrow(θ̃) ≤ TVrow(θ)
and TVcol(θ̃) ≤ TVcol(θ). We can obtain the first inequality
as follows:

TVrow(θ̃) =
∑

i∈[K]

nrow(Ri)
∑

)∈[ncol(Ri)−1]

|θ̃i[1, # + 1]− θ̃i[1, #]|

=
∑

i∈[K]

nrow(Ri)
∑

)∈[ncol(Ri)−1]

∣∣∣

nrow(Ri)−1
∑

i′∈[nrow(Ri)]

(
θ̃i[i′, # + 1]− θ̃i[i′, #]

)∣∣∣
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≤
∑

i∈[K]

∑

)∈[ncol(Ri)−1]

∑

i′∈[nrow(Ri)]

|θ̃i[i′, # + 1]− θ̃i[i′, #]|

= TVrow(θ̃) . (VIII.16)

For the second inequality we just apply Lemma A.4 (stated
and proved in the appendix section) to each column of θ.

In the rest of the article we call a subset of Lm′×n′ a subgrid
if it is a product of subsets (as opposed to only subintervals)
of [1, m′]∩N and [1, n′]∩N respectively. We will now regroup
Ri’s into several subgrids. For any positive integer # such that
2) ≤ 2m, define the set S) :=

{
i ∈ [K] : 2)−1 ≤ nrow(Ri) <

2)
}

and let B) be the vector which is the sorted version of
S). Now consider the subgrid of Lm,m/a2

R) :=





RB%(1)

RB%(2)
...

RB%(K%)





where K) := |B)|. In words, R) comprises the rectangles Ri,
in order, whose number of rows lies between 2)−1 and 2).
It is clear that R1, R2, . . . , RL are disjoint subgrids of Lm,n

where L ≤ log2(2 m). Let us also denote θ̃|R% by θ̃). Notice
that if the matrices θ̂1, θ̂2, . . . , θ̂L satisfy ‖θ̃) − θ̂)‖ ≤

√
mε

for all # ∈ [L] and θ̂ ∈ Rm×m/a2
is such that θ̂|R% = θ̂) for

all # ∈ [L], then we have

‖θ − θ̂‖ ≤ ‖θ − θ̃‖+ ‖θ̃ − θ̂‖
(VIII.15)
≤

√
mε2 +

√
m log2(2m)ε2 ≤

√
2 m log2(4m) ε . (VIII.17)

We now choose ε by requiring this approximation error to
be τ , i.e., by setting ε = τ/

√
2 m log2(4m) (notice that

1/4m2 ≤ ε ≤ 1/
√

m when τ ∈ [1/m, 1]). Therefore if S)
τ,P

is a
√

mε subspace cover for the family A∗
),P (say) of matrices

θ̃) corresponding to P ∈ P and # ∈ [L], we can immediately
obtain a τ subspace cover Sτ for Aa satisfying:

max
S∈Sτ

dim(S) ≤ max
P∈P

∑

)∈[L]

max
S∈S%

τ,P

dim(S) (VIII.18)

and

|Sτ | ≤ |P| . max
P∈P

∏

)∈[L]

|S)
τ,P |. (VIII.19)

Now fix a P ∈ P and let Θ) denote the matrix formed by
the first (or any) rows of θ̃B%(1), θ̃B%(2), . . . , θ̃B%(k%) in order,
i.e., the rows of θ̃) that are potentially distinct. We claim that

Θ) ∈ A
(
K),

m

a2
,

2 ta + δ

2)−1
, t

√
m

n
+ δ, t

)

=: Aa,) (= A),P ) . (VIII.20)

The constraints on the number of rows and columns of Θ)

as well as ‖Θ)‖ are clear. For the remaining constraints first
observe that θ̃) ∈ A(nrow(R)), m

a2 , 2 ta + δ, t
√

m
n + δ, t)

(the only non-obvious part is the bound on TVcol(θ̃)) which
follows from the triangle inequality). From the definition of

Θ) it is immediate that

TVcol(Θ)) = TVcol(θ̃)) and

TVrow(Θ)) ≤ TVrow(θ̃))
mini∈[K%] nrow(RB%(i))

.

Therefore the bounds on TVcol(Θ)) and TVrow(Θ)) fol-
low from the similar bounds for θ̃) and the fact that
nrow(RB%(i)) ≥ 2)−1 for each i ∈ [K)].

Further notice that since nrow(RB%(i)) < 2) for each
i ∈ [K)], we have ‖θ̃) − θ̂)‖ ≤ 2)/2‖Θ) − Θ̂)‖ where θ̂)

comprises repetitions of the rows of Θ̂) in the same way
as θ̃) comprises repetitions of the rows of Θ̃). Therefore
any 2−)/2√mε subspace cover S)

ε for Aa,) induces a
√

mε
subspace cover S)

τ,P for A∗
),P . Our next claim is about a

uniform upper bound on maxS∈S%
ε
dim(S) and |S)

ε | for some
particular choice of S)

ε and hence that of maxS∈S%
τ,P

dim(S)
and |S)

τ,P | as well.
Claim VIII.2: There is a choice of S)

ε for any # ∈ N>0

and ε ∈ [1/m2, 1/
√

m] such that for some universal constant
C > 0,

max(log |S)
ε |, max

S∈S%
ε

dim(S)) ≤

C log(em)2Lm

(
1 +

1√
mε2

(
t

√
m

n
+ t + δ

)2↓)

where we recall from the statement of Lemma VIII.12 that
L(x) = x log(e log(em)2 x) and x2↓ = x + x2.

Claim VIII.2 follows directly from Lemma VIII.13 when
we choose k in an appropriate manner. The complete proof
is given after the current proof.

Concluding the proof. In the remainder of the proof we
will use C to denote any positive, universal constant whose
exact value may change from one line to the next. Using
Claim VIII.2 let us first bound

max
P∈P

∑

)≤log2 2 m

max(log |S)
τ,P |, max

S∈S%
τ,P

dim(S)) ≤

C(log(em))3Lm

(
1 +

1√
mε2

(
t

√
m

n
+ t + δ

)2↓)

≤ C(log(em))3Lm

(
1 +
√

m log(em)
τ2

(
t

√
m

n
+ t + δ

)2↓)

= C(log(em))3Lm

(
1 +
√

mCm,n,δ,t

τ2

)

where we used the fact that 1√
mε2

=
√

m log2(4m)
τ2 (recall the

choice of ε after (VIII.17) and also the definition of Cm,n,δ,t

from the statement of Lemma VIII.12). On the other hand,
since ε ≤ 1/

√
m, we can bound log |P| in view of (VIII.14)

as

log2(4m)(1 + (t
√

m
n + δ)

1
ε
) log m ≤

log2(4m)(1 + (t
√

m
n + δ)

1√
mε2

) log m

≤ C log(em)2
(
1 +
√

mCm,n,δ,t

τ2

)
.
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Since L(x) ≥ x for all x ≥ 1, we deduce by combining the
previous two displays and subsequently plugging them into
(VIII.18)–(VIII.19):

max(log |Sτ |, max
S∈Sτ

dim(S)) ≤

C(log(em))3Lm

(
1 +
√

mCm,n,δ,t

τ2

)
.

Proof of Claim VIII.2: The “main” contribution in
the bounds on log |S)

ε | and maxS∈S%
ε
dim(S) given by

Lemma VIII.13 comes from

J∗
k,) :=

(
Jk,) +

√
Jk,)

(t
√

m
n + δ)

√
K)

2−)/2
√

mε
√

k
I{k < K)}

)

where

Jk,) = C log(em/a2)
(
k +

2−)(2ta + δ)
√

mk

a2−)/2
√

mε

) a≥c
≤

C log(em)
(
k +

2−)(2t + δ)
√

mk

2−)/2
√

mε

)
(VIII.21)

(recall the statement of Lemma VIII.13 and (VIII.20)). There-
fore, as already mentioned in the proof of Lemma VIII.12,
we will apply Lemma VIII.13 for some k ∈ [K)] so that J∗

k,)
has a small value. In the rest of the proof we will use C to
denote an unspecified but universal positive constant whose
value may change from one instant to the next. Using the
simple fact

√
x + y ≤

√
x+√y, we can bound J∗

k,) as follows:

J∗
k,) ≤ Jk,) + I{k < K)}Cε,k,) , (VIII.22)

where

Cε,k,) := C
√

log(em)(t
√

m

n
+ δ)

√
K)

( 1
2−)/2

√
mε

+
2−)/2

√
(2t + δ)m1/4

(2−)/2
√

mε)3/2k1/4

)
. (VIII.23)

Now let us consider two cases separately based on whether√
K)2−)/2√mε is smaller or larger than 1. Recall that

2−)/2√mε is the covering radius in question, and the condition
above is equivalent to K) being smaller or larger than the
inverse of the covering radius squared.

Case 1: K) ≤ 2%

mε2 . In this case we choose k = K) so that
Lemma VIII.13 and (VIII.21) together give us

max(log |S)
ε |, max

S∈S%
ε

dim(S)) ≤ CJk,) log(eK)Jk,))

(VIII.24)
where

Jk,) ≤ C log(em)
(
K) +

2−)(2t + δ)
√

mK)

2−)/2
√

mε

)
. (VIII.25)

Now using

K) ≤ K ≤ C log(em)
(
1 + (t

√
m

n
+ δ)ε−1

)
(VIII.26)

for the first term inside the parenthesis in (VIII.25) (recall the
definition of K) and K from the proof of Lemma VIII.12)
and using K) ≤ 2%

mε2 for the second, we get

Jk,) ≤ C(log(em))2+

C(log(em))2
(
t

√
m

n
+ t + δ

)(1
ε

+
1√
mε2

)
.

Further noticing that ε ≤ 1/
√

m, so that 1
ε ≤

1√
mε2

, we obtain

Jk,) ≤ C(log(em))2
(
1+

1√
mε2

(
t

√
m

n
+t+δ

)2↓
)

(VIII.27)

(recall that x2↓ = x + x2). On the other hand we have K) =
k ≤ Jk,) for C > 1. Plugging these bounds into the right
hand side of (VIII.24) and rewriting the expression in terms
of Lm(x) = x log(e log(em)2 x) we obtain

max(log |S)
ε |, max

S∈S%
ε

dim(S)) ≤

C(log(em))2Lm

(
1 +

1√
mε2

(
t

√
m

n
+ t + δ

)2↓)
. (VIII.28)

where we used the fact that log(Ce log(em)2 x) ≤
C log(e log(em)2 x) for all x ≥ 1 and large enough C.

Case 2: K) ≥ 2%

mε2 . Notice that in this case we can choose
k = / 2%

mε2 0 and Lemma VIII.13 gives us

max(log |S)
ε |, max

S∈S%
ε

dim(S)) ≤ CJ∗
k,) log(eK)J

∗
k,)) .

(VIII.29)
We will show below that the right hand side of (VIII.27) also
serves as an upper bound for J∗

k,) and K), and consequently
the upper bound in (VIII.28) holds in this case as well, thus
proving the claim. To this end we will use the bounds (VIII.22)
and (VIII.23). First observe that the bound on Jk,) is same as
in the previous case since the only bounds we used there were
k ≤ K) and k ≤ 2%

mε2 , both of which are valid in this case.
On the other hand, Cε,k,) can be bounded by

C
√

log(em)(t
√

m

n
+ δ)

(2)/2
√

K)√
mε

+
√

(2t + δ)K)

m1/4ε

)
.

(VIII.30)
Since K) ≥ 2%

mε2 and ε ≤ 1/
√

m, we have
√

K)

2−)/2
√

mε
≤ K)

(VIII.26)
≤

C log(em)
(
1 + (t

√
m

n
+ δ)

√
mε√
mε2

)

≤ C log(em) + C log(em) (t
√

m

n
+ δ)

1√
mε2

(cf. the right hand side of (VIII.27)). Similarly we can bound
√

(2t + δ)K)

m1/4ε
≤

C
√

log(em)
√

t + δ
( 1
m1/4ε

+

√
t
√

m
n + δ

m1/4ε3/2

)

≤ C
√

log(em)
√

t + δ
(
1 +

√

t

√
m

n
+ δ

) 1
m1/4ε3/2

= C
√

log(em)
√

t + δ
(
1 +

√

t

√
m

n
+ δ

)√√
mε√

mε2

≤ C
√

log(em)
√

t + δ
(
1 +

√

t

√
m

n
+ δ

) 1√
mε2

.

Plugging these bounds into the (VIII.30) we get

Cε,k,) ≤ C(log(em))2
(
1 +

1√
mε2

(
t

√
m

n
+ t + δ

)2↓
)

.
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where used the simple fact that x3/2 ≤ x2↓. Combined with
(VIII.27) and the discussion preceding the display (VIII.30),
this yields us a similar upper bound for J∗

k,).
We are only left with the proof of Lemma VIII.13.

Proof of Lemma VIII.13: The proof is split into two parts.
In the first part we try to construct, for any given θ ∈
A(m, n, u, v, t), another matrix θ̂ satisfying ‖θ− θ̂‖ ≤ τ such
that θ̂ is piecewise constant on rectangles with as few blocks
as possible. These blocks define a partition P of Lm,n and
let P denote the set of all such partitions. It is then clear
that Sτ := {SP : P ∈ P} forms a τ subspace cover of
A(m, n, u, v, t) (see the proof of Theorem II.1 in Section V
for the notation and similar notions). In the second and the
final part we bound maxP∈P |P | and |P| which, in view
of the definition above, yield the desired upper bounds on
maxS∈Sτ dim(S) and |Sτ |.

Approximating θ by a piecewise constant matrix. This
part consists of three steps. In the “zeroth” step, we divide θ
equally into k submatrices by horizontal divisions. We do not
choose, a priori, any specific value of k which is the reason
why our final bound depends on k. Then in step 1, each
of these submatrices is divided into submatrices by vertical
divisions which are again subdivided in step 2 by horizontal
divisions. The rectangles corresponding to these submatrices
will be the final level sets of θ̂. We now elaborate the steps.

Step 0: Horizontal Divisions. Fix a positive integer 1 ≤
k ≤ m and divide Lm,n into k submatrices as follows:

Lm,n =





R1

R2
...

Rk





where each Ri has either 1m/k2 or /m/k0 many rows.
We want to stress that we use the same partitioning for every
θ in this step.

Step 1: Vertical Divisions. Next we want to subdivide each
Ri (where i ∈ [k]) by making ji many vertical divisions:

Ri = [Ri,1|Ri,2| . . .|Ri,ji ]

such that TVrow(θ|Ri,j
) ≤ τk for all j ∈ [ji] and some τk >

0 to be chosen shortly. We can do this by the (TVrow, τk)
scheme applied to the columns of θi so that Lemma VIII.14
gives us the bounds

ji ≤ log2(4n)
(
1 +

TVrow(θi)
τk

)
. (VIII.31)

Replacing each element in every row of θi,j := θ|Ri,j
with the

corresponding row mean, we then obtain a new matrix

θ̃i = [θ̃i,1|θ̃i,2| . . .|θ̃i,ji ] .

By construction, each θ̃i,j has identical columns. Finally, let
us define

θ̃ =





θ̃1

θ̃2
...

θ̃k





From the Cauchy-Schwarz inequality, it is clear that ‖θ̃‖ ≤
‖θ‖. One important observation we need make at this point is
that while this averaging procedure might increase the value
of TVcol(θ̃), it does not increase the value of TVcol(θ̃i,j) for
any i and j. Indeed by a computation exactly similar to that
performed in (VIII.16) we get

TVcol(θ̃i,j) ≤ TVcol(θi,j) . (VIII.32)

Let us now try to bound ‖θ − θ̃‖. To this end notice that

‖θ − θ̃‖22
=

∑

i∈[k],j∈[ji]

∑

i′∈[nrow(Ri)]

‖θi,j[i′, ]− θ̃i,j [i′, ]‖22

≤
∑

i∈[k],j∈[ji]

ncol(Ri,j)
∑

i′∈[nrow(Ri)]

TV(θi,j [i′, ])2

(VIII.33)

where in the final step we used Lemma A.3. Since
TVrow(θi,j) ≤ τk, we can then deduce

‖θ − θ̃‖22
≤

∑

i∈[k],j∈[ji]

ncol(Ri,j)
( ∑

i′∈[nrow(θi)]

TV(θi,j [i′, ])
)2

≤
∑

i∈[k],j∈[ji]

ncol(Ri,j)τ2
k = nkτ2

k . (VIII.34)

Setting τk = τ/2
√

nk, we get ‖θ − θ̃‖2 ≤ τ/2.

Step 2: Horizontal Divisions. In this step, we are going
to make horizontal divisions within each Ri,j obtained from
step 1 so that the total variation of columns of θ̃i,j restricted
to each subdivision is smaller than some fixed, small number.
To this end fix τ ′

k > 0 whose exact value will be chosen later.
Now use the (TVcol, τ ′

k) scheme applied to the rows of Ri,j

to obtain the following subdivision:

Ri,j =





Ri,1;j

Ri,2;j
...

Ri,)i,j ;j





where, with θ̃i,);j := θ̃|Ri,%;j , TVcol[θ̃i,);j ] ≤ τ ′
k for all # ∈

[#i,j ]. From Lemma VIII.14 we can deduce

#i,j ≤ log2(4m)
(
1 +

TVcol(θ̃i,j)
τ ′
k

)
. (VIII.35)

Like in the definition of θ̃i,j , we now replace every element in
each column of θ̃i,);j (recall at this point that θ̃i,j and hence
θ̃i,);j has identical columns) with the corresponding column
mean and obtain a new matrix

θ̂i,j =





θ̂i,1;j

θ̂i,2;j
...

θ̂i,)i,j ;j





By construction, θ̂i,);j is a constant matrix. Let θ̂ ∈ Rm×n be
such that θ̂|Ri,%;j = θ̂i,);j . By the Cauchy-Schwarz inequality
we have ‖θ̂‖ ≤ ‖θ̃‖ ≤ ‖θ‖.
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We now want to bound the distance between θ̃ and θ̂. Notice
that, since the columns of θ̃i,);j are identical, we get from
Lemma A.3

‖θ̃i,);j[ , j′]− θ̂i,);j [ , j′]‖22 ≤ nrow(θ̃i,);j)(τ ′
k/ncol(θ̃i,j))2

for every j′ ∈ ncol(θ̃i,j) = ncol(θ̃i,);j). Summing over i, j, #
and j′, we then deduce

‖θ̃ − θ̂‖22 ≤
∑

i∈[k],j∈[ji],)∈[)i,j]

nrow(Ri,);j)
ncol(Ri,j)

τ ′2
k

= τ ′2
k

∑

i∈[k],j∈[ji]

nrow(Ri,j)
ncol(Ri,j)

≤ 2τ ′2
k m

k

∑

i∈[k],j∈[ji ]

1
ncol(Ri,j)

.

Let us choose

τ ′
k
2 =

τ2k

8m
∑

i∈[k],j∈[ji]

1
ncol(Ri,j)

, (VIII.36)

so that ‖θ̃ − θ̂‖2 ≤ τ/2 and hence

‖θ − θ̂‖2 ≤ ‖θ − θ̃‖2 + ‖θ̃ − θ̂‖2 ≤ τ/2 + τ/2 = τ .

Counting the number of possible partitions for any θ.
Fix any vertical division of θ obtained in step 1. Now summing
(VIII.35) over all i and j we get

∑

i∈[k],j∈[ji ]

#i,j ≤ log2(4m) (
∑

i∈[k]

ji + v/τ ′
k) (VIII.37)

where we used the following fact
∑

i∈[k],j∈[ji]

TVcol(θ̃i,j)
(VIII.32)
≤

∑

i∈[k],j∈[ji]

TVcol(θi,j)

≤ TVcol(θ) ≤ v .

On the other hand (VIII.36) allows us to deduce a naive lower
bound on τ ′

k as follows:

τ ′
k ≥

τ
√

k

4
√

2m
√∑

i∈[k] ji

.

Plugging this into (VIII.37) we get for a universal constant
C > 0,

npiece(θ̂) :=
∑

i∈[k],j∈[ji]

#i,j

≤ C log(em)
(
J +
√

J
v
√

m

τ
√

k

)
(VIII.38)

where npiece(θ̂) is the total number of rectangular level sets of
θ̂ and J :=

∑
i∈[k] ji. From now onwards we will implicitly

assume that C is a positive, universal constant whose exact
value may vary from one line to the next.

Therefore the number of tuples (#1,1, #1,2, . . . , #k,jk) satis-
fying (VIII.38) is at most

(C log(em))J
(
J +
√

J
v
√

m

τ
√

k

)J
. (VIII.39)

Similarly, in order to bound J we sum (VIII.31) over all i to
obtain

J =
∑

i∈[k]

ji ≤ log2(4n)
(
k +

1
τk

∑

i∈[k]

TVrow(θi)
)

= log2(4n)
(
k +

1
τk

TVrow(θ)
)

≤ C log(en)
(
k +

u

τk

)

≤ C log(en)
(
k +

u
√

nk

τ

)
=: Jk , (VIII.40)

where in the final step we used τk = τ/2
√

nk (see the end of
step 1 in the previous part).

It remains to count the number of possible vertical divisions
in step 1. To this end let us fix a tuple (j1, j2, . . . , jk) satisfying∑

i∈[k] ji ≤ Jk. The number of possible vertical divisions
in this case is bounded by

∏
i∈[k] n

ji = nJk . On the other
hand, in view of (VIII.31) and (VIII.40), the number of tuples
(j1, j2, . . . , jk) is bounded by the number of nonnegative
integral solutions to the inequality

∑
i∈[k] ji ≤ Jk which in

turn is bounded by (Jk)k . Putting all of these together with
(VIII.39) and (VIII.40), we can now deduce the following
upper bound on the total number of possible partitions for
any θ ∈ A(m, n, u, v, t):

(Jk)knJk(C log(em))Jk
(
Jk +

√
Jk

v
√

m

τ
√

k

)Jk . (VIII.41)

From this and (VIII.38) we can derive the bound for any 1 ≤
k < m. For the second bound, that is when k = m, recall
that the second summand in the right hand side of (VIII.37)
comes from the horizontal division conducted in step 2. Since
this step becomes void for k = m, the required bound follows
in exactly similar fashion with Jk replacing Jk+

√
Jk

v
√

m

τ
√

k
.

IX. PROOF OF THEOREM II.7

To prove Theorem II.7 we apply the general machinery
developed in [8] with suitable modifications. Let us define
w = y− y to be the centered data matrix, w∗ = θ∗− θ∗ to be
the centered ground truth matrix and let

ŵ := argmin
v: v=0, ‖w−v‖2≤(n2−1)σ̂2

TV(v) . (IX.1)

Also, for any V ≥ 0, let ŵV denote the Euclidean projection
of w onto the convex set K0

n(V ). Recall that K0
n(V ) := {θ ∈

Rn×n : TV(θ) ≤ V, θ = 0} .

A. Sketch of Proof

To show that θ̂notuning is a good estimator of θ∗ it clearly
suffices to show that ŵ is a good estimator of w∗. If we
knew TV(θ∗) = TV(w∗) = V ∗, a similar argument as in
the proof of Theorem II.1 would tell us that ŵV ∗ attains the
Õ( V ∗

√
N

) rate that we desire. Of course, the aim here is to
get the same rate without knowing V ∗ and σ. One part of
our proof deals with showing that using σ̂ in the definition
of our estimator is not much worse than if we knew σ and
used it in defining our estimator. This is shown by showing
that σ̂ ≈ σ using a concentration of measure argument where
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“≈” is a somewhat informal notation conveying the meaning
of approximately equal to.

To analyze the risk of ŵ, a natural first step is to decompose
the risk as follows:

‖ŵ − w∗‖2 ≤ 2‖ŵV ∗ − w∗‖2 + 2‖ŵ − ŵV ∗‖2 .

Here we used the elementary inequality ‖a + b‖2 ≤ 2‖a‖2 +
2‖b‖2. The above decomposition has a natural interpretation
as twice the sum of the ideal risk (achievable when V ∗ is
known) and an excess risk due to not knowing V ∗ and σ. The
main task therefore is to upper bound the excess risk term
‖ŵ − ŵV ∗‖2.

We now need to look at two different cases. The first case
is when ŵ := 0. In this case we first show that the minimum
of the optimization problem defined in (IX.1) is attained
on the boundary. This would mean we have ‖ŵ − w‖2 =
(n2 − 1)σ̂2 ≈ (n2 − 1)σ2. Letting V̂ = TV(ŵ), a simple
geometric argument also shows that ŵV̂ = ŵ. Thus, both
ŵV ∗ and ŵ are Euclidean projections onto K0

n(V ) for two
possibly different choices of V. Thus, we can now use standard
characterizations of Euclidean projections onto convex sets
(content of Lemma IX.1) for both ŵV ∗ and ŵ to obtain a
bound on the excess risk as follows:

‖ŵ − ŵV ∗‖2 ≤
∣∣‖ŵ − w‖2 − ‖w − ŵV ∗‖2

∣∣ .

Since ‖ŵ − w‖2 ≈ (n2 − 1)σ2 we can then conclude
∣∣‖ŵ − w‖2 − ‖w − ŵV ∗‖2

∣∣ ≈
∣∣(n2 − 1)σ2 − ‖w − ŵV ∗‖2

∣∣ .

Further, since ŵV ∗ is known to be a good estimator of w∗ we
can write

‖w − ŵV ∗‖2 ≈ ‖w − w∗‖2 = ‖Z − Z1‖2σ2

≈ (n2 − 1)σ2 .

where the last approximation is again by a simple concentra-
tion of measure argument. The last three displays then suggest
that ŵ is close to ŵV ∗ . Quantifying the last three displays gives
us the desired upper bound on the excess risk.

The second case is when ŵ = 0. By definition we have
‖ŵ‖2 ≤ (n2 − 1)σ̂2 ≈ (n2 − 1)σ2. Since 0 ∈ K0

n(V ∗)
and ŵV ∗ is the projection of w onto K0

n(V ∗), a standard
fact about Euclidean projections onto convex sets gives 〈w −
ŵV ∗ , ŵV ∗〉 ≥ 0. This implies

‖ŵ − ŵV ∗‖2 = ‖ŵV ∗‖2 ≤ ‖w‖2 − ‖w − ŵV ∗‖2

! (n2 − 1)σ2 − ‖w − ŵV ∗‖2 .

The rest of the proof then follows similarly as in the previous
case.

B. Full Proof

While proving Theorem II.7 we will prove a few interme-
diate results. Our first lemma is a basic fact about Euclidean
projections onto K0

n(V ) for two different choices of V. This
also appears as Lemma 5.1 in [8]. For the sake of complete-
ness, we give a proof below.

Lemma IX.1: Let y ∈ Rn×n and recall K0
n(V ) := {θ ∈

Rn×n : TV(θ) ≤ V, θ = 0}. Let V1 > V2 ≥ 0 and let

π1(y), π2(y) be the Euclidean projection of y onto the convex
sets K0

n(V1), K0
n(V2) respectively. Then we have the following

inequality:

‖π1(y)− π2(y)‖2 ≤ ‖y − π2(y)‖2 − ‖y − π1(y)‖2.

Proof: Since π2(y) ∈ K0
n(V1) by definition, the standard

KKT condition for projections onto convex sets implies 〈y −
π1(y), π2(y)− π1(y)〉 ≤ 0. Therefore we can write

‖y − π2(y)‖2 = ‖y − π1(y)‖2 + ‖π1(y)− π2(y)‖2

+ 2〈y − π1(y), π1(y)− π2(y)〉
≥ ‖y − π1(y)‖2 + ‖π1(y)− π2(y)‖2.

This finishes the proof of the lemma.
Our next lemma is the following pointwise inequality.
Lemma IX.2: Let w = y− y1 be the centered version of y.

For any V ≥ 0, let ŵV denote the projection of w onto the
convex set K0

n(V ). Let

ŵ = argmin
v: v=0, ‖w−v‖2≤(n2−1)σ̂2

TV(v). (IX.2)

Then we have the following pointwise inequality;

‖ŵ − ŵV ∗‖2 ≤ |(n2 − 1)σ̂2 − ‖w − ŵV ∗‖2|.

Proof: Let us first consider the case when ŵ := 0. Define
V̂ := TV(ŵ). We claim that ŵV̂ = ŵ and further

‖w − ŵ‖2 = (n2 − 1)σ̂2. (IX.3)

To prove the above claim, suppose ŵV̂ := ŵ. Then we have
‖w− ŵV̂ ‖2 < ‖w− ŵ‖2 ≤ (n2− 1)σ̂2 because of uniqueness
of Euclidean projections onto convex sets. Therefore, we have
‖w − ŵV̂ ‖2 < (n2 − 1)σ̂2 and ‖w − 0‖2 > (n2 − 1)σ̂2 by
assumption. Let us now draw a line segment connecting ŵV̂
to the origin and select the point which cuts the boundary of
the

√
(n2 − 1) σ̂ ball around w and call it wbdry. Then by

construction we have

TV(wbdry) < TV(ŵV̂ ) ≤ TV(ŵ). (IX.4)

Since w has zero mean, it is not hard to see that ŵV̂ has
mean zero as well because ŵV̂ is the Euclidean projection
of w onto K0

n(V̂ ). Therefore any point falling on the line
segment between ŵV̂ and the origin also must have mean zero,
including wbdry. Thus wbdry is feasible for the optimization
problem defined in (IX.2). Together with (IX.4) this contra-
dicts the definition of ŵ. Therefore ŵV̂ must be equal to ŵ
and (IX.3) must hold.

Letting V ∗ = TV(θ∗), we can now write

‖ŵ − ŵV ∗‖2 = ‖ŵV̂ − ŵV ∗‖2

≤ |‖w − ŵV̂ ‖
2 − ‖w − ŵV ∗‖2|

= |(n2 − 1)σ̂2 − ‖w − ŵV ∗‖2|

where we have applied Lemma IX.1 in the first inequality and
used (IX.3) in the last equality.
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Now let us consider the case when ŵ = 0. In this case we
can write

‖ŵ − ŵV ∗‖2 = ‖ŵ0 − ŵV ∗‖2

≤ |‖w‖2 − ‖w − ŵV ∗‖2|
= ‖w‖2 − ‖w − ŵV ∗‖2

≤ (n2 − 1)σ̂2 − ‖w − ŵV ∗‖2.

The first inequality uses Lemma IX.1 and the second equality
follows from the definition of ŵV ∗ upon observing that 0 ∈
K0

n(V ∗). Finally the third inequality uses the fact that ‖w‖2 ≤
(n2−1)σ̂2 since ŵ = 0. This finishes the proof of the lemma.

Our next result is a proposition which gives a pointwise
upper bound to the squared loss.

Proposition IX.3: Let V ∗ = TV(θ∗). Let w = y − y1
and w∗ = θ∗ − θ∗1 be the centered versions of y and θ∗

respectively. Also let ŵV ∗ denote the Euclidean projection of
w onto K0

n(V ∗). Then the following pointwise risk inequality
holds:

‖θ̂ − θ∗‖2 ≤ 8 σ sup
v∈K0

n(2V ∗)
〈Z, v〉 + |y − θ∗|2 n2

+ 2|‖w − w∗‖2 − (n2 − 1)σ2|
+ 2(n2 − 1) |σ̂2 − σ2|.

Proof: By definition of θ̂ and Pythagorean theorem we
have

‖θ̂ − θ∗‖2 = ‖y 1− θ∗ 1‖2 + ‖ŵ − w∗‖2

≤ ‖y1− θ∗1‖2

+ 2‖ŵ − ŵV ∗‖2 + 2‖ŵV ∗ − w∗‖2. (IX.5)

We can now use Lemma IX.2 and the triangle inequality to
write

‖ŵ − ŵV ∗‖2 ≤ |(n2 − 1)σ̂2 − ‖w − ŵV ∗‖2|
≤ (n2 − 1) |σ̂2 − σ2|
+ | ‖w − w∗‖2 − (n2 − 1)σ2|
+ |‖w − ŵV ∗‖2 − ‖w − w∗‖2| (IX.6)

Let us now bound the third term above on the right side.

|‖w − ŵV ∗‖2 − ‖w − w∗‖2|
= |‖w∗ − ŵV ∗‖2 + 2〈w − w∗, w∗ − ŵV ∗〉|
≤ ‖w∗ − ŵV ∗‖2 + 2 sup

v∈K0
n(2V ∗)

〈w − w∗, v〉.

We now observe that for any mean zero matrix v, we can write

〈w − w∗, v〉 = 〈y − θ∗ − (y − θ∗)1, v〉 = 〈y − θ∗, v〉
= σ 〈Z, v〉.

The last two displays then imply that

|‖w − ŵV ∗‖2 − ‖w − w∗‖2|
≤ ‖w∗ − ŵV ∗‖2 + 2 σ sup

v∈K0
n(2V ∗)

〈Z, v〉. (IX.7)

Further, from the basic inequality ‖w− ŵV ∗‖2 ≤ ‖w−w∗‖2
we can conclude

‖w∗ − ŵV ∗‖2 ≤ 2〈ŵV ∗ − w∗, w − w∗〉
= 2〈ŵV ∗ − w∗, y − θ∗〉 ≤ 2 σ sup

v∈K0
n(2V ∗)

〈Z, v〉.

The last display along with (IX.5), (IX.6) and (IX.7) finish
the proof of the proposition.

We are now in a position to finally prove Theorem II.7.
Proof of Theorem II.7: It suffices to take expectation over

the four terms which consists in the upper bound given in
Proposition IX.3. We now sequentially bound the expectation
of these terms. We will use C to denote a positive, universal
constant whose exact value may change from one line to the
next.

The first term is just 8σ times the Gaussian width of
K0

n(2V ∗) and we can use V.2 to upper bound it. As for
the second term, it is clear that

n2E(y − θ∗)2 = n2Var(y) = σ2.

Also we observe that ‖w−w∗‖2

σ2 =
∑n

i=1

∑n
j=1(Zij−Z)2 ≈

χ2
n2−1. This is a standard fact about standard normal random

variables. Therefore we can write

E|‖w − w∗‖2 − (n2 − 1)σ2|

≤
(
E|‖w − w∗‖2 − (n2 − 1)σ2|2

)1/2

≤ σ2
(
Var(χ2

n2−1))
1/2 = σ2

√
2 (n2 − 1) ≤

√
2 σ2 n

where the first inequality follows from the Cauchy Schwartz
inequality and the last equality follows because Var(χ2

k)) = 2k
for any positive integer k.

Next we bound E|σ̂2 − σ2|. We can write

|σ̂2 − σ2| ≤|σ̂ − σ|2 + 2σ|σ̂ − σ| . (IX.8)

Recalling the definition of σ̂ we have

|σ̂ − σ| = |TV(θ∗ + σZ)− σETV(Z)
ETV(Z)

|

≤ TV(θ∗)
ETV(Z)

+ σ
|TV(Z)− ETV(Z)|

ETV(Z)
.

Thus we can write

|σ̂ − σ|2

≤ 2
( V ∗

ETV(Z)
)2 + 2σ2(

|TV(Z)− ETV(Z)|
ETV(Z)

)2
. (IX.9)

Now, since TV(Z) is a sum of N(0, 2) random variables it is
easy to check that ETV(Z) = 4 n (n−1)√

π
. Also by Lemma IX.4

we can upper bound the variance of TV(Z) to get

Var(TV(Z)) ≤ Cn(n− 1) .

Taking expectation on both sides of (IX.9) we obtain

E|σ̂ − σ|2 ≤ 2
( V ∗√π

4 n (n− 1)
)2 + 2σ2 C π n(n− 1)

(4 n (n− 1))2

≤ C
( (V ∗)2

n4
+

σ2

n2

)
.
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Using (IX.8), the last display and the Cauchy-Schwarz
inequality to bound E|σ̂ − σ|, we can deduce

E|σ̂2 − σ2| ≤ E|σ̂ − σ|2 + 2σ
(
E|σ̂ − σ|2

)1/2

≤ C
( (V ∗)2

n4
+

σ2

n2

)
+ Cσ

(V ∗

n2
+

σ

n

)
.

Collecting the bounds we have obtained in this proof for
the four terms comprising the upper bound given in Proposi-
tion IX.3, we can conclude that

MSE(θ̂notuning, θ
∗)

≤C
(
σ

V ∗

N
log(en) log(2 + 2V ∗n2)

+
(V ∗

N

)2 +
σ2

√
N

+
σ2

N

)
.

This finishes the proof of Theorem II.7.
It only remains to prove the following lemma.
Lemma IX.4: There exists a universal constant C > 0 such

that

Var(TV(Z)) ≤ Cn(n− 1) .

Proof: Expanding Var(TV(Z)) we get

Var(TV(Z)) =
∑

e,e′∈En

Cov(|∆eZ|, |∆e′Z|)

=
∑

e∈En

∑

e′∈En,e′∼e

Cov(|∆eZ|, |∆e′Z|)

(IX.10)

where in the second step we used the observation that
Cov(|∆eZ|, |∆e′Z|) = 0 for all non-adjacent e, e′, i.e., e, e′

which do not share any vertex. Here e′ ∼ e means the edges
e, e′ are adjacent. Since each edge e is adjacent to finitely
many edges (including e itself) we get from (IX.10) that
Var(TV(Z)) ≤ C|En| for some universal constant C > 0.
The lemma now follows by noting that |En| = 2n(n− 1).

APPENDIX

A. Some Auxiliary Results

Lemma A.1: Suppose {fi, gi, hi}n
i=1 are non negative real

numbers satisfying the following inequality for each i ∈ [n],

fi ≥ gi − hi.

Let {wi}m
i=1 be some other non negative numbers. In addition,

also suppose the following inequality holds for some δ > 0,

n∑

i=1

fi +
m∑

i=1

wi ≤
n∑

i=1

gi + δ.

Then the following is true:

n∑

i=1

(fi − gi)+ +
m∑

i=1

wi ≤ δ +
n∑

i=1

hi ,

where a+ = max{a, 0} for any a ∈ R.

Proof: The first equation in the above proposition basi-
cally says (fi − gi)− ≤ hi for i ∈ [n] where a− = (−a)+ for
any a ∈ R. Therefore we can write

δ ≥
n∑

i=1

(fi − gi) +
m∑

i=1

wi

=
n∑

i=1

(fi − gi)+ −
n∑

i=1

(fi − gi)− +
m∑

i=1

wi

≥
n∑

i=1

(fi − gi)+ −
n∑

i=1

hi +
m∑

i=1

wi

which finishes the proof of the lemma.
We state the following lemma which appears as Lemma D.1

in [17].
Lemma A.2 (Guntuboyina et al.): Suppose p, n ≥ 1 and

let Θ1, . . . , Θp be subsets of Rn each containing the origin
and contained in the closed Euclidean ball of radius D > 0
centered at the origin. Then for Z ∼ N(0, σ2 I) we have

E
(
max
i∈[p]

sup
θ∈Θi

〈Z, θ〉
)

≤ max
i∈[p]

E
(

sup
θ∈Θi

〈Z, θ〉
)

+ Dσ
(√

2 log p +
√

π

2
)
.

Recall that for a vector v ∈ Rn we define

TV(v) =
n−1∑

i=1

|vi+1 − vi|.

Lemma A.3: Let θ ∈ Rn. Let us define θ = (
∑n

i=1 θi)/n.
Then we have the following inequality:

n∑

i=1

(
θi − θ

)2 ≤ nTV(θ)2 .

Proof: Define α1 = θ1, β1 = 0 and for every i > 2 define

αi = αi−1 + (θi − θi−1)+.

Now define β = α − θ. Observe that as defined, α, β are
monotonically non decreasing vectors. Also, we have the
equality

TV(θ) = TV(α) + TV(β) = (αn − α1) + (βn − β1).

Now we can expand:
n∑

i=1

(
θi − θ

)2 =
n∑

i=1

(
αi − α

)2 +
n∑

i=1

(
βi − β

)2

− 2
n∑

i=1

(αi − α)(βi − β)

≤
n∑

i=1

(
αi − α

)2 +
n∑

i=1

(
βi − β

)2

+ 2
n∑

i=1

|αi − α||βi − β|

≤ n(αn − α1)2 + n(βn − β1)2

+ 2n(αn − α1)(βn − β1)
= n(αn − α1 + βn − β1)2

= nTV(θ)2 ,

thus giving us the lemma.
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Lemma A.4: Let α ∈ Rn and let B1, B2, . . . , Bk be a
partition of [n] into contiguous blocks. Let αBj denote the
restriction of α to the block Bj . Also let α̃ ∈ Rn be defined
so that

α̃Bj =
1

|Bj |
∑

i∈Bj

αi .

In other words, α̃ is the best Euclidean approximation to α
within the subspace of all vectors which are constant on each
block Bj. We then have the following inequality:

TV(α̃) ≤ TV(α).

Proof: For any set of indices i1 ∈ B1, . . . , ik ∈ Bk, we
have the following inequality:

TV(α) ≥
k−1∑

j=1

|αij+1 − αij |.

Now averaging over the indices ij ∈ Bj and using Jensen’s
inequality gives us

k−1∑

j=1

|αij+1 − αij | ≥
k−1∑

j=1

|α̃Bj+1 − α̃Bj |.

The last two displays finish the proof of the proposition.

B. Proof of Lemma VIII.14

Proof: Let P0 = [n] be the initial partition. At every step
we take the blocks bi ∈ Pi for which T (bi) > ε and divide bi

into two equal parts. Let ni be the number of blocks of the
partition Pi and si equal the number of blocks Bi in Pi that
are divided to obtain Pi+1. Define s0 = 0. Therefore we have
ni+1 = ni+si. Note that, due to superadditivity of T, we must
have si ≤ 1 t

ε2. This implies in particular that ni ≤ 1 + i1 t
ε2.

Now the division scheme can go on for atmost N = 1log2 n2
rounds. Therefore we have

max
P∈P(t,n,ε,T )

|PU ;T,ε| ≤ 1 + 1log2 n21 t
ε
2

≤ 1 + (1 + log2 n)(1 +
t

ε
) .

ACKNOWLEDGMENT

The authors would to thank the anonymous referees for
extremely detailed comments and suggestions about the paper.
These comments and suggestions have helped us to a great
extent to improve our article. The project started when both
the authors were at the University of Chicago.

REFERENCES

[1] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp, “Living on
the edge: Phase transitions in convex programs with random data,” Inf.
Inference, vol. 3, no. 3, pp. 224–294, Sep. 2014.

[2] P. C. Bellec, “Sharp oracle inequalities for least squares estimators in
shape restricted regression,” Ann. Statist., vol. 46, no. 2, pp. 745–780,
Apr. 2018.

[3] L. Breiman, Classification Regression Trees. Evanston, IL, USA:
Routledge, 2017.

[4] J.-F. Cai and W. Xu, “Guarantees of total variation minimization for
signal recovery,” Inf. Inference A, J. IMA, vol. 4, no. 4, pp. 328–353,
2015.

[5] E. Candes and T. Tao, “The Dantzig selector: Statistical estimation when
p is much larger than n,” Ann. Statist., vol. 35, no. 6, pp. 2313–2351,
Dec. 2007.

[6] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock,
“An introduction to total variation for image analysis,” Theor. Found.
Numer. Methods Sparse Recovery, vol. 9, nos. 263–340, p. 227,
2010.

[7] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The
convex geometry of linear inverse problems,” Found. Comput. Math.,
vol. 12, no. 6, pp. 805–849, Dec. 2012.

[8] S. Chatterjee, “High dimensional regression and matrix estimation with-
out tuning parameters,” 2015, arXiv:1510.07294. [Online]. Available:
http://arxiv.org/abs/1510.07294

[9] S. Chatterjee and S. Goswami, “Adaptive estimation of multivari-
ate piecewise polynomials and bounded variation functions by opti-
mal decision trees,” 2019, arXiv:1911.11562. [Online]. Available:
http://arxiv.org/abs/1911.11562

[10] S. Chatterjee, A. Guntuboyina, and B. Sen, “On matrix estimation under
monotonicity constraints,” Bernoulli, vol. 24, no. 2, pp. 1072–1100,
May 2018.

[11] S. Chatterjee and J. Lafferty, “Adaptive risk bounds in
unimodal regression,” Bernoulli, vol. 25, no. 1, pp. 1–25,
Feb. 2019.

[12] A. S. Dalalyan, M. Hebiri, and J. Lederer, “On the prediction
performance of the lasso,” Bernoulli, vol. 23, no. 1, pp. 552–581,
Feb. 2017.

[13] D. L. Donoho and I. M. Johnstone, “Minimax estimation via
wavelet shrinkage,” Ann. Statist., vol. 26, no. 3, pp. 879–921,
Jun. 1998.

[14] R. M. Dudley, “The sizes of compact subsets of Hilbert space and
continuity of Gaussian processes,” J. Funct. Anal., vol. 1, no. 3,
pp. 290–330, Oct. 1967.

[15] B. Fang, A. Guntuboyina, and B. Sen, “Multivariate extensions of iso-
tonic regression and total variation denoising via entire monotonicity and
hardy-krause variation,” 2019, arXiv:1903.01395. [Online]. Available:
http://arxiv.org/abs/1903.01395

[16] M. Genzel and G. M. Kutyniok März, “"1-analysis minimization and
generalized (co-) sparsity: When does recovery succeed?” Appl. Comput.
Harmon. Anal., to be published.

[17] A. Guntuboyina, D. Lieu, S. Chatterjee, and B. Sen, “Adap-
tive risk bounds in univariate total variation denoising and
trend filtering,” 2017, arXiv:1702.05113. [Online]. Available:
http://arxiv.org/abs/1702.05113

[18] Q. Han, T. Wang, S. Chatterjee, and R. J. Samworth, “Isotonic regression
in general dimensions,” 2017, arXiv:1708.09468. [Online]. Available:
http://arxiv.org/abs/1708.09468

[19] J.-C. Hütter and P. Rigollet, “Optimal rates for total variation denoising,”
in Proc. Conf. Learn. Theory, 2016, pp. 1115–1146.

[20] M. Kabanava, H. Rauhut, and H. Zhang, “Robust analysis
"1-recovery from Gaussian measurements and total variation
minimization,” 2014, arXiv:1407.7402. [Online]. Available:
http://arxiv.org/abs/1407.7402

[21] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “"1 trend filtering,”
SIAM Rev., vol. 51, no. 2, pp. 339–360, 2009.

[22] A. Langer, “Automated parameter selection for total variation mini-
mization in image restoration,” J. Math. Imag. Vis., vol. 57, no. 2,
pp. 239–268, Feb. 2017.

[23] M. Ledoux, “The concentration of measure phenomenon,” in Mathe-
matical Surveys and Monographs, vol. 89. Providence, RI, USA: AMS,
2001.

[24] G. Leoni, A 1st Course Sobolev Spaces. Providence, RI, USA: AMS,
2017.

[25] K. Lin, J. Sharpnack, A. Rinaldo, and R. J. Tibshirani,
“Approximate recovery in changepoint problems, from "2
estimation error rates,” 2016, arXiv:1606.06746. [Online]. Available:
http://arxiv.org/abs/1606.06746

[26] E. Mammen and S. van de Geer, “Locally adaptive regres-
sion splines,” Ann. Statist., vol. 25, no. 1, pp. 387–413,
Feb. 1997.

[27] F. Ortelli and S. van de Geer, “On the total variation regularized
estimator over a class of tree graphs,” Electron. J. Statist., vol. 12, no. 2,
pp. 4517–4570, 2018.

[28] F. Ortelli and S. van de Geer, “Adaptive rates for total varia-
tion image denoising,” 2019, arXiv:1911.07231. [Online]. Available:
http://arxiv.org/abs/1911.07231



CHATTERJEE AND GOSWAMI: NEW RISK BOUNDS FOR 2D TOTAL VARIATION DENOISING 4091

[29] F. Ortelli and S. van de Geer, “Oracle inequalities for
square root analysis estimators with application to total
variation penalties,” 2019, arXiv:1902.11192. [Online]. Available:
http://arxiv.org/abs/1902.11192

[30] M. Osadebey, T. Adni, N. Bouguila, and D. Arnold, “Optimal selection
of regularization parameter in total variation method for reducing noise
in magnetic resonance images of the brain,” Biomed. Eng. Lett., vol. 4,
no. 1, pp. 80–92, Mar. 2014.

[31] S. Oymak and B. Hassibi, “Sharp MSE bounds for proximal
denoising,” Found. Comput. Math., vol. 16, no. 4, pp. 965–1029,
2013.

[32] A. Rinaldo, “Properties and refinements of the fused
lasso,” Ann. Statist., vol. 37, no. 5B, pp. 2922–2952,
Oct. 2009.

[33] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, Nonlinear Phenomena, vol. 60,
nos. 1–4, pp. 259–268, Nov. 1992.

[34] V. Sadhanala and Y.-X. R. J. Wang Tibshirani, “Total variation
classes beyond 1D: Minimax rates, and the limitations of lin-
ear smoothers,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3513–3521.

[35] V. Solo, “Selection of regularisation parameters for total variation
denoising,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), vol. 3, Mar. 1999, pp. 1653–1655.

[36] G. Steidl, S. Didas, and J. Neumann, “Splines in higher order TV
regularization,” Int. J. Comput. Vis., vol. 70, no. 3, pp. 241–255,
Dec. 2006.

[37] D. Strong and T. Chan, “Edge-preserving and scale-dependent properties
of total variation regularization,” Inverse Problems, vol. 19, no. 6,
pp. S165–S187, Dec. 2003.

[38] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight,
“Sparsity and smoothness via the fused lasso,” J. Roy. Stat.
Soc. Ser. B, Stat. Methodol., vol. 67, no. 1, pp. 91–108,
Feb. 2005.

[39] R. J. Tibshirani, “Adaptive piecewise polynomial estimation
via trend filtering,” Ann. Statist., vol. 42, no. 1, pp. 285–323,
Feb. 2014.

[40] R. van Handel, “Probability in high dimension,” Princeton Univ., Prince-
ton, NJ, USA, Tech. Rep., 2014.

[41] Y.-X. Wang, J. Sharpnack, A. J. Smola, and R. J. Tibshirani, “Trend
filtering on graphs,” J. Mach. Learn. Res., vol. 17, no. 105, pp. 1–41,
2016.


