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SUMMARY 10

We study quantile trend filtering, a recently proposed method for one-dimensional nonpara-
metric quantile regression. We show that the penalized version of quantile trend filtering attains
minimax rates, off by a logarithmic factor, for estimating the vector of quantiles when its kth dis-
crete derivative belongs to the class of bounded variation signals. Our results also show that the
constrained version of trend filtering attains minimax rates in the same class of signals. Further- 15

more, we show that if the true vector of quantiles is piecewise polynomial, then the constrained
estimator attains optimal rates up to a logarithmic factor. All of our results hold based on a robust
metric and under minimal assumptions of the data generation mechanism. We also illustrate how
our technical arguments can be used for analysing other shape constrained problems with quan-
tile loss. Finally, we provide extensive experiments that show that quantile trend filtering can 20

perform well, based on mean squared error criteria, under Gaussian, Cauchy, and t-distributed
errors.

Some key words: Total variation, nonparametric quantile regession, local adaptivity, fused lasso.

1. INTRODUCTION

1.1. Introduction 25

In this paper we focus on the problem of nonparametric quantile regression for the sequence
model. Specifically, given a random vector y 2 R

n and a quantile level ⌧ 2 (0, 1), our goal is to
estimate ✓

⇤, the vector of ⌧ -quantiles of y, given as

✓
⇤
i = F

�1
yi (⌧), for i = 1, . . . , n.

Here Fyi is the cumulative distribution function of yi, and we assume that y1, . . . , yn are inde-
pendent. 30

Throughout this paper, our focus is on signals that have small rth total variation as in Tibshi-
rani [2014]. The latter is defined as

TV(r)(✓⇤) := n
r�1kD(r)

✓
⇤k1,

C� 2020 Biometrika Trust
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with

D
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CCCA
2 R

(n�1)⇥n

and for r > 1, we define D(r) = D
(1)

D
(r�1), where D(1) is of the appropriate dimension. Since

we assume that the rth total variation TV(r)(✓⇤) is small, it is natural to consider the estimator35

✓̂
(r) = argmin

✓2Rn

(
nX

i=1

⇢⌧ (yi � ✓i) + �kD(r)
✓k1

)
, (1)

for a tuning parameter � > 0. The intuition behind (1) is that r = 1 produces piecewise constant
estimates, r = 2 piecewise quadratic, and for general r the estimator is piecewise polynomial of
degree at most r � 1.

We highlight that the case of r = 1 in (1) appeared in Li and Zhu [2007] within a context of
array CGH data for cancer studies. When r = 1 we refer to the estimator as quantile fused lasso.40

More recently, with an application to air quality data, Brantley et al. [2019] proposed the general
quantile trend filtering of order r. We use the convention that D(0) 2 R

n⇥n is the identity matrix.
A related estimator that we will consider is

✓̂
(r)
C =

argmin
✓2Rn

nX

i=1

⇢⌧ (yi � ✓i)

subjec to kD(r)
✓k1  n

1�r
V,

(2)

where V is a tuning parameter. Thus, ✓̂(r)C is the constrained version of ✓̂(r) defined in (1).

1.2. Summary of results45

Our goal in this paper is to extend the regression trend filtering theory to the setting of quantile
regression. The first result that we generalize comes from Mammen and van de Geer [1997],
Tibshirani [2014]. These authors proved that trend filtering regression, the estimator

✓̂ = argmin
✓2Rn

(
nX

i=1

(yi � ✓i)
2 + �kD(r)

✓k1

)
, (3)

with an appropriate choice of �, satisfies

1

n

nX

i=1

⇣
✓̂i � ✓

⇤
i

⌘2
= Opr

n
n
�2r/(2r+1)

o
, (4)

where the left hand size is known as the mean squared error (MSE). Such result holds under50

the assumption that the data are Sub-Gaussian and requires TV(r)(✓⇤) = O(1). In this paper, we
extend (4) to the quantile setting and show that ✓̂(r) defined in (1) satisfies

�2
n

n
✓
⇤ � ✓̂

(r)
o

= Opr

n
n
�2r/(2r+1) (log n)1/(2r+1)

o
. (5)

Throughout, we use the notation �2
n : Rn ! R for the function given as

�2
n(v) =

1

n

nX

i=1

min
�
|vi|, v2i

 
, for v 2 R

n
, (6)
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which, up to constants, is a Huber loss, see Huber [1964].
The upper bound in (5) holds under general assumptions on the distributions Fyi which in- 55

clude heavy-tailed distributions such as the Cauchy distribution. Notably, (5) implies that ✓̂(r)
attains minimax rates, up to logarithmic factors, for estimating signals in the class of signals
with bounded rth order total variation. Additionally, we show that in the same class, the con-
strained estimator (2) attains the rate n

�2r/(2r+1) under the error metric �2
n(·).

Supposing that the vector D(r�1)
✓
⇤ has s change points satisfying a minimal spacing condi- 60

tion, we prove that, with an ideal tuning parameter, the estimator ✓̂(r)C satisfies

�2
n

n
✓
⇤ � ✓̂

(r)
C

o
= Opr

⇢
(s+ 1)

n
log

✓
en

s+ 1

◆�
. (7)

Thus, when the true quantiles vector is piecewise polynomial, with a minimal spacing condition
between change points, the quantile trend filtering estimator attains minimax rates. We refer the
reader to Guntuboyina et al. [2017b] which showed that the constrained trend filtering estimator
satisfies 65

nX

i=1

⇣
✓̂i � ✓

⇤
i

⌘2
= Opr

⇢
(s+ 1)

n
log

✓
en

s+ 1

◆�
.

More recently, ? showed a similar bound, with extra log factors, that holds for the penalized
estimator (3) for r 2 {1, 2, 3, 4}. However, these results from Guntuboyina et al. [2017a] and ?
require sub-Gaussian assumptions on the errors whereas (7) holds for general distributions and
does not require any moment conditions.

Our proof technique sheds light upon obtaining convergence for other quantile regression 70

estimators. One important example is the two-dimensional quantile fused lasso obtained by re-
placing D

(r) in (2) with r, the incidence matrix of a n
1/2 ⇥ n

1/2 grid in two dimensions, see
for instance Hutter and Rigollet [2016]. We show that the resulting estimator, under the loss
�2

n(·) and general assumptions, attains the rate n
�1/2 log n. This matches the theory for two-

dimensional total variation under sub-Gaussian errors in Hutter and Rigollet [2016], Chatterjee 75

and Goswami [2019]. Another application of our theory is in high-dimensional regression. In
the weak sparsity setting, with a fixed design, we show that `1-constrained quantile regression
can consistently estimate the vector of regression coefficients, but without requiring a restricted
eigenvalue condition as in Belloni et al. [2011], Fan et al. [2014].

1.3. Previous work 80

Since its introduction by Koenker and Bassett Jr [1978], quantile regression has become a
prominent tool in statistics. The attractiveness of quantile regression is due to its flexibility for
modelling conditional distributions, construction of predictive models, and even outlier detec-
tion applications. The problem of one-dimensional nonparametric quantile regression goes back
at least to Utreras [1981], Cox [1983], Eubank [1988] who focused on median regression. How- 85

ever, it was not until Koenker et al. [1994] that a more general treatment was provided with the
introduction of quantile smoothing splines in one dimension. These are defined as the solution
to problems of the form

minimize
g2C

"
nX

i=1

⇢⌧{yi � g(xi)} + �

⇢Z 1

0
|g00(x)|pdx

�1/p
#
,

assuming that 0 < xi < . . . < xn < 1, where � > 0 is a tuning parameter, p � 1, and C a suit-
able class of functions. 90
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The theoretical properties of quantile smoothing splines were studied in He and Shi [1994].
Specifically, the authors in He and Shi [1994] demonstrated that quantile smoothing splines at-
tain the rate n

�2r/(2r+1), for estimating quantile functions in the class of Hölder functions of
exponent r. To the best of our knowledge, He and Shi [1994] is the closer theoretical quantile re-
gression work to ours given the connections between trend filtering and locally adaptive splines.95

We refer the reader to ? for a thorough discussion highlighting that trend filtering is in fact a
special case of discrete splines.

In the context of median regression in one dimension, the authors in Brown et al. [2008]
showed that a wavelet-based quantile regression approach attains minimax rates for estimating
the median function, when the latter belongs to Besov spaces. However, despite the optimality of100

wavelet methods, it is known that total variation based methods can outperform wavelet methods
in practice, see Tibshirani [2014], Wang et al. [2016]. Thus, we focus on trend filtering based
estimators as in (1).

A precursor of trend filtering can be traced back in the machine learning literature to Rudin
et al. [1992] who proposed total variation methods for image denoising applications. In the statis-105

tics literature, trend filtering was introduced as locally adaptive regression splines in Mammen
and van de Geer [1997]. In its version in (3) trend filtering was independently introduced by ?
and Kim et al. [2009] .

On the computational front, it is known that Problem (3) with r = 1 can be solved in O(n),
see for instance Johnson [2013]. More recently, Hochbaum and Lu [2017] showed that the cor-110

responding quantile fused lasso estimator, Problem (1) with r = 1, can be found in O(n log n)
operations. For r > 1, Brantley et al. [2019] proposed an alternating direction method of multi-
pliers (ADMM) based algorithm for computing quantile trend filtering estimators.

In general graphs and with sub-Gaussian noise, Wang et al. [2016] proposed a generalization
of trend filtering including theoretical and computational developments. In the particular case of115

the fused lasso on general graphs, Padilla et al. [2018] proved a general upper bound that only
depends on the total variation along the graph and the sample size. Fan et al. [2018] studied an
`0 estimator inspired by total variation regularization. Padilla et al. [2020] proved that the fused
lasso in geometric graphs attains minimax results for piecewise Lipchitz classes. Ortelli and
van de Geer [2019] studied connections between fused lasso on graphs and the lasso estimator120

from Tibshirani [1996].

2. MAIN RESULTS

2.1. Constrained estimator on bounded variation class of signals
We start studying the constrained quantile trend filtering estimator as defined in (2). Here, we

start by stating the modelling assumptions needed to arrive at our first result concerning bounded125

variation classes of signals. Throughout the paper, we assume that ⌧ 2 (0, 1), and r 2 {1, 2, . . .}
are fixed. The quantities ✏i = yi � ✓

⇤
i , i = 1, . . . , n are referred as the errors. We also write V ⇤ =

TV(r) (✓⇤). Clearly, ✓⇤ 2 K, where

K =
n
✓ 2 R

n : TV(r) (✓)  V
⇤
o
. (8)

Notice that when r = 1 the set K becomes the class of bounded variation signals. The case
of r > 1 corresponds to higher order bounded variation classes, see Tibshirani [2014] for an130

overview.
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Our main assumption stated next requires that for each yi, there exists a neighborhood around
the quantile such that within such neighborhood the cumlative distribution function of yi grows
linearly away from ✓

⇤
i .

Assumption 1. There exists a constant L > 0 such that for � 2 R
n satisfying k�k1  L we 135

have that

min
i=1,...,n

|Fyi(✓
⇤
i + �i)� Fyi(✓

⇤
i )| � f |�i|,

for some cinstant f > 0, and where Fyi is the cumulative distribution function of yi.

If the cumulative distribution functions Fyi have probability density functions fyi , then As-
sumption 1 is a weaker condition than requiring that

inf
k�k1L

min
i=1,...,n

fyi(✓
⇤
i + �i) � f,

which appeared as Condition 2 in He and Shi [1994], and it is related to condition D.1 in Bel- 140

loni et al. [2011]. Furthermore, we hightlight that Assumption 1 will hold for most common
distributions including the Cauchy distribution.

We are now ready to state our first result. This shows that quantile trend filtering attains opti-
mal rates for estimating signals in K. The proof of this result is deferred to the Supplementary
material. 145

THEOREM 1. Under Assumption 1, and if V in (2) is chosen such that V � V
⇤ then

�2
n

n
✓
⇤ � ✓̂

(r)
C

o
= Opr

"
n
�(2r)/(2r+1)

V
r/(2r+1)max

(
1,

✓
V

nr�1

◆2r/(2r+1)
)#

.

Notably, under the canonical scaling V
⇤ = O(1), Theorem 1 shows that the constrained quan-

tile trend filtering estimator attains minimax rates for estimating ✓
⇤ in the class of parameters K,

see Mammen and van de Geer [1997], Tibshirani [2014], Guntuboyina et al. [2017b]. However,
unlike previous results on trend filtering, our result holds without the strong assumption that the 150

errors are sub-Gaussian. This explains why the upper depends on the loss �2
n(·) defined in (6).

On another note, the role of ⌧ is not made explicit in Theorem 1. This is because ⌧ is fixed.
However, from Assumption 1 and the proof of Theorem 1, it can be seen that the closer ⌧ is to
{0, 1}, the larger the constants are in the upper bound in Theorem 1. For symmetric distributions,
the closer ⌧ is to 0.5 the less difficult it becomes to estimate the vector of ⌧ -quantiles ✓⇤. 155

2.2. Constrained estimator fast rates of convergence
We now show that quantile trend filtering enjoys fast rates of convergence in the sense of

Guntuboyina et al. [2017b]. Thus, quantile trend filtering, just like trend filtering, can adapt to
potential discontinuities of the signal, and it attains optimal rates of convergence for estimating
piecewise polynomial signals. This is stated next. 160

THEOREM 2. Suppose that s = kD(r)
✓
⇤k0, let S = {j : (D(r)

✓
⇤)j 6= 0} and suppose that

min
`=1,...,s+1

(j`+1 � j`) �
cn

s+ 1
,

for some constant c satisfying 0  c  1, and where j0 = 1, js+1 = n� r, with j1, . . . , js are
the elements of S. Under Assumption 1, and V in Problem (2) chosen as V = V

⇤, we have that

�2
n

n
✓
⇤ � ✓̂

(r)
C

o
= Opr


max

⇢
V

⇤

nr�1
, 1

�
(s+ 1)

n
log

✓
en

s+ 1

◆�
.



6 MADRID-PADILLA AND CHATTERJEE

For the case of median regression with sub-Gaussian errors and with cannonical scaling V
⇤ =

O(1), Theorem 2 shows that the constrained quantile trend filtering estimator attains, off by a165

logarithmic factor, the rate attained by an oracle estimator that knows the set S, see Guntuboyina
et al. [2017b]. However, Theorem 2 holds for general distributions and quantiles going beyond
sub-Gaussian distributions.

2.3. Penalized trend filtering estimator
We now provide theoretical guarantees for the penalized quantile trend filtering estimator (3).170

From a computational point of view the penalize quantile trend filtering presents a more ap-
pealing method than its constrained counterpart. To elaborate on this point, both (1) and (2) are
linear programs that can be solved using any linear programming software. However, for large
sized problems linear programming can become burdensome. To address that, previous authors
(e.g Hochbaum and Lu [2017], Brantley et al. [2019]) have studied different types of algorithms175

that can efficiently solve the penalized quantile trend filtering problem. This in contrast to the
constrained quantile trend filtering problem that has not received attention from a computational
perspective due to its inherit difficulty.

Next, we state our main result for penalized quantile trend filtering.

THEOREM 3. Suppose that Assumption 1 holds and V
⇤ = ⇥(1). Then there exists a choice of180

� for Problem 1 satisfying

� = ⇥
n
n
(2r�1)/(2r+1) (log n)1/(2r+1) kD(r)

✓
⇤k�(2r�1)/(2r+1)

1

o
,

such that

�2
n

n
✓
⇤ � ✓̂

(r)
o
= Opr

n
n
�(2r)/(2r+1) (log n)1/(2r+1)

o
.

Theorem 3 shows that, under the loss �2
n(·), penalized trend filtering attains minimax rates,

up to a logarithmic factor, for estimating signals in the class of bounded variation and its higher
order versions. The extra logarithmic factors are the main difference between Theorems 3 and 1.185

The proof of Theorem 3 uses tools discussed in Section 4 combined with a careful construction
of a restricted set in the spirit of Belloni et al. [2011], and exploiting results from Wang et al.
[2016] and Guntuboyina et al. [2017b]. Finally, if V ⇤ is allowed to grow to infinity, then, both,
the choice of � and the upper bound in Theorem 3 would need to be inflated with polynomial
functions of V ⇤.190

3. OTHER APPLICATIONS

3.1. Fused lasso in grid graphs
Total variation denoising in multiple dimensions has attracted tremendous attention due to its

application to image denoising problems Rudin et al. [1992]. In this subsection, we study the
problem of quantile fused lasso in d dimensions. In particular, we will exploit ideas from Section195

4 combined with results from Hutter and Rigollet [2016] to obtain an upper bound, under the
loss �2

n(·).
More precisely, we consider the n

1/d ⇥ . . .⇥ n
1/d

d-dimensional grid Gd =
({1, . . . , n}, En). For a signal ✓ 2 R

n we define its total variation along Gd as

kr✓k1 :=
X

{i,j}2En

|✓i � ✓j |,
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where r is the usual edge vertex incidence matrix of the graph grid Gd. With this notation, we 200

consider the estimator

✓̂ = argmin
✓2K

(
nX

i=1

⇢⌧ (yi � ✓i)

)
, (9)

where K = {✓ 2 R
n : kr✓k1  V } for some tuning parameter V > 0.

We are now ready to state our main result in this subsection.

THEOREM 4. Suppose that Assumptions 1 holds with ✓
⇤ 2 R

n the vector of ⌧ -quantiles of y.
If V in (9) is chosen to satisfy V � kr✓

⇤k1 and kr✓
⇤k1 = O(n1�1/d), then 205

�2
n(✓̂ � ✓

⇤) = Opr

⇢
V (log n)2

n

�
,

for d = 2, and

�2
n(✓̂ � ✓

⇤) = Opr

✓
V log n

n

◆
,

for d > 2, where ✓̂ is the estimator defined in (9).

Notice that Theorem 4 requires that true signal has total variation along Gd which is of order
O(n1�1/d). This is a standard setting for denoising in grid graphs, in fact Sadhanala and Tibshi-
rani [2017] refers to this scaling of the total variation as “canonical”. Under this condition and 210

Assumption 1, Theorem 4 shows that quantile fused lasso in d dimensions attains minimax rates
under the loss �2

n(·) provided that V ⇣ V
⇤. These rates match those in Chatterjee and Goswami

[2019] for the constrained fused lasso in two dimensions, see also Hutter and Rigollet [2016] for
the corresponding result for the penalized estimator in d dimensions. However, unlike previous
results, Theorem 4 holds with a different metric than the mean squared error and it holds under 215

more general settings than sub-Gaussian errors.

3.2. High-dimensional quantile regression
Next, we focus on high-dimensional quantile regression. Specifically we consider the con-

strained version of the `1-QR estimator defined in Knight and Fu [2000] and studied in Belloni
et al. [2011]. `1-QR is commonly used as a robust tool for variable selection and prediction 220

with high-dimensional covariates, consisting of the quantile version of the lasso estimator from
Tibshirani [1996].

More specifically, suppose that we are given {(xi, yi)}ni=1 ⇢ R
p ⇥R with the {xi}ni=1 fixed,

and with y1, . . . , yn independent and satisfying the quantile relation

F
�1
yi (⌧) = x

>
i ✓

⇤
, (10)

where Fyi is the cumulative distribution function of yi, with ✓
⇤ 2 R

p and k✓⇤k1 = s. With this 225

setting, we focus on the goal of estimating ✓
⇤. Towards that end, we consider the estimator

✓̂ = argmin
✓2K

(
nX

i=1

⇢⌧ (yi � x
>
i ✓)

)
, (11)

where K = {✓ 2 R
p : k✓k1  s}.

Before arriving at our main result from this subsection, we first state some assumptions.
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Assumption 2. The vector of quantiles ✓⇤ belongs to K. Moreover, there exists a positive con-
stant L such that for u 2 R satisfying |u|  L we have that230

min
i=1,...,n

|Fyi(x
>
i ✓

⇤
i + u)� Fyi(x

>
i ✓

⇤
i )| � f |u|,

for some f > 0, where fyi is the probability density function of yi.

The previous assumption is the version of Assumption 1 for the setting of high-dimensional
regression. A related condition appeared in Belloni et al. [2011].

Our next assumption states that the columns of the design matrix are normalized. This is a
standard condition in high-dimensional regression, see Rigollet and Hütter [2015] for a review.235

Assumption 3. Let X 2 R
n⇥p be the matrix whose ith row is the vector x>i . Denote by X·,j

the jth column of X . We assume that maxj=1,...,p kX·,jk  n
1/2.

With the conditions from above, we now present our next result.

THEOREM 5. Suppose that Assumptions 2–3 hold. Then there exists a constant C > 0 such
that240

E

h
�2

n

n
X(✓̂ � ✓

⇤)
oi

 Cs

✓
log p

n

◆1/2

,

where ✓̂ is the estimator defined in (11).

We emphasise that Theorem 5 holds without conditions on the eigenvalues of the design ma-
trix. This is a crucial difference from previous work in the literature that relies on restricted
eigenvalue conditions, see for instance Belloni et al. [2011], Fan et al. [2014], Sun et al. [2019].
However, the price we pay is that our upper bound is stated in terms of the function �2

n(·) rather245

than the mean squared error. Furthermore, our rate has an extra s
1/2 factor as compared to that

of Theorem 2 in Belloni et al. [2011], which holds under stronger assumptions than the minimal
assumptions in Theorem 5.

4. PROOF IDEAS

Next we present a proof sketch of our results. To that end, we define the empirical loss function250

M̂n(✓) =
nX

i=1

M̂n,i(✓i),

where

M̂n,i(✓i) = ⇢⌧ (yi � ✓i)� ⇢⌧ (yi � ✓
⇤
i ).

Setting Mn,i(✓i) = E{⇢⌧ (zi � ✓i)� ⇢⌧ (zi � ✓
⇤
i )} where z 2 R

n is an independent copy of
y, the population loss becomes

Mn(✓) =
nX

i=1

Mn,i(✓i).

Hence, both (1) and (2) are based on a penalized and constrained version of the M̂n respectively.
We are now ready to state the first step in the proof of all our theorems. This connects the255

function �2
n(·) and the quantile population loss.
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LEMMA 1. Suppose that ✓⇤i = F
�1
yi (⌧) and Assumptions 1 holds. Then there exists a constant

C > 0 such that for all � 2 R
n, we have

Mn(✓⇤ + �)

n
� C�2

n(�),

for some positive constant C.

Lemma 1 does not depend on trend filtering and in fact can be used with other shape con- 260

strained estimators. Two different ways that we use Lemma 1 in this paper are the following.
First, suppose that we are interested in a shape constrained estimator

✓̂ = argmin
✓2K

M̂n(✓),

for a set K ⇢ R
n. Then by Lemma 1 and the optimality of ✓̂, it can be proven that

E

n
�2

n

⇣
✓
⇤ � ✓̂

⌘o
 E

(
Mn(✓̂)

C n

)
 2

n
E


sup
v2K

n
Mn(v)� M̂n(v)

o�
, (12)

provided that ✓⇤ 2 K, see the Supplementary Material for details. Hence, in order to give an
upper bound for E{�2

n(✓
⇤ � ✓̂)}, it is enough to provide an upper bound for the right most 265

term in (12). We do that in the Supplementary material by using a symmetrization argument
and Talagrand’s contraction inequality, see for instance Van Der Vaart and Wellner [1996] and
Ledoux and Talagrand [2013]. We reduce the problem to controlling

E

 
sup
v2K

nX

i=1

⇠i(vi � ✓
⇤
i )

!
, (13)

where ⇠1, . . . , ⇠n are independent Rademacher random variables. The quantity (13) is commonly
known as the Rademacher complexity of the set K. It is well known that, up to a constant, the 270

Rademacher complexity of a set is upper bounded by the Gaussian width or complexity of the
same set, see Tomczak-Jaegermann [1989], Bartlett and Mendelson [2002], Wainwright [2019].

When the set K is not compact, as it the case with trend filtering, exploiting the convexity of
the quantile loss, our arguments in the Supplementary Material reduce the problem of controlling
�2

n(✓
⇤ � ✓̂) to that of deriving an upper bound on 275

E

 
sup

v2K :�2
n(v)⌘2

nX

i=1

⇠i(vi � ✓
⇤
i )

!
, (14)

for a carefully chosen ⌘ > 0. To give an upper bound for (14), we exploit results from Guntuboy-
ina et al. [2017b] which controls a similar quantity obtained by replacing �2

n(·) with the mean
squared error.

5. EXPERIMENTS

We now proceed to illustrate with simulations the empirical performance of quantile trend 280

filtering. As benchmark methods, we consider trend filtering (3) with r = 1 and r = 2 denoted
as TF1 and TF2 respectively, and quantile splines (QS) using the R package “fields. Notice that
TF1 and TF2 only provide estimates for ⌧ = 0.5. As for quantile trend filtering, we consider
the penalized estimator (1) with choices r = 1 and r = 2 which we denote as QTF1 and QTF2
respectively. These are implemented in R via ADMM, similarly to Brantley et al. [2019]. We 285
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Table 1. Average mean squared error times 10, 10
n

Pn
i=1(✓

⇤
i � ✓̂I)2, averaging over 100 Monte

carlo simulations for the different methods considered. Captions are described in the text.

n Scenario ⌧ QTF1 QTF2 QS TF1 TF2
10000 1 0.5 0.023 0.08 0.21 0.016 0.4
5000 1 0.5 0.046 0.12 0.23 0.034 0.65
1000 1 0.5 0.18 0.29 0.32 0.12 0.94

10000 2 0.5 0.037 0.11 0.13 4917385.2 5743.119
5000 2 0.5 0.066 0.15 0.17 25215.87 286.45
1000 2 0.5 0.29 0.43 0.45 354693.6 11522.6

10000 3 0.5 0.015 0.063 0.17 2.26 0.95
5000 3 0.5 0.029 0.092 0.18 0.14 0.65
1000 3 0.5 0.13 0.24 0.26 2.23 1.04

10000 4 0.5 0.045 0.009 0.015 0.065 0.016
5000 4 0.5 0.075 0.019 0.027 0.24 0.031
1000 4 0.5 0.30 0.082 0.098 0.29 0.31

10000 5 0.5 0.13 0.056 0.041 61625.82 134.80
5000 5 0.5 0.24 0.099 0.086 1063110.0 877.85
1000 5 0.5 1.92 0.35 0.35 1443060.0 11531.79

10000 6 0.9 0.18 0.070 0.075 * *
5000 6 0.9 0.29 0.13 0.14 * *
1000 6 0.9 1.19 0.39 0.41 * *

10000 6 0.1 0.16 0.065 0.070 * *
5000 6 0.1 0.31 0.13 0.14 * *
1000 6 0.1 1.27 0.46 0.47 * *

also compared against quantile random forest using the R package “quantregForest” but we omit
the results due to poor performance.

For the different competing methods, we choose their corresponding penalty parameter to be
the value that minimizes the average mean squared error over 100 Monte Carlo replicates. Here,
for each instance of an estimator ✓̂ the mean squared error is290

1

n

nX

i=1

(✓̂i � ✓
⇤
i )

2
,

with ✓
⇤ the vector of quantiles.

Next we describe the generative models or scenarios. For each scenario we generate 100 data
sets for different values of n in the set {1000, 5000, 10000}. We then report the average mean
squared error, based on optimal tuning, of the different competing methods. In each scenario the
data are generated as295

yi = ✓
⇤
i + ✏i, i = 1, . . . , n, (15)

where ✓
⇤ 2 R

n, and the errors {✏i}ni=1 are independent with ✏i ⇠ Fi for some distributions Fi,
i = 1, . . . , n. We now discuss the different choices of ✓⇤ and Fi’s that we consider.

Scenario 1. In this case we take ✓
⇤ to satisfy ✓

⇤
i = 1 for i 2 {1, . . . , n} [ {n� 2bn/3c+

1, . . . , n} and ✓
⇤
i = 0 otherwise. As for the Fi’s we use the distribution N(0, 1).

Scenario 2. This is the same as Scenario 1, replacing N(0, 1) with Cauchy(0, 1).300

Scenario 3. Once again, we take ✓⇤ as in Scenario 1. With regards to the Fi’s, we generate ✏i ⇠
i
1/2

/n
1/2

vi, where vi ⇠ t(2). Here t(2) denotes the t-dsitribution with 2 degrees of freedom.
Scenario 4. We set ✓⇤i = 3(i/n), for i 2 {1, . . . , bn/2c}, and ✓

⇤
i = 3(1� i/n) for {bn/2c+

1, . . . , n}. The errors are then independent draws from t(3).
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Fig. 1. The top left panel shows ✓⇤, the true median, for
Scenarios 1,2, and 3. The next three panels in the top row
correspond to data generated according to Scenarios 1, 2
and 3. Similarly, the middle panels show the true median
and an instance of data for Scenarios 4 and 5. Finally, from
left to right, the bottom row shows ✓⇤ for Scenario 6 as-
sociated with ⌧ = 0.9, and an instance of data generated

according to Scenario 6.

Scenario 5. The signal is taken as ✓
⇤
i = cos(6⇡i/n) for i 2 {1, . . . , n}. We then generate 305

✏i ⇠ind Cauchy(0, 1).
Scenario 6. For our last scenario we generate data as y as

yi =

8
<

:

vi(0.25
p

(i/n)+1.375)
3 if i 2 {1, . . . , bn/2c}

vi(7
p

(i/n)�2)
3 if i 2 {bn/2c+ 1, . . . , n} ,

where vi ⇠ind
t(2) for i = 1, . . . , n.
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Figure 5 illustrates the different scenarios that we consider, There, we can see that some of
these scenarios have very heavy tail errors.310

The results in Table 1 show that, overall, QTF1 and QTF2 outperforms the competitors. For
Scenario 1 which consists of a piecewise constant signal with Gaussian errors, as expected, we
can see that TF1 is the best method. For Scenarios 2–3. which have a piecewise constant median
but heavy tail errors, the best method is QTF1. For Scenario 5, a model with a smooth median, the
best method is quantile splines. Finally, for Scenarios 4 and 6 QTF2 outperforms the competitors,315

which is reasonable since in these scenarios ✓
⇤ is or can be well approximated by a piecewise

linear signal.

6. DISCUSSION

We have studied quantile trend filtering in one dimension. Our risk adaptive bounds generalize
previous work to quantile setting. The main advantage of our results is that they hold under very320

general conditions without requiring moment conditions and allowing for heavy-tailed distribu-
tions. However, unlike trend filtering with sub-Gaussian errors, our risk bounds are based on
�2

n(·) instead of the mean squared error. While this two metrics are different, when the set over
which the minimization is taken is uniformly bounded in k · k1 and such bound does not grow
with n, then convergence rates with �2

n(·) also hold under the mean squared error.325

One natural extension of our work is to consider estimation of multiple quantiles with trend
filtering. This can be formulated as follows. Let ⇤ ⇢ (0, 1) be a finite set. Consider the estimator

{✓̂(r)C (⌧)} =
argmin

{✓(⌧)}⌧2⇤⇢Rn

X

⌧2⇤

nX

i=1

⇢⌧ (yi � ✓i(⌧)),

subjec to kD(r)
✓(⌧)k1  n

1�r
V (⌧), 8⌧ 2 ⇤

✓(⌧)  ✓(⌧ 0), 8⌧ < ⌧
0
, ⌧, ⌧

0 2 ⇤.

where {V (⌧)} are tuning parameters. Define ✓⇤i (⌧) = F
�1
yi (⌧) for all ⌧ 2 ⇤, and i = 1, . . . , n. If

Assumptions 1 holds for each ✓
⇤(⌧) instead of ✓⇤, then the proof of Theorem 1 implies that

X

⌧2⇤
�2

n

n
✓
⇤(⌧)� ✓̂

(r)
C (⌧)

o
= Opr

n
n
�(2r)/(2r+1)

o
,

provided that V (⌧) = n
r�1kD(r)

✓
⇤(⌧)k1 = O(1). This shows that the upper bound in Theorem330

1 also holds for estimation of multiple quantiles simulatenously. Similarly, we can also obtain a
version of Theorem 2 for the case of multiple quantiles. However, we are not aware of how to
handle the case where the set ⇤ can have growing size or infinetily many elements. This is left
for future work.

As discussed in Sections 3–4, aside from quantile trend filtering in one dimension, our proof335

technique has implications to other quantile related problems. However, there are some limita-
tions to our work. For instance, one framework where our machinery falls short is in isotonic
regression. In such setting, we are not able to extend to quantile regressions the results from ?.

Finally, we emphasize that when it comes to fast rates of convergence, estimation in the class
of piecewise polynomial signals, we have only presented nearly minimax guarantees for the con-340

strained version of quantile trend filtering. One potential way to prove the same for the penalized
estimator could be to exploit some of the results from ?. However, our proof technique would
have to be significantly modified and it goes beyond the scope of this paper.
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