
1

Efficient and Side-Channel Resistant Ed25519 on
ARM Cortex-M4

Daniel Owens, Rabih El Khatib, Mojtaba Bisheh-Niasar, Reza Azarderakhsh, Member, IEEE
and Mehran Mozaffari Kermani, Senior Member, IEEE

Abstract—As the cryptographic community turns its focus toward
post-quantum cryptography, the demand for classical crypto-
graphic schemes such as Elliptic Curve Cryptography (ECC)
remains high. In this work, we present an optimized imple-
mentation of the Edwards Curve Digital Signature Algorithm
(EdDSA) operations Keygen, Sign, and Verify using the Ed25519
parameter on the ARM Cortex-M4 using optimized assembly
code. We discuss the optimization of field and group arithmetic
to produce high-throughput cryptographic primitives. Then, we
present the first SCA-resistant implementation of the Signed
Comb method, and Test Vector Leakage Assessment (TVLA)
measurements. Our fastest implementation performs Ed25519
Keygen in 200,000 cycles, Sign in 240,000 cycles, and Verify in
720,000 cycles on the ARM Cortex-M4.

I. INTRODUCTION

It is estimated that by 2023, about 14.7 billion Internet of
Things (IoT) devices will be connected to the Internet. The
proliferation of IoT devices is creating a revolution in con-
nectivity worldwide, while simultaneously creating difficult
security and privacy problems [1].

Elliptic Curve Cryptography (ECC) is a popular public-key
system [2] that is commonly used in IoT devices. Ed25519 is
the Edwards Digital Signature Algorithm (EdDSA) configured
to use the elliptic curve Edwards25519 and SHA-512 intro-
duced in 2011 [3]. It was standardized in 2019 by the NIST
in FIPS 186-5 [4] and is used to produce public keys, com-
pute digital signatures of messages, and verify signature and
message pairs. However, all ECC systems, including Ed25519,
are vulnerable to Shor’s algorithm [5] once a suitably powerful
quantum computer is created.

In 2022 the National Institute of Standards and Technology
(NIST) announced it had chosen the first group of winners
from its six-year competition to find new quantum-resistant
cryptographic algorithms [6]. Although NIST’s first standards
for post-quantum cryptography (PQC) algorithms are not
expected until 2024 [7], the transition to PQC standards has
already begun. During this phase, hybrid systems which com-
bine classical and PQC will be needed to maintain regulations
and standards for the duration of the transition period [8].
Hence, continued research that improves latency and reduces
resource utilization for ECC in constrained devices is still
relevant.

Side-channel attacks. IoT devices may be deployed in a man-
ner that exposes them to physical access with few restrictions.
As a result, a physical attack model should be considered when

writing cryptographic software for these devices. There are
two types of such attacks: passive and active. Active attacks
are fault attacks, whereas passive attacks, performed via side-
channel analysis (SCA), include power and timing attacks [9],
among others. We focus on defense against passive attacks in
this work.

Our contributions. Ed25519 has been thoroughly researched
and discussed. However, there is little literature about the use
of the Signed Comb method of scalar multiplication proposed
by [10]. This work bests the prior work [11] with an up
to 52% reduction in latency of the Ed25519 cryptographic
primitives using the Signed Comb Method. For the first time,
side-channel countermeasures are evaluated while using the
Signed Comb scalar multiplication method.

Organization. This paper is organized as follows: In §2,
we discuss the basics about Ed25519, the ECC operational
structure, and introduce the target architecture. In §3 we
describe implementation details about finite field arithmetic
and scalar multiplication. Finally, in §4 we discuss side-
channel countermeasures and present Test Vector Leakage
Assessment (TVLA) results.

II. PRELIMINARIES

A. Ed25519

The Edwards-Curve Digital Signature Algorithm (EdDSA)
with parameter Ed25519 is defined in [12], where the points
satisfying the equation Ed/Fp : ax2 + y2 = 1+ dx2y2 lay on
the twisted Edwards curve over a finite field, defined as Fp

with p = 2255 − 19 and

d = 3709570593466943934313808350875456518...

...9542113879803219016388785533085940283555

where P = (x, y) and x, y ∈ Fp. A combination of finite field
operations performed on values in the field Fp such as long
integer addition, subtraction, and multiplication form the basis
for group operations that are applied to elements on the curve
that form the EdDSA cryptographic primitives Keygen, Sign,
and Verify.

B. ARMv7-M Architecture

To evaluate and analyze our implementation’s performance,
we use the ARM Cortex-M4 based STM32F407VG micro
controller, which is a reduced instruction set computer (RISC)
[13]. It features 192 KB of RAM and 1MB of flash memory,

2

sixteen (thirteen usable) 32-bit General Purpose Registers
(GPRs), and a further 32, 32-bit (or 16, 64-bit) Floating Point
Registers (FPRs) intended for use with the platform’s built-in
Floating Point Unit (FPU).

Importantly, the ARMv7-M ISA includes the low-latency Mul-
tiply ACcumulate (MAC) instructions UMUL and UMAAL,
which allow the execution of 32 × 32-bit multiplication
(UMAAL adds two additions) needing only a single clock
cycle each. These operations are crucial for efficient finite field
arithmetic.

III. IMPLEMENTATION DETAILS

A. Finite Field Arithmetic

High throughput, low latency operation of Ed25519 is only
possible with efficient finite field operations. Open source code
provided by the X25519-Cortex-M4 project created by
[14] was utilized in our work to perform modular addition
and subtraction, as well as Fp multiplication. This project
offers the fastest known Fp arithmetic routines for ARMv7-M
architectures.

Modular Addition and Subtraction: Modular addition is
implemented using the ADC and ADS instructions, needing
only 1 cycle to add and propagate the carry. A weak reduction
F2256−38 is used to avoid the final carry propagation and defer
the full Fp reduction until a multiplication is performed to save
cycles. Modular addition is implemented in a similar manner
with the instructions SBC and SBS.

Multi-precision Multiplication: An efficient multi-precision
multiplication design is a necessity for a low-latency imple-
mentation. The approach utilized by X25519-Cortex-M4,
illustrated in Figure 1, is similar to the Operand Caching
techniques described by Fuji et al. [11] and Anastasova et
al. [15] where the required operations are split into two
rows and processed in-order. Execution proceeds from right to
left, starting from r0, with horizontal connections indicating
multiplication and vertical indicating addition.

Modular Inversion: While the X25519-Cortex-M4
project includes code for inversion, we implemented the
Itoh-Tsuji method proposed in [16] which uses 11 modular
multiplications and 254 modular squares to compute ap−2 ≡
a−1 mod p in 53% less cycles than [11].

Fig. 1. Rhombus representation of the multiplication strategy.

B. The Signed Comb Method
Currently the most efficient constant time scalar multiplication
algorithm, the Signed Comb method [10] is used for Ed25519
Keygen and Sign in our implementation. Three parameters are
required: n the number of combs (with one comb per block),
t the number of ”teeth” in each comb, and s the number of
bits between each teeth. The number of bits in a block is
determined by t · s. This work uses the parameters n = 3,
t = 5, and s = 17, where n · t · s = 255 = log2(p).

Signed Binary Conversion: Before performing the comb
operations the scalar e must be converted to its signed binary
form d using Equation 1 provided by [10]

d =
e+ 2D − 1

2
(1)

where di ∈ {±1} and D > log2(l). D can be set to the length
of the input scalar e.

Fig. 2. Example of a comb operation where n = 2, t = 3, and s = 3

Signed Comb Precomputation: The Signed Comb method
uses precomputed multiples of the Ed25519 base point G
to significantly reduce the number of Point Additions and
Point Doubles needed to perform the multiplication. This work
precomputes the multiples offline and stores them as a table
for use during operation.

To precompute the multiples, first observe that there are j =
n − 1 combs and k = t − 1 teeth, and an offset o for each
block j of the scalar d. Then for each tooth k of the jth comb
compute Cj,k, from [10] as

Cj,k =

tj−1∑
i=0

doj+sji+k · 2sji (2)

Finally, compute the 2tj − 1 values of |Cj,k| · G for each
j ∈ [0, n) [10]. Because d is in signed binary form, a leading
coefficient of 1 indicates a negative value. Hence, we can
reduce the necessary number of values from 2tj−1 to 2tj−1−1
by only keeping the positive multiples. During multiplication,
if a negative multiple is needed, the inverse of a positive
multiple is computed where the inverse is defined as (−x, y).
Our comb parameters n = 3, t = 5, and s = 17 require 48
precomputed multiples using 4.5 KB of ROM.

Signed Comb Computation: The computation stage consists
of a small amount of point doubles and adds, which vary based
on the n, t, s parameters chosen. After multiples of G have
been precomputed, for each comb j ∈ [0, n), double, then
add or subtract the appropriate multiple. Let Q = G. The

3

TABLE I
COMPARISON OF 255-BIT SCALAR MULTIPLICATION ALGORITHM COSTS

IN TERMS OF POINT ADDITIONS (PA) AND POINT DOUBLES (PD)

Algorithm Cost in PA/PD

Double-and-Add 255PD+128PA

Montgomery Ladder 255PD/PA

Window (average) 255PD+((1− 2−w)255/w)PA

w-NAF method (average) 255PD+(255/(w + 1))PA

Signed Comb (smax − 1)PD+(
∑n−1

j=0 sj)PA

Signed Comb where n = 3, t = 5, s = 17 16PD+51PA

computation proceeds as follows in Equation 3, demonstrated
in [10]

QFinal =
0∑

k=s−1

2Q+
n−1∑
j=0

Q±Gj,k (mod l) (3)

where 2Q is point doubling and ± is point addition between
the intermediate point Q and the possibly inverted multiple
Gj,k. Point inversion is always performed, and Gj,k or −Gj,k

is chosen using a masking method. For our parameters, scalar
multiplication requires 16PD + 51PA. Point addition and
point doubling are implemented as demonstrated in [12]. For
a comparison with other techniques, see Table I.

C. w-NAF

Ed25519 Verify operates only on public information. For this
reason the non-constant time w-NAF method was utilized
for scalar multiplication, based on the proposal by [17]. To
compute the double point multiplication of two points, the
base point B is multiplied by the S portion of the signature,
and the point A decompressed from the public key multiplied
by the hash H(R,A,M). To decompress the public key, we
use the fast decompression method proposed in [3] which
does not involve an inversion and instead only requires a
single exponentiation. To verify the signature, we use the fast
single-signature verification method which requires checking
if SB −H(R,A,M)A (computed through double point mul-
tiplication) and R are the same in affine coordinates, which
requires an inversion. [3]

IV. SIDE-CHANNEL ANALYSIS

A. Side Channel Countermeasures

Two popular SCA countermeasures for ECC systems are
Scalar Blinding and Point Randomization.

Scalar Blinding: The scalar s is blinded by adding it to
a multiple of the group order l by some random integer r,
computing s′ = s+r · l, such that the final result s′ ·P = s ·P .
In our final implementation we chose to use a 129-bit random
value for r which increases the bit length of the scalar from
255 bits to 384. In addition, to accommodate the longer scalar,
our comb parameters were changed to (n = 4, t = 4, s = 24)
which requires 32 precomputed multiples using 3 KB of ROM.

Point Randomization: The base point G is replaced with G′

by selecting a random integer λ, then multiplying G’s coef-
ficients by λ. Point Randomization is costly, and introduced
leakage when used with the Signed Comb method, therefore
it is not a part of our design.

B. Test Vector Leakage Assessment

Test Vector Leakage Assessment (TVLA) is a method to
robustly and efficiently detect leakage a passive attacker may
be able to observe during cryptographic operations [18]. Using
the plot provided in [19], a value of 7 was chosen as our
t-threshold, represented as blue lines. For evaluation, non-
specific fixed vs. random t tests were performed as presented
in [18].

C. TVLA Measurements

While performing side-channel analysis, the SHA-512 was
excluded from Keygen. In Sign, the first hash of the secret
key was excluded. SHA-512 is known to be insecure as
demonstrated by [20] and we consider it outside the scope
of this work. For development and benchmarking, an open
source version of SHA-512 was used as provided by [21].

Experimental Setup: TVLA experiments were performed
with the following equipment and configuration:

• A host PC that sends test vectors to the DUT
• A Picotech PicoScope 3000 series, 200 MHz bandwidth

and 8-bit sample resolution.
• The NewAE ChipWhisperer lite board [22]
• The NewAE CW308T-STM32F ARM Cortex-M4 target

board, mounted on the NewAE CW308 UFO board [22]

The DUT was run at 25 MHz for all experiments. The power
traces were obtained via a passive probe connected to the
CW308 UFO board at a rate of 125 MS/s, 5 samples per
DUT clock cycle.

Baseline TVLA Measurements: A large amount of leakage
over the t threshold was observed in the absence of coun-
termeasures after only 500 TVLA traces were processed in
Figure 3.

Fig. 3. Left: Unprotected Keygen using the Signed-Comb method (parameters
3,5,17) after performing TVLA over 500 traces. Right: Unprotected Sign using
the Signed-Comb method (parameters 3,5,17) after performing TVLA over
500 traces.

TVLA Measurements with Countermeasures: Under the
same set of experimental criteria, TVLA was applied to the
implementation of Keygen with only Scalar Blinding over

4

10,000 traces which can be observed in Figure 4. Only 500
traces where recorded for Sign with Scalar Blinding, as seen
in Figure 4. Even though the initial hash was removed, the
remaining hash functions still leak significant information after
only a small amount of traces.

Fig. 4. Left: Protected Keygen using the Signed-Comb method (parameters
4,4,24) with Scalar Blinding after performing TVLA over 10,000 traces. Right:
Protected Sign using the Signed-Comb method (parameters 4,4,24) with Scalar
Blinding after performing TVLA over 500 traces. SHA-512 is responsible for
the leakage present.

V. PERFORMANCE & CONCLUSIONS

See Table II for a comparison of our work compared
to the previous best work. All code was compiled with
arm-none-eabi-gcc version 10.2.1, using the -O3 op-
timization flag.

TABLE II
ED25519 DSA PERFORMANCE ON IOT PLATFORMS.

KCC IS KILO-CLOCK CYCLES.

Work Platform
Freq. Keygen Sign Verify

[MHz] [KCCs] [KCCs] [KCCs]

Ed25519 (No SCA) [11] Cortex-M4 48 347 496 1265

This work Cortex-M4
24 200 239 722

168 214 254 760

This work
(SCA 129-bit Scalar Blinding) Cortex-M4

24 325 364 -

168 344 385 -

In this work, we presented an efficient and side-channel
secure implementation of Ed25519 on the ARM Cortex-M4.
Our implementation was shown to outperform existing works
in latency when performing Keygen, Sign, and Verify due
to highly optimized target-specific assembly code. We also
presented side-channel analysis results of Keygen and Sign
implemented with the Signed Comb Method for the first time.
Performance was reported for the design with and without
SCA countermeasures.

VI. ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
comments. This work is supported in parts by NSF 2147196
grant.

REFERENCES

[1] E. Ronen and A. Shamir, “Extended functionality attacks on IoT devices:
The case of smart lights,” in 2016 IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 3–12.

[2] V. S. Miller, “Use of elliptic curves in cryptography,” in Conference on
the Theory and Application of Cryptographic Techniques. Springer, pp.
417–426.

[3] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” vol. 2, pp. 77–89.

[4] National Institute of Standards and Technology, “FIPS PUB 186-5
(Draft) - Digital Signature Standard (DSS).” [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf

[5] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proceedings 35th Annual Symposium on Foundations
of Computer Science. Ieee, pp. 124–134.

[6] “NIST Announces First Four Quantum-
Resistant Cryptographic Algorithms.” [Online].
Available: https://www.nist.gov/news-events/news/2022/07/
nist-announces-first-four-quantum-resistant-cryptographic-algorithms

[7] D. Moody, “NIST PQC: LOOKING INTO THE
FUTURE.” [Online]. Available: https://csrc.nist.gov/csrc/media/
Presentations/2022/nist-pqc-looking-into-the-future/images-media/
session-1-moody-looking-into-future-pqc2022.pdf

[8] N. Bindel, U. Herath, M. McKague, and D. Stebila, “Transitioning to a
quantum-resistant public key infrastructure,” Cryptology ePrint Archive,
Paper 2017/460. [Online]. Available: https://eprint.iacr.org/2017/460

[9] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems,” in Advances in Cryptology CRYPTO 1996,
N. Koblitz, Ed. Springer Berlin Heidelberg, vol. 1109, pp. 104–113.

[10] M. Hamburg, “Fast and compact elliptic-curve cryptography.” [Online].
Available: https://eprint.iacr.org/2012/309

[11] H. Fujii and D. F. Aranha, “Curve25519 for the Cortex-M4 and
Beyond,” in Progress in Cryptology – LATINCRYPT 2017, T. Lange and
O. Dunkelman, Eds. Springer International Publishing, pp. 109–127.

[12] S. Josefsson and I. Liusvaara, “Edwards-Curve Digital Signature
Algorithm (EdDSA),” p. RFC8032. [Online]. Available: https://www.
rfc-editor.org/info/rfc8032

[13] ARM, “ARM® Cortex®-M4 Processor Technical Reference Manual
Revision: R0p1.” [Online]. Available: https://developer.arm.com/
documentation/100166/0001

[14] Emill, “X25519-Cortex-M4.” [Online]. Available: https://github.com/
Emill/X25519-Cortex-M4

[15] M. Anastasova, M. Bisheh Niasar, H. Seo, R. Azarderakhsh, and
M. Mozaffari Kermani, “Efficient and side-channel resistant design of
high-security ed448 on ARM cortex-M4.”

[16] D. J. Bernstein, “Curve25519: New Diffie-Hellman Speed Records,” in
Public Key Cryptography - PKC 2006, M. Yung, Y. Dodis, A. Kiayias,
and T. Malkin, Eds. Springer Berlin Heidelberg, pp. 207–228.

[17] D. Hankerson, S. A. Vanstone, and A. Menezes, “Guide to elliptic curve
cryptography,” in Springer Professional Computing.

[18] T. Schneider and A. Moradi, “Leakage assessment methodology,”
vol. 6, no. 2, pp. 85–99. [Online]. Available: https://doi.org/10.1007/
s13389-016-0120-y

[19] M. Bisheh Niasar, M. Anastasova, A. Abdulgadir, H. Seo, and
R. Azarderakhsh, “Side-Channel Analysis and Countermeasure Design
for Implementation of Curve448 on Cortex-M4.”

[20] N. Samwel, L. Batina, G. Bertoni, J. Daemen, and R. Susella,
“Breaking Ed25519 in WolfSSL,” in Topics in Cryptology CT-RSA
2018, ser. Lecture Notes in Computer Science, N. P. Smart, Ed.
Springer International Publishing, pp. 1–20. [Online]. Available:
https://nielssamwel.nl/papers/ctrsa2018 wolfssl.pdf

[21] libtom, “LibTomCrypt.” [Online]. Available: https://www.libtom.net/
LibTomCrypt/

[22] NewAE, “CHIPWHISPERER.” [Online]. Available: https://www.newae.
com/chipwhisperer

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://csrc.nist.gov/csrc/media/Presentations/2022/nist-pqc-looking-into-the-future/images-media/session-1-moody-looking-into-future-pqc2022.pdf
https://csrc.nist.gov/csrc/media/Presentations/2022/nist-pqc-looking-into-the-future/images-media/session-1-moody-looking-into-future-pqc2022.pdf
https://csrc.nist.gov/csrc/media/Presentations/2022/nist-pqc-looking-into-the-future/images-media/session-1-moody-looking-into-future-pqc2022.pdf
https://eprint.iacr.org/2017/460
https://eprint.iacr.org/2012/309
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://developer.arm.com/documentation/100166/0001
https://developer.arm.com/documentation/100166/0001
https://github.com/Emill/X25519-Cortex-M4
https://github.com/Emill/X25519-Cortex-M4
https://doi.org/10.1007/s13389-016-0120-y
https://doi.org/10.1007/s13389-016-0120-y
https://nielssamwel.nl/papers/ctrsa2018_wolfssl.pdf
https://www.libtom.net/LibTomCrypt/
https://www.libtom.net/LibTomCrypt/
https://www.newae.com/chipwhisperer
https://www.newae.com/chipwhisperer

	Introduction
	Preliminaries
	Ed25519
	ARMv7-M Architecture

	Implementation Details
	Finite Field Arithmetic
	The Signed Comb Method
	w-NAF

	Side-channel Analysis
	Side Channel Countermeasures
	Test Vector Leakage Assessment
	TVLA Measurements

	Performance & Conclusions
	Acknowledgments
	References

