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Proposed by Donoho (1997), Dyadic CART is a nonparametric
regression method which computes a globally optimal dyadic deci-
sion tree and fits piecewise constant functions in two dimensions. In
this article we define and study Dyadic CART and a closely related
estimator, namely Optimal Regression Tree (ORT), in the context of
estimating piecewise smooth functions in general dimensions in the
fixed design setup. More precisely, these optimal decision tree esti-
mators fit piecewise polynomials of any given degree. Like Dyadic
CART in two dimensions, we reason that these estimators can also
be computed in polynomial time in the sample size N via dynamic
programming. We prove oracle inequalities for the finite sample risk
of Dyadic CART and ORT which imply tight risk bounds for several
function classes of interest. Firstly, they imply that the finite sample
risk of ORT of order r > 0 is always bounded by Ck% whenever
the regression function is piecewise polynomial of degree r on some
reasonably regular axis aligned rectangular partition of the domain
with at most k rectangles. Beyond the univariate case, such guaran-
tees are scarcely available in the literature for computationally effi-
cient estimators. Secondly, our oracle inequalities uncover minimax
rate optimality and adaptivity of the Dyadic CART estimator for
function spaces with bounded variation. We consider two function
spaces of recent interest where multivariate total variation denoising
and univariate trend filtering are the state of the art methods. We
show that Dyadic CART enjoys certain advantages over these esti-
mators while still maintaining all their known guarantees.
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2 CHATTERJEE, S. AND GOSWAMI S.

1. Introduction. Decision Trees are a widely used technique for nonparametric regres-
sion and classification. Decision Trees result in interpretable models and form a building
block for more complicated methods such as bagging, boosting and random forests. See Loh
(2014) and references therein for a detailed review. The most prominent example of deci-
sion trees is classification and regression trees (CART), proposed by Breiman et al. (1984).
CART operates in two stages. In the first stage, it recursively partitions the space of predic-
tor variables in a greedy top down fashion. Starting from the root node, a locally optimal
split is determined by an appropriate optimization criterion and then the process is iterated
for each of the resulting child nodes. The final partition or decision tree is reached when a
stopping criterion is met for each resulting node. In the second stage, the final tree is pruned
by what is called cost complexity pruning where the cost of a pruned tree thus obtained
is proportional to the number of the leaves of the tree; see Section 9.2 in Friedman et al.
(2001) for details.

A possible shortcoming of CART is that it produces locally optimal decision trees. It is
natural to attempt to resolve this by computing a globally optimal decision tree. However,
computing globally optimal decision tree is computationally a hard problem. It is known
(see Laurent and Rivest (1976)) that computing an optimal (in a particular sense) binary
tree is NP hard. A recent paper of Bertsimas and Dunn (2017) sets up an optimization
problem (see in (Bertsimas and Dunn, 2017, Equation 1)) in the context of classification,
which aims to minimize (among all decision trees) misclassification error of a tree plus
a penalty proportional to its number of leaves. The paper formulates this problem as an
instance of mixed integer optimization (MIO) and claims that modern MIO developments
allow for solving reasonably sized problems. It then demonstrates extensive experiments
for simulated and real data sets where the optimal tree outperforms the usual CART.
These experiments seem to provide strong empirical evidence that optimal decision trees,
if computed, can perform significantly better than CART. Another shortcoming of CART
is that it is typically very hard to theoretically analyze the full algorithm because of the
sequence of data dependent splits. Some results (related to the current paper) exist for
the subtree obtained in the pruning stage, conditional on the maximal tree grown in the
first stage; see Gey and Nedelec (2005) and references therein. Theoretical guarantees for
the widely used Random Forests are also typically hard to obtain in spite of much recent
work; see Scornet et al. (2015), Wager and Walther (2015), Ishwaran (2015) and references
therein. On the other hand, theoretical analysis for optimal decision trees can be obtained
since it can be seen as penalized empirical risk minimization.

One class of decision trees for which an optimal tree can be computed efficiently, in low to
moderate dimensions, is the class of dyadic decision trees. These trees are constructed from
recursive dyadic partitioning. In the case of regression on a two-dimensional grid design,
the paper Donoho (1997) proposed a penalized least squares estimator called the Dyadic
CART estimator. The author showed that it is possible to compute this estimator by a fast
bottom up dynamic program which has linear time computational complexity O(n x n) for
a n xn grid. Moreover, the author showed that Dyadic CART satisfies an oracle risk bound
which in turn was used to show that it is adaptively minimax rate optimal over classes of

imsart-aos ver. 2014/02/20 file: main_test.tex date: February 27, 2024



ADAPTIVE ESTIMATION BY OPTIMAL DECISION TREES 3

anisotropically smooth bivariate functions. Ideas in this paper were later used in Nowak
et al. (2004) in the context of adaptively estimating piecewise Holder smooth functions.
The idea of dyadic partitioning were also used in classification in papers such as Scott and
Nowak (2006) and Blanchard et al. (2007) who studied penalized empirical risk minimization
over dyadic decision trees of a fixed maximal depth. They also proved oracle risk bounds
and showed minimax rate optimality for appropriate classes of classifiers. Minimax rates of
convergence have also been obtained for various models of dyadic classification trees in Lecué
(2008). In the related problem of density estimation, dyadic partitioning estimators have
also been studied in the context of estimating piecewise polynomial densities; see Willett
and Nowak (2007). This current paper focusses on the regression setting and follows this
line of work of studying optimal decision trees, proving an oracle risk bound and then
investigating implications for certain function classes of interest. The optimal decision trees
we study in this paper are computable in time polynomial in the sample size.

In particular, in this paper, we study two decision tree methods for estimating regres-
sion functions in general dimensions in the context of estimating some nonsmooth function
classes of recent interest. We focus on the fixed lattice design case like in Donoho (1997). The
first method is an optimal dyadic regression tree and is exactly the same as Dyadic CART
in Donoho (1997) when the dimension is 2. The second method is an Optimal Regression
Tree (ORT), very much in the sense of Bertsimas and Dunn (2017), applied to fixed lattice
design regression. Here the estimator is computed by optimizing a penalized least squares
criterion over the set of all — not just dyadic — decision trees. We make the crucial ob-
servation that this estimator can be computed by a dynamic programming approach when
the design points fall on a lattice. Thus, for instance, one does not need to resort to mixed
integer programming and this dynamic program has computational complexity polynomial
in the sample size. This observation may be known to the experts but we are unaware of an
exact reference. Like in Donoho (1997) we show it is possible to prove an oracle risk bound
(see Theorem 2.1) for both of our optimal decision tree estimators. We then apply this
oracle risk bound to three function classes of recent interest by employing approximation
theoretic inequalities and show that these optimal decision trees have excellent adaptive
and worst case performance.

Overall in this paper, we revisit the classical idea of recursive partitioning in the context
of finding answers to several unsolved questions about some classes of functions of recent
interest in the nonparametric regression literature. In the course of doing so, we have come
up with as well as brought forward several interesting ideas from different areas relevant for
the study of regression trees such as dynamic programming, computational geometry and
discrete Sobolev type inequalities for vector / matrix approximation. We believe that the
main novel aspect of the current work is to recognize, prove and point out — by an amal-
gamation of these ideas — that optimal regression trees often provide a better alternative
to the state of the art convex optimization methods in the sense they are simultaneously
(near-) minimax rate optimal, adaptive to the complexity of the underlying signal (under
fewer assumptions) and computationally more efficient for some classes of functions of recent
interest. To the best of our knowledge, our paper is the first one among a series of recent
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4 CHATTERJEE, S. AND GOSWAMI S.

works that shows the efficacy of computationally efficient optimal regression tree estimators
in these particular nonparametric regression problems. We now describe the function classes
we consider in this paper and briefly outline our results and contributions.

e Piecewise Polynomial Functions: We address the problem of estimating multivari-
ate functions that are (or close to) piecewise polynomial of some fixed degree on some
unknown partition of the domain into axis aligned rectangles. This includes function
classes such as piecewise constant/linear/quadratic etc. on axis aligned rectangles.
An oracle, who knows the true rectangular partition, i.e the number of axis aligned
rectangles and their arrangement, can just perform least squares separately for data
falling within each rectangle. This oracle estimator provides a benchmark for adap-
tively optimal performance. The main question of interest to us is how to construct
an estimator which is efficiently computable and attains risk as close as possible to
the risk of this oracle estimator. To the best of our knowledge, this question has not
been answered in multivariate settings. In this paper, we propose that our optimal re-
gression tree (ORT) estimator solves this question to a considerable extent. Section 3
describes all of our results under this topic. It is worthwhile to mention here that we
also focus on cases where the true rectangular partition does not correspond to any
decision tree (see Figure 1.2.2) which necessarily has a hierarchical structure. We call
such partitions nonhierarchical. Even for such nonhierarchical partitions, we make the
case that ORT continues to perform well (see our results in Section 3.2.1). We are
not aware of nonhierarchical partitions being studied before in the literature. Here
our proof technique uses results from computational geometry which relate the size
of any given (possibly nonhierarchical) rectangular partition to that of the minimal
hierarchical partition refining it.

e Multivariate Bounded Variation Functions: Consider the function class whose
total variation (defined later in Section 4) is bounded by some number. This is a
classical function class for nonparametric regression since it contains functions which
demonstrate spatially heterogenous smoothness; see Section 6.2 in Tibshirani (2015)
and references therein. Perhaps, the most natural estimator for this class of functions
is what is called the Total Variation Denoising (TVD) estimator. The two dimensional
version of this estimator is also very popularly used for image denoising; see Rudin
et al. (1992). It is known that a well tuned TVD estimator is minimax rate optimal
for this class in all dimensions; see Hiitter and Rigollet (2016) and Sadhanala et al.
(2016). Also, in the univariate case, it is known that the TVD estimator adapts to
piecewise constant functions and attains a near oracle risk with parametric rate of
convergence; see Guntuboyina et al. (2020) and references therein. However, even in
two dimensions, the TVD estimator provably cannot attain the near parametric rate of
convergence for piecewise constant truths. This is a result (Theorem 2.3) in a previous
article by the same authors Chatterjee and Goswami (2019).

It would be desirable for an estimator to attain the minimax rate among bounded vari-
ation functions as well as retain the near parametric rate of convergence for piecewise
constant truths in multivariate settings. Our contribution here is to establish that
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ADAPTIVE ESTIMATION BY OPTIMAL DECISION TREES 5

Dyadic CART enjoys these two desired properties in all dimensions. We also show
that the Dyadic CART adapts to the intrinsic dimensionality of the function in a par-
ticular sense. Therorem 4.2 is our main result under this topic. Our proof technique
for Theorem 4.2 involves a recursive partitioning strategy to approximate any given
bounded variation function by a piecewise constant function (see Proposition C.5).
We prove an inequality which can be thought of as the discrete version of the classical
Gagliardo-Sobolev-Nirenberg inequality (see Proposition C.7) which plays a key role
in the proof.

As far as we are aware, Dyadic CART has not been investigated before in the context of
estimating bounded variation functions. Coupled with the fact that Dyadic CART can
be computed in time linear in the sample size, our results put forth the Dyadic CART
estimator as a fast and viable option for estimating bounded variation functions.

Univariate Bounded Variation Functions of higher order: Higher order ver-
sions of the space of bounded variation functions has also been considered in nonpara-
metric regression, albeit mostly in the univariate case. One can consider the univariate
function class of all r times (weakly) differentiable functions, whose r th derivative is
of bounded variation. A seminal result of Donoho and Johnstone (1998) shows that
a wavelet threshholding estimator attains the minimax rate in this problem. Locally
adaptive regression splines, proposed by Mammen and van de Geer (1997), is also
known to achieve the minimax rate in this problem. Recently, Trend Filtering, pro-
posed by Kim et al. (2009), has proved to be a popular nonparametric regression
method. Trend Filtering is very closely related to locally adaptive regression splines
and is also minimax rate optimal over the space of higher order bounded variation
functions; see Tibshirani (2014) and references therein. Moreover, it is known that
Trend Filtering adapts to functions which are piecewise polynomials with regularity
at the knots. If the number of pieces is not too large and the length of the pieces is
not too small, a well tuned Trend Filtering estimator can attain near parametric risk
as shown in Guntuboyina et al. (2020).

Our main contribution here is to show that the univariate Dyadic CART estimator
is also minimax rate optimal in this problem and enjoys near parametric rate of con-
vergence for piecewise polynomials; see Theorem 5.1 and Theorem 5.2. Moreover, we
show that Dyadic CART requires less regularity assumptions on the true function
than what Trend Filtering requires for the near parametric rate of convergence to
hold. Theorem 5.2 follows directly from a combination of our oracle risk bound and
a result about refining an arbitrary (possibly non dyadic) univariate partition to a
dyadic one (see Lemma C.3). Our proof technique for Theorem 5.1 again involves a
recursive partitioning strategy to approximate any given higher order bounded varia-
tion function by a piecewise polynomial function (see Proposition C.9). We prove an
inequality (see Lemma C.10) quantifying the error of approximating a higher order
bounded variation function by a single polynomial which plays a key role in the proof.
Again, as far as we are aware, Dyadic CART has not been investigated before in the
context of estimating univariate higher order bounded variation functions. Coupled
with the fact that Dyadic CART is computable in time linear in the sample size, our
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6 CHATTERJEE, S. AND GOSWAMI S.

results again provide a fast and viable alternative for estimating univariate higher
order bounded variation functions.

The oracle risk bound in Theorem 2.1 which holds for the optimal decision trees studied in
this paper may imply near optimal results for other function classes as well. In Section B, we
mention some consequences of our oracle risk bounds for shape constrained function classes.
We then describe a version of our estimators which can be implemented for arbitrary data
with random design and also discuss an extension of our results for dependent noise.

1.1. Problem Setting and Definitions. Let us denote the d dimensional lattice with N
points by Lg, = {1,..., n}d where N = nf. Throughout this paper we will consider the
standard fixed design setting where we treat the N design points as fixed and located on the
d dimensional grid/lattice Ly ,. One may think of the design points embedded in [0, 1]¢ and
of the form %(il, ...,iq) where (i1,...,iq) € Lgy. This lattice design is quite commonly
used for theoretical studies in multidimensional nonparametric function estimation (see,
e.g. Nemirovski (2000)). The lattice design is also the natural setting for certain applications
such as image denoising, matrix/tensor estimation. All our results will be for the lattice
design setting. In Section B, we make some observations and comments about possible
extensions to the random design case.

Letting 0* denote the evaluation on the grid of the underlying regression function f, our
observation model becomes y = 0* +0Z where y, 0%, Z are real valued functions on L4, and
hence are d dimensional arrays. Furthermore, Z is a noise array consisting of independent
standard Gaussian entries and o > 0 is an unknown standard deviation of the noise entries.
For an estimator 5, we will evaluate its performance by the usual fixed design expected
mean squared error

~ 1 ~
MSE(®, 0") = — Eg- 10 - 0*|2.

Here ||.|| refers to the usual Euclidean norm of an array where we treat an array as a vector
RN
in R,

Let us define the interval of positive integers [a,b] = {i € Zy : a < i < b} where Z; denotes
the set of positive integers. For a positive integer n we also denote the set [1,7n] by just
[n]. A subset R C Lg, is called an axis aligned rectangle if R is a product of intervals, i.e.
R = H?Zl[ai, b;]. Henceforth, we will just use the word rectangle to denote an axis aligned
rectangle. Let us define a rectangular partition of Ly, to be a set of rectangles R such that
(a) the rectangles in R are pairwise disjoint and (b) Urer R = Ly -

Recall that a multivariate polynomial of degree at most r > 0 is a finite linear combination
of the monomials TI¢_, (x;)" satisfying Z?Zl r; < r. It is thus clear that they form a linear

space of dimension K, g = (’"Zizl). Let us now define the set of discrete multivariate
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ADAPTIVE ESTIMATION BY OPTIMAL DECISION TREES 7

polynomial arrays as

Fo) = {0 e REan - (ir/n, ... iafn) =f(ir/n, ... iafn) V(i1,...,iq) € [n]?

for some polynomial f of degree at most r}.

For a given rectangle R C Lg, and any 0 € RLan let us denote the array obtained by
restricting 6 to R by 0. We say that 6 is a degree r polynomial on the rectangle R if
fr = ag for some o € fcgrr)z'

For a given array 6 € Rlan let k(T)(G) denote the smallest positive integer k such that a set
of k rectangles Ry, ..., Ry form a rectangular partition of Lq, and the restricted array Og,
is a degree v polynomial for all 1 < i < k. In other words, k(") (0) is the cardinality of the
minimal rectangular partition of Ly, such that ¢ is piecewise polynomial of degree r on the
partition.

1.2. Description of Estimators. The estimators we consider in this manuscript compute
a data dependent decision tree (which is globally optimal in a certain sense) and then fit
polynomials within each cell /rectangle of the decision tree. As mentioned before, computing
decision trees greedily and then fitting a constant value within each cell of the decision tree
has a long history and is what the usual CART does. Fitting polynomials on such greedily
grown decision trees is a natural extension of CART and has also been proposed in the
literature; see Chaudhuri et al. (1994). The main difference between these estimators and
our estimators is that our decision trees are computed as a global optimizer over the set of
all decision trees. In particular, they are not grown greedily and there is no stopping rule
that is required. The ideas here are mainly inspired by Donoho (1997). We now define our
estimators precisely.

Recall the definition of k(") (). A natural estimator which fits piecewise polynomial functions
of degree r > 0 on axis aligned rectangles is the following fully penalized LSE of order r:

(/931& ‘= argmin (HZ/ - 9”2 + )\k(r)(ﬁ)).
gcREdn

Let us denote the set of all rectangular partitions of Ly, as Pan 4. For each rectangular
partition II € Py 4, and each nonnegative integer r, let the (linear) subspace S(T)(H)
comprise all arrays which are degree r polynomial on each of the rectangles constituting II.
For a generic subspace S C RY let us denote its dimension by Dim(S) and the associated
orthogonal projection matrix by Og. Clearly the dimension of the subspace S (IT) is K. 4|TI|
where |II| is the cardinality of the partition. Now note that we can also write ggﬂ)\ =

0 ¥ where TI()) is a data dependent partition defined as

ST (TI(N)
(1.1) (A = argmin ([ly — Ogemmyl® + Al
ILITEPan, d,n
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8 CHATTERJEE, S. AND GOSWAMI S.

Thus, computing 5(;,;11 really involves optimizing over all rectangular partitions II € Paj 4.,
Therefore, one may anticipate that the major roadblock in using this estimator would be
computation. For any fixed d, the cardinality of Pay g, is at least stretched-exponential in
N. Thus, a brute force method is infeasible. However, for d = 1, a rectangular partition
is a set of contiguous blocks of intervals which has enough structure so that a dynamic
programming approach is amenable. The set of all multivariate rectangular partitions is a
more complicated object and the corresponding computation is likely to be provably hard.
This is where the idea of Donoho (1997) comes in who considers the Dyadic CART estimator
(for r = 0 and d = 2) for fitting piecewise constant functions. As we will now explain, it
turns out that if we constrain the optimization in (1.1) to optimize over special subclasses of
rectangular partitions of Ly ,, a dynamic programming approach again becomes tractable.
The Dyadic CART estimator is one such constrained version of the optimization problem
n (1.1). We now precisely define these subclasses of rectangular partitions.

1.2.1. Description of Dyadic CART of order r > 0. Let us consider a generic discrete
interval [a,b]. We define a dyadic split of the interval to be a split of the interval [a, b] into
two equal intervals. To be concrete, the interval [a,b] is split into the intervals [a,a — 1 4+
[(b—a+1)/2]] and [a+[(b—a+1)/2],b]. Now consider a generic rectangle R = H?Zl [a;, bs].
A dyadic split of the rectangle R involves the choice of a coordinate 1 < j < d to be split
and then the j-th interval in the product defining the rectangle R undergoes a dyadic split.
Thus, a dyadic split of R produces two sub rectangles R; and Ry where Ry = RN R{ and
Ry is of the following form for some j € [d],

Jj—1 d
Ry = H[ai,bi] X [aj,a; — 1+ [(bj —a; +1)/2]] x H [as, bi].
i=1 i=j+1

Starting from the trivial partition which is just L, itself, we can create a refined partition
by dyadically splitting Lg ;. This will result in a partition of Lg,, into two rectangles. We can
now keep on dividing recursively, generating new partitions. In general, if at some stage we
have the partition IT = (Ry, ..., Rg), we can choose any of the rectangles R; and dyadically
split it to get a refinement of IT with k+ 1 nonempty rectangles. A recursive dyadic partition
(RDP) is any partition reachable by such successive dyadic splitting. Let us denote the set
of all recursive dyadic partitions of Ly, as Prdp,dn- Indeed, a natural way of encoding any
RDP of Lg,, is by a binary tree where each nonleaf node is labeled by an integer in [d]. This
labeling corresponds to the choice of the coordinate that was used for the split.

We can now consider a constrained version of 5551) y Which only optimizes over Prap dn

o)

instead of optimizing over P,y 4,,. Let us define rdp ) = O y where ﬁrdp()‘) is a

(Trap(V))
data dependent partition defined as

~

Lap(A) = argmin  ([ly — Os<r)(n)”2 + AT]).
TLIIEP ap,d,n
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The estimator 553; A
(1997) in the case when d = 2 and r = 0. The author studied this estimator for estimating
anisotropic smooth functions of two variables which exhibit different degrees of smoothness

is precisely the Dyadic CART estimator which was proposed in Donoho

in the two variables. However, to the best of our knowledge, the risk properties of the Dyadic
CART estimator (for 7 = 0) has not been examined in the context of estimating nonsmooth
function classes such as piecewise constant and bounded variation functions. For » > 1, the
above estimator appears to not have been proposed and studied in the literature before. We
call the estimator /H\EQL,A as Dyadic CART of order r.

1.2.2. Description of ORT of order r > 0. For our purposes, we would need to consider a
larger class of partitions than Prqp.q.,. To generate a RDP, for each rectangle we choose a
dimension to split and then split at the midpoint. Instead of splitting at the midpoint, it is
natural to allow the split to be at an arbitrary position. To that end, we define a hierarchical
split of the interval to be a split of the interval [a, b] into two intervals, but not necessarily
equal sized. To be concrete, the interval [a,d] is split into the intervals [a, ] and [¢ + 1, b]
for some a < ¢ < b. Now consider a generic rectangle R = H‘ij:l[ai, bi]. A hierarchical split
of the rectangle R involves the choice of a coordinate 1 < j < d to be split and then the
j-th interval in the product defining the rectangle R undergoes a hierarchical split. Thus, a
hierarchical split of R produces two sub rectangles R; and Ry where Ry = RN R{ and Ry
is of the following form for some 1 < j < d and a; < ¢ < bj,

Jj—1 d
Ry = H[azabz] X [aj,g] X H [al,bl]
=1 i=j+1

Starting from the trivial partition Lg , itself, we can now generate partitions by splitting Ly ,,
hierarchically. Again, in general if at some stage we obtain the partition II = (Ry, ..., Rg),
we can choose any of the rectangles R; and split it hierarchically to obtain k£ + 1 nonempty
rectangles now. A hierarchical partition is any partition reachable by such hierarchical splits.
We denote the set of all hierarchical partitions of Ly, as Phier,a,n- Note that a hierarchical
partition is in one to one correspondence with decision trees and thus, Ppierd, can be
thought of as the set of all decision trees.

Clearly,
Prdp,d,n C Phier,d,n - Pall,d,n-

In fact, the inclusions are strict as shown in Figure 1. In particular, there exist partitions
which are not hierarchical.
We can now consider another constrained version of 5&)  Which optimizes only over Phier,dn-

Let us define 51(12]( v =0
as

S0 (Tser (V)Y where ﬁhier(/\) is a data dependent partition defined

Mpier(A) =  argmin  (|ly — Os(r)(n)y||2 + AJII)).
H:Hephier,d,n
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10 CHATTERJEE, S. AND GOSWAMI S.

(a) (b) (c)

Fic 1. Figure (a) is an example of a recursive dyadic partition of the square. Figure (b) is nondyadic but is
a hierarchical partition. Figure (c) is an example of a nonhierarchical partition. An easy way to see this is
that there is no split from top to bottom or left to right.

Although this is a natural extension of Dyadic CART, we are unable to pinpoint an exact
reference where this estimator has been explicitly proposed or studied in the statistics
literature. The above optimization problem is an analog of the optimal decision tree problem
laid out in Bertsimas and Dunn (2017). The difference is that Bertsimas and Dunn (2017)
is considering classification whereas we are considering fixed lattice design regression. Note
that the above optimization problem is different from the usual pruning of a tree that is
done at the second stage of CART. Pruning can only result in subtrees of the full tree
obtained in the first stage whereas the above optimization is over all rectangular partitions
IT € Phier,d,n- We name the estimator é\():l)lier as Optimal Regression Tree (ORT) of order 7.

1.3. Both Dyadic CART and ORT of all orders are efficiently computable. The crucial fact

about %21% , and éﬁgr , is that they can be computed efficiently and exactly using dynamic

programming approaches. A dynamic program algorithm to compute ﬁrdP’ s for d = 2 and
r = 0 was shown in Donoho (1997). This algorithm is extremely fast and can be computed
in O(N) (linear in sample size) time. The basic idea there can actually be extended to
compute both Dyadic CART and ORT for any fixed r,d with computational complexity
given in the next lemma. The proof is given in Section C (in the supplementary file,).

LEMMA 1.1. There exists an absolute constant C' > 0 such that the computational com-
plexity, i.e. the number of elementary operations involved in the computation of ORT is
bounded by:

CN? nd, forr=20
CN? (nd+d®) forr>1

Similarly, the computational complexity of Dyadic CART is bounded by:

C2% Nd, forr=20
C2' N d®  forr>1.

REMARK 1.1. Since the prozy for the sample size N > 2% as soon as n > 2, it does not
make sense to think of d as large when reading the above computational complexity. The
lattice design setting is really meaningful when d is low to moderate and fized and the number
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ADAPTIVE ESTIMATION BY OPTIMAL DECISION TREES 11

of samples per dimension n is growing to oo. Thus, one should look at the dependence of
the computational complexity on N and treat the factors depending on d as constant.

REMARK 1.2.  FEwen for d = 1, the brute force computation time is exponential in N as the
total number of hierarchical partitions is exponential in N.

The rest of the paper is organized as follows. In Section 2 we state our oracle risk bound
for Dyadic CART and ORT of all orders. Section 3 describes applications of the oracle risk
bound for ORT to multivariate piecewise polynomials. In Sections 4 and 5 we state applica-
tions of the oracle risk bound for Dyadic CART to bounded variation functions in general
dimensions and univariate bounded variation function classes of all orders respectively. In
Section A of the supplementary file, we describe our simulation studies and in Section B,
we discuss the main contributions of this paper vis a vis the relevant methodologies present
in the literature as well as discuss some possible extensions of the scope of our results.
Section C in the supplementary file contains all the proofs of our results. In Section D in
the same file we state and prove some auxiliary results that we use for proving our main
results in the paper.
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2. Oracle risk bounds for Dyadic CART and ORT. In this section we describe an
oracle risk bound. We have to set up some notations and terminology first. Let S be any
finite collection of subspaces of RY. Recall that for a generic subspace S € S, we denote its
dimension by Dim(S). For any given § € RY let us define

(2.1) ks(0) = min{Dim(S) : S € S,0 € S}
where we adopt the convention that the infimum of an empty set is oc.

For any # € RY, the number ks(f) can be thought of as describing the complexity of 6
with respect to the collection of subspaces S. Recall the definition of the nested classes of
rectangular partitions Prap.dan C Phier,dn C Pall,dn- Also recall that the subspace S(r) (1)
denotes all arrays which are degree r polynomial on each of the rectangles constituting
II. For any integer r > 0, these classes of partitions induce their respective collection of
subspaces of RV defined as follows:

S = {SU(M) : T € Pyan}
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12 CHATTERJEE, S. AND GOSWAMI S.

where a € {rdp,hier,all}. For any # € Rl4» and any integer » > 0 let us observe its

complexity with respect to the collection of subspaces S’L(f) is

ke (6) = KO (9)

s

where again a € {rdp, hier, all}. Here kg{l) (6%) is the same as k(") (0*) defined earlier and we
use both notations interchangeably.

It is now clear that for any 8 € RY we have

(2:2) B (0) < KEL() < ki (0).
We are now ready to state an oracle risk bound for all the three estimators @Xl) o éfg;’ 5 and

51(12]( y- The theorem is proved in Section C.

THEOREM 2.1.  Fiz any integer v > 0 and recall that K, g = (riﬁzl) was defined earlier.

There exists an absolute constant C' > 0 such that for any 0 < § < 1 if we set A >
2

CK, 4~ 1§gN, then we have the following risk bounds for a € {rdp, hier, all},

1+9 A o2

BIR ~ 071 < inf, (155 16— 01 + 25 K0)) + =
REMARK 2.1. Operationally, to derive risk bounds for Dyadic CART or ORT for some
function class, Theorem 2.1 behooves us to use approrimation theoretic arguments. To be
more precise, for a given generic 8% in the function class, one needs to understand what
s the approximation error in the Fuclidean sense, if the approximator 0 is constrained to
satisfy keap(0) = k or knier(8) = k for any given integer k. One of the technical contributions
of this paper lies in addressing this approximation theoretic question for the three classes of
functions considered in this paper.

Several other remarks about the above theorem are presented in Section B.1 (in the sup-
plementary file) due to space considerations.

3. Results for Multivariate Piecewise Polynomial Functions.

3.1. The main question. For a given underlying truth 6*, the oracle estimator é\((zz"acle) —
which knows the minimal rectangular partition (Rq,..., Ry) of 0* exactly — has a simple

form. In words, within each rectangle R;, it estimates 0}, by the best fitting r-th degree
polynomial in the least squares sense. It is not hard to check that

() (p+
MSE(8) 1, 0%) < Ky a2ka“]\(79 )

(oracle)’
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ADAPTIVE ESTIMATION BY OPTIMAL DECISION TREES 13

Thus, for any fixed d and r, the MSE of the oracle estimator scales like the number of pieces
k:gl) (0*) divided by the sample size N which is precisely the parametric rate of convergence.
Furthermore, we can show the following minimax lower bound holds.

LEMMA 3.1. Fiz any positive integers n,d. Fiz any integer k such that 3d < k < N = n?
and let O g, = {0 € Rlan ; kl(l?gr(H) < k}. There exists a universal constant C' such that

the following inequality holds:

~ N
inf sup EHO—@HQZC’anlog%.

0 9€9k1d7n

Here the infimum is over all estimators 0 which are measurable functions of the data array
.

REMARK 3.1. For any r > 1, since k}(l?gr(H) > k;?f(&) > k:gl)(G) the same minimax lower
bound also holds for the parameter space {6 € Rldn . kgl)(e) < k}.

The above minimax lower bound shows that any estimator must incur MSE (in the worst
case) which is the oracle MSE multiplied by an extra log(eN/k) factor. In particular, if
k = o(N), which is the interesting regime, the extra log N factor is inevitable. We call this
O(% log(eN/k)) rate the minimax rate from here on.

We provide the proof of Lemma 3.1 in Section C.8. We now ask the following question for
every fixed dimension d and degree r.

Q): Does there exist an estimator which

(r) (p*
e attains the minimax rate MSE scaling like O(JQk‘"*“T(e)log N) for all 0% adaptively,

and

e is possible to compute in polynomial time in the sample size N = n??

To the best of our knowledge, the above question relating to computationally efficient min-
imax adaptive estimation of piecewise polynomial functions in multivariate settings, even
for piecewise constant functions in the planar case (i.e. r = 0,d = 2), has not been rigor-
ously answered in the statistics literature. The fully penalized least squares estimator 67&) A\
is naturally suited for our purpose but is likely to be computationally infeasible. The goél

of this section is to show that

e In the two dimensional setting, i.e. d = 2, the ORT estimator attains the minimax
MSE rate adaptively for any truth 8*. The ORT attains this minimax rate even if the
true underlying rectangular partition is not hierarchical. In particular, we show that
the ORT incurs the oracle MSE with the exponent of log NV equalling 1 thus matching
the minimax lower bound in Lemma 3.1 up to constant factors.
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14 CHATTERJEE, S. AND GOSWAMI S.

e When d > 2, as long as the true underlying rectangular partition satisfies natural
regularity conditions such as being hierarchical or fat (defined later in this section),
the ORT estimator continues to attain this minimax rate.

We prove these results by combining Theorem 2.1 with existing results in computational
geometry. To the best of our knowledge, our results in this section are the first of their type.
We also give a review of what is known in the univariate case (when d = 1) in Section B.2
(in the supplementary file).

3.2. Our Results for ORT. In the remainder of the paper the constant involved in O(+) may
depend on 7 and d unless specifically mentioned otherwise. Also to lighten the notation,
we use 5() for O(-)poly(log N). Recall that K, 4 is the dimension of the subspace of d
dimensional polynomials with degree at most » > 0. An immediate corollary of Theorem
2.1 is the following.

COROLLARY 3.2. There exists an absolute constant C > 0 such that by setting A =
CK,q o2 log N we have the following risk bound,

CK,q % log N o) . C o?

MSE(ther,)\’e ) . N hler(e ) N

Let us discuss some implications of the above corollary. For ORT of order » > 0, a risk

bound scaling like O(}“eri() log N) is guaranteed for all #*. Thus, for instance, if the true
0* is piecewise constant/linear on some arbitrary unknown hierarchical partition of L,
the corresponding ORT estimator of order 0,1 respectively achieves the (near) minimax

risk O( a“( )log N). Although this result is an immediate implication of Theorem 2.1,
this is the ﬁrst such risk guarantee established for a computationally efficient decision tree
estimator in general dimensions as far as we are aware of.

At this point, let us recall that our target is to achieve the ideal upper bound O( 'f‘“ G ))
the MSE for all * which is attained by the fully penalized LSE. However, it is perhaps not
efficiently computable. The best upper bound to the MSE we can get for a computationally

~ 1.(m) *
efficient estimator is O(k"i‘?fT(e)) which is attained by the ORT estimator.

A natural question that arises at this point is how much worse is the upper bound for
ORT than the upper bound for the fully penalized LS estimator given in Theorem 2.1.
Equivalently, we know that k;u) (0%) < kl(ngr(ﬁ*) in general, but how large can the gap be?
There definitely exist partitions which are not hierarchical, i.e. that is Phicr.an is a strict
subset of Pay1 4, as shown in Figure 1.

In the next section we explore general and possibly nonhierarchical partitions of L4, and
state several results which basically imply that ORT incurs MSE at most a constant fac-
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ADAPTIVE ESTIMATION BY OPTIMAL DECISION TREES 15

tor more than the ideal fully penalized LSE for several natural instances of rectangular
partitions.

3.2.1. Arbitrary partitions. The risk bound for ORT in Theorem 2.1 is in terms of kpje, (6*).
We would like to convert it into a risk bound involving k,;1(6*). A natural way of doing this
would be to refine an arbitrary partition into a hierarchical partition and then count the
number of extra rectangular pieces that arises as a result of this refinement. This begs the
following question of a combinatorial flavour.

Can an arbitrary partition of Lq, be refined into a hierarchical partition without increasing
the number of rectangles too much?.

Fortunately, the above question has been studied a fair bit in the computational /combinatorial
geometry literature under the name of binary space partitions. A binary space partition
(BSP) is a recursive partitioning scheme for a set of objects in space. The goal is to par-
tition the space recursively until each smaller space contains only one/few of the original
objects. The main questions of interest are, given the set of objects, the minimal cardi-
nality of the optimal partition and an efficient algorithm to compute it. A nice survey of
this area, explaining the central questions and an overview of known results can be found
in Téth (2005). We will now leverage some existing results in this area which would yield
corresponding risk bounds with the help of Theorem 2.1.

For d = 2, it turns out that any rectangular partition can be refined into a hierarchical one
where the number of rectangular pieces at most doubles. The following proposition is due
to Berman et al. (2002) and states this fact.

PROPOSITION 3.3 (Berman et al. (2002)). Given any partition I1 € Pay 2, there exists a
refinement II € Phier2,n such that |II] < 2|II|. As a consequence, for any matriz § € R™*"
and any nonnegative integer r, we have

k,("’)

hier

(0) < 2k (0).

The above proposition applied to Theorem 2.1 immediately yields the following theorem:

THEOREM 3.4. Let d = 2. There exists an absolute constant C such that by setting A =
CK,q 0% log N we have the following risk bound for Onier -

CK,q4 % log N
N

C o2

MSE(0") | 0%) <
S ( hier,\? ) — N

kgl)(a*) +
REMARK 3.2. Thus, in the two dimensional setting d = 2, ORT fulfills the two objectives
of computability in polynomial time and attaining the minimax risk rate adaptively for all
truths 6*. Thus, this completely solves the main question we posed in the two dimensional
case. To the best of our knowledge, this is the first result of its kind in the literature.
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16 CHATTERJEE, S. AND GOSWAMI S.

For dimensions higher than 2; the best result akin to Proposition 3.3 that is available is due
to Hershberger et al. (2005).

PROPOSITION 3.5 (Hershberger et al. (2005)). Let d > 2. Given any partition I1 € Pay 4.

, ~ ~ i1
there exists a refinement II € Phier an such that |II| < |II| 3. As a consequence, for any
array 0 € R4 and any nonnegative integer r, we have

d+1
e (0) < (K5 (0)) 7.

REMARK 3.3. A matching lower bound is also given in Hershberger et al. (2005) for the
case d = 3. Thus, to refine a rectangular partition (of k pieces) into a hierarchical one, one
necessarily increases the number of rectangular pieces to O(k4/ 3) in the worst case.

The above result suggests that for arbitrary partitions in d dimensions, our current approach
will not yield the near minimax rate of convergence. Nevertheless, we state our risk bound
that is implied by Proposition 3.5.

THEOREM 3.6. Let d > 2. There exists an absolute constant C' such that by setting A\ >
CK,q4 o2 log N we have the following risk bound for Onier ) -

d+1
K0 (07) . C o2
N N

MSE]), .6 < AL

Our approach of refining an arbitrary partition into a hierarchical partition does not seem

to yield the 9] (02%) rate of convergence for ORT in dimension higher than 2 when the
truth is a piecewise polynomial function on an arbitrary rectangular partition. Rectangular
partitions in higher dimensions could be highly complex; with some rectangles being very
“skinny” in some dimensions. However, it turns out that if we rule out such anomalies, then
it is still possible to attain our objective. Let us now define a class of partitions which rules
out such anomalies.

Let R be a rectangle defined as R = Hle[ai, b;] C Lg . Let the sidelengths of R be defined
as n; = b; — a; + 1 for i € [d]. Define its aspect ratio as A(R) = max{% : (i,7) € [d)*}. For
any « > 1, let us call a rectangle a fat if we have A(R) < a. Now consider a rectangular
partition II € Py q,,- We call IT an o fat partition if each of its constituent rectangles is o
fat. Let us denote the class of « fat partitions of Lgy, as Prag(a),a,n- As before, we can now
define the class of subspaces Sf(;t)(@ din corresponding to the set of partitions Prag(q),q,n- For
any array 0* and any integer r > 0 we can also denote

by (07) = kg (7).

fat(a),d,n

An important result in the area of binary space partitions is that any fat rectangular
partition of L, 4 can be refined into a hierarchical one with the number of rectangular
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ADAPTIVE ESTIMATION BY OPTIMAL DECISION TREES 17

pieces inflated by at most a constant factor. This is the content of the following proposition
which is due to de Berg (1995).

PROPOSITION 3.7 (de Berg (1995)). There exists a constant C(d,«) > 1 depending only
on d and a such that any partition I1 € Pat(a),an can be refined into a hierarchical partition
e Phier,d,n satisfying

| < C(d, )|II].

Equivalently, for any 6 € R4 and any non negative integer r we have

k(’”)

hier

(0) < C(d, a)kiL) ) (0).

The above proposition gives rise to a risk bound for ORT in all dimensions.

THEOREM 3.8. For any dimension d there exists an absolute constant C such that by
setting A > C K, 4 o2 logn we have the following risk bound for Ohier, -

|65, — 077 < inf (2[|0— 07| + A C(d, ) k(L) o (6)) + C 0%,
’ geRLn,d

REMARK 3.4. For any fized dimension d, when 6* is piecewise polynomial of degree r on a

fat paritition, the above theorem implies a 0(02% log N) bound to the MSE of the ORT
estimator (of order r). Thus, for arbitrary fat partitions in any dimension, ORT attains
our objective of enjoying the near minimaz rate of convergence and being computationally
efficient. For any fized dimension d, this is the first result of its type that we are aware of.

REMARK 3.5. It should be mentioned here that the constant C(d,«) scales exponentially
with d, at least in the construction which is due to de Berg (1995). In any case, recall that
all of our results are meaningful when d is low to moderate.

3.3. Our Results for Dyadic CART. In the previous section, we showed that the ORT

estimator attains the desired O (02%) rate for all 8* adaptively in dimensions d = 1, 2
and for all #* which are piecewise polynomial on a fat partition in all dimensions d > 2.
Since the ORT is more computationally expensive than Dyadic CART, a natural question
is whether there are analogous results for Dyadic CART. In this case, the relevant question
is

Can an arbitrary nonhierarchical partition of Lq,, be refined into a recursive dyadic partition
without increasing the number of rectangles too much?.

When d = 1 or d = 2, we can give an argument to show there exists a recursive dyadic
partition refining a given arbitrary rectangular partition with number of rectangles being
multiplied by a log factor. This is the content of our next result which is proved in Sec-
tion C.3.
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18 CHATTERJEE, S. AND GOSWAMI S.

PROPOSITION 3.9. Given any positive integer n and given a partition II € Pay 1, with k
intervals, there exists a refinement Il € Prap,1,n which is a recursive dyadic partition with
at most Cklog(en/k) intervals where C' > 0 is an universal constant. Equivalently, for all
6 € REvn and all non negative integers r, we have

en

K 0)

(3.1) kD (0) < Ok (6) og

Moreover, given any positive integer n and an arbitrary partition II € Pay o, of Lo, with
k rectangles there exists a refinement I e Prdp,2,n which is a recursive dyadic partition
with at most Ck(logn)? rectangles where C is a universal constant. Equivalently, for all
0 € RL2n and all non negative integers r, we have

(3.2) k")

{10(0) < C(logn)?k) (9).

We have not seen the above result (equation (3.2)) stated explicitly in the Statistics lit-
erature. It is probable that this result is known in the combinatorics or computational
geometry literature. However, since we could locate an exact reference, we provide its proof
in Section C.3.

REMARK 3.6. The exponent of logn, which is 1 for d = 1 and 2 for d = 2, cannot be
improved in general. It is now natural to conjecture that a result like above is true for a
general d where the exponent of logn is d. However, we do not know whether this is true
or not. Our current proof for the d = 2 case breaks down and cannot be extended to higher
dimensions. See Remark C.3 for more explanations on this.

The implication of Proposition 3.9 is the following corollary for Dyadic CART.

COROLLARY 3.10. For d =1 and any integer n, there exists a universal constant C > 0
such that by setting A = CK,.1 o2 logn we have the following risk bound,

(7’)( *) 002

. kD (9
MSE(@Edi)’)\, ") < CKT,102 aHN log (:;(0) logn + T
all

For d = 2 and any integer n, there exists a universal constant C > 0 such that by setting
A=CK,> o2 logn we have the following risk bound,
(7")( *) 2

. k(0
MSE(é\fd;’/\, 0*) < CK,» 02%(1% N)3 + CTU

To summarize, Dyadic CART attains the same rate as the ORT with an extra log NV factor
when d = 1 and with an extra (log N)? factor when d = 2. We do not know whether for
d > 2, a result for Dyadic CART analogous to Theorem 3.8 for fat partitions is possible or
not.
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ADAPTIVE ESTIMATION BY OPTIMAL DECISION TREES 19

4. Results for Multivariate Functions with Bounded Total Variation. In this
section, we will describe an application of Theorem 2.1 to show that Dyadic CART of order
0 has near optimal (worst case and adaptive) risk guarantees in any dimension when we
consider estimating functions with bounded total variation. Let us first define what we mean
by total variation.

Let us think of Ly, as the d dimensional regular lattice graph. Then, thinking of 6 € REdan
as a function on Lg, we define

(4.1) TVE) = > [0u— 0

(uvv)eEd,n

where Eg, is the edge set of the graph Lg,. One way to motivate the above definition is
as follows. If we think 0[iy,...,i,] = f(%,..., %d) for a differentiable function f : [0,1]¢ —
R then the above definition divided by n?! is precisely the Reimann approximation for
f[o,l]d IV f|l1. Of course, the definition in (4.1) applies to arbitrary arrays, not just for

evaluations of a differentiable function on the grid.

The usual way to estimate functions/arrays with bounded total variation is to use the Total
Variation Denoising (TVD) estimator defined as follows:

6\ = argmin (lly = O[> + ATV (0)).
geRLdn

This estimator was first introduced in the d = 2 case by Rudin et al. (1992) for image
denoising. This estimator is now a standard and widely succesful technique to do image
denoising. In the d = 1 setting, it is known (see, e.g. Donoho and Johnstone (1998), Mammen
and van de Geer (1997)) that a well tuned TVD estimator is minimax rate optimal on the
class of all bounded variation signals {6 : TV(0) < V} for V' > 0. It is also known (e.g,
see Guntuboyina et al. (2020), Dalalyan et al. (2017), Ortelli and van de Geer (2018)) that,
when properly tuned, the above estimator is capable of attaining the oracle MSE scaling
like O(%), up to a log factor in N.

In the multivariate setting (d > 2), worst case performance of the TVD estimator has been
studied in Hiitter and Rigollet (2016), Sadhanala et al. (2016). These results show that
like in the 1D setting, a well tuned TVD estimator is nearly (up to log factors) minimax
rate optimal over the class {# € RF4n : TV(0) < V} of bounded variation signals in any
dimension.

The goal of this section is to proclaim that the Dyadic CART estimator gﬁg; ) enjoys similar
statistical guarantees as the TVD estimator and possibly even has some advantages over
TVD which are listed explicitly in Section B.3 (in the supplementary file).

4.0.1. Adaptive Minimazx Rate Optimality of Dyadic CART. We now describe risk bounds
for the Dyadic Cart estimator for bounded variation arrays. Let us define the following class
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20 CHATTERJEE, S. AND GOSWAMI S.
of bounded variation arrays:
Kgn(V)={0€ Lg, :TV(O) <V}

For any generic subset S C [d], let us denote its cardinality by |S|. For any vector z € [n]?
let us define zg € [n]lS! to be the vector z restricted to the coordinates given by S. We now
define

Kin(V) = {0 € Kan(V) : 0(x) = 0(y) Var,y € [n]* with x5 = ys}

In words, K ,(V') is just the set of arrays in K, (V) which are a function of the coordinates
within S 0nl7y. In this section, we will show that the Dyadic CART estimator is minimax
rate optimal (up to log factors) over the parameter space K 5 ,, (V) simultaneously over all
subsets S C [d]. This means that the Dyadic CART performs as well as an oracle estimator
which knows the subset S. This is what we mean when we say that the Dyadic CART
estimator adapts to intrinsic dimensionality. To the best of our knowledge, such an oracle
property in variable selection is rare in Non Parametric regression. The work in Bertin
and Lecué (2008) shows a two step procedure for adapting to instrinsic dimensionality for
multivariate Holder smooth function classes. The only comparable result that we are aware
of for a spatially heterogenous function class is Theorem 3 in Deng and Zhang (2018) which
proves a similar adaptivity result in multivariate isotonic regression.

Fix a subset S C [d] and let s = |S|. Consider our Gaussian mean estimation problem
where it is known that the underlying truth 6* € K ;2 (V). We could think of 6* as nd~*
copies of a s dimensional array 0% € REsn . Tt is easy to check that 0% € Ksn(Vs) where
Vs = ndL,S. Estimating 6* is equivalent to estimating the s dimensional array g where the

d=s elements

noise variance is now reduced to 0% = n‘;—is because we can average over n
per each entry of 65. Therefore, we now have a reduced Gaussian mean estimation problem
where the noise variance is 0% and the parameter space is K, s(Vs). A tight lower bound
to the minimax risk for the parameter space K, (V) for arbitrary n,d,V > 0 is available
in Sadhanala et al. (2016). Using the above logic and this existing minimax lower bound
allows us to establish a lower bound to the minimax risk for the parameter space K CLZ (V).

The detailed proof is given in Section C.

THEOREM 4.1 (Minimax Lower Bound over K§n(V)) Fizx positive integers n,d and let

S C [d] such that s = |S| > 2. Let V > 0 and Vg = #. Similarly, for o > 0, let 0% = n‘;—fs.
There exists a universal constant ¢ > 0 such that

~ % 20 sn’ Vs?®
_ inf sup  Egllf —0*> > end—® min{Us 5 \/1 + log(Uisn), nso, L o2}
gerLd,n QGKdSJL(V) 2s VS S

If |S| =1 then

_inf sup  Eyl|6 — 0> > cn®! min{(c%Vs)?*n'/3 no% nV2}.
feR™dn ge kS (V)
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Let us now explain the above result. If we take the subset S = [d] this is exactly the lower
bound in Theorem 2 of Sadhanala et al. (2016). All we have done is stated the same result
for any subset S since we can reduce the estimation problem in K f (V) to a s dimensional
estimation problem over K, ,(Vs). The bound is in terms of a minimum of three terms.
It is enough to explain this bound in the case when S = [d] as similar reasoning holds for
any subset S with s = |S| > 2. Thinking of o as a fixed constant, the three terms in the
minimum on the right side corresponds to different regimes of V. It can be shown that the
constant array with each entry 7 attains the V2 + 02 rate which is dominant when V is very
small. The estimator ¥ itself attains the No? rate which is dominant when V is very large.
Hence, these regimes of V' can be thought of as trivial regimes. In the nontrivial regime, the

lower bound is ¢ min %\/ 1+ log(%)}.

It is also known that a well tuned TVD estimator is minimax rate optimal, in the nontrivial
regime, over K, (V) for all d > 2, up to log factors; see Hiitter and Rigollet (2016). For
instance, it achieves the above minimax lower bound (up to log factors) in the nontrivial
regime. For this reason, we can define an oracle estimator (which knows the set S) attaining
the minimax lower bound over K3 (V) in Theorem 4.1, up to log factors. The oracle
estimator would first obtain 3¢ by alveraging the observation array y over the coordinates
in S¢ and then it would apply the s dimensional TVD estimator on 7g. Our main point
here is that the Dyadic CART estimator performs as well as this oracle estimator, without
the knowledge of S. In other words, its risk nearly (up to log factors) matches the minimax
lower bound in Theorem 4.1 adaptively over all subsets S C [d]. This is the content of our
next theorem which is proved in Section C (in the supplementary file).

THEOREM 4.2 (Adaptive Risk Bound for Dyadic Cart). Fiz any positive integers n,d.
Let 6* € Kin(oo) be the underlying truth where S C [d] is any subset with |S| > 2. Let

V*=TV(0%). Let Vg = % and 0% = ng—fs be defined as before. The following risk bound

holds for the Dyadic CART estimator /Q\Egim with A\ > Co?log N where C is an absolute
constant.

Eg-

gfgz))\ —0*)|2 < Cn?* min{osVlog N, 0% log N, ((V§)2 + 0’%)}
In the case |S| =1 we have

Ee*”é\gg]);),)\ —0*]]2 < Cn%! min{(c2Vslog N)?*n'/3 noZlogN,n Ve + clog N}

We think the following is an instructive way to read off the implications of the above
theorem. Let us consider d > 2 and the S = [d] case. We will only look at the nontrivial
regime even though Dyadic CART remains minimax rate optimal, up to log factors, even
in the trivial regimes. In this case, M SE(@ESL W) = 5(%) which is the minimax rate
in the nontrivial regime as given by Theorem 4.1. Now, for many natural instances of 6*,
the quantity V* = O(n?1); for instance if §* are evaluations of a differentiable function
on the grid. This O(n?!) scaling was termed as the canonical scaling for this problem
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by Sadhanala et al. (2016). Therefore, under this canonical scaling for V* we have

% ~ 0 ~, O
MSE(@E%A,G ) = O(ﬁ) = O(w)-

Now let us consider d > 2 and a general subset S C [d]. In the nontrivial regime, by
Theorem 4.2 we have MSE(@ESIL,A’ 0*) = 5(051—‘9/5*) which is also the minimax rate over the
parameter space K i o Now, V& = O(n*~1) under the canonical scaling in this case. Thus,
under this canonical scaling we can write

0) N _ ~/05y 7, 08
MSE(HrdpM\,Q ) = O(?) = O(Nl/d).
This is very similar to the last display except ¢ has been replaced by og, the actual standard
deviation of this problem. The point is, the Dyadic CART attains this rate without knowing
S. The case when |S| =1 can be read off in a similar way.

5. Results for Univariate Functions of Bounded Variation of Higher Orders. In
this section, we show another application of Theorem 2.1 to a family of univariate function
classes which have been of recent interest. The results in this section would be for the
univariate Dyadic Cart estimator of some order » > 0. As mentioned in Section 1, TV
denoising in the 1D setting has been studied as part of a general family of estimators
which penalize discrete derivatives of different orders. These estimators have been studied
in Mammen and van de Geer (1997) , Steidl et al. (2006), Tibshirani (2014), Guntuboyina
et al. (2020) and Kim et al. (2009) who coined the name trend filtering.

To define the trend filtering estimators here, we first need to define variation of all orders.
For a vector § € R", let us define D) (0) = 9, DV (0) = (2—61,...,0, —0,_1) and D) (),
for r > 2, is recursively defined as D) (#) = DM (D=1 (4)). Note that D) (h) € R,
For simplicity, we denote the operator DM by D. For any positive integer r > 1, let us also
define the r th order variation of a vector 6 as follows:

(5.1) vV(0) =n"DO(0)4
where |.|; denotes the usual #; norm of a vector. Note that V(1)(8) is the usual total variation

of a vector as defined in (4.1).

REMARK 5.1.  The n"~! term in the above definition is a normalizing factor and is written
following the convention adopted in Guntuboyina et al. (2020). If we think of 0 as evaluations
of a r times differentiable function f : [0,1] — R on the grid (1/n,2/n...,n/n) then the
Reimann approximation to the integral f[o,l] FON(t)dt is precisely equal to V) (9). Here f()
denotes the rth derivative of f. Thus, for natural instances of 8, the reader can imagine that

V) =0(1).

Let us now define the following class of sequences for any integer r > 1,

(5.2) BV (V) ={0eR": V() <V}
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Trend Filtering (of order r > 1) estimators are defined as follows for a tuning parameter
A>0:
Oy = argmin (ly 0] + AV (9)).

Thus, Trend Filtering is penalized least squares where the penalty is proportional to the ¢
norm of D) (). As opposed to Trend Filtering, here we will study the univariate Dyadic
CART estimator (of order r — 1) which penalizes something similar to the ¢y norm of
D)(@). The results presented in this section will show that the Dyadic CART (of order
r — 1) compares favourably with Trend Filtering (of order r) in several aspects as listed in
Section B.4 (in the supplementary file).

5.0.1. Risk Bounds for Univariate Dyadic CART of all orders. We start with the bound
of n=2r/(2r+1) for the risk of Dyadic CART of order r — 1 for the parameter space BV%T)(V).
We also explicitly state the dependence of the bound on V' and o.

THEOREM 5.1 (Slow Rate for Dyadic CART). Fiz a positive integer r. Let V" (6*) = V.
For the same constant C' as in Theorem 2.1, if we set A > Co?logn we have

2y/1/r
(5.3) MSE@0),0%) < CT(w)w/(zm) N CTO_QIO%

where C,. is an absolute constant only depending on r.

REMARK 5.2.  The proof of the above theorem is done in Section C' (in the supplementary
file). The proof proceeds by approximating any 6 € BV,(I)(V) with a vector 0 which is
piecewise polynomial of degree r — 1 with an appropriate bound on its number of pieces and
then invoking Theorem 2.1.

REMARK 5.3.  The above theorem shows that the univariate Dyadic CART estimator of
order r — 1 is minimax rate optimal up to the (log n)2r/(2r+1) factor. The dependence of V
1s also optimal in the above bound. Up to the log factor, this upper bound matches the bound
already known for the Trend Filtering estimator of order r; (see e.g, Tibshirani (2014)).

Our next bound shows that the univariate Dyadic CART estimator achieves our goal of
attaining the oracle risk for piecewise polynomial signals.

THEOREM 5.2 (Fast Rates for Dyadic CART). Fix a positive integer r and 0 < 6 < 1. Let
V7(6*) = V. For the same constant C as in Theorem 2.1, if we set A > Co?logn we have

(1+90)
(1-9)

2

N+Csa—s

C, k(r) en

16— 6%|1> + an (0) log(
Lo kgl) (0)

B — 071" < jinf |

where C;. 1s an absolute constant only depending on r. As a corollary we can conclude that

(r) ( p* en
k(0 )lognlog(k;me*))

MSE®) ,,0%) < Cro®

n
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PrOOF. The proof follows directly from the risk bound for univariate Dyadic Cart given
in Theorem 2.1 and applying equation (3.1) in Lemma C.3 which says that kﬁg;(&) <

(r) en n
ko (0) log(kgl>(9)) for all vectors 6 € R™. O

Let us now put our result in Theorem 5.2 in context. It says that in the d = 1 case,
Dyadic CART achieves our goal of attaining MSE scaling like 5(14:;“1) (0*)/n) (fast rate)
for all 8*. The Trend Filtering estimator, ideally tuned, is also capable of attaining this
rate of convergence; (see Theorem 3.1 in van de Geer and Ortelli (2019) and Theorem 2.1
in Guntuboyina et al. (2020)), under certain minimum length conditions on 6*. However,
Dyadic CART does not need such minimum length conditions for the fast rate to hold.
This issue is discussed in more detail in Section B.5 (in the supplementary material) which
includes comparisons between Theorem 5.2 and the comparable result known for Trend
Filtering.

SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Adaptive Estimation of Multivariate Piecewise
Polynomials and Bounded Variation Functions by Optimal Decision Trees”

(). This supplementary material contains simulations, discussion about our results and the
proofs of our theorems and auxiliary results.
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