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Abstract

Obijectives: Despite qualitative observations of wild primates pumping branches before
leaping across gaps in the canopy, most studies have suggested that support compliance
increases the energetic cost of arboreal leaping, thus limiting leaping performance. In this
study, we quantified branch pumping behavior and tree swaying in wild primates to test
the hypothesis that these behaviors improve leaping performance.

Materials and Methods: We recorded wild colobine monkeys crossing gaps in the
canopy and quantitatively tracked the kinematics of both the monkey and the com-
pliant support during behavioral sequences. We also empirically measured the com-
pliance of a sample of locomotor supports in the monkeys' natural habitat, allowing
us to quantify the resonant properties of substrates used during leaping.

Results: Analyses of three recordings show that adult red colobus monkeys (Piliocolo-
bus tephrosceles) use branch compliance to their advantage by actively pumping
branches before leaping, augmenting their vertical velocity at take-off. Quantitative
modeling of branch resonance periods, based on empirical measurements of support
compliance, suggests that monkeys specifically employed branch pumping on rela-
tively thin branches with protracted periods of oscillation. Finally, an additional four
recordings show that both red colobus and black and white colobus monkeys (Colo-
bus guereza) utilize tree swaying to cross large gaps, augmenting horizontal velocity
at take-off.

Discussion: This deliberate branch manipulation to produce a mechanical effect for
stronger propulsion is consistent with the framework of instrumental problem-
solving. To our knowledge, this is the first study of wild primates which quantitatively
shows how compliant branches can be used advantageously to augment locomotor

performance.
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1 | INTRODUCTION

Arboreal substrates are often discontinuous, and gaps must be
crossed between trees while traveling (Graham & Socha, 2020).
Such gaps typically lie between narrow and compliant terminal
branches and may be of particular concern for arboreal leapers,
given the need for high push-off forces (Alexander, 1991;
Bonser, 1999; Crompton et al., 1993). Most studies that have
investigated the impact of substrate compliance on arboreal leap-
ing have found that compliant supports absorb mechanical energy
during push-off, negatively impacting leaping performance
(Crandell et al., 2018; Demes et al., 1995; Gilman et al., 2012;
Gilman & Irschick, 2013; Hunt et al, 2021). For instance, both
leaping tree frogs and doves lost mechanical energy to perch
deflection when jumping, reducing take-off velocity, and
compromising leaping performance (Crandell et al., 2018; Reynaga
et al., 2019). Given the cost of leaping from compliant supports,
wild tarsiers, platyrrhine monkeys, and green anoles have been
shown to avoid leaping from compliant terminal branches (Berles
et al., 2022; Crompton et al., 2010; Gilman et al., 2012; Gilman &
Irschick, 2013; Walker, 2005).

So far, only a few, mostly anecdotal, observations have sug-
gested that wild arboreal taxa could benefit from branch compli-
ance. Wild langurs (Trachypithecus leucocephalus), siamangs
(Hylobates syndactylus), and strepsirrhines used substrate compli-
ance to reduce impact forces and injuries during landing (Demes
et al,, 1995, 1999; Fleagle, 1976; Huang & Li, 2005). Large-bodied
orangutans (Pongo abelii) used the momentum created by
rocking their body mass to sway compliant tree trunks, permitting
them to cross large gaps in the canopy without leaping (Thorpe
et al., 2009). Some primates have been observed using a similar
behavior, called “branch pumping,” in which fore- and hind limb
flexion and extension is used to impart vertical momentum to the
support, oscillating the branch and possibly gaining energy for
leaping (Dunbar, 1989, 2017; Fleagle, 1976; Hunt et al., 1996).
The goal-directed use of body weight and compliant substrates to
safely overcome a specific obstacle, such as the crossing of a
large gap in the canopy, is an example of instrumental problem-
solving (Fragaszy & Liu, 2012; Fragaszy & Mangalam, 2018) and
highlights the cognitive challenges of living in such a complex
environment.

To our knowledge, it has yet to be quantitatively demonstrated
that arboreal animals are able to use tree compliance to enhance leap-
ing performance during push-off. In this study, we quantified different
strategies used by the species studied to cross large gaps in their nat-
ural environment, including branch pumping and tree swaying, and
tested whether such strategies allowed the animals to gain kinetic
energy before leaping. Because leaping performance (e.g., distance
traveled) depends primarily on vertical/horizontal velocity at take-off
(Emerson, 1985), we predicted that they harness the resonant proper-
ties of arboreal supports during branch-pumping to augment vertical
velocity and during tree swaying to augment horizontal velocity at
take-off.

2 | METHODS

Data were collected January-February 2022 at the Makerere Biologi-
cal Field Station, Kibale National Park, Uganda on red colobus mon-
keys (Piliocolobus tephrosceles; mean body mass: 8.4 kg, Smith &
Jungers, 1997) and black and white colobus monkeys (Colobus guer-
eza; mean body mass: 11.4 kg, Smith & Jungers, 1997), as part of a
larger project studying the locomotor behavior of the eight monkey
species at the site. Opportunistic recordings took place during their
daily peak activity hours. Given that videos were recorded opportunis-
tically, our sample size is necessarily limited. Specifically, the primary
focus of data collection efforts during the 8 weeks of field work spent
at Kibale National Park was to record other aspects of primate loco-
motor kinematics in the wild (primarily quadrupedal locomotion).
Though we observed several other instances of branch pumping and
tree swaying, commensurate with previous reports in the field of pri-
matology literature (Dunbar, 2017; Fleagle, 1976; Hunt, et al., 1996),
we were not able to collect more quantitative data on these events
due to the competing data collection priorities. Nevertheless, after the
field season was complete, we noticed several instances of branch
pumping/tree swaying behaviors in our video database. We specifi-
cally identified 18 leaps that indicated possible evidence of the branch
pumping and/or tree swaying behaviors. However, we ultimately had
to discard all but seven leaps from our final dataset due to additional
behaviors that would have confounded our analysis (e.g., the monkey
running into the leap, rather than depending solely on substrate
rebound to power the leap), resulting in our final dataset for analysis
(Table 1). Locomotion was recorded at 120 Hz with modified GoPro
cameras (Back-Bone, Ottawa, Ontario, Canada) with attached zoom
lenses. We focused on videos in which the camera was positioned
approximately orthogonal to the primate's parasagittal plane and the
vertical image axis was approximately coincident with gravity. We
analyzed three videos of branch pumping behavior (i.e., primate
moves branch along the vertical axis, Figure 1a,d, Video S3), and four
videos of tree swaying behavior (i.e., primate moves tree trunk along
the horizontal axis, Figure 1b,e, Video S2), and compared them to four
videos of static leaps, where no preparatory substrate loading took
place (Figure 1c; Video S1). Videos were digitized in 2D using
DLTdv8a (Hedrick, 2008) in MATLAB R2022b (Mathworks, Natick,
MA). For branch pumping videos, we continuously tracked two points
on the launching branch, one at the tip and another more proximal
along the length of the branch. For tree swaying videos, we continu-
ously tracked a point near the top of the trunk and a lower point. In all
videos, we continuously tracked the tip of the primate's nose and the
base of their tail. Points were tracked prior to the initiation of move-
ment until a few frames following take-off. We identified the push-off
phase of the leap as beginning with hind limb extension and ending
when the feet no longer touching the support (i.e., take-off). Two sta-
ble reference background points (e.g., landmarks on a large tree) were
tracked to compensate for camera movement if necessary. Compen-
sation for camera movement was only required for two videos in our
dataset. In these videos, the angular position of the stable points, rela-

tive to the global y-axis, only varied by 1.7°-8.9° over the course of
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TABLE 1 Overview of leaps in our dataset.
Subjects Static leap Branch pump Tree sway
C. guereza #1 1
C. guereza #2 1
P. tephrosceles #1 1
P. tephrosceles #2 1
P. tephrosceles #3 1
P. tephrosceles #4 1
P. tephrosceles #5 1
P. tephrosceles #6 1
P. tephrosceles #7 1
P. tephrosceles #8 1
P. tephrosceles #9 1
Total leaps by type 4 3 4

the trial, indicating camera movement was principally translational,
not rotatory.

Two-dimensional coordinate data were processed using a custom
MATLAB script. First, for the two videos in which the camera
moved, we subtracted the instantaneous x-y coordinates of the
stable reference midpoint from all other coordinates to control for
camera movement. Next, coordinate data were fit to a quintic
smoothing spline function (MATLAB function “spaps”; tolerance of
5 pixels?), allowing us to mitigate digitizing error and interpolate
feature positions for frames where the marker was not visible
across gaps of <100 ms (Walker, 1998). Instantaneous horizontal
and vertical velocities were calculated as the first derivative of
smoothed x- and y-coordinates, respectively (MATLAB function
“fnder”). The net position and velocity of the monkey was calcu-
lated as the midpoint of instantaneous nose and tail base posi-
tions/velocities. Finally, we calculated four summary outcome
variables: the horizontal and vertical velocity of the monkey at the
start of push-off and the net change (A) in the horizontal and verti-
cal velocity of the monkey during push-off. All calculated velocities
were normalized to the instantaneous trunk length of the monkey
(i.e., magnitude of the nose to tail base position vector), rendering
variables in body length units. Note that due to landmarks occa-
sionally being obscured or out of frame (Figure 1c-e), not every
outcome variable could be calculated for every sequence.

To investigate the resonant properties of the compliant supports,
we first empirically measured the period of support oscillation by
marking the frames in which the branch/trunk reached zenith or nadir
before changing direction. Oscillation periods were estimated as twice
the average duration between apex events. Second, to estimate the
natural oscillation period of launching supports, we empirically mea-
sured the stiffness and diameter of a broad sample of branches at the
field site that were representative of those typically used by
P. tephrosceles during locomotion (n = 89 samples), following the pro-
cedures of Dunham et al. (2018). Natural oscillation period (i.e., to; in

seconds) was then calculated as:

e WILEY-_|_2

Age Landing point Launching tree species
Adult Lower Prunus africana

Adult Lower Prunus africana

Adult with infant Horizontal Unknown

Adult with infant Lower Unknown

Adult with infant Lower Unknown

Adult with infant Lower Unknown

Adult Lower Prunus africana

Adult Lower Prunus africana

Adult with infant Lower Prunus africana

Adult Horizontal Unknown

Adult Horizontal Unknown

oo 2. :
i D

where k is branch stiffness (in N m~%) and m is effective mass (set to
8.4 kg, the mean body mass for P. tephrosceles). Because we were
unable to estimate resonance properties for the tree trunks used dur-
ing tree swaying behaviors, we only discuss the implications of natural
oscillation periods for branch pumping.

Outcome variables were imported into R (Version 4.2.3, R Core
Team, 2023) for analysis and plotting. Given our small sample size, we
describe central tendency (i.e., median) and spread (i.e., range) in our
quantitative measures of leaping, but eschew inferential statistical
testing. All data are publicly available at Janisch et al. (2023a, 2023b).

3 | RESULTS

Outcome variables are summarized in Table 2 and Figure 1c-i. Colo-
bus monkeys used branch pumping to augment their vertical velocity
at the start of the leap (Figure 1d,f). During branch pump leaps,
median vertical velocity at the start of push-off was greater than dur-
ing tree sway leaps or static leaps. Monkeys also had positive vertical
velocity at the start of tree sway leaps (Figure 1e), whereas
vertical velocity was close to zero at the start of static leaps
(Figure 1c). Moreover, due to branch deformation, monkeys tended to
lose, rather than gain, additional vertical velocity during the push-off
phase of branch pump leaps (Figure 1g), such that most of the vertical
velocity needed to power the leap at take-off was due to branch recoil
alone. Monkeys gained vertical velocity during the push-off phase of
tree sway leaps, whereas they both gained and lost vertical velocity
during the push-off phase of static leaps, depending on branch
deformation.

At the start of tree sway leaps monkeys had greater horizontal
velocity than during static leaps, though they also showed positive

horizontal velocity at the start of branch pump leaps (Figure 1d,e,h).
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As a result, monkeys gained less horizontal velocity during the
push-off phase of tree sway leaps than during the other two leap
styles (Figure 1i), and a greater percentage of the horizontal veloc-
ity used to power the leap came from the swaying momentum of
the tree.

Colobus monkey branch pumping and tree swaying push-off
5%-33%

durations were of the observed oscillation periods

(Figure 2a). Therefore, the duration of push-off was less than half the
period of support oscillation, resulting in the support and the monkey
moving in the same directions during the push-off phase of the leap.
The calculated natural oscillation periods of locomotor supports
decreased as a power function of their diameter, such that narrow
branches (i.e., those with diameter <5 cm) had relatively long oscilla-

tion periods (Figure 2b). Observed oscillation periods during branch
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TABLE 2 Summary of kinematic
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- Starting vertical AVertical Starting horizontal AHorizontal
values for static leaps, brarIch Pump Leap type velocity (BLs ™) velocity (BLs™?) velocity (BLs™?) velocity (BLs™?)
leaps, and tree sway leaps in wild colobus i
monkeys (Piliocolobus tephrosceles and Static -0.03 0.63 0.09 6.70
Colobus guereza). -1.251 -0.137 -0.392 5.523

0.546 2.229 0.962 2.778
Branch pump 2.34 -0.39 1.82 5.52
1.773 -1.325 1.596 5.285
2.442 0.263 2.705 5.673
Tree sway 2.01 2.19 2.38 2.78
0.630 1.161 1.930 2.113
2.420 3.195 2.386 2.992
2Top values in each row indicate the median of the distribution, followed by the minimum and maximum
values below.
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FIGURE 2 Evidence that colobus monkeys consider the natural resonant period of compliant supports. (a) Duration of leaping push-off

versus the observed oscillation periods of the supports, both in seconds. The dashed line has a slope of 0.5 and an intercept of zero, indicating
where push-off durations equal 50% of the matching oscillation period. (b) Estimated natural oscillation period (calculated from empirically
measured branch stiffness and mean Piliocolobus tephrosceles body mass) versus diameter for branches used during colobus monkey locomotion.
Oscillation periods decreased as a power function of diameter (y = 0.486x~ %1% R? = 0.682). Horizontal dashed lines indicate observed
oscillation periods of branches used during branch pumping leaps. Relatively long oscillation periods suggest the monkeys explicitly chose thin,

compliant branches for branch pumping leaps.

pumping (indicated by horizontal dashed lines in Figure 2b) suggest
that branch pumping occurred on relatively narrow launching

branches.

4 | DISCUSSION

To our knowledge, this is the first evidence showing that colobus
monkeys use tree compliance to enhance leaping performance by
augmenting vertical and horizontal velocity at take-off (Figure 1). The
data suggest that the monkeys could exploit the natural spring-like
resonant properties of the supports from which they leapt (Thorpe
et al., 2007). Doing so would require the duration of push-off to be
less than half the period of support oscillation—as shown by our

data—otherwise, the support and the monkey could be moving in

opposite directions during the leap (Figure 2a). Moreover, empirical
data on the relationship between natural oscillation periods and
branch diameter suggested that the monkeys may have specifically
employed branch pumping on relatively thin branches (as found in the
terminal canopy), as such supports allow for long oscillation periods
(Figure 2b). Finally, because the oscillation period increases exponen-
tially with mass (see Equation 1), body size is likely an important
determinant of primates' ability to beneficially exploit branch compli-
ance. Colobus monkeys are among the largest quadrupedal arboreal
primates (Rose, 1973), and we noted that mainly large adult individ-
uals and adults carrying infants displayed branch pumping behaviors.
Conversely, red-tailed monkeys (Cercopithecus ascanius), a smaller
sympatric species at the site (mean body mass: 3.3 kg, Smith &
Jungers, 1997), were never observed using branch pumping or tree

swaying behaviors during leaping. During our field work, we
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occasionally observed adults pumping branches for juveniles to help

them cross gaps if the juveniles were too light to deform the branch
themselves, emphasizing the importance of body size when utilizing
branch compliance.

The observed branch pumping and tree swaying behaviors sug-
gest that colobus monkeys can judge affordances for movement on
the compliant supports in their environment. Such behavior fits into
the framework of instrumental problem-solving (Fragaszy & Liu, 2012;
Fragaszy & Mangalam, 2018)—goal-directed behaviors that display
actions to overcome a specific obstacle. Branch pumping likely
involves unique cognitive challenges, particularly given that every
wrong attempt could be fatal. Such behaviors require the ability to
mentally represent the consequences of the action prior to its execu-
tion, compare the actual consequences of the actions to the antici-
pated consequences, and alter subsequent action based on
experience with prior executions. Goal-directed behavior therefore
requires a functional characterization of the behavior, interrelating the
behavior with the observed effects and the hypothetical intended
effects (Reynolds, 1982). Further in-depth studies of branch pumping
and tree swaying in larger samples of wild primates will help refine
our understanding of these complex behaviors, including how fre-
quently they are used and how they are learned and practiced
ontogenetically.

This study provides an example of how primates can utilize the
arboreal environment to their advantage, and further research in
this area has the potential to improve our understanding of the cog-
nitive capacities of wild primates. Because our data collection was
opportunistic, our sample size was necessarily small. In future, more
widespread studies are needed to establish the overall prevalence
of branch pumping and tree swaying behaviors in our focal species,
and other primates more broadly. Nevertheless, our study provides
the first quantitative evidence that primates can use tree compli-
ance to augment leaping performance, promoting the need for fur-
ther investigation of the role support compliance plays in the
evolutionary adaptations underlying arboreal locomotion. More in-
depth studies should focus on identifying the underlying cognitive
mechanisms of branch pumping and tree swaying, the ontogeny of
these behaviors, and their possible use among other primate

species.
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