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Abstract—Ensemble-based machine learning aims to obtain
generalized prediction outcomes improving predictive perfor-
mance by combining multiple neural network models. The suc-
cess of ensemble-based machine learning in providing accurate
predicted regions has been widely presented in many research
areas, but it is rarely investigated in the field of histopathology
image analysis. In this paper, we propose a class probability-
guided ensemble learning method that aims to enhance the
effectiveness of semantic segmentation on cancer-related regions
in histopathological images. The proposed method combines the
prediction probabilities of ensemble-based semantic segmentation
with the prediction probabilities of weighted ensemble-based
image classification. Ensemble-based semantic segmentation is
conducted by averaging from five backbone networks, ResNet18,
ResNet50, Mobilenetv2, Xception, and InceptionResNetv2 from
the DeepLabv3 model. Weighted ensemble-based image classifica-
tion is conducted by computing the weighted averages from five
different semantic segmentation models: GoogLeNet, AlexNet,
InceptionResNet, VGG16, and ResNet50. The performance of the
proposed method was evaluated and comprehensively analyzed
using the BCSS dataset including cancer-related hematoxylin and
eosin images and immune-related hematoxylin and eosin images.
The results show that the proposed methods outperform the state-
of-the-art semantic segmentation models in terms of accuracy, F1
measure, and IoU evaluation metrics.

Index Terms—deep learning, ensemble learning, semantic im-
age segmentation, image classification, histopathology

I. INTRODUCTION

The recent success of artificial intelligence (AI) provides

evidence based on the effectiveness of data-driven approaches

in a variety of research societies [1]. AI-guided data-driven

approaches have been a crucial rule for both accurate iden-

tification and rapid classification of target subjects in a large

amount of data [2]. Among AI-guided data-driven approaches,

deep learning models have received much attention because

of their ability to capture specific characteristics defining the

target subjects’ presence by learning features from the data,

introducing new evidence-based methods. Deep learning mod-

els and their applications have impacted our society positively

and delivered significant portions of information leading to the

creation of new technologies [3].

Traditional deep learning-based models have mainly used

multiple layers to create a seamless architecture and repeat

an iterative process to obtain optimized ones. LeNet [4], a

multilayer neural network, has received a lot of attention

because this 7-layered neural network applies to various sit-

uations such as audio recognition and visual analysis. Com-

pared with LeNet, AlexNet [5] using five convolutional layers

and three fully connected layers achieved the top-five error

rate in an ImageNet challenge which is a large consecutive

visual recognition project containing millions of images and

20,000 categories. A very deep convolutional network for

large-scale image recognition called VGG [6] investigated the

deep neural network by increasing the network depth more,

showing a significant improvement on the ImageNet challenge.

A Residual Neural Network called ResNet [7] presented an

alternative way to avoid the network burden by skipping

the network connections so that training is easier than the

previous network even though the ResNet layers are deeper

than VGG. These traditional deep learning models have been

separately adopted in different fields of studies leading to

better performance results [8]. Our paper aims to address

the combination of different deep-learning models in image

classification problems.

While the traditional deep learning-based models categorize

one image into one single label, the semantic deep learning-

based models focus on predicting each pixel of an image

region as a class label. Fully convolutional networks called

FCN [9] are a semantic deep learning algorithm performing

a semantic segmentation transforming a pixel to a class

label. FCN runs on the forward and backward learning tasks
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following existing image classification networks, but it takes

advantage of adding skip connections in a decoder module of

the upper sampling layer providing fine-grain details of image

shapes. U-Net [10] extended the FCN’s decoder module by

enabling more accurate localization through its symmetric net-

work shape. Over the years, it has undergone several iterations,

with DeepLabV3 [11] representing one of the latest and most

advanced versions. The primary objective of DeepLab is to

perform semantic segmentation with exceptional precision. It

achieves this by accurately assigning class labels to each pixel

in an image, thereby enabling precise object localization and

segmentation. A key feature of DeepLab is its extensive use

of dilated convolution, often referred to as dilated convolution

[12]. Our paper adopts the advantage of DeepLab’s backbone

networks for semantic image segmentation.
Deep learning-based models often suffer from the general-

ization problem; deep learning fundamentally does not provide

general explanations equally because there is a gap between

the losses of the training set and the test set. The ensemble-

based approaches have been introduced as an alternative way

to avoid the generalization problem by combining multiple

models in one problem. Although these ensemble-based ap-

proaches have already matured in various fields, they are not

fully investigated in digital pathology because domain experts

target specific clinical and pathologic features by taking a

special deep-learning algorithm assisting their works.
In this paper, we propose a class probability-guided en-

semble learning method that aims to not only increase the

effectiveness of semantic image segmentation but also avoid

the problem of generalization in predicting cancer-related re-

gions in the histopathology image data. The proposed method

integrates the predictions of ensemble-based semantic seg-

mentation with the predictions of weighted ensemble-based

image classification by multiplying the class probabilities by

the pixel probabilities. Ensemble-based semantic segmentation

is conducted by averaging from five backbone networks,

ResNet18, ResNet50, Mobilenetv2, Xception, and Inception-

ResNetv2 from the DeepLabv3 model. Weighted ensemble-

based image classification is conducted by computing the

weighted averages from five different semantic segmentation

models: GoogLeNet, AlexNet, InceptionResNet, VGG16, and

ResNet50.
Out contribution of the paper can be summarized as follows:

• Accuracy: The proposed method was evaluated on two

different cancerous regions: tumor and tumor-infiltrate

lymphocytes of hematoxylin and eosin images across

five state-of-the-art deep learning architectures and two

traditional ensemble learning methods. The prediction

results of the proposed method outperform those results

predicted by the traditional learning methods.

• Generalization: The framework of the proposed method

is based on ensemble-based approaches and can provide

a technical way to avoid the generalization problem by

taking prediction probabilities from different models.

• Validity: The use of the proposed ensemble-based meth-

ods on both image classification and semantic image

segmentation was validated by comparison with state-

of-the-art deep learning models. Our Ensemble-based

methods can provide more accurate predictions of the

cancerous regions.

• Explainability: The visual representation of Grad-CAM

was compared with the probability map of the proposed

method on cancer-related images and immune-related

images. We observed that the predictions of our method

well follow the explainability of the Grad-CAM.

II. RELATED WORKS

Ensemble learning is a valuable technique in semantic image

segmentation with diverse applications, notably in medical

image analysis. It plays a pivotal role in accurately detecting

anomalies within medical images, benefiting both patients and

healthcare professionals. Ensemble methods offer a promising

strategy to enhance the precision and reliability of semantic

image segmentation models [13]. By thoughtfully aggregating

predictions from multiple models, ensemble techniques effec-

tively address critical challenges like overfitting and sensitivity

to initial conditions. In the context of semantic image seg-

mentation, ensemble learning can combine different backbone

architectures (e.g., ResNet, DenseNet) and models trained with

various loss functions, augmentations, and hyperparameters

[14]. The degree of performance improvement through en-

sembling depends on the diversity of the individual models,

with models exhibiting uncorrelated errors typically yielding

better results when combined. For even more precise results,

weighted ensembling, based on model uncertainty or confi-

dence, can be employed to improve performance compared

to simple averaging. In this approach, models receive higher

weights in regions where they demonstrate greater certainty.

It’s important to recognize that ensemble learning significantly

boosts segmentation accuracy by harnessing the strengths of

diverse models.

Ensemble learning in histopathology image analysis is a

valuable approach that enhances diagnostic and prognostic

models’ accuracy and reliability, particularly in the context of

pathology and cancer diagnosis [15]. Histopathology, which

involves the microscopic examination of tissue samples to

detect abnormalities, relies on ensemble techniques to ensure

dependable and consistent results. In histopathology image

analysis, ensemble learning entails combining multiple ma-

chine learning or deep learning models to create a more

accurate diagnostic system [16]. These models may be trained

using distinct data subsets, techniques, or architectures to

reduce diagnostic errors and improve predictions. Ensemble

learning is commonly applied to tissue classification tasks,

where models identify various tissue structures, cellular com-

ponents, or pathologies in microscopic images. By aggregating

multiple models’ outputs, ensemble techniques provide more

precise and robust classification results. The majority voting or

weighted averaging determines the final class label for a given

image region. Ensemble learning is particularly valuable in

reducing false positives and false negatives in histopathology

image analysis, ensuring that different models complement
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Fig. 1. The overall process of the class probability-guided ensemble learning-based semantic image segmentation for H&E digital whole slide images.
Breast invasive carcinoma (BRCA) images are obtained from 20x magnification whole slide images ( 1.5 GB each). Fixed-sized images including 400
cancer-related images and immune-related images are randomly selected for training five deep learning models (VGG16, ResNet50, AlexNet, GoogleLetNet,
and InceptionResNet) for image classification as well as for training DeepLabv3 with five backbones (ReNet18, ResNet50, MibilNetv2, Xception, and
InceptionResnet) for semantic image segmentation. Ensemble-based learnings are performed for both image classification and semantic image segmentation.
The binary mask for either cancer-related image or immune-related image is created by using the class probabilty-guided ensemble learning method (PgEns).

each other’s strengths and compensate for their weaknesses.

This contributes to a balanced and reliable diagnostic outcome,

minimizing unnecessary medical interventions and missed

diagnoses. Ensemble learning’s utility extends to tasks such as

tumor detection and grading. By combining models trained to

recognize specific tumor characteristics, ensemble techniques

provide comprehensive and accurate tumor assessments. This

approach finds promising applications in pathology, cancer

research, and other critical areas of medical diagnostics reliant

on accurate image-based assessments.

III. CLASS PROBABILITY-GUIDED ENSEMBLE LEARNING

FOR SEMANTIC IMAGE SEGMENTATION

A. DeepLabV3 and its five backbone networks

The proposed class probability-guided ensemble learning

method uses five backbone networks of DeepLabV3 and a

weighted ensemble learning model generated by five deep

neural network models: GoogLeNet, AlexNet, InceptionRes-

Net, VGG16, and ResNet50. In this section, we describe

DeepLabV3 and its five backbone networks on the semantic

image segmentation problem. DeepLabV3 is one of the latest

iterations in the DeepLab series and has demonstrated that

it provides notable improvements to enhance its performance

and applicability in the realm of semantic segmentation. For

H&E image segmentation, we extend DeepLab’s versatility to

ensemble learning, allowing the combination of predictions

from multiple backbone networks for heightened segmenta-

tion accuracy and overall robustness, particularly valuable in

precision-demanding scenarios [17]. This multi-class seman-

tic segmentation model is expected to excel beyond binary

categorization (i.e., tumor vs. nontumor). In this paper, we

adopt the advantages of DeepLab and its backbone networks

to predict both cancer-related images and immune-related

images. The first backbone network is ResNet18 renowned

for its compact yet powerful design. Comprising 18 layers, it

has made significant contributions to various computer vision

tasks, including semantic segmentation. This model’s strength

lies in its capacity to capture intricate image features, primar-

ily through the utilization of skip connections and residual

blocks. These innovative connections allow us to mitigate

vanishing gradient issues and effectively facilitate the train-

ing of exceedingly deep networks. In DeepLabV3, ResNet18

assumes a foundational role by serving as the initial feature

extractor. The feature extraction capabilities of ResNet18 can

significantly contribute to this complex task by providing a

rich and comprehensive representation of the input data. Its

design is adept at capturing both low-level and high-level

features, ensuring that crucial image details are meticulously

preserved throughout the entire segmentation process. We

used ResNet50 as another backbone network of DeepLabV3,

bringing deep residual power to the forefront for precise

semantic segmentation. ResNet50 contains a 50-layer deep

residual neural network architecture for capturing complex

patterns and intricate details within the input data. With its

depth, ResNet50 is expected to excel in extracting high-level

features that contribute to the model’s nuanced understanding

of the content within images. Its role within the DeepLabV3

framework extends beyond foundational feature extraction,

as it provides a deep and intricate foundation upon which

the segmentation model is built. In scenarios where in-depth

analysis and segmentation precision are paramount, We used

Mobilenetv2 as another backbone network of DeepLabV3.

Its lightweight architecture is tailored to provide an optimal

balance between efficient feature extraction and resource op-

timization [18]. This feature makes Mobilenetv2 an excellent

choice in scenarios where computational resources are limited.

Despite its focus on efficiency, Mobilenetv2 excels in feature

extraction, capturing valuable insights into the input data’s

content. This contribution enhances DeepLabV3’s flexibility,

allowing it to address semantic segmentation tasks in resource-

constrained environments. With Mobilenetv2 as one of its

backbone networks, DeepLabV3 gains an added dimension

of adaptability and accessibility. We also used Xception as a

backbone network of DeepLabV3. Xception’s primary role is
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to capture intricate and fine-grained details present in the input

data, making it an invaluable asset in semantic segmentation

tasks that demand comprehensive feature extraction. Xcep-

tion’s extensive architecture is designed to excel at extracting

high-level features and intricate patterns from images. This

capability enriches DeepLabV3’s understanding of image [19]

content, enabling it to recognize and delineate objects and

scenes with a high degree of precision. Xception’s role ex-

tends beyond mere feature extraction; it provides DeepLabV3

with the depth required to handle complex visual scenarios

and objects. We assume that Xception’s depth and complex-

ity can ensure that DeepLabV3 performs exceptionally well

in semantic segmentation tasks. Xception’s contribution to

the DeepLabV3 architecture is fundamental, enhancing the

model’s capability to deliver precise and detailed segmen-

tation results, thus establishing its status as a critical and

indispensable component within the DeepLabV3 framework.

InceptionResNetV2 is the last backbone network used on

DeepLabV3. InceptionResNetV2 can perform both intricate

feature extraction and capture multi-scale contextual informa-

tion, a combination that significantly enhances the overall per-

formance of DeepLabV3. With its deep neural network archi-

tecture and inception-style modules, InceptionResNetV2 [20]

contributes to the precise semantic segmentation capabilities

of DeepLabV3. Its role as one of the five backbone networks

further reinforces DeepLabV3’s position as a leading model

for semantic segmentation. InceptionResNetV2’s combination

of depth and inception modules makes it a valuable asset

in the model’s architecture, ensuring accurate and detailed

segmentation, and marking it as a critical contributor to the

success of DeepLabV3.

B. Weighted ensemble learning

In this section, we define the proposed weighted en-

semble learning on the image classification problem. Let

B = {b1, b2, . . . , bn} be the set of base classifiers, W =
{w1, w2, . . . , wn} be the set of weights assigned to the clas-

sifiers, and L = {l1, l2, . . . , lm} be the set of class labels,

where n is the number of base classifiers and m is the number

class labels. Given image I , the probability distribution for

each base classifier ci is defined as p(bi(I) = lk), where lk
is a kth class label for ith classifier. The proposed weighted

ensemble learning method combines the predictions of seven

base classifiers for pixel-based image segmentation using the

weighted method. The probability of the weighted ensemble

learning classifier is computed by the weighted sum of class

probabilities and its decision is made as below:

argmax
lk

n∑

n=1

wip(bi(I) = lk) (1)

The weight wi is determined by using greed search op-

timization to maximize the performance of the weighted

ensemble learning. In this paper, a grid search algorithm is

used to find the optimized weights.

C. Class probability-guided ensemble learning

In this section, we define the proposed overlay-guided

weighted ensemble learning. Let I be the input image, C
be the class probability of I , and S be the segmentation

map where each pixel belongs to a class label. The weighted

ensemble learning model for image segmentation can provide

S as a probability map for I , while another weighted ensemble

learning model for image classification can provide C as a

class probability for I . The new semantic map Ŝ through

overlay-guided weighted ensemble learning is defined as:

Ŝ = CiSx,y (2)

, where x and y are the pixel coordinates of an image I ,

and Ci is the ith class probability on the image classification.

The overall process of the proposed method is described in

Fig. 1.

D. Data augmentation

Our work aims to assign a semantic label to each pixel in a

histopathology image to tackle the problem of generalization

of each deep neural network model by taking advantage of

ensemble learning. We define an augmented image as T (I),
where I is the input image and T (·) is a transformation

function corresponding to the augmentation. To strengthen the

proposed method in terms of generalization, we extended our

training on augmented images for each classifier (i.e., rotation

angle between -5 and 5, x and y reflection, and shearing in

the range of -0.05 and 0.05 degrees).

IV. EXPERIMENT

A. Tumor image classification on H&E images

Datasets: The dataset used in the tumor classification prob-

lem is collected from the Breast Cancer Semantic Segmenta-

tion (BCSS) dataset [21]. BCSS dataset consists of 151 H&E

breast cancer slides obtained from the Digital Slide Archive

[22]. A total of 25 participants including senior residents,

junior residents, and medical students of pathology annotated

151 images following the annotation review process. We used

200 tumor-related images sized 256x256 randomly extracted

from the 151 images. Tumor images are labeled as ‘tumor’

if the percentage of tumor regions is greater than or equal to

70% in the annotated images, while others are labeled as ‘non-

tumor’. The images are split into training, validation, and test

sets with 60%, 20%, and 20% of images respectively.

Baselines and Metrics: We compare three ensemble meth-

ods, average-based ensemble (AvgEns), maximum-based en-

semble (MaxEns), and weighted-based ensemble (Weighte-

dEns), to five deep convolutional neural network models in-

cluding AlexNet [5], GoogLeNet [23], InceptionResNet [20],

VGG16 [6], and ResNet50 [7]. We use well-known evaluation

metrics such as Precision (PREC.), Recall (REC.), Specificity

(SPEC.), Accuracy (ACC.), and F1 score (F1) to evaluate the

performance of the classification methods. PREC. is the ratio

of correctly classified images to the total number of images.

REC. is the ratio of correctly classified images to the total
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Fig. 2. Comparison of the proposed method (PgEns) on the BCSS dataset using tumor-predicted images. The proposed PgEns shows better results than the
baseline and other ensemble learning methods. The details are shown in the red boxes.

number of images correctly classified. SPEC. is the ratio of

incorrectly classified images to the total number of incorrectly

classified images. F1 is the combination of PREC. and REC.
We created a confusion matrix to compute the evaluation

matrix; PREC. = TP/(TP+FP), REC.= TP/(TP+FN), SPEC.=
TN/(TN+FP), F1 = 2* PREC.* REC./( PREC.+ REC.), where

TP is the number of true positive images, FP is the number

of false positive images, FN is the number of false negative

images, and TN is the number of true negative images. We

separate the images into two groups: tumor and non-tumor

and set the threshold to 0.5 classifying a binary outcome.

Results. Table 1 shows that WeightedEns outperforms both

traditional deep convolutional neural network models and

traditional ensemble learning in terms of PREC., SPEC., ACC.,
and F1. We found that the results of GoogLeNet are identical

to the ones from InceptionResNet and ResNet50. This is

because the results of the confusion matrix of the models are

the same: TP(16), FP(1), FN(4), and TN(19). WeightedEns

shows an average precision of 0.8636, an average specificity of

0.8500, and an average F1 score of 0.9048. MaxEns, instead,

leads to improved results on recall of 1.0000. The overall

performance is measured by using F1, indicating that the

WeightedEns produces the best performance results on the

tumor classification.

TABLE I
RESULTS OF TUMOR IMAGE CLASSIFICATION

Model PREC. REC. SPEC. ACC. F1
AlexNet [5] 0.8182 0.9000 0.8000 0.8500 0.8571

GoogLeNet [23] 0.8261 0.9500 0.8000 0.8750 0.8837
InceptionResNet [20] 0.8261 0.9500 0.8000 0.8750 0.8837

ResNet50 [7] 0.8261 0.9500 0.8000 0.8750 0.8837
VGG16 [6] 0.7917 0.9500 0.7500 0.8500 0.8636

AvgEns 0.7600 0.9500 0.7000 0.8250 0.8444
MaxEns 0.7143 1.0000 0.6000 0.8000 0.8333

WeightedEns 0.8636 0.9500 0.8500 0.9000 0.9048

B. Tumor semantic image segmentation on H&E images

Datasets: The dataset used in the tumor image seman-

tic segmentation problem is collected from the same BCSS

dataset. We used the same images (200) as the tumor image

classification, but the entire annotated regions were used rather

than classifying the images into tumor or non-tumor. Every

pixel is labeled as either ‘tumor’ or ‘non-tumor’. The images

are split into training, validation, and test sets with 60%, 20%,

and 20% of images respectively.

Baselines and Metrics: We compare three ensemble

methods, average-based ensemble (AvgEns), maximum-based

ensemble (MaxEns), and class probability-guided ensemble

(PgEns), to five DeepLabv3-backboned models: ResNet18 [7],

ResNet50 [7], MobilNetv2 [24], Xception [25], and Inception-

ResNet [20]. We use PREC., REC., ACC., F1, and Intersection

Over Union (IoU) to evaluate the performance of the image

segmentation methods.

Results: Table 2 shows that the PgEns outperforms both

traditional deep convolutional neural network models and

traditional ensemble learning in terms of REC., ACC., F1,

and IoU. In particular, the MaxEns shows the best on PREC.,
but it shows the worst on REC. These results concrete the

reason why the F1 is necessary to evaluate the performance of

models. Likewise, AvgEns leads to improved results compared

with other deep convolutional neural network models, but

PgEns shows the best overall performance. Assuming that

the overall performance is measured by using F1 and IoU,

we conclude that the PgEns produces the best performance

results on the tumor image semantic segmentation. The pre-

diction comparisons between semantic segmentation models

are shown in Fig. 2.

TABLE II
RESULTS OF TUMOR IMAGE SEMANTIC SEGMENTATION

Model PREC. REC. ACC. F1 IoU
ResNet18 [7] 0.9471 0.8761 0.9045 0.9102 0.8352
ResNet50 [7] 0.9685 0.8614 0.9042 0.9118 0.8380

MobilNetv2 [24] 0.9503 0.8862 0.9122 0.9171 0.8469
Xception [25] 0.9638 0.8606 0.9016 0.9092 0.8336

Incep.ResNet [20] 0.9245 0.8958 0.9064 0.9099 0.8348
MaxEns 0.9929 0.8077 0.8755 0.8908 0.8031
AvgEns 0.9673 0.8847 0.9188 0.9242 0.8590
PgEns 0.9626 0.8924 0.9215 0.9261 0.8625

C. TILs image classification on H&E images

Datasets: The dataset used in the TILs image semantic

segmentation problem is also collected from the same BCSS
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Fig. 3. Comparison of the proposed method (PgEns) on the BCSS dataset using TILs predicted images. The proposed PgEns shows better results than the
baseline and other ensemble learning methods. The details are shown in the red boxes.

dataset. However, we used 200 tumor-infiltrated lymphocytes

(TILs) images sized 256x256 randomly extracted from the 151

images. The images are labeled as ‘tils’ if the percentage of

tumor regions is greater than or equal to 70% in the annotated

images, while others are labeled as ‘non-tils’. The images are

split into training, validation, and test sets with 60%, 20%,

and 20% of images respectively.

Baselines and Metrics: The baselines and the evaluation

metrics are the same as the tumor image classification.

Results Table 3 shows that both VGG16 and Weighte-

dEns outperform traditional deep convolutional neural network

models as well as traditional ensemble learning in terms

of PREC., SPEC., ACC., and F1. Unlike WeightedEns only

showed the best results on the tumor image classification, both

VGG16 and WeightedEns showed the best results on TILs

image classification. These results create an open question

‘Is ensemble learning always producing the best results?’ for

image classification. From this experiment, we are not able to

determine whether the ensemble-based learning in TILs image

classification provides the best performance results or not. In

this paper, we further experimented on TILs image seman-

tic segmentation using the class probability-guided ensemble

learning.

TABLE III
RESULTS OF TILS IMAGE CLASSIFICATION

Model PREC. REC. SPEC. ACC. F1
AlexNet [5] 0.8571 0.9000 0.8500 0.8750 0.8780

GoogLeNet [23] 0.8947 0.8500 0.9000 0.8750 0.8718
Incep.ResNet [20] 0.7895 0.7500 0.8000 0.7750 0.7692

ResNet50 [7] 0.9375 0.7500 0.9500 0.8500 0.8333
VGG16 [6] 0.9474 0.9000 0.9500 0.9250 0.9231

AvgEns 0.9412 0.8000 0.9500 0.8750 0.8649
MaxEns 0.7308 0.9500 0.6500 0.8000 0.8261

WeightedEns 0.9474 0.9000 0.9500 0.9250 0.9231

D. TILs semantic image segmentation on H&E images

Datasets: The dataset used in the TILs image semantic seg-

mentation problem is collected from the same BCSS dataset.

The images are the same as the TILs image classification.

However, the entire annotated regions were used rather than

classifying the images into tils or non-tils. Every pixel is

labeled as either ‘tils’ or ‘non-tils’. The images are split into

training, validation, and test sets with 60%, 20%, and 20% of

images respectively.

Baselines and Metrics: The baselines and the evaluation

metrics are the same as the tumor image semantic segmenta-

tion classification.

Results: Table 4 shows that the PgEns outperforms both

traditional deep convolutional neural network models and

traditional ensemble learning in terms of ACC., F1, and IoU.

The MaxEns showed the best results on PREC., but it showed

the worst results on REC. These results also concrete the

reason why the F1 is necessary to evaluate the performance

of models. The Xception showed the best results on REC., but

the model showed the lowest results on IoU. Assuming that

the overall performance is measured by using F1 and IoU,

we conclude that the PgEns produces the best performance

results on the TILs image semantic segmentation. The predic-

tion comparisons between semantic segmentation models are

shown in Fig. 3.

TABLE IV
RESULTS OF TILS IMAGE SEMANTIC SEGMENTATION

Model PREC. REC. ACC. F1 IoU
ResNet18 [7] 0.8397 0.8779 0.8736 0.8583 0.7518
ResNet50 [7] 0.8397 0.8779 0.8736 0.8583 0.7518

MobilNetv2 [24] 0.8126 0.8964 0.8717 0.8524 0.7428
Xception [25] 0.7933 0.9067 0.8685 0.8462 0.7334

Incep.ResNet [20] 0.8371 0.8919 0.8794 0.8636 0.7600
MaxEns 0.9389 0.8202 0.8782 0.8755 0.7786
AvgEns 0.8547 0.9030 0.8918 0.8782 0.7828
PgEns 0.9256 0.8508 0.8920 0.8866 0.7964

E. Explainability of the proposed method on cancer-related
cells and immune-related cells

We further investigated the explainability of the proposed

method on cancer-related cells (Tumor) and immune-related

cells (TILs) by using an explainable artificial intelligence

(XAI). Gradient-weighted class activation mapping (Grad-

CAM) is an XAI technique that represents an enhanced al-

gorithm of class activation mapping (CAM) [26], an approach

used to generate heat maps highlighting critical image re-

gions influencing the classification decisions of Convolutional

54



Fig. 4. Explainable AI is compared with the probability map of the
proposed method (PgEns). The heatmaps of the explainable AI show the
visual explanation of the model, while the probability maps generated by the
proposed method show the class probabilities of tumor and TILs respectively.

Neural Networks (CNNs). Unlike its predecessors, such as

CAM, saliency maps, and Grad-CAM++, Grad-CAM reveals

its superiority in the localization of abnormalities in medical

images [27]. It accomplishes such excellence by producing

more focused and concentrated heatmaps that effectively de-

lineate the boundaries between CNN-identified abnormalities

and unaffected normal tissue, thereby enhancing classification

accuracy. These heatmaps provide a comprehensive visual-

ization of the collective topological importance of image

features while analyzing the final CNN layer. We followed

the Grad-CAM process that entails computing gradient scores

for each label for feature map activations from a CNN layer.

Subsequently, these gradient scores are averaged along both

width and height dimensions to derive numeric importance

scores. These importance scores are then multiplied by the

feature map activation function of the last CNN layer. Then,

it is followed by the application of the Rectified Linear

Unit (ReLU) function to filter out and emphasize significant

influences with image classification. Fig. 4 shows the visual

comparison with the Grad-CAM generated predictions and

the predictions generated by the proposed method (PgEns)

on cancer-related image and immune-related images. We ob-

served a robust concurrence between the prediction probability

maps generated by the proposed method and Grad-CAM visu-

alizations, further enhancing the explainability of the process

of our ensemble-based semantic segmentation.

V. CONCLUSION

In this paper, we proposed a class probability-guided en-

semble learning method for histopathology image segmen-

tation. The proposed method combines the predictions of

ensemble-based semantic segmentation with the predictions of

weighted ensemble-based image classification by multiplying

the class probabilities by the pixel probabilities. Five back-

bone networks, ResNet18, ResNet50, Mobilenetv2, Xception,

and InceptionResNetv2, were ensembled in the DeepLabv3

model to perform semantic image segmentation, while five

deep neural networks: GoogLeNet, AlexNet, InceptionResNet,

VGG16, and ResNet50, were used for performing a weighted

ensemble-based image classification. Our experiment results

show that the proposed method outperforms the traditional

deep learning models as well as the traditional ensemble

learning methods, avoiding the generalization problem by

taking prediction probabilities from different models. We also

compared the prediction probability maps with the visual

representation of Grad-CAM on both cancer-related images

and immune-related images, observing that the predictions of

our method follow the explainability of the Grad-CAM.
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