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ABSTRACT
The current challenge in breast cancer segmentation on hema-
toxylin and eosin-stained images lies in accurately capturing his-
tologic phenotypes associated with cancer biomarkers. Many re-
searchers have studied histologic patterns of cancerous regions of
breast cancer images for a better understanding of diagnosis and
treatment, yet it is not fully investigated because of its variability,
complexity, and large data volumes. Comprehensive experiments on
breast cancer segmentation can address this challenge by identify-
ing heterogeneous cell regions in the tumor microenvironment and
investigating a new methodology of segmenting histologic images
by using advanced deep learning architectures. In this paper, we
present findings in three experiments on breast cancer segmenta-
tion, exploring the effectiveness of a convolutional neural network
called UNet identifying multiple heterogeneous cells such as blood,
blood vessels, fat, glandular secretions, necrosis, and plasma cells
in a tumor microenvironment, investigating the performance of
UNet architecture in different sizes of cancerous regions such as a
tumor, and tumor-infiltrating lymphocytes, and proposing a new
methodology of a neural-style guided data augmentation focusing
on the image segmentation of breast tumor-related nuclei in hema-
toxylin and eosin-stained images. The experiment results show that
a modified UNet performs well on fat identification. Another exper-
iment shows that the smaller input size of the tumor, stroma, and
tumor-infiltrating lymphocyte provides better performance than
the larger input size. Moreover, we demonstrate that the proposed
method outperforms the traditional deep neural network models.
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1 INTRODUCTION
Recent advances in digital pathology have allowed pathologists to
use computer machines to assist them in better diagnosis of cancer,
improving the diagnostic process for patients [25, 37]. As computer
vision and deep learning are revolutionizing cancer-related medi-
cal image analysis assisting early cancer detection for improving
patient outcomes, it is not evitable for cancer researchers to utilize
deep learning algorithms for identifying characteristics of human
tissue cells to determine a patient’s health problems [9, 33].

Breast cancer is one of the most significant global health chal-
lenges, with early detection being pivotal for improving patient
outcomes and standing as the foremost cause of cancer-related
mortality among women worldwide [38]. With 287,850 new cases
reported in 2022 [4], breast cancer maintains its status as the most
prevalent cancer. Various diagnostic tools have emerged to gener-
ate visual and functional representations of the human body and
organs for non-invasive clinical analysis through X-ray-based tech-
niques such as conventional X-ray [14, 26], computed tomography
(CT) [10, 39], and mammography, as well as molecular imaging,
magnetic resonance imaging (MRI), and ultrasound (US) imaging
[12]. These imaging-based analyses often initiate breast cancer di-
agnosis, followed by a crucial histopathological analysis of breast



tissue samples. This latter process necessitates precise cell nucleus
identification and classification within tumors, playing a pivotal
role in determining tumor characteristics such as grade, subtype,
and aggressiveness. The accurate identification of nuclei is instru-
mental not only in diagnosis but also in the effective planning of
treatment strategies [7, 17, 22, 27].

While X-ray-based techniques have improved rates of early detec-
tion substantially, it is markedly less effective for womenwith dense
breasts, who already suffer from an increased risk of breast cancer
later in life [36]. Computer vision, and specifically deep-learning
models, can assist radiologists in identifying cases of breast tumor
identification and classification by reaffirming their conclusion,
and with enough improvement, eventually able to identify breast
cancer unassisted. Breast cancer is a particularly difficult condi-
tion to diagnose, as the prognostic parameter changes with the
progression of the cancer. For the scope of this paper, refinement
of state-of-the-art deep learning modalities is crucial in adapting
widely used, successful methods, such as UNet, VGG, and ResNet
series, to some of the more granular challenges specific to breast
cancer, in addition to improving the performance of models on
diagnosing based on medical images.

Medical image analysis is a crucial component of modern health-
care, enabling precise diagnoses and guiding treatment decisions
[34]. Traditional deep learning models in medical image analysis
use a set of fixed-sized images and output a predicted label for
each pixel along with a confidence status. UNet is one of the repre-
sentative convolutional-wise deep-learning models primarily used
in medical image analysis [32]. The emergence of the UNet archi-
tecture has opened new avenues in automating and refining the
process of specific cell identification and analysis in histopatho-
logical images, but there is still a need to improve the quality of
semantic image segmentation in medical image analysis. Since the
UNet architecture is characterized by a U-shaped structure cap-
turing context information through the encoder-decoder process,
UNet has been combined with various deep learning models such
as ResNet [13], VGG [24], and Generative Adversarial Networks
(GANs) [5]. This paper will introduce a groundbreaking method
that combines the UNet architecture with VGG16 to enhance med-
ical image analysis, particularly focusing on the segmentation of
breast tumor cell nuclei. This integration is expected to revolution-
ize the accuracy and efficiency of histopathological image analysis,
which is essential for identifying and delineating structures within
these images.

While the integration of deep learning models in medical imag-
ing, particularly for breast cancer diagnosis, offers significant ad-
vancements, it is imperative to acknowledge inherent drawbacks
and limitations such as unit-emphasized experiments merely focus-
ing on phenotypes of specific tissue cells fixing a size of images
in advance. Deep-learning models used for identifying specific
types of cancer cells have presented impressive capabilities for
automatic cancer-related image predictions in tumor microenvi-
ronments [23, 40]. However, they have limited use in terms of
identifying the effect of their models with different input sizes
which remains a challenging issue to overcome. Comprehensive
experiments on deep learning models with different input sizes are
necessary for better identification of cancer cells.

In this paper, we propose a new deep learning method for in-
tegrating UNet with the VGG16 architecture using a neural-style
guided data augmentation focusing on the image segmentation
of breast tumor-related nuclei in hematoxylin and eosin-stained
images, leveraging the integrated approach to improve the accuracy
and efficiency of nuclei segmentation in breast cancer, thereby aid-
ing in early and precise cancer diagnosis. The proposed method in-
volves two key strategies: data augmentation and the fusion of two
distinct neural network architectures. The data augmentation ap-
proach employs a Neural Style Network (NSN), an innovative tech-
nique that transfers artistic styles to medical images. This method
aims to diversify the dataset, thereby enhancing the model’s capac-
ity to generalize across various styles and complexities encountered
in histopathological images. At the heart of this method is the fu-
sion of the UNet architecture, known for its good performance in
semantic image segmentation, with the VGG16 model, which is cel-
ebrated for its robust feature extraction capabilities. The proposed
model combines the pixel-level accuracy and detailed segmentation
capabilities of UNet with the feature learning of VGG16. This fusion
is anticipated to significantly improve accuracy and precision in
medical image classification. Moreover, we explore the effective-
ness of UNet by identifying six heterogeneous cells: blood, blood
vessels, fat, glandular secretions, necrosis, and plasma cells through
comprehensive experiments. We also investigate the performance
of UNet architecture in different sizes of three cancerous regions:
tumor, and tumor-infiltrating lymphocytes.

The rest of the sections in this paper are organized as follows.
In Section 2, we describe the related works on medical image seg-
mentation in the field of biomedical research. Section 3 details the
proposed VGG16 encoded UNet architecture with a neural style
transfer method. Section 4 presents the comprehensive experiments
on breast cancer image segmentation on hematocylin-eosin stained
images. The conclusion is given in Section 5.

2 RELATEDWORK
2.1 Medical Image Analysis
Medical image analysis has been broadly studied in the field of
biomedical research by providing meaningful information from dig-
itized images obtained through differentmedical imagingmodalities
such as computed tomography (CT), magnetic resonance imaging
(MRI), and whole slide imaging (WSI). Baracos et al. [3] presented
a population-based experiment for studying body composition in
cancer patients using diagnostic computed tomography images.
Holli et al. [15] studied texture information extracted from breast
magnetic resonance images to distinguish between normal breast
tissue and invasive breast cancer. Cruz-Roa et al. [6] presented an
invasive breast cancer detection method on whole slide images by
proposing a convolutional neural network model. The qualitative
or quantitative information extracted from the digitized images
through various computational models can now provide valuable
insights into the interesting regions of images enabling clinicians
to detect specific diseases within the human body.

2.2 UNet and Variants
The evolution of computational models plays a crucial role in ad-
vancing diagnostic accuracy and treatment efficacy [8, 20]. Since



UNet has received much attention in the biomedical research field
as a primary use in medical image analysis, the UNet architecture
has been modified for medical image segmentation [35]. The at-
tention UNet is one of the variants of the basic UNet presented for
capturing and handling fine details in medical images [29]. This
variant also has received a lot of attention because of its attention
mechanisms allowing the neural network to focus on related re-
gions of the input image to enhance the ability of the model. Some
studies have been done by combining the residual concept of skip-
ping connections with the basic UNet architecture [1, 42]. They
incorporated the residual connections to address the vanishing gra-
dient problem and showed the effectiveness of the variant of the
UNet architecture.

2.3 UNet and VGG16
UNet can be directly integrated with VGG-16 as an encoder model
to improve the image segmentation of brain tumors [11]. The in-
tegrated model was introduced to identify regions of tumor cells,
showing the achievement with pixel accuracy of 99.75% with the
integrated UNet architectures. The significant improvement in ac-
curacy over common CNN-based architectures motivated us to use
VGG16 as an encoder model to enhance the effectiveness of can-
cerous region image segmentation. Anindya et. al. presented the
application of a UNet-VGG16 model, supplemented with transfer
learning, which demonstrates a high Correct Classification Rate
(CCR) in identifying brain tumor areas [30]. Their study achieved
a mean CCR value of about 95.69%, highlighting the model’s ef-
ficiency in recognizing tumor regions in MRI scans. Their paper
also motivated us to design a CNN-based architecture through the
combination of UNet and VGG16 architectures for accurate medi-
cal image analysis. Another study of UNet combined with VGG16
was presented for further enrichment with transfer learning and
dropout regularization [31]. The main objective was to achieve
clear tumor visualization in image segmentation. This hybrid ar-
chitecture demonstrates the potential of UNet and VGG16 in deep
learning for precise image segmentation, particularly in medical
imaging applications.

2.4 UNet and Augmentation
While the integration of UNet and VGG-16 demonstrates the ef-
fectiveness of image segmentation, several image augmentation
methods have been utilized in medical image analysis. In particular,
Yin et al. [41] proposed a context-aware generative method altering
the grayscale of CT scans with minimal semantic loss to enhance
the performance of an existing segmentation model. They followed
a traditional style transformation pipeline for augmenting images
and showed an improvement of between 2% and 4UNet% in pixel
segmentation accuracy over the original UNet for spine segmenta-
tion. Their study emphasizes the importance of preserving semantic
integrity in medical image processing and demonstrates how style
transfer can be effectively employed for data augmentation.

The exploration of previous studies elucidates the significant
strides made in the realm of medical image analysis. The integra-
tion of UNet and VGG16 architectures, as demonstrated in various
studies, underscores their efficacy in precise image segmentation,

particularly in the context of medical image analysis [11, 18]. Fur-
thermore, the adoption of neural-style networks for data augmen-
tation marks a novel approach to enhancing model generalization
across diverse histopathological images [16, 19]. Collectively, these
studies provide a robust foundation and invaluable insights for the
current research, emphasizing the continual innovation required in
the quest for improved healthcare outcomes through advanced med-
ical imaging techniques. We will focus on the integration of UNet
with VGG16 for enhanced image segmentation and the innovative
use of Neural Style Networks in data augmentation. Moreover, we
will perform comprehensive experiments on histopathology images
from whole slide imaging.

3 COMPREHENSIVE EXPERIMENTS ON
CANCER-RELATED IMAGE SEGMENTATION
USING UNET

3.1 Neural Style-equipped UNet-VGG16 Model

Figure 1: The Overall Process of the Neural Style-equipped
UNet-VGG16 Model

3.1.1 Method. The basic idea of the proposed method is to utilize
the combination of the VGG16 encoder and the UNet decoder. The
model experienced a bottleneck at the point where it had 1024
channels. This concatenate layer was the bridge that connected the
encoder of VGG16 to the decoder of UNet. We took the output of
the last convolutional layer of each shape (512 x 512 x 64, 256 x 256
x 128, 128 x 128 x 256, 64 x 64 x 512) in the encoder and passed it
into the decoder as input. This skip connection reduced the infor-
mation lost during the encoding process and helped reconstruct
the high-resolution information from the earlier layers. We then
modified the hybrid model by adding more convolutional layers
along with dropout layers. We increased the number of feature
maps to 1024. The previous encoder only had 512 feature maps.
The new model experiences a bottleneck at the bridge where it
has 2048 channels. Although we still passed the output of the last
convolutional layer of each shape into the decoder, the number of
input shapes increased because of the extra convolutional layers.
The addition of the input shape 32 x 32 x 1024 helped improve
the model’s ability to capture intricate patterns and context. More-
over, the introduction of dropout layers decreased the overfitting
problem the previous model was having.

To increase the number of training samples in this paper, we
implemented several image augmentation techniques such as flip-
ping the image and mask left or right, rotating the image and mask
random increments of 90 degrees (maximum 270), randomizing



the contrast of the image, and applying neural style transfer to
the image with Van Gogh’s The Starry Night. For the neural style
transfer, we chose layers from a pre-trained VGG16, with frozen
ImageNet weights, to serve as the content layers and style layers in
our style transfer model.

Specifically, we used all of the input layers from VGG16, the
outputs from block5-conv2 to represent the content layer, and the
block1-conv1, block2-conv1, block3-conv1, block4-conv1, block5-conv1,
outputs to represent the style layers. For the training of the style
transfer model, first calculate the style of the image, which is typi-
cally done by calculating the Gram matrix:

𝐺𝑙
𝑖 𝑗 =

∑︁
𝑘

𝐹 𝑙
𝑖𝑘
𝐹 𝑙
𝑖 𝑗𝑘

(1)

where l is the style layer the current gram matrix is being calcu-
lated for, i and j are feature maps from the output of the current
style layer, and k is the number of channels. The Gram matrix is
the dot product of each feature map in the layer with every other
feature map in that layer. We used the calculated style of the images
and the output from the single content layer to calculate style loss,
the mean squared error between the style of the training image and
the style of The Starry Night, and content loss, the mean squared
error between the training image from the previous neural style
transfer iteration, and the current one. We finally added the style
loss and content loss together to give us a total loss and performed
a gradient descent to minimize this total loss. The overall process
of the proposed method is shown in Figure 1. H&E images are
preprocessed, the augmented images are created, and the input
images are fed to the VGG-16 encoder. The decoder of the UNet is
used to predict nuclei regions. We used Adam Optimizer. For the
loss function, we decided to use Binary Cross Entropy (BCE) at
first. BCE is suited for semantic segmentation where the goal is to
classify whether a pixel belongs in the foreground or not. However,
after seeing the results, we realized there was a class imbalance
in the dataset. To address this problem, we implemented Binary
Focal Cross Entropy (BFCE). BFCE introduced a modulating factor
to down-weight the contributions of well-classified samples. The
model was trained on augmented data for better generalization.

3.1.2 Experiment Results. In this section, we experiment to verify
the effectiveness of the proposed method by comparing it with the
baseline of the model and the state-of-the-art model called UNet++
EfficientNet.

We used a refined version of the dataset from Dinh et al., which
consists of a combination of images from the MonuSeg-2018 dataset
[21] and the Triple Negative Breast Cancer (TNBC) dataset [28].
MonuSeg-2018 was published as part of a semantic segmentation
challenge at the MICCAI 2018 conference in Spain and contains
hematoxylin and eosin (H&E) stained medical images of tumors
in various organs. On the other hand, the TNBC dataset was cre-
ated at Curie University in Paris for P. Taylor et al. and contains
H&E stained images of breast cancer. Our dataset consists of 31
training images, all from MonuSeg-2018, that are augmented up
to 100 training images, while our test folder contains 50 images
from the TNBC dataset. The evaluation metrics used in this paper
include Intersection over Union (IoU), F1-score (F1), and accuracy
(ACC). One specific area of improvement that we hope to address

in the future is class imbalance. Although the F1-score is promis-
ing, we routinely saw a much higher precision than recall, this
corresponds to the much larger amount of negative class instances
(non-cancerous) compared to the smaller amount of positive class
instances (cancerous). We also hope to spend more time finding the
sweet spot of neural style transfer to achieve the best results on our
augmented training set.

Figure 2: Examples of Neural Style Image Transform using
Van Goh’s The Starry Night

Examples of two types of neural-style transferred images are
shown in Figure 2. The first H&E image on the left was transferred
to a neural-style image creating some coarse in the overall region
while the second H&E image on the right was transferred to the
same style image but blurring each nuclei dense. Our experiment
was performed by using all neural-style transferred images regard-
less of their texture representations.

Figure 3: Performance Results on MonuSeg Datasest

The performance results on the MonuSeg dataset during training
are shown in Figure 3. The x-axis represents the number of epochs
used in the training. The left y-axis represents the range of ACC,
IoU, and F1 scores and the right y-axis represents the range of loss
(LOS) score. As the number of epochs increases, ACC represented
as a box in blue converges quickly to around 0.9 while both IoU
and F1 represented as a triangle in green and a diamond in black
converge slightly slowly compared with the ACC to around 0.8. This
is because both IoU and F1 begin converging at the lower scores,
0.6000 and 0.6348 respectively, while ACC begins converging at
0.7937. LOS continuously decreases but significantly between 1
and 3 epochs. The highest scores obtained by ACC, IoU, and F1



Table 1: Performance Results on TNBC Dataset

Models F1
UNet++ EfficientNet-B0 0.5986
UNet++ EfficientNet-B1 0.6785
UNet++ EfficientNet-B2 0.5877
UNet++ EfficientNet-B3 0.6024
UNet++ EfficientNet-B4 0.6183
UNet++ EfficientNet-B5 0.5612
UNet VGG16 (Baseline) 0.5042

Proposed method 0.6501

are 0.9065, 0.7791, and 0.8058 respectively, while the lowest score
obtained by LOS is 0.0587. Based on the experiment results in Figure
3, we can conclude that the combination of VGG16 and UNet, along
with data augmentation techniques, generalizes effectively learning
the proposed model through training on MonuSeg-2018 promising
predictions on breast cancer images from the TNBC dataset.

The performance results on the TNBC dataset containing 50
images are shown in Table 1. We completed the training of the
proposed model using the MonuSeg dataset and tested it on the
TNBC dataset. The baseline model we defined for the basis of this
experiment was UNet VGG16. We also compared the experiment
results to Ding et al. and Lagree et al. As shown in Table 1, the pro-
posed method outperformed the baseline and all but one, UNet++
EfficientNet-B1 in terms of F1 score. Although the F1 score of the
proposed method (0.6501) is slightly less than UNet++ EfficientNet-
B1 (0.6785), there is no doubt that our method significantly out-
performs the baseline model (0.5042). Looking at the metrics on
each prediction, there are several outliers on the low end for F1
specifically, which we believe would be solved by better addressing
the class imbalance and optimizing the augmentation techniques.

The proposed method was applied to H&E images with various
nuclei density levels. The examples of prediction results on different
nuclei density levels are shown in Figure 4. A high-density nuclei
image (top left) was predicted by the proposed method (top right)
and was compared with a human-annotated image (top middle).
Likewise, a middle-density nuclei image (middle left) and a low-
density nuclei image (bottom left) were predicted by the proposed
method and were compared with their human-annotated images.
Regardless of nuclei-density level, the overall experiment results
show that the proposed method is well-performed on the nuclei pre-
dictions by comparingwith the human-annotated regions. However,
nuclei regions with inconsistent boundaries produce inaccurate re-
sults of regions. For example, the predicted nuclei regions in the red
box of the high-density nuclei image show many imprecise results,
while the predicted nuclei regions in the red box of the middle or
low-density nuclei image show seamless results compared with the
one in the high-density nuclei image.

3.2 Additional Experiments
In addition to the experiments on the MonuSeg dataset and TNBC
dataset using the proposed method, we perform two additional
experiments with the modification of the original UNet. While
the proposed method described in Section 3 uses both the VGG16

Figure 4: Examples of Prediction Results on Nuclei Density
Levels

network and style-tranUNetsferred images, the modified UNet fol-
lows the original UNet architecture with different input sizes only
because the main purpose of these experiments is to investigate
whether the UNet can perform well on different types of cells such
as blood, blood vessels, fat, glandular secretions, necrosis or debris,
and plasma cells, as well as on different sizes of cancer-related cells
such as a tumor, tumor-infiltrating lymphocytes, and stroma, or
not, remaining the comparison between the proposed method and
the UNet over the BCSS dataset in the future work.

3.2.1 Method. UNet is a convolutional neural network originally
designed for image segmentation and the basic structure of the
UNet architecture consists of two paths. The first path is about a
contracting path which is similar to a regular convolution network
and the second path is about an expansion path consisting of up-
sampling and concatenations with features from the contracting
path. This expansion allows the network to learn localized classi-
fication information. Six different types of images of tissue cells:
blood, glandular secretions, blood vessels, necrosis, fat, and plasma
cells, were used for comprehensive assessment and fed to the UNet
as the input sources. These images were extracted in 20x magnifi-
cation from whole slide images (WSIs). WSIs are large-sized digital
images, typically 1 or 2 GB per slide, created by digital equipment
scanning glass slides used for examining tissue samples. These
digitized images have been used for capturing, managing, and in-
terpreting pathology information assisting traditional diagnostic
processes. We also used three cancerous types of tissue cells, such
as a tumor, stroma, and tumor-infiltrating lymphocytes (TILs), for



Figure 5: The Overview of Cancer-related Image Segmentation using UNet

the performance evaluation of the modified UNet with different
input sizes.

The detailed overall process of the proposed method is shown
in Figure 5. Digitized histopathology images are obtained at 20x
magnification. 546 heterogeneous images with six tissue types ex-
tracted from the histopathology images are used for comprehensive
access to breast cancer. 300 cancerous regions with three tissue
types extracted from the histopathology images are used for the
identification of cancer cells with different sizes.

3.2.2 Experiment Results. The dataset used in this experiment was
obtained from the Breast Cancer Semantic Segmentation (BCSS)
dataset [2]. BCSS dataset is a large-scale dataset that contains over
20,000 segmentation annotations of tissue regions consisting of
151 H&E breast cancer slides. The dataset has been annotated by
an annotation review process involving senior pathologists, junior
pathologists, and medical students. We extracted 546 heterogeneous
regions of 256x256 size randomly selected from the 151 slides. We
also extracted 300 cancerous cell images with different sizes of
128x128, 64x64, and 32x32.

The main purpose of the experiment in this section is to verify
the effectiveness of the UNet on not a specific type of cell image
but the various types of cell images. We modified the UNet with
different input sizes and used the model for performance evaluation.
Two well-known evaluation metrics: Accuracy (ACC.) and Area
under the Receiver Operating Characteristic curve (AUC) were used
for evaluating the performance of the UNet on heterogeneous types
of cell predictions.

The performance results of six types of cell predictions using
UNet are described in Table 2. The experiment results indicate that a

Table 2: Performance Results on Six Types of Cells

Types of Cells ACC AUC
Blood 0.9412 0.6696

Blood vessels 0.9421 0.5276
Fat 0.9062 0.9625

Glandular secretions 0.8109 0.5981
Necrosis or Debris 0.6813 0.7266

Plasma cells 0.8796 0.7208

Table 3: Performance Results on Tumor, TILs, and Stroma
with Different Sizes

Types Size 5 Eps. 10 Eps. 20 Eps. 50 Eps.
32x32 0.8935 0.9245 0.9418 0.9918

Tumor 64x64 0.9071 0.9084 0.9212 0.9753
128x128 0.8856 0.9156 0.9301 0.9604
32x32 0.7993 0.8215 0.8481 0.9279

Stroma 64x64 0.8184 0.8254 0.8499 0.9044
128x128 0.8111 0.8330 0.8508 0.8829
32x32 0.9081 0.9393 0.9419 0.9886

TILs 64x64 0.9218 0.9425 0.9238 0.9752
128x128 0.9363 0.9294 0.9373 0.9550

modified UNet shows a high accuracy (0.9062) on fat identification,
but it shows a low accuracy (0.6813) on necrosis identification.
The performance results of three types of cell predictions with



Figure 6: Results of the Comprehensive Experiments on Breast Cancer

different sizes using UNet are described in Table 3. The experiment
results indicate that the smaller input size (32x32) of the tumor
(0.9918), stroma (0.9279), and tumor-infiltrating lymphocyte (0.9886)
shows better performance than the larger input size (128x128).
The graphical view of the experiments is shown in Figure 6. The
hematoxylin and eosin images of blood, the human annotation, and
the probability map predicted by the modified UNet (top left). The
hematoxylin and eosin image of necrosis, the human annotation,
and the probability map (top middle). The hematoxylin and eosin
image of the tumor with 32x32 size, the human annotation, and
the probability map (top right inside). Glandular secretions, plasma
cells, fat, blood vessels, TILs, and stroma follow the order of the
above (middle and bottom). The probability heatmaps show that
the identification of fat cells is intuitively very similar to the human
annotation.

4 CONCLUSION
In this paper, we presented a new deep-learning method that com-
bined VGG16 with UNet adopting neural-style networks for data
augmentation to enhance the effectiveness of themodel in histopatho-
logical image segmentation. A neural style transfer was performed
to the H&E images along with various image augmentation tech-
niques and was used as the input sources for the VGG16 encoder
linked to the UNet decoder. The experiment results show that the
proposed method reaches 90.00% accuracy, 77.91% intersection over
union, and 80.58% F1 score on the MonuSeg dataset when train-
ing. Testing was done using the TNBC dataset and it shows that
the proposed method reaches 65.01% F1 score which significantly
outperforms the baseline model 50.42% but is less performed than
UNet++ EfficientNet-B1 67.85%. In this regard, we plan to continue
the experiment on another dataset, PathMNIST, as well as to use
different deep learning models to investigate the effectiveness of
the proposed method. Moreover, we presented various tissue-cell
identification at the pixel level using a modified UNet. The experi-
ment results show that the UNet is very effective on specific types
of cells such as blood vessels (94.21% accuracy) and fat (96.25%

area under the curve) but has a challenge on other types of cell
predictions. In addition to the experiments on the various cell types,
we performed additional experiments based on their sizes focus-
ing on three cancer-related cells such as tumor, stroma, and TILs.
The experiment results show that the smaller input size of the tu-
mor (99.18%), stroma (92.79%), and tumor-infiltrating lymphocyte
(98.86%) provides better performance than the larger input size.
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