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Abstract. Let ki (i = 1, 2, . . . , t) be natural numbers with k1 > k2 > · · · > kt > 0, k1 ≥ 2
and t < k1. Given real numbers αji (1 ≤ j ≤ t, 1 ≤ i ≤ s), we consider polynomials of the
shape

ϕi(x) = α1ix
k1 + α2ix

k2 + · · ·+ αtix
kt ,

and derive upper bounds for fractional parts of polynomials in the shape

ϕ1(x1) + ϕ2(x2) + · · ·+ ϕs(xs),

by applying novel mean value estimates related to Vinogradov’s mean value theorem. Our
results improve on earlier Theorems of Baker (2017).

1. Introduction

Since the early part of the last century, estimates of Weyl sums have played crucial roles in
many problems in additive number theory. The classical bounds for Weyl sums have stemmed
from Weyl’s method [16] and Vinogradov’s method [15]. In particular, these bounds have
been widely used in studying the distribution of polynomial modulo 1, initiated by a question
posed by Hardy and Littlewood [9] asking, when α ∈ R, k ∈ N and ǫ > 0, whether there
exists σ > 0 not depening on α such that

min
1≤x≤X

‖αxk‖ ≤ X−σ+ǫ,

where ‖ · ‖ denotes the distance to the nearest integer and X is sufficiently large in terms of
k and ǫ. By exploiting such bounds for Weyl sums, Heilbronn [11] and Danicic [8] obtained
σ = 21−k. Subsequently, the exponent 1/2 in the case k = 2 was improved to σ = 4/7 by
Zaharescu [24]. By exploiting estimates for smooth Weyl sums, Wooley [18] obtained the
permissible exponent σ = 1/(k log k+O(k log log k)). Furthermore, combined with the recent
progress on bounds for Weyl sums, stemming from the resolution of the main conjecture in
Vinogradov’s mean value theorem, Baker [4] shows that σ = 1/(k(k−1)) is permissible, and
also derives the explicit exponent σ(s, k) = s/(k(k − 1)) such that

min
0≤x≤X
x 6=0

‖α1x
k
1 + · · ·+ αsx

k
s‖ ≤ X−σ(s,k)+ǫ, (1.1)

for 1 ≤ s ≤ k(k − 1). Here and throughout, we write 0 ≤ x ≤ X and x 6= 0 to abbreviate
the conditions 0 ≤ x1, . . . , xs ≤ X and (x1, . . . , xs) 6= (0, . . . , 0).

In this paper, we seek to make the bound (1.1) sharper via mean values of exponential sum,
rather than exploiting bounds for Weyl sums. Furthermore, by applying new mean value
estimates for exponential sums related to Vinogradov’s mean value theorem, the method
described here shall deliver bounds for small fractional parts of polynomial in the generalized
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shape ϕ1(x1) + ϕ2(x2) + · · ·+ ϕs(xs), where

ϕi(x) = α1ix
k1 + α2ix

k2 + · · ·+ αtix
kt

in which s, t, k1, k2, . . . , kt are natural numbers with k1 > t ≥ 2 and k1 > k2 > · · · > kt.

Theorem 1.1. Let ǫ > 0 and s, k be natural numbers with k ≥ 6. Suppose that X is

sufficiently large in terms of s, k and ǫ. Consider αi ∈ R with 1 ≤ i ≤ s. Then, whenever

s ≥ k(k+1)
2

, one has

min
0≤x≤X
x 6=0

‖α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s‖ ≤ X−1+ǫ. (1.2)

For comparison, the work of Baker [4, Theorem 3] shows (1.1) with σ(s, k) = s
k(k−1)

for

1 ≤ s ≤ k(k− 1). His work also gives results when s > k(k− 1), too complicated to state in
full here. It is sufficient to report that the exponent s/(k(k− 1)) is replaced by an exponent
σ in Baker [4, Theorem 3], with σ → 2 as s→ ∞. Theorem 1.1 improves on this result when
k(k+1)

2
≤ s < k(k − 1).

We note that with additional effort, for s ≥ k + 2 one may get (1.1) with

σ(s, k) = min

{
s

k(k + 1)− s
, 1

}
. (1.3)

Notice that this improves on a result of Baker [4] described above when 2k < s < k(k − 1).
We record this result in section 4 (see Theorem 4.1 below). We also note that experts may
expect that the exponent (1.3) can be improved for large k by using estimates for smooth
Weyl sums. However, to obtain results for s > 1 one encounters a number of technical
complications that threaten to obstruct useful conclusions. Consequently, we focus in this
paper on conclusions made accessible by our new mean value estimates for exponential sums.

As we explained above, the method described here delivers bounds for small fractional
parts of more general polynomials. Thus, in order to describe these polynomials and the
following theorems, we require some notation. Consider a fixed t-tuple k = (k1, . . . , kt) of
positive integers satisfying

k = k1 > k2 > · · · > kt ≥ 1.

We denote {1, 2, . . . , k1} \ {k1, . . . , kt} by {i1, . . . , ik−t} with i1 > · · · > ik−t. Furthermore,
we write σ = σ(k) for

σ = max
1≤l≤k−t

l

(k − il)(k − il + 1)
. (1.4)

Theorem 1.2. Let ǫ > 0. Suppose that s, t, k1, . . . , kt are natural numbers satisfying k1 ≥ 6,
k1 > t ≥ 2 and k1 > k2 > · · · > kt. Suppose that X is sufficiently large in terms of s, k1 and

ǫ. Consider αji ∈ R with 1 ≤ i ≤ s and 1 ≤ j ≤ t. Define ϕi(x) = α1ix
k1 + · · ·+ αtix

kt with

1 ≤ i ≤ s. Then, whenever s > k21 + k1 + 2⌈σ(1− k1)⌉, one has

min
0≤x≤X
x 6=0

‖ϕ1(x1) + ϕ2(x2) + · · ·+ ϕs(xs)‖ ≤ X−1+ǫ. (1.5)
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The reader will observe that the condition on s in the conclusion of Theorem 1.2 is almost
twice as restrictive as that in Theorem 1.1. The explanation for this reduction in strength
lies with the generality of the polynomials ϕi, and correspondingly weaker estimate available
for associated exponential sums.

To describe the following theorems regarding new mean values of exponential sums, we
introduce some notation. Define the exponential sum F (αk1 ,α

t−1) = Fk(αk1 , . . . , αkt ;X) by

F (αk1 ,α
t−1) =

∑

1≤x≤X

e(αk1x
k1 + αk2x

k2 + · · ·+ αktx
kt).

Denote dαktdαkt−1 · · · dαk2 by dαt−1, and write
∮

|F (αk1 ,α
t−1)|2sdαt−1 =

∫

[0,1)t−1

|F (αk1 ,α
t−1)|2sdαktdαkt−1 · · · dαk2 .

Furthermore, we write

f(αk1 ,α) =
∑

1≤x≤X

e(αk1x
k1 + αk1−1x

k1−1 + · · ·+ α1x)

and ∮
|f(αk1 ,α)|2sdα =

∫

[0,1)k1−1

|f(αk1 ,α)|2sdα.

Theorem 1.3. Let s, t and k be natural numbers with t < k. Let l be an integer with

1 ≤ l ≤ k − t. Consider a rational approximation to αk satisfying |αk − a/q| ≤ 1/q2 with

(q, a) = 1. Then, for ǫ > 0, one has
∮ ∣∣F (αk,α

t−1)
∣∣2s dαt−1 ≪ RlX

i1+···+ik−t+ǫ

∮
|f(αk,α)|2s dα,

where

Rl =
l∏

j=1

(
X−ij +X−k+ij + q−1 + qX−k

) 1
(k−il)(k−il+1) .

As a consequence of Theorem 1.3, one finds that the mean value over all coefficients
but the leading coefficient has an upper bound in terms of the denominator of the rational
approximation to αk. From this, we obtain mean value estimates by integrating over αk

lying over major arcs and minor arcs, respectively.
In order to describe these estimates, which we record in Theorem 1.4, and for the argument

used throughout this paper, we must introduce sets of major arcs and minor arcs. Define
the major arcs Ml with l > 0 by

Ml =
⋃

0≤a≤q≤X
(q,a)=1

Ml(q, a), (1.6)

where Ml(q, a) = {α ∈ [0, 1)| |qα − a| ≤ (lk)−1X−k+1}. Define the minor arcs to be
ml = [0, 1) \M. We abbreviate M2 simply to M. Throughout this paper, we use M and m

without further comments, unless specified otherwise. Furthermore, we recall the definition
(1.4) of the exponent σ, and write D for

D = k1 + k2 + · · ·+ kt. (1.7)
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Theorem 1.4. One has the following:

(i) When s is a natural number with 2s ≥ k2 + (1− 2σ)k + 2σ, one has
∫

M

∮ ∣∣F (αk,α
t−1)

∣∣2s dαt−1dαk ≪ X2s−D+ǫ. (1.8)

(ii) When s is a natural number with 2s ≥ k(k + 1), one has
∫

m

∮ ∣∣F (αk,α
t−1)

∣∣2s dαt−1dαk ≪ X2s−D−σ+ǫ. (1.9)

Wooley [19, Theorem 1.3] provided the mean value estimates of exponential sums over
minor arcs, which is (1.9) with F (αk,α) =

∑
1≤x≤X e(αkx

k). This mean value estimate
delivered improvements in the number of variables required to establish the asymptotic
formula in Waring’s problem, the density of integral solutions of diagonal Diophantine equa-
tions and slim exceptional sets for the asymptotic formula in Waring’s problem. Wooley
[20, Theorem 1.1] established an essentially optimal estimate for ninth moment of expo-
nential sum having argument αx3 + βx (see also [23, Theorem 1.3]), by introducing (1.9)
with F (α3,α) =

∑
1≤x≤X e(α3x

3 + α1x). Furthermore, Wooley [22, Theorem 14.4] recorded
bounds for (1.8) and (1.9) with k2 < k1 − 1. In Theorem 1.4, we provide mean values of
F (αk,α

t−1) =
∑

1≤x≤X e(αkx
k1 +αk2x

k2 + · · ·+αktx
kt) with no restrictions on the exponents

k1, . . . , kt. Combining with Theorem 1.4, the method described in the proof of Theorem 1.1
shall deliver the proof of Theorem 1.2.

We also note that by applying Hölder’s inequality and the trivial bound |F (αk,α
t−1)| ≤ X,

it follows from Theorem 1.4 (ii) that there exists s0 with s0 < k(k+1)/2 such that whenever
s ≥ s0 we have ∫

m

∮ ∣∣F (αk,α
t−1)

∣∣2s dαt−1dαk ≪ X2s−D+ǫ.

Therefore, we find that there exists s0 with s0 <
k(k+1)

2
such that whenever s ≥ s0 one has

∫ ∮ ∣∣F (αk,α
t−1)

∣∣2s dαt−1dαk

=

∫

M

∮ ∣∣F (αk,α
t−1)

∣∣2s dαt−1dαk +

∫

m

∮ ∣∣F (αk,α
t−1)

∣∣2s dαt−1dαk ≪ X2s−D+ǫ.

This range of s is superior to those trivially obtained by Vinogradov’s mean value theorem.

The consequences of Theorem 1.2 and Theorem 1.4 are dependent on σ, which is the
quantity determined by k = (k1, . . . , kt). Thus, we shall see how this quantity σ varies
according to the number of exponents and its arrangement.

Recall the definition (1.4) of the exponent σ and that {i1, . . . , ik−t} = {1, 2 . . . , k1} \
{kt, . . . , k1} with i1 > · · · > ik−t. Then, we observe following:

(1) Let k = (k, k − 1, . . . , k − (t− 1)) with t < k/2. Then, by taking l = t, one obtains

σ = max
1≤l≤k−t

l

(k − il)(k − il + 1)
≥

t

(2t− 1)(2t)
= O(t−1).
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(2) Let t = m1 +m2. Let

k = (k, k − 1, . . . , k − (m1 − 1),m2, . . . , 1)

with m1 +m2 < k/2. Then, by taking l = m1, one has

σ = max
1≤l≤k−t

l

(k − il)(k − il + 1)
≥

m1

(2m1 − 1)(2m1)
= O(m−1

1 ).

(3) Let k = (k, k2, . . . , kt) with k1 = k, k2 = k − 1 and k3 6= k − 2. Then, by taking l = 1,
one has σ = 1/2.

Thus, if we assume that k = (k1, . . . , kt) with t < k/2, then one infers from the observations
above that σ is at least O(t−1).

In section 2, we provide the proof of Theorem 1.3. The method of the proof of Theorem
1.3 mainly follows the argument in [19] together with the argument used in [5]. In section
3, we provide the proof of Theorem 1.4, by making use of Theorem 1.3. In section 4, we
introduce applications of mean values of exponential sums to fractional parts of polynomials
and provide the proof of Theorem 1.1. Furthermore, we record in Theorem 4.1 a more
quantitative result than Theorem 1.1 and provide its proof at the end of section 4. In
section 5, we give the proof of Theorem 1.2 by exploiting Theorem 1.4 and the method
introduced in section 4. Throughout this paper, we use ≫ and ≪ to denote Vinogradov’s
well-known notation, and write e(z) for e2πiz. We adopt the convention that whenever ǫ
appears in a statement, then the statement holds for each ǫ > 0, with implicit constants
depending on ǫ.
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2. Proof of Theorem 1.3

In this section, we provide three lemmas and combine all to prove Theorem 1.3.

2.1. Auxiliary lemmas. In order to describe Lemma 2.1, we recall that

F (αk1 ,α
t−1) =

∑

1≤x≤X

e(αk1x
k1 + αk2x

k2 + · · ·+ αktx
kt)

and
f(αk1 ,α) =

∑

1≤x≤X

e(αk1x
k1 + αk1−1x

k1−1 + · · ·+ α1x).

Furthermore, recall {i1, . . . , ik−t} = {1, 2, . . . , k1} \ {k1, . . . , kt}. In advance of the statement
of the following lemma, we define I(αk) := I(αk; l) with 1 ≤ l ≤ k − t by

I(αk) =
∑

|gi1 |≤sXi1

· · ·
∑

|gil |≤sXil

∮
|f(αk,α)|2se(−α(l) · g)dα,
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where dα=dαk−1 · · · dα1 and α(l) · g = αi1gi1 + · · ·+ αilgil .

Lemma 2.1. For any l with 1 ≤ l ≤ k − t, we have
∮

|F (αk,α
t−1)|2sdαt−1 ≪ X il+1+il+2+···+ik−tI(αk).

Proof. Denote by F (αk,α
t−1,βk−t−l) = F (αk1 , . . . , αkt , βl+1, . . . , βk−t;X) the exponential

sum ∑

1≤x≤X

e(αk1x
k1 + αk2x

k2 + · · ·+ αktx
kt + βl+1x

il+1 + · · ·+ βk−tx
ik−t).

Furthermore, we denote

σs,j(x) =
s∑

i=1

(xji − xjs+i) (1 ≤ j ≤ k)

and recall k = k1. We emphasize that in order to suppress multiple layer of suffices, it is
convenient to write k in place of k1 in many places.
As a preliminary manoeuvre, we represent the mean value involving F (αk,α

t−1) in terms of
an analogous one involving F (αk,α

t−1,βk−t−l). Observe that when m = (ml+1, . . . ,mk−t) ∈
Z
k−t−l, if we define

G(αk,m) :=

∮
|F (αk,α

t−1,βk−t−l)|2se(−βl+1ml+1 − · · · − βk−tmk−t)dβ
k−t−ldαt−1,

then one has

G(αk,m) =
∑

1≤x≤X

δ(x,m)

∮
e(αk1σs,k1(x) + · · ·+ αktσs,kt(x))dα

t−1, (2.1)

where

δ(x,m) =
k−t∏

j=l+1

(∫ 1

0

e(βj(σs,ij(x)−mj))dβij

)
.

By orthogonality, one has

∫ 1

0

e(βj(σs,ij(x)−mj))dβj =

{
1, when σs,ij(x) = mj,
0, when σs,ij(x) 6= mj.

When 1 ≤ x ≤ X, moreover, one has |σs,ij(x)| ≤ sX ij (l + 1 ≤ j ≤ k − t), and so

∑

|ml+1|≤sXil+1

· · ·
∑

|mk−t|≤sXik−t

δ(x,m) = 1.

Consequently, on noting that
∑

1≤x≤X

e(αkσs,k1(x) + αk2σs,k1(x) + · · ·+ αktσs,kt(x)) = |F (αk,α
t−1)|2s,
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we deduce from (2.1) that
∑

|ml+1|≤sXil+1

∑

|mk−t|≤sXik−t

G(αk,m)

=

∮ ∑

1≤x≤X

(∑

m

δ(x,m)

)
e(αkσs,k1(x) + αk2σs,k1(x) + · · ·+ αktσs,kt(x))dα

t−1

=

∮
|F (αk,α

t−1)|2sdαt−1.

(2.2)

Therefore, it follows from (2.1) and (2.2) with the triangle inequality that∮
|F (αk,α

t−1)|2sdαt−1

≤
∑

|ml+1|≤sXil+1

· · ·
∑

|mk−t|≤sXik−t

∮
|F (α1,α

t−1,βk−t−l)|2sdβk−t−ldαt−1

≪ X il+1+il+2+···+ik−t

∮
|F (α1,α

t−1,βk−t−l)|2sdβk−t−ldαt−1.

(2.3)

Next, an argument similar to that used above allows us to show that∮
|F (αk,α

t−1,βk−t−l)|2sdβk−t−ldαt−1

=
∑

|gi1 |≤sXi1

· · ·
∑

|gil |≤sXil

∮
|f(αk,α)|2se(−α(l) · g)dα.

(2.4)

Thus, on substituting (2.4) into (2.3), we complete the proof of Lemma 2.1. �

In order to describe Lemma 2.2, we require a preliminary step. Observe that by shifting
the variable of summation, for each integer y one has

f(αk,α) =
∑

1+y≤x≤X+y

e(ψ(x− y;αk,α)), (2.5)

where
ψ(z;αk,α) = α1z + · · ·+ αkz

k.

But as a consequence of the Binomial Theorem, if we adopt the convention that α0 = 0,
then we may write ψ(x− y;αk,α) in the shape

ψ(x− y;αk,α) =
k∑

i=0

βix
i,

where

βi =
k∑

j=i

(
j

i

)
(−y)j−iαj (0 ≤ i ≤ k).

Write
K(γ) =

∑

1≤z≤X

e(−γz). (2.6)
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Then we deduce from (2.5) that when 1 ≤ y ≤ X, one has

f(αk,α) =

∫ 1

0

fy(αk,α; γ)K(γ)dγ, (2.7)

where we have written

fy(αk,α; γ) =
∑

1≤x≤2X

e(ψ(x− y;αk,α) + γ(x− y)).

Define

Fy(αk,α;γ) =
s∏

i=1

fy(αk,α; γi)fy(−αk,−α;−γs+i),

and

ωy,γ = e(−(γ1 + · · ·+ γs − γs+1 − · · · − γ2s)y) = e(−Γy).

To facilitate the statement of Lemma 2.2, it is convenient to introduce some notation.
Recall {i1, . . . , ik−t} = {1, 2, . . . , k1}\{k1, . . . , kt}. Furthermore, we adopt the notation αi = 0
for i /∈ {1, . . . , k}. Then, we define the exponential sum Ξ(αk,α) = Ξ(αk,α; l;γ) with
1 ≤ l ≤ k − t by

Ξ(αk,α) = X−1
∑

1≤y≤X

∑

|hi1
|≤sXi1

· · ·
∑

|hil
|≤sXil

ωy,γe

(
−

k−il∑

m=0

δmy
m

)
,

where

δm =
l∑

n=1

αm+in

(
m+ in
in

)
hin . (2.8)

Therefore, on recalling that the definition of I(αk) := I(αk; l) in the statement of Lemma
2.1, we have the following lemma.

Lemma 2.2. For any l with 1 ≤ l ≤ k − t, we have

I(αk) ≪

∮ ∮
F0(αk,α;γ)Ξ(αk,α)K̃(γ)dαdγ,

where K̃(γ) =
s∏

i=1

K(γi)K(−γs+i).

Proof. On substituting (2.7) into I(αk), we deduce that when 1 ≤ y ≤ X, one has

I(αk) =
∑

|gi1 |≤sXi1

· · ·
∑

|gil |≤sXil

∮
Ig(γ, y)K̃(γ)dγ, (2.9)

where

Ig(γ, y) =

∮
Fy(αk,α;γ)e(−α(l) · g)dα. (2.10)

By orthogonality, one finds that
∮

Fy(αk,α;γ)e(−α(l) · g)dα =
∑

1≤x≤2X

∆(αk,γ, g, y), (2.11)
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where ∆(αk,γ, g, y) is equal to

e

( s∑

i=1

(αk((xi − y)k − (xs+i − y)k) + γi(xi − y)− γs+i(xs+i − y))

)
,

when
s∑

i=1

((xi − y)j − (xs+i − y)j) = hj with 1 ≤ j ≤ k − 1, (2.12)

in which hj = gj when j ∈ {i1, . . . , il}, and hj = 0 when j /∈ {i1, . . . , il}. Otherwise, one
finds that ∆(αk,γ, g, y) = 0.

By applying the Binomial Theorem within (2.12), we have

s∑

i=1

(xji − xjs+i) =

j∑

l=1

(
j

l

)
hly

j−l (1 ≤ j ≤ k − 1), (2.13)

and
s∑

i=1

(xki − xks+i) =
k−1∑

l=1

(
k

l

)
hly

k−l +
s∑

i=1

((xi − y)k − (xs+i − y)k). (2.14)

By orthogonality, one infers from (2.11),(2.13) and (2.14) that by putting hk = 0

∮
Fy(αk,α;γ)e(−α(l) · g)dα = ωy,γ

∮
F0(αk,α;γ)e

(
−

k∑

j=1

αj

( j∑

l=1

(
j

l

)
hly

j−l

))
dα,

where ωy,γ = e(−Γy) in which Γ = γ1 + · · ·+ γs − γs+1 − · · · − γ2s. We now collect together
terms corresponding to each power of y. On recalling hn = 0 when n /∈ {i1, . . . , il} and
since by j ≤ k, the highest degree of y is k − il. Furthermore, on recalling that αj = 0 for
j /∈ {1, . . . , k} and the definition (2.8) of δm, we find that

k∑

j=1

αj

( j∑

l=1

(
j

l

)
yj−lhl

)
=

k−il∑

m=0

( l∑

n=1

αm+in

(
m+ in
in

)
hin

)
ym =

k−il∑

m=0

δmy
m. (2.15)

Since αm+in = 0 for m + in > k, it is worth noting that no contribution arises from n with
in > k −m, in δm.

From here, we are led from (2.10) to the relation
∑

|gi1 |≤sXi1

· · ·
∑

|gil |≤sXil

Ig(γ, y)

=

∮
F0(αk,α;γ)

∑

|hi1
|≤sXi1

· · ·
∑

|hil
|≤sXil

ωy,γe

(
−

k−il∑

m=0

δmy
m

)
dα.

Since we took y in [1, X], we may conclude thus far

X−1
∑

1≤y≤X

∑

|gi1 |≤sXi1

· · ·
∑

|gil |≤sXil

Ig(γ, y) =

∮
F0(αk,α;γ)Ξ(αk,α)dα. (2.16)
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Therefore, from (2.9) and (2.16), we conclude thus far that

I(αk) ≪ X−1
∑

1≤y≤X

I(αk)

= X−1
∑

1≤y≤X

∑

|gi1 |≤sXi1

· · ·
∑

|gil |≤sXil

∮
Ig(γ, y)K̃(γ)dγ

=

∮ ∮
F0(αk,α;γ)Ξ(αk,α)K̃(γ)dαdγ.

�

We recall that

Ξ(αk,α) = X−1
∑

1≤y≤X

∑

|hi1
|≤sXi1

· · ·
∑

|hil
|≤sXil

ωy,γe

(
−

k−il∑

m=0

δmy
m

)
,

where

δm =
l∑

n=1

αm+in

(
m+ in
in

)
hin .

We provide the upper bound for Ξ(αk,α) in terms of the denominator stemming from rational
approximation to αk, by obtaining savings from all summations over hi1 , . . . , hil .

Lemma 2.3. Suppose that |αk−a/q| ≤ q−2 with (q, a) = 1. Then, for any l with 1 ≤ l ≤ k−t,
we have

Ξ(αk,α) ≪ X i1+···+il+ǫ

(
l∏

j=1

(
q−1 +X−ij +X−k+ij + qX−k

)
)1/((k−il)(k−il+1))

.

In the proof of Lemma 2.3, we bound Ξ(αk,α) by mean value type estimates. Furthermore,
we use Vinogradov’s mean value theorem to deal with these mean value type estimates.
The argument described here is applicable to all possible arrangements of exponents k =
(k1, . . . , kt) with t < k. Especially, this argument is useful for the case k1 − 1 = k2 and
t < k1/2. Even for the case that k1 − 1 > k2, experts will recognize that by taking l = 1 the
sum Ξ(αk,α) becomes the exponential sum with phase linear in y, and in this case a variant
of our arguments coincides with the proof of [19, Theorem 1.3] and [22, Theorem 14.4].

Proof of Lemma 2.3. On recalling that ωy,γ = e(−Γy), we may rewrite summands in Ξ(αk,α)

as e(−
∑k−il

m=0 δ
′
my

m), where δ′n = δn (n 6= 1) and δ′1 = δ1 + Γ.
Define

S∗(δ;X) = sup
I⊆[1,X]

∣∣∣∣∣
∑

y∈I

e

(
−

∑

1≤m≤k−il

δ′my
m

)∣∣∣∣∣
where I runs over all intervals in [1, X]. In particular, we write S(δ;X) for the sum with
I = [1, X]. Here and later, we put 2p = (k − il)(k − il + 1). Define

Υp(δ;X) =
∑

|hi1
|≤sXi1

· · ·
∑

|hil
|≤sXil

|S∗(δ;X)|2p . (2.17)
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Then, by applying Hölder’s inequality to Ξ(αk,α), we have

Ξ(αk,α) ≤ X−1(Υp(δ;X))1/(2p)X(i1+···+il)(1−1/(2p)). (2.18)

We first analyze Υp(δ;X). Define Ω(X) to be the box A1 × A2 × · · · × Ak−il , where

An := An(δ) = {θn ∈ [0, 1) : ‖δ′n − θn‖ ≤ 1/(4kXn)}.

Then, by [5, Lemma 1], one infers that

S∗(δ;X)2p ≪ (vol(Ω(X)))−1

∫

A1

∫

A2

· · ·

∫

Ak−il

S∗(θ;X)2pdθ. (2.19)

Recall the definition δn and the remark following (2.15). Then, we see that δk−ij is a linear
combination of hij , . . . , hil . We define the quantity Hl(θ) to be the number of solutions
(hi1 , hi2 , . . . , hil) with |hij | ≤ sX ij of the system

‖δ′n − θn‖ ≤ 1/(4kXn) (n = k − i1, k − i2, . . . , k − il),

and put

Hl = sup
θ∈[0,1)l

Hl(θ).

Therefore, on substituting (2.19) into (2.17), and expanding Aj to [0, 1) for

j /∈ {k − i1, k − i2 . . . , k − il},

we obtain the bound

Υp(δ;X)

≪ (vol(Ω(X)))−1

∫ 1

0

· · ·

∫ 1

0

∑

|hi1
|≤sXi1

· · ·
∑

|hil
|≤sXil

∫

Ak−i1

∫

Ak−i2

· · ·

∫

Ak−il

S∗(θ;X)2pdθ.

Since (vol(Ω(X)))−1 = X1+···+(k−il) and by the definition of Hl, we infer that

Υp(δ;X) ≪X1+···+(k−il)Hl

∫ 1

0

· · ·

∫ 1

0

S∗(θ;X)2pdθ, (2.20)

To bound Hl, we first analyse Hl(θ). Recall again the definition δm and the remark
following (2.15). Then, we have

δk−ij = αk

(
k

ij

)
hij +

l∑

n=j+1

αk−ij+in

(
k − ij + in

in

)
hin ,

for all j = 1, . . . , l. Recall that δ′k−ij
= δk−ij + Γ for k − ij = 1, and δ′k−ij

= δk−ij , otherwise.

Meanwhile, by [5, Lemma 3], when m ∈ N, α, β ∈ R and |α − a/q| ≤ q−2, the number of
solutions of

‖mαx+ β‖ ≤ 1/Y,

with |x| ≤ X, is at most (1+4q/Y )(1+4mX/q). Put α = αk with |αk−a/q| ≤ q−2, m =
(
k
ij

)
,

X = sX ij , Y = 4kXk−ij . Then, for fixed hij+1
, . . . , hil , the number of hij of

‖δ′k−ij
− θk−ij‖ ≤ 1/(4kXk−ij),
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with |hij | ≤ sX ij , is at most ≪ X ij(q−1 + X−ij + X−(k−ij) + qX−k). If we proceed this in
descending order j = l, l − 1, . . . , 1, we infer that

Hl(θ) ≪ X i1+i2+···+il

l∏

j=1

(
q−1 +X−ij +X−k+ij + qX−k

)
. (2.21)

By taking supremum over θ, we may replace Hl(θ) with Hl in (2.21). For concision, we write

Rl =
l∏

j=1

(
q−1 +X−ij +X−k+ij + qX−k

)
(2.22)

Therefore, from (2.20) and (2.21), one has by applying the Carleson-Hunt theorem [12]

Υp(δ;X) ≪ X1+···+(k−il)Hl

∮
S∗(θ;X)2pdθ

≪ X i1+i2+···+ilRlX
1+···+(k−il)

∮
S(θ;X)2pdθ.

Hence, by Vinogradov’s mean value theorem, the last expression is O(X(2p+ǫ)X i1+i2+···+ilRl).
Consequently, by (2.18), we see that

Ξ(αk,α) ≪ X i1+i2+···+il+ǫR
1/(2p)
l . (2.23)

On recalling the definition Rl, we complete the proof of Lemma 2.3.
�

2.2. Proof of Theorem 1.3.

Proof. We combine all lemmas in section 2.1 to prove Theorem 1.3. On recalling (2.22) and
2p = (k − il)(k − il + 1), by Lemma 2.2 and Lemma 2.3, we have

I(αk) ≪ X i1+···+il+ǫR
1/(2p)
l

∮ ∮
F0(αk,α;γ)K̃(γ)dαdγ. (2.24)

Meanwhile, by applying the Hölder’s inequality and a change of variable, one sees that∮
F0(αk,α;γ)dα ≤ sup

γ∈[0,1)

∮
|f0(αk,α; γ)|2sdα =

∮
|f(αk,α)|2sdα. (2.25)

Furthermore, on recalling (2.6), we find that
∫ 1

0

|K(γ)|dγ ≤

∫ 1

0

min{X, ‖γ‖−1}dγ ≪ logX,

and hence ∮
|K̃(γ)|dγ ≪ (logX)2s. (2.26)

On substituting (2.25) and (2.26) into the right hand side in (2.24), we find that

I(αk) ≪ X i1+···+il+ǫR
1/(2p)
l

∮
|f(αk,α)|2sdα.

Therefore, we conclude from Lemma 2.1 that∮
|F (αk1 ,α

t−1)|2sdαt−1 ≪ R
1/(2p)
l X i1+i2+···+ik−t+ǫ

∮
|f(αk,α)|2s dα.
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�

3. Proof of Theorem 1.4

In this section, we provide the proof of Theorem 1.4. In the previous section, we obtained
the mean value over all coefficients but the leading coefficient. Thus, Theorem 1.4 follows
by integrating over αk lying on each of major arcs and minor arcs. To be specific, minor
arcs estimates in Theorem 1.4 (ii) follow immediately from Theorem 1.3 and Diophantine
approximation of the leading coefficient. For major arc estimates in Theorem 1.4 (i), we use
a consequence of [21, Theorem 14.4] with applications of Hölder’s inequality.

Proof of Theorem 1.4. It follows from (2.23) with 2p = (k − il)(k − il + 1) that whenever
|αk − a/q| ≤ q−2, one has

Ξ(αk,α) ≪ X i1+i2+···+il+ǫ

(
l∏

j=1

(
q−1 +X−ij +X−k+ij + qX−k

)
)1/(2p)

≪ X i1+i2+···+il+ǫ
(
q−1 +X−1 + qX−k

)σ
,

(3.1)

where

σ =
l

(k − il)(k − il + 1)
.

We first provide estimates for the major arcs. Assume that αk ∈ M. Note that transference
principle [23, Theorem 14.1] tells that whenever we have a function Ψ : R → C with the
upper bound

Ψ(α) ≪ X(q−1 + Y −1 + qZ−1)θ,

where θ,X, Y, Z are positive real numbers, and a ∈ Z, q ∈ N satisfying (a, q) = 1 and
|α− a/q| ≤ q−2, then we deduce that

Ψ(α) ≪ X(λ−1 + Y −1 + λZ−1)θ,

with λ = r + Z|rα − b|, and b ∈ Z, r ∈ N satisfying (b, r) = 1. Therefore, one infers from
(3.1) that whenever b ∈ Z and r ∈ N satisfy (b, r) = 1 and |αk − b/r| ≤ r−2, then it follows
that

Ξ(αk,α) ≪ X i1+i2+···+il+ǫ(λ−1 +X−1 + λX−k)σ,

where λ = r + Xk|rαk − b|. Moreover, when αk ∈ M(r, b) ⊆ M, one has r ≤ X and
Xk|rαk − b| ≤ X, so that λ ≤ 2X. Therefore, we see from it that one has

Ξ(αk,α) ≪ X i1+i2+···+il+ǫΨ(αk),

where Ψ(αk) is the function taking the value (q + Xk|qαk − a|)−σ, when one has αk ∈
M(q, a) ⊆ M, otherwise Ψ(αk) = 0. Hence, one has

∫

M

∮
|f(αk,α)|2sΞ(αk,α)dαdαk ≪ X i1+···+il+ǫ

∫

M

∮
|f(αk,α)|2sΨ(αk)dαdαk. (3.2)

Let us first assume that 2s ≥ k(k + 1). Then, since Ψ(αk) ≤ 1, one finds that by Vino-
gradov’s mean value theorem

∫

M

∮
|f(αk,α)|2sΨ(αk)dαdαk ≪

∫ 1

0

∮
|f(αk,α)|2sdαdαk ≪ X2s−k(k+1)/2+ǫ. (3.3)
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Next, let us assume that k2 + (1 − 2σ)k + 2σ ≤ 2s < k(k + 1). By applying Hölder’s
inequality, one obtains that

∫

M

∮
|f(αk,α)|2sΨ(αk)dαdαk

≪

(∫

M

∮
|f(αk,α)|2s0Ψ(αk)

1
σ dαdαk

)σ (∫

M

∮
|f(αk,α)|k(k+1)dαdαk

)1−σ

,

(3.4)

with s0 = (2s − k(k + 1)(1 − σ))/(2σ). Notice from the range of 2s that k(k − 1) ≤ 2s0 ≤
k(k + 1).

As a consequence of [6, Lemma 2], one finds that when 2s0 is an even number
∫

M

∮
|f(αk,α)|2s0Ψ(αk)

1
σ dαdαk ≪ Xǫ−k(XI1 + I2), (3.5)

where

I1 =

∫ 1

0

∮
|f(αk,α)|2s0dαdαk, and I2 =

∮
|f(0,α)|2s0dα.

By Vinogradov’s mean value theorem, whenever k(k − 1) ≤ 2s0 ≤ k(k + 1), we have I1 ≪
Xs0+ǫ. On the other hands, when 2s0 ≥ k(k − 1), we have I2 ≪ X2s0−k(k−1)/2+ǫ. Thus, for
all even numbers 2s0 with k(k − 1) ≤ 2s0 ≤ k(k + 1), we find from (3.5) that

∫

M

∮
|f(αk,α)|2s0Ψ(αk)

1
σ dαdαk ≪ Xs0−k+1+ǫ +X2s0−k(k+1)/2+ǫ. (3.6)

Notice here that the situation that two terms of the bound in (3.6) are same occurs when
2s0 = k2 − k + 2, which is an even number. Thus, by interpolation between even numbers
2s0, one finds that (3.6) also holds for any real numbers 2s0 between k(k − 1) and k(k + 1).
On substituting (3.6) into (3.4) and applying Vinogradov’s mean value theorem, one has

∫

M

∮
|f(αk,α)|2sΨ(αk)dαdαk ≪

(
Xs0−k+1+ǫ +X2s0−k(k+1)/2+ǫ

)σ
(Xk(k+1)/2)1−σ.

Since we have 2s0σ + k(k + 1)(1− σ) = 2s, this bound is seen to be

Xs−σ(k−1)+ǫ +X2s−k(k+1)/2+ǫ.

Furthermore, since 2s ≥ k2+(1−2σ)k+2σ, this bound can be replaced by O(X2s−k(k+1)/2+ǫ).
Thus, one concludes that whenever k2 + (1− 2σ)k + 2σ ≤ 2s < k(k + 1)

∫

M

∮
|f(αk,α)|2sΨ(αk)dαdαk ≪ X2s−k(k+1)/2+ǫ. (3.7)

Thus, by (3.2), (3.3) and (3.7), whenever 2s ≥ k2 + (1− 2σ)k + 2σ we find that
∫

M

∮
|f(αk,α)|2sΞ(αk,α)dαdαk ≪ X i1+···+il+ǫX2s−k(k+1)/2+ǫ.

Then, on recalling the definition of F0(αk,α;γ), it follows from Hölder’s inequality and a
change of variable that

∫

M

∮
F0(αk,α;γ)Ξ(αk,α)dαdαk ≪ X i1+···+il+ǫX2s−k(k+1)/2+ǫ.
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Consequently, combining this with Lemma 2.1 and Lemma 2.2, we deduce that
∫

M

∮ ∣∣F (αk1 ,α
t−1)

∣∣2s dαt−1dαk1

≪ X il+1+···+ik−t

∫

M

I(αk)dαk

≪ X il+1+···+ik−t

∫

M

∮ ∮
F0(αk,α;γ)Ξ(αk,α)K̃(γ)dαdγdαk

≪ X2s−D+ǫ,

where we have used (2.26).
Next, we provide estimates for the minor arcs. When αk ∈ m, there exists q and a with

(q, a) = 1 such that |αk − a/q| ≤ (2k)−1q−1X−k+1 with X < q < Xk−1. Thus, on recalling
(3.1), when αk ∈ m, we deduce that Ξ(αk,α) ≪ X i1+···+ik−t−σ+ǫ. Therefore, by applying
Theorem 1.3 together with Vinogradov’s mean value theorem, whenever 2s ≥ k1(k1+1) one
has ∫

m

∮ ∣∣F (αk1 ,α
t−1)

∣∣2s dαdαk1 ≪ X i1+···+ik−t−σ+ǫ

∫ 1

0

∮
|f(αk,α)|2s dαdαk1

≪ X2s−D−σ+ǫ.

Therefore, by taking l that maximizes the exponent σ, the conclusion of Theorem 1.4 follows.
�

4. Proof of Theorem 1.1

In this section, we provide Theorem 4.1, which is more quantitative than Theorem 1.1. It
is worth noting that Theorem 1.1 immediately follows from Theorem 4.1.
The main ingredients of the proof in this section are the arguments in [20, Theorem

1.3]. Wooley [20, Theorem 1.3] provided upper bounds for exponential sums by bounding
the pointwise estimates by mean value estimates over major and minor arcs. Meanwhile,
a classical way widely used in studying fractional parts of polynomial is closely related to
the upper bounds of associated exponential sum. Thus, we exploit the argument in [20] to
obtain upper bounds of associated exponential sums in terms of mean values of exponential
sums. Thus, upper bounds for these mean values of exponential sums deliver the conclusion
of Theorem 4.1.

Theorem 4.1. Let ǫ > 0 and s, k be natural numbers with k ≥ 6. Suppose that X is

sufficiently large in terms of s, k and ǫ. Consider αi ∈ R with 1 ≤ i ≤ s. Then, for s ≥ k+2
one has

min
0≤x≤X
x 6=0

‖α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s‖ ≤ X−σ(s,k)+ǫ,

where

σ(s, k) = min

{
s

k(k + 1)− s
, 1

}
.
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Proof of Theorem 1.1. Note that whenever s ≥ k(k + 1)/2 the exponent σ(s, k) in Theorem
4.1 becomes 1. Therefore, Theorem 1.1 immediately follows from Theorem 4.1. �

4.1. Outline of the proof of Theorem 4.1. We provide outline of the proof of Theorem
4.1. We begin with stating a classical lemma from the theory of fractional parts of polyno-
mials [2, Theorem 2.2], which relates fractional parts of a sequence of real numbers to the
associated exponential sum.

Lemma 4.2. Let x1, . . . , xN be real numbers. Suppose that ‖xn‖ ≥ H−1 for every n with

1 ≤ n ≤ N . Then,

∑

1≤h≤H

∣∣
N∑

n=1

e(hxn)
∣∣≫ N.

Let H be a positive number with H ≤ X1−ν for sufficiently small ν > 0. Suppose that

min
0≤x≤X
x 6=0

‖α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s‖ > H−1. (4.1)

Then, by Lemma 4.2, we have
∑

1≤h≤H

∣∣ ∑

1≤x≤X

e(h(α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s))
∣∣≫ Xs. (4.2)

For concision, here and throughout, we write [1, H] = [1, H] ∩ Z. Recall the definition
(1.6) of M and m. On observing that each real number hαj lies either on M or m, one can
decompose the set [1, H] into 2s sets, H1, . . . , H2s , such that the set {hαj| h ∈ Hi} ⊆ M or
{hαj| h ∈ Hi} ⊆ m, for all 1 ≤ j ≤ s and 1 ≤ i ≤ 2s. Our goal is to show that for every
Hi (i = 1, . . . , 2s), we have

∑

h∈Hi

∣∣ ∑

1≤x≤X

e(h(α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s))
∣∣≪ Xs−η for some η = η(k, ν) > 0, (4.3)

which contradicts (4.2) for sufficiently large X in terms of η and s. Thus, this forces us to
conclude that for sufficiently large X, we have

min
0≤x≤X
x 6=0

‖α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s‖ ≤ H−1.

Therefore, by letting ν → 0, we are done to prove Theorem 4.1.

4.2. Preliminary manoeuvre. Under the assumption (4.1), we can obtain extra informa-
tion about α1, . . . , αs. In order to describe this information, we must define M

H by

M
H =

⋃

0≤a≤q≤X
(q,a)=1

M
H(q, a),

where MH(q, a) =
{
α ∈ [0, 1) : |qα− a| < X1−kH−1

}
. Define mH by [0, 1)\MH . Note that

if there exists αj contained in M
H , it follows by putting xj = q and xi = 0 (i 6= j) that

min
0≤x≤X
x 6=0

‖α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s‖ ≤ min

1≤xj≤X
‖αjx

k
j‖ ≤ ‖αjq

k‖ ≤ qk−1‖αjq‖ ≤ H−1,
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which contradicts (4.1). Hence, from the assumption (4.1), we may assume that all αj (j =
1, . . . , s) are in m

H .
Furthermore, whenever αj ∈ m

H with H ≤ X1−ν for sufficiently small ν > 0, one has for
all h ∈ [1, H] ∩ Z ∑

1≤x≤X

e(hαjx
k) ≪ X1−δ1 (4.4)

for some positive number δ1 = δ1(k, ν). Indeed, suppose that there exists h ∈ H such that
∑

1≤x≤X

e(hαjx
k) ≥ X1−δ1 .

Then, the Weyl’s inequality [14, Lemma 2.4] readily confirms that there exist q ∈ N and
a ∈ Z such that q < Xη and

|hαj − a/q| ≤ q−1Xη−k,

where η = η(δ1). This gives

|αj − a/(qh)| ≤ (qh)−1Xη−k.

For sufficiently small δ1 > 0 so that η = η(δ1) is smaller than ν, one has qh < XηX1−ν < X
and

|αj − a/(qh)| ≤ (qh)−1X1−kH−1.

This yields that αj ∈ M
H , which contradicts αj ∈ m

H .

4.3. Lemma and proposition. To prove (4.3), we require arguments used in [20, Theorem
1.3], which relate pointwise estimates of exponential sums to mean value type estimates using
the following classical lemma.

Lemma 4.3 (Gallagher-Sobolev inequality).
Let f : [a, b] → C be continuously differentiable. Then

|f(u)| ≤ (b− a)−1

∫ b

a

|f(x)|dx+

∫ b

a

|f ′(x)|dx

for any u ∈ [a, b].

In order to describe the following proposition, we define the sets D1 = D1(α) and D2 =
D2(α) with α ∈ R by

D1 = {h ∈ [1, H] ∩ Z| hα ∈ M mod 1}

and
D2 = {h ∈ [1, H] ∩ Z| hα ∈ m mod 1}.

Proposition 4.4. Let α ∈ R, and H > 0. Suppose that |qα−a| ≤ q−1 with (q, a) = 1. Then,
we have ∑

h∈D1

∣∣ ∑

1≤x≤X

e(hαxk)
∣∣k+1

≪ H
(
q−1 +H−1 + qH−1X−k

)
Xk+1+ǫ, (4.5)

and ∑

h∈D2

∣∣ ∑

1≤x≤X

e(hαxk)
∣∣k(k+1)

≪ H
(
q−1 +H−1 + qH−1X−k

)
Xk(k+1)−1+ǫ. (4.6)
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By applying Lemma 4.3, we shall derive upper bounds for the left hand side in (4.5) and
(4.6) in terms of mean values of exponential sums

∫

M

∣∣∣∣
∑

1≤x≤X

e(αxk)

∣∣∣∣
k+1

dα

and ∫

m

∣∣∣∣
∑

1≤x≤X

e(αxk)

∣∣∣∣
k(k+1)

dα.

It follows from [14, Theorem 4.4] and [19, Theorem 2.1] that we shall obtain upper bounds
for these mean values, and thus we complete the proof of Proposition 4.4. We emphasize
here that the choice of exponents k+ 1 and k(k+ 1) delivers the efficient application of [14,
Theorem 4.4] and [19, Theorem 2.1].

Proof of Proposition 4.4. We shall first derive (4.5). Define a set Γ(h) to be

Γ(h) = {γ ∈ [0, 1)| ‖hα− γ‖ < (4k)−1X−k}.

By applying Lemma 4.3 to
∑

1≤x≤X e(hαx
k), one has

∑

h∈D1

∣∣ ∑

1≤x≤X

e(hαxk)
∣∣k+1

≪
∑

h∈D1

(
Xk

∫

Γ(h)

∣∣ ∑

1≤x≤X

e(γxk)
∣∣dγ +

∫

Γ(h)

∣∣ ∑

1≤x≤X

xke(γxk)
∣∣dγ
)k+1

≪
∑

h∈D1

(
Xk

∫

Γ(h)

∣∣ ∑

1≤x≤X

e(γxk)
∣∣dγ
)k+1

+
∑

h∈D1

(∫

Γ(h)

∣∣ ∑

1≤x≤X

xke(γxk)
∣∣dγ
)k+1

,

(4.7)

where we used (A+B)k+1 ≪ Ak+1+Bk+1 for the second inequality. For concision, we write
Ξ1 and Ξ2 for the first term and the second term in the bound (4.7). Furthermore, for the
sake of the next discussion, we freely assume that X is an integer.

We first analyse the sum Ξ2. By applying partial summation, we have
∑

1≤x≤X

xke(γxk) = XkSX+1 − S1 −
∑

2≤x≤X

(xk − (x− 1)k)Sx,

where
Sx =

∑

x≤m≤2X

e(γmk).

Then, we find that Ξ2 is

≪
∑

h∈D1

((
Xk

∫

Γ(h)

|SX+1|dγ

)k+1

+

(
Xk−1

∑

2≤x≤X

∫

Γ(h)

|Sx|dγ

)k+1

+

(∫

Γ(h)

|S1|dγ

)k+1)
.

(4.8)
Meanwhile, on noting that mes(Γ(h)) ≍ X−k and by applying Hölder’s inequality, we have

(∫

Γ(h)

|Sx|dγ

)k+1

≤ X−k2
∫

Γ(h)

|Sx|
k+1dγ.
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Thus, we deduce from (4.8) that

Ξ2 ≪ Xk sup
1≤x≤X+1

∑

h∈D1

∫

Γ(h)

|Sx|
k+1dγ. (4.9)

Note that if hα ∈ M, there exists q ∈ N with 1 ≤ q ≤ X such that ‖qhα‖ ≤ (2k)−1X1−k.
Thus, when ‖hα − γ‖ ≤ (4k)−1X−k and hα ∈ M, one has ‖qγ‖ ≤ ‖qhα‖ + ‖q(hα − γ)‖ ≤
(2k)−1X1−k + (4k)−1qX−k ≤ k−1X1−k. Thus, on recalling the definition (1.6) of Ml, one
finds that hα ∈ M and ‖hα− γ‖ < (4k)−1X−k implies γ ∈ M1. Let us write

M(H, γ) = |{h ∈ [1, H] ∩ Z| ‖hα− γ‖ < (4k)−1X−k}|

and

M(H) = sup
γ∈[0,1)

M(H, γ).

Hence, by discussion above, we infer from (4.9) that

Ξ2 ≪ XkM(H) sup
1≤x≤X+1

∫

M1

|Sx|
k+1dγ. (4.10)

Meanwhile, by applying [10, Lemma 6], one has

M(H) ≪ H
(
q−1 +H−1 + qH−1X−k

)

Furthermore, the Hardy-Littlewood method [14, Theorem 4.4] readily confirms that
∫

M1

|Sx|
k+1dγ ≪ X1+ǫ.

Therefore, we see from (4.10) that

Ξ2 ≪ H
(
q−1 +H−1 + qH−1X−k

)
Xk+1+ǫ. (4.11)

Next, it remains to estimate Ξ1. By applying Hölder’s inequality, we deduce that

Ξ1 ≪ Xk

∫

Γ(h)

|S1 − SX+1|
k+1dγ ≪ Xk sup

1≤x≤X+1

∑

h∈D1

∫

Γ(h)

|Sx|
k+1dγ. (4.12)

Then, by the same argument from (4.9) to (4.11), we have

Ξ1 ≪ H(q−1 +H−1 + qH−1X−k)Xk+1+ǫ. (4.13)

Therefore, by (4.7), (4.11) and (4.13), we conclude that

∑

h∈D1

∣∣∣∣
∑

1≤x≤X

e(hαxk)

∣∣∣∣
k+1

≪ H
(
q−1 +H−1 + qH−1X−k

)
Xk+1+ǫ. (4.14)

This confirms the estimate (4.5).
We next derive (4.6). Recall the definition (1.6) of Ml and ml = [0, 1) \Ml. Note that if

hα ∈ m and ‖hα−γ‖ < (4k)−1X−k, then γ ∈ m4. Indeed, if γ ∈ M4, there exists q ∈ N with
1 ≤ q ≤ X such that ‖qγ‖ ≤ (4k)−1X1−k, and thus one has ‖qhα‖ ≤ ‖q(hα− γ)‖+ ‖qγ‖ ≤
q(4k)−1X−k + (4k)−1X1−k ≤ (2k)−1X1−k, which contradicts hα ∈ m.
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Therefore, the same treatment leading from (4.7) to (4.12) with the exponent k(k + 1) in
place of k + 1 gives the upper bound

∑

h∈D2

∣∣∣∣
∑

1≤x≤X

e(hαxk)

∣∣∣∣
k(k+1)

≪ XkH
(
q−1 +H−1 + qH−1X−k

)
sup

1≤x≤X+1

∫

m4

|Sx|
k(k+1)dγ.

(4.15)
An application of the argument used in [19, Theorem 2.1] confirms that

∫

m4

|Sx|
k(k+1)dγ ≪ Xk(k+1)−k−1+ǫ.

Thus, on substituting this estimate into (4.15), we obtain (4.6). Therefore, we complete the
proof of Proposition 4.4. �

Remark 1. Recall from section 4.2 that under the assumption (4.1), we may assume that
αj ∈ m

H with 1 ≤ j ≤ s. For a given index j with 1 ≤ j ≤ s, it follows Dirichilet’s
approximation theorem that there exists a ∈ Z and q ∈ N with 1 ≤ q ≤ HXk−1 and
(q, a) = 1 such that |qαj − a| ≤ H−1X1−k. Since αj ∈ m

H , moreover, one has q > X. Thus,
Proposition 4.4 with the assumption (4.1) delivers that for 1 ≤ j ≤ s one has

∑

h∈D1(αj)

∣∣∣∣
∑

1≤x≤X

e(hαjx
k)

∣∣∣∣
k+1

≪ (1 +H/X)Xk+1+ǫ, (4.16)

and
∑

h∈D2(αj)

∣∣∣∣
∑

1≤x≤X

e(hαjx
k)

∣∣∣∣
k(k+1)

≪ (1 +H/X)Xk(k+1)−1+ǫ. (4.17)

4.4. Proof of Theorem 4.1.

Proof. Let H = Xσ(s,k)−ν for sufficiently small ν > 0. Suppose that

min
0≤x≤X
x 6=0

‖α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s‖ > H−1. (4.18)

From section 4.1, recall that the sets H1, . . . , H2s are such that the set {hαj| h ∈ Hi} ⊆ M

or {hαj| h ∈ Hi} ⊆ m, for all 1 ≤ j ≤ s and 1 ≤ i ≤ 2s. By relabelling αi, we may
assume that for 1 ≤ i ≤ m, the set {hαi| h ∈ H1} ⊆ M, and for m + 1 ≤ i ≤ s, the set
{hαi| h ∈ H1} ⊆ m. Note from the explanation following the proof of Proposition 4.4 that
we have (4.16) and (4.17).

We first consider the case when m ≥ k + 1. Recall from section 4.2 that the assumption
(4.18) implies that αj ∈ m

H with 1 ≤ j ≤ s. Then, by making use of our hypothesis s ≥ k+2,
together with Hölder’s inequality and (4.4), we deduce that

∑

h∈H1

∣∣∣∣
∑

1≤x≤X

e(h(α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s))

∣∣∣∣

≪ Xs−(k+1)−δ1
∏

1≤j≤k+1

(∑

h∈H1

∣∣∣∣
∑

1≤xj≤X

e(hαjx
k
j )

∣∣∣∣
k+1) 1

k+1

.

(4.19)



MAJOR AND MINOR ARCS ESTIMATION 21

Meanwhile, on recalling the definition of H1 and D1 following Lemma 4.3, we notice that
H1 ⊆ D1(αj) for 1 ≤ j ≤ k+1. Then, by applying (4.16) with H ≤ X, it follows from (4.19)
that

∑

h∈H1

∣∣∣∣
∑

1≤x≤X

e(h(α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s))

∣∣∣∣

≪ Xs−(k+1)−δ1
∏

1≤j≤k+1

( ∑

h∈D1(αj)

∣∣∣∣
∑

1≤x1≤X

e(hαjx
k
j )

∣∣∣∣
k+1) 1

k+1

≪ Xs−η,

for some η = η(δ1) > 0.
Next, consider the case when m < k + 1. We write

Ai =
∑

h∈H1

∣∣ ∑

1≤xi≤X

e(hαix
k
i )
∣∣k+1

, Bi =
∑

h∈H1

∣∣ ∑

1≤xi≤X

e(hαix
k
i )
∣∣k(k+1)

,

and put m1 = min{k(k + 1−m), s−m}. Then it follows from Hölder’s inequality that

∑

h∈H1

∣∣∣∣
∑

1≤x≤X

e(h(α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s))

∣∣∣∣

≪

(
∑

h∈H1

1

)1−
km+m1
k(k+1)

A
1

k+1

1 · · ·A
1

k+1
m B

1
k(k+1)

m+1 · · ·B
1

k(k+1)

m+m1
Xs−(m+m1).

(4.20)

On recalling the definition H1, D1 and D2 following Lemma 4.3, notice that H1 ⊆ D1(αi)
for 1 ≤ i ≤ m, and H1 ⊆ D2(αi) for m+ 1 ≤ i ≤ m+m1. Thus, for 1 ≤ i ≤ m we have

Ai ≤
∑

h∈D1(αi)

∣∣ ∑

1≤xi≤X

e(hαix
k
i )
∣∣k+1

and for m+ 1 ≤ i ≤ m+m1 we have

Bi ≤
∑

h∈D2(αi)

∣∣ ∑

1≤xi≤X

e(hαix
k
i )
∣∣k(k+1)

.

Then, on substituting these inequalities into (4.20), it follows by applying (4.16) and (4.17)
that

∑

h∈H1

∣∣∣∣
∑

1≤x≤X

e(h(α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s))

∣∣∣∣

≪ H1−
km+m1
k(k+1) XmXm1−

m1
k(k+1)Xs−(m+m1)Xǫ.

(4.21)

Recall that H = Xσ(s,k)−ν . Then, the right hand side in (4.21) is O(Xφ) where

φ = s+

(
1−

km+m1

k(k + 1)

)
(σ(s, k)− ν)−

m1

k(k + 1)
+ ǫ. (4.22)

We shall show that φ ≤ s − η for some η > 0. Recall the definition of m1. When

m ≥ k(k+1)−s
k−1

, one has m1 = k(k + 1 −m). Thus, one has φ = s − 1 + m
k+1

+ ǫ < s − η for
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some η > 0, since m < k + 1. When m < k(k+1)−s
k−1

, one has m1 = s −m. In this case, we

have 1− km+m1

k(k+1)
> 0, and thus it follows from (4.22) that

φ = s+

(
1−

km+m1

k(k + 1)

)
σ(s, k)−

m1

k(k + 1)
− η, (4.23)

for some η = η(ν).
First, consider the case s ≥ k(k + 1)/2. Then, it follows from (1.3) that σ(s, k) = 1.

Hence, since m1 = s−m, it follows from (4.23) that

φ = s+

(
1−

(k − 2)m+ 2s

k(k + 1)

)
− η,

for some η = η(ν) > 0. Hence, it follows by s ≥ k(k+1)/2 and m ≥ 0 that φ ≤ s−η for some
η > 0. Next, recall the hypothesis s ≥ k + 2 in the statement of Theorem 4.1, and consider
next the case k + 2 ≤ s ≤ k(k + 1)/2. Then, it follows from (1.3) that σ(s, k) = s

k(k+1)−s
.

Hence, since m1 = s−m, it follows from (4.23) that

φ = s+

(
k(k + 1)− s

k(k + 1)
+

−km+m

k(k + 1)

)(
s

k(k + 1)− s

)
−

s−m

k(k + 1)
− η

= s+
s

k(k + 1)
+

(
(−km+m)s

k(k + 1)(k(k + 1)− s)

)
−

s−m

k(k + 1)
− η

= s+
m

k(k + 1)

(
1−

(k − 1)s

k(k + 1)− s

)
− η,

(4.24)

for some η = η(ν) > 0. Hence, it follows by s ≥ k + 2 and m ≥ 0 that φ ≤ s − η for some
η > 0. Therefore, in all cases, we have

∑

h∈H1

∣∣∣∣
∑

1≤x≤X

e(h(α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s))

∣∣∣∣≪ Xs−η, (4.25)

for some η > 0. Then, by the same treatment, we have (4.3) for every Hi (i = 1, . . . , 2s),
which contradicts (4.2) stemming from (4.18). Therefore, we are forced to conclude that

min
0≤x≤X
x 6=0

‖α1x
k
1 + α2x

k
2 + · · ·+ αsx

k
s‖ ≤ H−1.

Hence, by letting ν → 0, we complete the proof of Theorem 4.1. �

5. Proof of Theorem 1.2

In this section, we provide the proof of Theorem 1.2. We recall the major arcs M = M2

defined in (1.6), and their complement m = m2. In the proof of Theorem 4.1, we used major
arcs estimates [14, Theorem 4.4]

∫

M

∣∣∣∣
∑

1≤x≤X

e(αxk)

∣∣∣∣
k+1

dα ≪ X1+ǫ (5.1)
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and minor arcs estimates [19, Theorem 2.1]

∫

m

∣∣∣∣
∑

1≤x≤X

e(αxk)

∣∣∣∣
k(k+1)

dα ≪ Xk(k+1)−k−1+ǫ. (5.2)

To prove Theorem 1.2, we replace the mean values (5.1) and (5.2) with those in Theorem
1.4, and follow the same argument with the proof of Theorem 4.1.

5.1. Outline of the proof of Theorem 1.2. Let s > k21 + k1 +2⌈σ(1− k1)⌉. Throughout
this section, we put H = X1−ν for sufficiently small ν > 0 unless specified otherwise. Recall
ϕj(x) = α1jx

k1 + · · ·+ αtjx
kt . Suppose that

min
0≤x≤X
x 6=0

‖ϕ1(x1) + ϕ2(x2) + · · ·+ ϕs(xs)‖ > H−1. (5.3)

Then, by Lemma 4.2, we have
∑

1≤h≤H

∣∣ ∑

1≤x≤X

e(h(ϕ1(x1) + · · ·+ ϕs(xs)))
∣∣≫ Xs. (5.4)

On observing that each real number hα1j lies either on M or m, one can decompose
the set [1, H] ∩ Z into 2s sets, H1, . . . , H2s , such that the set {hα1j| h ∈ Hi} ⊆ M or
{hα1j| h ∈ Hi} ⊆ m, for all 1 ≤ j ≤ s and 1 ≤ i ≤ 2s. Our goal is to show that for every
Hi (i = 1, . . . , 2s), we have

∑

h∈Hi

∣∣ ∑

1≤x≤X

e(h(ϕ1(x1) + · · ·+ ϕs(xs)))
∣∣≪ Xs−η, (5.5)

for some η = η(k, ν) > 0. This contradicts (5.4) for sufficiently large X in terms of η and s.
Thus, this forces us to conclude that whenever s > k21+k1+2⌈σ(1−k1)⌉ and X is sufficiently
large, one has

min
0≤x≤X
x 6=0

‖ϕ1(x1) + ϕ2(x2) + · · ·+ ϕs(xs)‖ ≤ H−1.

Therefore, by letting ν → 0, we are done to prove Theorem 1.2.

5.2. Preliminary manoeuvre. As in the previous section, we can obtain extra information
about αij with 1 ≤ i ≤ t, 1 ≤ j ≤ s, under the assumption (5.3). In order to describe this

information, we must define M̃H by

M̃H =
⋃

0≤a1,...,at≤q≤X
(q,a1,...,at)=1

M̃H(q, a1, . . . , at),

where

M̃H(q, a1, . . . , at) = {(α1, . . . , αt) ∈ [0, 1)t| |αi − ai/q| ≤ t−1q−1X−ki+1H−1 for 1 ≤ i ≤ t}.
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Define m̃H = [0, 1)\M̃H . Note that if there exists j such that (α1j, . . . , αtj) ∈ M̃H , it follows
by putting xj = q and xi = 0 (i 6= j) that

min
0≤x≤X
x 6=0

‖ϕ1(x1) + · · ·+ ϕs(xs)‖ ≤ min
1≤xj≤X

‖ϕj(xj)‖ ≤ ‖ϕj(q)‖

≤ qk1−1‖qα1j‖+ qk2−1‖qα2j‖+ · · ·+ qkt−1‖qαtj‖ ≤ H−1,

which contradicts (5.3). Hence, under the assumption (5.3), we may assume that (α1j, . . . , αtj)
is in m̃H for every j = 1, . . . , s.

Furthermore, whenever (α1j, α2j, . . . , αtj) ∈ m̃H with H ≤ X1−ν for sufficiently small
ν > 0, one has for all h ∈ [1, H] ∩ Z

∑

1≤x≤X

e(h(α1jx
k1 + · · ·+ αtjx

kt)) ≪ X1−δ1 (5.6)

for some positive number δ1 = δ1(k1, ν). Indeed, suppose that there exists h ∈ H such that
∑

1≤x≤X

e(h(α1jx
k1 + · · ·+ αtjx

kt)) ≥ X1−δ1 .

Then, by [2, Theorem 4.3] and [2, Lemma 4.6], there exist q, a1, . . . , at such that q < Xη and

|hαij − ai/q| < q−1Xη−ki (i = 1, . . . , t)

where η = η(δ1, k1). This gives

|αij − ai/(qh)| < (qh)−1Xη−ki (i = 1, . . . , t).

For sufficiently small δ1 so that η is smaller than ν, one has qh < XηX1−ν < X and

|αij − ai/(qh)| < (qh)−1X1−kiH−1 (i = 1, . . . , t).

By dividing the greatest common divisor of ai and qh, this readily confirms that (α1j, . . . , αtj)

∈ M̃H , which contradicts (α1j, . . . , αtj) ∈ m̃H .

5.3. Auxiliary proposition. Recall the definition (1.4) of σ with k = (k1, . . . , kt). To show
(5.5), we require following proposition analogous to Proposition 4.4. In order to describe
the following proposition, it is convenient to define N(H,γ, α1, . . . , αt) with γ ∈ [0, 1)t,
(α1, . . . , αt) ∈ [0, 1)t and H > 0 by

N(H,γ, α1, . . . , αt) = |{h ∈ [1, H] ∩ Z| ‖hαj − γj‖ < (4k)−1X−kj for j = 1, . . . , t}|,

and define N(H) := N(H,α1, . . . , αt) = supγ∈[0,1)t N(H,γ, α1, . . . , αt). We recall the defini-
tion D1 = D1(α) and D2 = D2(α) with α ∈ R, following Lemma 4.3. Furthermore, let us
put L = (k21 + k1)/2 + ⌈σ(1− k1)⌉.

Proposition 5.1. Let H > 0. Suppose that αj ∈ R with t ≥ 2 and 1 ≤ j ≤ t. Then, we

have
∑

h∈D1(α1)

∣∣∣∣
∑

1≤x≤X

e(h(α1x
k1 + α2x

k2 + · · ·+ αtx
kt))

∣∣∣∣
2L

≪ N(H)X2L+ǫ, (5.7)
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and

∑

h∈D2(α1)

∣∣∣∣
∑

1≤x≤X

e(h(α1x
k1 + α2x

k2 + · · ·+ αtx
kt))

∣∣∣∣
k1(k1+1)

≪ N(H)Xk1(k1+1)−σ+ǫ. (5.8)

We shall first derive upper bounds for (5.7) and (5.8) in terms of the left hand side of
(1.8) with 2L in place of 2s, and (1.9) with k1(k1 + 1) in place of 2s. Then, by applying
Theorem 1.4, we complete the proof of Proposition 5.1. We note here that the choice of 2L
and k1(k1 + 1) delivers the efficient application of Theorem 1.4.

Proof of Proposition 5.1. For simplicity, throughout this proof, we write D1 = D1(α1) and
D2 = D2(α1). Define Γ(h) to be

Γ(h) = {(γ1, . . . , γt) ∈ [0, 1)t| ‖hαj − γj‖ ≤ (4k)−1X−k}.

Recall the definition (1.7) of D. By applying [5, Lemma 1] to
∑

1≤x≤X

e(h(α1x
k1 + · · ·+ αtx

kt)),

we infer that
∑

h∈D1

∣∣∣∣
∑

1≤x≤X

e(h(α1x
k1 + α2x

k2 + · · ·+ αtx
kt))

∣∣∣∣
2L

≪ XD
∑

h∈D1

∫

Γ(h)

∣∣∣∣ sup
I⊆[1,X]

∑

x∈I

e(γ1x
k1 + γ2x

k2 + · · ·+ γtx
kt))

∣∣∣∣
2L

dγ, (5.9)

where I runs over all intervals in [1, X]. In the proof of Proposition 4.4, we have seen that
for hα1 ∈ M, the set {γ1| ‖hα1 − γ1‖ < (4k)−1X−k1} is a subset of M1. Then, by making
use of N(H), we deduce that the bound (5.9) is

≪ N(H)XD

∫

M1

∫ 1

0

· · ·

∫ 1

0

∣∣∣∣ sup
I⊆[1,X]

∑

x∈I

e(γ1x
k1 + γ2x

k2 + · · ·+ γtx
kt))

∣∣∣∣
2L

dγ. (5.10)

Therefore, by applying the Caleson-Hunt theorem with respect to the integral over γt and
Theorem 1.4 (i) with M = M1, one concludes that the bound (5.10) is O(N(H1)X

2L+ǫ).
This confirms (5.7).
Similarly, in the proof of Proposition 4.4, we have seen that for hα1 ∈ m, the set

{γ1| ‖hα1 − γ1‖ < X−k1}

is a subset of m4. Thus, we infer that

∑

h∈D2

∣∣∣∣
∑

1≤x≤X

e(h(α1x
k1 + α2x

k2 + · · ·+ αtx
kt))

∣∣∣∣
k1(k1+1)

≪ N(H)XD

∫

m4

∫ 1

0

· · ·

∫ 1

0

∣∣∣∣ sup
I⊆[1,X]

∑

x∈I

e(γ1x
k1 + γ2x

k2 + · · ·+ γtx
kt))

∣∣∣∣
k1(k1+1)

dγ,

where I runs over all intervals in [1, X]. Thus, by applying the Carleson-Hunt theorem with
respect to the integral over γt and Theorem 1.4 (ii) with m = m4, we find that the last
expression is O(N(H)Xk1(k1+1)−σ+ǫ). This confirms (5.8). �
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Remark 2. The Carleson-Hunt Theorem could be avoided at the cost of a factor log(6X) by
standard use of a Dirichlet kernel argument (see, for example, [17, Lemma 7.1])

Remark 3. Recall from section 5.2 that under the assumption (5.3), we may assume that
(α1j, . . . , αtj) is in m̃H for every j (j = 1, . . . , s). We see that whenever (α1j, . . . , αtj) ∈ m̃H ,
we have N(H,α1j, . . . , αtj) ≤ 1. Indeed, if N(H) > 1, there exists h1, h2 (1 ≤ h1, h2 ≤ H,
h1 6= h2) and γ = (γ1, . . . , γt) ∈ [0, 1)t such that

‖h1αij − γi‖ < X−ki , ‖h2αij − γi‖ < X−ki (i = 1, . . . , t).

By triangle inequality,

‖(h1 − h2)αij‖ ≤ ‖h1αij − γi‖+ ‖h2αij − γi‖ < 2X−ki (5.11)

for all i (1 ≤ i ≤ t). Since 2X−ki < t−1X−ki+1H−1 for sufficiently large X, it follows from
(5.11) that for every i (1 ≤ i ≤ t)

‖(h1 − h2)αij‖ < t−1X−ki+1H−1. (5.12)

Since 0 < |h1 − h2| < X, one has (α1j, α2j, . . . , αtj) ∈ M̃H . This contradicts our assumption
that (α1j, α2j, . . . , αtj) ∈ m̃H . Hence, Proposition 5.1 with the assumption (5.3) delivers that
for every j (j = 1, . . . , s) one has

∑

h∈D1(α1j)

∣∣∣∣
∑

1≤x≤X

e(h(α1jx
k1 + · · ·+ αtjx

kt))

∣∣∣∣
2L

≪ X2L+ǫ, (5.13)

and
∑

h∈D2(α1j)

∣∣∣∣
∑

1≤x≤X

e(h(α1jx
k1 + · · ·+ αtjx

kt))

∣∣∣∣
k1(k1+1)

≪ Xk1(k1+1)−σ+ǫ. (5.14)

5.4. Proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that (5.3) holds. From section 5.1, recall that the set {hα1j| h ∈
Hi} ⊆ M or {hα1j| h ∈ Hi} ⊆ m, for all 1 ≤ j ≤ s and 1 ≤ i ≤ 2s. By relabelling α1j, we
may assume that for 1 ≤ i ≤ m, the set {hα1i| h ∈ H1} ⊆ M, and for m + 1 ≤ i ≤ s, the
set {hα1i| h ∈ H1} is a subset of m. We put again L = (k21 + k1)/2 + ⌈σ(1− k1)⌉ and recall
that (α1j, . . . , αtj) is in m̃H for every j = 1, . . . , s. Note from Remark 2 above and section
5.2 that we have (5.13), (5.14) and (5.6).

We first consider the case m ≥ 2L. By making use of our hypothesis s > 2L together with
Hölder’s inequality and (5.6), we deduce that

∑

h∈H1

∣∣ ∑

1≤x≤X

e(h(ϕ1(x1) + · · ·+ ϕs(xs)))
∣∣

≪ Xs−2L−δ1

2L∏

l=1

(∑

h∈H1

∣∣ ∑

1≤xl≤X

e(hϕl(xl))
∣∣2L
)1/2L

.

(5.15)
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Meanwhile, on recalling the definition of H1 and D1, we notice that H1 ⊆ D1(α1l) for
1 ≤ l ≤ 2L. Then, by applying (5.13), it follows from (5.15) that

∑

h∈H1

∣∣ ∑

1≤x≤X

e(h(ϕ1(x1) + · · ·+ ϕs(xs)))
∣∣

≪ Xs−2L−δ1

2L∏

l=1

( ∑

h∈D1(α1l)

∣∣ ∑

1≤xl≤X

e(hϕl(xl))
∣∣2L
)1/2L

≪ Xs−η,

for some η = η(δ1) > 0.
Next, consider the case m < 2L. We write

Al =
∑

h∈H1

∣∣ ∑

1≤xl≤X

e(hϕl(xl))
∣∣2L

Bl =
∑

h∈H1

∣∣ ∑

1≤xl≤X

e(hϕl(xl))
∣∣k1(k1+1)

,

and put m1 = 2L−m. Then, it follows from Hölder’s inequality that
∑

h∈H1

∣∣ ∑

1≤x≤X

e(h(ϕ1(x1) + · · ·+ ϕs(xs)))
∣∣

≪
(∑

h∈H1

1
)1−(

m
2L

+
m1

k1(k1+1)

)

( m∏

l=1

A
1/2L
l

)(m+m1∏

l=m+1

B
1/(k1(k1+1))
l

)
Xs−(m+m1).

(5.16)

On recalling the definitions of H1, D1 and D2, notice that H1 ⊆ D1(α1l) for 1 ≤ l ≤ m,
and H1 ⊆ D2(α1l) for m+ 1 ≤ l ≤ m+m1. Thus, we have for 1 ≤ l ≤ m the bound

Al ≤
∑

h∈D1(α1l)

∣∣ ∑

1≤xl≤X

e(hϕl(xl))
∣∣2L,

and for m+ 1 ≤ l ≤ m+m1 the bound

Bl ≤
∑

h∈D2(α1l)

∣∣ ∑

1≤xl≤X

e(hϕl(xl))
∣∣k1(k1+1)

.

Then, on substituting these inequalities into (5.16), it follows by (5.13), (5.14) and |H1| ≤
H ≪ X1−ν that

∑

h∈H1

∣∣ ∑

1≤x≤X

e(h(ϕ1(x1) + · · ·+ ϕs(xs)))
∣∣

≪ X
1−( m

2L
+

m1
k1(k1+1)

)
XmX

m1−
m1σ

k1(k1+1)Xs−(m+m1)−η = Xφ−η,

(5.17)

where η is suitably small positive number in terms of ν, and

φ = 1−

(
m

2L
+

m1

k1(k1 + 1)

)
−

m1σ

k1(k1 + 1)
+ s.

Since m1 = 2L−m with m,m1 ≥ 0,

φ = 1−
m

2L
−

(2L−m)(1 + σ)

k1(k1 + 1)
+ s.
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On noting 2L ≥ k21+(1−2σ)k1+2σ, simple calculations lead to the lower bound 2L(1+σ) ≥
k1(k1 + 1). Hence, since φ is a linear function in m with positive slope, we find that the
function φ attains the maximum when m = 2L, and thus φ ≤ s.

Thus, in all cases, we have
∑

h∈H1

|
∑

1≤x≤X

e(h(ϕ1(x1) + · · ·+ ϕs(xs)))| ≪ Xs−η.

Then, by the same treatment, it follows that for every Hi (i = 1, . . . , 2s), we have (5.5).
This contradicts (5.4) stemming from (5.3). Thus, we are forced to conclude that whenever
s > k21 + k1 + 2⌈σ(1− k1)⌉, one has

min
0≤x≤X
x 6=0

‖ϕ1(x1) + ϕ2(x2) + · · ·+ ϕs(xs)‖ ≤ H−1.

Hence, by letting ν → 0, we complete the proof of Theorem 1.2. �
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