SMALL FRACTIONAL PARTS OF BINARY FORMS

KISEOK YEON

ABSTRACT. We obtain bounds on fractional parts of binary forms of the shape

U(z,y) = apa® + g’y + ag TP 4 agyF

with ag,a;,...,a0 € R and [ < k — 2. By exploiting recent progress on Vinogradov’s
mean value theorem and earlier work on exponential sums over smooth numbers, we derive
estimates superior to those obtained hitherto for the best exponent o, depending on k£ and
[, such that

in_[|w < X
e Gl =

(z,y)#(0,0)

1. INTRODUCTION

In 1914, Hardy and Littlewood [8, p 172] posed the question as to whether, when o € R,
k € N and € > 0 is any positive number, there exists ¢ > 0 not depending on « such that

min_|Jaz®|| < X7t (1.1)
1<2<X
provided that X is sufficiently large in terms of k and e. Here, || - || denotes the distance to

the nearest integer. Vinogradov [17] gave a positive answer to this question by providing a
specific exponent o = k/(2871k + 1). This was quantitatively improved by Heilbronn [11],
who replaced the exponent o = 2/5 by 1/2 in the case kK = 2. Danicic [6] extended this
conclusion to o = 1/2%! for all k € N. Subsequently, the exponent 1/2 in the case k = 2
was improved to ¢ = 4/7 by Zaharescu [24]. Sharper results for & > 6 depend on recent
progress Vinogradov’s mean value theorem, and thus Baker [3] proved that the exponent o
can be replaced by o = 1/(k(k — 1)). Furthermore, Wooley [20] showed that the exponent
o can be improved to o = 1/(klogk + O(kloglogk)). However, it is conjectured in [1] that
the exponent ¢ should be improvable to 1. Unfortunately, current techniques do not seem
capable of achieving this conjecture.

Turning our attention to problems in many variables, one is led to ask analogous questions
regarding the distribution mod 1 of polynomials f(z1,...,zs) € Rlzy,...,x,]. In [12, Corol-
lary 2], Schlickewei proved that when ay,...,as € R and k& € N, there exists sg = sq(€, k)
such that whenever s > sy, one has

: k k —k
omin fanah + - agal]| < XOH (1.2)
x#£0
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As a quatitative generalization of (1.2) for large s with the correct limit value, especially,
Harman [9, Theorem 3| proved that whenever s > s¢(k) there are infinitely many X satisfying
min_|logzf + -+ auah|| < X RO st

0<z<X

xz#0

For reasonable bounds for small s, Baker [2,3] provided an explicit exponent o(s, k) such
that
min_|jogzf + -+l < X o
<z<X
x#0
with, for example, the exponent o(s, k) = s/(k(k — 1)) when s < k(k —1).

For polynomials more general than additive forms, meanwhile, Schmidt [13] made progress
on the analogous problem regarding forms of odd degree k. Specifically, for given £ > 0,
there exist so = so(FE, k) such that whenever s > sq, one has

min || f(x)| < XF. (1.3)

0<|z|<X
x#0

In the special case of cubic form f(x), Dietmann [5] provided explicit formula o(s) such that

; —a(s)
o F (@)l < X7,
x#0
where, for example, 0(3) = 6/23 and lim,_,o, o(s) = 1.

In this paper, we seek to make progress on making bounds of the shape (1.3) explicit,
concentrating for the present on the situation with s = 2. Here, one may write f(xq1,22) =
apr® + ozk_lxlf_lxg + -+ aprh with ag,...,ay € R. Hitherto, the only general strategy
available has been a trivial one that reduces this problem in two variables, by specializing
x9 = 0 for example, to a problem in one variable. In this direction, Wooley [21, Theorem 4]
obtained a nontrivial exponent o by restricting the polynomial to have the shape a® (1, x2)
where ®(x1,x2) € Z[x1,x5] is a binary form of degree k exceeding 1. The main difficulties
of the problem regarding general binary forms in R[xq,z5| arise from our relatively poor
understanding concerning how the monomials oqxllxg_l, with 0 <[ < k, combine to influence
the fractional parts of f(z1,x2). Our goal in this paper is to explore approaches to overcoming
these difficulties and go beyond the trivial approach hitherto applied, concentrating on the
class of binary forms. Our hope is that the arguments described here may be useful in
studying fractional parts of polynomials in many variables in general.

0

Our first theorem provides bounds for binary forms of degree k useful for small k.

Theorem 1.1. Let k and | be natural numbers satisfying 1 < | < k — 2, and consider real
numbers oy, a; (1 < j <1). Then, for any € > 0, there exists a real number X (k,€) such

that whenever X > X (k,€) one has
min _ [lopr® + oty g 2T 1 agyF | < X (1.4)
0<z,y<X

(z,y)#(0,0)

where

|
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For comparison with earlier results, by incorporating the conclusion of Danicic [6] with
the trivial strategy mentioned above, one obtains

: k 1, k-l -1, k=141 . Kl < i k| < 2" he
oo Jakz” + az'y™™ + iz y + ot agy]| < 1gfglclgnxllcw | <

(z,y)#(0,0)
The conclusion of Theorem 1.1 improves on the exponent 2'~* here by a factor which may

be as large as % in the case [ = 1.

Corollary 1.2. Let k be a natural number, and consider real numbers oy, o; (0<j<k-2).
Let p(x,y) = cxa® + cp12* 'y +- -+ crzy® ! + coy® with ¢; € Z. Then, for any e > 0, there
exist a real number X (€, ck, cx_1) such that whenever X > X (e, cx, cp—1) one has

min | laxp(z,y) + a9 2y 4+ -+ agyt]| < X7
0<|al,lyl<X

(z,y)#(0,0)
where o = (k/(k —1))2'7*.

In [5], Dietmann recorded that for sufficiently large X, one has

. 3 2 2 3 —1/4+e
og\gﬁhﬂgx |laz® + By + yry” + 0y°|| < X ,
(z,y)#(0,0)
which is obtained by specializing y = 0 and applying the earlier work of Danicic [6]. In
Corollary 1.2 with k£ = 3, we obtain the superior exponent ¢ = 3/8 by imposing the condition
that a and 8 have a rational ratio. By further restricting «, 3,~, ¢ to have rational ratio to
each other, Wooley [21, Theorem 4] proved that this can be improved to o = 1/2.

Our next two theorems provide bounds useful when £ is larger by exploiting recent progress
on Vinogradov’s mean value theorem and earlier work applying smooth numbers. The state-
ments of these results is facilitated by writing

pk, ) =22k — 1)+ 23(k = 2) + - + 2 (k — 1),

and
lo =max{l € N| Tp(k,l) < k(k—1)}
[y = max{l € N| Tp(k,l) < klogk}.
With more work the value of the constant 7 in (1.5) may be replaced with a smaller positive
number.

(1.5)

Theorem 1.3. Let k and | be natural numbers satisfying 1 <1 <ly and k > 3, and consider
real numbers oy, and a; (1 < j <1). Then, for any € > 0, there exists a real number X (k, €)
such that whenever X > X(k,€) one has

min _ [lopr® + oty g 2T o agyF | < X (1.6)
0<z,y<X

(2,y)#(0,0)

where

" k(k—1) + p(k, 1)
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For comparison with earlier results, by combining the earlier work of Baker [3, Theorem
3] and the trivial treatment mentioned above, one obtains

min_ [Jagz® + gty 4+ a2 o agyF| < min [Jaa®]] < X7
0<z,y<X 1<x<X
(z,9)#(0,0)
where 0 = 1/(k(k — 1)). Notice that for all [ with 1 <[ <, the conclusion of Theorem 1.3
is superior to this earlier result stemming from Baker [3, Theorem 3]. For instance, in the

case | = 1, the earlier result, which is 0 = 1/(k(k — 1)), can be improved to

2
(k+2)(k—1)

g =

Theorem 1.4. Let k and | be natural numbers satisfying 1 <1 < ly and k > 3, and consider
real numbers oy, and o; (1 < j <1). Then, for any € > 0, there exist a real number X (k,€)
such that whenever X > X (k,€) one has

min _ [loap2® + o'y g 2T o agyF | < X (1.7)
0<z,y<X
(2,y)#(0,0)
where
2

7= klogk + p(k,l) + Ckloglog k

wn which C' is a positive constant which does not depend on k.

For comparison with earlier results, by combining the earlier work of Wooley [18, Theorem
1.2] and the trivial method mentioned above, one obtains

min_ |loap2® + o'yt a2 1 agyF|| < min |lea®]] < X0
0<z,y<X 1<x<X

(z,y)#(0,0)

where 0 = 1/(klog k+ Ckloglog k) in which C' is a positive constant which does not depend
on k. Notice that for all [ with 1 <[ <[y, the conclusion of Theorem 1.4 is superior to this
earlier result stemming from Wooley [18, Theorem 1.2].

The method underlying the proof of our main theorems is to exploit inductive arguments
based on a classical argument widely used in studying fractional parts of polynomials. How-
ever, it is complicated by the need to obtain quantitative inequalities useful for each of the
inductive steps. Thus, these and other technical complications may obscure the key ideas
of our arguments, and so we sketch this inductive argument in Section 2. Then, in Section
3, we provide key lemmas about the quantitative inequalities required for the success of
our arguments. In Sections 4, 5 and 6, by exploiting these key lemmas and the inductive
arguments, we provide the proof of Theorem 1.1, 1.3 and 1.4, respectively. Throughout
this paper, we use > and < to denote Vinogradov’s well-known notation, and write e(z)
for e?™*. We adopt the convention that whenever € and § appear in a statement, then the
statement holds for each €, > 0, with implicit constants depending on € and J, respectively.
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2. OUTLINE OF THE PROOF

In this paper, we mainly follow a classical argument relating fractional parts of polynomials
to lower bounds of associated exponential sums [1, Theorem 2.2]. We record here this
theorem.

Lemma 2.1. Let zy,...,xx be real numbers. Suppose that ||z,| > H™! for every n with

1<n<X. Then,
N
5 (S o

1<h<H'n=1

Proof. See [1, Theorem 2.2]. O

> N/6

Suppose that for all z,y with z,y € [1, X] N Z one has
lapa® + apz'y"™ + oy 2T o agyF| > 1/H. (2.1)

Then, by Lemma 2.1, one obtains

Z | Z e(hlape® + aualy* ™ + ap_ 121 o agy™)) ] > XE (2.2)

1<h<H 1<zy<X

Our first goal is to obtain information about Diophantine approximations to a; from the
lower bound (2.2). In Section 3, we shall obtain upper bounds for the exponential sum on
the left hand side of (2.2) in terms of ay and ;. Combining these upper bound with the
lower bound (2.2), one obtains the information concerning «;.

The next goal is to reduce the problem of bounding the fractional parts on the left hand
side of (2.1) to the corresponding diagonal problem through inductive arguments. Note that
by the triangle inequality, one has

||O./k$k + Oql’lyk_l + Oq_lZBl_lyk_Hl 4. +aoyk||

< flagz® + apaz™ iy T 4 agyt]| F fleaay* T (2.3)

By putting y = gy’ where ¢ is the denominator associated with a rational approximation

to «y, and again applying the triangle inequality, we see that the right hand side in (2.3) is
bounded above by

love® + s Hqy ) = 4 ao(ay) I+ 2 (gy) Ty llgeul)- (24)

From the information about «; obtained in the first step, one finds that ||gay|| is small enough
so that the second term in (2.4) is < 1/(2H). Thus, the inequality (2.1) implies that for all
x,y’ one has

lara® + g2 gy )+ ao(qy)F|| > 1/H.
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By applying this argument inductively, we ultimately infer from (2.1) that for all x and yo
one has

lowa™ + agupll > 1/ H
for all x and y,. Experts will recognize that the diagonal polynomial here is accessible to
classical methods.

3. EXPONENTIAL SUMS IN TWO VARIABLES

Let A and B be subsets of [1, X] N Z. Suppose that
Hakxk + o Zlilyk l+ Oélflxlilykil+1 e aoka > Hfl

for all x € A, y € B. Then, by Lemma 2.1, one finds that

>

h<H

Z e(h(apr® + opaly ' 4+ oy 2y o agy™) | > |A]|BY, (3.1)

€A
yeB

where |A| and |B| are cardinalities of the sets A and B, respectively.

Our goal in this section is to obtain upper bounds for the exponential sum above in terms
of o, and «y. To obtain these upper bounds, we introduce a variant of conventional Weyl
differencing applicable to exponential sums in many variables, and exploit an argument used
in earlier works on exponential sums in many variables (See, for example, [15, Lemma 4.3]).
To facilitate concision throughout this section, we define g(z,vy) = g(z,y; o) € R[z, y| by

-1, k—I+1
Ty

with [ < k — 2. Furthermore, we define differencing operators A} and AY by
Af(g(x,y)ih) = gz +h,y) —g(z,y)

and so we define A and A? for 5 > 2 recursively by means of the relations

A;C(g($7 y)? h) = Af(Q(xa y)a h17 cey h]) = Aclc(A]x—l(.g(xa y)a hla (XS h]fl)a h])
AY(g(x,y);h) = AY(g(x,y); ha, .oy hy) = AVAY_ (g(z,y); hay ooy hjo1); ).
The following lemma provides an upper bound for the exponential sum in (3.1) with

A=[1,X]NZ and B = [1,Y]NZ. This upper bound is useful for small k. In advance of the
statement of this lemma, we define the exponential sum T(a) = T'(ea; H, X, Y') by

)= 3|5 X diaten)|

1<h<H'1<z<X 1<y<Y

Lemma 3.1. Let k and l be natural numbers satisfying 1 <1 < k—2 and k > 3, and consider
real numbers oy, and o (0 < j <1). Suppose that ay, and oy have rational approximations
lo, — a1 /q1] < q7% and |ag — as/qe| < g5 % with (qu,a1) = (g2, az) = 1, respectively. Suppose
that X and H are positive real numbers sufficiently large in terms of k. Then, for each e > 0,

one has
21—k

T(a) < H(XY) <%+i+ L )ZH ( Ll e ) (3.2)

X  HX* Y  HXWYk
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2l> 2!

Then by Weyl differencing (see, for example, the proof of Vaughan [16, Lemma 2.4]), we
obtain

T(c ><<<HY>”Z(X2‘ Y D D ) > el >h>>>

1<h<H 1<y<Y |hy|<X |hi| zel(h)

Proof. By Holder’s inequality, one obtains

ey ) (2 %

I<h<H 1<y<Y 1<h<H 1<y<Y

> elhg(z.y))

1<z<X

where [;(h) is an interval of integers contained in [—X, X]. Note here that
A7 (g(z,y):h) = A7 (ara®) + Af (eua'y™™)
and that A?(ayz'y*~!) does not depend on x. Hence, one obtains

T(a) < (HY)'72 X027y (0 0p)? (3.3)

where
Viwa))= > > -+ > [Vi(ax; h,h)|[Va(au; b, )|
I<h<H |h|<X  |h|<X
in which
Vi(ag; h,h) Ze (RAT (apz® h))
zel;
and

Va(agsh,h) = ) e(hAf (ua'y* ™ h)).

1<y<y
By applying Holder’s inequality again,

1_22*k+l

V (o, ) (Z > Z) Wi(ar)? " Wy(e)? (3.4)

1<h<H |hi|<X  |h|<X

SN S i k)P

I<h<H |h|<X  |W|<X

S5O% S el k)P

I<h<H |hi|<X  |W|<X

where

By applying classical Weyl differencing arguments, one has

Wio) < X276 83" N 0 N L ST e(ephha e hyz)

1<h<H|h1|<X |hk 1|<X xelk 1(h)

where ¢ is a constant depending on k, and I_;(h) is an interval of integers contained in
[— X, X]. Thus, by the proof of [16, Lemma 2.4], for each ¢ > 0 one has

—l- 1 1 1
W HX? e —
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Furthermore, one has

[RSCRCUD DID SR DN DD

I<h<H |m|<X  |[m|<X | |<Y he-1|<Y

> eldphhy - hi_1y)

yEJr_1(h)

where d, is a constant depending on k, and Jy_;(h) is an interval of integers contained in
[—Y,Y]. Hence, for each ¢, one has

o 1 1
Iy 2k =14 42
WQ(O([)<<HXY ( +Y+W)

Substituting these estimates for Wi (ay) and W (o) into (3.4) and from there into (3.3), one
concludes that

217/6 21716

1 1 1 1
r(@) < HO) (1e e t) (Dape )

X HXk

In order to describe Lemma 3.2, we introduce the set of smooth numbers
A(Y,R) ={1 <n <Y/ p prime and p|n = p < R}.

The following lemma provides an upper bound for the exponential sum in (3.1) with A =
[1,X]NZ and B = A(Y, R) where R = Y" with sufficiently small > 0. To describe the
following lemma, it is convenient to define an exponential sum S(a) = S(e; H, X, Y, R) by

Sl = |55 el

1<h<H'1<z<X yc A(Y,R)

Lemma 3.2. Let k and | be natural numbers satisfying 1 < | < |k/2] and k > 3, and
consider real numbers ay, and o (0 < j < ). Suppose that X, Y and H are positive real
numbers sufficiently large in terms of k with Y < X. Let Z be a real number such that

1 < Z < min{(HXHY &0y,

and let N be a real number with Z3*=D <N HXYh1z-30=0, Suppose that there exist
q € N and a € Z satisfying g < N, (q,a) = 1 and |qgag —a| < N~1. Then, for each ¢ > 0, one
has

H(XY)H_G
(¢ + HX'Y* qay — a|)V/@ 1 (k-D)

S(a) < + H(XY) g1 (3.5)

To prove Lemma 3.2, we shall use following two propositions.

Proposition 3.3. Let f be an arithmetic function. Suppose thatY, M, ..., M, and R satisfy
I<R<Y,1<M;<Y (1<i<r)and My---M, <Y. Then, one has

> fly) < F(Y,M,...,M, R)+G(Y,M,...,M,R),
yeA(Y,R)
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where

F(Y,M,...M,R)= > - Y > |f (- o)

Mi<vi<MiR My <vr<MrRucA(Y/(M1---M;),R)

and

G(Y, My,..., My, R) =Y My--- M;R™" sup |f(y).

1<y<M;

Proof. Observe that if y € A(Y, R) and y > M, then there is a divisor v; of y satisfying
M; < vy < MiR. Moreover, one then has y/v; € A(Y/M;, R). Hence

Yo Y e+ Y Iw)

yGA YR Mi<vi<MiR uGA(Y/Ml,R) y<M;

< Y Y 1wl + M swp |fw)

My<vi<MiRueA(Y/M1,R) lsy<M

Inductively applying this relation, the conclusion follows. 0

Proposition 3.4 provides the upper bound for a certain type of exponential sums in many
variables. To prove Proposition 3.4, we follow the argument in the proof of [15, Lemma
4.3]. To describe the following Proposition, it is convenient to define an exponential sum

E(B) =E=(B;V,U, L) by
2B = 3 D0 2 Bl ) T = ),
V1 yeeny v up,ug ' 1<ae<L
where the summation is over integers satisfying
1<y, <V, (1<i<r)and U/2 <wuj,us <U. (3.6)

Proposition 3.4. Let k and [ be natural numbers satisfying 1 <[ < ng and k > 3. Suppose
that L s a positive real number sufficiently large in terms of k. Let U, Vi, ..., V. be positive
numbers satisfying

1<V, <iLY (’“—”U‘W—w (3.7)
1<V, <ipVE Dy, VU (1<i<r—1).
Let R, Q= Vlk_l cee Vr’“’lU’“’lL and N be a real number with Uz* =1 <N QU’%(’“’Z).

Suppose that there exist ¢ € N and a € Z satisfying ¢ < N,(q,a) =1 and |¢g8 —a] < N7L.
Then, for each € > 0, one has

‘/1 L ‘/TUQLl-i-e
(¢ +QlgB — a])/+=D

where the implicit constant may depend on r.

2(B) <« + Vi VLU, (3.8)
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Proof. By summing over x in the inner sum of Z(/3), one has

_ L
EORID DI i PR v e o (39)

V1 yeens U UL, U2

where the summations are over vy, ...,v,, uy, uy satisfying (3.6). Plainly, one may restrict
the summation to satisfy

U/2 <uy <uy <U and ||B(vy -0, (bt —ub=Y|| < LUV, (3.10)
Indeed, the contribution on the right hand side of (3.9) of the remaining summands is
O(Vy ---V,.LU®?). For given uy,uy, vy, .. .,v,, we may choose ng so that

18(vr - o)™ = w5 = [Blor- - o) (ul T = w5 = nol.

Let R._; = (LV*-'U~Y/2)1/2, By Dirichlet’s approximation theorem, there exist ¢._; € N
and a,_; € Z with ¢,_1 <R,_; and (¢,_1,a,—1) = 1 such that

1B(vy v ) = b —ap | < 1R (3.11)
If a,_y = 0, then g,_; = 1. Thus, on recalling (3.7), it follows from (3.10) and (3.11) that

RT_1U1/2 kal
_"_ T
L Rr—l

o i Ar—1
Uq,f_l dr—1

Uf‘lqr_l < < 1.

Thus, one has ¢,_1ng = vf‘lar_l. If a,_1 = 0, then g,_; = 1. Hence, in all cases, qr_1|vf_l.

_ 2 k—1 . .
Let ¢,—1 = Nr—1927—1" " Q1 r1 where qg_;,—1 is maximal and q1,—1,...,qr—1-1,-1 are
squarefree and coprime in pairs. Then, ¢y ,—1 - - qx—1,—1|v-. Thus, by writing
Ur = qo,r—191,r—1 " " Qk—l,r—1;

the bound (3.9) may be replaced by

> 2 > Z£O+O(V1‘“VTLU3/2)7 (3.12)

VLyeeyUr—1 U1,U2 G0,r—1 <V /(q1,r—1"Qh—1r—1)
where
Zo =1+ L(qoy—1--- Qkfl,rfl)kilyﬁ(vl O L (T T Ry /A
Since we have ¢.—1 < (q1,-1¢2.—1 " Qe_1,—1)""!, by applying the upper bound (1) from
Appendix A, the inner sum of (3.12) is
LV,

1 G a1+ IV B (or oy ) T — k) — a2 /gy ) /D

LV,
s+ LV 1 Blor oy Y (T — ) — ay A IO

Thus, by substituting the bound (3.13) into the inner sum in (3.12), the first term in (3.12)
1s

<
(3.13)
<

<X ¥ o
: (@r1 + LV} ge 1 Bvr - vp B (0™ = uf™") — ap )/ 0D

Uly..eyUp—1 U1,U2

(3.14)
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We analyse the expression (3.14) by an inductive argument similar to the argument first
described. At the ith step of this argument, with 1 <4 < r, one finds that

Z(B) < Bi + O(Vy - - - V,LMU?/?), (3.15)

where

Z Z LV, V- V,_iy1(log L)
(grei + LVE ..V v )R (W = s ) = ap )Y D

VlyeeryUp—j UL, U2 r— 1+l|q7" zﬂ( Uy
(3.16)
in which ¢,_; € Z and a,_; € N satisty (¢, a,—;) = 1,
<R._. = LV2(Vye o Vo) B20/2 if i >2
i r—i L2y Eh/2 -1y i1

and
1B(or - vr) ™ = w5 g — ar | < 1/Re
The case i = 1 obviously follows by (3.11), (3.12) and (3.14). Assume that (3.15) holds

for a particular ¢ with ¢ <r — 1. We shall show that (3.15) holds for i 4+ 1. Plainly, one may
restrict the summation in (3.16) to satisfy

Gooi + LV VA g B0y v b — i) — ] < UROD. (317

Indeed, the contribution of the remaining summands is O(Vi ---V,LU%?). Let R,_i_1 =
Y 2(V -V,_;)*=D/2_ By Dirichlet’s approximation theorem, there exist ¢,_;_1 € N, a,_;_; €
Z with ¢,—;—1 < R,_;—1 and (¢y—i—1,ar—i—1) = 1 such that

’B(Ul e 'Ur7i71>k l(ulf : U’gﬁl)%«ﬂ;l - @r471| < 1/7?'7“71'71- (3-18)

Notice that if a,_;_1 = 0 then ¢,_;_; = 1. Thus, on recalling (3.7), it follows from (3.17) and
(3.18) that

k=l LIS )
Ay Qp—i—1 Wity Ri—izaU 2 n U=V.> <1
k=l Ur—iQr—i-1 Z k-1 :
qr—iUp_; Gr—i—1 Lv;k Lo ‘/r,iJrl 7?'1”—2'—1

Thus, one has qr_ivff:far_i_l = @p_i_10,—;. If a,_; = 0 then ¢,_;, = 1. Hence, in all cases,
Qr—ilGr—i—1. By writing ¢._, | = ¢-—i—1/q-—;, one has

k—1
U, _ Zarzl_qrz 10r—i-

Since (¢._; 1, ar—i—1) = 1, one has ¢._, ,|v*~!. Similarly, one has

/ - 2 k—1
Qr—i—1 = D pr—i-192p—i—1 """ Q1 7—i—1>

where gj_;,—;—1 is maximal and ¢y ,—;_1, ..., @r—1—1,—i—1 are squarefree and coprime in pairs.
Then, g1 r—i—1q2,p—i—1 " Qk—l,r—i—1|vr—i~ Thus, by writing v, _; = qo,r—i—17 With

T=qr—i—1" " "Qk-lr—i—1,
the equation (3.16) may be replaced by

LV.---V._,.1(log L)
Z Z Z Z+1( og ) + O(‘/l L. WL1+€U3/2), (319)

HUr—i—1 U1,U2 q0,r—i— 1<VT 1/7’
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where
78 = g, (1 F LV Vi) (qor—imam) | Blor - o) T =g - M}) :
dr—i-1
By applying the upper bound (2) from Appendix A, the inner sum in (3.19) is
LV, ---V,_i(log L)
qié(ik_l)T(l + LV Vi) By - - 'Ur—z‘—l)k_l(ulf_l - u’;‘l) — Qp_i1/Gr—ia]) /D .
Since we have ¢, ; <7 'and ¢,_;_1 = ¢._, ,q-_s, we find that this expression is
LV, -V, i(log L)
q:i(;:l)(l + L(Vr T Vr—i)k_lW(Ul e 'Ur—i—l)k_l(ulf_l - ué‘l) - a’!‘—i—l/qT—i—ll)l/(k_Z)
LV, ---V._i(log L)™!

(r—ic1 + L(Vy - Vi) MY gpeima Blun - 'Ur—i—l)k_l(ulffl - U’;*l) — Qpjq| )/ D .

(3.20)
Hence, by substituting the bound (3.20) into the inner sum (3.19), the first term in (3.19)
is seen to be O(B;41). Thus, this confirms that the bound (3.15) holds for i + 1. Therefore,
one infers by induction that

2(B) < Z1(B) + O(Vy - - - VL. L' TU3/?), (3.21)

<

<

where
LV, Vi(log L)’

El(ﬁ) - _ — —
2 (go + LVE - VI goB(ul ™ — ub™) — ag| )1/ (k=D

uy,u2
in which (go, a0)=1, go < Ro = LY2(V,.---V1)*=D/2 and |goB(ul™" — ub™") — ag| < 1/Re. By
Cauchy’s inequality, one has

21(B8) < UL™?V, - ViZy(8)"?, (3.22)
where .
E2(B) = — - - :
Z:u? (qo + LVF1- - Vi goB(uy™ — uy™") — ag|)2/(+=D
Plainly, one may also restrict the summation to satisfy
go+ LV VI qoB(ub ™! — ub ™) — ao| < U, (3.23)

Indeed, the contribution from the summation in (3.22) arising from remaining terms is
O(Vy---V,L'*<U3/?). We put
J=(un,u2), n=uz/j, m=(u1—u/j
so that
j<U m<U/j, U/(2))<n<n+m<U/j, (n,n+m)=1.
Now, go and ag will depend on n,m, j. Let S = ((U/4)* "' LVF. .. V=112, Then for fixed
j and m, by Dirichlet’s approximation theorem, there exists ¢ € Z and s € N such that
(c,s) =1, s<8, and |Bj"'m—c/s| <(s5)7

Notice again that if ¢ = 0, then s = 1. Let D = ((n +m)*~ — n*=!)/m. Then
k=1 ™ i
D=—— x dx,

m n
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and so
(k—=D)(U/(25)*""t <D< (k—=1)(U/j)"1.
Thus, from (3.23), one has gy < Uz*) and

Bit=tm — 22| < Ui -
gD qODLVTk_l"‘Vlkl
(LVlk_l . Vrk*l)l/@(k*l)*l), one has
[3k=0p Uzk=bg
pi 7] R s v s

Thus, we see that cgoD = ags. Hence qg|s. Let s; = s/qo. Then ¢D = ays;. Hence c|a; and
s1|D. Therefore, as (n, n+ m)=1, we have (n(n +m), s;) = 1. Thus, one finds that

)<Y, > > E(8) (3.24)

J<U m<U/j sils

Therefore, since U < %

C Qo

|goDc — sag| =

where
(81/8)2/(k_l)

2 T TV VO ) = ol
in which the innermost sum is over n satisfying

n<U/j, (n(n+m),s1)=1, s1|D. (3.25)
The third condition s;|D implies that

53(5) =

k—1

= n"' (mod sym). (3.26)

Since we have (n,n+m) = 1 and (n, s1) = 1, one finds that (n, sym) = 1. Thus, there exists
ng such that nng = 1 (mod sym). Hence, the congruence (3.26) is equivalent to

(n+m)

(1+mng)* " =1 (mod sym).

Notice that the congruence y*~! =1 (mod s;m) has v solutions modulo sym, say g1, ..., gu,
where v < (sym)€. Hence 14+ mng = g; (mod sym) for some 1 < i < v. Thus, there are at
most v choices for ng, and so for n, modulo s;. Then, on noting that s;m is bounded above
by powers of L which may depend on r, we see that

U Le/4 2/(k=1)
ES(ﬁ) < <_ + 1) k—1 (SI/S) . )
o ) O IVET VU )BT ef D

where the implicit constant may depend on r. By examining separately the contribution
arising from the terms U/(js1) and 1 in the first factor of (3.27), we see from (3.24) that

=2(8) < A+ O(LY*U),

(3.27)

where

4 Le/4Uj71
~ 2 2 G IO VO @) s —

J<U m<U/j
Plainly, we may restrict the inner sum in A to those m satisfying

s+ LV VU )(29)) B ms — of < U6,
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Indeed, the contribution on A of the remaining sum is O(LU), and thus the right hand side
in (3.22) is O(Vy - - - V,LYU3?). Let T = (LVF'-- - VYU /§)¥)'/2. Then for fixed j, by
Dirichlet’s approximation theorem there exists d and ¢ with

(d,t)=1, t<T and |Bj"'—d/t|<(tT)™
Notice again that if d = 0, then ¢ = 1. Then, on recalling U < L (LV{*'. .. yA-H/@k=D=1),
for fixed 7 and m one has

c d
— — —|tms <
ms

U0/ TUz¢D .
<
r LV VU (24))F7

Thus, we see that ¢t = dms, and so s|t. Let t; = t/s. Then ct; = dm. Thus ¢;|m. Let
my = m/t;. Therefore, the summation A is bounded above by

> (/e

J<U @t

where

Le/4Uj71
A= Z k—1 k—1 R — =k
Ty (L LVEL VIO (27) 6T | 875 — dft])

Hence, by applying the upper bound (3) from Appendix A, the innermost sum is
LU% 2t log X
(L LVFT VU713 — df )

A<

Hence, one finds that

U2j_2
E2(B) < LU+ : 3.28
2(/8) ( = (t + L‘/;kfl L mk—l(U/j)quﬁjkflt _ d‘)2/(k7l) ( )

and one may restrict the summation over j to satisfy

L LA /) B d) < (U 5) 0, (3.29)
Let R = Q'/2. Then by Dirichlet’s approximation theorem, there exists § and @ such that
G@a) =1 g<R and [g8—al <R .
Since t is non-zero, one finds that j < U. Therefore, on recalling
U < YLV yRety/ee=i-n),
when j satisfies (3.29), one has

a_ o g < (U/j)(k__l)/Qj’“‘l R(U/j) k072 3
7 U R QLVIL . VEU ) =
Thus, we see that j*~'ta = gd. Hence t[q. Let § = g/t. Then j*~'a = g'd. Hence 7'|j*~*. Let
7 =4 qéz . qli:k:zl where ¢;_, is maximal and ¢, ...,q)_,_; are square-free and coprime in

pairs. Then ¢ - - - ¢;,_;|7, so the summation over j in (3.28) is

- Z Z U2 (wq, - '];ql;c—l>_2t_2/(k—l)
k=l ... =lrrk—11 3 _ 7 /7\2/(k—1)’
o o, WALV VUM —a/q))

(3.30)



SMALL FRACTIONAL PARTS OF BINARY FORMS 15

where the inner sum is over ¢, ¢}, ...,q,_, satisfying § = tqjq% - - - ¢;'. Thus, on recalling
Q= (Vi ---V,U)* 'L, since we have g%/ k=0 < ¢2/(:=Ug/ g2 ... ¢*=! the bound (3.30) is

U2Le/2
(G + Q|87 —a|)/ ="

When g + Q|35 — a| > %U(""l)/Q we are done, so we may suppose that ¢+ Qg8 — a| <
L{G=0/2, Thus,

<

a Uk=D2N  pk=h/2
- < <1
q 2Q * 2N~
since by assumption, Uzk-D <N QU_%(’“_I). Hence, one has ¢ = ¢, a = a. Therefore, we
complete the proof. O

)
S

We now turn to prove Lemma 3.2. To prove this lemma, we exploit Proposition 3.3 and
Proposition 3.4.

Proof of Lemma 3.2. Note that

SIS

1<h<H ye A(Y,R)

We shall first apply Proposition 3.3 to the right hand side in (3.31). Let Mj,..., M, be
real numbers with Mj,..., M, > 1 satisfying M;--- M, = Y/Z. We will define each of
My, ..., M, later for applications of Proposition 3.4. For now, we temporarily assume that
such My, ..., M, exist. Then, by applying Proposition 3.3 with R = Y7 and

fly) =Y elhg(z,y)),

1<z<X

Z (hg(x y))‘ (3.31)

1<z<X

one finds from (3.31) that

S(a) < Si(a) + Y ZM1 M;R7TY sup | f(y)l, (3.32)

1<h<H j=1 lsysM;
where
E E E E E e(hg(x,vy...vu))|.
1<h<H Mi<vi<MiR M, <vr<MrR ue A(Z,R) |[1<2<X

Since by Y/(M;y---M,) = f(y)] < X for all h, it follows trivially that

S>> M MR sup | f(y)] < H(XY)Hez 2

1<h<H j=1 1<y<M;
Then, it suffices to bound S;(e). By applying Holder’s inequality, we see that
@) < (HYR) "y 39

where
21

Z e(hg(x,vy - -vu))

1<z<X

=2 2. > )

1<h<H ueA(Z,R) Mi<v1i<MiR My<v.<MrR
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By applying Weyl differencing, we have

Sala) < X271 NN Yoo Y Sy(a), (3.34)

1<h<H ’LLEA A R) M1<U1<M1R Mr<'UrSM'rR

= D > D e(hdi(glavr o), h)

hi|<X  |h|<X z€li(h)
in which I;(h) is an interval of integers contained in [—X, X]. Note here that
A7 (g(x, vy ---vou), h) = AF (apx®) + AT (g’ (vy - - - v,u)h)
and A?(oqxt(vy - - v,u)*7!) does not depend on z. Thus, by splitting A(Z, R) into dyadic
intervals [Zy/2¢, Zy /2171 with Zy < Z, for any € > 0, one infers from (3.34) by applying a
standard divisor estimate that
YEPSCD SERTED S S DI
My<vi<MiR Myr<v,<M;R1<n<l'HX!' u
where the innermost sum is over v € A(Z, R) and Zy/2 < u < Z for some Zy with Z < Z.
Since we have M --- M, = Y/Z, by applying Cauchy’s inequality, we deduce that

So(a) < X2 (HXUY/Z)R)V25,(a) 2, (3.35)

where

where )

Z e (al(vl . 'vru)k’ln)

u

SRS SRS SRD S

Mi<vi<MiR  M;<v,.<M,R1<n<I!HX!
By squaring out and change the order of summations, we see that

Si(a) < Z Z Z Z e (an(vy - v T u T = ub )|

Mi<uni<MiR Myr<vr<MrR Zy/2<u1,u2<Zp [1<n<UHX!
(3.36)

We define M, ..., M, here so that we apply Proposition 3.4. We set r = 1/, and define

|1 1_logZ
“= n logY ) |’

which satisfies Y*" < Y/Z. Then, define M,, ..., M; by

Y when ¢ >r—a
M; =< Y/(ZY*) when i=r—a
1 when 1 <i<r—a.

Since Y/Z = My - - - M,., this choice for My, ..., M, is in accordance with the hypotheses of

Proposition 3.3.
On recalling that 7y < Z < (HXZ)I/(Q(’C_Z)) and by observing Y7 > M, > M, 1 > --- >
My, one finds that

1 1
1< MR< 5(HXl)l/ (k=) 7, 20 (3.37)

1
1< MR < a(HXl)l/(k‘”(M,;HR) o (MyR)Z7' (i =1,...,r —1). (3.38)
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Furthermore, on recalling that Z < (HX')Y?*=0) one deduces that
Zy < YHXYMR)* - (M, R)FHYEE=D=D), (3.39)

Thus, on setting U = Zy and V; = M; R (1 < i < r), we see that the hypothese of Proposition
3.4 are satisfied. Then, since we have Y/Z = M; - - - M,., by applying Proposition 3.4 to (3.36)
with L =1!HX" and V; = M;R (i = 1,...,7), we obtain that

1
(¢ + (Zo/2)FTHX'Y *|gay — a])/®D)
Therefore, on substituting (3.40) into (3.35) and that into (3.33), we deduce that

Sy(a) < HXl(Y/Z)R’"ZgX€< + 201/2). (3.40)

) . 9-1-1
XHXYR (Z,7 1) Zl2 .
Si(a) < R'(ZyZ™") ((q—l— (Zo/Z)FTH XY R — af) /(D) %o

Since we have Zy < Z, by choosing 7 small in terms of ¢, one concludes
H(XY)lte
(q-+ HX'Y g3 — o) VEG0)

Therefore, we are done.

Si(a) < + H(XY)'Fez72

4. PROOF OF THEOREM 1.1

Our goal in this section is to prove Theorem 1.1. As we mentioned in section 2, we reduce
the problem of bounding the fractional parts of polynomial in Theorem 1.1 to the corre-
sponding diagonal problems. Thus, we begin this section by examining the corresponding
diagonal problem.

Proposition 4.1. Let o, 5 € R and k € N with k > 2. Then, for any € > 0, there exists a
real number X (k,€) such that whenever X > X (k,€) andY > X (k,€) one has

. k k —o+tey —o+e€
<X Y

onin, |az™ + By"|| < ,

0<y<Y

(z,y)#(0,0)

where o = 2'7F.
Proof. Let H = X?~°Y?~¢. Suppose that there exists no z and y satisfying
lacz® + By*|| < 1/H.

By Dirichlet approximation theorem, there exits ¢, g2 € N and a4, ay € Z such that (¢1,a1) =
(q2,a2) = 1 with ¢; < X*1H and ¢, < Y*'H, and

aq < 1 ﬁ a9 < 1
a——|<—, |f——| < ————.
41 pX*1H q2 @Y 1 H
If ¢; < X, then by observing that |qa — a;| < (HX* )71, one has
1 1
: k k k k-1 k-1
Juin ez + By < flagr| < o flaa]l < X g S

0<y<Y
(z,)#(0,0)
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Similarly, if go <Y, one has

1
i k Il < —.
min [ 4—By||__H
1<y<Y
(z,9)#(0,0)

These are contradiction to our assumption. Thus, we may assume that X < ¢; < X*1H
and Y < ¢ <Y*1H.
It follows from our assumption by Lemma 2.1 that

XY < E | E e(h(az” + By*))|. (4.1)
1<h<H 1<z<X
1<y<y

On writing

> elh(az® +8y") = > e(hax) D e(hpy),
by Cauchy’s inequality, the right hand side in (4.1) is

1<z<X 1<z<X 1<y<Y
o\ 1/2 o\ 1/2
<( 3]z watf) (2 )
1<h<H

1<y<Y
1<h<H'<z<X
Then, by applying Weyl differencing, the last expression is for every ¢ > 0

> elhByh)

1<y<y

1—k 21716
Lol o\ (1,1, @
Xy — 4 — —+ = : 4.2
< q1+X+XkH q2+Y+YkH (4.2)
Therefore, on recalling that X < ¢, < X*¥1H and Y < ¢ < Y*"1H, one finds that (4.2) is

< X1+5Y1+6X76Y76.

By taking § < e, it contradicts (4.1). Therefore, we are forced to have

min_[Jaz® + ByF| < Xty ot
0<a<X
0<y<Y
(z,9)7#(0,0)

O

As sketched in section 2, we shall reduce Theorem 1.1 to this diagonal problem through
Lemma 3.1 and inductive arguments.

Proof of Theorem 1.1. Let H = X7 ¢ with ¢ = fi—fZl*k. There exists gr and ap with
(qx, ax) = 1 such that ¢z < X*1H and

1
— < ———. 4.3
o — ar/qr] < WX 1H (4.3)
Suppose that
1
— < H@kxk _'_Oélxlykfl +C¥l71$171yk71+1 N Oéoka (44)

H
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for all 0 < z,y < X when (z,y) # (0,0). Then, we may assume g, > X. Indeed, if one were
to have ¢ < X, by (4.3), one has

min  |Japz® + oyt 4+ oo 2T gy

0<z,y<X

(2,y)#(0,0)

1
< min oot < g owarl < .
which contradicts our assumption.

From our assumption (4.4), we derive analogues of (4.4) by an inductive arguments. Specif-
(%) ()

ically, at the i-th step, with 0 <17 <[, we shall prove that there exist coefficients o, ’,, . . . , o,
suitable integral multiples of a;_,, ..., ag, respectively, such that

1

E<<||akx +a§)z - zyk l+z+_ () k” (45>

forall 0 <z < X and 0 < y <Y; = X/ wwhen (x,y) # (0,0). The case i = 0 obviously
follows from (4.4). Assume that (4.5) holds for a particular i« < [ — 1. We shall show that
(4.5) holds for i replaced by i + 1.

By Lemma 2.1, the inequality (4.5) implies that

XY« 3 Y elhlaa +alat Ty T el (40)

1<h<H'1<z<X 1<y<Y;

Note that for any ¢ > 0, it follows from Dirichlet’s approximation theorem that there exists
q € N such that

q< Xl—i—}—lyk—l—}—z‘H—Zk*l—i-lX—&
X? (4.7)
|— Xl- z+1Yk i pr—2k—141°

||qal 1|

Thus, on recalling X < ¢, < X*'H, it follows by Lemma 3.1 that the right hand side in
(4.6) is

217k

<Hx ey (L4l @ o Lyl a
v Tk X XkH q Y X1i- zch l—i—zH

<<HX1+€YX—2171€ <q—217k + Y—Qlfk + X21 kH_l 5)‘
Note that (XY;)?' " > H. Thus, combining this and the lower bound of (4.6), one obtains

217k

XY; <« HXWHey, x 2 27"
which implies
g < XV,

We apply the triangle inequality and put y = qy; with 0 < y; < X!'=0+D/U+) Thus, we
have qy; <Y, and

oz® + a2 (qu) o (g

< llaxa + a?i’i,lasl—"—l(qyl)’“—“’“ ot ag (o) ]+ llo e gy

k—Il+1
_l’_
(4.8)
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Since we have H = X7 ¢ with ¢ = 51321*’“, by applying the triangle inequality and (4.7),
one has
o2 (ay)* ) < 2 (g Myl ial
)
< xlmiyh—li=1 x 1=(+1)/(+1) X
— i Xl,iJrlyk—l—i-iH,Qk—lJrl

1.9)
X (
< H2 X*l/(l+1)
T HX
X—E
< .
- H
Hence, by substituting the bound (4.9) into (4.8) and the lower bound (4.5), one obtains
1 i —im "
77 < llona® + o '™ gg) T 4o (g (4.10)

H
forall 0 <z < X and 0 <y <Yy when (x,y;) # (0,0). By writing
al(ltl)r — 041( )Z qu‘ I+i+r (1 S r S [ — 2)’

one concludes from (4.10) that
1 i i1 ke—l4i (i
7 < o + @l TD iyt oy g Ik (4.11)

forall 0 <z < X and 0 <y <Yy when (z,y) # (0,0).
Thus, one infers by induction that

1 l
T < Hozkxk + aé)ka

forall0 <z < X and 0 < y < XYY when (x,y) # (0,0), which contradicts the conclusion
of Proposition 4.1. Thus, we are forced to conclude that

min _ |lop2® + apz'y" 4+ g 2T 1 agyf| < 1/H.

0<z,y<X
(z,y)#(0,0)
OJ
Proof of Corollary 1.2. By change of variables,
T =T — Cp
1 k—1Y1 (4.12)

y = kcyy,
one has
y)= Y ar'yt =" il — ) (ko) = Y daiyl, (4.13)

0<i<k 0<i<k 0<i<k
iZk—1

where each ¢ is obtained by the Binomial theorem. Furthermore, notice from (4.12) that
X
R(L+[e[) (1 + |exal)

0<z<X/2and0<y; <Y =

implies that
lz| < X and |y| < X.
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Hence, one has

min |Japp(z,y) + ap_oz" 2y + -+ gy
0<|z|,|ly|<X

(=,9)#(0,0)
. 2 / k=2 2 Ik
< min ||04kx1 T Qg _oTy Y T ol H7
0<z1<X/2
0<y1 <Y
(x1,51)7#(0,0)

where each o is obtained by (4.13) and the Binomial theorem. Then, by applying Theorem
1.1 to the last expression, we conclude that for any € > 0, there exists X (k,¢) such that
whenever X > X (k,¢) one has

min _|lagp(z,y) + Y T @oka < X7
0<]z],ly|<X

(z,y)#(0,0)
where o = k/(k — 1)217*.

5. PROOF OF THEOREM 1.3

Our goal in this section is to prove Theorem 1.3. We begin this section by examining the
corresponding diagonal problem. The following proposition is useful for larger k.

Proposition 5.1. Let o, f € R and k € N with k >. Then, for any ¢ > 0, there exists a
real number X (k,€) such that whenever X > X (k,€) and Y > X (k,€) one has
. k k < —o+ey —o+e€
omin - flaz® + ByP|| < XTOTY O, (5.1)
0<y<Y
(2,y)#(0,0)

where o = 1/(k(k —1)).
Proof. Let H = X7 Y ¢ with 0 = 1/(k(k — 1)). Suppose that we have
|ax® + By¥|| > 1/H (5.2)

for all x and y. By Dirichlet’s approximation theorem, there exist q;,q2 € N and ay,as € Z
with (q1,a1) = (g2, a2) = 1 such that ¢ < X*'H, ¢ < Y*1H, and

aq < 1 15— ag ’ < 1 .

qQ QX tH @' T YHH
By the same treatment as in the proof of Proposition 4.1, we may assume that ¢; and ¢, are
greater than X and Y, respectively.

By Dirichlet’s approximation theorem, there exist 7 € N and b; € Z with (r,b,) = 1

such that |ha — by /r1| < 7y X'% and r; < X*~1. Thus, by [16, Theorem 5.2] depending on
Vinogradov’s man value theorem, one has

1 1 ™ 7
e(haz® <<X1+€/3(—+—+—> )
1;}( ( ) T1 X Xk

where o = 1/(k(k — 1)). Then, by the transference principle [22, Lemma 14.1], one obtains

1 L ry+ X¥|rihal|\7
ry+ XF||rhal X Xk '

Z e(haxt) < X1+e/3

1<z<X
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Since 7, < X*71, this bound is seen to be

Z e(haz®) < X170t 4 X1+6/3(’I‘1 + X*||rihal) . (5.3)
1<z<X
Similarly, whenever |h3 — by /15| < ry'Y1% and ro < Y1 with (79, by) = 1, one obtains
> e(hBy*) < YIRS L YIS (ry + VR |rah )7 (5.4)
1<y<y

Notice here that r;, r9 may depend on h. Meanwhile, by Lemma 2.1, it follows from our
assumption (5.2) that
Xy < >

1<h<H

S elitat+ 5| (5.5)
1<x<X

Then, by (5.3) and (5.4), we have

> | 3 itant | = 3

Y elhlar®)

> e(hByh)

1<h<H'l1<z<X 1<h<H'1<z<X 1<y<Y
1<y<y
< Y (Ui(h) + Us(h) + Us(h) + Us(h)),
1<h<H
where
Ul(h) _ X170+6/3yl70+e/3’
Us(h) = X' BY By 4 Y¥|IrahB]|) 77,
Us(h) = XY 4B 4 XF||rihal]) 7,
Uy(h) = XY B (e 4 XE|rha) 7 (g + YE||r2h8]) 0

in which r and ry depend on h.
We shall show that

> (Ui(h) + Us(h) + Us(h) + Us(h)) < (XY) 72,

1<h<H
First, since H = XY 7€, we have
> Ui(h) < XY, (5.6)
1<h<H

Second, consider Z Us(h). By Holder’s inequality, one has
1<h<H

Z Ug(h) §X1—0+e/3yl+e/3H1—a< Z (T2+Yk||r2h/8||)_1>

1<h<H 1<h<H

V& ’
_ Xl—a+e/3y1+e/3H1—‘7 <Y_k Z min{_a ||T2h5||_1}> :
T2

1<h<H

(5.7)
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Note that since 7o < Y*~! one has

k k
3 min{%,HthHl}S DS min{YT,HthHl}

1<h<H 1<r<yk—11<h<H

<y > a{tE

1<r<Yk-11<h<H }

By a standard divisor estimate, this bound is seen to be

YEH
<Xy min{T,Hnﬁﬂl}.

1<n<Yk-1H
By [16, Lemma 2.2], this bound is

Y  YkH

where we have used inequalities |3 —as/¢a] < ¢ 'Y *FHand Y < ¢o < Y*"1H. Hence, on
substituting (5.8) into (5.7), we find that

Z UQ(h) <<X170'+6/2yl70'+6/2H<<X176/2yl76/2' (59>
1<h<H

11
<<X€Y'“H( by B )gXEYk—lH, (5.8)

Third, consider Z Us(h). By the same treatment with just above, we obtain

1<h<H
14€/3v 1—0+¢€/3 r7l—0 k X )
Z Us(h) = X7°Y H <X Z mln{r— | he||™ })
1shzH 1<h<H
< Xte/3yl-ote/3 pri-o (XGH ( 1 n 1 N ))" (5.10)
X XkH

< X1_6/2Y1_6/2.

Finally, consider Z U, (h). By Holder’s inequality, we have

1<h<H
D Uu(h) < (XY)HH AR, (5.11)
1<h<H
where
k X* 1
A=X" Z min ¢ —, ||rhal|”
1<h<H
and

B=Y7* Z mln{— llreh 3|~ 1}

1<h<H
By the same treatment in the case Z Us(h) and Z Us(h), one infers from (5.11) that
1<h<H 1<h<H

D Us(h) < (XY)HBHTP(YHY T (XHX )T < (XY) 2, (5.12)

1<h<H
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Hence, by (5.6), (5.9), (5.10) and (5.12), we have
Z (Uy(R) + Uy(h) + Us(h) + Uy(h)) < (XY )72,

1<h<H

This contradicts (5.5) stemming from our assumption that

Oimn |az® + By*|| > 1/H.
0<y<Y

(z,)#(0,0)
Therefore, we are forced to conclude that

minfloa* + 3y < 1/
0<y<Y

(z,)#(0,0)
L]

We shall reduce the problem in Theorem 1.3 to this diagonal problem by exploiting the
same argument in Theorem 1.1 with Lemma 3.1 replaced by Lemma 3.2.

Proof of Theorem 1.3. Let H = X?~¢ with 0 = Suppose that

2
R(E—1)+p(k,D)"
1/H < |Jagz® + gy + -+ o (5.13)

for all 1 < z,y < X. From (5.13), we shall derive a lower bound of fractional parts of
polynomial having fewer terms by an inductive arguments. Specifically, at the i-th step,
with 0 < ¢ <[, we shall show that for all 1 <x < X and 1 <y <Y with

Y, = Xl—(21+1(k—l)+21(k—l+1)+~~+21*i+2(k—l—i—i—1))0 (5‘14)
there exist coefficients ozl(i)i, . a(()), suitable integral multiples of ay_,, ..., ag, respectively,
such that )

— < ||aga® —|—ozl( )Z e Tad I (5.15)

H
The case ¢ = 0 obviously follows from (5.13). Assume that (5.15) holds for a particular
i <1 —1. We shall show that (5.15) holds for i replaced by i + 1.

Since A(Y;, R) C [1,Y;] N Z, the assumption (5.15) implies
1 i
7 < 1mm oa® + a2ty R (5.16)
yeA(Y;,R)

Thus, by Lemma 2.1 and the fact that |A(Y;, R)| < Y;, one has

Xy, < Y| Y e(hopa + ol @ 4 afyh) (5.17)
1<h<H' 1<z<X
yeA(Y;,R)

By Dirichlet’s theorem, there exist ¢ € N, a € Z with (¢, a) = 1 such that
q< HXl—i—2l*i+1(k—l+i)a+nyk—l+i

and
anX2l*i+1(kfl+i)a

HXZ_Z‘Yik—l-l-i

lga”|| < (5.18)
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Let U = X2 To apply Lemma 3.2 with Z = U and Y =Y, we verify here that U and
Y; satisfy the hypotheses of Lemma 3.2, namely,
U< min{(Hlei)l/(Q(kflJri))’ K}

We first verify that U < Y;. Since we have p(k, ) < k(k—1), one has 2" (k—1) < k(k—1),
and thus

28 <k(k—1)/2k 1) <k-—1, (5.19)
since by an obvious restriction [ < |£]. Note also that
o= 2/(k(k — 1) + ol 1)) < plk ) (5.20)

since p(k,l) < k(k — 1). Hence, on recalling (5.14), by (5.19) and (5.20), one finds that
U= x2 "t < X2k ) < X1 ekD=22(k=)p(k )" < x1=(p(kl)=22(k=1))o < Y. (5.21)

We turn to verify the other hypothesis. Since we have p(k,[) < k(k—1)/7 and by recalling
the definition of p(k,[), one has
2 1 1
< < ; .
Kk — 1) + p(k, 1) = 4p(k,1) = 2=+3(k — 1 + 1)

o=
Hence, we have
U= x2 " < X1/ (2(k—1+4)) (5.22)
Thus, from (5.21) and (5.22), we verified that
U < min{(HX"1)Y/@E=1+0) y
Therefore, by applying Lemma 3.2 to the right hand side on (5.17), we obtain
H(XY;)+

XY, A _ H(XY;) U127, 2
PSS G BXY g — a)y@ ) (X¥;) U (5.23)
This implies
g < X (5.24)
v applying the triangle inequality and putting y = qy; wit
B lying the triangle i li d i ith
1<y SYX 20—y
one finds that
legz® + ) a =iyt tH aly| 5.25)
< flawa® + g2 ayn) T e a” (g g ()t
By applying the triangle inequality and (5.18), one has
o2 (ay) 7 < 2 () g ial
. —n 2l (k—l+i)o
l—iy k—l+i —21*1+1(k—l+z‘)aX X
S X }/; X HleiY"k’—l—H' (526)
X
< .
- H

Thus, by (5.15),(5.25) and (5.26), one has
1/H < ||oga® + ozl(i)iflml_"_l(qyl)k_l“*l S C T (5.27)
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forall 1 <z < X and 1 <y; <Y,y By writing

), = o), (1< < 1)
one concludes from (5.27) that

1/ H < [laga® + o 502! 7y gy
forall 1 <z < X and 1 <y; <Y,y ;. Thus, this confirms the inductive step.
Thus, one infers by induction that

1/H < ||ozkxk + oz((f)ka

forall 1 <z < X and 1 <y <Y,. This contradicts the conclusion of Proposition 5.1. Thus,
we are forced to conclude that

min  [lopz® + apz'y" T+ g 2T o agyf| < 1/H.

0<z,y<X

(z,y)#(0,0)

6. PROOF OF THEOREM 1.4

Our goal in this section is to prove Theorem 1.4. We begin this section by examining the
corresponding diagonal problem. To prove following Proposition 6.2, we require the minor
arc estimates in [20, Corollary 2]. Throughout this section, we take R = X" with n positive
and sufficient small. We state here this corollary without proof as a proposition.

Proposition 6.1. Let my denote the set of a« € R such that whenever a € Z, q € N,
(a,q) =1 and |a — a/q| < ¢ ' X %, then ¢ > X*R. Then there is a natural number ko(e)
with the following property. When k > ko(¢€), there are real numbers A\ = \(k), o(k) and
C > 0 with

log log k log log k

1—A
log k < < log k

and such that

and o(k)~' = k(logk + Cloglogk),

Z G(OéZL‘k) <<X1—O’(k?)+5.
z€A(X,R)

Proof. See [20, Corollary 2]. O

To state the following proposition, we exploit the exponent A = \(k) defined in Proposition
6.1.
Proposition 6.2. Let o, € R and k € N. Define
1 o
o= 0og= ————.
klogk + Ckloglogk” ° 1—-X—o

Let X and Y be real numbers sufficiently large in terms of k and € with X°° <Y < X.
Then, one has

: k k < —o+e€ 70’4’6‘
omin - flaz® + Byl < XY
0<y<Y

(z,y)#(0,0)
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Proof. Let H = XY °~¢. Notice that max{X*~1, Y*71} < 1/H. Suppose that there exists
no x,y satisfying |ax® + By*|| < 1/H.

Suppose first that there exist ¢ € N, a € Z, h € [1, HlNZ with (g,a) = 1 such that
¢ < X*R and

|ha — g| < gt XAR (6.1)

Since we have Y < X, we find that hg < HX*R < X. Then, by putting y = gh, it follows
from (6.1) that
min [zt + By < [lagh)¥| < (HX R aghl] < XX < 170,
0<y<Y
(z.)#(0,0)
which contradicts our assumption.
Suppose next that there exist ¢ € N, a € Z, h € [1, H] N Z with (¢,a) = 1 such that
g <Y?*R and

hB — g] <YM, (6.2)

Since we have X <Y, we find that gh < HY*R <Y. Then, by putting y = gh, it follows
from (6.2) that

Jmin - flaz® + 95" < v(gh)'ll < (HY R)*lyqh|l < YFY*8 < 1/H,

ogzZY

(z,y)#(0,0)

contradicting our assumption.

Thus, on recalling the definition of my in the statement of Proposition 6.1. We may assume
that for all h € [1, H| N Z, one has ha, hf3 € my. Meanwhile, it follows from our assumption
by Lemma 2.1 that

XYy < Y | > e(h(oz® +8yh)|.
1<h<H z€A(X,R)
yeA(Y,R)

Therefore, on writing
! Z e(h(axk%-ﬁyk))‘:} Z e(h(oz:vk))H Z e(h(ﬂyk’))|,

2€A(X,R) z€A(X,R) yEA(Y,R)
yEA(Y,R)

by applying Proposition 6.1, we find that
Yol D elhlas® +pyh))| < (XV)'

1<h<H z€A(X,R)
yeA(Y,R)

which contradicts our assumption. Hence, we are forced to have

i F Ml < 1/H.
omin  laz® + Byl < 1/H
0<y<Y

(z,y)#(0,0)
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Proof fo Theorem 1.4. Let H = X°~¢ with 0 = 2/(klogk + p(k,l) + Ckloglog k). Suppose
that
1/H < |loga® + agely™ + -+ apy”|| (6.3)

for all 1 < z,y < X. From (6.3), we shall derive a lower bound on fractional parts of
polynomial having fewer terms by an inductive argument. Specifically, at the i-th step, with
0 <17 <, we shall show that for all 1 <z < X and 1 <y <Y, with

Y, — Xl—(21+1(k:—l)+21(Ic—l+1)+~~+2l*'i+2(k:—l—i—i—l))a

9

(%) (4)

there exist coefficients o, ..., ag’, suitable integral multiples of oq_;, ..., ap, respectively,

such that

1
T < oz —|—ozl( )Z:cl LT —I—% y" . (6.4)

The case i = 0 obviously follows from (6.3). Assume that (6.4) holds for a particular i < [—1.
We shall show that (6.4) holds for i replaced by i + 1.
Since A(Y;, R) C [1,Y;] N Z, the assumption (6.4) implies

1 i
T < 1Lmn loa® + =iyt ol (6.5)
yeA(Y;,R)

Thus, by Lemma 2.1 and the fact that |A(Y;, R)| < Y;, one has

X< Y| Y elhlana +alla iy ayh) (6.6)
1<h<H' 1<z<X
yEA(Y,R)

By Dirichlet’s theorem, there exist ¢ € N, a € Z with (¢, a) = 1 such that
q< HleifQZ—“'l(kfl+i)o+77ykfl+i

and
X—nX2l_i+1(k—l+i)a
Hlei}/;k_H‘i
Let U = X2 "7 By the same treatment in the proof of Theorem 1.3 with k(k — 1) replaced
by klogk, we find that this U and Y; satisfy the hypotheses of Lemma 3.2. Therefore, by
applying Lemma 3.2 to the right hand side on (6.6), we obtain
H(XY;)l+E
(q + HXl—iy;k—Hilqal _ a|)1/(21ﬂ‘+1(k—1+i))

lged”,|| < (6.7)

i+2

XY < + H(XY,) U=

This implies
q < x 2T (k1) (6.8)
By applying the triangle inequality and putting y = qy; with
L<y S VX2 — v
one finds that

(i)llk‘l+l+

™ + 2™y +ag'y|

< k (%) 1—i—1 k—1+i+1 . () k () 1—i k—l+i (69>
< loga"™ + g, (qu1) + g (qyn)" ||+ (o2 (qyn) I
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By applying the triangle inequality and (6.7), one has

a2~ gy )| < 2t gy ) ol |
anXZZ*”l(kflJri)a

< leiykfl+in2l—i+1(kfl+1l)o
— 7

HXl_iyk—l—‘ri (610)
X"
< .
- H
Thus, by (6.4),(6.9) and (6.10), one has
1/ H < [laga® + o, 2= qu) =+ o (gun)F| (6.11)

forall 1 <z < X and 1 <y <Y, By writing
O{l(’H;l)r — al( )z qu’ I4+i+r (1 S r S l _ 'L),

one concludes from (6.11) that

1/H < Haki“ +Oél(ltl)1$l i—1y1f—z+i+1 +. +%z+

forall 1l <x < Xand 1<y <Y;.;.
Thus, one infers by induction that

1/H < |Japz® + oy (6.12)

forall 1 <2 < X and 1 <y <V, Since ¥; = X'7P*07 and p(k,1) < klogk, a modicum
computation leads to the relation that Y; > X 0. Therefore, the inequality (6.12) contradicts
the conclusion of Proposition 6.2. Thus, we are forced to conclude that

-1, k—l+1

. k 1, k-l ce k< .
i llagz™ + o'y + o2’y +otay'l| < 1/H

(z,y)#(0,0)

1)
y1H

APPENDIX A. ESTIMATIONS IN THE PROOF OF PROPOSITION 3.4

Let a, N be positive real numbers, and k and [ be natural numbers with £ —1[1 > 2. Then,
one has following;:

1 N
(1) Z 1 + ank—t < (1 + NE—la) /(=D

1<n<N

1 Nlog N
(2) Z (1 4 anh=1)1/G=D) < (1 + NE—lo)) /(D)

1<n<N

1 N log N
(3) Z (14 an)?/®=D < (1+ Na)2/(=D)

1<n<N

Proof of (1). Note that the left hand side in (1) is bounded above by the expression
Z min{1,a " 'n"""}. (6.13)

1<n<N

First, consider the case N*~!ac < 1. Then, both this expression and the right hand side in
(1) are of size N. Next, consider the case N*7'a > 1. We see that the minimum in (6.13)
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switches according as n*~'ar < 1 and n*~'a > 1. Both parts of the sum are of size o~/ =,
since k — [ > 2. Hence, we complete the proof of (1).

0J
Proof of (2). Note that the left hand side in (2) is bounded above by the expression

> min{l,a”/*0p1, (6.14)

1<n<N

First, consider the case N¥~!a < 1. Then, this expression is of size N, and the right hand
side in (2) is of size N log N. Next, consider the case N*~'a > 1. We see that the minimum
in (6.14) swiches according as n*~'a < 1 and n*~'a > 1. Both parts of the sum are less than
a~Y*=]og N. Thus, we complete the proof of (2). O

Proof of (3). Note that the left hand side in (3) is bounded above by the expression

Z min{1, (an)~%/*-0}, (6.15)

1<n<N

First, consider the case Na < 1. Then, this expression is of size N, and the right hand side
in (3) is of size N log N. Next, consider the case Na > 1. We see that the minimum in (6.15)
swiches according as na < 1 and na > 1. Hence, the expression (6.15) is seen to be

Z 1+ Z (an) * D « o7 4 o7 EDog N, (6.16)

1<n<a~1 a~l<n<N

since k — [ > 2. Therefore, by the condition Na > 1 and k — [ > 2, we find that the right
hand side in (6.16) is of size N'=2/(,=0q=2/(k=) Jog N. Thus, we complete the proof of (3).
O
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