SMALL FRACTIONAL PARTS OF POLYNOMIALS AND MEAN
VALUES OF EXPONENTIAL SUMS

KISEOK YEON

ABSTRACT. Let k; (i = 1,2,...,t) be natural numbers with k1 > ko > -+ > k; > 0, k1 > 2
and t < k1. Given real numbers a;; (1 < j <t, 1 <1i<s), we consider polynomials of the
shape
pi(r) = ane® + agia® 4+ -+ aua’,
and derive upper bounds for fractional parts of polynomials in the shape
e1(z1) + @a(x2) + - + @s(T5),

by applying novel mean value estimates related to Vinogradov’s mean value theorem. Our
results improve on earlier Theorems of Baker (2017).

1. INTRODUCTION

Since the early part of the last century, estimates of Weyl sums have played crucial roles in
many problems in additive number theory. The classical bounds for Weyl sums have stemmed
from Weyl’s method [16] and Vinogradov’s method [15]. In particular, these bounds have
been widely used in studying the distribution of polynomial modulo 1, initiated by a question
posed by Hardy and Littlewood [9] asking, when o € R, k € N and e > 0, whether there
exists 0 > 0 not depening on « such that

min_|laz”|| < X7t
1<z<X

where || - || denotes the distance to the nearest integer and X is sufficiently large in terms of
k and e. By exploiting such bounds for Weyl sums, Heilbronn [11] and Danicic [8] obtained
o = 2% Subsequently, the exponent 1/2 in the case k = 2 was improved to o = 4/7 by
Zaharescu [24]. By exploiting estimates for smooth Weyl sums, Wooley [18] obtained the
permissible exponent o = 1/(klog k+O(kloglogk)). Furthermore, combined with the recent
progress on bounds for Weyl sums, stemming from the resolution of the main conjecture in
Vinogradov’s mean value theorem, Baker [4] shows that 0 = 1/(k(k —1)) is permissible, and
also derives the explicit exponent o(s, k) = s/(k(k — 1)) such that

min_|Jogzf + -+ k|| < X o (1.1)

0<z<X

x#0
for 1 < s < k(k —1). Here and throughout, we write 0 < & < X and & # 0 to abbreviate
the conditions 0 < z1,...,2, < X and (z1,...,z5) # (0,...,0).

In this paper, we seek to make the bound (1.1) sharper via mean values of exponential sum,
rather than exploiting bounds for Weyl sums. Furthermore, by applying new mean value
estimates for exponential sums related to Vinogradov’s mean value theorem, the method

described here shall deliver bounds for small fractional parts of polynomial in the generalized
1
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shape @1 (1) + @o(22) + - - - + @4(x,), where
SOz(fL’) = alixkl -+ Oégi.Z‘k:Q + o+ Oétixkt

in which s,t, k1, ks, ..., k; are natural numbers with k; >t > 2 and k; > ko > -+ > k.

6. Suppose that X is

Theorem 1.1. Let € > 0 and s,k be natural numbers with k >
1 < i < s. Then, whenever

sufficiently large in terms of s,k and e. Consider o; € R with
k(k+1)
s > =5, one has
min_||ay 2} + oz + -+ agak|| < XM (1.2)

0<z<X
x#0

For comparison, the work of Baker [4, Theorem 3] shows (1.1) with o(s, k) = 75 for

1 < s < k(k—1). His work also gives results when s > k(k — 1), too complicated to state in
full here. It is sufficient to report that the exponent s/(k(k — 1)) is replaced by an exponent
o in Baker [4, Theorem 3], with 0 — 2 as s — oco. Theorem 1.1 improves on this result when

MERD < 5 < k(k —1).

We note that with additional effort, for s > k + 2 one may get (1.1) with

(s, k) = min{m,l}. (1.3)

Notice that this improves on a result of Baker [4] described above when 2k < s < k(k — 1).
We record this result in section 4 (see Theorem 4.1 below). We also note that experts may
expect that the exponent (1.3) can be improved for large k by using estimates for smooth
Weyl sums. However, to obtain results for s > 1 one encounters a number of technical
complications that threaten to obstruct useful conclusions. Consequently, we focus in this
paper on conclusions made accessible by our new mean value estimates for exponential sums.

As we explained above, the method described here delivers bounds for small fractional
parts of more general polynomials. Thus, in order to describe these polynomials and the
following theorems, we require some notation. Consider a fixed t-tuple k = (ky,...,k;) of
positive integers satisfying

k=ki >ky>--->k >1.

We denote {1,2,... k1} \ {k1,...,k} by {i1,...,ik_¢} with iy > -+ > dp_,. Furthermore,
we write o = o(k) for

l
= . 1.4
TTEEL k) — it 1) (14)
Theorem 1.2. Let € > 0. Suppose that s,t,kq, ...,k are natural numbers satisfying ki > 6,

ki >1t>2and ky > ko > -+ > k. Suppose that X is sufficiently large in terms of s, k1 and
e. Consider aj; € R with 1 <i < s and 1 < j <t. Define p;(x) = ay ™ + - + ayz™ with
1 <i<s. Then, whenever s > k% + ki + 2[o(1 — k1)], one has

min_[Jo1(1) + @a(r2) + -+ ()| < X (1.5)

0<z<X
x#0
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The reader will observe that the condition on s in the conclusion of Theorem 1.2 is almost
twice as restrictive as that in Theorem 1.1. The explanation for this reduction in strength
lies with the generality of the polynomials ¢;, and correspondingly weaker estimate available
for associated exponential sums.

To describe the following theorems regarding new mean values of exponential sums, we
introduce some notation. Define the exponential sum F(ay,, a'™) = Fi(ag,,. .., ar,; X) by

F(og,, ™) = Z (o, 2™ 4 o, a™ + - ag, ™).

1<z<X

Denote day,day, . -+ - day, by dat™!, and write

25 t—1 t—1Y|2s
P o DPdat = [ et Pdagday, - das,
[0,1)t—1
Furthermore, we write

flow,, @) = Z e(aklxkl + Oék171l'k171 + o4 apr)

1<z<X

fuonerda= [ o e)da
0,1)k1-

Theorem 1.3. Let s,t and k be natural numbers with t < k. Let | be an integer with
1 <1< k~—t. Consider a rational approrimation to oy, satisfying |ay. — a/q| < 1/¢* with
(q,a) = 1. Then, for e >0, one has

f’F O, o { dat 1 < RXZ1+ g t+€%|f ap, o )|25da

and

where
!

Ri=J[(x 5+ X447 +qX*’“)W‘1Hz+1> .
j=1

As a consequence of Theorem 1.3, one finds that the mean value over all coefficients
but the leading coefficient has an upper bound in terms of the denominator of the rational
approximation to aj. From this, we obtain mean value estimates by integrating over «;
lying over major arcs and minor arcs, respectively.

In order to describe these estimates, which we record in Theorem 1.4, and for the argument
used throughout this paper, we must introduce sets of major arcs and minor arcs. Define
the major arcs 9, with [ > 0 by

ml = U ml(Qua’)7 (16>
0<a<g<X

(g,a)=1

where M (q,a) = {a € [0,1)| |[go — a] < (Ik)™' X%} Define the minor arcs to be
m; = [0,1) \ 9. We abbreviate 9, simply to 9. Throughout this paper, we use 9t and m
without further comments, unless specified otherwise. Furthermore, we recall the definition
(1.4) of the exponent o, and write D for

D=1k +ky+-+k. (1.7)
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Theorem 1.4. One has the following:
(i) When s is a natural number with 2s > k* + (1 — 20)k + 20, one has

/ ?{]F ag, o N7 datday, < XPPF (1.8)

(i1) When s is a natural number with 2s > k(k + 1), one has

/7{|F ag, o NP dotday, < X2Pote (1.9)

Wooley [19, Theorem 1.3] provided the mean value estimates of exponential sums over
minor arcs, which is (1.9) with F(ay, @) = > .,y €(arz¥). This mean value estimate
delivered improvements in the number of variables required to establish the asymptotic
formula in Waring’s problem, the density of integral solutions of diagonal Diophantine equa-
tions and slim exceptional sets for the asymptotic formula in Waring’s problem. Wooley
[20, Theorem 1.1] established an essentially optimal estimate for ninth moment of expo-
nential sum having argument az® + Sz (see also [23, Theorem 1.3]), by introducing (1.9)
with F(az, a) =Y,y e(azz® + agx). Furthermore, Wooley [22, Theorem 14.4] recorded
bounds for (1.8) and (1.9) with k; < k; — 1. In Theorem 1.4, we provide mean values of
F(oag, ™) =3 ooy e(apa®™ + ap, a2 + - - - + ay, 2™) with no restrictions on the exponents
ki,..., k. Combining with Theorem 1.4, the method described in the proof of Theorem 1.1
shall deliver the proof of Theorem 1.2.

We also note that by applying Holder’s inequality and the trivial bound |F'(ay, a™!)| < X,
it follows from Theorem 1.4 (i7) that there exists so with so < k(k+1)/2 such that whenever
s > so we have

/%‘F g, o * dot Loy, < X2DFe,

(k+1)

Therefore, we find that there exists sy with sg < such that whenever s > sg one has

/%‘F ap, & dat 1d05k
/ %‘F O, C * dat™ ld@k+/]{|F Qp, O )|25dat_1dak < X25-D+e

This range of s is superior to those trivially obtained by Vinogradov’s mean value theorem.

The consequences of Theorem 1.2 and Theorem 1.4 are dependent on o, which is the
quantity determined by k = (ki,...,k;). Thus, we shall see how this quantity o varies
according to the number of exponents and its arrangement.

Recall the definition (1.4) of the exponent ¢ and that {iy,... ik} = {1,2..., k1 }\
{kt, ..., k1} with ¢y > -+ > i;_4. Then, we observe following:

(1) Let k= (k,k—1,...,k — (t — 1)) with ¢t < k/2. Then, by taking [ = ¢, one obtains

l ¢ B
S =t D) = 2= 1)@ o).
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(2) Let t = my + my. Let
k:(k,k—l,...,k—(ml—l),mQ,...,l)

with my; + my < k/2. Then, by taking [ = m;, one has
l m

0 = Imax >

_ —1
1<i<k—t (k — i) (k — i, + 1) = O(m;").

(3) Let k = (k, ko, ..., k) with ky = k, ko = k — 1 and k3 # k — 2. Then, by taking [ = 1,
one has o =1/2.

Thus, if we assume that k = (kq, ..., k;) with ¢t < k/2, then one infers from the observations
above that o is at least O(¢t™1).

In section 2, we provide the proof of Theorem 1.3. The method of the proof of Theorem
1.3 mainly follows the argument in [19] together with the argument used in [5]. In section
3, we provide the proof of Theorem 1.4, by making use of Theorem 1.3. In section 4, we
introduce applications of mean values of exponential sums to fractional parts of polynomials
and provide the proof of Theorem 1.1. Furthermore, we record in Theorem 4.1 a more
quantitative result than Theorem 1.1 and provide its proof at the end of section 4. In
section 5, we give the proof of Theorem 1.2 by exploiting Theorem 1.4 and the method
introduced in section 4. Throughout this paper, we use > and < to denote Vinogradov’s
well-known notation, and write e(z) for e*™*. We adopt the convention that whenever e
appears in a statement, then the statement holds for each € > 0, with implicit constants
depending on e.
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2. PROOF OF THEOREM 1.3
In this section, we provide three lemmas and combine all to prove Theorem 1.3.
2.1. Auxiliary lemmas. In order to describe Lemma 2.1, we recall that
F(og,, ™) = Z e(ap, o + ap,a® + -+ oy, 2™)
1<z<X

and

f(akn a) - Z G(Oélﬂl‘kl + (lfkl_ll'kl_l 4+ -4 ozlm).
1<z<X

Furthermore, recall {iy, ... i} ={1,2,..., k1 } \ {k1,...,k}. In advance of the statement
of the following lemma, we define Z(ay,) := Z(ay; 1) with 1 <1 <k —t by

o= Y - 3 fllanaPe-a® gda,

lgiy [<s X1 lgi, | <s X



6 KISEOK YEON
where da=day,_; - --do; and V) - g = a;, g;, + -+ - + @;, 9,

Lemma 2.1. For any | with 1 <1 < k —t, we have

j{’F v, NP dat Tt < Xttt T (o).

Proof. Denote by F(ay, o™, B = Floaw,, ..., 0, Bists-- - Bre; X) the exponential

sum
k k k j i
E e, o™ + ap,x™ + - 4 g, ™ + x4+ B xttt).
1<<X
Furthermore, we denote

s

o (x) = (&l —al,)  (1<j<k)

i=1

and recall £ = k. We emphasize that in order to suppress multiple layer of suffices, it is

convenient to write k£ in place of k; in many places.

As a preliminary manoeuvre, we represent the mean value involving F'(ag, a'™!) in terms of

an analogous one involving F(ay, at~', 37'7"). Observe that when m = (my41, ..., my_¢) €
ZF=1if we define
G(Oém m) = j{ |F<Oék; atilaBk_t_l)|2se(—ﬁl+1ml+1 — Bk_tmk_t)dﬂk‘t‘ldat’l,

then one has

G(ag,m)= > d(x,m fe(aklas,kl(x) +o g O (x))da' T (2.1)

1<x<X
where
k—t 1
stxm) = TT ([ et3(ous = myas, ).
j=i+1 W0

By orthogonality, one has

/1 e(B;(00s (x) — m;))dB; = { 1, when o,; (x) = m;,
0

0, when oy, (x) # m;.
When 1 < x < X, moreover, one has |0y, (x)] < sX% (I+1<j<k—t), and so
oo Y dxm)=1.

myy[<sX 41 g |<s Xkt

Consequently, on noting that

3" (kT (X) + iy (%) + -+ + 0, (%)) = [Flag, @),

1<x<X
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we deduce from (2.1) that

Z Z G(Oék,m)

[miyg1 | <sX UL fmy_y|<sX k-t

— 7{ Z (Z 5(x, m))e(akas,kl (X) + QpyOspy (X) + -+ + 01, (X))da'™ (2.2)

1<x<X m

= j{ |F (o, oY) |**dat ™.

Therefore, it follows from (2.1) and (2.2) with the triangle inequality that
% |F(Oék, at—l)‘Qsdat—l
< Z . Z f |F(Cl/1, at_l,ﬁk_t_l)|28d,6k_t_ldat_l (23>

[mygq|<sX+1 My _¢| <sX et
< XZZ+1+ZL+2+~-'+’Lk—t \% |F(Oél7 at_l,ﬂk_t_l)|2sd,8k_t_ldat_l.
Next, an argument similar to that used above allows us to show that
b

f|F(aka at_l,Bk_t_l)|2sd,3k_t_ldat_l

(2.4)
- Z Z j{|f(ak,a)|2se(—a(l) - g)da.
lgiy [<sX1 gy |[<sX™
Thus, on substituting (2.4) into (2.3), we complete the proof of Lemma 2.1. O

In order to describe Lemma 2.2, we require a preliminary step. Observe that by shifting
the variable of summation, for each integer y one has

f(()ék,a) = Z 6(¢($ —y;Oék,O:)), (25>
I+y<e<X+y
where
V(2 0, @) = aqz 4 - + a2’
But as a consequence of the Binomial Theorem, if we adopt the convention that ag = 0,
then we may write 1 (z — y; a, a) in the shape

k

U(r—yiap, @) = B,

where

Write
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Then we deduce from (2.5) that when 1 <y < X, one has

aka / fy O, O 77 ( )d’Y’ (27)
where we have written
folaw,a7) = Y e(W(z —yap, ) + (2 — ).
1<z<2X

Define
Fylon, s y) = [ fulow, o 7:) £y (—, =0 —yasa),

and
Wy~ = 6(—(’)/1 + -+ Vs =™ Vs41 — 1 — VQS)y) = 6(—Fy).

To facilitate the statement of Lemma 2.2, it is convenient to introduce some notation.
Recall {iy,... i} ={1,2,..., k1 }\{k1, ..., ki }. Furthermore, we adopt the notation a; = 0
for i ¢ {1,...,k}. Then, we define the exponential sum =Z(ax, &) = (g, a; ;) with
1<I<Ek—thy

Elapa)=X" Y Y Z wy76<—f§5mym),

1<y<X |hy, |<sX hiy|<sX'
where

l .
6= Qi (m N Z”) hi.. (2.8)

2
n=1 n

Therefore, on recalling that the definition of Z(ay) := Z(ag;!) in the statement of Lemma
2.1, we have the following lemma.

Lemma 2.2. For any | with 1 <1 <k —t, we have

T(on) < 75 75 Folan, ) Z(an, @)K () dady,

where K(v) = [ [ K () K (=7s10)-

i=1
Proof. On substituting (2.7) into Z(ay), we deduce that when 1 <y < X, one has
Il = 2, = D ffgw,y)ff(’r)d% (2.9)
lgiy [<s X1 lgi, |<s Xl
where

Iy(v,y) = %.Fy(ak,a;'y)e(—a(l) - g)da. (2.10)

By orthogonality, one finds that

%‘F ap, & 77 ( Z AOék,’Y,g, )7 (211>

1<x<2X
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where A(ay,7,g,v) is equal to

S

(Dl = 0 = (s = ) 4 401 = ) = s = ) ).

i=1
when
D ((wi—yY = (waps —y)) = hy with 1 <j <k —1, (2.12)
i=1
in which h; = g; when j € {i1,...,4}, and h; = 0 when j ¢ {i1,...,4}. Otherwise, one
finds that A(ag,~,9,y) = 0.
By applying the Binomial Theorem within (2.12), we have

s J

S~ ) = 3 (1)t (<< k-0 (213

=1 =1

and
s k—1

Sotet— k) = X (3t ’+Z =) (214)

i=1 =1
By orthogonality, one infers from (2.11),(2.13) and (2.14) that by putting hy = 0

F R ccet-a®-giia =y, f Ao ame( a3 (Do) i

7=1 =1
where wy » = e(—I'y) in which I' =y + -+ - + 795 — Y541 — - - - — 725. We now collect together
terms corresponding to each power of y. On recalling h, = 0 when n ¢ {iy,... 4} and

since by j < k, the highest degree of y is & — 7;. Furthermore, on recalling that a; = 0 for
Jj ¢ {1,...,k} and the definition (2.8) of d,,, we find that

B (§ () B (P B e

Since 44, = 0 for m + 14, > k, it is worth noting that no contribution arises from n with
i, >k —m, in §,,.
From here, we are led from (2.10) to the relation

2. 2 Lvy)

lgi, |<s X1 lgi, |<s Xl
k—i,
= ffo(&k,a;ﬁ/) Z Z wy,7€<—z5mym)da
lhiy [<sX™ by |<sX" m=0
Since we took y in [1, X], we may conclude thus far

XYY Y Ly 7{}—0 ay, a;y)=(ax, o) dor. (2.16)

1<y<X|g;; |[<sX'1 |gi, |<s X
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Therefore, from (2.9) and (2.16), we conclude thus far that
T(a) < X' Y I(ay)

1<y<X
SR VRID SRS SR FACAIICHE
IsysXgi)[<sXt |g;,[<s X"

= 7{?{}"@(0%,a;')/)E(Oék,a)f((’)’)dad’f

We recall that

k—1;
S =Xy Y Y wme(-zamym>,
m=0

1<y<X |hy |<sX1 |hiy |[<sX
where
l .
m + i,
5m == E Aty ( . )hzn
in
n=1

We provide the upper bound for Z(ay, a) in terms of the denominator stemming from rational
approximation to oy, by obtaining savings from all summations over h;,, ..., h;,.

Lemma 2.3. Suppose that |ay—a/q| < q~2 with (q,a) = 1. Then, for anyl with1 <1 < k—t,
we have
l 1/ ((k—ir)(k—i;+1))
=g, @) < X+t <H (¢ + X5 4 XF 4 qu))

j=1

In the proof of Lemma 2.3, we bound =(ay, o) by mean value type estimates. Furthermore,
we use Vinogradov’s mean value theorem to deal with these mean value type estimates.
The argument described here is applicable to all possible arrangements of exponents k =
(k1,..., k) with t < k. Especially, this argument is useful for the case k; — 1 = ko and
t < ki/2. Even for the case that k; — 1 > ko, experts will recognize that by taking [ = 1 the
sum =(ay, o) becomes the exponential sum with phase linear in y, and in this case a variant
of our arguments coincides with the proof of [19, Theorem 1.3] and [22, Theorem 14.4].

Proof of Lemma 2.3. Onrecalling that w, , = e(—I'y), we may rewrite summands in Z(ay, o)
as e(— S0 6 y™), where 8, =6, (n #1) and & = &, +I.

Define
So(- ¥ aw)

yel 1<m<k—i

S*(0; X) = sup

IC[1,X]

where [ runs over all intervals in [1, X]|. In particular, we write S(&;X) for the sum with
I =[1, X]. Here and later, we put 2p = (k — i;)(k — i, + 1). Define

TEX) = S Y S (2.17)

|hiy |[<sX 1 hiy |<s X"
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Then, by applying Holder’s inequality to =Z(ay, ), we have
o, ) < X 1Y, (8; X)) x attia)(1=1/02p)) (2.18)
We first analyze T,(d; X). Define Q(X) to be the box A; x Ay x --- x Aj_;,, where
A, = A,(00)={0,€0,1): 0], —0,] <1/(4kX™)}.
Then, by [5, Lemma 1], one infers that

S*(8; X)* < (vol(© / / / *(0; X)*d6. (2.19)
Ay JAg Ap—i,

Recall the definition d,, and the remark following (2.15). Then, we see that d;_;, is a linear
combination of A;;,...,h;. We define the quantity H;(@) to be the number of solutions
(Riys hiy, -, hy) with |k | < sX% of the system

167, = 6ull < 1/(4EX") (0 =k =itk =iz, k=),

and put

Hl: sup HI(O)
0clo,1)t

Therefore, on substituting (2.19) into (2.17), and expanding A; to [0,1) for
JE{k —i,k—ig... . k—1i},

we obtain the bound

1,(8; X)

< (vol(© / / S Z/A

|< X1 |< X k—iq

/ / S*(6: X)2°d6.
Ap—iy Ap—i

Since (vol(Q(X)))™! = X1H+(E=4) and by the definition of H;, we infer that
1 1
T,(8; X) <Xt g, / ‘o / S*(0; X)*d6, (2.20)
0 0

To bound H,;, we first analyse H;(#). Recall again the definition §,, and the remark
following (2.15). Then, we have

514713 = Oék( > Z Ok—i;+in, ( Z.j * Zn) hi,,,

/)
n=j+1 n

for all j =1,...,[. Recall that 62;_” = 0p—q; + ' for k—i; =1, and 62;_” = Op_i;, otherwise.
Meanwhile, by [5, Lemma 3], when m € N, a, 8 € R and |a — a/q| < ¢2, the number of
solutions of

|lmax + 5| < 1/Y,
with |z| < X, is at most (1+4q/Y)(1+4mX/q). Put o = oy, with |, —a/q| < ¢, m = (f),
X =5sX%,Y = 4kX"*%. Then, for fixed h; h;,, the number of h;, of

Ti410 0 0

[8%—i, — O || < 1/(4kX*5),
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with |hy,| < X7, is at most < X%(g7" + X% + X~(74) 4 ¢X*). If we proceed this in
descending order j = 1,1 —1,...,1, we infer that
l
Hl(e) < Xi1+i2+~--+il H (q—l +X—ij +X—1€+ij + qX—k) ) (221>
j=1
By taking supremum over 8, we may replace H;(0) with H,; in (2.21). For concision, we write

l
R, = H (q—l _’_X—z‘j +X—k+z‘j + qX_k) (2_22>
j=1

Therefore, from (2.20) and (2.21), one has by applying the Carleson-Hunt theorem [12]
T,(8; X) < X1tk f S*(0; X)*de

< Xi1+i2+--~+izRlX1+~~~+(k‘—iz) ]{S(O;X)dee.

Hence, by Vinogradov’s mean value theorem, the last expression is O(X (2Pe) Xutizt-+i R,
Consequently, by (2.18), we see that

E(ak,a) < Xi1+i2+---+iz+eRl1/(2P). (2.2?))

On recalling the definition R;, we complete the proof of Lemma 2.3.
O

2.2. Proof of Theorem 1.3.

Proof. We combine all lemmas in section 2.1 to prove Theorem 1.3. On recalling (2.22) and
2p = (k—14;)(k—14,+ 1), by Lemma 2.2 and Lemma 2.3, we have

T(ap) < Xittivke g/ 75 f Folaw, a;7) K (v)dady. (2.24)

Meanwhile, by applying the Holder’s inequality and a change of variable, one sees that
%Iﬂ(ak7a;7 da < sup f|f0 O, O 77 |2Sda - f |f O, O |25da (225>

~v€[0,1)

Furthermore, on recalling (2.6), we find that

[ 1 < [ min i < o x,
and hence
FIR Iy < (g ) (2.26)
On substituting (2.25) and (2.26) into the right hand side in (2.24), we find that
I(ow) < Xi1+m+il+ERll/(2p)j§|f(0é]€,04)|28d04.
Therefore, we conclude from Lemma 2.1 that

%|F Uy, O |2$dat 1 < Rl/ 2p) Xl1+12+ Al tJre%’f ., >|25 do.
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3. PROOF OF THEOREM 1.4

In this section, we provide the proof of Theorem 1.4. In the previous section, we obtained
the mean value over all coefficients but the leading coefficient. Thus, Theorem 1.4 follows
by integrating over ay lying on each of major arcs and minor arcs. To be specific, minor
arcs estimates in Theorem 1.4 (i7) follow immediately from Theorem 1.3 and Diophantine
approximation of the leading coefficient. For major arc estimates in Theorem 1.4 (i), we use
a consequence of [21, Theorem 14.4] with applications of Holder’s inequality.

Proof of Theorem 1.4. It follows from (2.23) with 2p = (k — 4;)(k — 4; + 1) that whenever
o — a/g| < g2, one has

! 1/(2p)
E(ak,a) & Xirtiattite (H (qfl + XU +ka+z'j + qu)> (3 1)
Jj=1 ’

< Xititedite (g7h g XLy g X R
where
[
(k—i)(k—u+1)
We first provide estimates for the major arcs. Assume that oy € 991. Note that transference

principle [23, Theorem 14.1] tells that whenever we have a function ¥ : R — C with the
upper bound

o =

V() < X(g ' +Y gz,
where 0, X,Y, Z are positive real numbers, and a € Z, ¢ € N satisfying (a,q) = 1 and
la —a/q| < q72, then we deduce that

V(o) < XA+ Yt Az,
with A = r + Z|ra — b|, and b € Z, r € N satisfying (b,r) = 1. Therefore, one infers from
(3.1) that whenever b € Z and r € N satisfy (b,7) =1 and |y — b/r| < 772, then it follows
that

B, o) < Xttt (x4 X4 AX )7,

where A = r + X¥|ray — b|. Moreover, when o, € 9M(r,b) C M, one has r < X and
X¥rag — bl < X, so that A < 2X. Therefore, we see from it that one has

Eay, o) < Xt titay (g,

where \If(ak) is the function taking the value (¢ + X*|qay, — al)™°, when one has oy, €
M(q,a) C M, otherwise ¥(ay) = 0. Hence, one has

/]ﬁf o, o) 22 (o, @) daday, < X1+ +”+5/7{|f o, )2 U(ap)daday.  (3.2)

Let us first assume that 2s > k(k + 1). Then, since V() < 1, one finds that by Vino-
gradov’s mean value theorem

1
/m 7{ | f (o, @) |V () daxdey, < /O 7{ |f (g, @) |**dauday, < X2—kEHD/24e (3.3)
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Next, let us assume that k? + (1 — 20)k + 20 < 2s < k(k + 1). By applying Holder’s
inequality, one obtains that

/f|f(ak’a)|28qj(ak)dadak
<<(/f{ g, @) |00 () dadak> (/]{If oo |kk+1)dadak) ,U’

£
with so = (25 — k(k + 1)(1 — 0))/(20). Notice from the range of 2s that k(k — 1) < 259 <
k(k+1).
As a consequence of [6, Lemma 2], one finds that when 2s, is an even number

(3.4)

/ 7{ | f(a, @) 20U (ay,) 7 dodoy, < XH(XT, + 1), (3.5)
m

1
L :/ 7{|f(ak,a)]230dadak, and I, = j{ 1£(0, @) |***dcx.
0

By Vinogradov’s mean value theorem, whenever k(k — 1) < 25y < k(k + 1), we have [} <
X#ote On the other hands, when 2sy > k(k — 1), we have I, < X290~ k(:=1)/24¢ Thys, for
all even numbers 2sy with k(k — 1) < 2sy < k(k + 1), we find from (3.5) that

where

/{mf ’f(akya”%oq/(ak)%dadak < Xso*k+1+e +X2307k(k+1)/2+e. (36)

Notice here that the situation that two terms of the bound in (3.6) are same occurs when
259 = k? — k + 2, which is an even number. Thus, by interpolation between even numbers
250, one finds that (3.6) also holds for any real numbers 2s, between k(k — 1) and k(k + 1).
On substituting (3.6) into (3.4) and applying Vinogradov’s mean value theorem, one has

/ f’f(ak7a)|25@(ak)dadak < (Xsofk+1+e +X280*k(k+1)/2+€)0 (Xk(k+1)/2)lf
m

Since we have 2sg0 + k(k + 1)(1 — o) = 2s, this bound is seen to be
Xs—o(k—1)+e +X28_k(k+1)/2+6.

Furthermore, since 2s > k?+(1—20)k+20, this bound can be replaced by O(X?2s~k(k+1)/2+¢),
Thus, one concludes that whenever k? + (1 — 20)k + 20 < 2s < k(k + 1)

/Em% |f(ak,a)|25\lf(ak)dadak < XQs—k(k—i-l)/Q-i-s. (37)
Thus, by (3.2), (3.3) and (3.7), whenever 2s > k? + (1 — 20)k + 20 we find that
/ f |f(Oék, Oc)‘QSE(ogk? a)dOédOzk < Xil+'“+il+€X28—k(k+1)/2+€.
m

Then, on recalling the definition of Fy(ay, a;~y), it follows from Holder’s inequality and a
change of variable that

/ j{fo(ak, oY) E(ag, o)daday, < X ticte x2s—kkt1)/24e
m
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Consequently, combining this with Lemma 2.1 and Lemma 2.2, we deduce that

/ %‘F Qs O ‘ da!™ 1dak1

<<Xil+1+~~~+ik—t/ I(ozk)dozk
m

< Xil+1+"’+ik7t / %%FO(O&IW a; 7)5(&k7 a)f((’)/)dad’)’dOék
m
< X2$—D+E’

where we have used (2.26).

Next, we provide estimates for the minor arcs. When «; € m, there exists ¢ and a with
(q,a) = 1 such that |ag, — a/q| < (2k) g ' X! with X < ¢ < X*71. Thus, on recalling
(3.1), when ap € m, we deduce that Z(ay, ) < X Tie—t=otc Therefore, by applying
Theorem 1.3 together with Vinogradov’s mean value theorem, whenever 2s > k;(k; + 1) one

has
/]{yF gy, @[ daday, < Xt "“/ f|f (an, @)|** dadoy,

<<X23 D— O’+6.

Therefore, by taking [ that maximizes the exponent o, the conclusion of Theorem 1.4 follows.
O

4. PROOF OF THEOREM 1.1

In this section, we provide Theorem 4.1, which is more quantitative than Theorem 1.1. It
is worth noting that Theorem 1.1 immediately follows from Theorem 4.1.

The main ingredients of the proof in this section are the arguments in [20, Theorem
1.3]. Wooley [20, Theorem 1.3] provided upper bounds for exponential sums by bounding
the pointwise estimates by mean value estimates over major and minor arcs. Meanwhile,
a classical way widely used in studying fractional parts of polynomial is closely related to
the upper bounds of associated exponential sum. Thus, we exploit the argument in [20] to
obtain upper bounds of associated exponential sums in terms of mean values of exponential

sums. Thus, upper bounds for these mean values of exponential sums deliver the conclusion
of Theorem 4.1.

Theorem 4.1. Let ¢ > 0 and s,k be natural numbers with k > 6. Suppose that X is
sufficiently large in terms of s,k and €. Consider a; € R with 1 <i < s. Then, for s > k+2

one has
Ognn | a? 4+ agak + - 4 agxb|| < XTokre
=#£0

where

(s, k) :min{m,l}.
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Proof of Theorem 1.1. Note that whenever s > k(k + 1)/2 the exponent o(s, k) in Theorem
4.1 becomes 1. Therefore, Theorem 1.1 immediately follows from Theorem 4.1. O

4.1. Outline of the proof of Theorem 4.1. We provide outline of the proof of Theorem
4.1. We begin with stating a classical lemma from the theory of fractional parts of polyno-
mials [2, Theorem 2.2|, which relates fractional parts of a sequence of real numbers to the
associated exponential sum.

Lemma 4.2. Let xq,...,xyx be real numbers. Suppose that ||x,|| > H™' for every n with
1 <n<N. Then,
N
> 3 lhon] >
1<h<H n=1

Let H be a positive number with H < X!~ for sufficiently small v > 0. Suppose that

OgcigX @} + agah + -+ a2k > H (4.1)

x#£0

Then, by Lemma 4.2, we have
Z | Z e(h(onaf + coah + -+ + auzl)) | > X°. (4.2)

1<h<H 1<z<X

For concision, here and throughout, we write [1, H] = [1, H] N Z. Recall the definition
(1.6) of M and m. On observing that each real number ho; lies either on 2 or m, one can
decompose the set [1, H| into 2° sets, Hy,..., Hss, such that the set {ho;| h € H;} C 9 or
{ha;| h € Hi} Cm, forall 1 <j <sand1l <:<2° Our goal is to show that for every
H; (i=1,...,2%), we have

Z | Z e(h(an ol + gk + - + ozsxf))’ < X*7" for some n = n(k,v) > 0, (4.3)
heH; 1<a<X

which contradicts (4.2) for sufficiently large X in terms of n and s. Thus, this forces us to
conclude that for sufficiently large X, we have

min_|Jazt + aoxh + - F a2k < H L
D<aeX
€T

Therefore, by letting v — 0, we are done to prove Theorem 4.1.

4.2. Preliminary manoeuvre. Under the assumption (4.1), we can obtain extra informa-

tion about ar, ..., a,. In order to describe this information, we must define 9 by
m = U M (¢, a),
0<a<q<X
(g,a)=1

where MM (¢q,a) = {a € [0,1) : |ga —a|] < X*"*H™'} . Define m* by [0,1)\ 9. Note that
if there exists «; contained in 97, it follows by putting z; = ¢ and z; = 0 (i # j) that

. k k k . k k b _
min flarat + auaf + -+ k| < minflaga ]| < flage’| < ¢ asql < H

0_ < J
x#0
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which contradicts (4.1). Hence, from the assumption (4.1), we may assume that all a; (j =
1,...,s) are in m”.
Furthermore, whenever a; € m# with H < X'~ for sufficiently small v > 0, one has for
all he[l,HINZ
Z e(ha;z*) < X170 (4.4)
1<z<X
for some positive number §; = §;(k, v). Indeed, suppose that there exists h € H such that
Z e(ha,z®) > X170,
1<z<X
Then, the Weyl’s inequality [14, Lemma 2.4] readily confirms that there exist ¢ € N and
a € 7 such that ¢ < X" and
lhay — ajq) < 1 X7,
where 1 = n(d1). This gives
oy — a/(gh)] < (gh)7 X",

For sufficiently small §; > 0 so that n = n(d;) is smaller than v, one has gh < X"X'7" < X
and

lo; —a/(qh)| < (gh) ' X' FH.
This yields that a; € M which contradicts a;; € m#.

4.3. Lemma and proposition. To prove (4.3), we require arguments used in [20, Theorem
1.3], which relate pointwise estimates of exponential sums to mean value type estimates using
the following classical lemma.

Lemma 4.3 (Gallagher-Sobolev inequality).
Let f : [a,b] — C be continuously differentiable. Then

f@I< 0= [ 1f@lde+ [ 1f @)l

for any u € |a, b].

In order to describe the following proposition, we define the sets D; = D;(«) and Dy =
Ds(ar) with o € R by
Dy ={he[l,H NZ| ha € M mod 1}
and
Dy ={h € [l,H NZ| ha € m mod 1}.

Proposition 4.4. Let o € R, and H > 0. Suppose that |qa—a| < ¢! with (¢,a) = 1. Then,
we have
STIYT elhaa)| < H (g + H 4 qH X F) XRLE (4.5)
heDy 1<a<X
and
Z‘ Z e(hozxk)‘k(kﬂ) < H (qfl L gl —|—qH*1X*k) xk(k+1)—14e (4.6)

heDy 1<z<X
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By applying Lemma 4.3, we shall derive upper bounds for the left hand side in (4.5) and
(4.6) in terms of mean values of exponential sums

L3 et

1<x<X
[

Z e(azx®)
1<e<X
It follows from [14, Theorem 4.4] and [19, Theorem 2.1] that we shall obtain upper bounds
for these mean values, and thus we complete the proof of Proposition 4.4. We emphasize
here that the choice of exponents k£ + 1 and k(k + 1) delivers the efficient application of [14,
Theorem 4.4] and [19, Theorem 2.1].

Proof of Proposition 4.4. We shall first derive (4.5). Define a set I'(h) to be
L(h) = {y € [0,1)] lha — 7|l < (4k) 71X}
By applying Lemma 4.3 to Y-, e(haz”), one has

Z ‘ Z h(){ZL‘ k-‘rl

heDy 1<z<X

<<Z(X’“/ | > e(yat \d7+/ | > ate(yat \d7> (4.7)

k41
do

and
k(k-+1)

do.

heD; (k) 1<z<x 1<e<X
k+1 k+1
<<Z(Xk/ |Z e(ya” ‘d’y) +Z</ |er’yx ‘d’y) ,
heDy (h) 1<z<x heD; 1<z<X

where we used (A + B)*! < A¥1 + B*1 for the second inequality. For concision, we write
=, and =, for the first term and the second term in the bound (4.7). Furthermore, for the
sake of the next discussion, we freely assume that X is an integer.

We first analyse the sum =Z,. By applying partial summation, we have

Z zFe(ya®) = XFSx 41 — 81 — Z (2% — (2 — 1)")S,,

1<z<X 2<r<X

Sy = Z e(ym*).

z<m<2X

where

Then, we find that =, is

<<Z<( / ySXH\dfy)kH (X’“ Z/ 1S, m) 1+(/F(h)ysl\dy)k+l>.

heDy 2<x<X
(4.8)

Meanwhile, on noting that mes(I'(h)) =< X% and by applying Holder’s inequality, we have

k+1 )
([ isdar)  =x [ s
I'(k) I'(h)
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Thus, we deduce from (4.8) that

S, < XF sup Z/P(h) S|y (4.9)

1<e<X+1 i on

Note that if ha € 9, there exists ¢ € N with 1 < ¢ < X such that ||gha| < (2k) X175,
Thus, when [[ha — 7| < (4k) "' X% and ha € M, one has ||gv|| < ||ghall + |[|g(ha —7)|| <
(2k) 71X 1F 4 (4k)"tgXF < k7'X'7k. Thus, on recalling the definition (1.6) of 9%, one
finds that ha € M and ||ha — || < (4k) "1 X % implies v € ;. Let us write

M(H,y) = [{h € [L, HINZ] [|ho = 7| < (4k) 7 XM}

and

M(H) = sup M(H,7).
~v€[0,1)

Hence, by discussion above, we infer from (4.9) that

=, < X*M(H) sup / 1S, [+, (4.10)
M1

1<e<X+1
Meanwhile, by applying [10, Lemma 6], one has
MH)< H(qg'+H ' +qH'X")
Furthermore, the Hardy-Littlewood method [14, Theorem 4.4] readily confirms that

/ ‘Sx|k+1d’y < XlJre.
My

Therefore, we see from (4.10) that

Sy < H (¢ '+ H ' qH X TF) X (4.11)
Next, it remains to estimate =Z;. By applying Holder’s inequality, we deduce that
=K Xk/ |S1 — Sxq1|Tdy < X* sup Z / S, |F T dry. (4.12)
(k) 1<e<X+1 hep, Y L(h)

Then, by the same argument from (4.9) to (4.11), we have
By < H(qg '+ H 4+ gH X R X HHTe (4.13)
Therefore, by (4.7), (4.11) and (4.13), we conclude that

Z Z e(hazx®)

< H (¢ '+ H ' +qH'XTF) XM (4.14)
heDy '1<z<X

This confirms the estimate (4.5).

We next derive (4.6). Recall the definition (1.6) of 9%, and m; = [0, 1) \ 9. Note that if
ha € m and ||ha —~|| < (4k)"'X ", then v € my. Indeed, if v € My, there exists ¢ € N with
1 < ¢ < X such that ||gy|| < (4k)"* X% and thus one has ||gha| < |lg(ha — )| + llg7]] <
q(4k) 71Xk + (4k)71XF < (2k)71X1* which contradicts ha € m.
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Therefore, the same treatment leading from (4.7) to (4.12) with the exponent k(k + 1) in
place of k£ + 1 gives the upper bound

k(k+1)
Z Z e(haz®)

< X*H (q_1 +H! +qH_1X_k) sup 1S, |FEH D gy
heDy1<w<X 1<e<X+1 Jimy

(4.15)
An application of the argument used in [19, Theorem 2.1] confirms that

/ |Sx|k(k+1)d’}/ < Xk(k—i—l)—k:—l—&—e‘
my

Thus, on substituting this estimate into (4.15), we obtain (4.6). Therefore, we complete the
proof of Proposition 4.4. O

Remark 1. Recall from section 4.2 that under the assumption (4.1), we may assume that
a; € m” with 1 < j < s. For a given index j with 1 < j < s, it follows Dirichilet’s
approximation theorem that there exists a € Z and ¢ € N with 1 < ¢ < HX*! and
(¢,a) = 1 such that |ga; — a| < H'X'7*. Since a; € m¥ | moreover, one has ¢ > X. Thus,
Proposition 4.4 with the assumption (4.1) delivers that for 1 < j < s one has

k+1
1D elhaya®)] < (14 H/X)XM (4.16)
heD1 (o) ' 1<e<X
and
Ek(k+1)
Y e(hagat) < (14 H/X)XHkE+D=14e (4.17)
h€Ds(ay)' 1<a<X

4.4. Proof of Theorem 4.1.
Proof. Let H = X°*)=¥ for sufficiently small v > 0. Suppose that
min_[Jayzt 4+ aorh + -+ a2t > HL (4.18)
<x<X
x#£0
From section 4.1, recall that the sets Hy, ..., Hy: are such that the set {ha;| h € H;} C M
or {haj| h € H} Cm, foralll < j < sand1l < i < 2° By relabelling «o;, we may
assume that for 1 < i < m, the set {ha;| h € H;} C 9, and for m + 1 < i < s, the set
{ha;| h € H;} C m. Note from the explanation following the proof of Proposition 4.4 that
we have (4.16) and (4.17).

We first consider the case when m > k + 1. Recall from section 4.2 that the assumption
(4.18) implies that a;; € m# with 1 < j < s. Then, by making use of our hypothesis s > k+2,
together with Holder’s inequality and (4.4), we deduce that

>

heHy

< Xs—(k+1)—51 H ( Z

1<j<k+1 “heH,;

0

Z e(h(an o + ek +--- + asx];))‘
1<az<X

. (4.19)

Z e(haja:?)

1<z;<X
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Meanwhile, on recalling the definition of H; and D; following Lemma 4.3, we notice that
H; CDi(ey) for 1 < j < k+1. Then, by applying (4.16) with H < X, it follows from (4.19)

that
>

heH,

< Xs—(k+1)—§1 H ( Z

1<j<k+1 “heDi(oy)

Z e(h(aizh + agah + -+ 045:1:';))‘

1<xe<X

Z e(hocjac?)

1<z1<X

for some n = n(d;) > 0.
Next, consider the case when m < k + 1. We write

A; —Z| Z (haz?) kH Z} Z (haz?) kH),

heH; 1<z;<X heH, 1<z;<X

and put m; = min{k(k +1—m),s —m}. Then it follows from Holder’s inequality that

2.

Z e(h(arzh + agah +--- + asxf))‘

heH;'1<z<X
b (4.20)
<[>1 AT Ak“Bf;f_ﬁl B/;;_’;;QXS (m+ma)
heH,

On recalling the definition Hy, D; and D following Lemma 4.3, notice that Hy C D; (o)
for 1 <7 <m, and H; C Dy(cy;) for m+ 1 < i < m+ my. Thus, for 1 <i < m we have

A, < Z ‘ Z (hom(:)‘kJrl

heDy(a;) 1<z <X

and for m +1 < i <m + m; we have

Z } Z haa: kH).

he€Da (o) 1<z, <X

Then, on substituting these inequalities into (4.20), it follows by applying (4.16) and (4.17)

that
)

heHy

Z e(h(ayz? 4 aprh + - + a,2h))
1<z<X (4.21)

km+mq

< H - k(k+1) Xme1 ’“<k+1>Xs (m+m1)X

Recall that H = X?(¥)~"_ Then, the right hand side in (4.21) is O(X?) where

km+m1 my
= l——+ k)—v)— ———— . 4.22
o=+ (1= 50 (0o =) - s e (1.22)
We shall show that ¢ < s — n for some n > 0. Recall the definition of m;. When
m > %, one has m; = k(k +1—m). Thus, one has ¢ = s — 1+ ;75 + € < s —n for
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some 7 > 0, since m < k4 1. When m < =

, one has m; = s — m. In this case, we

k—1
have 1 — ’Z{‘kt”f)l > 0, and thus it follows from (4.22) that
km + my my
- ] mmT By — M 4.2
o=+ (1= oo ) - s < (1.29

for some n = n(v).
First, consider the case s > k(k + 1)/2. Then, it follows from (1.3) that o(s, k) = 1.
Hence, since m; = s — m, it follows from (4.23) that

(k—2)m +2s
k(k+1) >_ ’

for some n = n(v) > 0. Hence, it follows by s > k(k+1)/2 and m > 0 that ¢ < s—n for some
1 > 0. Next, recall the hypothesis s > k + 2 in the statement of Theorem 4.1, and consider

next the case k +2 < s < k(k + 1)/2. Then, it follows from (1.3) that o(s,k) = 75—

¢:s—l—<1—

Hence, since m; = s —m, it follows from (4.23) that
b=s+ k:(k:+1)—s+—km—|—m s _s—m_
- k(k+ 1) khk+1) J\k(k+1D)—s) kEk+1)
s (—km +m)s s—m
= — — 4.24
S+k(k+1)+(k(k+1)(k(k+1)—s)) kk+1) (424)
m (k—1)s
= " (o)
T ( k(k+1)—s) G
for some n = n(v) > 0. Hence, it follows by s > k 4+ 2 and m > 0 that ¢ < s — n for some
1 > 0. Therefore, in all cases, we have

D

heH,

Z e(h(anah + gk + - + asxlg))‘ < X', (4.25)

1<z<X

for some n > 0. Then, by the same treatment, we have (4.3) for every H; (i = 1,...,2%),
which contradicts (4.2) stemming from (4.18). Therefore, we are forced to conclude that
min_|loq 2% 4+ aoxh + - 4 a2t < H

0<zeX
x#£0

Hence, by letting v — 0, we complete the proof of Theorem 4.1. O

5. PROOF OF THEOREM 1.2

In this section, we provide the proof of Theorem 1.2. We recall the major arcs 9t = 91,
defined in (1.6), and their complement m = my. In the proof of Theorem 4.1, we used major
arcs estimates [14, Theorem 4.4]

Js

k1
Z e(ar®)|  da < X' (5.1)

1<z<X
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and minor arcs estimates [19, Theorem 2.1]

Jip>

To prove Theorem 1.2, we replace the mean values (5.1) and (5.2) with those in Theorem
1.4, and follow the same argument with the proof of Theorem 4.1.

k(k+1)
dov < Xk(kJrl)fkflJre. (52>

1<z<X

5.1. Outline of the proof of Theorem 1.2. Let s > k? + k; + 2[o(1 — k1)]. Throughout
this section, we put H = X'~ for sufficiently small v > 0 unless specified otherwise. Recall
oj(z) = agjz™ + -+ + ay;2*. Suppose that

min_[|1(21) + @a(w2) + -+ ps(@)] > H (5.3)

0<x
m;éO

Then, by Lemma 4.2, we have

DT elhlpi(m) + -+ gsla))] > X°. (5.4)

1<h<H 1<zx<lX

On observing that each real number hoy; lies either on 9T or m, one can decompose
the set [1, H] N Z into 2° sets, Hi, ..., Hys, such that the set {hay;| h € H;} C 9 or
{hayj| h € Hi} Cm, forall 1 <j <sand 1 <i<2°% Our goal is to show that for every
H; (i=1,...,2%), we have

DI elhlpa(@) + -+ gul)] < X7, (5.5)

heH; 1<x<X

for some n = n(k,v) > 0. This contradicts (5.4) for sufficiently large X in terms of n and s.
Thus, this forces us to conclude that whenever s > k% + k1 +2[o(1—k;)] and X is sufficiently
large, one has

min s (1) + ea(e) + -+ oyl < B
#£0

Therefore, by letting v — 0, we are done to prove Theorem 1.2.

5.2. Preliminary manoeuvre. As in the previous section, we can obtain extra information
about a;; with 1 < i <¢,1 < j <s, under the assumption (5.3). In order to describe this

information, we must define 9ty by

My = U My(q,a,...,a),
0<ai,...,at<g<X
(q7a17"'»at):1

where

ﬁH(q,al, coap) ={(ay, ..., a0) €10, |y — ai/q] < gt XM E  for 1 < < t}.
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Define fiy = [0,1)\ M. Note that if there exists j such that (a1j,...,045) € My, it follows
by putting z; = ¢ and x; = 0 (i # j) that

min [ei(z1) + -+ ps(ws) || < min s (z)] < fles (@)l
<<

0<w<X
x#0
< "oyl + ¢ Hlaayll + -+ ¢ gal < B,
which contradicts (5.3). Hence, under the assumption (5.3), we may assume that (o, . .., o)
is in my for every j =1,...,s.
Furthermore, whenever (ayj,agj,...,ap) € my with H < X' for sufficiently small
v >0, one has for all h € [1, H|NZ
S elhlaratt 4 -+ agat)) < X0 (5.6)
1<z<X

for some positive number §; = §;(k1,v). Indeed, suppose that there exists h € H such that

Z €<h’<a1jl‘k1 + 4+ atjl'kt)) > leél'

1<z<X
Then, by [2, Theorem 4.3] and [2, Lemma 4.6], there exist ¢, ay, . .., a; such that ¢ < X" and
lhau; —aifql < ¢ ' XTF (i =1,...,1)
where 17 = n(d1, k1). This gives
i — ai/(gh)| < (gh) ' X"™8 (i =1,...,t).
For sufficiently small §; so that 7 is smaller than v, one has gh < X"X'™ < X and
laij — ai/(qh)| < (gh) ' X" MHT (i=1,...,1).

By dividing the greatest common divisor of a; and gh, this readily confirms that (o, . .., o))
€ My, which contradicts (ayj, ..., ;) € my.

5.3. Auxiliary proposition. Recall the definition (1.4) of o with k = (kq, ..., k;). To show
(5.5), we require following proposition analogous to Proposition 4.4. In order to describe
the following proposition, it is convenient to define N(H,~,aq,...,q;) with v € [0,1)",
(aq,...,4) €[0,1)" and H > 0 by

N(H,v,a1,...,a¢) = |{h € [1, H|NZ| ||ho; — ;|| < (4k) 7' X 7R for j =1,...,t},

and define N(H) := N(H, ay, ..., ;) = supaepy V(H, v, a1, ..., ;). We recall the defini-
tion D; = Dy(«) and Dy = Dy(a) with a € R, following Lemma 4.3. Furthermore, let us

Proposition 5.1. Let H > 0. Suppose that a; € R witht > 2 and 1 < j < t. Then, we

have
)

heDy (al)

2L
Z e(h(aa™ + g™ + - + au2™))| < N(H)X?ETe, (5.7)

1<z<X
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and
kl(k1+1)
Z e(h(ayz™ + apx® + - + aua™)) < N(H)Xkkth=ote (5 Q)

1<z<X

2

he€Dy(ar)

We shall first derive upper bounds for (5.7) and (5.8) in terms of the left hand side of
(1.8) with 2L in place of 2s, and (1.9) with ki(k; + 1) in place of 2s. Then, by applying
Theorem 1.4, we complete the proof of Proposition 5.1. We note here that the choice of 2L
and kq(k; 4+ 1) delivers the efficient application of Theorem 1.4.

Proof of Proposition 5.1. For simplicity, throughout this proof, we write D; = D;(«;) and
Dy = Dy(ary). Define T'(h) to be

L(h) = {(y,- - 7) € [0, 1) [[hay — il < (4k) "X ).
Recall the definition (1.7) of D. By applying [5, Lemma 1] to

Z e(h(az™ + - + aua®)),

1<x<X
we infer that
2L
ST elhlona® + asa® + -+ agah))
heDy1<a<X
2L,
< XP Z / sup (lekl + ™ 4y dy, (5.9)
=t IC[1,X]

where [ runs over all intervals in [1, X ] In the proof of Proposition 4.4, we have seen that
for hay € M, the set {y1] [[hay — n| < (4k)"LX %} is a subset of M;. Then, by making
use of N(H), we deduce that the bound (5.9) is

< N(H XD/ml/ /0

Therefore, by applying the Caleson-Hunt theorem with respect to the integral over -, and
Theorem 1.4 (i) with 91 = 9, one concludes that the bound (5.10) is O(N(H;)X?Fe).
This confirms (5.7).

Similarly, in the proof of Proposition 4.4, we have seen that for ha; € m, the set

{nl [[hoy — | < X}

is a subset of my. Thus, we infer that

2L

sup ’ylxkl + yox™ 4 b ya)) | dy. (5.10)

I, X] o

oy (k1 +1)
Z Z e(h(ay 2™ + aga® + -+ + aua™))
heDs ! 1<z<X
ot (k1 +1)
< N(H XD/ / / sup > e(yra™ +pat? 4+ yat)) d,
my 0 IC[lX

where [ runs over all intervals in [1, X]. Thus, by applying the Carleson-Hunt theorem with
respect to the integral over ; and Theorem 1.4 (i) with m = my, we find that the last
expression is O(N(H)X* (k+1)=o+€) This confirms (5.8). O
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Remark 2. The Carleson-Hunt Theorem could be avoided at the cost of a factor log(6.X) by
standard use of a Dirichlet kernel argument (see, for example, [17, Lemma 7.1])

Remark 3. Recall from section 5.2 that under the assumption (5.3), we may assume that
(a1j,...,045) is in my for every j (j =1,...,s). We see that whenever (o, .., ;) € mpy,
we have N(H, aqj,...,a¢) < 1. Indeed, if N(H) > 1, there exists hy, hy (1 < hy,he < H,
hy # hs) and v = (71,...,7) € [0,1)" such that

Ihis; — 3l < X750 [lhoyy; —yll < X7 (i =1,...,1).
By triangle inequality,
(s — ha)as| < Ihnas; — ull + 1Az — 3l < 2X (5.11)

for all i (1 <4 < t). Since 2X % < ¢71X®F1H~1 for sufficiently large X, it follows from
(5.11) that for every i (1 <i <t)

||(h1 — hg)ozin < t_lX_kH—lH_l. (512)
Since 0 < |hy — hy| < X, one has (aq;, agj, ..., a4j) € §)VTH This contradicts our assumption
that (o, o, - . atj) € my. Hence, Proposition 5.1 with the assumption (5.3) delivers that
for every j (j = 1 ,s) one has
2L
Z Z 6(h(0&1jl’k1 + -+ Oétjl’kt)) < X2L+E, (513)
hEDl(oq]-) ISIESX
and
k1(k1+1)
Y elh(aat + -+ ayyat)) < Xhlkitl)—ote (5.14)

hG'Dg(alj) 1S[L’SX

5.4. Proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that (5.3) holds. From section 5.1, recall that the set {hay;| h
H;} €M or {hayj| he Hi} Cm, foralll <j<sand1l<i<2° By relabelling ay;, we
may assume that for 1 < i < m, the set {hay;| h € Hi} C 9, and for m + 1 < i < s, the
set {hay;| h € H,} is a subset of m. We put again L = (k? + k;)/2 + [o(1 — k;)] and recall
that (ayj,..., o) is in my for every j = 1,...,s. Note from Remark 2 above and section
5.2 that we have (5.13), (5.14) and (5.6).

We first consider the case m > 2L. By making use of our hypothesis s > 2L together with
Holder’s inequality and (5.6), we deduce that

Z | Z h(pi(x) + - + ps(s))))|

heH;, 1<x<X

1/2L
< XS‘2L‘51H(Z| > elhpn(x)) ) .

heH, 1<z;<X

(5.15)
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Meanwhile, on recalling the definition of H; and D;, we notice that H; C Dj(ay) for
1 <1 <2L. Then, by applying (5.13), it follows from (5.15) that

DI elhlpi(@n) +-- + ()]

heHq 1<2<X
2L

1/2L
<<X5_2L_61H( Z | Z (heor(1)) L) L X

I=1 “heDi(ay) 1< <X

for some n = n(d;) > 0.
Next, consider the case m < 2L. We write

Z| Z (hei(x1))

heH; 1<x;<X

Z‘ Z hgol 5Ul k1(k1+1)

heH; 1<z <X
and put m; = 2L — m. Then, it follows from Holder’s inequality that

ST elhler(m) + -+ eul@)]

heH; 1<x<X

mtmi (5.16)
< (Z 1)1 17 kl(k1+1 <H A1/2L> ( H Bll/(k1(k:1+1)))Xs—(m+m1)‘
heH, l=m+1

On recalling the definitions of Hy, D; and Ds, notice that H; C D;(ay;) for 1 <1 < m,
and Hy C Dy(ay) for m 4+ 1 <1 < m+ my. Thus, we have for 1 <1 < m the bound

A < Z | Z (hr(z1)) |,
heDl(au) 1<z;<X
and for m+ 1 <! < m + m; the bound
B < Z | Z (hei(z1)) kl(klﬂ)-
heDa(a) 1<z <X

Then, on substituting these inequalities into (5.16), it follows by (5.13), (5.14) and |H;| <

H < X' that
YUY elhlprlan) +---+ oul@))]
heH, 1<z<X (5.17)

1- (84— ) v v — e v s—(mamy)— -
< X Lertmmn) XmY EIGESD Gl D=1 — x¢ n

where 7 is suitably small positive number in terms of v, and

ma mio
=1- - + 5.
= <2L (ke + 1)) o+ 1)

Since my; = 2L — m with m, m; > 0,

m  (2L—m)(1+o0)

- .
¢ T gt °
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On noting 2L > k?+(1—20)k; + 20, simple calculations lead to the lower bound 2L(1+¢) >
ki(ky + 1). Hence, since ¢ is a linear function in m with positive slope, we find that the
function ¢ attains the maximum when m = 2L, and thus ¢ < s.

Thus, in all cases, we have

SIS elhlom) £+ o)) < X0

heH; 1<x<X

Then, by the same treatment, it follows that for every H; (i = 1,...,2%), we have (5.5).
This contradicts (5.4) stemming from (5.3). Thus, we are forced to conclude that whenever
s> k?+k; +2[c(1 —kp)], one has

i [lga(en) +ealen) o+ (o) < H

x#0
Hence, by letting v — 0, we complete the proof of Theorem 1.2. 0
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