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ABSTRACT12

Deep-sea hydrothermal vents are abundant on the ocean floor and play important roles in ocean biogeochemistry. In vent

ecosystems such as hydrothermal plumes, microorganisms rely on reduced chemicals and gases in hydrothermal fluids to fuel

primary production and form diverse and complex microbial communities. However, microbial interactions that drive these

complex microbiomes remain poorly understood. Here, we use microbiomes from the Guaymas Basin hydrothermal system

in the Pacific Ocean to shed more light on the key species in these communities and their interactions. We built metabolic

models from metagenomically assembled genomes (MAGs) and infer possible metabolic exchanges and horizontal gene

transfer (HGT) events within the community. We highlight possible archaea–archaea and archaea–bacteria interactions and

their contributions to the robustness of the community. Cellobiose, D-Mannose 1-phosphate, O2, CO2, and H2S were among

the most exchanged metabolites. These interactions enhanced the metabolic capabilities of the community by exchange of

metabolites that cannot be produced by any other community member. Archaea from the DPANN group stood out as key

microbes, benefiting significantly as acceptors in the community. Overall, our study provides key insights into the microbial

interactions that drive community structure and organisation in complex hydrothermal plume microbiomes.

13

Introduction14

Deep-sea hydrothermal vents are abundant across mid-ocean ridges, back-arc basins, and volcanoes on the ocean floor.15

Hydrothermal vents emit hot fluids rich in reduced chemicals, gases, and metals. These hot fluids (up to 400 °C) mix with the16



cold seawater (2-4 °C) to form vent chimneys and hydrothermal plumes. While vent chimneys are formed by precipitation and17

solidification of minerals, hydrothermal plumes are turbulent environments that can rise hundreds of meters from the seafloor18

to achieve neutral buoyancy and spread across the ocean over hundreds to thousands of kilometers1, 2. Microbial activity in19

hydrothermal vents is driven by the presence of potential energy sources such as H2S, Fe, Mn, CH4 and H2
3, 4. Hydrothermal20

plumes are associated with a strong redox gradient formed due to the presence of highly reduced electron donors from vents21

which mix with the cold seawater rich in electron acceptors such as oxygen and nitrate, which can provide microorganisms22

with sufficient energy to fix carbon into biomass1, 2. Microbial communities thrive in such harsh environments partly due to23

metabolic interactions associated with their ability for interdependent utilization of substrates5–7. Hydrothermal vent microbial24

communities form the base of the food chain in these environments and have been shown to play a significant role in mediating25

various elemental cycles in ocean ecosystems8, 9. Hydrothermal vent habitats also harbour the growth of a very specialized set26

of organisms like giant tubeworms (vestimentiferans), Pompeii worms (Alvinella pompejana), vesicomyid clams, vent mussels27

(Bathymodiolus elongatus), scaly-foot snails (Chrysomallon squamiferum), and crabs (Kiwa spp.). Flora and fauna in this28

ecosystem flourish as a result of close symbiosis with chemosynthetic microbes consisting primarily of bacteria and archaea.29

Increasingly, omics-based approaches have focused on the study of uncultivated microorganisms and there is a growing30

recognition that microbial metabolic interactions are key in maintaining microbial community structure and function in diverse31

environments, including in the deep sea. The problem of unculturability in microbes that pervades different ecosystems32

makes it a challenge to isolate and characterize metabolic interactions using conventional microbiological tools10. Metabolic33

interactions are the threads holding a community of microbes together11–13. Therefore, studying these interactions can enable34

us to gain mechanistic insights into community function14, 15. While metagenome-based interpretation of microbial genomes35

(as implemented in the software METABOLIC) can predict auxotrophies that can imply the presence of microbial interactions,36

metabolic modeling represents a more powerful approach in predicting metabolic interactions. To this end, in silico modelling37

approaches offer a promising alternative to study microbial metabolism in general16, and community metabolic interactions38

in particular17–19. Genome-scale metabolic models20 can be built using whole genomes or metagenomically assembled39

genomes (MAGs) of microbes21, 22. These models capture the metabolic capabilities of an organism. Metabolic models of all40

known members of a community allow us to study community interactions using various graph-based and constraint-based41

approaches17–19.42

In hydrothermal vents and plumes, prior studies have focused on the genomic characterization of microbial and metabolic43

diversity, but little is known about the role of metabolic dependencies and interactions in these microbiomes. In this study,44

we use deep-sea hydrothermal vents in Guaymas Basin in the Pacific Ocean as a model system to study the functional45

underpinnings of microbial communities in hydrothermal vent plumes and the interactions that keep them together. In particular,46

this study focuses on: (i) the coexistence of archaea and bacteria and the cross-domain metabolic interactions between them,47

and (ii) evolutionary processes in hydrothermal plume microbial communities, including horizontal gene transfers (HGTs)1.48

Our study implicates the metabolite environment in which these microbes grow to play a major role in determining interactions.49
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Overall, the potential of computational approaches like metabolic modelling to unravel the complex web of metabolic and50

genetic interactions that drive the organisation of microbial communities has been illustrated in the study.51

Results52

Design of this study53

In this study, we use 98 MAGs described previously from Guaymas Basin hydrothermal plumes to understand metabolic54

interactions and evolution in hydrothermal systems (Refer Supplementary File S1 for the short name references used in55

this article). Both bacteria and archaea are abundant members of hydrothermal plume microbiomes, yet play distinct roles56

in these environments. In this study we draw various insights about the uncultured bacteria and archaea, including bacteria57

depending on abundant hydrothermally-derived sulfur. Our observations were drawn from four major in silico analyses, MSI58

analysis, CSI analysis, HGT analyses, and MRO studies performed on these microbes (Refer Figure 1 for the summary of the59

approaches used in this research work). Overall, 26 (15 archaea and 11 bacteria) out of 98 MAGs were the main focus of this60

research, though these analyses were performed on all 98 microbes of the community. In comparison to bacteria, archaeal61

biology is still extremely under-explored, and their metabolic and functional potential is not well studied primarily due to the62

difficulty of culturing them23–25. Archaea are known to play important roles in hydrothermal vent ecosystems, and throughout63

the pelagic oceans such as in ammonia oxidation and transformation of organic compounds2, 26–28. Therefore, in order to64

understand and highlight the functional importance of ‘microbial dark matter’ in hydrothermal plumes, a significant focus of65

this study is on the archaeal members of this community and their interactions with other archaeal and bacterial species in the66

Guaymas basin (Refer Supplementary Table 1 for the list of archaea in the community). The Guaymas archaeome comprises67

three classes, Poseidoniia, Nanoarchaeia, and Nitrososphaeria.68

In any microbial community, the ability of a microbe to produce or consume a metabolite is subject to the metabolite/media69

environment those microbes inhabit. In this study, four different media conditions (GM media, JW1 media, marine broth70

2216 and an all-media) were used to study this community. All-media is a synthetic media combining the other three media71

conditions. Components of all three media are possible constituents of hydrothermal vent environments, hence having a72

synthetic media like all-media might provide a closer representation of the habitat.73

Many observations were made about the metabolic capability of microbes in different media and the implicated metabolic74

exchanges. Oxygen, ornithine, and indole were some of the most exchanged metabolites in all-media and JW1 media, but the75

microbes in GM media and marine broth 2216 were unable to produce oxygen resulting in the absence of their exchanges76

in these environments (Refer Supplementary File S2). Acetaldehyde and L-serine were the only metabolite exchanged77

irrespective of media conditions (Refer Supplementary File S2). This observation shows the capability of the community to78

compensate for an absence of a metabolite through exchange. This helps in maintaining the robustness of the community.79
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Archaea–bacteria pairs show high interaction potential in the hydrothermal plume microbiome80

In order to determine the influence of bacteria present in the ecosystem on the metabolism of archaea, pairwise MSI analysis81

was performed under four different media conditions. (Described in Determining the metabolite environment of Guaymas82

hydrothermal vent ecosystem in Materials and Methods). Briefly, in this analysis, a score called Metabolic Support Index (MSI)83

(Predicting metabolic dependencies of microbes in the community in Materials and Methods) is calculated for every possible84

pair of microbes (98C2 pairs), which measures the increase in metabolic capabilities of a microbe while in a community versus85

as an individual organism. Microbes in the community gain different metabolic capabilities through the exchange of metabolites.86

MSI provides distinct values for both the members of a pair, i.e., MSI of A in AB community is different from MSI of B in AB,87

and hence is a directional quantity.88

We identified the most interesting archaea–bacteria microbial pairs on all four media based on high MSI scores. The highest89

MSI score observed in the Guaymas microbiome was 0.052 between an archaeon and a bacterium: FLAE314→ CPA287 (the90

arrow goes from donor to acceptor) in JW1 media, which was primarily due to the exchange of metabolites cellobiose and91

D-Mannose 1-phosphate. These metabolites activated many metabolic reactions in CPA287. In this interaction, FLAE314 is92

not predicted to receive any metabolite from its partner (MSI = 0) in all four media. FLAE314→ NPUM263, GAM261→93

CPA287 were other archaea–bacteria microbial pairs with high interaction potential in the Guaymas microbiome (Figure 294

represents all the pairwise interactions between CPA287 and other microbial classes). Among the 98C2 = 4753 pairs possible95

in the community, the main emphasis was given to those where the receiver acquires at least a 1% increase in the metabolic96

capability (i.e., MSI >= 0.01). Refer Supplementary File S3 for the entire list of MSIs.97

In most of the archaea-bacteria interactions, archaea were always found to be on the “acceptor” side while bacteria “donate”98

metabolites. A possible explanation for this is that archaea have reduced metabolic capabilities than the bacteria in the Guaymas99

community. It is possible that the understudied nature of archaea manifests in a greater proportion of unannotated genes in100

their genomes leading to the impression of them having reduced metabolic capabilities. An MSI value (interaction) is always101

attributed to a set of exchanges leading to the gain of metabolic capabilities in the acceptor microbe. The metabolites frequently102

exchanged in the archaea–bacteria interactions mentioned above were cellobiose, D-Mannose 1-phosphate, O2, CO2, and H2S,103

among others, but the exchange of any one of these metabolites can lead to gain of comparatively greater metabolic capabilities104

in the acceptor microbe.105

Though archaea–bacteria interactions were widely observed in GM media, JW1 media and all-media, they were lower in106

marine broth 2216. FUE333→ CPA287, PLAE346→ CPA287, SNE353→ CPA287, and GEM339→ CNP359 were the only107

high potential archaea–bacteria interactions observed in marine broth 2216. Among these SNE353→ CPA287 was observed in108

all four media.109

Archaea-archaea interactions are dominated by DPANN archaea as acceptor microbes110

MGII266, MGII275, MGII279, MGII283 and MGII350 were some pf the archaeal interacting partners with CPA287 in111

GM media, JW1 media and all-media. Like in archaea–bacteria interactions, CPA287 was always the acceptor in these112
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archaea–archaea interactions too. Cellobiose and CO2 exchanged from Marine Group II euryarchaeotes to CPA287 has the113

potential to activate many metabolic capabilities in CPA287.114

Unlike CPA287, archaea of class Poseidoniia can act as both acceptors and as donors in the Guaymas community.115

Interestingly, these archaea exhibited three distinct interaction patterns:116

1. MGII266, MGII275, MGII279, MGII283, MGII350 and MGII352 showed similar interaction patterns (Refer Supple-117

mentary File S4).118

2. MGII323, MGII328, MGII344, MGII357 and MGIII284 showed similar interaction patterns (Refer Supplementary119

File S4).120

3. MGIII340 was distinct from other members of Poseidoniia. The interaction pattern of this microbe was the sparsest in121

comparison to other members of this group (Refer Supplementary File S4).122

Another significant archaea-archaea interaction involves CNP359 and NPUM263 which belong to the class Nitrososphaeria123

(Figure 3 represents all the pairwise interactions between NPUM263 and other microbial classes). These organisms show124

potential interactions among themselves in JW1 media and in all-media through the exchange of ornithine, putrescine, and H2S.125

Role of Pacearchaeota in the Guaymas community126

Candidatus Pacearchaeota archaeon UWMA 0287 (CPA287) is an archaeon belonging to class Nanoarchaeota from the127

superphylum DPANN. Members of DPANN (including this class) are characterised by small genomes, and limited metabolic128

capabilities due to which they are predicted to rely on other microbes for most of their biosynthetic needs24, 29–31. It was also129

evident from the pairwise MSI analyses that Pacearchaeota are the largest beneficiary archaeon of Guaymas microbiome in130

GM media, JW1 media and all-media, while in marine broth 2216 GEM339 benefited more. Though Pacearchaeota showed131

potential interactions with members of every other microbial class present in the Guaymas microbiome, most of the interactions132

were dominated by members of Gammaproteobacteria, Poseidoniia, Alphaproteobacteria and Bacteroidia (Figure 2). As the133

microbe receiving the greatest benefits from interactions in the community, Pacearchaeota receive cellobiose, O2, CO2, and H2S134

from its partners (Figure 5a). These exchanges were not seen in all four media, for example, the exchange of CO2 was restricted135

to GM media and marine broth 2216 alone as CO2 was already present in JW1 media and all-media. Among these, cellobiose136

can be seen in all interactions of Pacearchaeota except in marine broth 2216. Cellobiose is a disaccharide molecule and is a137

known carbon source for hyperthermophilic archaea32. Our models indicate that Pacearchaeota are able to accept cellobiose138

and hydrolyse it to use as a carbon source, thus leading to gain of many metabolic capabilities and high MSI in media except139

marine broth 2216. Pacearchaeota had the capability to donate metabolites like ornithine, putrescine, 4-aminobutanal (obtained140

during the metabolism of arginine) to other microbes only in all-media and JW1 media (Figure 5b). The metabolites exchanged141

in all other microbes are documented in Supplementary File S5 and S6.142
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Interactions of bacteria in the Guaymas Basin microbiome143

Bacteria in the Guaymas Basin microbiome exhibited a range of interactions from being able to interact with other classes of144

microbes to interacting with organisms from the same phylum/class. Members of the proteobacterial class Gammaproteobacteria145

are amongst the most abundant and dominant microbial populations in hydrothermal plumes33. In the Guaymas Basin146

microbiome, Gammaproteobacteria were predicted to have amongst the largest number of interactions (Refer Supplementary147

File S7 and S8).148

Candidatus Lambdaproteobacteria bacterium UWMA 0318 (LAM318, a member of the phylum SAR324) had the potential149

to interact with all other 23 microbial classes of the Guaymas Basin microbiome in JW1 media. Candidatus Lambdaproteobac-150

teria bacterium UWMA 0298 (LAM298) showed the most interactions with microbes of the class Gammaproteobacteria,151

Bacteroidia, and Alphaproteobacteria in all the given media, except in GM media. The interactions were very minimal in152

GM media. LAM298 acted as both donor and acceptor in all the four media. LAM318 also showed interactions consistently153

with microbes of class Gammaproteobacteria in all the four media. Interactions with Alphaproteobacteria and Bacteroidia154

were seen in all-media and JW1 media while interactions with Poseidonia and Marinisomatia were prevalent in GM media.155

LAM318 acted mostly as an acceptor in all the four media.156

Meanwhile, Candidatus Handelsmanbacteria bacterium UWMA 0286 (HAN286) had the potential to interact with all other157

microbial classes as well as with the other member of its own class (Candidatus Handelsmanbacteria bacterium UWMA 0300)158

in marine broth 2216 (Figure 4 represents the interactions between HAN286 and other microbial classes in all four media).159

Candidatus Handelsmanbacteria bacteria showed most interactions with microbes of class Gammaproteobacteria, Poseidonia,160

Bacteroidia, and with Alphaproteobacteria in all the given media, except in GM media. The interactions were very minimal in161

GM media (Refer figure 4b). In most cases Candidatus Handelsmanbacteria bacteria acts as a donor except in marine broth162

2216 where almost all the interactions involved Candidatus Handelsmanbacteria bacteria were as receivers (Refer figure 4d),163

though surprisingly the microbial class with which it interacted were the same in both cases.164

Given the abundance of reduced sulfur species in hydrothermal plumes, we also identified sulfur oxidizing bacteria165

and observed their interactions. Bacteria from the SUP05 clade of Gammaproteobacteria (Candidatus Thioglobus) are166

amongst the most abundant and active members of plumes. In the Guaymas Basin microbiome, five different Candidatus167

Thioglobus members represented by Candidatus Thioglobus sp UWMA 0259 (CTB259), Candidatus Thioglobus sp UWMA168

0272 (CTB272), Candidatus Thioglobus sp UWMA 0322 (CTB322), Candidatus Thioglobus sp UWMA 0342 (CTB342),169

Candidatus Thioglobus sp UWMA 0360 (CTB360) interacted extensively with other organisms. First, CTB259 showed170

consistent interactions with other Gammaproteobacteria in all the four media, interactions with Poseidonia were observed171

in three media, except for marine broth 2216. CTB259 acts as acceptor in most cases. However in marine broth 2216,172

this bacterium acted as the donor but still maintained interactions with Gammaproteobacteria, Alphaproteobacteria, and173

Bacterioidia which were previously donating metabolites to Candidatus Thioglobus sp UWMA 0259 in other media. Second,174

CTB272 interacted with other Gammaproteobacteria and Alphaproteobacteria in three media except GM media where the175
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only interaction was with Nanoarchaeia (CPA287). Third, CTB272 was observed as an acceptor in all-media while in other176

three media it acted as both an acceptor and donor. CTB322 showed most interactions with Gammaproteobacteria in all the177

four media, while interactions with Poseidonia were prevalent only in all-media and JW1 media. This microbe is a dominant178

a donor in all the four media conditions. Fourth, CTB342 interacted extensively with other Gammaproteobacteria in all179

four media, while interactions with Bacterioidia were seen in media except marine broth 2216 where the interactions were180

minimal. Interactions between Alphaproteobacteria and CTB342 were observed in only all-media and JW1 media. CTB342181

was observed to act as both a donor and acceptor in all four media. Fifth, CTB360 interacted with other Gammaproteobacteria182

and Alphaproteobacteria in all-media and JW1 media. Interactions were minimal in the other two media, GM media and183

marine broth 2216. Interactions with Nanoarchaeia were observed in all four media. CTB360 was a dominant acceptor in184

all-media and JW1 media, while in marine broth 2216 it acted as a donor.185

In addition to Candidatus Thioglobus, other abundant sulfur oxidizing bacteria in plumes were Sulfitobacter and Thiotrichaceae186

species. Sulfitobacter sp UWMA 0305 (SUL305) interacted predominantly with Gammaproteobacteria and Bacterioidia in187

media except GM media where the interactions were constrained to Nanoarchaeia and Planctomycetes. Interactions with188

Poseidonia were observed only in all-media and JW1 media. SUL305 was a dominant donor except in marine broth 2216.189

THIO311 interacted predominantly with Gammaproteobacteria and Poseidonia in media except in marine broth 2216, while190

interactions with Alphaproteobacteria and Bacteriodia were common in media except GM media. Thiotrichaceae bacterium191

UWMA 0311 was observed to act as both an acceptor and donor in all four media (Refer Supplementary File S9 for the MSI192

scores of all bacteria in the community).193

Key microbes in Guaymas Basin microbiome and unique contributors in the community194

To determine the significance of microorganisms in a microbial community, we conducted CSI analyses (see Support offered by195

a group of microbes to the community in Materials and Methods) on the Guaymas Basin microbiome. First, the 98 microbes196

were clustered into 24 clusters based on the taxonomic class they belonged to. Secondly, each cluster was “knocked out” from197

the community to identify the metabolic capabilities lost by the community, a CSI value above zero indicates that the cluster198

has some significance to the community and an CSI score equal to zero indicates little to no significance to the community. This199

analysis was performed in all four media conditions and eight key microbial classes were identified based on the MSI scores200

(Refer Supplementary Table 2 for the list of microbes in each media). These key microbial classes were Alphaproteobacteria,201

Dehalococcoidia, Gammaproteobacteria, Nitrososphaeria, Planctomycetes, Poseidoniia, Rhodothermia, and UBA8108. Only202

Poseidoniia were identified to be significant in all four media conditions (Refer Supplementary Files S10 and S11 for all the203

data generated by CSI analysis on Guaymas microbiome using taxonomic clusters).204

Unique contributors in the community are microbes that have the capability to produce and donate certain metabolites205

that cannot be produced by any other microbe in the community. This was determined by performing CSI analysis where the206

metabolic capabilities of a community are studied before and after adding the microbe of interest (see Unique contributors of the207

community in Materials and Methods). Unique contributors were identified in Guaymas community in all four media conditions208
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summing up to 10 different microbes (Refer Supplementary Table 3). Every one of these microbes is attributed to one or more209

unique metabolites that they can contribute to the community. The unique metabolites exchanged from these microbes to the210

community in different media conditions were agmatine, L-citrulline, L-ornithine, trans-4-hydroxy-L-proline, 2-oxoglutarate211

(Figure 6), which were mostly metabolites involved in amino acid synthesis or metabolism pathways. This shows that amino212

acid auxotrophies exist in the community and are an important driver of the exchange of these metabolites from producers213

to the auxotrophs. This is potentially explained by the abundance of DPANN archaea in the community which are known214

to be auxotrophic for amino acids34. In addition to these metabolites, dihydroxyacetone, dihydroxyacetone phosphate, and215

acetone were also exchanged by these contributors to the community (Refer Supplementary Files S12 and S13 for all the216

data generated by CSI analysis on Guaymas microbiome using individual microbes).217

Resource competition in the Guaymas Basin microbial community218

To study metabolic resource competition in the community, we employed a metric called Metabolic Resource Overlap219

(MRO)35, 36. Briefly, MRO is the maximum possible overlap of the minimal metabolite set of all members of the community220

required for their growth. MRO is solely dependent on the metabolism of the microbes and hence the lesser the MRO, more221

complementary the microbial metabolisms to each other in the community. In this study, we have computed MRO for different222

communities including an anaerobic digestion microbiome (ADM)37, gut microbiome38, East Pacific Rise L hydrothermal vent223

microbiome, East Pacific Rise M hydrothermal vent microbiome, and Guaymas Basin hydrothermal plume microbiome. In224

each microbiome dataset, MRO was observed for community size ranging from 2 (pairwise community) to 10 (10-member225

community) (Refer Studying the level of competition in the community in Materials and Methods). On comparing the MRO226

values of diverse microbial communities pertaining to different metabolic niches, we observed the MRO of ADM and gut227

microbiomes which belong to relatively similar niches were relatively close while that of hydrothermal vent microbiomes were228

significantly lower than that of former (Figure 7). Overall, these MRO values agree with our findings from the MSI analyses229

since lesser the overlap in metabolism, the higher the potential for interaction between microbes35.230

Horizontal Gene Transfers (HGTs) in the Guaymas Basin microbiome231

HGT is one of the survival strategies adopted by microbes to compete in challenging ecosystems39. During this process,232

microbes acquire novel DNA from their partners or from the environment and evolve their metabolic capabilities40, 41. Microbes233

coexisting as communities undergo HGT events to enforce cooperation and HGT is also helpful in structuring the communities42.234

Therefore, we studied HGT events in the community using a tool called MetaCHIP, which allowed for detecting HGT events in235

our metagenomic data. A list of 214 HGT events was detected in the community (Figure 8(a)). On functional annotation, we236

observed that most of the HGT genes were responsible for translation machinery, energy production and conversion, amino237

acid metabolism, and transport mechanisms. The gene transfers occurred across genera and species, but there were no specific238

patterns observed at that level. However, zooming out to the level of classes, HGTs were more frequently observed between239

Gammaproteobacteria and Alphaproteobacteria (Figure 8(b)).240
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Discussion241

In this study, we explored the use of systems-level modelling of hydrothermal plume microbial communities in the Guaymas242

basin. Microbes in these extreme habitats are unique in different ways extending our knowledge of the diversity of life on earth.243

These microbes are adapted to chemoautotrophy due to their scarce exposure to sunlight. With metagenomic data corresponding244

to 98 microbes from Guaymas Basin hydrothermal plumes, genome-scale metabolic models were built using CarveMe. The245

main focus of our research was to shed light on the possible interactions that can be observed in these complex deep-sea246

microbiomes. Insights were obtained for metabolic interactions in the community by studying the metabolic exchanges and247

genetic interactions in the community by studying HGTs.248

The major focus of our study was unveiling the possible interactions between archaea and bacteria. One of the interesting249

predictions was about archaeon CPA287 belonging to class Nanoarchaeia. This archaeon was one of the most dependent250

microbes in Guaymas microbiome (remains an acceptor in all high MSI pairwise interactions). We hypothesize that this251

observation is likely due to the microbes of class nanoarchaeota being devoid of core metabolic pathways as reported252

by29–31, 43, 44 and hence might lead a parasitic or symbiotic lifestyle.253

At the same time, not all archaea in Guaymas microbiome are metabolically dependent on another microbe. Archaea254

of class Poseidoniia (Phylum Euryarchaeota) can act as supporters to bacteria and other archaea (Refer Supplementary255

File S14). This is likely because these microbes have greater metabolic capabilities in comparison to other microbes in the256

Guaymas microbiome. This can be due to the metabolic capabilities acquired through HGT events45. HGT analysis showed257

that Poseidoniia did take part in HGTs, and most of the genes transferred were related to metabolism. This is potential cause258

for Poseidoniia becoming dominant archaea in the Guaymas microbiome.259

Microbes of class Gammaproteobacteria form the majority of the Guaymas microbiome, which might be due to their ability260

to interact with most microbes in the community. In most cases, Gammaproteobacteria act as donors due to the large metabolic261

capability of these microbes in the hydrothermal plume community. Results from genome-scale analyses of MAGs generated262

using METABOLIC9 also confirmed that the metabolic contributions made by Gammaproteobacteria were the highest among263

the Guaymas community. Gammaproteobacteria are also recognised for their contributions towards nitrogen fixation, ammonia264

oxidation, and denitrification in hydrothermal vent ecosystems4, 46, 47.265

Metabolic modelling showed a majority of microbial activity involves the exchange of oxygen, amino acids like serine,266

malate, methionine, amino acid intermediates like 4-Aminobutanoate, indole-3-acetaldehyde and elements involved in the267

carbon cycle like CO2, acetaldehyde, sulfur-based compounds like methanethiol, H2S. This might suggest that metabolites like268

CO2, H2 and H2S are important to the microbes in this environment. Microbes in hydrothermal vent ecosystems rely on the269

oxidation of sulfur, and sulfur-based reduced compounds, and hydrogen oxidation for energy metabolism48, 49. Thus, these270

metabolites are likely to play major roles in this ecosystem. It was also observed that the absence of these metabolites in media271

was always compensated by exchange from other microbes. The absence of CO2 in GM media and Marine broth 2216 and the272

absence of H2S in JW1 media were all compensated by metabolic exchanges.273
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The unique metabolites predicted to be exchanged in the community in different media conditions, were agmatine,274

L-citrulline, L-ornithine, trans-4-hydroxy-L-proline, and 2-oxoglutarate, which were mostly the metabolites involved in amino275

acid synthesis or metabolism pathways. This likely implies that amino acid auxotrophies exist in the community and drives the276

exchange of these metabolites from producers to auxotrophs. The extensive occurrence of metabolic handoffs in hydrothermal277

plume communities provides functional interdependency between microbes, leading to auxotrophies. Thus, the community278

achieves efficient energy and substrate transformations50.279

In summary, this research focused on unveiling the possible interactions between archaea and bacteria in the Guaymas280

hydrothermal plume microbiome by constructing metabolic networks of corresponding microbes. This approach allowed us to281

predict possible metabolic exchanges between individual microbes, and the metabolic capabilities of microbes in different media282

conditions, which are indecipherable to this extent by experimental approaches. The approaches described herein have led to283

many interesting hypotheses, providing a fertile ground for future wet lab experiments to further understand the organisation of284

the Guaymas hydrothermal plume microbiome, and deep-sea microbiomes broadly, to gain better insights into the cultivation of285

uncultivated organisms in consortia. Studying higher-order interactions of microbes in this community has highlighted unique286

metabolic contributors amongst microbes in the community. While metabolic modelling provides insights into metabolic287

interactions, HGT analysis helped explore gene transfers between microbes in the community. Overall, the approach here is288

fairly generic and can be applied to any microbial community to generate testable hypotheses on experimentally unculturable289

microbes.290

Materials and Methods291

Figure 1 provides a pictorial representation of the approaches used in this study. This research work starts with building292

genome-scale metabolic networks of microbes of the communities from their respective metagenomically-assembled genomes.293

Metagenomic datasets and model building294

The Guaymas hydrothermal plume microbiome data33 consists of metagenomically assembled genomes (MAGs) of 98 microbes.295

These MAGs fulfil the MIMAG high-quality criteria51 on completeness and contamination which are available in our GitHub296

repository. Only these MAGs were used for further reconstructing the genome-scale metabolic models. Briefly, the samples297

were collected from plumes of Guaymas Basin, the Gulf of California and high-throughput shotgun sequencing was performed298

on the DNA. Metagenomic sequences were assembled into scaffolds and binned into corresponding metagenomically assembled299

genomes (MAGs). A detailed description of sampling, DNA extraction, and processing of MAGs is described in detail300

elsewhere.33, 52.301

In this study, 98 MAGs corresponding to 98 OTUs were used to construct draft genome-scale metabolic models using302

CarveMe21. Along with this, we also used the data from a recent comparative study of the East Pacific Rise microbiome44 for303

studying the level of competition in the community (MRO analysis) discussed later in the article (see Studying the level of304

competition in the community). Given that these bacteria and archaea remain mostly uncultured and poorly characterized, the305
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metabolic models were reconstructed without any gap-filling to avoid any biases. Hence, these draft metabolic models only306

represented the metabolism captured in the MAGs and which could be annotated.307

Determining the metabolite environment of Guaymas hydrothermal vent ecosystem308

Four different metabolite conditions were used for performing all the analyses in this study: (1) Guaymas media (GM) which309

simulates conditions in the hydrothermal plumes of Guaymas Basin- MMJHS medium53 with methanol, (2) JW1 media54 with310

sulfite, thiosulfate, elemental sulfur, sodium sulfide, cysteine hydrochloride, methanol, (3) Marine Broth 221655 with sulfite,311

thiosulfate, elemental sulfur, sodium sulfide, cysteine hydrochloride, methanol and (4) components of all three media combined312

(referred as “all-media” hereon).313

Predicting metabolic capabilities of microbes in the community314

MetQuest56, a Python package built based on a graph-theoretic algorithm was employed to predict metabolic reactions that can315

be active and inactive in the given media conditions. This is achieved in two steps:316

1. Constructing metabolic networks by assembling reactions into pathways using a dynamic programming-based approach.317

2. Identifying all the reactions that are active (visited) and inactive (stuck) for a given set of starting/seed metabolites.318

These seed metabolites are essentially the components of nutrient media on which the community needs to be grown319

or simulated. Since the algorithm requires only the topological information of metabolic networks, just the draft metabolic320

reconstructions of microbes are sufficient. The components in the media are important because the analyses performed in this321

study depends mainly on the environmental metabolome in which they are present (Supplementary File S15). This is due to322

the fact that metabolic support received or provided by a microbe to other members of the community varies with the media323

conditions. The metabolites that can be produced from the active reactions tells the metabolic capability of the microbes in the324

given media.325

Predicting metabolic dependencies of microbes in the community326

Metabolic dependence is the dependence of one microbe on another microbe in the community for the activation of certain327

inactive (stuck) metabolic reactions. A reaction is active only when all the required substrates are available; this unavailability328

of substrates gives rise to dependencies. It was observed that the number of stuck reactions decreased when microbes were in a329

community versus when in individual state. This was due to the activation of previously inactive reactions led by availability of330

metabolites through the exchange of metabolites from other microbes. These reactions are referred as relieved reactions. A331

score called Metabolic support index (MSI)57 was used to determine this metabolic dependence of microbes. The formula for332

calculating MSI goes as follows:333

MSI(A|A∪B) =
NA|A−NA|A∪B

NA|A
(1)
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where NA|A∪B represents the number of stuck reactions (reactions that are inactive in the given media condition) in A in the334

presence of B and NA|A is the number of stuck reactions in A when A is in isolation. Each reaction stuck/not executable is the335

loss of a metabolic capability of the metabolic network and MSI calculates the gain of metabolic capability. MSI gives distinct336

values for both the members of a pair, i.e., MSI of A in A∪B (or just AB, for brevity) community is different from MSI of B in337

AB, and hence it is a directional quantity. As an example, if MSI of A in AB is 0.041, this means that 4.1% of inactive reactions338

in microbe A can be activated by microbe B by exchange of required metabolites that were not available to microbe A in the339

absence of B. This value can be as high as one (MSI = 1) and as low as zero (MSI = 0). This step is called MSI analysis and340

was performed for all possible microbial pairs (98C2) in the community.341

Visualising pairwise interaction networks342

In order to visualise the results of pairwise MSI analysis, metabolic interaction networks were constructed. Different types of343

network visualisation were used viz., Cytoscape58 for visualising interactions between the microbes. In the “MSI network”,344

each node corresponds to the microbe and an edge between them indicates a potential interaction, i.e. a non-zero MSI value.345

Since MSI is directional, the interactions are captured via directed networks. The node on the arrowhead side is the “receiving”346

microbe while the node on the source side is the “supporting” microbe.347

Another way of visualising the metabolic interactions was using chord diagrams. The chord diagrams were generated using348

the R package Chord diagrams, using home-grown scripts (shared via GitHub). For this, initially the microbes were grouped349

into their corresponding microbial classes and then the interaction between each of the 98 microbes with microbial classes of350

Guaymas microbiome was represented using the chord diagrams. Again, the node on the arrowhead side is the “receiving”351

microbe/class while the node in the source side is the “supporting” microbe/class, and the chord thickness was mapped to the352

number of microbes in a class that interact with the target microbe. All the networks generated for the archaea and bacteria353

under study are available in Supplementary File S4.354

Predicting possible metabolic exchanges in all microbial pairs355

Metabolic exchanges are the metabolites transferred from one microbe to another leading to the revival of stuck reactions. A356

list of stuck and relieved reactions was obtained for all the microbes in the respective communities. The reactants of relieved357

reactions that are transport reactions are the metabolites received during exchange.358

Identifying higher order interactions (CSI analysis)359

Support offered by a group of microbes to the community360

Here, the microbes in the community were pooled into different clusters based on the microbial classes they belong to such361

that each microbial class forms a cluster. There were 24 clusters formed corresponding to the 24 microbial classes present362

in the Guaymas community (Refer Supplementary File S16 for the list of clusters and the microbes in each clusters). The363

support offered by a cluster as a whole on the community can be determined by knocking out clusters and studying the reactions364

relieved in the presence of a particular cluster. Considering X as the microbial community and A the cluster to be removed,365
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then Ã is the community without the cluster A. This can be represented as Ã = (X−A)59. Then the formula for support index366

becomes367

CSI(Ã|X) =
NÃ|Ã−NÃ|X

NÃ|Ã
(2)

where NÃ|X is the number of stuck reactions in the community Ã in the presence of cluster A (Note that, stuck reactions of368

microbes from cluster A will not be considered), and NÃ|Ã captures the number of stuck reactions in the community when369

cluster A is removed from the community.370

Unique contributors of the community371

A unique contributor of a community is a microbe that has the potential to expand the metabolic niche of a community by372

contributing a unique metabolite to the community, thereby activating metabolic capabilities in the microbes. In order to373

determine the potential of a microbe A to support its community, the metabolic network of the community can be simulated374

with and without microbe A. Then, the support offered by A is the fraction of reactions relieved in the presence of A. Here,375

X is the microbial community and A is the microbe to be removed, then Ã is the community without the microbe A. This376

can be represented as Ã = (X −A). The formula for support index is the same as Eq. 2. Every member of the community377

can be knocked out one by one to study the support offered by every microbe in the community. By this method any unique378

contributors in the community can be identified.379

Predicting HGT events380

HGT events can be studied from metagenomic datasets of a community using MetaCHIP60. HGT analysis was performed using381

MetaCHIP v1.7.5 on all phylum, class, order, family and genus levels of taxonomic classification. Broadly, MetaCHIP first382

clusters query MAGs according to phylogenies and performs an all-versus-all blastn for all genes across genomes (parametric383

step). Next, the blastn matches for each gene is compared across taxa and is considered to be an HGT event if the best match384

comes from a non-self taxa. MetaCHIP then uses a phylogenetic approach to (i) reconcile differences between species and gene385

trees using RANGER-DTL61 and (ii) identify the direction of the putative transfer event. The enumerated HGT events can386

be visualised using the circlize package in R. Finally, egg-NOG mapper62 is used to map the HGT genes to corresponding387

functional categories.388

Studying the level of competition in the community389

It is possible to predict the level of competition in a community by knowing the nutrient requirements of microbes in the390

community. We used SMETANA35 to calculate the metabolic resource overlap (MRO), which is the maximal overlap of391

minimal nutrient requirements of members of a community. SMETANA is formulated as a mixed linear integer problem (MILP)392

that enumerates the set of essential metabolic exchanges within a community of N species with non-zero growth of the N393
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species subject to mass balance constraints. SMETANA does not use any biological objective functions which makes it unique.394

For every member i in a group of N distinct microbes, SMETANA enumerates the set of minimal nutritional components395

required for growth, Mi. Nutritional requirement sets Mi were used to compute MRO as described in the original paper. For the396

comparative analyses across different ecosystems, 1000 random communities were generated for community sizes ranging397

from 2 to 10 for four different ecosystems, viz. Guaymas33, East Pacific Rise44, anaerobic digestion37 and the gut38. This398

analysis is called MRO analysis.399

Code availability400

All code used in this study is publicly available from GitHub.401

Data availability402

All genomes (MAGs) used in this study are publicly available through NCBI BioProject PRJNA522654. Metagenomic reads403

are available through NCBI SRA accession number SRR3577362.404
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Figures554

Figure legends555

Figure 1 Summary of the process followed in studying the Guaymas microbiome. This study starts with the construction556

of genome-scale metabolic networks using tools like CarveMe and MetQuest from the metagenomically-assembled genomes557

(MAGs) of corresponding microbes. This allows us to further construct metabolic networks for two-member communities and558

higher-order communities. The next step involves predicting the characteristics of the community, like the metabolic capability559

of microbes in the community, metabolic dependence of the community, metabolic exchanges possible in the community and560

unique contributors in the community. Further, genetic interactions between microbes were predicted using MetaCHIP, a tool561

for predicting horizontal gene transfers (HGTs). As the last step, the competitiveness of the community is determined at a562

different community scale and compared against other microbial communities.563

Figure 2 Pairwise MSI interactions of Candidatus Pacearchaeota archaeon UWMA 0287 with other microbes in the564

community. This chord diagram shows all possible metabolic interactions between Candidatus Pacearchaeota archaeon565

UWMA 0287 and other microbial classes present in the Guaymas microbiome in four different media conditions (a) all-media,566

(b) GM media, (c) JW1 media, (d) Marine Broth 2216. All the interacting microbes are grouped under their corresponding567

microbial class except Candidatus Pacearchaeota archaeon UWMA 0287. The chord starts from the donor microbe/class568

towards the recipient microbe/class. The thickness of the chord represents the number of microbes participating in the interaction569

from the same class. The colours are mapped to microbial classes.570

Figure 3 Pairwise MSI interactions of Nitrosopumilus sp UWMA 0263 with other microbes in the community. This571

chord diagram shows all possible metabolic interactions between Nitrosopumilus sp UWMA 0263 and other microbial classes572

present in the Guaymas microbiome in four different media conditions (a) all-media, (b) GM media, (c) JW1 media, (d) Marine573
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Broth 2216. All the interacting microbes are grouped under their corresponding microbial class except Nitrosopumilus sp574

UWMA 0263. The chord starts from the donor microbe/class towards recipient microbe/class. The thickness of the chord575

represents the number of microbes participating in the interaction from the same class. The colours are mapped to microbial576

classes.577

Figure 4 Pairwise MSI interactions of Candidatus Handelsmanbacteria bacterium UWMA 0286 with other microbes578

in the community. This chord diagram shows all possible metabolic interactions between Candidatus Handelsmanbacteria579

bacterium UWMA 0286 and other microbial classes present in the Guaymas microbiome in four different media conditions580

(a) all-media, (b) GM media, (c) JW1 media, (d) Marine Broth 2216. All the interacting microbes are grouped under their581

corresponding microbial class except Candidatus Handelsmanbacteria bacterium UWMA 0286. The chord starts from the donor582

microbe/class towards recipient microbe/class. The thickness of the chord represents the number of microbes participating in583

the interaction from the same class. The colours are mapped to microbial classes.584

Figure 5 Metabolic support received and provided by Candidatus Pacearchaeota archaeon UWMA 0287 These plots585

depict the set of possible metabolites (a)accepted and (b)received by Candidatus Pacearchaeota archaeon UWMA 0287 from586

other microbes through the metabolic exchange. The Y-axis in this plot shows the number of interaction pairs in which that587

exchange has occurred, with 97 being the highest number of possible pairs for a microbe in a 98-member community.588

Figure 6 Unique microbial contributors in all-media. This network highlights the unique contributors to the Guaymas589

microbiome in all-media. Each node represents a microbe, and the arrows start from donating the microbe to the recipient590

microbe. The colour of the arrows is mapped to different unique metabolites exchanged by the unique contributors.591

Figure 7 Metabolic Resource Overlap scores of different microbiomes compared to the Guaymas microbiome This592

violin plot represents the distribution of the MRO score of four different microbial communities. 1. Anaerobic Digestion593

Microbiome (ADM) (Blue) 2. Gut microbiome (Orange) 3. East Pacific Rise (EPR) L hydrothermal vent (active vent)594

microbiome (Green) 4. East Pacific Rise (EPR) M hydrothermal vent (inactive vent) microbiome (Red) 5. Guaymas microbiome595

(Violet). The MRO scores (Y-axis) are determined for different community sizes (X-axis), from a 2-member community to a596

10-member community.597

Figure 8(a) Horizontal gene transfer events annotated to functions. This figure represents the number of times a gene598

responsible for a particular function underwent horizontal transfer.599

Figure 8(b) Horizontal gene transfer among microbial classes. This figure traces the microbial classes participating in HGT600

events.601
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Figure 1. Overview of the process followed in studying the Guaymas microbiome
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Figure 2. Pairwise MSI interactions of Candidatus Pacearchaeota archaeon UWMA 0287
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Figure 3. Pairwise MSI interactions of Nitrosopumilus sp UWMA 0263
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Figure 4. Pairwise MSI interactions of Candidatus Handelsmanbacteria bacterium UWMA 0286
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(b) Candidatus Pacearchaeota archaeon UWMA 0287 donating metabolites frequency

(a) Candidatus Pacearchaeota archaeon UWMA 0287 accepting metabolites frequency

Figure 5. Metabolic support received and provided by Candidatus Pacearchaeota archaeon UWMA 0287
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Figure 7. Metabolic Resource Overlap scores
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