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ABSTRACT

Deep-sea hydrothermal vents are abundant on the ocean floor and play important roles in ocean biogeochemistry. In vent
ecosystems such as hydrothermal plumes, microorganisms rely on reduced chemicals and gases in hydrothermal fluids to fuel
primary production and form diverse and complex microbial communities. However, microbial interactions that drive these
complex microbiomes remain poorly understood. Here, we use microbiomes from the Guaymas Basin hydrothermal system
in the Pacific Ocean to shed more light on the key species in these communities and their interactions. We built metabolic
models from metagenomically assembled genomes (MAGs) and infer possible metabolic exchanges and horizontal gene
transfer (HGT) events within the community. We highlight possible archaea—archaea and archaea—bacteria interactions and
their contributions to the robustness of the community. Cellobiose, D-Mannose 1-phosphate, O,, CO,, and H,S were among
the most exchanged metabolites. These interactions enhanced the metabolic capabilities of the community by exchange of
metabolites that cannot be produced by any other community member. Archaea from the DPANN group stood out as key
microbes, benefiting significantly as acceptors in the community. Overall, our study provides key insights into the microbial

interactions that drive community structure and organisation in complex hydrothermal plume microbiomes.

Introduction

Deep-sea hydrothermal vents are abundant across mid-ocean ridges, back-arc basins, and volcanoes on the ocean floor.

Hydrothermal vents emit hot fluids rich in reduced chemicals, gases, and metals. These hot fluids (up to 400 °C) mix with the
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cold seawater (2-4 °C) to form vent chimneys and hydrothermal plumes. While vent chimneys are formed by precipitation and
solidification of minerals, hydrothermal plumes are turbulent environments that can rise hundreds of meters from the seafloor
to achieve neutral buoyancy and spread across the ocean over hundreds to thousands of kilometers'?. Microbial activity in
hydrothermal vents is driven by the presence of potential energy sources such as H>S, Fe, Mn, CH4 and H,>#. Hydrothermal
plumes are associated with a strong redox gradient formed due to the presence of highly reduced electron donors from vents
which mix with the cold seawater rich in electron acceptors such as oxygen and nitrate, which can provide microorganisms
with sufficient energy to fix carbon into biomass'->. Microbial communities thrive in such harsh environments partly due to
metabolic interactions associated with their ability for interdependent utilization of substrates>~’. Hydrothermal vent microbial
communities form the base of the food chain in these environments and have been shown to play a significant role in mediating
various elemental cycles in ocean ecosystems®°. Hydrothermal vent habitats also harbour the growth of a very specialized set
of organisms like giant tubeworms (vestimentiferans), Pompeii worms (Alvinella pompejana), vesicomyid clams, vent mussels
(Bathymodiolus elongatus), scaly-foot snails (Chrysomallon squamiferum), and crabs (Kiwa spp.). Flora and fauna in this

ecosystem flourish as a result of close symbiosis with chemosynthetic microbes consisting primarily of bacteria and archaea.

Increasingly, omics-based approaches have focused on the study of uncultivated microorganisms and there is a growing
recognition that microbial metabolic interactions are key in maintaining microbial community structure and function in diverse
environments, including in the deep sea. The problem of unculturability in microbes that pervades different ecosystems
makes it a challenge to isolate and characterize metabolic interactions using conventional microbiological tools'®. Metabolic
interactions are the threads holding a community of microbes together!!~!3. Therefore, studying these interactions can enable
us to gain mechanistic insights into community function'® !>, While metagenome-based interpretation of microbial genomes
(as implemented in the software METABOLIC) can predict auxotrophies that can imply the presence of microbial interactions,
metabolic modeling represents a more powerful approach in predicting metabolic interactions. To this end, in silico modelling
approaches offer a promising alternative to study microbial metabolism in general'®, and community metabolic interactions
in particular'’~"°. Genome-scale metabolic models*® can be built using whole genomes or metagenomically assembled
genomes (MAGs) of microbes”!-??. These models capture the metabolic capabilities of an organism. Metabolic models of all
known members of a community allow us to study community interactions using various graph-based and constraint-based

approaches!’~1%.

In hydrothermal vents and plumes, prior studies have focused on the genomic characterization of microbial and metabolic
diversity, but little is known about the role of metabolic dependencies and interactions in these microbiomes. In this study,
we use deep-sea hydrothermal vents in Guaymas Basin in the Pacific Ocean as a model system to study the functional
underpinnings of microbial communities in hydrothermal vent plumes and the interactions that keep them together. In particular,
this study focuses on: (i) the coexistence of archaea and bacteria and the cross-domain metabolic interactions between them,
and (ii) evolutionary processes in hydrothermal plume microbial communities, including horizontal gene transfers (HGTs)'.

Our study implicates the metabolite environment in which these microbes grow to play a major role in determining interactions.
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Overall, the potential of computational approaches like metabolic modelling to unravel the complex web of metabolic and

genetic interactions that drive the organisation of microbial communities has been illustrated in the study.

Results

Design of this study

In this study, we use 98 MAGs described previously from Guaymas Basin hydrothermal plumes to understand metabolic
interactions and evolution in hydrothermal systems (Refer Supplementary File S1 for the short name references used in
this article). Both bacteria and archaea are abundant members of hydrothermal plume microbiomes, yet play distinct roles
in these environments. In this study we draw various insights about the uncultured bacteria and archaea, including bacteria
depending on abundant hydrothermally-derived sulfur. Our observations were drawn from four major in silico analyses, MSI
analysis, CSI analysis, HGT analyses, and MRO studies performed on these microbes (Refer Figure 1 for the summary of the
approaches used in this research work). Overall, 26 (15 archaea and 11 bacteria) out of 98 MAGs were the main focus of this
research, though these analyses were performed on all 98 microbes of the community. In comparison to bacteria, archaeal
biology is still extremely under-explored, and their metabolic and functional potential is not well studied primarily due to the
difficulty of culturing them??~2>. Archaea are known to play important roles in hydrothermal vent ecosystems, and throughout
the pelagic oceans such as in ammonia oxidation and transformation of organic compounds®2%-2%. Therefore, in order to
understand and highlight the functional importance of ‘microbial dark matter’ in hydrothermal plumes, a significant focus of
this study is on the archaeal members of this community and their interactions with other archaeal and bacterial species in the
Guaymas basin (Refer Supplementary Table 1 for the list of archaea in the community). The Guaymas archacome comprises

three classes, Poseidoniia, Nanoarchaeia, and Nitrososphaeria.

In any microbial community, the ability of a microbe to produce or consume a metabolite is subject to the metabolite/media
environment those microbes inhabit. In this study, four different media conditions (GM media, JW1 media, marine broth
2216 and an all-media) were used to study this community. All-media is a synthetic media combining the other three media
conditions. Components of all three media are possible constituents of hydrothermal vent environments, hence having a

synthetic media like all-media might provide a closer representation of the habitat.

Many observations were made about the metabolic capability of microbes in different media and the implicated metabolic
exchanges. Oxygen, ornithine, and indole were some of the most exchanged metabolites in all-media and JW1 media, but the
microbes in GM media and marine broth 2216 were unable to produce oxygen resulting in the absence of their exchanges
in these environments (Refer Supplementary File S2). Acetaldehyde and L-serine were the only metabolite exchanged
irrespective of media conditions (Refer Supplementary File S2). This observation shows the capability of the community to

compensate for an absence of a metabolite through exchange. This helps in maintaining the robustness of the community.
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Archaea-bacteria pairs show high interaction potential in the hydrothermal plume microbiome

In order to determine the influence of bacteria present in the ecosystem on the metabolism of archaea, pairwise MSI analysis
was performed under four different media conditions. (Described in Determining the metabolite environment of Guaymas
hydrothermal vent ecosystem in Materials and Methods). Briefly, in this analysis, a score called Metabolic Support Index (MSI)
(Predicting metabolic dependencies of microbes in the community in Materials and Methods) is calculated for every possible
pair of microbes (98C, pairs), which measures the increase in metabolic capabilities of a microbe while in a community versus
as an individual organism. Microbes in the community gain different metabolic capabilities through the exchange of metabolites.
MSI provides distinct values for both the members of a pair, i.e., MSI of A in AB community is different from MSI of B in AB,
and hence is a directional quantity.

We identified the most interesting archaea—bacteria microbial pairs on all four media based on high MSI scores. The highest
MSI score observed in the Guaymas microbiome was 0.052 between an archaeon and a bacterium: FLAE314 — CPA287 (the
arrow goes from donor to acceptor) in JW1 media, which was primarily due to the exchange of metabolites cellobiose and
D-Mannose 1-phosphate. These metabolites activated many metabolic reactions in CPA287. In this interaction, FLAE314 is
not predicted to receive any metabolite from its partner (MSI = 0) in all four media. FLAE314 — NPUM263, GAM261 —
CPA287 were other archaea—bacteria microbial pairs with high interaction potential in the Guaymas microbiome (Figure 2
represents all the pairwise interactions between CPA287 and other microbial classes). Among the *8C, = 4753 pairs possible
in the community, the main emphasis was given to those where the receiver acquires at least a 1% increase in the metabolic
capability (i.e., MSI >= 0.01). Refer Supplementary File S3 for the entire list of MSIs.

In most of the archaea-bacteria interactions, archaea were always found to be on the “acceptor” side while bacteria “donate”
metabolites. A possible explanation for this is that archaea have reduced metabolic capabilities than the bacteria in the Guaymas
community. It is possible that the understudied nature of archaeca manifests in a greater proportion of unannotated genes in
their genomes leading to the impression of them having reduced metabolic capabilities. An MSI value (interaction) is always
attributed to a set of exchanges leading to the gain of metabolic capabilities in the acceptor microbe. The metabolites frequently
exchanged in the archaea—bacteria interactions mentioned above were cellobiose, D-Mannose 1-phosphate, Oy, CO,, and H;S,
among others, but the exchange of any one of these metabolites can lead to gain of comparatively greater metabolic capabilities
in the acceptor microbe.

Though archaea—bacteria interactions were widely observed in GM media, JW1 media and all-media, they were lower in
marine broth 2216. FUE333 — CPA287, PLAE346 — CPA287, SNE353 — CPA287, and GEM339 — CNP359 were the only
high potential archaea—bacteria interactions observed in marine broth 2216. Among these SNE353 — CPA287 was observed in

all four media.

Archaea-archaea interactions are dominated by DPANN archaea as acceptor microbes
MGII266, MGII275, MGII279, MGII283 and MGII350 were some pf the archaeal interacting partners with CPA287 in

GM media, JW1 media and all-media. Like in archaea—bacteria interactions, CPA287 was always the acceptor in these
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archaea—archaea interactions too. Cellobiose and CO, exchanged from Marine Group II euryarchaeotes to CPA287 has the
potential to activate many metabolic capabilities in CPA287.
Unlike CPA287, archaea of class Poseidoniia can act as both acceptors and as donors in the Guaymas community.

Interestingly, these archaea exhibited three distinct interaction patterns:

1. MGII266, MGII275, MGII279, MGII283, MGII350 and MGII352 showed similar interaction patterns (Refer Supple-

mentary File S4).

2. MGII323, MGII328, MGII344, MGII357 and MGIII284 showed similar interaction patterns (Refer Supplementary
File S4).

3. MGIII340 was distinct from other members of Poseidoniia. The interaction pattern of this microbe was the sparsest in

comparison to other members of this group (Refer Supplementary File S4).

Another significant archaea-archaea interaction involves CNP359 and NPUM263 which belong to the class Nitrososphaeria
(Figure 3 represents all the pairwise interactions between NPUM263 and other microbial classes). These organisms show

potential interactions among themselves in JW1 media and in all-media through the exchange of ornithine, putrescine, and H,S.

Role of Pacearchaeota in the Guaymas community

Candidatus Pacearchaeota archacon UWMA 0287 (CPA287) is an archaeon belonging to class Nanoarchaeota from the
superphylum DPANN. Members of DPANN (including this class) are characterised by small genomes, and limited metabolic
capabilities due to which they are predicted to rely on other microbes for most of their biosynthetic needs’*2°=3!. It was also
evident from the pairwise MSI analyses that Pacearchaeota are the largest beneficiary archacon of Guaymas microbiome in
GM media, JW1 media and all-media, while in marine broth 2216 GEM339 benefited more. Though Pacearchaeota showed
potential interactions with members of every other microbial class present in the Guaymas microbiome, most of the interactions
were dominated by members of Gammaproteobacteria, Poseidoniia, Alphaproteobacteria and Bacteroidia (Figure 2). As the
microbe receiving the greatest benefits from interactions in the community, Pacearchaeota receive cellobiose, O, CO,, and H>S
from its partners (Figure 5a). These exchanges were not seen in all four media, for example, the exchange of CO, was restricted
to GM media and marine broth 2216 alone as CO, was already present in JW1 media and all-media. Among these, cellobiose
can be seen in all interactions of Pacearchaeota except in marine broth 2216. Cellobiose is a disaccharide molecule and is a
known carbon source for hyperthermophilic archaea®?. Our models indicate that Pacearchaeota are able to accept cellobiose
and hydrolyse it to use as a carbon source, thus leading to gain of many metabolic capabilities and high MSI in media except
marine broth 2216. Pacearchaeota had the capability to donate metabolites like ornithine, putrescine, 4-aminobutanal (obtained
during the metabolism of arginine) to other microbes only in all-media and JW1 media (Figure 5b). The metabolites exchanged

in all other microbes are documented in Supplementary File S5 and S6.
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Interactions of bacteria in the Guaymas Basin microbiome

Bacteria in the Guaymas Basin microbiome exhibited a range of interactions from being able to interact with other classes of
microbes to interacting with organisms from the same phylum/class. Members of the proteobacterial class Gammaproteobacteria

are amongst the most abundant and dominant microbial populations in hydrothermal plumes??

. In the Guaymas Basin
microbiome, Gammaproteobacteria were predicted to have amongst the largest number of interactions (Refer Supplementary

File S7 and S8).

Candidatus Lambdaproteobacteria bacterium UWMA 0318 (LAM318, a member of the phylum SAR324) had the potential
to interact with all other 23 microbial classes of the Guaymas Basin microbiome in JW1 media. Candidatus Lambdaproteobac-
teria bacterium UWMA 0298 (LAM298) showed the most interactions with microbes of the class Gammaproteobacteria,
Bacteroidia, and Alphaproteobacteria in all the given media, except in GM media. The interactions were very minimal in
GM media. LAM?298 acted as both donor and acceptor in all the four media. LAM318 also showed interactions consistently
with microbes of class Gammaproteobacteria in all the four media. Interactions with Alphaproteobacteria and Bacteroidia
were seen in all-media and JW1 media while interactions with Poseidonia and Marinisomatia were prevalent in GM media.

LAM318 acted mostly as an acceptor in all the four media.

Meanwhile, Candidatus Handelsmanbacteria bacterium UWMA 0286 (HAN286) had the potential to interact with all other
microbial classes as well as with the other member of its own class (Candidatus Handelsmanbacteria bacterium UWMA 0300)
in marine broth 2216 (Figure 4 represents the interactions between HAN286 and other microbial classes in all four media).
Candidatus Handelsmanbacteria bacteria showed most interactions with microbes of class Gammaproteobacteria, Poseidonia,
Bacteroidia, and with Alphaproteobacteria in all the given media, except in GM media. The interactions were very minimal in
GM media (Refer figure 4b). In most cases Candidatus Handelsmanbacteria bacteria acts as a donor except in marine broth
2216 where almost all the interactions involved Candidatus Handelsmanbacteria bacteria were as receivers (Refer figure 4d),

though surprisingly the microbial class with which it interacted were the same in both cases.

Given the abundance of reduced sulfur species in hydrothermal plumes, we also identified sulfur oxidizing bacteria
and observed their interactions. Bacteria from the SUPOS clade of Gammaproteobacteria (Candidatus Thioglobus) are
amongst the most abundant and active members of plumes. In the Guaymas Basin microbiome, five different Candidatus
Thioglobus members represented by Candidatus Thioglobus sp UWMA 0259 (CTB259), Candidatus Thioglobus sp UWMA
0272 (CTB272), Candidatus Thioglobus sp UWMA 0322 (CTB322), Candidatus Thioglobus sp UWMA 0342 (CTB342),
Candidatus Thioglobus sp UWMA 0360 (CTB360) interacted extensively with other organisms. First, CTB259 showed
consistent interactions with other Gammaproteobacteria in all the four media, interactions with Poseidonia were observed
in three media, except for marine broth 2216. CTB259 acts as acceptor in most cases. However in marine broth 2216,
this bacterium acted as the donor but still maintained interactions with Gammaproteobacteria, Alphaproteobacteria, and
Bacterioidia which were previously donating metabolites to Candidatus Thioglobus sp UWMA 0259 in other media. Second,

CTB272 interacted with other Gammaproteobacteria and Alphaproteobacteria in three media except GM media where the
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only interaction was with Nanoarchaeia (CPA287). Third, CTB272 was observed as an acceptor in all-media while in other
three media it acted as both an acceptor and donor. CTB322 showed most interactions with Gammaproteobacteria in all the
four media, while interactions with Poseidonia were prevalent only in all-media and JW1 media. This microbe is a dominant
a donor in all the four media conditions. Fourth, CTB342 interacted extensively with other Gammaproteobacteria in all
four media, while interactions with Bacterioidia were seen in media except marine broth 2216 where the interactions were
minimal. Interactions between Alphaproteobacteria and CTB342 were observed in only all-media and JW1 media. CTB342
was observed to act as both a donor and acceptor in all four media. Fifth, CTB360 interacted with other Gammaproteobacteria
and Alphaproteobacteria in all-media and JW1 media. Interactions were minimal in the other two media, GM media and
marine broth 2216. Interactions with Nanoarchaeia were observed in all four media. CTB360 was a dominant acceptor in
all-media and JW1 media, while in marine broth 2216 it acted as a donor.

In addition to Candidatus Thioglobus, other abundant sulfur oxidizing bacteria in plumes were Sulfitobacter and Thiotrichaceae
species. Sulfitobacter sp UWMA 0305 (SUL305) interacted predominantly with Gammaproteobacteria and Bacterioidia in
media except GM media where the interactions were constrained to Nanoarchaeia and Planctomycetes. Interactions with
Poseidonia were observed only in all-media and JW1 media. SUL305 was a dominant donor except in marine broth 2216.
THIO311 interacted predominantly with Gammaproteobacteria and Poseidonia in media except in marine broth 2216, while
interactions with Alphaproteobacteria and Bacteriodia were common in media except GM media. Thiotrichaceae bacterium
UWMA 0311 was observed to act as both an acceptor and donor in all four media (Refer Supplementary File S9 for the MSI

scores of all bacteria in the community).

Key microbes in Guaymas Basin microbiome and unique contributors in the community
To determine the significance of microorganisms in a microbial community, we conducted CSI analyses (see Support offered by
a group of microbes to the community in Materials and Methods) on the Guaymas Basin microbiome. First, the 98 microbes
were clustered into 24 clusters based on the taxonomic class they belonged to. Secondly, each cluster was “knocked out” from
the community to identify the metabolic capabilities lost by the community, a CSI value above zero indicates that the cluster
has some significance to the community and an CSI score equal to zero indicates little to no significance to the community. This
analysis was performed in all four media conditions and eight key microbial classes were identified based on the MSI scores
(Refer Supplementary Table 2 for the list of microbes in each media). These key microbial classes were Alphaproteobacteria,
Dehalococcoidia, Gammaproteobacteria, Nitrososphaeria, Planctomycetes, Poseidoniia, Rhodothermia, and UBA8108. Only
Poseidoniia were identified to be significant in all four media conditions (Refer Supplementary Files S10 and S11 for all the
data generated by CSI analysis on Guaymas microbiome using taxonomic clusters).

Unique contributors in the community are microbes that have the capability to produce and donate certain metabolites
that cannot be produced by any other microbe in the community. This was determined by performing CSI analysis where the
metabolic capabilities of a community are studied before and after adding the microbe of interest (see Unique contributors of the

community in Materials and Methods). Unique contributors were identified in Guaymas community in all four media conditions
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summing up to 10 different microbes (Refer Supplementary Table 3). Every one of these microbes is attributed to one or more
unique metabolites that they can contribute to the community. The unique metabolites exchanged from these microbes to the
community in different media conditions were agmatine, L-citrulline, L-ornithine, trans-4-hydroxy-L-proline, 2-oxoglutarate
(Figure 6), which were mostly metabolites involved in amino acid synthesis or metabolism pathways. This shows that amino
acid auxotrophies exist in the community and are an important driver of the exchange of these metabolites from producers
to the auxotrophs. This is potentially explained by the abundance of DPANN archaea in the community which are known
to be auxotrophic for amino acids**. In addition to these metabolites, dihydroxyacetone, dihydroxyacetone phosphate, and
acetone were also exchanged by these contributors to the community (Refer Supplementary Files S12 and S13 for all the

data generated by CSI analysis on Guaymas microbiome using individual microbes).

Resource competition in the Guaymas Basin microbial community

To study metabolic resource competition in the community, we employed a metric called Metabolic Resource Overlap
(MRO)?*%36_ Briefly, MRO is the maximum possible overlap of the minimal metabolite set of all members of the community
required for their growth. MRO is solely dependent on the metabolism of the microbes and hence the lesser the MRO, more
complementary the microbial metabolisms to each other in the community. In this study, we have computed MRO for different
communities including an anaerobic digestion microbiome (ADM)37, gut microbiome38, East Pacific Rise L hydrothermal vent
microbiome, East Pacific Rise M hydrothermal vent microbiome, and Guaymas Basin hydrothermal plume microbiome. In
each microbiome dataset, MRO was observed for community size ranging from 2 (pairwise community) to 10 (10-member
community) (Refer Studying the level of competition in the community in Materials and Methods). On comparing the MRO
values of diverse microbial communities pertaining to different metabolic niches, we observed the MRO of ADM and gut
microbiomes which belong to relatively similar niches were relatively close while that of hydrothermal vent microbiomes were

significantly lower than that of former (Figure 7). Overall, these MRO values agree with our findings from the MSI analyses

since lesser the overlap in metabolism, the higher the potential for interaction between microbes™.

Horizontal Gene Transfers (HGTs) in the Guaymas Basin microbiome

HGT is one of the survival strategies adopted by microbes to compete in challenging ecosystems®’. During this process,
microbes acquire novel DNA from their partners or from the environment and evolve their metabolic capabilities**-*!. Microbes
coexisting as communities undergo HGT events to enforce cooperation and HGT is also helpful in structuring the communities*?.
Therefore, we studied HGT events in the community using a tool called MetaCHIP, which allowed for detecting HGT events in
our metagenomic data. A list of 214 HGT events was detected in the community (Figure 8(a)). On functional annotation, we
observed that most of the HGT genes were responsible for translation machinery, energy production and conversion, amino
acid metabolism, and transport mechanisms. The gene transfers occurred across genera and species, but there were no specific
patterns observed at that level. However, zooming out to the level of classes, HGTs were more frequently observed between

Gammaproteobacteria and Alphaproteobacteria (Figure 8(b)).
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Discussion

In this study, we explored the use of systems-level modelling of hydrothermal plume microbial communities in the Guaymas
basin. Microbes in these extreme habitats are unique in different ways extending our knowledge of the diversity of life on earth.
These microbes are adapted to chemoautotrophy due to their scarce exposure to sunlight. With metagenomic data corresponding
to 98 microbes from Guaymas Basin hydrothermal plumes, genome-scale metabolic models were built using CarveMe. The
main focus of our research was to shed light on the possible interactions that can be observed in these complex deep-sea
microbiomes. Insights were obtained for metabolic interactions in the community by studying the metabolic exchanges and
genetic interactions in the community by studying HGTs.

The major focus of our study was unveiling the possible interactions between archaea and bacteria. One of the interesting
predictions was about archacon CPA287 belonging to class Nanoarchaeia. This archaecon was one of the most dependent
microbes in Guaymas microbiome (remains an acceptor in all high MSI pairwise interactions). We hypothesize that this
observation is likely due to the microbes of class nanoarchaeota being devoid of core metabolic pathways as reported
by?31:43-44 and hence might lead a parasitic or symbiotic lifestyle.

At the same time, not all archaea in Guaymas microbiome are metabolically dependent on another microbe. Archaea
of class Poseidoniia (Phylum Euryarchaeota) can act as supporters to bacteria and other archaea (Refer Supplementary
File S14). This is likely because these microbes have greater metabolic capabilities in comparison to other microbes in the
Guaymas microbiome. This can be due to the metabolic capabilities acquired through HGT events®. HGT analysis showed
that Poseidoniia did take part in HGTs, and most of the genes transferred were related to metabolism. This is potential cause
for Poseidoniia becoming dominant archaea in the Guaymas microbiome.

Microbes of class Gammaproteobacteria form the majority of the Guaymas microbiome, which might be due to their ability
to interact with most microbes in the community. In most cases, Gammaproteobacteria act as donors due to the large metabolic
capability of these microbes in the hydrothermal plume community. Results from genome-scale analyses of MAGs generated
using METABOLIC? also confirmed that the metabolic contributions made by Gammaproteobacteria were the highest among
the Guaymas community. Gammaproteobacteria are also recognised for their contributions towards nitrogen fixation, ammonia
oxidation, and denitrification in hydrothermal vent ecosystems™ 4647,

Metabolic modelling showed a majority of microbial activity involves the exchange of oxygen, amino acids like serine,
malate, methionine, amino acid intermediates like 4-Aminobutanoate, indole-3-acetaldehyde and elements involved in the
carbon cycle like CO,, acetaldehyde, sulfur-based compounds like methanethiol, H,S. This might suggest that metabolites like
CO,, H, and H,S are important to the microbes in this environment. Microbes in hydrothermal vent ecosystems rely on the
oxidation of sulfur, and sulfur-based reduced compounds, and hydrogen oxidation for energy metabolism*®4°. Thus, these
metabolites are likely to play major roles in this ecosystem. It was also observed that the absence of these metabolites in media
was always compensated by exchange from other microbes. The absence of CO, in GM media and Marine broth 2216 and the

absence of H,S in JW1 media were all compensated by metabolic exchanges.
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The unique metabolites predicted to be exchanged in the community in different media conditions, were agmatine,
L-citrulline, L-ornithine, trans-4-hydroxy-L-proline, and 2-oxoglutarate, which were mostly the metabolites involved in amino
acid synthesis or metabolism pathways. This likely implies that amino acid auxotrophies exist in the community and drives the
exchange of these metabolites from producers to auxotrophs. The extensive occurrence of metabolic handoffs in hydrothermal
plume communities provides functional interdependency between microbes, leading to auxotrophies. Thus, the community
achieves efficient energy and substrate transformations .

In summary, this research focused on unveiling the possible interactions between archaea and bacteria in the Guaymas
hydrothermal plume microbiome by constructing metabolic networks of corresponding microbes. This approach allowed us to
predict possible metabolic exchanges between individual microbes, and the metabolic capabilities of microbes in different media
conditions, which are indecipherable to this extent by experimental approaches. The approaches described herein have led to
many interesting hypotheses, providing a fertile ground for future wet lab experiments to further understand the organisation of
the Guaymas hydrothermal plume microbiome, and deep-sea microbiomes broadly, to gain better insights into the cultivation of
uncultivated organisms in consortia. Studying higher-order interactions of microbes in this community has highlighted unique
metabolic contributors amongst microbes in the community. While metabolic modelling provides insights into metabolic
interactions, HGT analysis helped explore gene transfers between microbes in the community. Overall, the approach here is
fairly generic and can be applied to any microbial community to generate testable hypotheses on experimentally unculturable

microbes.

Materials and Methods

Figure 1 provides a pictorial representation of the approaches used in this study. This research work starts with building

genome-scale metabolic networks of microbes of the communities from their respective metagenomically-assembled genomes.

Metagenomic datasets and model building
The Guaymas hydrothermal plume microbiome data consists of metagenomically assembled genomes (MAGs) of 98 microbes.
These MAGs fulfil the MIMAG high-quality criteria®' on completeness and contamination which are available in our GitHub
repository. Only these MAGs were used for further reconstructing the genome-scale metabolic models. Briefly, the samples
were collected from plumes of Guaymas Basin, the Gulf of California and high-throughput shotgun sequencing was performed
on the DNA. Metagenomic sequences were assembled into scaffolds and binned into corresponding metagenomically assembled
genomes (MAGs). A detailed description of sampling, DNA extraction, and processing of MAGs is described in detail
elsewhere 3332,

In this study, 98 MAGs corresponding to 98 OTUs were used to construct draft genome-scale metabolic models using
CarveMe?'. Along with this, we also used the data from a recent comparative study of the East Pacific Rise microbiome** for
studying the level of competition in the community (MRO analysis) discussed later in the article (see Studying the level of

competition in the community). Given that these bacteria and archaea remain mostly uncultured and poorly characterized, the
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metabolic models were reconstructed without any gap-filling to avoid any biases. Hence, these draft metabolic models only

represented the metabolism captured in the MAGs and which could be annotated.

Determining the metabolite environment of Guaymas hydrothermal vent ecosystem

Four different metabolite conditions were used for performing all the analyses in this study: (1) Guaymas media (GM) which
simulates conditions in the hydrothermal plumes of Guaymas Basin- MMJHS medium™® with methanol, (2) JW1 media®* with
sulfite, thiosulfate, elemental sulfur, sodium sulfide, cysteine hydrochloride, methanol, (3) Marine Broth 2216 with sulfite,
thiosulfate, elemental sulfur, sodium sulfide, cysteine hydrochloride, methanol and (4) components of all three media combined

(referred as “all-media” hereon).

Predicting metabolic capabilities of microbes in the community
MetQuest>®, a Python package built based on a graph-theoretic algorithm was employed to predict metabolic reactions that can

be active and inactive in the given media conditions. This is achieved in two steps:
1. Constructing metabolic networks by assembling reactions into pathways using a dynamic programming-based approach.
2. Identifying all the reactions that are active (visited) and inactive (stuck) for a given set of starting/seed metabolites.

These seed metabolites are essentially the components of nutrient media on which the community needs to be grown
or simulated. Since the algorithm requires only the topological information of metabolic networks, just the draft metabolic
reconstructions of microbes are sufficient. The components in the media are important because the analyses performed in this
study depends mainly on the environmental metabolome in which they are present (Supplementary File S15). This is due to
the fact that metabolic support received or provided by a microbe to other members of the community varies with the media
conditions. The metabolites that can be produced from the active reactions tells the metabolic capability of the microbes in the

given media.

Predicting metabolic dependencies of microbes in the community

Metabolic dependence is the dependence of one microbe on another microbe in the community for the activation of certain
inactive (stuck) metabolic reactions. A reaction is active only when all the required substrates are available; this unavailability
of substrates gives rise to dependencies. It was observed that the number of stuck reactions decreased when microbes were in a
community versus when in individual state. This was due to the activation of previously inactive reactions led by availability of
metabolites through the exchange of metabolites from other microbes. These reactions are referred as relieved reactions. A
)57

score called Metabolic support index (MSI)’’ was used to determine this metabolic dependence of microbes. The formula for

calculating MSI goes as follows:

Naja — Najaus

1
N M

MSI(AJAUB) =
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where Ny|up represents the number of stuck reactions (reactions that are inactive in the given media condition) in A in the
presence of B and Ny is the number of stuck reactions in A when A is in isolation. Each reaction stuck/not executable is the
loss of a metabolic capability of the metabolic network and MSI calculates the gain of metabolic capability. MSI gives distinct
values for both the members of a pair, i.e., MSI of A in AU B (or just AB, for brevity) community is different from MSI of B in
AB, and hence it is a directional quantity. As an example, if MSI of A in AB is 0.041, this means that 4.1% of inactive reactions
in microbe A can be activated by microbe B by exchange of required metabolites that were not available to microbe A in the
absence of B. This value can be as high as one (MSI = 1) and as low as zero (MSI = 0). This step is called MSI analysis and

was performed for all possible microbial pairs (98C») in the community.

Visualising pairwise interaction networks

In order to visualise the results of pairwise MSI analysis, metabolic interaction networks were constructed. Different types of
network visualisation were used viz., Cytoscape’® for visualising interactions between the microbes. In the “MSI network”,
each node corresponds to the microbe and an edge between them indicates a potential interaction, i.e. a non-zero MSI value.
Since MSI is directional, the interactions are captured via directed networks. The node on the arrowhead side is the “receiving”
microbe while the node on the source side is the “supporting” microbe.

Another way of visualising the metabolic interactions was using chord diagrams. The chord diagrams were generated using
the R package Chord diagrams, using home-grown scripts (shared via GitHub). For this, initially the microbes were grouped
into their corresponding microbial classes and then the interaction between each of the 98 microbes with microbial classes of
Guaymas microbiome was represented using the chord diagrams. Again, the node on the arrowhead side is the “receiving”
microbe/class while the node in the source side is the “supporting” microbe/class, and the chord thickness was mapped to the
number of microbes in a class that interact with the target microbe. All the networks generated for the archaea and bacteria

under study are available in Supplementary File S4.

Predicting possible metabolic exchanges in all microbial pairs
Metabolic exchanges are the metabolites transferred from one microbe to another leading to the revival of stuck reactions. A
list of stuck and relieved reactions was obtained for all the microbes in the respective communities. The reactants of relieved

reactions that are transport reactions are the metabolites received during exchange.

Identifying higher order interactions (CSI analysis)

Support offered by a group of microbes to the community

Here, the microbes in the community were pooled into different clusters based on the microbial classes they belong to such
that each microbial class forms a cluster. There were 24 clusters formed corresponding to the 24 microbial classes present
in the Guaymas community (Refer Supplementary File S16 for the list of clusters and the microbes in each clusters). The
support offered by a cluster as a whole on the community can be determined by knocking out clusters and studying the reactions

relieved in the presence of a particular cluster. Considering X as the microbial community and A the cluster to be removed,
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then A is the community without the cluster A. This can be represented as A = (X —A)*. Then the formula for support index

becomes

Nziz —Nix

CSI(A|X) = N
AlA

@
where N AIx is the number of stuck reactions in the community A in the presence of cluster A (Note that, stuck reactions of
microbes from cluster A will not be considered), and N /i captures the number of stuck reactions in the community when

cluster A is removed from the community.

Unique contributors of the community

A unique contributor of a community is a microbe that has the potential to expand the metabolic niche of a community by
contributing a unique metabolite to the community, thereby activating metabolic capabilities in the microbes. In order to
determine the potential of a microbe A to support its community, the metabolic network of the community can be simulated
with and without microbe A. Then, the support offered by A is the fraction of reactions relieved in the presence of A. Here,
X is the microbial community and A is the microbe to be removed, then A is the community without the microbe A. This
can be represented as A = (X —A). The formula for support index is the same as Eq. 2. Every member of the community
can be knocked out one by one to study the support offered by every microbe in the community. By this method any unique

contributors in the community can be identified.

Predicting HGT events

HGT events can be studied from metagenomic datasets of a community using MetaCHIP®®. HGT analysis was performed using
MetaCHIP v1.7.5 on all phylum, class, order, family and genus levels of taxonomic classification. Broadly, MetaCHIP first
clusters query MAGs according to phylogenies and performs an all-versus-all blastn for all genes across genomes (parametric
step). Next, the blastn matches for each gene is compared across taxa and is considered to be an HGT event if the best match
comes from a non-self taxa. MetaCHIP then uses a phylogenetic approach to (i) reconcile differences between species and gene
trees using RANGER-DTL®! and (ii) identify the direction of the putative transfer event. The enumerated HGT events can
be visualised using the circlize package in R. Finally, egg-NOG mapper®? is used to map the HGT genes to corresponding

functional categories.

Studying the level of competition in the community

It is possible to predict the level of competition in a community by knowing the nutrient requirements of microbes in the
community. We used SMETANA™ to calculate the metabolic resource overlap (MRO), which is the maximal overlap of
minimal nutrient requirements of members of a community. SMETANA is formulated as a mixed linear integer problem (MILP)

that enumerates the set of essential metabolic exchanges within a community of N species with non-zero growth of the N
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species subject to mass balance constraints. SMETANA does not use any biological objective functions which makes it unique.
For every member i in a group of N distinct microbes, SMETANA enumerates the set of minimal nutritional components
required for growth, M;. Nutritional requirement sets M; were used to compute MRO as described in the original paper. For the
comparative analyses across different ecosystems, 1000 random communities were generated for community sizes ranging
from 2 to 10 for four different ecosystems, viz. Guaymas*?, East Pacific Rise**, anaerobic digestion’” and the gut®®. This

analysis is called MRO analysis.

Code availability

All code used in this study is publicly available from GitHub.

Data availability

All genomes (MAGs) used in this study are publicly available through NCBI BioProject PRINA522654. Metagenomic reads

are available through NCBI SRA accession number SRR3577362.
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Figures

Figure legends

Figure 1 Summary of the process followed in studying the Guaymas microbiome. This study starts with the construction
of genome-scale metabolic networks using tools like CarveMe and MetQuest from the metagenomically-assembled genomes
(MAGS) of corresponding microbes. This allows us to further construct metabolic networks for two-member communities and
higher-order communities. The next step involves predicting the characteristics of the community, like the metabolic capability
of microbes in the community, metabolic dependence of the community, metabolic exchanges possible in the community and
unique contributors in the community. Further, genetic interactions between microbes were predicted using MetaCHIP, a tool
for predicting horizontal gene transfers (HGTs). As the last step, the competitiveness of the community is determined at a
different community scale and compared against other microbial communities.

Figure 2 Pairwise MSI interactions of Candidatus Pacearchaeota archaeon UWMA 0287 with other microbes in the
community. This chord diagram shows all possible metabolic interactions between Candidatus Pacearchaeota archacon
UWMA 0287 and other microbial classes present in the Guaymas microbiome in four different media conditions (a) all-media,
(b) GM media, (c) JW1 media, (d) Marine Broth 2216. All the interacting microbes are grouped under their corresponding
microbial class except Candidatus Pacearchaeota archacon UWMA 0287. The chord starts from the donor microbe/class
towards the recipient microbe/class. The thickness of the chord represents the number of microbes participating in the interaction
from the same class. The colours are mapped to microbial classes.

Figure 3 Pairwise MSI interactions of Nitrosopumilus sp UWMA 0263 with other microbes in the community. This
chord diagram shows all possible metabolic interactions between Nitrosopumilus sp UWMA 0263 and other microbial classes

present in the Guaymas microbiome in four different media conditions (a) all-media, (b) GM media, (c) JW1 media, (d) Marine
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Broth 2216. All the interacting microbes are grouped under their corresponding microbial class except Nitrosopumilus sp
UWMA 0263. The chord starts from the donor microbe/class towards recipient microbe/class. The thickness of the chord
represents the number of microbes participating in the interaction from the same class. The colours are mapped to microbial
classes.

Figure 4 Pairwise MSI interactions of Candidatus Handelsmanbacteria bacterium UWMA 0286 with other microbes
in the community. This chord diagram shows all possible metabolic interactions between Candidatus Handelsmanbacteria
bacterium UWMA 0286 and other microbial classes present in the Guaymas microbiome in four different media conditions
(a) all-media, (b) GM media, (c) JW1 media, (d) Marine Broth 2216. All the interacting microbes are grouped under their
corresponding microbial class except Candidatus Handelsmanbacteria bacterium UWMA 0286. The chord starts from the donor
microbe/class towards recipient microbe/class. The thickness of the chord represents the number of microbes participating in
the interaction from the same class. The colours are mapped to microbial classes.

Figure 5 Metabolic support received and provided by Candidatus Pacearchaeota archaeon UWMA 0287 These plots
depict the set of possible metabolites (a)accepted and (b)received by Candidatus Pacearchaeota archaecon UWMA 0287 from
other microbes through the metabolic exchange. The Y-axis in this plot shows the number of interaction pairs in which that
exchange has occurred, with 97 being the highest number of possible pairs for a microbe in a 98-member community.

Figure 6 Unique microbial contributors in all-media. This network highlights the unique contributors to the Guaymas
microbiome in all-media. Each node represents a microbe, and the arrows start from donating the microbe to the recipient
microbe. The colour of the arrows is mapped to different unique metabolites exchanged by the unique contributors.

Figure 7 Metabolic Resource Overlap scores of different microbiomes compared to the Guaymas microbiome This
violin plot represents the distribution of the MRO score of four different microbial communities. 1. Anaerobic Digestion
Microbiome (ADM) (Blue) 2. Gut microbiome (Orange) 3. East Pacific Rise (EPR) L hydrothermal vent (active vent)
microbiome (Green) 4. East Pacific Rise (EPR) M hydrothermal vent (inactive vent) microbiome (Red) 5. Guaymas microbiome
(Violet). The MRO scores (Y-axis) are determined for different community sizes (X-axis), from a 2-member community to a
10-member community.

Figure 8(a) Horizontal gene transfer events annotated to functions. This figure represents the number of times a gene
responsible for a particular function underwent horizontal transfer.

Figure 8(b) Horizontal gene transfer among microbial classes. This figure traces the microbial classes participating in HGT

events.
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