
Nature Methods | Volume 21 | May 2024 | 835–845 835

nature methods

https://doi.org/10.1038/s41592-024-02175-zArticle

SLIDE: Significant Latent Factor Interaction 
Discovery and Exploration across  
biological domains

Javad Rahimikollu1,2,8, Hanxi Xiao    1,2,8, AnnaElaine Rosengart1, 
Aaron B. I. Rosen1,2, Tracy Tabib3, Paul M. Zdinak1, Kun He4, Xin Bing5, 
Florentina Bunea6, Marten Wegkamp6,7, Amanda C. Poholek    4  , 
Alok V. Joglekar    1  , Robert A. Lafyatis    3   & Jishnu Das    1 

Modern multiomic technologies can generate deep multiscale profiles. 
However, differences in data modalities, multicollinearity of the data, 
and large numbers of irrelevant features make analyses and integration 
of high-dimensional omic datasets challenging. Here we present 
Significant Latent Factor Interaction Discovery and Exploration (SLIDE), 
a first-in-class interpretable machine learning technique for identifying 
significant interacting latent factors underlying outcomes of interest 
from high-dimensional omic datasets. SLIDE makes no assumptions 
regarding data-generating mechanisms, comes with theoretical guarantees 
regarding identifiability of the latent factors/corresponding inference, and 
has rigorous false discovery rate control. Using SLIDE on single-cell and 
spatial omic datasets, we uncovered significant interacting latent factors 
underlying a range of molecular, cellular and organismal phenotypes. SLIDE 
outperforms/performs at least as well as a wide range of state-of-the-art 
approaches, including other latent factor approaches. More importantly, 
it provides biological inference beyond prediction that other methods do 
not afford. Thus, SLIDE is a versatile engine for biological discovery from 
modern multiomic datasets.

Modern multiomic technologies can generate deep multiscale profiles. 
However, differences in data modalities, multicollinearity of the data, 
and large numbers of irrelevant features make the analyses and inte-
gration of high-dimensional omic datasets challenging. For example, 
multicollinearity can increase the variance of regression coefficients 
and lead to deflation of corresponding P values1. This is a major barrier 
to meaningful inference in a regression setting for high-dimensional 

multicollinear data. Further, human biological systems are complex, 
multifactorial and organized hierarchically, with complex interaction 
rules at each hierarchy. A linear model is often inadequate at captur-
ing relevant higher-order relationships in such a system. Finally, while 
recent methods developed by us2–7 and others8–10 have harnessed these 
high-dimensional multiscale multimodal datasets to accurately predict 
different outcomes/groups of interest, they do not directly provide 
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factors: Ap×K and ZK×n, with an error term E. A is the allocation matrix and 
represents the membership of each feature to a latent factor. Z is the 
latent factor matrix and represents a lower-dimensional representation 
(K < p) of the input data in latent space. Critically, this decomposition, 
unlike other factor analysis/non-negative matrix factorization (NMF) 
approaches, comes with theoretical guarantees regarding unique 
identifiability of the latent factors without assumptions regarding 
data-generating mechanisms. It permits overlapping latent factors, 
and there are no restrictive assumptions regarding orthogonality. The 
only assumption is to anchor each of the latent factors using two pure 
variables (that is, variables associated with only one latent factor).

The next step in SLIDE (Fig. 1c, equations (2)–(4)) is the identifica-
tion of significant standalone latent factors using a regression model 
that utilizes the LOVE latent factors.

LP = ∑
j∈S1

βjZj + ϵ1 S1 determinedby knockoffs (2)

Here LP is the linear part of the SLIDE model. Without identifi-
ability (for example, in a NMF setting), it would be meaningless to 
perform regression using the latent factors as they are stochastic and/
or unstable. The identifiability guarantees allow us to meaningfully use 
these factors in a regression setting with corresponding guarantees 
on inference and FDR control in the regression model (Methods and 
Supplementary Note 1).

The identification of significant latent factors uses a multistage 
adaptation of an ultramodern framework for FDR-controlled variable 
selection—knockoffs14. This approach is based on differences or lack 
thereof between true and fake (knockoff) variables. These knockoff 
variables are approximately orthogonal (with a deviation magnitude 
of 1–s) to the response variable, preserving the covariance structure 
(Σ) as illustrated in equations (3)–(5). This means that the correlation 
between the original variable Zi and the knockoff variable ̃Zi  is 1–s, 
with s ≈ 1.

ZTZ = Σ (3)

̃ZT ̃Z = Σ (4)

ZT ̃Z = Σ − diag(s) (5)

While the knockoff strategy has typically been used on observed 
variables, we adapted it for use on the latent factors. Here, the variable 
Zj is statistically significant if it considerably outperforms its knockoff 
̃Zj based on Wj, the test statistic of interest, as defined by equations (6) 

and (7):

Mj = max(λ) where |bj(λ)| > 0 (6)

Wj = max (Mj, ̃Mj) × sgn (Mj − ̃Mj) (7)

In this approach, we identify important latent factors by maximiz-
ing the L1 regularization hyperparameter λ, such that for the original 
and knockoff variables, the absolute value of their corresponding 
coefficients |bj(λ)| remains positive as defined in equation (6). If a latent 
factor Zj is strongly associated with the response variable y, increasing 
λ will result in a high value of Mj and bj(λ) will remain positive. If its cor-
responding knockoff is unimportant, ̃Mj will be small (that is, this latent 
factor is truly important). Conversely, if the value of Mj is small and the 
corresponding value for the knockoff ̃Mj, is similar/higher, the latent 
factor is unimportant. As a result, a higher score for the test statistic 
Wj selects important latent factors with corresponding unimportant 
knockoffs. Further, our adaptation of the knockoff approach is a 

meaningful inference beyond prediction. In fact, approaches that do 
provide insights into the underlying mechanistic bases of outcome 
are tailored primarily for low-dimensional datasets, and often trade 
predictive power for inference11.

In this Article, to address these, we present SLIDE, a novel 
data-distribution-free approach to analyze high-dimensional multi-
omic datasets and uncover latent factors that drive the outcome of 
interest (Fig. 1a). SLIDE makes no assumptions regarding the distri-
bution of the underlying data as it significantly builds on a unique 
latent-factor regression framework developed by us12,13. It takes into 
account an extremely large search space of relationships to converge 
on a very small subset of biologically relevant and actionable latent 
factors. Critically, SLIDE incorporates both linear and nonlinear rela-
tionships, including complex hierarchical structures. It uncovers sig-
nificant interacting latent factors in diverse contexts that span scales of 
organization from cellular/molecular phenotypes (for example, extent 
of clonal expansion of CD4 T cells) to organismal phenotypes (for 
example, disease severity of patients with diffuse systemic sclerosis). 
The discovery of these relationships is also coupled to rigorous false 
discovery rate (FDR) control via our unique analytical framework that 
creatively adapts ultramodern methods for FDR control14. SLIDE comes 
with provable statistical guarantees regarding identifiability of the 
latent factors and corresponding inference of significant interacting 
latent factors. This is fundamentally different from recent methods that 
rely on clever heuristics but do not have formal statistical guarantees or 
work only when strong biological priors are available. SLIDE has rigor-
ous statistical guarantees, recapitulates known biological mechanisms 
and helps uncover novel biological mechanisms.

We tested the predictive performance of SLIDE on a range of data-
sets, and it outperformed/performed as well as several state-of-the-art 
approaches. Further, it provided novel inference not afforded by any 
existing approaches, thus being one of the only methods that simul-
taneously provides meaningful inference for high-dimensional data 
without compromising on predictive power. When analyzing datasets 
from patients with systemic sclerosis (SSc) to elucidate the basis of SSc 
pathogenesis, SLIDE recovered altered transcriptomic states in myeloid 
cells and fibroblasts, a well-studied basis of SSc disease severity15–20. 
But it also identified an unexplored keratinocyte-centric signature 
(validated by protein staining), and a novel mechanism involving an 
interaction between the altered transcriptomic states in myeloid cells 
and fibroblasts with human leukocyte antigen (HLA) signaling in mac-
rophages. SLIDE also worked extremely well across a range of modern 
spatial modalities, including 10X Visium, Slide-seq, MERFISH and 
CODEX, in recapitulating immune and neuronal cell partitioning by 
3D location. In the characterization of latent factors underlying clonal 
expansion of CD4 T cells, SLIDE recapitulated well-known inhibitory 
receptors and markers of activation/exhaustion, but also identified 
several novel markers that standard differential expression analyses 
would have missed. Overall, SLIDE is an engine for biological discovery 
from modern multiomic datasets.

Results
The SLIDE framework
SLIDE is an interpretable latent factor regression-based machine learn-
ing approach (Fig. 1b). It identifies significant latent factors capturing 
linear and nonlinear relationships (up to pairwise interactions) between 
observed data (X, typically high-dimensional, multicollinear) and the 
response of interest (Y) (Fig. 1b). SLIDE consists of three steps starting 
with the unsupervised identification of latent factors (Z) from the data 
(equation (1)),

X′ = AZ + E (1)

Xn×p represent the data matrix with n samples and p features. Using 
our previously described LOVE approach13, X decomposes into two 
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multistage stage procedure (Fig. 1c). Initially, latent factors are divided 
into sets, to which we apply knockoffs and identify putative significant 
latent factors. In stage 2, these latent factors undergo another round 

of selection via knockoffs to converge on a set of standalone significant 
latent factors. We repeat these two stages to identify stable (corre-
sponding stability parameter, where ‘spec’ is the frequency of selection 
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Fig. 1 | SLIDE—a novel interpretable machine learning method for 
Significant Latent Factor Interaction Discovery and Exploration. 
 a, Schematic illustrating the vast array of datasets on which SLIDE can be 
applied and the key advances over existing analytical frameworks for the 
analyses of these datasets. b, Conceptual overview of the SLIDE algorithm. 
c, Schematic summarizing the implementation and different steps in SLIDE. 

d, Key conceptual innovations of SLIDE. e, Comparison of the predictive 
performance of ER, LASSO, PCR, PLSR and SLIDE on simulated datasets across 
a range of number of features without (left) and with (right) interaction terms. 
MSE, mean squared error. f, Comparison of the predictive performance of ER, 
LASSO, PCR, PLSR and SLIDE on simulated datasets across a range of sample 
sizes without (left) and with (right) interaction terms.
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from repeated application of knockoffs) standalone significant latent 
factors (Methods and Supplementary Note 1).

The final step in SLIDE incorporates nonlinear relationships—we 
identify significant interactors of the standalone significant latent 
factors (S1) that is, each interaction term has at least one standalone 
significant latent factor (equations (8) and (9)).

NPj = βjZj +∑i CijZi ⊙ Zj + ϵ2 where i ≠ j, j ∈ S1,

i ∈ {1…K} andZi ⊙ Zj ∈ S2
(8)

y′ = ∑
j
θjNPj + ϵ3 whereNPj ∈ S3 fromknockoffs (9)

Here β ∈R1xK and Cij is the effect size of the interaction term between 
the two latent variables Zi and Zj. S2 is the set of putative interactions 
involving the standalone significant latent factors. Knockoffs are 
applied again to extract the significant interaction terms (Fig. 1c). 
However, these knockoffs are on the pairwise interaction terms to 
identify significant interacting latent factors. If Cij for variable Zj is 
zero for i∊{1…K}, the latent factor is standalone significant without any 
interactors. S3 is the final set of significant latent factors (standalone 
and interacting). Overall, the combination of eight unique properties: 
(1) identifiability of the latent factors, (2) lack of assumptions regarding 
data generating mechanisms, (3) applicability to any data modality 
(single cell, spatial, bulk and so on), (4) the ability to handle correlated 
factors, (5) ability to handle nonlinear relationships, (6) FDR control,  
(7) the ability to provide inference beyond prediction and (8) specificity 
in identifying significant latent factors related to specific outcomes 
of interest enable SLIDE to outperform existing approaches (Fig. 1d).

Using simulations (Methods), we compared the performance of 
SLIDE to other state-of-the-art methods including essential regres-
sion (ER)12, least absolute shrinkage and selection operator (LASSO)21, 
partial least squares regression (PLSR)22 and principal components 
regression (PCR)23 with and without interaction terms (Fig. 1e,f). SLIDE 
performs as well as state-of-the-art approaches when there are no inter-
action terms present (Fig. 1e,f). In the presence of interaction terms, 
it consistently outperforms these methods (Fig. 1e,f). Importantly, all 
approaches other than SLIDE and LASSO use the full model (all features/
clusters) for prediction. However, SLIDE only uses a small number of 
prioritized latent factors for prediction. Next, as simulations use only 
synthetic datasets, we sought to test the performance of SLIDE across 
a diverse range of biological contexts.

SLIDE uncovers novel interacting latent factors that explain 
SSc pathogenesis
Using SLIDE, we first sought to discover interacting latent factors 
underlying SSc disease severity. We analyzed single-cell RNA sequenc-
ing (scRNA-seq) data from 24 subjects with SSc15,24 across the severity 
spectrum (Fig. 2a), where disease severity was quantified using the 
Modified Rodnan Skin Score (MRSS). We identified 35 unique clusters 
and retained clusters with at least 20 cells for each of the 24 subjects 
for downstream analyses (Fig. 2b). Next, we applied SLIDE on these 
cell-type-specific transcript abundances to predict SSc severity and 
infer corresponding significant interacting latent factors of outcome 
(Methods and Supplementary Fig. 1a,b). We benchmarked SLIDE 
against a wide range of state-of-the-art approaches—ER12, LASSO21, a 
variational autoencoder (VAE), MOFA+–regression (linear regression 
coupled to MOFA+ (ref. 25)), PHATE–regression (linear regression cou-
pled to PHATE26), PLSR22 and PCR23. Although MOFA+ and PHATE are 
unsupervised approaches, for a fair comparison across the methods, we 
used the clusters/latent factors uncovered by these methods (MOFA+ 
and PHATE) in a model to regress to MRSS. SLIDE was able to accurately 
predict SSc severity and outperformed five of our seven benchmarks—
PLS, PCR, PHATE–regression, MOFA+–regression and a VAE in terms 

of prediction accuracy (Fig. 2c and Supplementary Fig. 1c). Interest-
ingly, the two other latent factor-based approaches—MOFA+ and VAE 
both underperformed SLIDE in terms of prediction performance. 
LASSO and ER (developed by us) were the only methods with com-
parable prediction performance (Fig. 2c and Supplementary Fig. 1c).  
However, LASSO only identified a small set of predictive biomarkers 
that were uninformative of the actual molecular basis underlying 
SSc pathogenesis. On the other hand, SLIDE identified nine signifi-
cant latent factors that could be used to infer the mechanistic basis 
of SSc pathogenesis. Further, while the performance of SLIDE and ER 
were comparable, ER used the entire set of latent factors to predict 
outcome, while SLIDE used only nine. Thus, SLIDE provides the same 
predictive power as ER but has stronger inference with fewer latent 
factors (Supplementary Fig. 1d).

The nine latent factors uncovered by SLIDE spanned a range of 
cell-intrinsic and cell-extrinsic circuits (Fig. 2d), encompassing altered 
transcriptomic states that have been characterized and recognized to 
be critical in SSc pathogenesis. These states include modulated inflam-
matory states/signaling in myeloid cells and fibroblasts, including 
SFRP2 fibroblasts, which are well-known bases of SSc pathogenesis  
(Fig. 2d)15–20. Other canonical mechanisms recapitulated include 
cross-talk between interferon signaling and myeloid inflammatory 
signaling (Fig. 2d)15–20. Key genes that contribute to these altered tran-
scriptomic states include cytokines and chemokines (for example, 
CCL19), signaling molecules (for example, WIF1), interferon signaling 
genes (for example, IGFBP5), components of mechano-transduction 
(for example, THBS1) and alarmins/damage sensing molecules (for 
example, S100A9). These agree well with previous studies by us and 
others15–20. In addition to recovering well-known mechanisms, we 
converged on several novel mechanisms. The first involves a previ-
ously unelucidated role of keratinocytes in SSc pathogenesis (Fig. 2d). 
We have recently validated this keratinocyte functional signature by 
protein staining27. We also converged on another novel mechanism 
involving interactions between altered myeloid/endothelial cell inflam-
mation and keratinocyte–fibroblast–endothelial cell crosstalk. This 
interaction hinges on altered HLA signaling (Fig. 2d). While our work 
is the first to study this at the transcriptomic level, there is evidence 
for this mechanism in recent genetic studies28.

We compared the predictive power of standalone significant 
latent factors to size-matched random ones, and our actual model 
outperformed the random set at different stability parameters for 
the selection of significant latent factors via the repeated application 
of knockoffs (Fig. 2e and Supplementary Fig. 1e). We also assessed the 
quality of the interacting latent factors by fixing the standalone factors 
and swapping the interactors with a size-matched randomly chosen 
set. As expected, the model’s performance decreased, highlighting the 
importance of having the right interacting latent factors for predicting 
SSc pathogenesis mechanisms.

Canonical markers of SSc severity (including those captured by 
LASSO) such as CCL19, IGFBP5, WIF1, SAA1 and THBS1 (refs. 15–20) 
had significant high linear correlations with MRSS, but almost no non-
linear relationships (Fig. 2f–h). Further, genes such as APOE, S100A9 
have both significant linear and nonlinear relationships with MRSS  
(Fig. 2f–h). Some of these are entirely novel, and others have begun 
to be characterized in SSc15–20. Finally, several have only nonlinear 
relationships with MRSS (Fig. 2f–h). Most of these have been missed by 
previous approaches. Evaluating these nine latent factors with MRSS 
revealed strong relationships with most of them, showing that SLIDE 
accurately captures context-specific biological group structures with 
valuable information about SSc pathogenesis (Fig. 2i).

Canonical biomarker approaches including LASSO focused 
on a handful of individual genes and do not capture any informa-
tion regarding functional groups. Pathway-centric approaches do 
have group information, but these groups are predefined and not 
tailored to the specific context being analyzed. Only a handful of 
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recent approaches (for example, MOFA+ or VAE-based methods) try 
to identify context-specific groups. To better evaluate how SLIDE 
performs relative to these approaches, we compared the quality 
of the inferred latent factors across the relevant approaches (that 
is, approaches that use latent factors or equivalent entities in the 
model). We first benchmarked these approaches by comparing 
their recovery of known drivers (from prior bulk RNA-seq studies) 
of SSc pathogenesis16–20,29,30. While MOFA+ and VAE captured only 
four and two known genes, respectively, underlying the severity 

of SSc, SLIDE captured nine (Fig. 2j and Supplementary Fig. 1f,g). 
This demonstrates the superior performance of SLIDE in recapit-
ulating known markers of SSc severity. Next, we moved beyond 
individual genes to context-specific groups. SLIDE latent factors, 
compared to both MOFA+ and VAE latent factors were significantly 
more correlated to MRSS (Fig. 2k and Supplementary Fig. 1f,g) dem-
onstrating that SLIDE also better captures context-specific groups 
that can stratify by disease severity. SLIDE also outperforms other 
unsupervised clustering approaches, confirming that it hones in on 
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Fig. 2 | SLIDE uncovers novel interacting latent factors that explain SSc 
pathogenesis. a, Schematic summarizing the overall setup. t-SNE, t-distributed 
stochastic neighbor embedding. b, Cellular cluster identities defined by top cell-
type-specific differentially expressed genes (DEGs). c, Spearman correlations 
between true MRSS and MRSS predicted using different methods—SLIDE 
(spec = 0.1), ER, LASSO, VAE, MOFA+–regression, PHATE–regression, PLSR and 
PCR. Model performance plotted across 50 replicates of k-fold cross-validation 
with permutation testing. ***exact P from a permutation test <0.01. d, Significant 
interacting latent factors identified by SLIDE. Green boxes denote significant 
standalone latent factors, and purple boxes denote significant interacting latent 
factors. Color corresponds to the cell type. Genes on the left and right of the 
dashed line have negative and positive correlations with MRSS, respectively.  
e, Performance of the real model (spec = 0.1) relative to (1) the distribution of the 
performance of models built using size-matched random latent factors (blue) 
and (2) the distribution of the performance of models built using the actual 

significant standalone latent factors and size-matched random interacting 
latent factors (green). f, Linear (Spearman correlations) and nonlinear (MIC) 
relationships between key components of the latent factors and MRSS. g, MRSS 
and expression of genes with a significant linear relationship with MRSS.  
h, MRSS and expression of genes with a significant nonlinear relationship with 
MRSS. UPR, unfolded protein response. i, Scatter plot between each significant 
latent factor from SLIDE and MRSS. j, The number of known drivers, identified 
from previously published bulk RNA-seq studies recovered by the SLIDE, VAE 
and MOFA+ models. k, Effect sizes of the SLIDE, MOFA+ and VAE latent factors in 
stratifying patients by their MRSS. P calculated by a Mann–Whitney U test. The 
null distribution is built with random size-matched non-significant SLIDE latent 
factors. **P < 0.05. n.s., not significant. l, Significant standalone and interacting 
latent factors underlying changes in MRSS on treatment with tofacitnib. For box 
plots, the box spans from the first to the third quartile, and the whiskers extend 
from the first quartile −1.5 interquartile range (IQR) to the third quartile +1.5 IQR.
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meaningful significant latent factors underlying outcomes of interest  
(Supplementary Fig. 1h–j).

To more rigorously test the biological significance of these latent 
factors, we moved to a ‘human perturbation experiment’ where 10 of 
these 24 subjects had recently been in a clinical trial with tofacitinib 
(tofa) (Fig. 2l)31. We used SLIDE to identify significant interacting latent 
factors that underlie the reduction in disease severity (change in MRSS 
from pre to post). Remarkably, SLIDE very accurately honed in on the 
known IL6/JAK/STAT-centric molecular mechanism31 underlying tofa 
treatment. This demonstrates SLIDE’s power in meaningful inference 
of complex high-dimensional datasets (Fig. 2l). And it was able to do so 
even at an early time point (we used 6 week scRNA-seq data to predict 
outcomes at week 24, Fig. 2l), demonstrating the sensitivity of SLIDE 
in capturing subtle changes over the course of treatment.

SLIDE uncovers latent factors underlying immune cell 
partitioning by 3D localization
We applied SLIDE to spatial transcriptomic datasets to uncover latent 
factors underlying the 3D spatial partitioning of immune cells in dif-
ferent contexts. First, 10X Visium was performed in a murine allergy 
model32,33 where animals were treated intranasally with house dust mite 
(HDM) for five consecutive days and mediastinal lymph nodes (mLNs) 
were isolated from these animals after the third (D3) and fifth (D5) day 
followed by spatial RNA-seq (Fig. 3a and Methods). Clustering results 
of the spatial regions were overlayed with fluorescence microscopy 
images, designating spatial labels of border, central and intermediate 
zones (Fig. 3b). Border regions showed B cell enrichment, while central 
areas showed CD4 T cell and dendritic cell enrichment (Fig. 3b). These 
labels denoted only spatial locations, not cell types. This allows us to 
test the biological significance of the factors uncovered by the differ-
ent methods—if they are indeed meaningful, they should reflect this 
immune cell partitioning.

SLIDE was able to accurately predict spatial labels for the D3 sam-
ples, and outperformed PLS, PCR and PHATE–regression in terms of 
prediction accuracy (Fig. 3c and Supplementary Fig. 2a–c). Further, 
SLIDE provides the same predictive power as ER but stronger inference 
with fewer latent factors (Supplementary Fig. 2d). The SLIDE latent 
factors, relative to the other methods that have similar prediction 
performance (LASSO, MOFA+ and VAE), also provided more mean-
ingful inference of factors underlying immune cell partitioning by 
3D location.

Interestingly, although SLIDE was only given spatial labels, the 
identified latent factors consisted of genes that mark B cells, CD4 
T cells and dendritic cells (DCs), aligning with fluorescence microscopy 
images (Fig. 3d). The seven latent factors represent multiple immune 
cell canonical functions including broad adaptive immune responses, 
antigen processing and presentation and specific humoral responses 
(Fig. 3d). When compared to a size-matched set of random latent fac-
tors, the actual latent factors performed significantly better at differ-
ent stability parameters for the selection of significant latent factors 
via the repeated application of knockoffs (Fig. 3e and Supplementary 
Fig. 2e). When keeping the actual standalone latent factors fixed but 
shuffling the interactors, the performance of this model (at different 
stability parameter settings) was significantly lower compared to the 
actual model (Fig. 3e and Supplementary Fig. 2e). While some genes 
in the significant latent factors had significant linear relationships 
with spatial labels (Fig. 3f and Supplementary Fig. 2f), several others 
only had nonlinear relationships (Fig. 3f and Supplementary Fig. 2f).

Next, we found significant relationships between individual latent 
factors and the spatial region labels (Fig. 3g). SLIDE captures true 
context-specific biological group structure where each individual 
context-specific group (latent factor) has meaningful information 
regarding the spatial region label of interest. These inferences provided 
by SLIDE surpass those provided by other methods that had compara-
ble prediction performance—LASSO and MOFA+. LASSO inherently 

(because of L1 regularization) provides only individual biomarkers. 
The SLIDE latent factors had significantly higher effect sizes than the 
MOFA+ latent factors in identifying immune cell partitioning by spatial 
location (Fig. 3h and Supplementary Fig. 2g–i).

We also sought to evaluate whether SLIDE could recapitulate 
spatial partitioning at D5 (Fig. 3i). While there is noticeable cell migra-
tion from D3 to D5 post HDM treatment, the overall orientation of cells 
remains the same33. SLIDE outperformed all the benchmarks in terms 
of prediction (Fig. 3j and Supplementary Fig. 3a,b). Among the six 
latent factors (Fig. 3k) selected by SLIDE, we indeed observe recapitula-
tion of both individual genes (for example, Trbc2, Cd3d and Ms4a4b) 
and broader signatures from the D3 analyses. Moreover, while there 
are some differences in membership in the latent factors, the overall 
processes represented by the latent factors remain similar across the 
D3 and D5 analyses (Fig. 3k). However, the MOFA+ and VAE latent fac-
tors are unstable and fail to recapitulate this trend (Supplementary  
Fig. 3c,d). As earlier, SLIDE outperforms both a size-matched set of 
random latent factors and a size-matched set of latent factors where 
the standalone factors are ‘real’, but the interactors are shuffled (Fig. 3l).  
We also evaluated SLIDE’s stability and interpretability on another 
replicate of this experiment. As expected, SLIDE captured similar latent 
factors (Fig. 3m and Supplementary Fig. 4a–h). SLIDE accurately and 
stably, across time points and replicates, captures immune cell parti-
tioning in an allergy model of asthma.

SLIDE enables discovery of significant latent factors 
underlying spatial partitioning for a wide range of spatial  
data modalities
Next, we evaluated SLIDE on a wide range of other spatial data modalities 
and technologies—Slide-seq34, MERFISH35 and CODEX36. We used SLIDE 
to again examine immune cell partitioning by spatial localization within 
a lymph node in a murine model of asthma. However, we now used spa-
tial data generated using Slide-seq instead of the 10X Visium platform 
(Fig. 4a,b and Methods). Immunofluorescence confirmed that border 
regions were enriched for B cells (blue) and the central regions for CD4 
T cells (green) and DCs (pink, Fig. 4b). However, as earlier, the actual 
immune cell partitioning was not used in the labels at all—the labels only 
corresponded to spatial location. SLIDE was able to accurately predict 
spatial labels, outperforming PLS, PCR and PHATE–regression (Fig. 4c  
and Supplementary Fig. 5a,b). The SLIDE latent factors, relative to 
the other methods that have similar prediction performance (LASSO, 
MOFA+ and VAE) also provided more meaningful inference of factors 
underlying partitioning by 3D location (Supplementary Fig. 5c,d).

Using only spatial labels, SLIDE identified six latent factors con-
sisting of genes that mark B cells, CD4 T cells and DCs, in agreement 
with the true spatial partitioning (Fig. 4d). As earlier, the latent factors 
uncovered by SLIDE included processes related to innate and adaptive 
immune responses (Fig. 4d). More interestingly, SLIDE uncovered two 
additional processes: antibody-mediated complement activation, reca-
pitulating a well-known but complex role of the complement system 
in allergic asthma37 and PPAR signaling, hinting at a relatively novel 
mechanism of pathogenic type II immune responses in lung inflam-
mation as asthma mediated by PPARγ expressed by DCs and T cells38. 
We also analyzed the predictive power and SLIDE’s actual latent factors 
performed significantly better than a random size-matched latent 
factors and those with shuffled interactors (Fig. 4e). Further, SLIDE 
captured genes which only had nonlinear relationships that would have 
been missed by traditional regression methods (Fig. 4f). The inferences 
provided by SLIDE surpass those provided by other methods that had 
comparable prediction performance—in particular, MOFA+ (Fig. 4g).

Next, we employed SLIDE to dissect differences in the spatial localiza-
tion of five different subclasses of glutamatergic neurons, including five 
extra telencephalic projecting (L5 ET), layer 5/6 near-projecting (L5/6 NP), 
layer 6 CT (L6 CT), layer 6b (L6b) and intratelencephalic (IT) neurons, in 
the murine primary motor cortex35 (Fig. 4h). SLIDE accurately predicted 
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the neuron localization and captured highly interpretable latent factors 
that represent and capture multiple well-known aspects of neuronal 
differentiation and axonal development (Fig. 4i–k). Furthermore, SLIDE 
identified several genes that only had nonlinear relationships (Fig. 4l).

SLIDE was also applied to spatial proteomic data from healthy 
(BALBc) and lupus (MRL/lpr) mice36. Here, instead of focusing on 
immune cell partitioning by spatial location (a cellular phenotype), we 
focus on spatial differences in protein abundance between healthy and 
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SLE individuals (organismal phenotypes) (Fig. 4m). SLIDE uncovered 
interesting latent factors reflective of well-known rewired cellular pro-
grams in SLE, including altered antigen processing and presentation, 

cell proliferation and adhesion as well as Ca2+ signaling (Fig. 4n). The 
actual latent factors performed significantly better than a random 
size-matched set of latent factors, as well as a size-matched set of actual 
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latent factors with shuffled interactors (Fig. 4o). Overall, SLIDE works 
very well across a wide variety of spatial datasets.

SLIDE elucidates novel interacting latent factors underlying 
clonal expansion in T1D
Finally, we sought to analyze paired multiomic datasets using SLIDE 
and uncover interacting latent factors underlying clonal expansion 
in type-1 diabetes (T1D). Using paired scRNA-seq and T-cell receptor 

sequencing (TCR-seq) data on islet-derived CD4 T cells in a nonobese 
diabetic (NOD) mouse model, we labeled cells (Fig. 5a) on the basis 
of their clonal expansion levels—single (1 clone), low (2–10 clones) or 
medium/high (>10 clones). Here we use paired multiomic data drawn 
from different distributions and examine the ability of SLIDE to iden-
tify factors underlying a cellular phenotype at single-cell resolution.

While transcriptomic profiles showed differences between cells 
at different stages of clonal expansion (Fig. 5b), there is significant 
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intragroup heterogeneity in the profiles of individual cells (Fig. 5b). SLIDE 
transcends this heterogeneity and accurately predicts and infers extent 
of clonal expansion, outperforming several benchmarks including PLS, 
PCR and PHATE–regression in terms of prediction accuracy (Fig. 5c and 
Supplementary Fig. 6a–c). LASSO, ER, scVI39, VAE and MOFA+–regression 
had comparable prediction performance (Fig. 5c and Supplementary 
Fig. 6c); however, SLIDE provides the same predictive power as ER but 
stronger inference with fewer latent factors (Supplementary Fig. 6d).

The SLIDE latent factors, relative to the other methods that have 
similar prediction performance, also provided more meaningful infer-
ence of states underlying the extent of clonal expansion. The four latent 
factors uncovered by SLIDE included (1) markers of naive CD4 T cells, 
(2) activation markers and inhibitory receptors, (3) a latent factor that 
captured intracellular regulation of receptor signaling and (4) riboso-
mal proteins (Fig. 5d). As earlier, we tested if the interactions of (1) with 
(3) and (2) with (4) provided better prediction and additional inference 
that (1) and (2) alone would not provide. As expected, the actual latent 
factors significantly outperformed the random size-matched set at 
different stability parameters for the selection of significant latent 
factors via the repeated application of knockoffs (Fig. 5e and Sup-
plementary Fig. 6e). When keeping the two standalone latent factors 
fixed but shuffling the interactors, the performance of this model 
significantly dropped (Fig. 5e and Supplementary Fig. 6e), highlight-
ing the importance of correct interacting latent factors for prediction 
and corresponding inference of mechanisms underlying clonal expan-
sion. These four significant latent factors also capture both linear and 
nonlinear relationships. (Supplementary Fig. 6f).

Importantly, the four significant latent factors included 
well-known inhibitory receptors and markers of clonal expansion/
exhaustion including Lag3, Pdcd1 (Pd1) and Tigit40 that standard DE 
analyses would have picked up (Fig. 5f). As expected, SLIDE grouped 
these inhibitory receptors in one latent factor. Interestingly, the 
intracellular signaling regulation latent factor also contained Ndfip1  
(ref. 41), which was shown to induce apoptosis in self-reactive T cells. 
The association of other potential mediators of apoptosis such as Anxa5 
(ref. 42), suggests a different pathway of action than the inhibitory 
receptor latent factor. Compared to DE analysis, SLIDE’s grouping of 
genes with convergent functions led to the identification of inhibitory 
receptors and intracellular restriction on proliferation as two parallel 
mechanisms in clonally expanded T cells.

SLIDE also identified novel markers that standard DE analyses would 
have missed (Fig. 5g). Of particular interest is Ccr7, which is elevated in 
naive T cells, as well as memory T cells. Co-expression of Ccr7 with Sell and 
Lef1 are hallmarks of naive T cells43, confirming that unexpanded CD4+ 
T cells are naive in their phenotype. Overall, the significant interacting 
latent factors encapsulate additive effects and are far better at capturing 
the molecular basis of clonal expansion than individual canonical mark-
ers, which show weak univariate trends (Fig. 5h,i). SLIDE latent factors 
were also significantly better than the MOFA+ and sCVI latent factors 
in stratifying by extent of clonal expansion (Fig. 5j and Supplementary 
Fig. 6g–k). Thus, corresponding biological inference, both at the level 
of individual gene and latent factors, is superior to existing approaches.

To further validate and contextualize discoveries made by SLIDE, 
we analyzed scRNA-seq data from an independent recent study44 on 
T1D disease progression markers. Several key markers aligned with our 
results (Fig. 5k) confirming the robustness of our findings. Importantly, 
some differences arose since our markers reflect the extent of clonal 
expansion while the study identified markers of T1D disease progres-
sion. Overall, SLIDE can identify highly context-specific markers of 
clonal expansion of CD4 T cells in a NOD model of T1D.

Discussion
With a surge in technologies for deep profiling, there is a deluge 
of high-dimensional datasets quantifying multiscale multimodal 
responses. Most current methods, such as black-box deep learning 

approaches or classification/regression techniques, focus primarily 
on prediction. Thus, they are useful in predictive contexts but do not 
offer insights into actual mechanisms of complex molecular, cellular 
or organismal phenotypes.

To address these key challenges, we present SLIDE, an interpret-
able latent factor regression-based machine learning approach for 
ubiquitous biological discovery from high-dimensional multiomic 
datasets. SLIDE incorporates nonlinear relationships and comes with 
rigorous guarantees regarding identifiability of the latent factors and 
corresponding inference. These give SLIDE a significant edge over other 
modern techniques (for example, VAEs) that incorporate nonlinear 
relationships, but are sensitive to parameter initialization and often get 
stuck with local minima1. Further, current state-of-the-art methods (for 
example, MOFA+) provide discovery of latent factors with no FDR con-
trol, while SLIDE creatively adapts knockoffs for rigorous FDR control. 
SLIDE is also compatible with different preprocessing and batch-effect 
correction methods and/or technological-platform-specific analysis 
tools, because it makes no assumptions regarding data-generating 
mechanisms (the input data has to be continuous, but there are no 
other distributional assumptions). SLIDE provides inference in addition 
to, and not at the cost of, predictive performance. SLIDE is currently lim-
ited to inference solely from the input data, but future approaches may 
further improve inference via the incorporation of prior knowledge.

Critically, SLIDE infers context-specific groups (latent factors). 
Canonical biomarker approaches do not have group information at 
all, while pathway-centric approaches have group information that 
is context independent and irrelevant in specific scenarios. SLIDE’s 
context-specific group inference provides accurate guidance for down-
stream analyses and experimentation. Thus, SLIDE is a first-in-class 
interpretable machine learning framework for biological discovery.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
Research reported in the manuscript complies with all ethical 
regulations.

Initial LFD framework
The same latent factor discovery (LFD) framework is employed for 
all analyses. We first performed FDR thresholding on the covariance 
matrix, followed by the optimization of two key hyperparameters 
(delta and lambda) using k-fold cross-validation. The delta parameter 
controls the number of latent factors, while the lambda parameter has 
an impact on the sparsity of the allocation matrix of latent factors. 
Considering the large and continuous search space of delta and lambda, 
we perform the search in multiple steps and ranges. The first step of 
the framework performs a coarse grid search of delta in four different 
numerical ranges: 0–0.001, 0.001–0.01, 0.01–0.1 and 0.1–1. The sub-
sequent models utilize the most optimal delta within each range and 
identify the final delta using cross-validation and permutation testing. 
Once an optimal delta has been identified, lambda is tuned using a 
coarse grid search coupled to cross-validation and permutation testing.

Simulations
The simulations aimed to evaluate model performance on different 
values of feature size (p) and sample size (n) with and without interac-
tion terms. The numbers of latent factors (K), significant standalone 
and significant interacting latent factors were set 100, 2 and 5, respec-
tively. For the models with no interactions, the number of interacting 
latent factors was set to 0. For varying features, we fixed the number of 
observations at 300. For simulations that have a varying n, we fixed the 
number of features to 1,000. To generate the simulated data, R package 
mvnorm was utilized to randomly generate datapoints K times, where 
K represents the number of latent factors.

For the model with interaction terms, the dependent variable is 
generated using equation (2) with coefficients generated randomly 
from standard normal distributions.

Analyses of transcriptomic profiles in patients with SSc
We analyzed scRNA-seq data from 24 previously described patients 
with SSc15,24,27 where 10 of these patients were treated with tofacitnib 
for 24 weeks. Standard 10x Genomics sequencing pipeline was used 
including cellranger. The aligned samples were then normalized and 
clustered with Seurat. scRNA-seq data from 24 patients with SSc all 
using the same V2 chemistry was processed using a standard analytic 
pipeline. This consisted of alignment via cellranger and dimension-
ality reduction and clustering using Seurat (Methods). We used R 
(version 4.00) for the data analysis. Seurat (R package version 3.2.2) 
was adopted for cell population identification and visualization. To 
transform the 24 scRNA-seq samples into pseudo-bulk format, we 
utilized the ‘Average Expression Function’ to reduce the cell dimension 
by calculating the average expression of each gene across all cells in 
each cell-type-specific cluster per patient. Clusters with fewer than 20 
cells on average across all patients were excluded. Eighteen clusters 
passed the filtration process, and the top 50 highest variance genes 
across patients for each cluster were chosen in an unsupervised man-
ner as features for the subsequent analysis. For each of the retained 
clusters, we tried a range of feature engineering approaches and 
converged on a cell-type-specific pseudo-bulk average of the most 
variable genes, where variance was calculated in an unsupervised fash-
ion without using the disease severity labels in any form. We utilized 
cell-type-specific pseudo-bulk average of the most variable genes as 
input features while keeping all preprocessing steps unsupervised 
and do not use the MRSS scores.

Post preprocessing, for the 24 untreated samples, the input 
data for the analysis are a sample by gene matrix with dimensions 
of 24 by 804. Using the LFD framework with tenfold cross-validation 
and 20 replicates, optimal delta and lambda values were identified 

(Supplementary Fig. 1a,b). With optimal parameter values set at 0.6 
and 1 for delta and lambda, respectively, the final model produced 120 
latent factors. We then used SLIDE to identify the significant standalone 
latent factors using the iterative knockoff procedure as described 
above. Corresponding parameters of spec (a frequency-based param-
eter to quantify the stability of stages 1 and 2 of the multistage knockoff 
approach), FDR and F (feature split size) are set to 0.3, 0.1 and 100, 
respectively. The analysis resulted in five significant standalone factors 
and four significant interacting latent factors. Fivefold cross-validation 
with 50 replicates was used to compare the predictive power SLIDE 
with ER, LASSO, PHATE, PLSR and PCR. Since PHATE is an unsupervised 
approach, we coupled it to a standard regression model (that is, we 
ran regression on PHATE1 and PHATE2). Glmnet and PhateR packages 
were used to build the LASSO and PHATE models, respectively. The 
PLS package was employed for PCR and PLSR model construction. 
Additionally, to implement MOFA+ and VAE, we utilized the Python 
packages MOFA2, and Keras, respectively, throughout the study. All 
these methods were implemented using the R interpreter package 
reticulate. For VAEs in Keras, we used a sigmoid activation function 
in the encoder and rectified linear unit (RELU) activation functions 
for the decoder. The number of latent factors in VAE were adjusted to 
match SLIDE. For MOFA+, we used the default settings, and a similar 
size-matched number of latent factors.

We used the Spearman correlation and maximal information 
criterion (MIC) to evaluate the linear and nonlinear relationships of 
important genes with MRSS, respectively. These important genes have 
high loadings that correspond to the significant latent factors obtained 
from the SLIDE model. The effect sizes of each significant latent factor 
chosen by SLIDE are quantified by Spearman correlation coefficient 
between the latent factors and MRSS (Fig. 2k). P value is calculated by 
constructing a null distribution as follows. Random nonsignificant 
latent factors, size-matched with the SLIDE output, were chosen 30 
times followed by Spearman correlation calculation. A Mann–Whitney 
U test is performed to calculate the P value between the real correlation 
coefficients and the null correlation coefficients.

For the tofa-treated SSc analysis, post quality control, normaliza-
tion and clustering using Seurat, we matched the cluster identities 
to the untreated samples. To transform the scRNA-seq dataset into 
pseudo-bulk format, we used the same averaging calculation men-
tioned above and feature matched with the untreated analysis resulted 
in the input sample by gene matrix with dimensions of 10 and 728. Using 
the LFD framework, and leave-one-out cross-validation (LOOCV), a 
delta of 0.009 (175 latent factors) and a lambda of 1 were identified as 
optimal hyperparameters. SLIDE was then applied to identify signifi-
cant standalone and interacting latent factors. The SLIDE parameters 
of spec, FDR and F were set to 0.3, 0.1 and 100, respectively. The final 
SLIDE model produced one significant standalone latent factor and 
three significant interacting latent factors.

Analyses of spatial 10X Visium (RNA-seq) data in lymph nodes
Twenty-five micrograms of LPS-low HDM (Stallergenes-Greer Pharma-
ceuticals) in 25 µl of sterile 1× phosphate-buffered saline was delivered 
intranasally under anesthesia to C57BL/6 mice ( Jax Laboratory, male 
mice 6–8 weeks) daily for 3 days. mLNs were isolated on day 4, snap 
frozen and embedded in chilled optimal cutting temperature com-
pound (Tissue-Tek) on dry ice, and stored at −80 °C. mLN samples were 
cryosectioned (10 µm) at −20 °C on a cryostat (Leica) and mounted 
directly onto the 6.5 × 6.5 mm capture areas of a single Visium Spatial 
Gene Expression slide (10x Genomics). The slides were sealed in indi-
vidual 50 ml Falcon tubes at −80 °C until further processing according 
to the manufacturer’s protocol (10x Genomics). The Visium Spatial 
Tissue Optimization Slide & Reagent kit (10x Genomics) was used to 
determine optimal permeabilization timing of 18 min. Immunofluo-
rescence staining was done using ‘Methanol Fixation, Immunofluo-
rescence Staining & Imaging for Visium Spatial Protocols (CG000312)’. 
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Slides were stained with anti-B220 eFluor 450 (RA3-6B2, eBioscience), 
anti-CD4 Alexa Fluor 488 (G.K.1.5, BioLegend) and anti-CD11c Biotin 
(N418, BioLegend) followed by secondary detection with streptavidin 
Alexa Fluor-647. Images were acquired using EVOS M7000 Imaging 
System (AMF7000) under the Visium assay mode. Tissue sections 
were then permeabilized, and messenger RNA molecules within cells 
captured by poly (dT) sequence on the slide surface, followed by on 
slide reverse transcription to generate complementary DNA. cDNA was 
amplified and further processed into sequencing libraries according to 
the manufacturer’s protocol (10x Genomics). Libraries were sequenced 
on an Illumina Nextseq2000 at 50,000 read pairs per spot covered by 
tissue. Sequencing results were initially processed by spaceranger (10x 
Genomics) to align sequencing data with the image. Here we filtered 
the genes more than 900 zeros threshold, which resulted in matrix of 
1,932 genes by 3,779 regions.

Seurat was employed for the quality control, normalization and 
clustering analyses. By overlaying the uniform manifold approximation 
and projection (UMAP) clusters and the fluorescent microscopy plot 
(Fig. 3b,i), cell types predominant in each cluster were identified. Genes 
that are not expressed in at least 900 regions were filtered to control 
the sparsity. Using the LFD framework with tenfold cross-validation 
and 20 replications the optimal value for delta parameter was obtained 
as 0.049 with 21 latent variables (Supplementary Fig. 2a,b). SLIDE was 
applied to identify factors underlying immune cell partitioning by 
spatial localization. We set an FDR threshold at 0.1 for each knockoff 
replicate and F = 21 for this dataset. Two significant standalone latent 
factors and five significant interacting latent factors were identified.

The effect sizes of the significant latent factors identified by SLIDE 
in partitioning by the spatial localization of immune cells are quantified 
by Cliff’s delta values (Fig. 3h). Cliff’s delta calculation is performed 
utilizing the R library, effsize. P value is calculated by constructing a 
null distribution as follows. Random nonsignificant latent factors, 
size-matched with the SLIDE output, were chosen 30 times followed by 
Cliff’s delta calculation. Mann–Whitney–Wilcoxon test is performed 
to calculate the P value between the real Cliff’s deltas and the null 
Cliff’s deltas.

Analyses of spatial Slide-seq data in lymph nodes
Curio Seeker tile was removed and placed in a 1.5-ml Eppendorf 
LoBind tube with Hybridization Reaction Mix. Reverse transcrip-
tion was performed to generate cDNA followed by tissue clearing 
and Curio Seeker Bead resuspension. Second strand synthesis was 
done followed by cDNA amplification, which after purifying was sub-
jected to tagmentation (Nextera XT) and library generation. Libraries 
were sequenced on an Illumina Nextseq2000 at 200 M reads per tile. 
Demultiplexed FastQ files were initially processed by the Curio Seeker 
bioinformatics pipeline.

Seurat was employed for the quality control, normalization and 
clustering analyses. By overlaying the UMAP clusters and the fluores-
cent microscopy plot, predominant cell types in each cluster were iden-
tified. Genes that are not expressed in at least 600 regions were filtered 
to control the sparsity. After applying the filtering, the final matrix 
consisted of 11,421 regions and 3,851 genes. Using the LFD framework 
with tenfold cross-validation and 20 replications the optimal value 
for delta parameter was obtained as 0.6755 and lambda value of 1 with 
47 latent variables (Supplementary Fig. 5a,b). SLIDE was applied to 
identify factors underline immune cell partitioning by spatial localiza-
tion. For this dataset, we set an FDR threshold of 0.1 for each knockoff 
replicate and performed SLIDE with a spec of 0.5 and F = 47. As a result, 
we identified two significant standalone latent factors and three sig-
nificant interacting latent factors. For VAEs in Keras, we used a sigmoid 
activation function in the encoder and RELU activation functions for 
the decoder. The number of latent factors is size matched with that 
of SLIDE latent factors. For the MOFA+, we used the default setting of 
the software. The libraries and the packages that were used for this 

analysis are the same as previous analysis. The effect sizes of the sig-
nificant latent factors from SLIDE in stratifying by spatial localization 
are quantified by Cliff’s delta values as described above.

Analysis of spatial transcriptomics data generated from 
MERFISH imaging
We first used the LFD framework to identify latent factors. The input 
data consisted of a cell-by-gene matrix, comprising 16,200 cells and 241 
genes. Parameter tuning was performed via tenfold cross-validation 
with 20 replicates. The LFD framework, utilizing a delta value of 0.109 
and lambda value of 1, ultimately identified 31 latent factors.

Subsequently, SLIDE was applied to discern the significant inter-
acting latent factors that underlie the differences in subclasses of the 
glutamatergic neurons in the mouse primary motor cortex. In this 
analysis, we set the SLIDE parameters as follows: spec at 0.2, FDR at 0.1 
and feature partition size at 31. This configuration led to the identifica-
tion of two significant standalone latent factors and seven significant 
interacting latent factors. For VAEs in Keras, we used a sigmoid activa-
tion function in the encoder and RELU activation functions for the 
decoder. The number of latent factors in VAE is adjusted to match that 
of SLIDE. For MOFA+, we initially used default parameters followed 
by tuning of the number of latent factors. To perform benchmarking 
across methods, we utilized the same packages as in the previous analy-
sis, ensuring consistency and comparability across the evaluations.

Analysis of spatial proteomics data generated by CODEX
We first applied the LFD framework to uncover latent factors. The 
dataset consisted of the cell-by-protein matrix comprising 10,000 cells 
and 30 proteins. The parameter tuning LFD framework was conducted 
via tenfold cross-validation with 20 replicates. Ultimately, utilizing 
a delta value of 0.081 and a lambda value of 0.5, the LFD framework 
identified a total of nine latent factors as the final model. For VAEs in 
Keras, we used a sigmoid activation function in the encoder and RELU 
activation functions for the decoder. The number of latent factors in 
VAE is adjusted to match that of SLIDE. For MOFA+, we initially used 
default parameters followed by tuning of the number of latent factors.

Next, SLIDE was employed to discern significant interacting latent 
factors. With the SLIDE parameter configuration set at spec 0.5, FDR 
0.1 and a feature partition size of 9, the analysis identified two sig-
nificant standalone latent factors and three significant interacting 
latent factors.

scRNA-seq and TCR-seq of islet infiltrating CD4 T cells
NOD mice (6-, 8- or 10-week-old female NOD/ShiLtJ) were euthanized by 
CO2 asphyxiation and immediately dissected for pancreas perfusion. 
Pancreas perfusion was performed under a dissecting Zeiss micro-
scope. Pancreatic duct was clamped using surgical clamps and 3 ml 
of 600 U ml−1 collagenase dissolved in Hank’s Balanced Salt Solution 
(HBSS) was injected using a 30 G needle. Perfused pancreata were col-
lected and incubated at 37 °C for 30 min. After the incubation, HBSS 
with R10 was added to quench collagenase. After washing twice with 
HBSS + R10, the tissue was plated on a 10-cm plate, individual islets were 
picked using a micropipettor. Islets were then incubated in dissociation 
buffer, centrifuged and resuspended in the staining mix (1:500 dilution 
of anti-Thy1.2-BV605 + 1:500 dilution of Live/Dead-APC-Cy7, and 1:100 
dilution of cell hashing anti-mCD45 TotalSeq-C antibodies (BioLeg-
end)). After staining, the cells were resuspended in phosphate-buffered 
saline + 0.04% bovine serum albumin and sorted on BD FACS Aria III 
sorter. After sorting the cells, they were counted and processed for 
scRNA-seq. Cells were processing using 10 × 5′ single cell gene expres-
sion kit v3 in a Chromium controller according to the manufacturer’s 
protocols. V(D)J enrichment was done using the single-cell 5′ VDJ 
enrichment kit according to the manufacturer’s protocols. Libraries 
were sequenced on HiSeq4000 (Novogene) with a 70:20:10 mix for 
gene expression:VDJ:hashing libraries.
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Sequence data were downloaded and aligned to the mouse 
genome (Mm10) using cellranger (10x Genomics). TCR annotation 
was performed using cellranger vdj using mouse GRCm38 assembly. 
All three time points were sequenced and processed separately. Cell-
ranger and cellranger vdj output files were used as inputs in Seurat for 
normalization, scaling, and dimensionality reduction. The packaged 
scRepertoire was used for TCR clonotype calling and analyses. The 
data were normalized using NormalizeData and scaled using ScaleData 
functions in Seurat. The scRepertoire functions combineTCR and 
combineExpression were used to add TCR clonotypes to each cell. 
HTODemux function in Seurat was used to demultiplex cell hashes 
and assign the correct mouse identity to each cell. At this point, all 
three time points were merged in Seurat using the merge function. 
After merging, integration was done using FindIntegrationAnchors 
and IntegrateData functions. Principle component analysis was per-
formed using RunPCA. Top 20 principal components were used for 
UMAP, followed by cluster identification using FindNeighbors and 
FindClusters. CD4+ T cells were subsetted using FeatureScatter and 
CellSelector functions, and reclustered. Cluster markers were defined 
by FindAllMarkers function. Clonotype data were sorted according 
to expansion and exported as a csv file. UMAP representations with 
clonotypes were generated using highlightClonotypes function in 
scRepertoire. Differentially expressed genes were identified using 
FindMarkers function using DESeq2 statistics and represented using 
EnhancedVolcano function. After obtaining scRNA-seq and TCR-seq 
data on islet-derived cells in a NOD mouse model, analysis was done 
through the standard 10x Genomics pipeline. We labeled cells based 
on their clonal expansion stages followed by the postprocessing of the 
scRNA-seq data in R (4.1.0) using Seurat (R package, version 3.2.2). The 
columns representing genes and rows representing cells are filtered on 
the basis of 1,200 threshold, meaning that if the sparsity exceeds 1,200, 
the cell row or gene column will be removed. The SLIDE input matrix 
was finalized with 1,776 genes and 2,482 cells.

The LFD framework is first utilized to discover latent factors. The 
input data is a cell by gene matrix, consisting of 2,484 cells and 1,776 
genes. As described previously, tenfold cross-validation with 20 repli-
cations was performed for optimal parameter tuning (Supplementary 
Fig. 6a,b). The final model constructed by the LFD framework using 
delta as 0.0912 and lambda as 1 discovered 40 latent factors. We then 
performed SLIDE to identify significant interacting latent factors 
underlying differences in clonal expansion in CD4 T cells. We set the 
SLIDE parameter spec at 0.2, FDR at 0.1 and feature partition size at 40, 
resulting in the identification of two significant standalone and two sig-
nificant interacting latent factors. For VAEs in Keras, we used a sigmoid 
activation function in the encoder and RELU activation functions for 
the decoder. The number of latent factors in VAE is adjusted to match 
that of SLIDE. As for MOFA+, we used the default setting, and the num-
ber of latent factors was fine-tuned within the software. In addition to 
MOFA+ and VAE, we also performed linear and nonlinear scVI analyses 
using the Python package scvi-tools and the R interpreter reticulate. We 
used scvi.model.LinearSCVI and scvi.model.SCVI functions for linear 
and nonlinear models, respectively. The effect sizes of the significant 
latent factors identified by SLIDE in stratifying by the extent of clonal 
expansions are quantified by Cliff’s delta values as described above.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data including the SSc scRNA-seq, 10X Visium, Slide-seq, CD4 
T cell scRNA-seq and TCR-seq datasets and associated documenta-
tion are available at https://github.com/jishnu-lab/SLIDE and at 
https://github.com/jishnu-lab/SLIDEpre. Corresponding stable 
releases are available at https://doi.org/10.5281/zenodo.10159961 
and https://doi.org /10.5281/zenodo.10159957, respectively.  
The relevant datasets have also been deposited at the Gene Expres-
sion Omnibus (accession IDs: GSE245112 and GSE247410 for the 
spatial and T1D datasets, respectively). Source data are provided 
with this paper.

Code availability
All code and documentation is available at https://github.com/
jishnu-lab/SLIDE and at https://github.com/jishnu-lab/SLIDEpre. Cor-
responding stable releases are available at https://doi.org/10.5281/
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