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We implement coherent delocalization as a tool for improving the two primary metrics of atomic clock
performance: systematic uncertainty and instability. By decreasing atomic density with coherent
delocalization, we suppress cold-collision shifts and two-body losses. Atom loss attributed to Landau-
Zener tunneling in the ground lattice band would compromise coherent delocalization at low trap depths for
our 171Yb atoms; hence, we implement for the first time delocalization in excited lattice bands. Doing so
increases the spatial distribution of atoms trapped in the vertically oriented optical lattice by ∼7 times. At
the same time, we observe a reduction of the cold-collision shift by 6.5(8) times, while also making
inelastic two-body loss negligible. With these advantages, we measure the trap-light-induced quenching
rate and natural lifetime of the 3P0 excited state as 5.7ð7Þ × 10−4 E−1

r s−1 and 19(2) s, respectively.
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Optical lattice clocks have emerged on the forefront
of frequency metrology, reaching fractional frequency
uncertainties in the low-10−18 decade [1–3]. This high
performance has already enabled sensitive explorations of
dark matter models [4–7] and early studies of Earth’s
geopotential [2,8–10]. As optical lattice clocks continue
to improve, they promise to surpass classical geodetic
measurement [11–13], to detect gravitational waves
[14,15], and to more deeply probe beyond-standard-model
physics [16,17].

One important systematic effect afflicting lattice clocks
is the cold-collision shift. This density-dependent fre-
quency shift is typically suppressed by exploiting low
temperatures and Fermi statistics [18]. Nevertheless, clock
transition shifts can still be significant at the 10−18 level
[18,19], sometimes even when atom number is intention-
ally restricted to decrease atomic density [3,20]. Other
approaches have been used to reduce the cold-collision
shift in specific operational conditions [18,20–24], but a
simple reduction in atomic density remains a universal and
robust strategy to mitigate the effect. However, the push for
improved clock stability represents a strong competing
interest, since higher atom numbers benefit the quantum
projection noise (QPN) stability limit for uncorrelated
atoms [25]. Density-dependent two-body losses also cause
excess atom loss [20,26], subsequently degrading stability.
Here, we adapt coherent delocalization, a Floquet

engineering method developed for gravimetry [27,28], to
reduce the burden of density-dependent effects on optical
lattice clocks. Amplitude modulation (AM) of a one-
dimensional optical lattice at multiples of the Bloch
frequency induces tunneling between lattice sites. It has
been shown to increase the root-mean-square spatial extent

of trapped 88Sr atoms by as much as 15 times in 1 s of
modulation [28]. However, while the speed of delocaliza-
tion increases for the shallowest of lattice depths, Landau-
Zener (LZ) tunneling can introduce significant atom loss
[29]. To mitigate the loss, we induce tunneling between
lattice sites in the excited bands of deeper lattice potentials.
Through the application of adiabatic rapid passage (ARP)
on the clock transition motional sidebands [30], excited
lattice bands (nz > 0) can be prepared with high purity. The
excited bands enlarge AM-induced tunneling rates relative
to the ground motional band. Using this preparation
protocol, we show a nearly order-of-magnitude increase
of the spatial extent of our atomic sample after 1 s of
coherent delocalization. As an immediate benefit of delo-
calization, we measure a 6.5(8) times reduction in the cold-
collision shift that softens the trade-off between high atom
numbers and low systematic frequency shifts. In addition,
two-body loss is rendered negligible, allowing us to
unambiguously measure the lattice Raman scattering and
natural lifetime limits of the excited state.
Vertical lattices use gravity to break the degeneracy

between neighboring lattice sites by hνB, where h is
Planck’s constant and νB ≈ 1593 Hz is the Bloch frequency
for 171Yb. As a result, atomic wave functions are localized
in Wannier-Stark (WS) states. Amplitude modulating the
lattice at νB reinstates coherent evolution of the wave
function between lattice sites via tunneling, as shown in
Fig. 1. The tunneling rate depends on the overlap of WS
wave functions in neighboring lattice sites, which is
naturally larger at low trap depths [31]. We begin by
experimentally measuring unwanted atom loss versus
lattice depth. The main details of our experiment have
been described elsewhere [2]. Briefly, our vertically aligned
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759-nm magic wavelength optical lattice, with Rayleigh
length 2.3 cm, is loaded with up to 104 atoms via two
magneto-optical trap (MOT) stages, first using the broad
399-nm transition, followed by the narrow 556-nm tran-
sition. For this Letter, a Sisyphus cooling mechanism using
the clock transition is also applied to reduce the radial
atomic temperature to Tr ∼ 450 nK and the longitudinal
atomic temperature to ∼600 nK [n̄z ¼ 0.07ð3Þ], as well as
to enhance loading into an applied lattice depth U ≈ 57Er

(Er ¼ ðℏ2k2l =2mÞ, where ℏ ¼ h=2π, kl ¼ ð2π=λÞ, λ is the
optical lattice wavelength, and m is the mass of the 171Yb
atom) [32]. We then adiabatically ramp to various lattice
depths of interest and apply the adiabatic scaling law
Tr ∝

ffiffiffiffi
U

p
. Finite radial temperatures lower the average

trap depth experienced by the atoms from U to an effective
trap depth Ueff . We use

Ueff ¼
Z

U

0

ρðU0ÞU0dU0 ¼ Uð1þ kBTr=UÞ−1; ð1Þ

for its simplicity in tunneling rate calculations, where
ρðU0Þ ¼ ð1=kBTrÞ

�
U0=U

�ðU=kBTrÞ−1 is the probability den-
sity with respect to the local trap depth experienced by the
atom and kB is the Boltzmann constant [33,34].
We prepare atoms in longitudinal bands ranging from

nz ¼ 0 to 3 (see Appendix A), adiabatically ramp to various
trap depths, hold for thold ¼ 100 ms, and adiabatically ramp
back to a depth of 57 Er. The fraction of atoms remaining is
plotted in Fig. 2 against U. Based on linear interpolation of
the data in Fig. 2, the applied trap depth at which a 1=e
fraction remains is 5.5ð6Þ Er for nz ¼ 0 and 30.1ð5Þ Er for
nz ¼ 2. These depths are also theoretically calculated from
the LZ tunneling rate,

RLZðU; nzÞ ≈ νBe−π
2ΔEðU;nzÞ2=ð8mgErdÞ; ð2Þ

where ΔEðU; nzÞ is the band gap between nz and nz þ 1,
d ¼ λ=2, and g is the acceleration due to gravity [35]. To
better account for effective trap depth effects from the radial
temperature, we compute an average fraction of atoms
remaining

PLZðU; nzÞ ¼
R
U
0 ρðU0Þ exp½−tholdRLZðU0; nzÞ�dU0, which

are displayed as dashed lines on Fig. 2 for thold ¼
100 ms. We note that the time dependence and anharmonic
nature of radial oscillations are not considered in PLZ.
Armed with measurements of LZ tunneling atom loss,

we now consider the theoretically optimal conditions for
coherent delocalization. For amplitude modulation at νB,
the nearest neighbor tunneling rate (in the single-band
approximation) is

J=ℏ ¼ αUeff

2ℏ
hlþ 1j cosð2klzÞjli; ð3Þ

where jli is the WS wave function centered at site l, z is
the distance along the lattice, α is the AM depth, andUeff is
computed via Eq. (1) [31,36]. The WS wave functions are
numerically calculated for various trap depths and longi-
tudinal motional bands. At each trap depth we constrain α
such that the lowest applied trap depth reached during
modulation corresponds to PLZðU; nzÞ ¼ 1=e for thold ¼
100 ms (see Supplemental Material [36]). The theoretical
J=ℏ plotted in Fig. 3(a) show that, for a constant minimum
LZ lifetime, higher motional bands generally offer larger
tunneling rates. Alternatively, using the 1=e measured loss
thresholds from Fig. 2 to constrain α also displays
maximum tunneling rates that increase with nz.

We experimentally measure delocalization with fluores-
cence imaging of the lattice-trapped, ultracold atoms. We
elect to prepare atoms in nz ¼ 2 with high purity using
ARP and image the sample using 399-nm fluorescence.
Images are seen in Fig. 3(b) before and after coherent
delocalization in n̄z ¼ 2.00ð3Þ, U ¼ 40.0ð5Þ Er [effective
trap depth of 36.4ð4Þ Er], and α ¼ 0.3 (the experimentally
feasible fastest tunneling parameters). This coherent delo-
calization results in a modest ∼30% atom loss due to LZ

FIG. 1. Shaken vertical optical lattice potential. The tunneling
rate between neighboring lattice sites, shown as the strength of
the yellow bars, increases for higher longitudinal bands. FIG. 2. The population of atoms remaining after ramping to

various applied trap depths from 57ð1Þ Er. Atoms are prepared in
different longitudinal bands using ARP, with the targeted lattice
band labeled as nz. Dashed lines are theoretically determined
populations, PLZðU; nzÞ, which show LZ tunneling leads to loss
as the depth is lowered. The slight persistence in percent-level
survival rates at low trap depths seen in nz ¼ 2, 3 is due to the
percent-level impurity in the targeted lattice band.
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tunneling, in addition to 17(1)% loss due to the ARP
process. The left image is before tunneling, where the
spatial extent of the atomic sample is set by the last stage of
the 556-nm MOT. The right image shows, after coherent
tunneling, that the full width at half maximum is approx-
imately 7× larger, corresponding to a tunneling rate of
∼1800 sites=s. As shown in Fig. 3(a), lattice bands greater
than nz ¼ 2 could offer higher tunneling rates still.
Furthermore, Fig. 3(a) shows that, for approximately equal
LZ losses, at optimal conditions nz ¼ 0 takes ∼8× longer
to reach an identical decrease in density when compared
to nz ¼ 2.
To highlight the benefit of delocalization, we measure

the density dependent shift of the clock frequency in
delocalized samples and compare to control samples with-
out coherent delocalization. To quantify the reduction in
shift, for both the control case and delocalized test case, we
forgo optical pumping to enhance the collisional shift effect
(see Appendix C) and measure the frequency difference
between two distinct numbers of atoms. The shift versus the
difference in atom number is plotted in Fig. 4. The error
bars are the total Allan deviation at half the run length, with
run lengths typically 1.5 h long. A linear fit to the control
data (red line) shows the shift is 2.64ð7Þ × 10−19 per atom,
in reasonable agreement with our previous measurements
under somewhat different conditions [2]. In this case, some
scatter in the shift can be seen, showcasing how day-to-day
variations in experimental conditions may contribute to
fluctuations in the observed collision shift. This under-
scores the utility of reducing the shift by means of a robust
technique such as lower atomic density. A linear fit to the
delocalized data (blue line) shows a slope 6.5(8) times

smaller than the control case. We expect this reduction in
shift is entirely compatible with spin-polarized atomic
samples (see Appendix C) or other density shift reduction
techniques, including the larger lattice waists common in
enhancement cavities [2,46,47].
In addition to reducing density-dependent systematic

effects, coherent delocalization can reduce two-body loss
for the benefit of clock stability. Two-body loss originates
from on-site inelastic collisions involving at least one atom
in an excited electronic state [20] and can degrade spectro-
scopic contrast at high densities or long spectroscopy times.
To highlight the reduction in two-body loss from delocal-
ization, we experimentally measure population loss in the
1S0 and 3P0 states. In the absence of two-body loss, the
time-dependent populations (ng and ne, respectively) are
described by

ṅeðtÞ ¼ −Γ0
lossneðtÞ − ðΓ0 þ γLUeffÞneðtÞ ð4Þ

ṅgðtÞ ¼ −ΓlossngðtÞ þ ðΓ0 þ γLUeffÞneðtÞ; ð5Þ

which includes losses from the ground (Γloss) and excited
(Γ0

loss) states dominated by background gas collisions,
spontaneous decay rate from the excited state (Γ0), and
Raman-scattering-induced quenching of the excited state
proportional to the effective lattice depth (γLUeff ). We note
that the model deliberately does not include two-body loss
mechanisms, which could induce nonexponential decay not
seen in the model. For this model and all subsequently
mentioned fits, we use a more careful treatment to calculate
Ueff [34] and also include negligible running wave effects.
We prepare non-spin-polarized atoms in the excited state
via ARP, blow away any remaining ground-state atoms
using light resonant with the 399-nm 1S0 → 1P1 transition,
hold for a variable time with no applied magnetic field, and

FIG. 3. (a) We numerically integrate Eq. (3) to find the
theoretical maximum tunneling rates in each motional band.
Note the presence of effective trap depth scaling in the tunneling
rate. We assume that the trap depth at any point during AM must
not be lower than the cutoff depth, where PLZðU; nzÞ ¼ 1=e. For
a given band, this sets a maximum α for depths above the cutoff
depth. (b) Averaged fluorescence images of the delocalized Yb
sample (right) and original sample (left). Delocalization is
applied at the experimentally determined optimal conditions
for 1 s. The tilt is imperfect alignment of the camera’s vertical
axis to the lattice axis and makes a negligible contribution to the
determined size of the delocalized sample.

FIG. 4. We measure the shift of the clock transition frequency
between two non-spin-polarized samples of different atom
numbers, with delocalized samples in blue squares and non-
delocalized samples in red triangles. For the nondelocalized
sample, data were taken at atom number differences larger than
3000, which are not plotted but still contribute to the fit. The red
(blue) line gives a linear fit to the nondelocalized (delocalized)
measurements and shaded regions are 1-σ statistical uncertainty.
Atom number is calibrated through fluorescence measurements,
and all measurements are taken between 55 Er and 62 Er.
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finally measure the excited- and ground-state populations.
The populations are normalized to the number of atoms
using an interleaved cycle employing no hold time, which
reduces the effects of trapped atom number drifts over time.
Each measurement is averaged for 70 experimental cycles
or more. Figure 5(a) shows, in black triangles, the results
for the excited-state population in a nondelocalized sample.
We observe prominent nonexponential behavior from two-
body loss for hold times below 2 s. After about 2 s, atom
loss has decreased the density to the point where two-body
loss is small and the remaining exponential loss is domi-
nated by background gas collisions. Repeating an identical
measurement with delocalized atoms, shown in orange
squares, the solutions of Eqs. (4) and (5) are fit to the
normalized populations [48]. We see an excellent fit to the

coupled differential equation model (orange line, reduced
χ-squared statistic of 1.86) for an identical number of
atoms, indicating negligible two-body loss. Benefiting
from the suppressed loss, at 3 s hold time the delocalized
sample has 1.85(8) times more excited-state atoms remain-
ing than the nondelocalized sample.
Without the nuisance of two-body loss, we can more

easily study excited-state decay from lattice quenching
(γLUeff ) and spontaneous decay (Γ0). Lattice quenching
deserves special attention: the magic wavelength is only
64 THz detuned from the 3P0 → 3S1 E1 transition, leading
to Raman scattering among the 3P manifold. Raman
scattering from 3P0 to 3P1 and the subsequent spontaneous
emission to 1S0 leads to a quenching rate of the clock
transition (γLUeff ) scaling linearly in Ueff [49,51].
To quantify the effect, we measure ne and ng for atoms

initially prepared in the excited state over a range of hold
times and trap depths. Spin-polarized and delocalized
atoms are prepared identically to the above-described two-
body loss measurement, and at each trap depth Eqs. (4) and
(5) are fit to the populations. Representative datasets, taken
at U ¼ 59.8ð5Þ Er, along with their fits are shown in the
inset of Fig. 5(b). We note that, at every trap depth, Γloss is
simultaneously fit to a second dataset of atoms prepared
only in the ground state and susceptible only to losses
from Γloss. We find Γloss to be between 1.77ð2Þ × 10−1 and
1.97ð1Þ × 10−1 s−1, depending on the date the data were
taken on and with no clear dependence on trap depth. Γ0

loss
scales as ≈Γlossð0.98þ 0.003 ×Ueff=ErÞ, with the trap-
depth-dependent loss rate found to be 3.3ð5Þ×10−4E−1

r s−1
(see Supplemental Material [36]). Such linear scaling with
Ueff is expected from Raman scattering to the untrapped 3P2

state, theoretically predicted to be 3.5 × 10−4 E−1
r s−1 [36].

The total decay rate to the ground state Γtot ¼ Γ0 þ γLUeff is
plotted against effective trap depth in Fig. 5(b) using hollow
squares.
To verify the result, we conducted a similar measurement

on a second distinct Yb lattice clock apparatus, shown as
solid squares in Fig. 5. While that system did not employ
coherent delocalization, it uses a lattice enhancement cavity
with a large waist [2]. Coupled with measurements limited
to low atom number, we measured negligible two-body
losses. This system did not utilize ARP, but rather a strong
resonant drive on the clock transition to populate 3P0. For
some data points, radial cooling was used, while for others
no radial cooling was used, consequently remaining more
sensitive to the effective trap depth scaling. By fitting to a
line, we find the quenching rate of the 759-nm lattice and
the clock state natural lifetime for each independent clock
apparatus, with agreement between apparatus at the 7%
level. We report a lattice quenching rate of γL ¼ 5.7ð7Þ ×
10−4 E−1

r s−1 based on the weighted mean of quenching
rates for each clock apparatus, with weights of the inverse
scatter in γL when using different well-motivated methods
of determining Ueff [33,34,49] and the uncertainty taken as

FIG. 5. (a) We measure the reduction in two-body loss from
delocalization at U ¼ 60ð1Þ Er. Black triangles are neðtÞ in
nondelocalized samples, orange squares are neðtÞ in delocalized
samples, and the orange line is the fit to Eq. (4) for the delocalized
sample. Both samples have identical atom numbers to begin.
(b) Excited-state total decay rates are plotted versus the effective
trap depth. Hollow red (solid blue) points are taken on different
apparatus, and the solid red (dashed blue) line indicates the linear
fit to each dataset. The gray line is a previous measurement of the
clock state natural lifetime [50]. Excited-state total decay rates
are computed from fits such as the representative one in the
inset, which was taken at U ¼ 59.8ð5Þ Er, corresponding to
Ueff ¼ 50.1 Er. For atoms beginning in the ground state (1S0),
ng are in blue triangles, and the blue line is a fit to
ngðtÞ ¼ ngðt ¼ 0Þ exp ð−ΓlosstÞ. For atoms beginning in the
excited 3P0 state, ne (ng) are plotted in red squares (green
circles), and the red (green) line is the fit to Eq. (4) [Eq. (5)],
with Γloss shared among all three fits for a given trap depth. The
shaded areas are the 1-σ statistical uncertainty regions.
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one-half the maximum difference between all methods on
both clock apparatus. This quenching rate is in reasonable
agreement with the theoretically predicted value [36]. The
natural lifetime of 19(2) s is determined by an identical
method and is in 1.3-σ agreement with a previously
reported value [50]. Blackbody radiation decay from 3P0

has a negligible effect on Γ0: for 300 K operation, we
theoretically compute the pumping rates of the dominant
E1 transition (3P0 → 3D1) and M1 transition (3P0 → 3P1)
as 5.8 × 10−9 and 6.7 × 10−4 s−1, respectively.
Reducing atomic density by means of coherent delocal-

ization can enhance both systematic frequency shift and
QPN-limited stability performance for the next generation
of optical clocks. Systematic frequency shifts due to cold
collisions were reduced by a factor of 6.5(8) times. QPN is
also lessened by reason of reduced two-body loss, in this
case doubling the number of atoms remaining in the excited
clock state for long interrogations enabled by the current
generation of state-of-the-art cryogenic cavities [52].
Exploiting suppressed two-body loss, we measure the rate
of Raman-scattering-induced quenching from the lattice
and the excited clock state natural lifetime. We note that
lattice quenching will unavoidably generate distinguishable
unpolarized atoms, further increasing the need for density
shift reduction techniques.
The quantum control techniques presented here have

applications beyond reducing density-dependent effects.
State preparation in higher-lying nz bands is useful for
determining the M1þ E2 shift in optical lattice clocks
[33,53–55]. Clock transition ARP can remove the need
for repump lasers in novel systems where repumping the
excited clock states may not be feasible (see Appendix A)
[56,57]. Control of the tunneling rate can allow for
quantum simulation of problems in complexity theory
[58] and for realization of Hamiltonians in tweezer arrays
[59]. Additionally, coherent delocalization can be a
useful tool for clocks that spatially resolve their atomic
samples [47,60].

We gratefully acknowledge J. Lilieholm and T. Bothwell
for careful reading of the manuscript. This work was
supported by NIST, ONR, and NSF QLCI Grant
No. 2016244.

Appendix A: Adiabatic rapid passage.—We efficiently
prepare atoms in nz ¼ 1, 2, and 3 using ARP on the
clock (1S0 − 3P0) transition. The clock laser is collinear
with the optical lattice and benefits from resolved
motional sidebands [61]. At an operation depth of 60 Er
and Tr ∼ 450 nK, the clock laser’s frequency is swept
over the desired spectral feature (Δnz ¼ −1, 0, or þ1)
using a 14-kHz sweep range in 2 ms, while the intensity
is modulated with an approximately Blackman profile.
The peak carrier (j1S0; nz ¼ ji → j3P0; nz ¼ ji) Rabi
frequency is ≈14 kHz, and the peak first-order motional

sideband (j1S0; nz ¼ ji → j3P0; nz ¼ j� 1i) Rabi frequ-
ency is ≈3.5 kHz. The sweep range is chosen to main-
tain sufficient detuning from nearby motional sidebands
when at ∼57 Er, though the sweep range could be
extended at larger trap depths (as could state preparation
into higher nz). For the carrier transition, we realize a
transfer efficiency of 98ð1Þ%.
The high ARP transfer efficiency on the carrier transition

suggests that ARP would be a useful technique for 3P0 state
detection by means of applying ARP to transfer atoms to
the ground state, and then cycling the 1S0 − 1P1 transition.
In most lattice clocks, it is common to use one or more
optical pumping lasers to 3D1 or 3S1 for this function, at the
cost of additional laser wavelengths and lossy decay
channels. To illustrate the utility of ARP for state detection,
we demonstrate narrow-line Rabi spectroscopy in Fig. 6
using both ARP and a more traditional 1388-nm 3P0 − 3D1

optical pumping laser.
To realize our choice of nz ¼ 2 for coherent delocaliza-

tion, we first prepare the atoms in the ground motional band
using Sisyphus cooling [32]. To prepare atoms in nz ¼ 2

for delocalization, we first transfer the initial j1S0; nz ¼ 0i
population to j3P0; nz ¼ 1i via ARP. The Δnz ¼ 1 side-
band corner frequency is 30 kHz at a 60 Er trap depth, and
we choose a central ARP frequency of 24.5 kHz. The
Δnz ¼ 1 ARP has identical parameters to the carrier ARP:
a sweep time of 2 ms, a 14-kHz sweep range, intensity
modulated with an approximately Blackman profile, and an
identical peak intensity corresponding to a carrier Rabi
frequency of ∼14 kHz, which is a Δnz ¼ 1 sideband Rabi
frequency of ∼3.5 kHz. This sideband ARP realizes a
transfer efficiency to j3P0; nz ¼ 1i of 90(1)%. The remain-
ing impurity, j1S0; nz ¼ 0i, is heated out of the lattice using
399-nm light resonant with the 1S0 − 1P1 transition. We
then apply ARP on the carrier to move population to
j1S0; nz ¼ 1i, subsequently repumping any small fraction

FIG. 6. We measure a Rabi line by sweeping the frequency of
our 578-nm laser over the clock transition. The normalized
population is measured using electron shelving, with 1S0 atoms
first measured using 399-nm fluorescence and 3P0 atoms then
measured by transferring them to 1S0 then measuring 399-nm
fluorescence. We move atoms via the normal repump method
(3P0 − 3D1 1388-nm laser), shown in red triangles, or by ARP on
the carrier transition, shown in blue squares.
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of atoms remaining in 3P0 using 1388-nm light. (The ARP
on the carrier, compared to 1388-nm repumping, ensures as
few atoms as possible experience a spontaneous emission,
which can induce unwanted changes in nz populations,
thereby maximizing motional state purity.) This process is
applied j times to obtain atoms in j1S0; nz ¼ ji. For j ¼ 2,
the overall process is 83(1)% efficient, and atom losses are
predominantly the result of the 399-nm excitation to keep
the sample as pure as possible. For j > 2, trap anharmo-
nicity substantially changes the corner frequency of the
sideband, resulting in reduced transfer efficiency, though
this could be improved by dynamically modifying the
center frequency of the ARP.
To measure the preparation purity of jnz ¼ ji, we

adiabatically ramp (0.6 Er=ms) a sample prepared in
jnz ¼ ji to a trap depth for thold ¼ 100 ms, which we
computed to have a PLZðU; nz ¼ jÞ ≈ 0.005. We assume
that the remaining population is the impurity jnz < ji. To
account for LZ tunneling of jnz < ji, we take atoms
prepared in jnz ¼ j − 1i, subject them to the same adiabatic
ramp, and normalize the impurity by the fraction remain-
ing. For our sample prepared in nz ¼ 2, we measure an
nz < 2 impurity of 3.0(6)%.
To deexcite atoms back to j1S0; nz ¼ 0i after coherent

delocalization, we twice perform ARP on the red sideband,
ARP on the carrier, and then repumping. From here, we
deexcite the small residual jnz > 0i population by thrice
applying ARP on the red sideband, followed by repumping.
Using longitudinal sideband spectroscopy, we measure the
final longitudinal temperature to be ∼0.5 μK, which is
slightly colder than was achieved directly from Sisyphus
cooling. The entire ARP and delocalization process has also
been measured, using longitudinal sideband spectroscopy, to
decrease the radial temperature by <200ð100Þ nK; there-
fore, we conclude that ARP and delocalization does not lead
to detrimental heating. We also demonstrated preparation of
nz ¼ 2 atoms by performing ARP on the second-order
longitudinal sideband (j1S0; nz ¼ 0i → j3P0; nz ¼ 2i), but
found that the above-described protocol could realize the
desired nz ¼ 2 sample with less loss and greater purity.

Appendix B: Imaging.—To measure the tunneling rate,
we first adiabatically ramp the applied trap depth from
∼57 Er, then apply 1 s of AM to the voltage reference
of our trap light intensity servo that acts on an acoustic-
optic modulator, and finally adiabatically ramp back to
∼57 Er for imaging. During imaging, we apply light
resonant with the 1S0 − 1P1 transition and collect the
fluorescence on a CMOS camera.
The corresponding tunneling rate of ∼1800 sites=s can

be calculated as

J=ℏ ¼ 2
ffiffiffi
2

p

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2f − σ2i

t2

s
; ðB1Þ

where σfðiÞ is the final (initial) one-dimensional vertical
spread of the atomic sample from a Gaussian fit and t is the
time duration of amplitude modulation [31]. The exper-
imentally determined maximum tunneling rates agree with
the qualitative nz scaling from theory, but we measure an
excess beyond the predicted tunneling rates in all nz bands
(the excess at the experimentally optimal delocalization
condition is ∼75%).

Appendix C: Non-spin-polarized versus spin-polarized
density shifts.—Without optical pumping, our fermionic
171Yb atoms populate both mF ¼ �1=2 Zeeman states,
and s-wave collisional shifts between these are not
suppressed by Pauli exclusion. This yields a larger cold-
collision shift than traditional spin-polarized samples
(where p-wave shifts usually dominate), deliberately
chosen here to make measurement of the shift easier.
Though the shift is larger in absolute terms, since both
s- and p-wave shifts remain linear in density for typical
operational conditions, the degree of suppression we
measure here is indicative of the degree of suppression
that would be realized for p-wave shifts in a spin-
polarized sample.

Appendix D: Coherent tunneling.—The coherent tunne-
ling demonstrated in this Letter has numerous attractive
features for site-to-site wave function manipulation. In
nz ¼ 0, we demonstrate a Fourier limited resonance at
νB in measurements of the tunneling rate. Coherent
tunneling has wave function size that increases ∝ t
at the limit of long times, as opposed to ∝

ffiffi
t

p
for

incoherent tunneling. We observe size increases scaling

as ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0 þ v2t2

p
in Fig. 7(a), as expected for coherent

FIG. 7. Coherence in tunneling is demonstrated. (a) The vertical
size of the atomic sample is plotted versus time. The red line
shows a fit to the expected coherent tunneling dynamics offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ0 þ v2t2
p

, with the shaded region at 1-σ statistical uncertainty.
The vertical size is measured via Gaussian fit. The tunneling
parameters are atoms in nz ¼ 0 at 10 Er with α ¼ 0.4. (b) Re-
versal of coherent tunneling is demonstrated. A Loschmidt echo
[two pulses of coherent delocalization (AM) separated by a
freezing time tfr] is performed during the dark time of Ramsey
spectroscopy. The contrast of the Ramsey line shape is measured
to have a period of the freezing time, indicating that the coherent
tunneling dynamics can be reversed. Lines are a guide to the eye.
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delocalization [31], where σ0 is the initial size, and v is
the tunneling velocity.
We also demonstrate coherence via Loschmidt echoes

[62]. We separate two identical bursts of AM (individually
realizing coherent delocalization) by a freezing time tfr,
where no resonant tunneling takes place, but neighboring
sites accumulate a phase difference of 2π × νBtfr. Thus, the
wave function size increase of the first AM burst can be
reversed after the second AM burst using the periodic
response of the freezing time [31]. We probe this reversal of
tunneling using contrast measurements in Ramsey spec-
troscopy. Because of the incommensurate nature of the Yb
magic wavelength and clock transition wavelength, we
make the assumption that tunneling over several lattice sites
leads to a random accumulation of clock laser phase.
Accordingly, we expect tunneling during Ramsey spec-
troscopy to lead to a reduction in contrast. The Loschmidt
echo sequence is performed between the two ðπ=2Þ pulses
of Ramsey spectroscopy, see Fig. 7(b). The contrast of the
Ramsey line shape is plotted versus the freezing time of the
Loschmidt echo sequence in Fig. 7(b). We see clear
periodicity in the freezing time, with period 1=νB, showing
that phase accumulation from the first coherent tunneling
pulse can be reversed by the second. This indicates that we
could reverse the size increase of the wave function using
coherent tunneling dynamics.
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