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Contribution of negative-energy states to multipolar polarizabilities of the Sr optical lattice clock
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We address the problem of lattice light shifts in the Sr clock caused by multipolar M1 and E2 atom-field
interactions. We present a simple but accurate formula for the magnetic-dipole polarizability that takes into
account the contributions of both the positive- and negative-energy states. We calculate the contribution of
negative-energy states to the M1 polarizabilities of the clock 1S0 and 3Po

0 states at the magic frequency. Taking
these contributions into account, we obtain good agreement with the experimental results, explaining the major
discrepancy between theory and experiment.
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Introduction. The past decade brought forth extraordinary
improvements in the accuracy and stability of atomic Sr
optical clocks based on the 1S0-3Po

0 transition. In 2015, the
systematic uncertainty of the optical lattice clock of Sr was
reported to be 2.1 × 10−18 in fractional frequency units [1].
In 2022, the resolution of the gravitational redshift across
a millimeter-scale atomic sample was demonstrated [2], as
well as record stability, reaching 10−18 in just a few seconds.
Improved clock precision is needed for many fundamental
and practical applications, including relativistic geodesy [3],
the search for the variation of fundamental constants [4] and
dark matter [5–8], tests of general relativity [9,10], searches
for violation of Lorentz invariance [11], redefinition of the
second [12], detection of gravitational waves [13,14], and
others. Reaching 10−19 and better uncertainty with optical
lattice clocks requires a further understanding of systematic
light shifts caused by the trapping laser creating the optical
lattice.

When an atom is placed in a laser field, atomic energy
levels experience a shift due to the interaction of the atom
with the electromagnetic field of the laser wave. The dominant
part of this shift is proportional to the laser intensity and
is determined by the difference of the electric-dipole (E1)
polarizabilities of two clock states [15] at the wavelength of
the trapping laser. To cancel out this shift, the laser wavelength
is chosen so that E1 polarizabilities of the clock levels are the
same; so the atom experiences the same Stark shift in both
states. If the trapping laser of the optical lattice clock operates
at such a “magic” wavelength [16,17], the dominant light shift
of the clock states cancels out in the clock transition.

This cancellation is not complete because there are other
contributions to the light shift, caused by the magnetic-dipole
(M1) and electric-quadrupole (E2) interactions of the atom
with the lattice field and determined by the M1 and E2
polarizabilities of the clock state, as well as hyperpolariz-
ability [18]. When the systematic uncertainties of the clock
reached 10−18, this effect became significant and required
further study [19–24].

Calculation of the quantity �αqm ≡ �αM1 + �αE2 at the
magic wavelength λ∗ = 813.4280(5) nm [25], where

�αM1 ≡ αM1
(3
Po
0

) − αM1
(1
S0

)
,

�αE2 ≡ αE2
(3
Po
0

) − αE2
(1
S0

)
, (1)

was performed in Refs. [18,26]. Although the theoretical re-
sults were in good agreement with each other, they differed
even in sign from the experimental results [22–24].

An explanation of this discrepancy was suggested in a
recent paper [27] which included the contribution of negative-
energy intermediate states in calculating the M1 and E2
polarizabilities of the clock states at the magic frequency,
which was not considered in Refs. [18,26]. However, the
precision of the calculation was around 50%, which was
insufficient to differentiate between the experimental mea-
surements. The paper also omitted a rather large contribution
of the core electrons. The accuracy of the method that was
used in Refs. [27,28], that is, the direct inclusion of negative-
energy states in all numerical parts of the calculation, is
difficult to significantly improve. It is also difficult to directly
include negative energies in the calculation of polarizabilities
with more accurate approaches, such as the CI + all-order
method that combined configuration interaction (CI) and
coupled-cluster approaches [18]. This is due to the complexity
of modifying a very large suite of codes to include negative
energies in every step of both the CI and the coupled-cluster
computations. Meanwhile, reliable theoretical calculations of
multipolar polarizability for Sr and other atoms used in optical
lattice clocks are urgently needed, especially due to some
disagreement between experimental results [22,24].

In this Research Letter, we derive an analytical formula for
the contribution of negative-energy states to magnetic-dipole
polarizability that only needs a numerical computation of a
single matrix element, thus resolving the major problem of ac-
curate theoretical computation of multipolar polarizabilities.
We evaluate the accuracy of this approach and use it to com-
pute the multipolar polarizabilities of the Sr clock. We also
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present an explanation of why negative-energy contributions
happen to be so important for the M1 polarizabilities while
being negligible for the E2 polarizabilities.

General formalism. We assume that an atom in a state |0〉
with J = 0 is placed in a linearly polarized field of the lattice
standing wave with the electric field vector along the z axis,
given by

Ez = 2(E0)z cos(kx) cos(ωt ), (2)

where k = ω/c, ω is the lattice laser wave frequency, and c is
the speed of light.

The optical lattice potential for the atom at |kx| � 1, where
x determines the position of the atom starting from the stand-
ing wave antinode, can be approximated up to terms ∼E2

0 as
[19,20]

U (ω) ≈ −αE1(ω)(1 − k2x2) E2
0

− {αM1(ω) + αE2(ω)}k2x2 E2
0 . (3)

The ac 2K -pole polarizability of the |0〉 state can be
expressed (if not stated otherwise, we use atomic units h̄ =
m = |e| = 1, c ≈ 137) as [29]

αλK (ω) = K + 1

K [(2K − 1)!!]2

(ω

c

)2K−2

×
∑
n

(En − E0)|〈n|(TλK )0|0〉|2
(En − E0)2 − ω2

. (4)

Here, λ distinguishes between electric, λ = E , and magnetic,
λ = M, multipoles, and (TλK )0 is the 0 component of the op-
erator TλK in spherical coordinates, where TE1 ≡ D, TM1 ≡ μ,
and TE2 ≡ Q2 These many-electron operators are expressed
by the sum of the single-electron operators. For example,
μ = ∑N

i=1 μi, where N is the number of electrons in the atom.
The sum over n in Eq. (4) includes the positive- and negative-
energy states. In the following, we label the intermediate
positive-energy states by n+ and the negative-energy states by
n−.

In calculating the E2 polarizabilities, the contribution of
intermediate negative-energy states is completely negligible.
The operator Q2 ∼ r2 mixes the large components of the ini-
tial and final electronic wave functions in the matrix elements
(MEs) 〈n+|Q20|0〉. In a positron wave function, the large and
small components are swapped, and, respectively, Q2 mixes
the large and small components in the MEs 〈n−|Q20|0〉. Since
r2 is a long-distance operator, it leads to suppression of MEs
〈n−|Q20|0〉 by a factor of 1/c compared with 〈n+|Q20|0〉.
Additionally, the contribution of negative-energy states is sup-
pressed by large energy denominators. For this reason, the
results obtained in Ref. [18] for the E2 polarizabilities remain
valid, and we do not recalculate them here.

For theM1 polarizabilities of the clock states, the situation
is quite different. The operator M1 in relativistic form is μ =
−1/2 (α × r), where α = (0 σ

σ 0) and σ are the Pauli matrices.
This operator mixes the large and small components of the
wave functions in 〈n+|μ0|0〉 and the large components of the
wave functions in 〈n−|μ0|0〉. Due to the presence of r, the
operator acts at long distances, and as a result, MEs 〈n+|μ0|0〉
are suppressed by a factor of 1/c compared with 〈n−|μ0|0〉.
Note that this suppression is not compensated for by the large

denominators (E0 − En− ) in the sum over n− even for the
3Po

0 state. Thus the negative-energy states give the dominant
contribution to the M1 polarizabilities of both clock states at
the magic frequency.

We note that the use of the relativistic form of the M1
operator is very important in correctly taking into account the
contribution of negative-energy states. In the nonrelativistic
form, μ ∼ (J + S) and mixes only the large components of
the wave functions. In a previous paper [18] we used the
nonrelativistic form of this operator, which led to a significant
underestimation of this contribution.

The formalism developed to calculate the M1 polarizabili-
ties of the clock states is presented below. Using Eq. (4), we
can write the expression for the dynamic M1 polarizability of
a |0〉 state as

αM1(ω) = 2

[∑
n=n+

+
∑
n=n−

]
�En|〈n|μ0|0〉|2
(�En)2 − (ω)2

, (5)

where �En ≡ En − E0.
The denominators in the second term of Eq. (5) can be ap-

proximated by En− − E0 = −2c2[1 + O(1/c2)] ≈ −2c2. The
typical values of the frequencies ω, used in experiments,
are much lower than 2c2 ≈ 3.8 × 104 a.u. For example, the
magic frequency ω∗ ≈ 0.056 a.u. Neglecting ω compared
with �En− , we obtain

2
∑
n−

�En−|〈n−|μ0|0〉|2
(�En− )2 − ω2

≈ − 1

c2
∑
n−

|〈n−|μ0|0〉|2. (6)

Using this expression and also adding to and subtracting
from Eq. (5) the similar term with summation over n+,

− 1

c2
∑
n+

|〈n+|μ0|0〉|2 + 1

c2
∑
n+

|〈n+|μ0|0〉|2,

we find

αM1(ω) ≈ 2
∑
n+

[
�En+

(�En+ )2 − ω2
+ 1

2c2

]
|〈n+|μ0|0〉|2

− 1

c2
∑
n

|〈n|μ0|0〉|2. (7)

Now, the summation in the second term of Eq. (7) goes
over all intermediate states, and using the closure relation∑

n |n〉〈n| = 1, we can write∑
n

|〈n|μ0|0〉|2 = 〈0|μ2
0|0〉 = 1

6
〈0|r2|0〉

[
1 + O

(
1

c2

)]
, (8)

where r2 ≡ ∑N
i=1 r

2
i . The last expression in Eq. (8) was

obtained after simple transformations using the properties of
the matrices α and σ and also the properties of a spherically
symmetric state.

As we discussed in Ref. [18], only a few low-lying
positive-energy intermediate states give dominant contribu-
tions to theM1 polarizabilities, and it is sufficient to take them
into account in the sum over |n+〉. For these states,∣∣∣∣ �En+

(�En+ )2 − (ω∗)2

∣∣∣∣ 	 1

2c2
,

and we can neglect 1/(2c2) in the first term of Eq. (7).
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In total, neglecting the terms ∼1/c4, we arrive at

αM1(ω) ≈ 2
∑
n+

�En+

(�En+ )2 − ω2
|〈n+|μz|0〉|2

− 1

6c2
〈0|r2|0〉. (9)

The first term in Eq. (9) is associated with the contribution
of the positive-energy states, and the second term is associ-
ated with the contribution of negative-energy states. In the
following, we designate these terms by α+

M1(ω) and α−
M1(ω),

respectively. Note that the second term is the same as the
expression for the diamagnetic susceptibility of an atom given
by the Langevin formula (see, e.g., Ref. [30]).

Let us briefly discuss the Breit correction to the first term
in Eq. (9). The Breit operator includes α matrices. Thus, when
we calculate this correction for MEs 〈n+|μz|0〉, we may also
need to include the negative-energy state contribution. Note
that the dominant Breit correction to the valence atomic states
comes from the exchange with the innermost core state 1s
[31]. Then it is easy to estimate that the contribution of the
negative-energy state to MEs 〈n+|μz|0〉 is on the order of α3Z ,
where αZ comes from the small component of the 1s state.

Method of calculation. We consider Sr as an atom with
two valence electrons above the closed shell core and perform
calculations within the framework of methods that combine
configuration interaction (CI) with (i) many-body perturbation
theory (MBPT) [32] and (ii) the linearized coupled-cluster
method [33]. In these methods, the energies and wave func-
tions are found from the multiparticle Schrödinger equation

Heff (En)�n = En�n, (10)

where the effective Hamiltonian is defined as

Heff (E ) = HFC + �(E ). (11)

Here, HFC is the Hamiltonian in the frozen-core (Dirac-
Hartree-Fock) approximation, and � is the energy-dependent
correction, which takes into account virtual core excitations in
the second order of the perturbation theory (the CI + MBPT
method) or to all orders (the CI + all-order method).

The electric-dipole polarizabilities of the Sr clock states
were calculated at the magic frequency ω∗ in Ref. [34] to
be αE1(ω∗) = 286.0(3) a.u. The E2 polarizabilities, as well
as the contribution of the positive-energy states to the M1
polarizabilities of the clock states [given by the first term in
Eq. (9)], were calculated in our previous work [18], so we
only need to compute α−

M1.
Calculation of α−

M1. The calculation of the contribution of
the negative-energy states to theM1 polarizabilities is reduced
to the determination of a matrix element

α−
M1 ≡ − 1

6c2
〈0|r2|0〉, (12)

where |0〉 is either the 1S0 or 3Po
0 state. Since r2 is a scalar

operator, one needs to calculate the contribution of valence
and core electrons to 〈0|r2|0〉. Consequently, we can divide
the ME 〈0|r2|0〉 into the valence and core parts as

〈0|r2|0〉 = 〈0|r2|0〉v + 〈0|r2|0〉c.

TABLE I. Matrix elements 〈1S0|r2|1S0〉 and 〈3Po
0 |r2|3Po

0 〉, obtained
in the CI+MBPT and CI+all-order approximations, are given in a.u.
The sum of all corrections to the operator r2, described in the text,
is given in the row “� (corrections).” The core contribution is given
in the row “Core.” The “Total” value is equal to “CI+all-order” +
“� (corrections)” + “Core.” The values of �r2 are given in the last
column. The uncertainty is given in parentheses.

〈1S0|r2|1S0〉 〈3Po
0 |r2|3Po

0 〉 �r2

CI+MBPT 43.3 54.1 10.8
CI+all-order 42.7 54.3 11.6
� (corrections) −0.1 −0.1
Core 26.4 26.4
Total 69.0 80.6 11.6(8)

In the single-electron approximation, the core contribution is
given by

〈0|r2|0〉c =
Nc∑
a=1

〈a|r2a |a〉, (13)

where |a〉 is the single-electron wave function of the ath core
electron and Nc is the number of core electrons.

To find the valence parts of the MEs 〈1S0|r2|1S0〉 and
〈3Po

0 |r2|3Po
0 〉 and estimate their uncertainties, we carried out the

calculation using the CI + MBPT and CI + all-order meth-
ods. The results are presented in Table I.

We note that the correlation corrections to the expectation
values of the operator r2 arise from the correlation corrections
to the wave functions and the corrections to the operator.
The latter include the random-phase approximation (RPA),
the two-particle and core Brueckner corrections [35], and
the structural radiation [36,37] and normalization corrections
[32]. All of these corrections are small (for example, the
RPA correction is less than 1% for both MEs). In addition
to that, these corrections to the operator tend to cancel each
other out and, in total, give a very small contribution, approx-
imately −0.1 a.u. This total contribution of the corrections
is given in the row “� (corrections)” of Table I. The core
contribution was calculated using Eq. (13) and is given in the
row labeled “Core.” Total values were obtained as the sum
of the CI + all-order value, “� (corrections),” and the core
contribution.

The uncertainty in the correlation correction for the wave
function is estimated as the difference between the CI +
all-order and CI + MBPT values [18], which is less than
1.5% (see Table I). However, this difference is positive for
3Po

0 and negative for 1S0. As a result, for �r2 ≡ 〈3Po
0 |r2|3Po

0 〉 −
〈1S0|r2|1S0〉, given in the last column of Table I, the difference
between the CI + MBPT and CI + all-order values increases
to 7–8%.

In contrast, the core contribution to these MEs is large,
amounting to 50–60% of the valence contribution. The ac-
curacy of the single-electron approximation, Eq. (13), is not
very high. However, the core contribution is the same for both
MEs. As a result, the total value of �r2 is determined by the
difference in valence contributions because the core contribu-
tions cancel out. We estimate its uncertainty as the difference
between the CI + MBPT and CI + all-order values.
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TABLE II. The M1, E2, and differential polarizabilities for the
1S0 and 3Po

0 states and �αqm are presented (in a.u.). The values of α+
M1

and αE2 are from Ref. [18]. Our values are compared with the results
of Ref. [28]. The uncertainties are given in parentheses.

Polarizability This work and Ref. [18] Ref. [28]

α+
M1(

1S0) 2× 10−9 2.17× 10−9

α−
M1(

1S0) −6.13× 10−4 −3.84× 10−4

αM1(1S0) −6.13× 10−4 −3.84(24)× 10−4

α+
M1(

3Po
0 ) −0.05× 10−4 −0.05× 10−4

α−
M1(

3Po
0 ) −7.15× 10−4 −4.88× 10−4

αM1(3Po
0 ) −7.20× 10−4 −4.93(30)× 10−4

�αM1 −1.07(7)× 10−4 −1.09(38)× 10−4

αE2(1S0 ) 0.89(3)× 10−4 0.928(57)× 10−4

αE2(3Po
0 ) 1.22(3)× 10−4 1.244(76)× 10−4

�αE2 0.33(4)× 10−4 0.316(95)× 10−4

�αqm −0.74(8)× 10−4 −0.77(39)× 10−4

The final values of α±
M1, αM1 = α+

M1 + α−
M1, and αE2 ≈ α+

E2
for the 1S0 and 3Po

0 states are presented in Table II. The values
of α−

M1 were obtained in this work, while α+
M1 and αE2 were

taken from Ref. [18].
Comparing our results with those obtained in Ref. [28],

we see a good agreement for all quantities except α−
M1. The

valence contribution to α−
M1 also agrees very well with that

obtained in Ref. [28] for both clock states. The difference
between our results and those in Ref. [28] in the total values
of α−

M1(
1S0) and α−

M1(
3Po

0 ) is due to the core contribution.
We assume that the authors of Ref. [28] did not take it into
account.

We find that α+
M1(

1S0) is negligible compared with
α−
M1(

1S0). For the 3Po
0 state, α−

M1(
3Po

0 ) is two orders of mag-
nitude larger in absolute value than α+

M1(
3Po

0 ). Thus the
differential M1 polarizability, �αM1, is mainly determined
by the contributions of the negative-energy states. The un-
certainty of 7% for �αM1 corresponds to the uncertainty for
�r2. Using �αM1 and �αE2, we found �αqm. Its absolute
uncertainty was obtained as

�αqm =
√
(�αM1)2 + (�αE2)2.

Comparison with experimental results. In the experimental
works of the RIKEN group [22], the Physikalisch-Technische
Bundesanstalt (PTB) group [23], and the JILA group [24] the
following quantity was measured (in hertz):

α̃qm

h
≡ �αqm(ω∗)

αE1(ω∗)
Er

h
, (14)

TABLE III. The values of α̃qm/h (in millihertz) and �αqm (in
a.u.), found at the magic frequency, are presented.

α̃qm/h �αqm

Theory
This work −0.90(10) −7.4(8) × 10−5

WIPM group [28] −0.94(48) −7.7(3.9) × 10−5

Experiment
JILA group [24] −1.24(5)
RIKEN group [22] −0.96(4)
PTB group [23] −0.99(20)

where Er is the photon recoil energy and h is Planck’s con-
stant. For λ∗ ≈ 813.428 nm we have

Er

h
= h

2Mλ∗2 ≈ 3.47 kHz,

where M is the mass of the 87Sr atom.
Using our calculated value of �αqm and αE1(ω∗) =

286.0(3) a.u. [34], we find α̃qm/h and compare it with other
results in Table III. Our value agrees well with the experimen-
tal results of the RIKEN and PTB groups [22,23] and with
the theoretical result of the Wuhan Institute of Physics and
Mathematics (WIPM) group [28]. There is also a reasonable
agreement with the JILA group’s measurement [24].

We note that the RIKEN and PTB groups used
the |1S0,F = 9/2,mF = ±9/2〉-|3Po

0 ,F = 9/2,mF = ±9/2〉
transition for the measurement, while the JILA group used
the |1S0,F = 9/2,mF = ±5/2〉-|3Po

0 ,F = 9/2,mF = ±3/2〉
transition.

To conclude, we derived an expression for the M1 polariz-
ability that accounts for the contribution of the positive- and
negative-energy states. To calculate α−

M1, we used a simple
but accurate formula given by Eq. (12). Using this formula,
we found the contribution of the negative-energy states to
the M1 polarizabilities of the 1S0 and 3Po

0 states at the magic
frequency and showed that this contribution is completely
dominant for both clock states. Given the values of the M1
polarizabilities found in this Research Letter and the values
of the E2 polarizabilities obtained in Ref. [18], we found
the quantities �αqm and α̃qm/h. Comparing the latter with
the experimental results, we observe good agreement between
theory and experiment, explaining the contradiction between
the theoretical and experimental results.
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