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Abstract. We obtain bounds on fractional parts of binary forms of the shape

Ψ(x, y) = αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k

with αk, αl, . . . , α0 ∈ R and l ≤ k − 2. By exploiting recent progress on Vinogradov’s
mean value theorem and earlier work on exponential sums over smooth numbers, we derive
estimates superior to those obtained hitherto for the best exponent σ, depending on k and
l, such that

min
0≤x,y≤X
(x,y) 6=(0,0)

‖Ψ(x, y)‖ ≤ X−σ+ǫ.

1. Introduction

In 1914, Hardy and Littlewood [8, p 172] posed the question as to whether, when α ∈ R,
k ∈ N and ǫ > 0 is any positive number, there exists σ > 0 not depending on α such that

min
1≤x≤X

‖αxk‖ ≤ X−σ+ǫ, (1.1)

provided that X is sufficiently large in terms of k and ǫ. Here, ‖ · ‖ denotes the distance to
the nearest integer. Vinogradov [17] gave a positive answer to this question by providing a
specific exponent σ = k/(2k−1k + 1). This was quantitatively improved by Heilbronn [11],
who replaced the exponent σ = 2/5 by 1/2 in the case k = 2. Danicic [6] extended this
conclusion to σ = 1/2k−1 for all k ∈ N. Subsequently, the exponent 1/2 in the case k = 2
was improved to σ = 4/7 by Zaharescu [24]. Sharper results for k ≥ 6 depend on recent
progress Vinogradov’s mean value theorem, and thus Baker [3] proved that the exponent σ
can be replaced by σ = 1/(k(k − 1)). Furthermore, Wooley [20] showed that the exponent
σ can be improved to σ = 1/(k log k +O(k log log k)). However, it is conjectured in [1] that
the exponent σ should be improvable to 1. Unfortunately, current techniques do not seem
capable of achieving this conjecture.

Turning our attention to problems in many variables, one is led to ask analogous questions
regarding the distribution mod 1 of polynomials f(x1, . . . , xs) ∈ R[x1, . . . , xs]. In [12, Corol-
lary 2], Schlickewei proved that when α1, . . . , αs ∈ R and k ∈ N, there exists s0 = s0(ǫ, k)
such that whenever s ≥ s0, one has

min
0≤x≤X
x 6=0

‖α1x
k
1 + · · ·+ αsx

k
s‖ ≤ X−k+ǫ. (1.2)
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As a quatitative generalization of (1.2) for large s with the correct limit value, especially,
Harman [9, Theorem 3] proved that whenever s ≥ s0(k) there are infinitely manyX satisfying

min
0≤x≤X
x 6=0

‖α1x
k
1 + · · ·+ αsx

k
s‖ ≤ X−k+Ck/s+ǫ.

For reasonable bounds for small s, Baker [2,3] provided an explicit exponent σ(s, k) such
that

min
0≤x≤X
x 6=0

‖α1x
k
1 + · · ·+ αsx

k
s‖ ≤ X−σ(s,k)+ǫ,

with, for example, the exponent σ(s, k) = s/(k(k − 1)) when s ≤ k(k − 1).
For polynomials more general than additive forms, meanwhile, Schmidt [13] made progress

on the analogous problem regarding forms of odd degree k. Specifically, for given E > 0,
there exist s0 = s0(E, k) such that whenever s > s0, one has

min
0≤|x|≤X

x 6=0

‖f(x)‖ < X−E. (1.3)

In the special case of cubic form f(x), Dietmann [5] provided explicit formula σ(s) such that

min
0≤|x|≤X

x 6=0

‖f(x)‖ < X−σ(s),

where, for example, σ(3) = 6/23 and lims→∞ σ(s) = 1.
In this paper, we seek to make progress on making bounds of the shape (1.3) explicit,

concentrating for the present on the situation with s = 2. Here, one may write f(x1, x2) =
αkx

k
1 + αk−1x

k−1
1 x2 + · · · + α0x

k
2 with αk, . . . , α0 ∈ R. Hitherto, the only general strategy

available has been a trivial one that reduces this problem in two variables, by specializing
x2 = 0 for example, to a problem in one variable. In this direction, Wooley [21, Theorem 4]
obtained a nontrivial exponent σ by restricting the polynomial to have the shape αΦ(x1, x2)
where Φ(x1, x2) ∈ Z[x1, x2] is a binary form of degree k exceeding 1. The main difficulties
of the problem regarding general binary forms in R[x1, x2] arise from our relatively poor
understanding concerning how the monomials αlx

l
1x

k−l
2 , with 0 ≤ l ≤ k, combine to influence

the fractional parts of f(x1, x2). Our goal in this paper is to explore approaches to overcoming
these difficulties and go beyond the trivial approach hitherto applied, concentrating on the
class of binary forms. Our hope is that the arguments described here may be useful in
studying fractional parts of polynomials in many variables in general.

Our first theorem provides bounds for binary forms of degree k useful for small k.

Theorem 1.1. Let k and l be natural numbers satisfying 1 ≤ l ≤ k − 2, and consider real
numbers αk, αj (1 ≤ j ≤ l). Then, for any ǫ > 0, there exists a real number X(k, ǫ) such
that whenever X ≥ X(k, ǫ) one has

min
0≤x,y≤X
(x,y) 6=(0,0)

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖ < X−σ+ǫ, (1.4)

where

σ =
l + 2

l + 1
21−k.
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For comparison with earlier results, by incorporating the conclusion of Danicic [6] with
the trivial strategy mentioned above, one obtains

min
0≤x,y≤X
(x,y) 6=(0,0)

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖ ≤ min
1≤x≤X

‖αkx
k‖ ≤ X−21−k+ǫ

The conclusion of Theorem 1.1 improves on the exponent 21−k here by a factor which may
be as large as 3

2
in the case l = 1.

Corollary 1.2. Let k be a natural number, and consider real numbers αk, αj (0 ≤ j ≤ k−2).
Let ϕ(x, y) = ckx

k + ck−1x
k−1y+ · · ·+ c1xy

k−1+ c0y
k with cj ∈ Z. Then, for any ǫ > 0, there

exist a real number X(ǫ, ck, ck−1) such that whenever X ≥ X(ǫ, ck, ck−1) one has

min
0≤|x|,|y|≤X
(x,y) 6=(0,0)

‖αkϕ(x, y) + αk−2x
k−2y2 + · · ·+ α0y

k‖ < X−σ+ǫ,

where σ = (k/(k − 1))21−k.

In [5], Dietmann recorded that for sufficiently large X, one has

min
0≤|x|,|y|≤X
(x,y) 6=(0,0)

‖αx3 + βx2y + γxy2 + δy3‖ < X−1/4+ǫ,

which is obtained by specializing y = 0 and applying the earlier work of Danicic [6]. In
Corollary 1.2 with k = 3, we obtain the superior exponent σ = 3/8 by imposing the condition
that α and β have a rational ratio. By further restricting α, β, γ, δ to have rational ratio to
each other, Wooley [21, Theorem 4] proved that this can be improved to σ = 1/2.

Our next two theorems provide bounds useful when k is larger by exploiting recent progress
on Vinogradov’s mean value theorem and earlier work applying smooth numbers. The state-
ments of these results is facilitated by writing

ρ(k, l) = 22(k − 1) + 23(k − 2) + · · ·+ 2l+1(k − l),

and
l0 = max{l ∈ N| 7ρ(k, l) ≤ k(k − 1)}

l1 = max{l ∈ N| 7ρ(k, l) ≤ k log k}.
(1.5)

With more work the value of the constant 7 in (1.5) may be replaced with a smaller positive
number.

Theorem 1.3. Let k and l be natural numbers satisfying 1 ≤ l ≤ l0 and k ≥ 3, and consider
real numbers αk and αj (1 ≤ j ≤ l). Then, for any ǫ > 0, there exists a real number X(k, ǫ)
such that whenever X ≥ X(k, ǫ) one has

min
0≤x,y≤X
(x,y) 6=(0,0)

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖ < X−σ+ǫ, (1.6)

where

σ =
2

k(k − 1) + ρ(k, l)
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For comparison with earlier results, by combining the earlier work of Baker [3, Theorem
3] and the trivial treatment mentioned above, one obtains

min
0≤x,y≤X
(x,y) 6=(0,0)

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖ < min
1≤x≤X

‖αxk‖ ≤ X−σ+ǫ,

where σ = 1/(k(k − 1)). Notice that for all l with 1 ≤ l ≤ l0, the conclusion of Theorem 1.3
is superior to this earlier result stemming from Baker [3, Theorem 3]. For instance, in the
case l = 1, the earlier result, which is σ = 1/(k(k − 1)), can be improved to

σ =
2

(k + 2)(k − 1)
.

Theorem 1.4. Let k and l be natural numbers satisfying 1 ≤ l ≤ l1 and k ≥ 3, and consider
real numbers αk and αj (1 ≤ j ≤ l). Then, for any ǫ > 0, there exist a real number X(k, ǫ)
such that whenever X ≥ X(k, ǫ) one has

min
0≤x,y≤X
(x,y) 6=(0,0)

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖ < X−σ+ǫ, (1.7)

where

σ =
2

k log k + ρ(k, l) + Ck log log k

in which C is a positive constant which does not depend on k.

For comparison with earlier results, by combining the earlier work of Wooley [18, Theorem
1.2] and the trivial method mentioned above, one obtains

min
0≤x,y≤X
(x,y) 6=(0,0)

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖ < min
1≤x≤X

‖αxk‖ ≤ X−σ+ǫ,

where σ = 1/(k log k+Ck log log k) in which C is a positive constant which does not depend
on k. Notice that for all l with 1 ≤ l ≤ l1, the conclusion of Theorem 1.4 is superior to this
earlier result stemming from Wooley [18, Theorem 1.2].
The method underlying the proof of our main theorems is to exploit inductive arguments

based on a classical argument widely used in studying fractional parts of polynomials. How-
ever, it is complicated by the need to obtain quantitative inequalities useful for each of the
inductive steps. Thus, these and other technical complications may obscure the key ideas
of our arguments, and so we sketch this inductive argument in Section 2. Then, in Section
3, we provide key lemmas about the quantitative inequalities required for the success of
our arguments. In Sections 4, 5 and 6, by exploiting these key lemmas and the inductive
arguments, we provide the proof of Theorem 1.1, 1.3 and 1.4, respectively. Throughout
this paper, we use ≫ and ≪ to denote Vinogradov’s well-known notation, and write e(z)
for e2πiz. We adopt the convention that whenever ǫ and δ appear in a statement, then the
statement holds for each ǫ, δ > 0, with implicit constants depending on ǫ and δ, respectively.
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2. Outline of the proof

In this paper, we mainly follow a classical argument relating fractional parts of polynomials
to lower bounds of associated exponential sums [1, Theorem 2.2]. We record here this
theorem.

Lemma 2.1. Let x1, . . . , xN be real numbers. Suppose that ‖xn‖ ≥ H−1 for every n with
1 ≤ n ≤ X. Then,

∑

1≤h≤H

∣

∣

∣

∣

N
∑

n=1

e(hxn)

∣

∣

∣

∣

≥ N/6

Proof. See [1, Theorem 2.2]. �

Suppose that for all x, y with x, y ∈ [1, X] ∩ Z one has

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖ > 1/H. (2.1)

Then, by Lemma 2.1, one obtains
∑

1≤h≤H

|
∑

1≤x,y≤X

e(h(αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k))| ≫ X2. (2.2)

Our first goal is to obtain information about Diophantine approximations to αl from the
lower bound (2.2). In Section 3, we shall obtain upper bounds for the exponential sum on
the left hand side of (2.2) in terms of αk and αl. Combining these upper bound with the
lower bound (2.2), one obtains the information concerning αl.

The next goal is to reduce the problem of bounding the fractional parts on the left hand
side of (2.1) to the corresponding diagonal problem through inductive arguments. Note that
by the triangle inequality, one has

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖

≤ ‖αkx
k + αl−1x

l−1yk−l+1 + · · ·+ α0y
k‖+ ‖αlx

lyk−l‖. (2.3)

By putting y = qy′ where q is the denominator associated with a rational approximation
to αl, and again applying the triangle inequality, we see that the right hand side in (2.3) is
bounded above by

‖αkx
k + αl−1x

l−1(qy′)k−l+1 + · · ·+ α0(qy
′)k‖+ xl(qy′)k−l−1y′‖qαl‖. (2.4)

From the information about αl obtained in the first step, one finds that ‖qαl‖ is small enough
so that the second term in (2.4) is ≤ 1/(2H). Thus, the inequality (2.1) implies that for all
x, y′ one has

‖αkx
k + αl−1x

l−1(qy′)k−l+1 + · · ·+ α0(qy
′)k‖ ≫ 1/H.
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By applying this argument inductively, we ultimately infer from (2.1) that for all x and y0
one has

‖αkx
k + α′

0y
k
0‖ ≫ 1/H

for all x and y0. Experts will recognize that the diagonal polynomial here is accessible to
classical methods.

3. Exponential sums in two variables

Let A and B be subsets of [1, X] ∩ Z. Suppose that

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖ ≥ H−1

for all x ∈ A, y ∈ B. Then, by Lemma 2.1, one finds that
∑

h≤H

∣

∣

∣

∣

∑

x∈A
y∈B

e(h(αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k))

∣

∣

∣

∣

≫ |A||B|, (3.1)

where |A| and |B| are cardinalities of the sets A and B, respectively.
Our goal in this section is to obtain upper bounds for the exponential sum above in terms

of αk and αl. To obtain these upper bounds, we introduce a variant of conventional Weyl
differencing applicable to exponential sums in many variables, and exploit an argument used
in earlier works on exponential sums in many variables (See, for example, [15, Lemma 4.3]).
To facilitate concision throughout this section, we define g(x, y) = g(x, y;α) ∈ R[x, y] by

g(x, y) = αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k

with l ≤ k − 2. Furthermore, we define differencing operators ∆x
1 and ∆y

1 by

∆x
1(g(x, y);h) = g(x+ h, y)− g(x, y)

∆y
1(g(x, y);h) = g(x, y + h)− g(x, y),

and so we define ∆x
j and ∆y

j for j ≥ 2 recursively by means of the relations

∆x
j (g(x, y);h) = ∆x

j (g(x, y);h1, ..., hj) = ∆x
1(∆

x
j−1(g(x, y);h1, ..., hj−1);hj)

∆y
j (g(x, y);h) = ∆y

j (g(x, y);h1, ..., hj) = ∆y
1(∆

y
j−1(g(x, y);h1, ..., hj−1);hj).

The following lemma provides an upper bound for the exponential sum in (3.1) with
A = [1, X]∩Z and B = [1, Y ]∩Z. This upper bound is useful for small k. In advance of the
statement of this lemma, we define the exponential sum T (α) = T (α;H,X, Y ) by

T (α) =
∑

1≤h≤H

∣

∣

∣

∣

∑

1≤x≤X

∑

1≤y≤Y

e(hg(x, y))

∣

∣

∣

∣

.

Lemma 3.1. Let k and l be natural numbers satisfying 1 ≤ l ≤ k−2 and k ≥ 3, and consider
real numbers αk and αj (0 ≤ j ≤ l). Suppose that αk and αl have rational approximations
|αk − a1/q1| ≤ q−2

1 and |αl − a2/q2| < q−2
2 with (q1, a1) = (q2, a2) = 1, respectively. Suppose

that X and H are positive real numbers sufficiently large in terms of k. Then, for each ǫ > 0,
one has

T (α) ≪ H(XY )1+ǫ

(

1

q1
+

1

X
+

q1
HXk

)21−k (

1

q2
+

1

Y
+

q2
HX lY k−l

)21−k

(3.2)
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Proof. By Hölder’s inequality, one obtains

T (α) ≪

(

∑

1≤h≤H

∑

1≤y≤Y

1

)1−2−l(
∑

1≤h≤H

∑

1≤y≤Y

∣

∣

∣

∣

∑

1≤x≤X

e(hg(x, y))

∣

∣

∣

∣

2l)2−l

.

Then by Weyl differencing (see, for example, the proof of Vaughan [16, Lemma 2.4]), we
obtain

T (α) ≪ (HY )1−2−l

(

X2l−(l+1)
∑

1≤h≤H

∑

1≤y≤Y

∑

|h1|≤X

· · ·
∑

|hl|

∑

x∈Il(h)

e(h∆x
l (g(x, y),h))

)2−l

where Il(h) is an interval of integers contained in [−X,X]. Note here that

∆x
l (g(x, y);h) = ∆x

l (αkx
k) + ∆x

l (αlx
lyk−l)

and that ∆x
l (αlx

lyk−l) does not depend on x. Hence, one obtains

T (α) ≪ (HY )1−2−l

X1−(l+1)2−l

V (αk, αl)
2−l

, (3.3)

where

V (αk, αl) =
∑

1≤h≤H

∑

|h1|≤X

· · ·
∑

|hl|≤X

|V1(αk;h,h)||V2(αl;h,h)|

in which

V1(αk;h,h) =
∑

x∈Il

e(h∆x
l (αkx

k,h))

and

V2(αl;h,h) =
∑

1≤y≤Y

e(h∆x
l (αlx

lyk−l,h)).

By applying Hölder’s inequality again,

V (αk, αl) ≪

(

∑

1≤h≤H

∑

|h1|≤X

· · ·
∑

|hl|≤X

1

)1−22−k+l

W1(αk)
21−k+l

W2(αl)
21−k+l

(3.4)

where

W1(αk) =
∑

1≤h≤H

∑

|h1|≤X

· · ·
∑

|hl|≤X

|V1(αk, h,h)|
2k−l−1

,

W2(αl) =
∑

1≤h≤H

∑

|h1|≤X

· · ·
∑

|hl|≤X

|V2(αl;h,h)|
2k−l−1

.

By applying classical Weyl differencing arguments, one has

W1(αk) ≪ X2k−l−1−(k−l)
∑

1≤h≤H

∑

|h1|≤X

· · ·
∑

|hk−1|≤X

∣

∣

∣

∣

∑

x∈Ik−1(h)

e(ckhh1 · · ·hk−1x)

∣

∣

∣

∣

where ck is a constant depending on k, and Ik−1(h) is an interval of integers contained in
[−X,X]. Thus, by the proof of [16, Lemma 2.4], for each ǫ > 0 one has

W1(αk) ≪ HX2k−l−1+l+ǫ

(

1

q1
+

1

X
+

q1
HXk

)

.
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Furthermore, one has

W2(αl) ≪ Y 2k−l−1−(k−l)
∑

1≤h≤H

∑

|h1|≤X

· · ·
∑

|hl|≤X

∑

|hl+1|≤Y

· · ·
∑

|hk−1|≤Y

∣

∣

∣

∣

∑

y∈Jk−1(h)

e(dkhh1 · · ·hk−1y)

∣

∣

∣

∣

where dk is a constant depending on k, and Jk−1(h) is an interval of integers contained in
[−Y, Y ]. Hence, for each ǫ, one has

W2(αl) ≪ HX lY 2k−l−1+ǫ

(

1

q2
+

1

Y
+

q2
HX lY k−l

)

.

Substituting these estimates for W1(αk) and W2(αl) into (3.4) and from there into (3.3), one
concludes that

T (α) ≪ H(XY )1+ǫ

(

1

q1
+

1

X
+

q1
HXk

)21−k (

1

q2
+

1

Y
+

q2
HX lY k−l

)21−k

�

In order to describe Lemma 3.2, we introduce the set of smooth numbers

A(Y,R) = {1 ≤ n ≤ Y | p prime and p|n ⇒ p ≤ R}.

The following lemma provides an upper bound for the exponential sum in (3.1) with A =
[1, X] ∩ Z and B = A(Y,R) where R = Y η with sufficiently small η > 0. To describe the
following lemma, it is convenient to define an exponential sum S(α) = S(α;H,X, Y,R) by

S(α) =
∑

1≤h≤H

∣

∣

∣

∣

∑

1≤x≤X

∑

y∈A(Y,R)

e(hg(x, y))

∣

∣

∣

∣

Lemma 3.2. Let k and l be natural numbers satisfying 1 ≤ l ≤ ⌊k/2⌋ and k ≥ 3, and
consider real numbers αk and αj (0 ≤ j ≤ l). Suppose that X, Y and H are positive real
numbers sufficiently large in terms of k with Y ≤ X. Let Z be a real number such that

1 ≤ Z ≤ min{(HX l)1/(2(k−l), Y },

and let N be a real number with Z
1
2
(k−l) ≤ N ≤ HX lY k−lZ− 1

2
(k−l). Suppose that there exist

q ∈ N and a ∈ Z satisfying q ≤ N, (q, a) = 1 and |qαl − a| ≤ N−1. Then, for each ǫ > 0, one
has

S(α) ≪
H(XY )1+ǫ

(q +HX lY k−l|qαl − a|)1/(2l+1(k−l))
+H(XY )1+ǫZ−1/2l+2

. (3.5)

To prove Lemma 3.2, we shall use following two propositions.

Proposition 3.3. Let f be an arithmetic function. Suppose that Y,M1, . . . ,Mr and R satisfy
1 ≤ R < Y , 1 ≤ Mi < Y (1 ≤ i ≤ r) and M1 · · ·Mr < Y. Then, one has

∑

y∈A(Y,R)

f(y) ≪ F (Y,M1, . . . ,Mr, R) +G(Y,M1, . . . ,Mr, R),
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where

F (Y,M1, . . . ,Mr, R) =
∑

M1<v1≤M1R

· · ·
∑

Mr<vr≤MrR

∑

u∈A(Y/(M1···Mr),R)

|f(v1 · · · vru)|

and

G(Y,M1, . . . ,Mr, R) =
r
∑

j=1

M1 · · ·MjR
j−1 sup

1≤y≤Mj

|f(y)|.

Proof. Observe that if y ∈ A(Y,R) and y > M1, then there is a divisor v1 of y satisfying
M1 < v1 ≤ M1R. Moreover, one then has y/v1 ∈ A(Y/M1, R). Hence

∑

y∈A(Y,R)

f(y) ≪
∑

M1<v1≤M1R

∑

u∈A(Y/M1,R)

|f(v1u)|+
∑

y≤M1

|f(y)|

≪
∑

M1<v1≤M1R

∑

u∈A(Y/M1,R)

|f(v1u)|+M1 sup
1≤y≤M1

|f(y)|.

Inductively applying this relation, the conclusion follows. �

Proposition 3.4 provides the upper bound for a certain type of exponential sums in many
variables. To prove Proposition 3.4, we follow the argument in the proof of [15, Lemma
4.3]. To describe the following Proposition, it is convenient to define an exponential sum
Ξ(β) = Ξ(β;V , U, L) by

Ξ(β) =
∑

v1,...,vr

∑

u1,u2

∣

∣

∣

∣

∑

1≤x≤L

e(β(v1 · · · vr)
k−l(uk−l

1 − uk−l
2 )x)

∣

∣

∣

∣

,

where the summation is over integers satisfying

1 ≤ vi ≤ Vi (1 ≤ i ≤ r) and U/2 < u1, u2 ≤ U. (3.6)

Proposition 3.4. Let k and l be natural numbers satisfying 1 ≤ l ≤ ⌊k
2
⌋ and k ≥ 3. Suppose

that L is a positive real number sufficiently large in terms of k. Let U, V1, . . . , Vr be positive
numbers satisfying

1 ≤ U ≤ 1
2
(LV k−l

1 · · ·V k−l
r )1/(2(k−l)−1)

1 ≤ Vr <
1
2
L1/(k−l)U− 1

2(k−l)

1 ≤ Vi <
1
2
L1/(k−l)Vi+1 · · ·VrU

−1 (1 ≤ i ≤ r − 1).

(3.7)

Let β ∈ R, Q = V k−l
1 · · ·V k−l

r Uk−lL and N be a real number with U
1
2
(k−l) ≤ N ≤ QU− 1

2
(k−l).

Suppose that there exist q ∈ N and a ∈ Z satisfying q ≤ N, (q, a) = 1 and |qβ − a| ≤ N−1.
Then, for each ǫ > 0, one has

Ξ(β) ≪
V1 · · ·VrU

2L1+ǫ

(q +Q|qβ − a|)1/(k−l)
+ V1 · · ·VrL

1+ǫU3/2, (3.8)

where the implicit constant may depend on r.
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Proof. By summing over x in the inner sum of Ξ(β), one has

Ξ(β) ≪
∑

v1,...,vr

∑

u1,u2

L

1 + L‖β(v1 · · · vr)k−l(uk−l
1 − uk−l

2 )‖
, (3.9)

where the summations are over v1, . . . , vr, u1, u2 satisfying (3.6). Plainly, one may restrict
the summation to satisfy

U/2 ≤ u2 < u1 ≤ U and ‖β(v1 · · · vr)
k−l(uk−l

1 − uk−l
2 )‖ < L−1U1/2. (3.10)

Indeed, the contribution on the right hand side of (3.9) of the remaining summands is
O(V1 · · ·VrLU

3/2). For given u1, u2, v1, . . . , vr, we may choose n0 so that

‖β(v1 · · · vr)
k−l(uk−l

1 − uk−l
2 )‖ = |β(v1 · · · vr)

k−l(uk−l
1 − uk−l

2 )− n0|.

Let Rr−1 = (LV k−l
r U−1/2)1/2. By Dirichlet’s approximation theorem, there exist qr−1 ∈ N

and ar−1 ∈ Z with qr−1 ≤ Rr−1 and (qr−1, ar−1) = 1 such that

|β(v1 · · · vr−1)
k−l(uk−l

1 − uk−l
2 )qr−1 − ar−1| < 1/Rr−1. (3.11)

If ar−1 = 0, then qr−1 = 1. Thus, on recalling (3.7), it follows from (3.10) and (3.11) that
∣

∣

∣

∣

n0

vk−l
r

−
ar−1

qr−1

∣

∣

∣

∣

vk−l
r qr−1 <

Rr−1U
1/2

L
+

V k−l
r

Rr−1

< 1.

Thus, one has qr−1n0 = vk−l
r ar−1. If ar−1 = 0, then qr−1 = 1. Hence, in all cases, qr−1|v

k−l
r .

Let qr−1 = q1,r−1q
2
2,r−1 · · · q

k−l
k−l,r−1 where qk−l,r−1 is maximal and q1,r−1, . . . , qk−l−1,r−1 are

squarefree and coprime in pairs. Then, q1,r−1 · · · qk−l,r−1|vr. Thus, by writing

vr = q0,r−1q1,r−1 · · · qk−l,r−1,

the bound (3.9) may be replaced by

∑

v1,...,vr−1

∑

u1,u2

∑

q0,r−1≤Vr/(q1,r−1···qk−l,r−1)

L

Z0

+O(V1 · · ·VrLU
3/2), (3.12)

where

Z0 = 1 + L(q0,r−1 · · · qk−l,r−1)
k−l|β(v1 · · · vr)

k−l(uk−l
1 − uk−l

2 )− ar−1/qr−1|.

Since we have qr−1 ≤ (q1,r−1q2,r−1 · · · qk−l,r−1)
k−l, by applying the upper bound (1) from

Appendix A, the inner sum of (3.12) is

≪
LVr

q1,r−1 · · · qk−l,r−1(1 + LV k−l
r |β(v1 · · · vr−1)k−l(uk−l

1 − uk−l
2 )− ar−1/qr−1|)1/(k−l)

≪
LVr

(qr−1 + LV k−l
r |qr−1β(v1 · · · vr−1)k−l(uk−l

1 − uk−l
2 )− ar−1|)1/(k−l)

.

(3.13)

Thus, by substituting the bound (3.13) into the inner sum in (3.12), the first term in (3.12)
is

≪
∑

v1,...,vr−1

∑

u1,u2

LVr

(qr−1 + LV k−l
r |qr−1β(v1 · · · vr−1)k−l(uk−l

1 − uk−l
2 )− ar−1|)1/(k−l)

(3.14)
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We analyse the expression (3.14) by an inductive argument similar to the argument first
described. At the ith step of this argument, with 1 ≤ i ≤ r, one finds that

Ξ(β) ≪ Bi +O(V1 · · ·VrL
1+ǫU3/2), (3.15)

where

Bi =
∑

v1,...,vr−i

∑

u1,u2

LVrVr−1 · · ·Vr−i+1(logL)
i

(qr−i + LV k−l
r · · ·V k−l

r−i+1|qr−iβ(v1 · · · vr−i)k−l(uk−l
1 − uk−l

2 )− ar−i|)1/(k−l)

(3.16)
in which qr−i ∈ Z and ar−i ∈ N satisfy (qr−i, ar−i) = 1,

qr−i ≤ Rr−i =

{

L1/2(Vr · · ·Vr−i+1)
(k−l)/2 if i ≥ 2

L1/2V
(k−l)/2
r U−1/4 if i = 1.

and

|β(v1 · · · vr−i)
k−l(uk−l

1 − uk−l
2 )qr−i − ar−i| < 1/Rr−i.

The case i = 1 obviously follows by (3.11), (3.12) and (3.14). Assume that (3.15) holds
for a particular i with i ≤ r− 1. We shall show that (3.15) holds for i+ 1. Plainly, one may
restrict the summation in (3.16) to satisfy

qr−i + LV k−l
r · · ·V k−l

r−i+1|qr−iβ(v1 · · · vr−i)
k−l(uk−l

1 − uk−l
2 )− ar−i| < U

1
2
(k−l). (3.17)

Indeed, the contribution of the remaining summands is O(V1 · · ·VrLU
3/2). Let Rr−i−1 =

L1/2(Vr · · ·Vr−i)
(k−l)/2. By Dirichlet’s approximation theorem, there exist qr−i−1 ∈ N, ar−i−1 ∈

Z with qr−i−1 ≤ Rr−i−1 and (qr−i−1, ar−i−1) = 1 such that

|β(v1 · · · vr−i−1)
k−l(uk−l

1 − uk−l
2 )qr−i−1 − ar−i−1| < 1/Rr−i−1. (3.18)

Notice that if ar−i−1 = 0 then qr−i−1 = 1. Thus, on recalling (3.7), it follows from (3.17) and
(3.18) that

∣

∣

∣

∣

∣

ar−i

qr−iv
k−l
r−i

−
ar−i−1

qr−i−1

∣

∣

∣

∣

∣

qr−iv
k−l
r−iqr−i−1 <

Rr−i−1U
k−l
2

LV k−l
r · · ·V k−l

r−i+1

+
U

k−l
2 V k−l

r−i

Rr−i−1

< 1.

Thus, one has qr−iv
k−l
r−iar−i−1 = qr−i−1ar−i. If ar−i = 0 then qr−i = 1. Hence, in all cases,

qr−i|qr−i−1. By writing q′r−i−1 = qr−i−1/qr−i, one has

vk−l
r−iar−i−1 = q′r−i−1ar−i.

Since (q′r−i−1, ar−i−1) = 1, one has q′r−i−1|v
k−l
r−i . Similarly, one has

q′r−i−1 = q1,r−i−1q
2
2,r−i−1 · · · q

k−l
k−l,r−i−1,

where qk−l,r−i−1 is maximal and q1,r−i−1, . . . , qk−l−1,r−i−1 are squarefree and coprime in pairs.
Then, q1,r−i−1q2,r−i−1 · · · qk−l,r−i−1|vr−i. Thus, by writing vr−i = q0,r−i−1τ with

τ = q1,r−i−1 · · · qk−l,r−i−1,

the equation (3.16) may be replaced by

∑

v1,...,vr−i−1

∑

u1,u2

∑

q0,r−i−1<Vr−i/τ

LVr · · ·Vr−i+1(logL)
i

Z
+O(V1 · · ·VrL

1+ǫU3/2), (3.19)
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where

Zk−l = qr−i

(

1 +L(Vr · · ·Vr−i+1)
k−l
(

q0,r−i−1τ)
k−l
∣

∣β(v1 · · · vr−i−1)
k−l(uk−l

1 − uk−l
2 )−

ar−i−1

qr−i−1

∣

∣

)

.

By applying the upper bound (2) from Appendix A, the inner sum in (3.19) is

≪
LVr · · ·Vr−i(logL)

i+1

q
1/(k−l)
r−i τ(1 + L(Vr · · ·Vr−i)k−l|β(v1 · · · vr−i−1)k−l(uk−l

1 − uk−l
2 )− ar−i−1/qr−i−1|)1/(k−l)

.

Since we have q′r−i−1 ≤ τ k−l and qr−i−1 = q′r−i−1qr−i, we find that this expression is

≤
LVr · · ·Vr−i(logL)

i+1

q
1/(k−l)
r−i−1 (1 + L(Vr · · ·Vr−i)k−l|β(v1 · · · vr−i−1)k−l(uk−l

1 − uk−l
2 )− ar−i−1/qr−i−1|)1/(k−l)

=
LVr · · ·Vr−i(logL)

i+1

(qr−i−1 + L(Vr · · ·Vr−i)k−l|qr−i−1β(v1 · · · vr−i−1)k−l(uk−l
1 − uk−l

2 )− ar−i−1|)1/(k−l)
.

(3.20)
Hence, by substituting the bound (3.20) into the inner sum (3.19), the first term in (3.19)
is seen to be O(Bi+1). Thus, this confirms that the bound (3.15) holds for i+ 1. Therefore,
one infers by induction that

Ξ(β) ≪ Ξ1(β) +O(V1 · · ·VrL
1+ǫU3/2), (3.21)

where

Ξ1(β) =
∑

u1,u2

LVr · · ·V1(logL)
r

(q0 + LV k−l
r · · ·V k−l

1 |q0β(u
k−l
1 − uk−l

2 )− a0|)1/(k−l)

in which (q0, a0)=1, q0 ≤ R0 = L1/2(Vr · · ·V1)
(k−l)/2 and |q0β(u

k−l
1 − uk−l

2 )− a0| < 1/R0. By
Cauchy’s inequality, one has

Ξ1(β) ≪ UL1+ǫ/2Vr · · ·V1Ξ2(β)
1/2, (3.22)

where

Ξ2(β) =
∑

u1,u2

1

(q0 + LV k−l
r · · ·V k−l

1 |q0β(u
k−l
1 − uk−l

2 )− a0|)2/(k−l)
.

Plainly, one may also restrict the summation to satisfy

q0 + LV k−l
r · · ·V k−l

1 |q0β(u
k−l
1 − uk−l

2 )− a0| < U
1
2
(k−l). (3.23)

Indeed, the contribution from the summation in (3.22) arising from remaining terms is
O(V1 · · ·VrL

1+ǫU3/2). We put

j = (u1, u2), n = u2/j, m = (u1 − u2)/j

so that
j ≤ U, m ≤ U/j, U/(2j) < n < n+m ≤ U/j, (n, n+m) = 1.

Now, q0 and a0 will depend on n,m, j. Let S = ((U/j)k−l−1LV k−l
r · · ·V k−l

1 )1/2. Then for fixed
j and m, by Dirichlet’s approximation theorem, there exists c ∈ Z and s ∈ N such that

(c, s) = 1, s ≤ S, and |βjk−lm− c/s| ≤ (sS)−1.

Notice again that if c = 0, then s = 1. Let D = ((n+m)k−l − nk−l)/m. Then

D =
k − l

m

∫ n+m

n

xk−l−1dx,
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and so

(k − l)(U/(2j))k−l−1 ≤ D ≤ (k − l)(U/j)k−l−1.

Thus, from (3.23), one has q0 ≤ U
1
2
(k−l), and

∣

∣

∣

∣

βjk−lm−
a0
q0D

∣

∣

∣

∣

≤
U

1
2
(k−l)

q0DLV k−l
r · · ·V k−l

1

Therefore, since U ≤ 1
2
(LV k−l

1 · · ·V k−l
r )1/(2(k−l)−1), one has

|q0Dc− sa0| =

∣

∣

∣

∣

c

s
−

a0
q0D

∣

∣

∣

∣

sq0D ≤
U

1
2
(k−l)D

S
+

U
1
2
(k−l)S

LV k−l
r · · ·V k−l

1

< 1.

Thus, we see that cq0D = a0s. Hence q0|s. Let s1 = s/q0. Then cD = a1s1. Hence c|a1 and
s1|D. Therefore, as (n, n+m)=1, we have (n(n+m), s1) = 1. Thus, one finds that

Ξ2(β) ≪
∑

j≤U

∑

m≤U/j

∑

s1|s

Ξ3(β) (3.24)

where

Ξ3(β) =
∑

n

(s1/s)
2/(k−l)

(1 + LV k−l
r · · ·V k−l

1 (U/(2j))k−l−1|βjk−lm− c/s|)2/(k−l)

in which the innermost sum is over n satisfying

n ≤ U/j, (n(n+m), s1) = 1, s1|D. (3.25)

The third condition s1|D implies that

(n+m)k−l ≡ nk−l (mod s1m). (3.26)

Since we have (n, n+m) = 1 and (n, s1) = 1, one finds that (n, s1m) = 1. Thus, there exists
n0 such that nn0 ≡ 1 (mod s1m). Hence, the congruence (3.26) is equivalent to

(1 +mn0)
k−l ≡ 1 (mod s1m).

Notice that the congruence yk−l ≡ 1 (mod s1m) has v solutions modulo s1m, say g1, . . . , gv,
where v ≪ (s1m)ǫ. Hence 1 +mn0 ≡ gi (mod s1m) for some 1 ≤ i ≤ v. Thus, there are at
most v choices for n0, and so for n, modulo s1. Then, on noting that s1m is bounded above
by powers of L which may depend on r, we see that

Ξ3(β) ≪

(

U

js1
+ 1

)

Lǫ/4(s1/s)
2/(k−l)

(1 + LV k−l
r · · ·V k−l

1 (U/(2j))k−l−1|βjk−lm− c/s|)2/(k−l)
, (3.27)

where the implicit constant may depend on r. By examining separately the contribution
arising from the terms U/(js1) and 1 in the first factor of (3.27), we see from (3.24) that

Ξ2(β) ≪ A+O(Lǫ/2U),

where

A =
∑

j≤U

∑

m≤U/j

Lǫ/4Uj−1

(s+ LV k−l
r · · ·V k−l

1 (U/(2j))k−l−1|βjk−lms− c|)2/(k−l)
.

Plainly, we may restrict the inner sum in A to those m satisfying

s+ LV k−l
r · · ·V k−l

1 (U/(2j))k−l−1|βjk−lms− c| < U
1
2
(k−l).
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Indeed, the contribution on A of the remaining sum is O(LǫU), and thus the right hand side
in (3.22) is O(V1 · · ·VrL

1+ǫU3/2). Let T = (LV k−l
r · · ·V k−l

1 (U/j)k−l)1/2. Then for fixed j, by
Dirichlet’s approximation theorem there exists d and t with

(d, t) = 1, t ≤ T and |βjk−l − d/t| ≤ (tT )−1.

Notice again that if d = 0, then t = 1. Then, on recalling U ≤ 1
2
(LV k−l

1 · · ·V k−l
r )1/(2(k−l)−1),

for fixed j and m one has
∣

∣

∣

∣

c

ms
−

d

t

∣

∣

∣

∣

tms ≤
U

1
2
(k−l)U/j

T
+

TU
1
2
(k−l)

LV k−l
r · · ·V k−l

1 (U/(2j))k−l−1
< 1.

Thus, we see that ct = dms, and so s|t. Let t1 = t/s. Then ct1 = dm. Thus t1|m. Let
m1 = m/t1. Therefore, the summation A is bounded above by

∑

j≤U

∑

t1|t

(t1/t)
2/(k−l)A1,

where

A1 =
∑

m1≤U/(jt1)

Lǫ/4Uj−1

(1 + LV k−l
r · · ·V k−l

1 (U/(2j))k−l−1m1t1|βjk−l − d/t|)2/(k−l)
.

Hence, by applying the upper bound (3) from Appendix A, the innermost sum is

A1 ≪
Lǫ/4U2j−2t−1

1 logX

(1 + LV k−l
r · · ·V k−l

1 (U/j)k−l|βjk−l − d/t|)2/(k−l)

Hence, one finds that

Ξ2(β) ≪ Lǫ/2

(

U +
∑

j≤U

U2j−2

(t+ LV k−l
r · · ·V k−l

1 (U/j)k−l|βjk−lt− d|)2/(k−l)

)

, (3.28)

and one may restrict the summation over j to satisfy

t+ LV k−l
r · · ·V k−l

1 (U/j)k−l|βjk−lt− d| <
1

2
(U/j)(k−l)/2. (3.29)

Let R = Q1/2. Then by Dirichlet’s approximation theorem, there exists q and a such that

(q, a) = 1, q ≤ R and |qβ − a| ≤ R
−1
.

Since t is non-zero, one finds that j ≤ U. Therefore, on recalling

U ≤ 1
2
(LV k−l

1 · · ·V k−l
r )1/(2(k−l)−1),

when j satisfies (3.29), one has
∣

∣

∣

∣

a

q
−

d

jk−lt

∣

∣

∣

∣

jk−ltq <
(U/j)(k−l)/2jk−l

2R
+

R(U/j)(k−l)/2

2LV k−l
r · · ·V k−l

1 (U/j)k−l
≤ 1.

Thus, we see that jk−lta = qd. Hence t|q. Let q′ = q/t. Then jk−la = q′d. Hence q′|jk−l. Let
q′ = q′1q

′2
2 · · · q′k−l

k−l where q′k−l is maximal and q′1, . . . , q
′
k−l−1 are square-free and coprime in

pairs. Then q′1 · · · q
′
k−l|j, so the summation over j in (3.28) is

≪
∑

w

∑

t,q′1,...,q
′

k−l

U2(wq′1 · · · q
′
k−l)

−2t−2/(k−l)

(1 + LV k−l
r · · ·V k−l

1 Uk−l|β − a/q|)2/(k−l)
, (3.30)
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where the inner sum is over t, q′1, . . . , q
′
k−l satisfying q = tq′1q

′2
2 · · · q′k−l

k−l . Thus, on recalling

Q = (V1 · · ·VrU)k−lL, since we have q2/(k−l) ≤ t2/(k−l)q′1q
′2
2 · · · q′k−l

k−l , the bound (3.30) is

≪
U2Lǫ/2

(q +Q|βq − a|)2/(k−l)
.

When q + Q|qβ − a| ≥ 1
2
U (k−l)/2 we are done, so we may suppose that q + Q|qβ − a| ≤

1
2
U (k−l)/2. Thus,

∣

∣

∣

∣

a

q
−

a

q

∣

∣

∣

∣

qq <
U (k−l)/2N

2Q
+

U (k−l)/2

2N
≤ 1,

since by assumption, U
1
2
(k−l) ≤ N ≤ QU− 1

2
(k−l). Hence, one has q = q, a = a. Therefore, we

complete the proof. �

We now turn to prove Lemma 3.2. To prove this lemma, we exploit Proposition 3.3 and
Proposition 3.4.

Proof of Lemma 3.2. Note that

S(α) ≤
∑

1≤h≤H

∑

y∈A(Y,R)

∣

∣

∣

∣

∑

1≤x≤X

e(hg(x, y))

∣

∣

∣

∣

. (3.31)

We shall first apply Proposition 3.3 to the right hand side in (3.31). Let M1, . . . ,Mr be
real numbers with M1, . . . ,Mr ≥ 1 satisfying M1 · · ·Mr = Y/Z. We will define each of
M1, . . . ,Mr later for applications of Proposition 3.4. For now, we temporarily assume that
such M1, . . . ,Mr exist. Then, by applying Proposition 3.3 with R = Y η and

f(y) =
∑

1≤x≤X

e(hg(x, y)),

one finds from (3.31) that

S(α) ≪ S1(α) +
∑

1≤h≤H

r
∑

j=1

M1 · · ·MjR
j−1 sup

1≤y≤Mj

|f(y)|, (3.32)

where

S1(α) =
∑

1≤h≤H

∑

M1<v1≤M1R

· · ·
∑

Mr<vr≤MrR

∑

u∈A(Z,R)

∣

∣

∣

∣

∣

∑

1≤x≤X

e (hg(x, v1 . . . vru))

∣

∣

∣

∣

∣

.

Since by Y/(M1 · · ·Mr) = Z and sup1≤y≤Mi
|f(y)| ≤ X for all h, it follows trivially that

∑

1≤h≤H

r
∑

j=1

M1 · · ·MjR
j−1 sup

1≤y≤Mi

|f(y)| ≪ H(XY )1+ǫZ−1/2l+2

.

Then, it suffices to bound S1(α). By applying Hölder’s inequality, we see that

S1(α) ≤ (HY Rr)1−2−l

S2(α)2
−l

, (3.33)

where

S2(α) =
∑

1≤h≤H

∑

u∈A(Z,R)

∑

M1<v1≤M1R

· · ·
∑

Mr<vr≤MrR

∣

∣

∣

∣

∑

1≤x≤X

e (hg(x, v1 · · · vru))

∣

∣

∣

∣

2l

.
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By applying Weyl differencing, we have

S2(α) ≪ X2l−l−1
∑

1≤h≤H

∑

u∈A(Z,R)

∑

M1<v1≤M1R

· · ·
∑

Mr<vr≤MrR

S3(α), (3.34)

where
S3(α) =

∑

|h1|≤X

· · ·
∑

|hl|≤X

∑

x∈Il(h)

e (h∆x
l (g(x, v1 · · · vru),h))

in which Il(h) is an interval of integers contained in [−X,X]. Note here that

∆x
l (g(x, v1 · · · vru),h) = ∆x

l (αkx
k) + ∆x

l (αlx
l(v1 · · · vru)

k−l)

and ∆x
l (αlx

l(v1 · · · vru)
k−l) does not depend on x. Thus, by splitting A(Z,R) into dyadic

intervals [Z0/2
i, Z0/2

i−1] with Z0 ≤ Z, for any ǫ > 0, one infers from (3.34) by applying a
standard divisor estimate that

S2(α) ≪ X2l−l+ǫ
∑

M1<v1≤M1R

· · ·
∑

Mr<vr≤MrR

∑

1≤n≤l!HXl

∣

∣

∣

∣

∑

u

e
(

αl(v1 · · · vru)
k−ln

)

∣

∣

∣

∣

where the innermost sum is over u ∈ A(Z,R) and Z0/2 ≤ u ≤ Z0 for some Z0 with Z0 ≤ Z.
Since we have M1 · · ·Mr = Y/Z, by applying Cauchy’s inequality, we deduce that

S2(α) ≪ X2l−l+ǫ(HX l(Y/Z)Rr)1/2S4(α)1/2, (3.35)

where

S4(α) =
∑

M1<v1<M1R

· · ·
∑

Mr<vr<MrR

∑

1≤n≤l!HXl

∣

∣

∣

∣

∣

∑

u

e
(

αl(v1 · · · vru)
k−ln

)

∣

∣

∣

∣

∣

2

.

By squaring out and change the order of summations, we see that

S4(α) ≤
∑

M1<v1≤M1R

· · ·
∑

Mr<vr≤MrR

∑

Z0/2≤u1,u2≤Z0

∣

∣

∣

∣

∣

∣

∑

1≤n≤l!HXl

e
(

αln(v1 · · · vr)
k−l(uk−l

1 − uk−l
2 )
)

∣

∣

∣

∣

∣

∣

.

(3.36)
We define M1, . . . ,Mr here so that we apply Proposition 3.4. We set r = 1/η, and define

a =

⌊

1

η

(

1−
logZ

log Y

)⌋

,

which satisfies Y aη ≤ Y/Z. Then, define Mr, . . . ,M1 by

Mi =







Y η when i > r − a
Y/(ZY aη) when i = r − a
1 when 1 ≤ i < r − a.

Since Y/Z = M1 · · ·Mr, this choice for M1, . . . ,Mr is in accordance with the hypotheses of
Proposition 3.3.

On recalling that Z0 ≤ Z ≤ (HX l)1/(2(k−l)) and by observing Y η ≥ Mr ≥ Mr−1 ≥ · · · ≥
M1, one finds that

1 ≤ MrR <
1

2
(HX l)1/(k−l)Z

− 1
2(k−l)

0 , (3.37)

1 ≤ MiR <
1

2
(HX l)1/(k−l)(Mi+1R) · · · (MrR)Z−1

0 (i = 1, . . . , r − 1). (3.38)
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Furthermore, on recalling that Z ≤ (HX l)1/(2(k−l)), one deduces that

Z0 ≤
1
2
(HX l(M1R)k−l · · · (MrR)k−l)1/(2(k−l)−1). (3.39)

Thus, on setting U = Z0 and Vi = MiR (1 ≤ i ≤ r), we see that the hypothese of Proposition
3.4 are satisfied. Then, since we have Y/Z = M1 · · ·Mr, by applying Proposition 3.4 to (3.36)
with L = l!HX l and Vi = MiR (i = 1, . . . , r), we obtain that

S4(α) ≪ HX l(Y/Z)RrZ2
0X

ǫ

(

1

(q + (Z0/Z)k−lHX lY k−l|qαl − a|)1/(k−l)
+ Z

−1/2
0

)

. (3.40)

Therefore, on substituting (3.40) into (3.35) and that into (3.33), we deduce that

S1(α) ≪ XǫHXY Rr(Z0Z
−1)2

−l

(

1

(q + (Z0/Z)k−lHX lY k−l|qβ − a|)1/(k−l)
+ Z

−1/2
0

)2−l−1

.

Since we have Z0 ≤ Z, by choosing η small in terms of ǫ, one concludes

S1(α) ≪
H(XY )1+ǫ

(q +HX lY k−l|qβ − a|)1/(2l+1(k−l))
+H(XY )1+ǫZ−2−l−2

.

Therefore, we are done.
�

4. Proof of Theorem 1.1

Our goal in this section is to prove Theorem 1.1. As we mentioned in section 2, we reduce
the problem of bounding the fractional parts of polynomial in Theorem 1.1 to the corre-
sponding diagonal problems. Thus, we begin this section by examining the corresponding
diagonal problem.

Proposition 4.1. Let α, β ∈ R and k ∈ N with k ≥ 2. Then, for any ǫ > 0, there exists a
real number X(k, ǫ) such that whenever X ≥ X(k, ǫ) and Y ≥ X(k, ǫ) one has

min
0≤x≤X
0≤y≤Y

(x,y) 6=(0,0)

‖αxk + βyk‖ ≤ X−σ+ǫY −σ+ǫ,

where σ = 21−k.

Proof. Let H = Xσ−ǫY σ−ǫ. Suppose that there exists no x and y satisfying

‖αxk + βyk‖ ≤ 1/H.

By Dirichlet approximation theorem, there exits q1, q2 ∈ N and a1, a2 ∈ Z such that (q1, a1) =
(q2, a2) = 1 with q1 ≤ Xk−1H and q2 ≤ Y k−1H, and

∣

∣

∣

∣

α−
a1
q1

∣

∣

∣

∣

<
1

q1Xk−1H
,

∣

∣

∣

∣

β −
a2
q2

∣

∣

∣

∣

<
1

q2Y k−1H
.

If q1 ≤ X, then by observing that |q1α− a1| < (HXk−1)−1, one has

min
0≤x≤X
0≤y≤Y

(x,y) 6=(0,0)

‖αxk + βyk‖ ≤ ‖αqk1‖ ≤ qk−1
1 ‖αq1‖ < Xk−1 1

Xk−1H
≤

1

H
.
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Similarly, if q2 ≤ Y, one has

min
1≤x≤X
1≤y≤Y

(x,y) 6=(0,0)

‖αxk + βyk‖ ≤
1

H
.

These are contradiction to our assumption. Thus, we may assume that X ≤ q1 ≤ Xk−1H
and Y ≤ q2 ≤ Y k−1H.

It follows from our assumption by Lemma 2.1 that

XY ≪
∑

1≤h≤H

∣

∣

∑

1≤x≤X
1≤y≤Y

e(h(αxk + βyk))
∣

∣. (4.1)

On writing
∑

1≤x≤X
1≤y≤Y

e(h(αxk + βyk)) =
∑

1≤x≤X

e(hαxk)
∑

1≤y≤Y

e(hβyk),

by Cauchy’s inequality, the right hand side in (4.1) is

≪

(

∑

1≤h≤H

∣

∣

∣

∣

∑

1≤x≤X

e(hαxk)

∣

∣

∣

∣

2
)1/2(

∑

1≤h≤H

∣

∣

∣

∣

∑

1≤y≤Y

e(hβyk)

∣

∣

∣

∣

2
)1/2

Then, by applying Weyl differencing, the last expression is for every δ > 0

≪ X1+δY 1+δH

(

1

q1
+

1

X
+

q1
XkH

)21−k (

1

q2
+

1

Y
+

q2
Y kH

)21−k

. (4.2)

Therefore, on recalling that X ≤ q1 ≤ Xk−1H and Y ≤ q2 ≤ Y k−1H, one finds that (4.2) is

≪ X1+δY 1+δX−ǫY −ǫ.

By taking δ < ǫ, it contradicts (4.1). Therefore, we are forced to have

min
0≤x≤X
0≤y≤Y

(x,y) 6=(0,0)

‖αxk + βyk‖ ≤ X−σ+ǫY −σ+ǫ.

�

As sketched in section 2, we shall reduce Theorem 1.1 to this diagonal problem through
Lemma 3.1 and inductive arguments.

Proof of Theorem 1.1. Let H = Xσ−ǫ with σ = l+2
l+1

21−k. There exists qk and ak with

(qk, ak) = 1 such that qk ≤ Xk−1H and

|αk − ak/qk| ≤
1

qkXk−1H
. (4.3)

Suppose that
1

H
< ‖αkx

k + αlx
lyk−l + αl−1x

l−1yk−l+1 + · · ·+ α0y
k‖ (4.4)
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for all 0 ≤ x, y ≤ X when (x, y) 6= (0, 0). Then, we may assume qk > X. Indeed, if one were
to have qk ≤ X, by (4.3), one has

min
0≤x,y≤X
(x,y) 6=(0,0)

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖

≤ min
1≤x≤X

‖αkx
k‖ ≤ qk−1

k ‖αkqk‖ ≤
1

H
,

which contradicts our assumption.
From our assumption (4.4), we derive analogues of (4.4) by an inductive arguments. Specif-

ically, at the i-th step, with 0 ≤ i ≤ l, we shall prove that there exist coefficients α
(i)
l−i, . . . , α

(i)
0 ,

suitable integral multiples of αl−i, . . . , α0, respectively, such that

1

H
≪ ‖αkx

k + α
(i)
l−ix

l−iyk−l+i + · · ·+ α
(i)
0 yk‖ (4.5)

for all 0 ≤ x ≤ X and 0 ≤ y ≤ Yi = X1−i/(l+1) when (x, y) 6= (0, 0). The case i = 0 obviously
follows from (4.4). Assume that (4.5) holds for a particular i ≤ l − 1. We shall show that
(4.5) holds for i replaced by i+ 1.
By Lemma 2.1, the inequality (4.5) implies that

XYi ≪
∑

1≤h≤H

∣

∣

∣

∣

∑

1≤x≤X

∑

1≤y≤Yi

e(h(αkx
k + α

(i)
l−ix

l−iyk−l+i + · · ·+ α
(i)
0 yk))

∣

∣

∣

∣

. (4.6)

Note that for any δ > 0, it follows from Dirichlet’s approximation theorem that there exists
q ∈ N such that

q ≤ X l−i+1Y k−l+i
i H−2k−1+1X−δ

‖qα
(i)
l−i‖ ≤

Xδ

X l−i+1Y k−l+i
i H−2k−1+1

.
(4.7)

Thus, on recalling X < qk < Xk−1H, it follows by Lemma 3.1 that the right hand side in
(4.6) is

≪HX1+ǫYi

(

1

qk
+

1

X
+

qk
XkH

)21−k(

1

q
+

1

Yi

+
q

X l−iY k−l+i
i H

)21−k

≪HX1+ǫYiX
−21−k

(q−21−k

+ Y −21−k

i +X21−k

H−1−δ).

Note that (XYi)
21−k

≥ H. Thus, combining this and the lower bound of (4.6), one obtains

XYi ≪ HX1+ǫYiX
−21−k

q−21−k

,

which implies

q ≤ X1/(l+1).

We apply the triangle inequality and put y = qy1 with 0 ≤ y1 ≤ X1−(i+1)/(l+1). Thus, we
have qy1 ≤ Yi and

‖αkx
k + α

(i)
l−ix

l−i(qy1)
k−l+i + · · ·+ α

(i)
0 (qy1)

k‖

≤ ‖αkx
k + α

(i)
l−i−1x

l−i−1(qy1)
k−l+i+1 + · · ·+ α

(i)
0 (qy1)

k‖+ ‖α
(i)
l−ix

l−i(qy1)
k−l+i‖.

(4.8)
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Since we have H = Xσ−ǫ with σ = l+2
l+1

21−k, by applying the triangle inequality and (4.7),
one has

‖α
(i)
l−ix

l−i(qy1)
k−l+i‖ ≤ xl−i(qy1)

k−l+i−1y1‖α
(i)
l−iq‖

≤ X l−iY k−l+i−1
i X1−(i+1)/(l+1) Xδ

X l−i+1Y k−l+i
i H−2k−1+1

≤
Xǫ

HX
H2k−1

X−1/(l+1)

≤
X−ǫ

H
.

(4.9)

Hence, by substituting the bound (4.9) into (4.8) and the lower bound (4.5), one obtains

1

H
≪ ‖αkx

k + α
(i)
l−i−1x

l−i−1(qy1)
k−l+i+1 + · · ·+ α

(i)
0 (qy1)

k‖ (4.10)

for all 0 ≤ x ≤ X and 0 ≤ y1 ≤ Yi+1 when (x, y1) 6= (0, 0). By writing

α
(i+1)
l−i−r = α

(i)
l−i−rq

k−l+i+r (1 ≤ r ≤ l − i),

one concludes from (4.10) that

1

H
≪ ‖αkx

k + α
(i+1)
l−i−1x

l−i−1yk−l+i+1
1 + · · ·+ α

(i+1)
0 yk1‖ (4.11)

for all 0 ≤ x ≤ X and 0 ≤ y1 ≤ Yi+1 when (x, y) 6= (0, 0).
Thus, one infers by induction that

1

H
≪ ‖αkx

k + α
(l)
0 yk‖

for all 0 ≤ x ≤ X and 0 ≤ y ≤ X1/(l+1) when (x, y) 6= (0, 0), which contradicts the conclusion
of Proposition 4.1. Thus, we are forced to conclude that

min
0≤x,y≤X
(x,y) 6=(0,0)

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖ ≤ 1/H.

�

Proof of Corollary 1.2. By change of variables,

x = x1 − ck−1y1

y = kcky1,
(4.12)

one has

ϕ(x, y) =
∑

0≤i≤k

cix
iyk−i =

∑

0≤i≤k

ci(x1 − ck−1y1)
i(kcky1)

k−i =
∑

0≤i≤k
i 6=k−1

c′ix
i
1y

k−i
1 , (4.13)

where each c′i is obtained by the Binomial theorem. Furthermore, notice from (4.12) that

0 ≤ x1 ≤ X/2 and 0 ≤ y1 ≤ Y =
X

k(1 + |ck|)(1 + |ck−1|)

implies that

|x| ≤ X and |y| ≤ X.
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Hence, one has
min

0≤|x|,|y|≤X
(x,y) 6=(0,0)

‖αkϕ(x, y) + αk−2x
k−2y2 + · · ·+ α0y

k‖

≤ min
0≤x1≤X/2
0≤y1≤Y

(x1,y1) 6=(0,0)

‖αkx
k
1 + α′

k−2x
k−2
1 y21 + · · ·+ α′

0y
k
1‖,

where each α′
i is obtained by (4.13) and the Binomial theorem. Then, by applying Theorem

1.1 to the last expression, we conclude that for any ǫ > 0, there exists X(k, ǫ) such that
whenever X > X(k, ǫ) one has

min
0≤|x|,|y|≤X
(x,y) 6=(0,0)

‖αkϕ(x, y) + αk−2x
k−2y2 + · · ·+ α0y

k‖ ≤ X−σ+ǫ,

where σ = k/(k − 1)21−k.
�

5. Proof of Theorem 1.3

Our goal in this section is to prove Theorem 1.3. We begin this section by examining the
corresponding diagonal problem. The following proposition is useful for larger k.

Proposition 5.1. Let α, β ∈ R and k ∈ N with k ≥. Then, for any ǫ > 0, there exists a
real number X(k, ǫ) such that whenever X ≥ X(k, ǫ) and Y ≥ X(k, ǫ) one has

min
0≤x≤X
0≤y≤Y

(x,y) 6=(0,0)

‖αxk + βyk‖ ≤ X−σ+ǫY −σ+ǫ, (5.1)

where σ = 1/(k(k − 1)).

Proof. Let H = Xσ−ǫY σ−ǫ with σ = 1/(k(k − 1)). Suppose that we have

‖αxk + βyk‖ > 1/H (5.2)

for all x and y. By Dirichlet’s approximation theorem, there exist q1, q2 ∈ N and a1, a2 ∈ Z

with (q1, a1) = (q2, a2) = 1 such that q1 ≤ Xk−1H, q2 ≤ Y k−1H, and

∣

∣α−
a1
q1

∣

∣ ≤
1

q1Xk−1H
,
∣

∣β −
a2
q2

∣

∣ ≤
1

Y k−1H
.

By the same treatment as in the proof of Proposition 4.1, we may assume that q1 and q2 are
greater than X and Y , respectively.

By Dirichlet’s approximation theorem, there exist r1 ∈ N and b1 ∈ Z with (r1, b1) = 1
such that |hα− b1/r1| ≤ r−1

1 X1−k and r1 ≤ Xk−1. Thus, by [16, Theorem 5.2] depending on
Vinogradov’s man value theorem, one has

∑

1≤x≤X

e(hαxk) ≪ X1+ǫ/3

(

1

r1
+

1

X
+

r1
Xk

)σ

,

where σ = 1/(k(k − 1)). Then, by the transference principle [22, Lemma 14.1], one obtains

∑

1≤x≤X

e(hαxk) ≪ X1+ǫ/3

(

1

r1 +Xk‖r1hα‖
+

1

X
+

r1 +Xk‖r1hα‖

Xk

)σ

.
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Since r1 ≤ Xk−1, this bound is seen to be
∑

1≤x≤X

e(hαxk) ≪ X1−σ+ǫ/3 +X1+ǫ/3
(

r1 +Xk‖r1hα‖
)−σ

. (5.3)

Similarly, whenever |hβ − b2/r2| ≤ r−1
2 Y 1−k and r2 ≤ Y k−1 with (r2, b2) = 1, one obtains

∑

1≤y≤y

e(hβyk) ≪ Y 1−σ+ǫ/3 + Y 1+ǫ/3
(

r2 + Y k‖r2hβ‖
)−σ

. (5.4)

Notice here that r1, r2 may depend on h. Meanwhile, by Lemma 2.1, it follows from our
assumption (5.2) that

XY ≪
∑

1≤h≤H

∣

∣

∣

∣

∑

1≤x≤X
1≤y≤Y

e(h(αxk + βyk))

∣

∣

∣

∣

. (5.5)

Then, by (5.3) and (5.4), we have

∑

1≤h≤H

∣

∣

∣

∣

∑

1≤x≤X
1≤y≤Y

e(h(αxk + βyk))

∣

∣

∣

∣

=
∑

1≤h≤H

∣

∣

∣

∣

∑

1≤x≤X

e(h(αxk))

∣

∣

∣

∣

∣

∣

∣

∣

∑

1≤y≤Y

e(hβyk)

∣

∣

∣

∣

≪
∑

1≤h≤H

(U1(h) + U2(h) + U3(h) + U4(h)),

where

U1(h) = X1−σ+ǫ/3Y 1−σ+ǫ/3,

U2(h) = X1−σ+ǫ/3Y 1+ǫ/3(r2 + Y k‖r2hβ‖)
−σ,

U3(h) = X1+ǫ/3Y 1−σ+ǫ/3(r1 +Xk‖r1hα‖)
−σ,

U4(h) = X1+ǫ/3Y 1+ǫ/3(r1 +Xk‖r1hα‖)
−σ(r2 + Y k‖r2hβ‖)

−σ

in which r1 and r2 depend on h.
We shall show that

∑

1≤h≤H

(U1(h) + U2(h) + U3(h) + U4(h)) ≪ (XY )1−ǫ/2.

First, since H = Xσ−ǫY σ−ǫ, we have
∑

1≤h≤H

U1(h) ≪ X1−ǫ/2Y 1−ǫ/2. (5.6)

Second, consider
∑

1≤h≤H

U2(h). By Hölder’s inequality, one has

∑

1≤h≤H

U2(h) ≤ X1−σ+ǫ/3Y 1+ǫ/3H1−σ

(

∑

1≤h≤H

(r2 + Y k‖r2hβ‖)
−1

)σ

= X1−σ+ǫ/3Y 1+ǫ/3H1−σ

(

Y −k
∑

1≤h≤H

min

{

Y k

r2
, ‖r2hβ‖

−1

}

)σ

.

(5.7)
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Note that since r2 ≤ Y k−1, one has

∑

1≤h≤H

min

{

Y k

r2
, ‖r2hβ‖

−1

}

≤
∑

1≤r≤Y k−1

∑

1≤h≤H

min

{

Y k

r
, ‖rhβ‖−1

}

≤
∑

1≤r≤Y k−1

∑

1≤h≤H

min

{

Y kH

rh
, ‖rhβ‖−1

}

.

By a standard divisor estimate, this bound is seen to be

≪ Xǫ
∑

1≤n≤Y k−1H

min

{

Y kH

n
, ‖nβ‖−1

}

.

By [16, Lemma 2.2], this bound is

≪ XǫY kH

(

1

q2
+

1

Y
+

q2
Y kH

)

≤ XǫY k−1H, (5.8)

where we have used inequalities |β− a2/q2| ≤ q−1
2 Y 1−kH−1 and Y < q2 ≤ Y k−1H. Hence, on

substituting (5.8) into (5.7), we find that
∑

1≤h≤H

U2(h) ≪ X1−σ+ǫ/2Y 1−σ+ǫ/2H ≪ X1−ǫ/2Y 1−ǫ/2. (5.9)

Third, consider
∑

1≤h≤H

U3(h). By the same treatment with just above, we obtain

∑

1≤h≤H

U3(h) = X1+ǫ/3Y 1−σ+ǫ/3H1−σ

(

X−k
∑

1≤h≤H

min

{

Xk

r1
, ‖r1hα‖

−1

}

)σ

≪ X1+ǫ/3Y 1−σ+ǫ/3H1−σ

(

XǫH

(

1

q1
+

1

X
+

q1
XkH

))σ

≪ X1−ǫ/2Y 1−ǫ/2.

(5.10)

Finally, consider
∑

1≤h≤H

U4(h). By Hölder’s inequality, we have

∑

1≤h≤H

U4(h) ≪ (XY )1+ǫ/3H1−2σAσBσ, (5.11)

where

A = X−k
∑

1≤h≤H

min

{

Xk

r1
, ‖r1hα‖

−1

}

and

B = Y −k
∑

1≤h≤H

min

{

Y k

r2
, ‖r2hβ‖

−1

}

.

By the same treatment in the case
∑

1≤h≤H

U2(h) and
∑

1≤h≤H

U3(h), one infers from (5.11) that

∑

1≤h≤H

U4(h) ≪ (XY )1+ǫ/3H1−2σ(Y ǫHY −1)σ(XǫHX−1)σ ≪ (XY )1−ǫ/2. (5.12)
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Hence, by (5.6), (5.9), (5.10) and (5.12), we have
∑

1≤h≤H

(U1(h) + U2(h) + U3(h) + U4(h)) ≪ (XY )1−ǫ/2.

This contradicts (5.5) stemming from our assumption that

min
0≤x≤X
0≤y≤Y

(x,y) 6=(0,0)

‖αxk + βyk‖ > 1/H.

Therefore, we are forced to conclude that

min
0≤x≤X
0≤y≤Y

(x,y) 6=(0,0)

‖αxk + βyk‖ ≤ 1/H.

�

We shall reduce the problem in Theorem 1.3 to this diagonal problem by exploiting the
same argument in Theorem 1.1 with Lemma 3.1 replaced by Lemma 3.2.

Proof of Theorem 1.3. Let H = Xσ−ǫ with σ = 2
k(k−1)+ρ(k,l)

. Suppose that

1/H < ‖αkx
k + αlx

lyk−l + · · ·+ α0y
k‖ (5.13)

for all 1 ≤ x, y ≤ X. From (5.13), we shall derive a lower bound of fractional parts of
polynomial having fewer terms by an inductive arguments. Specifically, at the i-th step,
with 0 ≤ i ≤ l, we shall show that for all 1 ≤ x ≤ X and 1 ≤ y ≤ Yi with

Yi = X1−(2l+1(k−l)+2l(k−l+1)+···+2l−i+2(k−l+i−1))σ, (5.14)

there exist coefficients α
(i)
l−i, . . . , α

(i)
0 , suitable integral multiples of αl−i, . . . , α0, respectively,

such that
1

H
≪ ‖αkx

k + α
(i)
l−ix

l−iyk−l+i + · · ·+ α
(i)
0 yk‖. (5.15)

The case i = 0 obviously follows from (5.13). Assume that (5.15) holds for a particular
i ≤ l − 1. We shall show that (5.15) holds for i replaced by i+ 1.

Since A(Yi, R) ⊆ [1, Yi] ∩ Z, the assumption (5.15) implies

1

H
≪ min

1≤x≤X
y∈A(Yi,R)

‖αkx
k + α

(i)
l−ix

l−iyk−l+i + · · ·+ α
(i)
0 yk‖. (5.16)

Thus, by Lemma 2.1 and the fact that |A(Yi, R)| ≍ Yi, one has

XYi ≪
∑

1≤h≤H

∣

∣

∣

∣

∑

1≤x≤X
y∈A(Yi,R)

e(h(αkx
k + α

(i)
l−ix

l−iyk−l+i + · · ·+ α
(i)
0 yk))

∣

∣

∣

∣

(5.17)

By Dirichlet’s theorem, there exist q ∈ N, a ∈ Z with (q, a) = 1 such that

q ≤ HX l−i−2l−i+1(k−l+i)σ+ηY k−l+i
i

and

‖qα
(i)
l−i‖ ≤

X−ηX2l−i+1(k−l+i)σ

HX l−iY k−l+i
i

. (5.18)
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Let U = X2l−i+2σ. To apply Lemma 3.2 with Z = U and Y = Yi, we verify here that U and
Yi satisfy the hypotheses of Lemma 3.2, namely,

U ≤ min{(HX l−i)1/(2(k−l+i)), Yi}.

We first verify that U ≤ Yi. Since we have ρ(k, l) ≤ k(k−1), one has 2l+1(k− l) ≤ k(k−1),
and thus

2l ≤ k(k − 1)/(2(k − l)) ≤ k − 1, (5.19)

since by an obvious restriction l ≤ ⌊k
2
⌋. Note also that

σ = 2/(k(k − 1) + ρ(k, l)) ≤ ρ(k, l)−1, (5.20)

since ρ(k, l) ≤ k(k − 1). Hence, on recalling (5.14), by (5.19) and (5.20), one finds that

U = X2l−i+2σ ≤ X2l+2ρ(k,l)−1

≤ X1−(ρ(k,l)−22(k−1))ρ(k,l)−1

≤ X1−(ρ(k,l)−22(k−1))σ ≤ Yi. (5.21)

We turn to verify the other hypothesis. Since we have ρ(k, l) ≤ k(k−1)/7 and by recalling
the definition of ρ(k, l), one has

σ =
2

k(k − 1) + ρ(k, l)
≤

1

4ρ(k, l)
≤

1

2l−i+3(k − l + i)
.

Hence, we have

U = X2l−i+2σ ≤ X1/(2(k−l+i)) (5.22)

Thus, from (5.21) and (5.22), we verified that

U ≤ min{(HX l−i)1/(2(k−l+i)), Yi}.

Therefore, by applying Lemma 3.2 to the right hand side on (5.17), we obtain

XYi ≪
H(XYi)

1+ǫ

(q +HX l−iY k−l+i
i |qαl − a|)1/(2l−i+1(k−l+i))

+H(XYi)
1+ǫU−1/2l−i+2

. (5.23)

This implies

q ≤ X2l−i+1(k−l+i)σ. (5.24)

By applying the triangle inequality and putting y = qy1 with

1 ≤ y1 ≤ YiX
−2l−i+1(k−l+i)σ = Yi+1,

one finds that

‖αkx
k + α

(i)
l−ix

l−iyk−l+i + · · ·+ α
(i)
0 yk‖

≤ ‖αkx
k + α

(i)
l−i−1x

l−i−1(qy1)
k−l+i+1 + · · ·+ α

(i)
0 (qy1)

k‖+ ‖α
(i)
l−ix

l−i(qy1)
k−l+i‖.

(5.25)

By applying the triangle inequality and (5.18), one has

‖α
(i)
l−ix

l−i(qy1)
k−l+i‖ ≤ xl−i(qy1)

k−l+i−1y1‖α
(i)
l−iq‖

≤ X l−iY k−l+i
i X−2l−i+1(k−l+i)σX

−ηX2l−i+1(k−l+i)σ

HX l−iY k−l+i
i

≤
X−η

H
.

(5.26)

Thus, by (5.15), (5.25) and (5.26), one has

1/H ≪ ‖αkx
k + α

(i)
l−i−1x

l−i−1(qy1)
k−l+i+1 + · · ·+ α

(i)
0 (qy1)

k‖ (5.27)
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for all 1 ≤ x ≤ X and 1 ≤ y1 ≤ Yi+1. By writing

α
(i+1)
l−i−r = α

(i)
l−i−rq

k−l+i+r (1 ≤ r ≤ l − i),

one concludes from (5.27) that

1/H ≪ ‖αkx
k + α

(i+1)
l−i−1x

l−i−1yk−l+i+1
1 + · · ·+ α

(i+1)
0 yk1‖

for all 1 ≤ x ≤ X and 1 ≤ y1 ≤ Yi+1. Thus, this confirms the inductive step.
Thus, one infers by induction that

1/H ≪ ‖αkx
k + α

(l)
0 yk‖

for all 1 ≤ x ≤ X and 1 ≤ y ≤ Yl. This contradicts the conclusion of Proposition 5.1. Thus,
we are forced to conclude that

min
0≤x,y≤X
(x,y) 6=(0,0)

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖ ≤ 1/H.

�

6. Proof of Theorem 1.4

Our goal in this section is to prove Theorem 1.4. We begin this section by examining the
corresponding diagonal problem. To prove following Proposition 6.2, we require the minor
arc estimates in [20, Corollary 2]. Throughout this section, we take R = Xη with η positive
and sufficient small. We state here this corollary without proof as a proposition.

Proposition 6.1. Let mλ denote the set of α ∈ R such that whenever a ∈ Z, q ∈ N,
(a, q) = 1 and |α − a/q| ≤ q−1Xλ−k, then q > XλR. Then there is a natural number k0(ǫ)
with the following property. When k ≥ k0(ǫ), there are real numbers λ = λ(k), σ(k) and
C > 0 with

log log k

log k
≪ 1− λ ≪

log log k

log k
and σ(k)−1 = k(log k + C log log k),

and such that
∑

x∈A(X,R)

e(αxk) ≪ X1−σ(k)+ǫ.

Proof. See [20, Corollary 2]. �

To state the following proposition, we exploit the exponent λ = λ(k) defined in Proposition
6.1.

Proposition 6.2. Let α, β ∈ R and k ∈ N. Define

σ =
1

k log k + Ck log log k
, σ0 =

σ

1− λ− σ
.

Let X and Y be real numbers sufficiently large in terms of k and ǫ with Xσ0 ≤ Y ≤ X.
Then, one has

min
0≤x≤X
0≤y≤Y

(x,y) 6=(0,0)

‖αxk + βyk‖ ≤ X−σ+ǫY −σ+ǫ.
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Proof. Let H = Xσ−ǫY σ−ǫ. Notice that max{Xλ−1, Y λ−1} ≤ 1/H. Suppose that there exists
no x, y satisfying ‖αxk + βyk‖ ≤ 1/H.

Suppose first that there exist q ∈ N, a ∈ Z, h ∈ [1, H] ∩ Z with (q, a) = 1 such that
q ≤ XλR and

∣

∣hα−
a

q

∣

∣ ≤ q−1Xλ−k. (6.1)

Since we have Y ≤ X, we find that hq ≤ HXλR ≤ X. Then, by putting y = qh, it follows
from (6.1) that

min
0≤x≤X
0≤y≤Y

(x,y) 6=(0,0)

‖αxk + βyk‖ ≤ ‖α(qh)k‖ ≤ (HXλR)k−1‖αqh‖ ≤ Xk−1Xλ−k ≤ 1/H,

which contradicts our assumption.
Suppose next that there exist q ∈ N, a ∈ Z, h ∈ [1, H] ∩ Z with (q, a) = 1 such that

q ≤ Y λR and
∣

∣hβ −
a

q

∣

∣ ≤ Y λ−k. (6.2)

Since we have Xσ0 ≤ Y, we find that qh ≤ HY λR ≤ Y. Then, by putting y = qh, it follows
from (6.2) that

min
0≤x≤X
0≤y≤Y

(x,y) 6=(0,0)

‖αxk + γyk‖ ≤ ‖γ(qh)k‖ ≤ (HY λR)k−1‖γqh‖ ≤ Y k−1Y λ−k ≤ 1/H,

contradicting our assumption.
Thus, on recalling the definition of mλ in the statement of Proposition 6.1. We may assume

that for all h ∈ [1, H] ∩ Z, one has hα, hβ ∈ mλ. Meanwhile, it follows from our assumption
by Lemma 2.1 that

XY ≪
∑

1≤h≤H

∣

∣

∑

x∈A(X,R)
y∈A(Y,R)

e(h(αxk + βyk))
∣

∣.

Therefore, on writing
∣

∣

∑

x∈A(X,R)
y∈A(Y,R)

e(h(αxk + βyk))
∣

∣ =
∣

∣

∑

x∈A(X,R)

e(h(αxk))
∣

∣

∣

∣

∑

y∈A(Y,R)

e(h(βyk))
∣

∣,

by applying Proposition 6.1, we find that
∑

1≤h≤H

∣

∣

∑

x∈A(X,R)
y∈A(Y,R)

e(h(αxk + βyk))
∣

∣≪ (XY )1−ǫ,

which contradicts our assumption. Hence, we are forced to have

min
0≤x≤X
0≤y≤Y

(x,y) 6=(0,0)

‖αxk + βyk‖ ≤ 1/H.

�
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Proof fo Theorem 1.4. Let H = Xσ−ǫ with σ = 2/(k log k + ρ(k, l) + Ck log log k). Suppose
that

1/H ≤ ‖αkx
k + αlx

lyk−l + · · ·+ α0y
k‖ (6.3)

for all 1 ≤ x, y ≤ X. From (6.3), we shall derive a lower bound on fractional parts of
polynomial having fewer terms by an inductive argument. Specifically, at the i-th step, with
0 ≤ i ≤ l, we shall show that for all 1 ≤ x ≤ X and 1 ≤ y ≤ Yi with

Yi = X1−(2l+1(k−l)+2l(k−l+1)+···+2l−i+2(k−l+i−1))σ,

there exist coefficients α
(i)
l−i, . . . , α

(i)
0 , suitable integral multiples of αl−i, . . . , α0, respectively,

such that
1

H
≪ ‖αkx

k + α
(i)
l−ix

l−iyk−l+i + · · ·+ α
(i)
0 yk‖. (6.4)

The case i = 0 obviously follows from (6.3). Assume that (6.4) holds for a particular i ≤ l−1.
We shall show that (6.4) holds for i replaced by i+ 1.
Since A(Yi, R) ⊆ [1, Yi] ∩ Z, the assumption (6.4) implies

1

H
≪ min

1≤x≤X
y∈A(Yi,R)

‖αkx
k + α

(i)
l−ix

l−iyk−l+i + · · ·+ α
(i)
0 yk‖. (6.5)

Thus, by Lemma 2.1 and the fact that |A(Yi, R)| ≍ Yi, one has

XYi ≪
∑

1≤h≤H

∣

∣

∣

∣

∑

1≤x≤X
y∈A(Yi,R)

e(h(αkx
k + α

(i)
l−ix

l−iyk−l+i + · · ·+ α
(i)
0 yk))

∣

∣

∣

∣

(6.6)

By Dirichlet’s theorem, there exist q ∈ N, a ∈ Z with (q, a) = 1 such that

q ≤ HX l−i−2l−i+1(k−l+i)σ+ηY k−l+i
i

and

‖qα
(i)
l−i‖ ≤

X−ηX2l−i+1(k−l+i)σ

HX l−iY k−l+i
i

. (6.7)

Let U = X2l−i+2σ. By the same treatment in the proof of Theorem 1.3 with k(k−1) replaced
by k log k, we find that this U and Yi satisfy the hypotheses of Lemma 3.2. Therefore, by
applying Lemma 3.2 to the right hand side on (6.6), we obtain

XYi ≪
H(XYi)

1+ǫ

(q +HX l−iY k−l+i
i |qαl − a|)1/(2l−i+1(k−l+i))

+H(XYi)
1+ǫU−1/2l−i+2

.

This implies

q ≤ X2l−i+1(k−l+i)σ. (6.8)

By applying the triangle inequality and putting y = qy1 with

1 ≤ y1 ≤ YiX
−2l−i+1(k−l+i)σ = Yi+1,

one finds that

‖αkx
k + α

(i)
l−ix

l−iyk−l+i + · · ·+ α
(i)
0 yk‖

≤ ‖αkx
k + α

(i)
l−i−1x

l−i−1(qy1)
k−l+i+1 + · · ·+ α

(i)
0 (qy1)

k‖+ ‖α
(i)
l−ix

l−i(qy1)
k−l+i‖.

(6.9)
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By applying the triangle inequality and (6.7), one has

‖α
(i)
l−ix

l−i(qy1)
k−l+i‖ ≤ xl−i(qy1)

k−l+i−1y1‖α
(i)
l−iq‖

≤ X l−iY k−l+i
i X−2l−i+1(k−l+i)σX

−ηX2l−i+1(k−l+i)σ

HX l−iY k−l+i
i

≤
X−η

H
.

(6.10)

Thus, by (6.4), (6.9) and (6.10), one has

1/H ≪ ‖αkx
k + α

(i)
l−i−1x

l−i−1(qy1)
k−l+i+1 + · · ·+ α

(i)
0 (qy1)

k‖ (6.11)

for all 1 ≤ x ≤ X and 1 ≤ y1 ≤ Yi+1. By writing

α
(i+1)
l−i−r = α

(i)
l−i−rq

k−l+i+r (1 ≤ r ≤ l − i),

one concludes from (6.11) that

1/H ≪ ‖αkx
k + α

(i+1)
l−i−1x

l−i−1yk−l+i+1
1 + · · ·+ α

(i+1)
0 yk1‖

for all 1 ≤ x ≤ X and 1 ≤ y1 ≤ Yi+1.
Thus, one infers by induction that

1/H ≪ ‖αkx
k + α

(l)
0 yk‖ (6.12)

for all 1 ≤ x ≤ X and 1 ≤ y ≤ Yl. Since Yl = X1−ρ(k,l)σ and ρ(k, l) ≤ k log k, a modicum
computation leads to the relation that Yl ≥ Xσ0 . Therefore, the inequality (6.12) contradicts
the conclusion of Proposition 6.2. Thus, we are forced to conclude that

min
0≤x,y≤X
(x,y) 6=(0,0)

‖αkx
k + αlx

lyk−l + αl−1x
l−1yk−l+1 + · · ·+ α0y

k‖ ≤ 1/H.

�

Appendix A. Estimations in the proof of Proposition 3.4

Let α, N be positive real numbers, and k and l be natural numbers with k− l ≥ 2. Then,
one has following:

(1)
∑

1≤n≤N

1

1 + αnk−l
≪

N

(1 +Nk−lα)1/(k−l)

(2)
∑

1≤n≤N

1

(1 + αnk−l)1/(k−l)
≪

N logN

(1 +Nk−lα)1/(k−l)

(3)
∑

1≤n≤N

1

(1 + αn)2/(k−l)
≪

N logN

(1 +Nα)2/(k−l)

Proof of (1). Note that the left hand side in (1) is bounded above by the expression
∑

1≤n≤N

min{1, α−1n−k+l}. (6.13)

First, consider the case Nk−lα < 1. Then, both this expression and the right hand side in
(1) are of size N . Next, consider the case Nk−lα ≥ 1. We see that the minimum in (6.13)
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switches according as nk−lα < 1 and nk−lα ≥ 1. Both parts of the sum are of size α−1/(k−l),
since k − l ≥ 2. Hence, we complete the proof of (1).

�

Proof of (2). Note that the left hand side in (2) is bounded above by the expression
∑

1≤n≤N

min{1, α−1/(k−l)n−1}. (6.14)

First, consider the case Nk−lα < 1. Then, this expression is of size N , and the right hand
side in (2) is of size N logN. Next, consider the case Nk−lα ≥ 1. We see that the minimum
in (6.14) swiches according as nk−lα < 1 and nk−lα ≥ 1. Both parts of the sum are less than
α−1/(k−l) logN. Thus, we complete the proof of (2). �

Proof of (3). Note that the left hand side in (3) is bounded above by the expression
∑

1≤n≤N

min{1, (αn)−2/(k−l)}. (6.15)

First, consider the case Nα < 1. Then, this expression is of size N, and the right hand side
in (3) is of size N logN. Next, consider the case Nα ≥ 1. We see that the minimum in (6.15)
swiches according as nα < 1 and nα ≥ 1. Hence, the expression (6.15) is seen to be

∑

1≤n≤α−1

1 +
∑

α−1<n≤N

(αn)−2/(k−l) ≪ α−1 + α−2/(k−l) logN, (6.16)

since k − l ≥ 2. Therefore, by the condition Nα ≥ 1 and k − l ≥ 2, we find that the right
hand side in (6.16) is of size N1−2/(k−l)α−2/(k−l) logN. Thus, we complete the proof of (3).

�
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