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Abstract—Ensemble-based machine learning aims to obtain
generalized prediction outcomes improving predictive perfor-
mance by combining multiple neural network models. The suc-
cess of ensemble-based machine learning in providing accurate
predicted regions has been widely presented in many research
areas, but it is rarely investigated in the field of histopathology
image analysis. In this paper, we propose a class probability-
guided ensemble learning method that aims to enhance the
effectiveness of semantic segmentation on cancer-related regions
in histopathological images. The proposed method combines the
prediction probabilities of ensemble-based semantic segmentation
with the prediction probabilities of weighted ensemble-based
image classification. Ensemble-based semantic segmentation is
conducted by averaging from five backbone networks, ResNet18,
ResNet50, Mobilenetv2, Xception, and InceptionResNetv2 from
the DeepLabv3 model. Weighted ensemble-based image classifica-
tion is conducted by computing the weighted averages from five
different semantic segmentation models: GoogLeNet, AlexNet,
InceptionResNet, VGG16, and ResNet50. The performance of the
proposed method was evaluated and comprehensively analyzed
using the BCSS dataset including cancer-related hematoxylin and
eosin images and immune-related hematoxylin and eosin images.
The results show that the proposed methods outperform the state-
of-the-art semantic segmentation models in terms of accuracy, F1
measure, and IoU evaluation metrics.

Index Terms—deep learning, ensemble learning, semantic im-
age segmentation, image classification, histopathology

I. INTRODUCTION

The recent success of artificial intelligence (AI) provides
evidence based on the effectiveness of data-driven approaches
in a variety of research societies [1]. Al-guided data-driven
approaches have been a crucial rule for both accurate iden-
tification and rapid classification of target subjects in a large
amount of data [2]. Among Al-guided data-driven approaches,
deep learning models have received much attention because
of their ability to capture specific characteristics defining the
target subjects’ presence by learning features from the data,
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introducing new evidence-based methods. Deep learning mod-
els and their applications have impacted our society positively
and delivered significant portions of information leading to the
creation of new technologies [3].

Traditional deep learning-based models have mainly used
multiple layers to create a seamless architecture and repeat
an iterative process to obtain optimized ones. LeNet [4], a
multilayer neural network, has received a lot of attention
because this 7-layered neural network applies to various sit-
uations such as audio recognition and visual analysis. Com-
pared with LeNet, AlexNet [5] using five convolutional layers
and three fully connected layers achieved the top-five error
rate in an ImageNet challenge which is a large consecutive
visual recognition project containing millions of images and
20,000 categories. A very deep convolutional network for
large-scale image recognition called VGG [6] investigated the
deep neural network by increasing the network depth more,
showing a significant improvement on the ImageNet challenge.
A Residual Neural Network called ResNet [7] presented an
alternative way to avoid the network burden by skipping
the network connections so that training is easier than the
previous network even though the ResNet layers are deeper
than VGG. These traditional deep learning models have been
separately adopted in different fields of studies leading to
better performance results [8]. Our paper aims to address
the combination of different deep-learning models in image
classification problems.

While the traditional deep learning-based models categorize
one image into one single label, the semantic deep learning-
based models focus on predicting each pixel of an image
region as a class label. Fully convolutional networks called
FCN [9] are a semantic deep learning algorithm performing
a semantic segmentation transforming a pixel to a class
label. FCN runs on the forward and backward learning tasks



following existing image classification networks, but it takes
advantage of adding skip connections in a decoder module of
the upper sampling layer providing fine-grain details of image
shapes. U-Net [10] extended the FCN’s decoder module by
enabling more accurate localization through its symmetric net-
work shape. Over the years, it has undergone several iterations,
with DeepLabV3 [11] representing one of the latest and most
advanced versions. The primary objective of DeepLab is to
perform semantic segmentation with exceptional precision. It
achieves this by accurately assigning class labels to each pixel
in an image, thereby enabling precise object localization and
segmentation. A key feature of DeepLab is its extensive use
of dilated convolution, often referred to as dilated convolution
[12]. Our paper adopts the advantage of DeepLab’s backbone
networks for semantic image segmentation.

Deep learning-based models often suffer from the general-
ization problem; deep learning fundamentally does not provide
general explanations equally because there is a gap between
the losses of the training set and the test set. The ensemble-
based approaches have been introduced as an alternative way
to avoid the generalization problem by combining multiple
models in one problem. Although these ensemble-based ap-
proaches have already matured in various fields, they are not
fully investigated in digital pathology because domain experts
target specific clinical and pathologic features by taking a
special deep-learning algorithm assisting their works.

In this paper, we propose a class probability-guided en-
semble learning method that aims to not only increase the
effectiveness of semantic image segmentation but also avoid
the problem of generalization in predicting cancer-related re-
gions in the histopathology image data. The proposed method
integrates the predictions of ensemble-based semantic seg-
mentation with the predictions of weighted ensemble-based
image classification by multiplying the class probabilities by
the pixel probabilities. Ensemble-based semantic segmentation
is conducted by averaging from five backbone networks,
ResNet18, ResNet50, Mobilenetv2, Xception, and Inception-
ResNetv2 from the DeepLabv3 model. Weighted ensemble-
based image classification is conducted by computing the
weighted averages from five different semantic segmentation
models: GoogLeNet, AlexNet, InceptionResNet, VGG16, and
ResNet50.

Out contribution of the paper can be summarized as follows:

o Accuracy: The proposed method was evaluated on two

different cancerous regions: tumor and tumor-infiltrate
lymphocytes of hematoxylin and eosin images across
five state-of-the-art deep learning architectures and two
traditional ensemble learning methods. The prediction
results of the proposed method outperform those results
predicted by the traditional learning methods.

o Generalization: The framework of the proposed method

is based on ensemble-based approaches and can provide
a technical way to avoid the generalization problem by
taking prediction probabilities from different models.

o Validity: The use of the proposed ensemble-based meth-

ods on both image classification and semantic image

50

segmentation was validated by comparison with state-
of-the-art deep learning models. Our Ensemble-based
methods can provide more accurate predictions of the
cancerous regions.

o Explainability: The visual representation of Grad-CAM
was compared with the probability map of the proposed
method on cancer-related images and immune-related
images. We observed that the predictions of our method
well follow the explainability of the Grad-CAM.

II. RELATED WORKS

Ensemble learning is a valuable technique in semantic image
segmentation with diverse applications, notably in medical
image analysis. It plays a pivotal role in accurately detecting
anomalies within medical images, benefiting both patients and
healthcare professionals. Ensemble methods offer a promising
strategy to enhance the precision and reliability of semantic
image segmentation models [13]. By thoughtfully aggregating
predictions from multiple models, ensemble techniques effec-
tively address critical challenges like overfitting and sensitivity
to initial conditions. In the context of semantic image seg-
mentation, ensemble learning can combine different backbone
architectures (e.g., ResNet, DenseNet) and models trained with
various loss functions, augmentations, and hyperparameters
[14]. The degree of performance improvement through en-
sembling depends on the diversity of the individual models,
with models exhibiting uncorrelated errors typically yielding
better results when combined. For even more precise results,
weighted ensembling, based on model uncertainty or confi-
dence, can be employed to improve performance compared
to simple averaging. In this approach, models receive higher
weights in regions where they demonstrate greater certainty.
It’s important to recognize that ensemble learning significantly
boosts segmentation accuracy by harnessing the strengths of
diverse models.

Ensemble learning in histopathology image analysis is a
valuable approach that enhances diagnostic and prognostic
models’ accuracy and reliability, particularly in the context of
pathology and cancer diagnosis [15]. Histopathology, which
involves the microscopic examination of tissue samples to
detect abnormalities, relies on ensemble techniques to ensure
dependable and consistent results. In histopathology image
analysis, ensemble learning entails combining multiple ma-
chine learning or deep learning models to create a more
accurate diagnostic system [16]. These models may be trained
using distinct data subsets, techniques, or architectures to
reduce diagnostic errors and improve predictions. Ensemble
learning is commonly applied to tissue classification tasks,
where models identify various tissue structures, cellular com-
ponents, or pathologies in microscopic images. By aggregating
multiple models’ outputs, ensemble techniques provide more
precise and robust classification results. The majority voting or
weighted averaging determines the final class label for a given
image region. Ensemble learning is particularly valuable in
reducing false positives and false negatives in histopathology
image analysis, ensuring that different models complement
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The overall process of the class probability-guided ensemble learning-based semantic image segmentation for H&E digital whole slide images.

Breast invasive carcinoma (BRCA) images are obtained from 20x magnification whole slide images ( 1.5 GB each). Fixed-sized images including 400
cancer-related images and immune-related images are randomly selected for training five deep learning models (VGG16, ResNet50, AlexNet, GoogleLetNet,
and InceptionResNet) for image classification as well as for training DeepLabv3 with five backbones (ReNetl8, ResNet50, MibilNetv2, Xception, and
InceptionResnet) for semantic image segmentation. Ensemble-based learnings are performed for both image classification and semantic image segmentation.
The binary mask for either cancer-related image or immune-related image is created by using the class probabilty-guided ensemble learning method (PgEns).

each other’s strengths and compensate for their weaknesses.
This contributes to a balanced and reliable diagnostic outcome,
minimizing unnecessary medical interventions and missed
diagnoses. Ensemble learning’s utility extends to tasks such as
tumor detection and grading. By combining models trained to
recognize specific tumor characteristics, ensemble techniques
provide comprehensive and accurate tumor assessments. This
approach finds promising applications in pathology, cancer
research, and other critical areas of medical diagnostics reliant
on accurate image-based assessments.

III. CLASS PROBABILITY-GUIDED ENSEMBLE LEARNING
FOR SEMANTIC IMAGE SEGMENTATION

A. DeepLabV3 and its five backbone networks

The proposed class probability-guided ensemble learning
method uses five backbone networks of DeepLabV3 and a
weighted ensemble learning model generated by five deep
neural network models: GoogLeNet, AlexNet, InceptionRes-
Net, VGG16, and ResNet50. In this section, we describe
DeepLabV3 and its five backbone networks on the semantic
image segmentation problem. DeepLabV3 is one of the latest
iterations in the DeepLab series and has demonstrated that
it provides notable improvements to enhance its performance
and applicability in the realm of semantic segmentation. For
H&E image segmentation, we extend DeepLab’s versatility to
ensemble learning, allowing the combination of predictions
from multiple backbone networks for heightened segmenta-
tion accuracy and overall robustness, particularly valuable in
precision-demanding scenarios [17]. This multi-class seman-
tic segmentation model is expected to excel beyond binary
categorization (i.e., tumor vs. nontumor). In this paper, we
adopt the advantages of DeepLab and its backbone networks
to predict both cancer-related images and immune-related
images. The first backbone network is ResNetl8 renowned
for its compact yet powerful design. Comprising 18 layers, it
has made significant contributions to various computer vision
tasks, including semantic segmentation. This model’s strength
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lies in its capacity to capture intricate image features, primar-
ily through the utilization of skip connections and residual
blocks. These innovative connections allow us to mitigate
vanishing gradient issues and effectively facilitate the train-
ing of exceedingly deep networks. In DeepLabV3, ResNet18
assumes a foundational role by serving as the initial feature
extractor. The feature extraction capabilities of ResNet18 can
significantly contribute to this complex task by providing a
rich and comprehensive representation of the input data. Its
design is adept at capturing both low-level and high-level
features, ensuring that crucial image details are meticulously
preserved throughout the entire segmentation process. We
used ResNet50 as another backbone network of DeepLabV3,
bringing deep residual power to the forefront for precise
semantic segmentation. ResNet50 contains a 50-layer deep
residual neural network architecture for capturing complex
patterns and intricate details within the input data. With its
depth, ResNet50 is expected to excel in extracting high-level
features that contribute to the model’s nuanced understanding
of the content within images. Its role within the DeepLabV3
framework extends beyond foundational feature extraction,
as it provides a deep and intricate foundation upon which
the segmentation model is built. In scenarios where in-depth
analysis and segmentation precision are paramount, We used
Mobilenetv2 as another backbone network of DeepLabV3.
Its lightweight architecture is tailored to provide an optimal
balance between efficient feature extraction and resource op-
timization [18]. This feature makes Mobilenetv2 an excellent
choice in scenarios where computational resources are limited.
Despite its focus on efficiency, Mobilenetv2 excels in feature
extraction, capturing valuable insights into the input data’s
content. This contribution enhances DeepLabV3’s flexibility,
allowing it to address semantic segmentation tasks in resource-
constrained environments. With Mobilenetv2 as one of its
backbone networks, DeepLabV3 gains an added dimension
of adaptability and accessibility. We also used Xception as a
backbone network of DeepLabV3. Xception’s primary role is



to capture intricate and fine-grained details present in the input
data, making it an invaluable asset in semantic segmentation
tasks that demand comprehensive feature extraction. Xcep-
tion’s extensive architecture is designed to excel at extracting
high-level features and intricate patterns from images. This
capability enriches DeepLabV3’s understanding of image [19]
content, enabling it to recognize and delineate objects and
scenes with a high degree of precision. Xception’s role ex-
tends beyond mere feature extraction; it provides DeepLabV3
with the depth required to handle complex visual scenarios
and objects. We assume that Xception’s depth and complex-
ity can ensure that DeepLabV3 performs exceptionally well
in semantic segmentation tasks. Xception’s contribution to
the DeepLabV3 architecture is fundamental, enhancing the
model’s capability to deliver precise and detailed segmen-
tation results, thus establishing its status as a critical and
indispensable component within the DeepLabV3 framework.
InceptionResNetV2 is the last backbone network used on
DeepLabV3. InceptionResNetV2 can perform both intricate
feature extraction and capture multi-scale contextual informa-
tion, a combination that significantly enhances the overall per-
formance of DeepLabV3. With its deep neural network archi-
tecture and inception-style modules, InceptionResNetV2 [20]
contributes to the precise semantic segmentation capabilities
of DeepLabV3. Its role as one of the five backbone networks
further reinforces DeepLabV3’s position as a leading model
for semantic segmentation. InceptionResNetV2’s combination
of depth and inception modules makes it a valuable asset
in the model’s architecture, ensuring accurate and detailed
segmentation, and marking it as a critical contributor to the
success of DeepLabV3.

B. Weighted ensemble learning

In this section, we define the proposed weighted en-
semble learning on the image classification problem. Let
B = {by,ba,...,b,} be the set of base classifiers, W =
{w1,wa,...,w,} be the set of weights assigned to the clas-
sifiers, and L = {l1,l2,...,l,,} be the set of class labels,
where 7 is the number of base classifiers and m is the number
class labels. Given image I, the probability distribution for
each base classifier ¢; is defined as p(b;(I) = l), where [
is a kth class label for ith classifier. The proposed weighted
ensemble learning method combines the predictions of seven
base classifiers for pixel-based image segmentation using the
weighted method. The probability of the weighted ensemble
learning classifier is computed by the weighted sum of class
probabilities and its decision is made as below:

arg max > wip(bi(I) = Ii)

n=1

(D

The weight w; is determined by using greed search op-
timization to maximize the performance of the weighted
ensemble learning. In this paper, a grid search algorithm is
used to find the optimized weights.
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C. Class probability-guided ensemble learning

In this section, we define the proposed overlay-guided
weighted ensemble learning. Let I be the input image, C
be the class probability of I, and S be the segmentation
map where each pixel belongs to a class label. The weighted
ensemble learning model for image segmentation can provide
S as a probability map for I, while another weighted ensemble
learning model for image classification can provide C' as a
class probability for /. The new semantic map S through
overlay-guided weighted ensemble learning is defined as:

S =S,y 2

, where x and y are the pixel coordinates of an image I,
and C; is the ith class probability on the image classification.
The overall process of the proposed method is described in
Fig. 1.

D. Data augmentation

Our work aims to assign a semantic label to each pixel in a
histopathology image to tackle the problem of generalization
of each deep neural network model by taking advantage of
ensemble learning. We define an augmented image as 7'(1),
where [ is the input image and 7T'(-) is a transformation
function corresponding to the augmentation. To strengthen the
proposed method in terms of generalization, we extended our
training on augmented images for each classifier (i.e., rotation
angle between -5 and 5, x and y reflection, and shearing in
the range of -0.05 and 0.05 degrees).

IV. EXPERIMENT
A. Tumor image classification on H&E images

Datasets: The dataset used in the tumor classification prob-
lem is collected from the Breast Cancer Semantic Segmenta-
tion (BCSS) dataset [21]. BCSS dataset consists of 151 H&E
breast cancer slides obtained from the Digital Slide Archive
[22]. A total of 25 participants including senior residents,
junior residents, and medical students of pathology annotated
151 images following the annotation review process. We used
200 tumor-related images sized 256x256 randomly extracted
from the 151 images. Tumor images are labeled as ‘tumor’
if the percentage of tumor regions is greater than or equal to
70% in the annotated images, while others are labeled as ‘non-
tumor’. The images are split into training, validation, and test
sets with 60%, 20%, and 20% of images respectively.

Baselines and Metrics: We compare three ensemble meth-
ods, average-based ensemble (AvgEns), maximum-based en-
semble (MaxEns), and weighted-based ensemble (Weighte-
dEns), to five deep convolutional neural network models in-
cluding AlexNet [5], GoogLeNet [23], InceptionResNet [20],
VGG16 [6], and ResNet50 [7]. We use well-known evaluation
metrics such as Precision (PREC.), Recall (REC.), Specificity
(SPEC.), Accuracy (ACC.), and F1 score (FI) to evaluate the
performance of the classification methods. PREC. is the ratio
of correctly classified images to the total number of images.
REC. is the ratio of correctly classified images to the total
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Fig. 2. Comparison of the proposed method (PgEns) on the BCSS dataset using tumor-predicted images. The proposed PgEns shows better results than the
baseline and other ensemble learning methods. The details are shown in the red boxes.

number of images correctly classified. SPEC. is the ratio of
incorrectly classified images to the total number of incorrectly
classified images. F1 is the combination of PREC. and REC.
We created a confusion matrix to compute the evaluation
matrix; PREC. = TP/(TP+FP), REC.= TP/(TP+FN), SPEC.=
TN/(TN+FP), FI = 2* PREC.* REC./( PREC.+ REC.), where
TP is the number of true positive images, FP is the number
of false positive images, FN is the number of false negative
images, and TN is the number of true negative images. We
separate the images into two groups: tumor and non-tumor
and set the threshold to 0.5 classifying a binary outcome.

Results. Table 1 shows that WeightedEns outperforms both
traditional deep convolutional neural network models and
traditional ensemble learning in terms of PREC., SPEC., ACC.,
and F1. We found that the results of GoogLeNet are identical
to the ones from InceptionResNet and ResNet50. This is
because the results of the confusion matrix of the models are
the same: TP(16), FP(1), FN(4), and TN(19). WeightedEns
shows an average precision of 0.8636, an average specificity of
0.8500, and an average F1 score of 0.9048. MaxEns, instead,
leads to improved results on recall of 1.0000. The overall
performance is measured by using FI, indicating that the
WeightedEns produces the best performance results on the
tumor classification.

TABLE I
RESULTS OF TUMOR IMAGE CLASSIFICATION

Model PREC. | REC. | SPEC. | ACC. F1
AlexNet [5] 0.8182 | 0.9000 | 0.8000 | 0.8500 | 0.8571
GoogLeNet [23] 0.8261 | 0.9500 | 0.8000 | 0.8750 | 0.8837
InceptionResNet [20] | 0.8261 | 0.9500 | 0.8000 | 0.8750 | 0.8837
ResNet50 [7] 0.8261 | 0.9500 | 0.8000 | 0.8750 | 0.8837
VGG16 [6] 0.7917 | 0.9500 | 0.7500 | 0.8500 | 0.8636
AvgEns 0.7600 | 0.9500 | 0.7000 | 0.8250 | 0.8444
MaxEns 0.7143 | 1.0000 | 0.6000 | 0.8000 | 0.8333
WeightedEns 0.8636 | 0.9500 | 0.8500 | 0.9000 | 0.9048

B. Tumor semantic image segmentation on H&E images

Datasets: The dataset used in the tumor image seman-
tic segmentation problem is collected from the same BCSS
dataset. We used the same images (200) as the tumor image
classification, but the entire annotated regions were used rather

than classifying the images into tumor or non-tumor. Every
pixel is labeled as either ‘tumor’ or ‘non-tumor’. The images
are split into training, validation, and test sets with 60%, 20%,
and 20% of images respectively.

Baselines and Metrics: We compare three ensemble
methods, average-based ensemble (AvgEns), maximum-based
ensemble (MaxEns), and class probability-guided ensemble
(PgEns), to five DeepLabv3-backboned models: ResNet18 [7],
ResNet50 [7], MobilNetv2 [24], Xception [25], and Inception-
ResNet [20]. We use PREC., REC., ACC., F1, and Intersection
Over Union (IoU) to evaluate the performance of the image
segmentation methods.

Results: Table 2 shows that the PgEns outperforms both
traditional deep convolutional neural network models and
traditional ensemble learning in terms of REC., ACC., FI,
and /oU. In particular, the MaxEns shows the best on PREC.,
but it shows the worst on REC. These results concrete the
reason why the F1 is necessary to evaluate the performance of
models. Likewise, AvgEns leads to improved results compared
with other deep convolutional neural network models, but
PgEns shows the best overall performance. Assuming that
the overall performance is measured by using F/ and loU,
we conclude that the PgEns produces the best performance
results on the tumor image semantic segmentation. The pre-
diction comparisons between semantic segmentation models
are shown in Fig. 2.

TABLE II
RESULTS OF TUMOR IMAGE SEMANTIC SEGMENTATION

Model PREC. | REC. ACC. F1 IoU
ResNet18 [7] 0.9471 | 0.8761 | 0.9045 | 0.9102 | 0.8352
ResNet50 [7] 0.9685 | 0.8614 | 0.9042 | 0.9118 | 0.8380
MobilNetv2 [24] 0.9503 | 0.8862 | 0.9122 | 0.9171 | 0.8469
Xception [25] 0.9638 | 0.8606 | 0.9016 | 0.9092 | 0.8336
Incep.ResNet [20] | 0.9245 | 0.8958 | 0.9064 | 0.9099 | 0.8348
MaxEns 0.9929 | 0.8077 | 0.8755 | 0.8908 | 0.8031
AvgEns 0.9673 | 0.8847 | 0.9188 | 0.9242 | 0.8590
PgEns 0.9626 | 0.8924 | 0.9215 | 0.9261 | 0.8625

C. TILs image classification on H&E images

Datasets: The dataset used in the TILs image semantic
segmentation problem is also collected from the same BCSS
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Fig. 3. Comparison of the proposed method (PgEns) on the BCSS dataset using TILs predicted images. The proposed PgEns shows better results than the
baseline and other ensemble learning methods. The details are shown in the red boxes.

dataset. However, we used 200 tumor-infiltrated lymphocytes
(TILs) images sized 256x256 randomly extracted from the 151
images. The images are labeled as ‘tils’ if the percentage of
tumor regions is greater than or equal to 70% in the annotated
images, while others are labeled as ‘non-tils’. The images are
split into training, validation, and test sets with 60%, 20%,
and 20% of images respectively.

Baselines and Metrics: The baselines and the evaluation
metrics are the same as the tumor image classification.

Results Table 3 shows that both VGG16 and Weighte-
dEns outperform traditional deep convolutional neural network
models as well as traditional ensemble learning in terms
of PREC., SPEC., ACC., and FI. Unlike WeightedEns only
showed the best results on the tumor image classification, both
VGG16 and WeightedEns showed the best results on TILs
image classification. These results create an open question
‘Is ensemble learning always producing the best results?’ for
image classification. From this experiment, we are not able to
determine whether the ensemble-based learning in TILs image
classification provides the best performance results or not. In
this paper, we further experimented on TILs image seman-
tic segmentation using the class probability-guided ensemble
learning.

TABLE III
RESULTS OF TILS IMAGE CLASSIFICATION

Model PREC. | REC. | SPEC. | ACC. F1
AlexNet [5] 0.8571 | 0.9000 | 0.8500 | 0.8750 | 0.8780
GoogLeNet [23] 0.8947 | 0.8500 | 0.9000 | 0.8750 | 0.8718
Incep.ResNet [20] | 0.7895 | 0.7500 | 0.8000 | 0.7750 | 0.7692
ResNet50 [7] 0.9375 | 0.7500 | 0.9500 | 0.8500 | 0.8333
VGG16 [6] 0.9474 | 0.9000 | 0.9500 | 0.9250 | 0.9231
AvgEns 0.9412 | 0.8000 | 0.9500 | 0.8750 | 0.8649
MaxEns 0.7308 | 0.9500 | 0.6500 | 0.8000 | 0.8261
WeightedEns 0.9474 | 0.9000 | 0.9500 | 0.9250 | 0.9231

D. TILs semantic image segmentation on H&E images

Datasets: The dataset used in the TILs image semantic seg-
mentation problem is collected from the same BCSS dataset.
The images are the same as the TILs image classification.
However, the entire annotated regions were used rather than
classifying the images into tils or non-tils. Every pixel is
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labeled as either ‘tils’ or ‘non-tils’. The images are split into
training, validation, and test sets with 60%, 20%, and 20% of
images respectively.

Baselines and Metrics: The baselines and the evaluation
metrics are the same as the tumor image semantic segmenta-
tion classification.

Results: Table 4 shows that the PgEns outperforms both
traditional deep convolutional neural network models and
traditional ensemble learning in terms of ACC., F1, and loU.
The MaxEns showed the best results on PREC., but it showed
the worst results on REC. These results also concrete the
reason why the FI is necessary to evaluate the performance
of models. The Xception showed the best results on REC., but
the model showed the lowest results on loU. Assuming that
the overall performance is measured by using F/ and loU,
we conclude that the PgEns produces the best performance
results on the TILs image semantic segmentation. The predic-
tion comparisons between semantic segmentation models are
shown in Fig. 3.

TABLE IV
RESULTS OF TILS IMAGE SEMANTIC SEGMENTATION
Model PREC. REC. ACC. Fl IoU
ResNet18 [7] 0.8397 | 0.8779 | 0.8736 | 0.8583 | 0.7518
ResNet50 [7] 0.8397 | 0.8779 | 0.8736 | 0.8583 | 0.7518
MobilNetv2 [24] 0.8126 | 0.8964 | 0.8717 | 0.8524 | 0.7428
Xception [25] 0.7933 | 0.9067 | 0.8685 | 0.8462 | 0.7334
Incep.ResNet [20] | 0.8371 | 0.8919 | 0.8794 | 0.8636 | 0.7600
MaxEns 0.9389 | 0.8202 | 0.8782 | 0.8755 | 0.7786
AvgEns 0.8547 | 0.9030 | 0.8918 | 0.8782 | 0.7828
PgEns 0.9256 | 0.8508 | 0.8920 | 0.8866 | 0.7964

E. Explainability of the proposed method on cancer-related
cells and immune-related cells

We further investigated the explainability of the proposed
method on cancer-related cells (Tumor) and immune-related
cells (TILs) by using an explainable artificial intelligence
(XAID). Gradient-weighted class activation mapping (Grad-
CAM) is an XAl technique that represents an enhanced al-
gorithm of class activation mapping (CAM) [26], an approach
used to generate heat maps highlighting critical image re-
gions influencing the classification decisions of Convolutional
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proposed method show the class probabilities of tumor and TILs respectively.

Neural Networks (CNNs). Unlike its predecessors, such as
CAM, saliency maps, and Grad-CAM++, Grad-CAM reveals
its superiority in the localization of abnormalities in medical
images [27]. It accomplishes such excellence by producing
more focused and concentrated heatmaps that effectively de-
lineate the boundaries between CNN-identified abnormalities
and unaffected normal tissue, thereby enhancing classification
accuracy. These heatmaps provide a comprehensive visual-
ization of the collective topological importance of image
features while analyzing the final CNN layer. We followed
the Grad-CAM process that entails computing gradient scores
for each label for feature map activations from a CNN layer.
Subsequently, these gradient scores are averaged along both
width and height dimensions to derive numeric importance
scores. These importance scores are then multiplied by the
feature map activation function of the last CNN layer. Then,
it is followed by the application of the Rectified Linear
Unit (ReLU) function to filter out and emphasize significant
influences with image classification. Fig. 4 shows the visual
comparison with the Grad-CAM generated predictions and
the predictions generated by the proposed method (PgEns)
on cancer-related image and immune-related images. We ob-
served a robust concurrence between the prediction probability
maps generated by the proposed method and Grad-CAM visu-
alizations, further enhancing the explainability of the process
of our ensemble-based semantic segmentation.

V. CONCLUSION

In this paper, we proposed a class probability-guided en-
semble learning method for histopathology image segmen-
tation. The proposed method combines the predictions of
ensemble-based semantic segmentation with the predictions of
weighted ensemble-based image classification by multiplying
the class probabilities by the pixel probabilities. Five back-
bone networks, ResNet18, ResNet50, Mobilenetv2, Xception,
and InceptionResNetv2, were ensembled in the DeepLabv3
model to perform semantic image segmentation, while five
deep neural networks: GoogleNet, AlexNet, InceptionResNet,
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VGG16, and ResNet50, were used for performing a weighted
ensemble-based image classification. Our experiment results
show that the proposed method outperforms the traditional
deep learning models as well as the traditional ensemble
learning methods, avoiding the generalization problem by
taking prediction probabilities from different models. We also
compared the prediction probability maps with the visual
representation of Grad-CAM on both cancer-related images
and immune-related images, observing that the predictions of
our method follow the explainability of the Grad-CAM.
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