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Modern multiomic technologies can generate deep multiscale profiles.
However, differences in data modalities, multicollinearity of the data,

and large numbers of irrelevant features make analyses and integration

of high-dimensional omic datasets challenging. Here we present
Significant Latent Factor Interaction Discovery and Exploration (SLIDE),
afirst-in-class interpretable machine learning technique for identifying
significant interacting latent factors underlying outcomes of interest

from high-dimensional omic datasets. SLIDE makes no assumptions
regarding data-generating mechanisms, comes with theoretical guarantees
regarding identifiability of the latent factors/corresponding inference, and
has rigorous false discovery rate control. Using SLIDE on single-cell and
spatial omic datasets, we uncovered significant interacting latent factors
underlying a range of molecular, cellular and organismal phenotypes. SLIDE
outperforms/performs at least as well as a wide range of state-of-the-art
approaches, including other latent factor approaches. More importantly,

it provides biological inference beyond prediction that other methods do
not afford. Thus, SLIDE is a versatile engine for biological discovery from
modern multiomic datasets.

Modern multiomic technologies can generate deep multiscale profiles.
However, differences in data modalities, multicollinearity of the data,
and large numbers of irrelevant features make the analyses and inte-
gration of high-dimensional omic datasets challenging. For example,
multicollinearity can increase the variance of regression coefficients
and lead to deflation of corresponding Pvalues'. This is a major barrier
to meaningful inference in a regression setting for high-dimensional

multicollinear data. Further, human biological systems are complex,
multifactorial and organized hierarchically, with complexinteraction
rules at each hierarchy. A linear model is often inadequate at captur-
ing relevant higher-order relationshipsin such a system. Finally, while
recent methods developed by us*”and others®° have harnessed these
high-dimensional multiscale multimodal datasets to accurately predict
different outcomes/groups of interest, they do not directly provide
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meaningful inference beyond prediction. In fact, approaches that do
provide insights into the underlying mechanistic bases of outcome
are tailored primarily for low-dimensional datasets, and often trade
predictive power for inference”.

In this Article, to address these, we present SLIDE, a novel
data-distribution-free approach to analyze high-dimensional multi-
omic datasets and uncover latent factors that drive the outcome of
interest (Fig. 1a). SLIDE makes no assumptions regarding the distri-
bution of the underlying data as it significantly builds on a unique
latent-factor regression framework developed by us'". It takes into
account an extremely large search space of relationships to converge
on a very small subset of biologically relevant and actionable latent
factors. Critically, SLIDE incorporates both linear and nonlinear rela-
tionships, including complex hierarchical structures. It uncovers sig-
nificantinteracting latent factorsin diverse contexts that span scales of
organization from cellular/molecular phenotypes (for example, extent
of clonal expansion of CD4 T cells) to organismal phenotypes (for
example, disease severity of patients with diffuse systemic sclerosis).
The discovery of these relationships is also coupled to rigorous false
discovery rate (FDR) control via our unique analytical framework that
creatively adapts ultramodern methods for FDR control™. SLIDE comes
with provable statistical guarantees regarding identifiability of the
latent factors and corresponding inference of significant interacting
latent factors. Thisis fundamentally different from recent methods that
rely on clever heuristics but do not have formal statistical guarantees or
work only when strong biological priors are available. SLIDE hasrigor-
ousstatistical guarantees, recapitulates known biological mechanisms
and helps uncover novel biological mechanisms.

Wetested the predictive performance of SLIDE on arange of data-
sets, and it outperformed/performed as well as several state-of-the-art
approaches. Further, it provided novel inference not afforded by any
existing approaches, thus being one of the only methods that simul-
taneously provides meaningful inference for high-dimensional data
without compromising on predictive power. When analyzing datasets
from patients with systemic sclerosis (SSc) to elucidate the basis of SSc
pathogenesis, SLIDE recovered altered transcriptomic states in myeloid
cells and fibroblasts, a well-studied basis of SSc disease severity>2°.
But it also identified an unexplored keratinocyte-centric signature
(validated by protein staining), and a novel mechanism involving an
interaction between the altered transcriptomic states in myeloid cells
and fibroblasts with human leukocyte antigen (HLA) signaling in mac-
rophages. SLIDE also worked extremely well across arange of modern
spatial modalities, including 10X Visium, Slide-seq, MERFISH and
CODEX, in recapitulating immune and neuronal cell partitioning by
3Dlocation. Inthe characterization of latent factors underlying clonal
expansion of CD4 T cells, SLIDE recapitulated well-known inhibitory
receptors and markers of activation/exhaustion, but also identified
several novel markers that standard differential expression analyses
would have missed. Overall, SLIDE is an engine for biological discovery
from modern multiomic datasets.

Results

The SLIDE framework

SLIDEisaninterpretable latent factor regression-based machine learn-
ingapproach (Fig. 1b). It identifies significant latent factors capturing
linear and nonlinear relationships (up to pairwise interactions) between
observed data (X, typically high-dimensional, multicollinear) and the
response of interest (Y) (Fig. 1b). SLIDE consists of three steps starting
withthe unsupervisedidentification of latent factors (2) from the data
(equation (1)),

X =AZ+E )

Xnxprepresent the datamatrixwith nsamplesandp features. Using
our previously described LOVE approach®, X decomposes into two

factors: A, and Z.,, withanerror term E. Ais the allocation matrix and
represents the membership of each feature to a latent factor. Zis the
latent factor matrix and represents alower-dimensional representation
(K < p) of theinput datainlatent space. Critically, thisdecomposition,
unlike other factor analysis/non-negative matrix factorization (NMF)
approaches, comes with theoretical guarantees regarding unique
identifiability of the latent factors without assumptions regarding
data-generating mechanisms. It permits overlapping latent factors,
andthere are norestrictive assumptions regarding orthogonality. The
only assumptionis toanchor each of the latent factors using two pure
variables (that is, variables associated with only one latent factor).

The next step in SLIDE (Fig. 1c, equations (2)-(4)) is the identifica-
tion of significant standalone latent factors using a regression model
that utilizes the LOVE latent factors.

LP = Z ﬁij +€6
Jjesl

S1determined by knockoffs  (2)

Here LP is the linear part of the SLIDE model. Without identifi-
ability (for example, in a NMF setting), it would be meaningless to
performregression using the latent factors as they are stochastic and/
or unstable. Theidentifiability guarantees allow us to meaningfully use
these factors in a regression setting with corresponding guarantees
on inference and FDR control in the regression model (Methods and
Supplementary Note1).

The identification of significant latent factors uses a multistage
adaptation ofanultramodern framework for FDR-controlled variable
selection—knockoffs'. This approach is based on differences or lack
thereof between true and fake (knockoff) variables. These knockoff
variables are approximately orthogonal (with a deviation magnitude
of 1-s) to the response variable, preserving the covariance structure
(%) asillustrated in equations (3)-(5). This means that the correlation
between the original variable Z; and the knockoff variable Z; is 1-s,
withs=1.

7T7=% 3)
77=x @)
Z'7 =3 — diag(s) 5)

While the knockoff strategy has typically been used on observed
variables, we adapted it for use onthe latent factors. Here, the variable
Zisstatistically significantif it considerably outperformsits knockoff
Zj based on W, the test statistic of interest, as defined by equations (6)
and (7):

/\/Ij = max(/l) where |bj(,1)| >0 (6)
W) = max (V1) x sgn (M)~ 1) 2

Inthis approach, weidentify important latent factors by maximiz-
ing the L1regularization hyperparameter A, such that for the original
and knockoff variables, the absolute value of their corresponding
coefficients |bj(A) |[remains positive as defined in equation (6). If alatent
factor Z;is strongly associated with the response variable y, increasing
Awill resultin a high value of M;and by, will remain positive. If its cor-
responding knockoffis unimportant, M; willbe small (that s, this latent
factoristrulyimportant). Conversely, if the value of M;is smalland the
corresponding value for the knockoff M;, is similar/higher, the latent
factor is unimportant. As aresult, a higher score for the test statistic
W, selects important latent factors with corresponding unimportant
knockoffs. Further, our adaptation of the knockoff approach is a
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Fig.1|SLIDE—anovel interpretable machine learning method for
Significant Latent Factor Interaction Discovery and Exploration.

a, Schematicillustrating the vast array of datasets on which SLIDE can be
applied and the key advances over existing analytical frameworks for the
analyses of these datasets. b, Conceptual overview of the SLIDE algorithm.
¢, Schematic summarizing the implementation and different steps in SLIDE.
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d, Key conceptual innovations of SLIDE. e, Comparison of the predictive
performance of ER, LASSO, PCR, PLSR and SLIDE on simulated datasets across
arange of number of features without (left) and with (right) interaction terms.
MSE, mean squared error. f, Comparison of the predictive performance of ER,
LASSO, PCR, PLSR and SLIDE on simulated datasets across a range of sample
sizes without (left) and with (right) interaction terms.

multistage stage procedure (Fig. 1c). Initially, latent factors are divided
into sets, to which we apply knockoffs and identify putative significant
latent factors. In stage 2, these latent factors undergo another round

of selection via knockoffs to converge on aset of standalone significant
latent factors. We repeat these two stages to identify stable (corre-
sponding stability parameter, where ‘spec’is the frequency of selection
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from repeated application of knockoffs) standalone significant latent
factors (Methods and Supplementary Note1).

The final step in SLIDE incorporates nonlinear relationships—we
identify significant interactors of the standalone significant latent
factors (S1) that is, each interaction term has at least one standalone
significant latent factor (equations (8) and (9)).

NP; = B,Z; + 3, C;iZi © Z; + e; where i # j,j € S, )
ie{l..K}andZ;,0 Z; € S2

¥ = O,NP; + e; where NP; € $3 from knockoffs )
J

Here SeR™ and C;is the effect size of the interaction termbetween

the two latent variables Z;and Z,. S2 is the set of putative interactions
involving the standalone significant latent factors. Knockoffs are
applied again to extract the significant interaction terms (Fig. 1c).
However, these knockoffs are on the pairwise interaction terms to
identify significant interacting latent factors. If C; for variable Z; is
zerofor ie{l...K}, the latent factor is standalone significant without any
interactors. S3is the final set of significant latent factors (standalone
andinteracting). Overall, the combination of eight unique properties:
(1) identifiability of the latent factors, (2) lack of assumptions regarding
data generating mechanisms, (3) applicability to any data modality
(single cell, spatial, bulk and so on), (4) the ability to handle correlated
factors, (5) ability to handle nonlinear relationships, (6) FDR control,
(7) the ability to provide inference beyond prediction and (8) specificity
in identifying significant latent factors related to specific outcomes
of interest enable SLIDE to outperform existing approaches (Fig. 1d).

Using simulations (Methods), we compared the performance of
SLIDE to other state-of-the-art methods including essential regres-
sion (ER)", least absolute shrinkage and selection operator (LASSO)?,
partial least squares regression (PLSR)** and principal components
regression (PCR)* with and without interaction terms (Fig. le,f). SLIDE
performs as well as state-of-the-art approaches whenthere are nointer-
action terms present (Fig. 1e,f). In the presence of interaction terms,
itconsistently outperforms these methods (Fig. 1e,f). Importantly, all
approachesotherthan SLIDE and LASSO use the fullmodel (all features/
clusters) for prediction. However, SLIDE only uses a small number of
prioritized latent factors for prediction. Next, as simulations use only
synthetic datasets, we sought to test the performance of SLIDE across
adiverse range of biological contexts.

SLIDE uncovers novel interacting latent factors that explain
SSc pathogenesis

Using SLIDE, we first sought to discover interacting latent factors
underlying SSc disease severity. We analyzed single-cell RNA sequenc-
ing (scRNA-seq) data from 24 subjects with SSc™>** across the severity
spectrum (Fig. 2a), where disease severity was quantified using the
Modified Rodnan Skin Score (MRSS). We identified 35 unique clusters
and retained clusters with at least 20 cells for each of the 24 subjects
for downstream analyses (Fig. 2b). Next, we applied SLIDE on these
cell-type-specific transcript abundances to predict SSc severity and
infer corresponding significant interacting latent factors of outcome
(Methods and Supplementary Fig. 1a,b). We benchmarked SLIDE
against a wide range of state-of-the-art approaches—ER", LASSO%, a
variational autoencoder (VAE), MOFA+-regression (linear regression
coupled to MOFA+ (ref. 25)), PHATE-regression (linear regression cou-
pled to PHATE*), PLSR* and PCR*. Although MOFA+ and PHATE are
unsupervised approaches, forafair comparisonacross the methods, we
used the clusters/latent factors uncovered by these methods (MOFA+
and PHATE) inamodel toregress to MRSS. SLIDE was able to accurately
predict SScseverity and outperformed five of our seven benchmarks—
PLS, PCR, PHATE-regression, MOFA+-regression and a VAE in terms

of prediction accuracy (Fig. 2c and Supplementary Fig. 1c). Interest-
ingly, the two other latent factor-based approaches—MOFA+and VAE
both underperformed SLIDE in terms of prediction performance.
LASSO and ER (developed by us) were the only methods with com-
parable prediction performance (Fig. 2c and Supplementary Fig. 1c).
However, LASSO only identified a small set of predictive biomarkers
that were uninformative of the actual molecular basis underlying
SSc pathogenesis. On the other hand, SLIDE identified nine signifi-
cant latent factors that could be used to infer the mechanistic basis
of SSc pathogenesis. Further, while the performance of SLIDE and ER
were comparable, ER used the entire set of latent factors to predict
outcome, while SLIDE used only nine. Thus, SLIDE provides the same
predictive power as ER but has stronger inference with fewer latent
factors (Supplementary Fig. 1d).

The nine latent factors uncovered by SLIDE spanned a range of
cell-intrinsic and cell-extrinsic circuits (Fig. 2d), encompassing altered
transcriptomic states that have been characterized and recognized to
be criticalin SSc pathogenesis. These statesinclude modulated inflam-
matory states/signaling in myeloid cells and fibroblasts, including
SFRP2 fibroblasts, which are well-known bases of SSc pathogenesis
(Fig. 2d)"*°. Other canonical mechanisms recapitulated include
cross-talk between interferon signaling and myeloid inflammatory
signaling (Fig. 2d)"*°. Key genes that contribute to these altered tran-
scriptomic states include cytokines and chemokines (for example,
CCL19), signaling molecules (for example, WIF1), interferon signaling
genes (for example, IGFBP5), components of mechano-transduction
(for example, THBS1) and alarmins/damage sensing molecules (for
example, SI00A9). These agree well with previous studies by us and
others” . In addition to recovering well-known mechanisms, we
converged on several novel mechanisms. The first involves a previ-
ously unelucidated role of keratinocytes in SSc pathogenesis (Fig. 2d).
We have recently validated this keratinocyte functional signature by
protein staining”. We also converged on another novel mechanism
involvinginteractions between altered myeloid/endothelial cell inflam-
mation and keratinocyte-fibroblast-endothelial cell crosstalk. This
interaction hinges on altered HLA signaling (Fig. 2d). While our work
is the first to study this at the transcriptomic level, there is evidence
for this mechanism in recent genetic studies®.

We compared the predictive power of standalone significant
latent factors to size-matched random ones, and our actual model
outperformed the random set at different stability parameters for
the selection of significant latent factors viathe repeated application
of knockoffs (Fig. 2e and Supplementary Fig. 1e). We also assessed the
quality of theinteractinglatent factors by fixing the standalone factors
and swapping the interactors with a size-matched randomly chosen
set. As expected, the model’s performance decreased, highlighting the
importance of having therightinteractinglatent factors for predicting
SSc pathogenesis mechanisms.

Canonical markers of SSc severity (including those captured by
LASSO) such as CCL19, IGFBPS, WIF1, SAA1 and THBSI (refs. 15-20)
had significant high linear correlations with MRSS, but almost no non-
linear relationships (Fig. 2f-h). Further, genes such as APOE, SI0O0A9
have both significant linear and nonlinear relationships with MRSS
(Fig. 2f-h). Some of these are entirely novel, and others have begun
to be characterized in SSc”*°. Finally, several have only nonlinear
relationships with MRSS (Fig. 2f-h). Most of these have been missed by
previous approaches. Evaluating these nine latent factors with MRSS
revealed strong relationships with most of them, showing that SLIDE
accurately captures context-specific biological group structures with
valuable information about SSc pathogenesis (Fig. 2i).

Canonical biomarker approaches including LASSO focused
on a handful of individual genes and do not capture any informa-
tion regarding functional groups. Pathway-centric approaches do
have group information, but these groups are predefined and not
tailored to the specific context being analyzed. Only a handful of
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Fig.2|SLIDE uncovers novel interacting latent factors that explain SSc
pathogenesis. a, Schematic summarizing the overall setup. t-SNE, t-distributed
stochastic neighbor embedding. b, Cellular cluster identities defined by top cell-
type-specific differentially expressed genes (DEGs). ¢, Spearman correlations
between true MRSS and MRSS predicted using different methods—SLIDE

(spec =0.1), ER, LASSO, VAE, MOFA+-regression, PHATE-regression, PLSR and
PCR. Model performance plotted across 50 replicates of k-fold cross-validation
with permutation testing. ***exact P from a permutation test <0.01. d, Significant
interacting latent factors identified by SLIDE. Green boxes denote significant
standalone latent factors, and purple boxes denote significant interacting latent
factors. Color corresponds to the cell type. Genes on the left and right of the
dashed line have negative and positive correlations with MRSS, respectively.

e, Performance of the real model (spec = 0.1) relative to (1) the distribution of the
performance of models built using size-matched random latent factors (blue)
and (2) the distribution of the performance of models built using the actual

52 5 6 R
nflammatory signaling

significant standalone latent factors and size-matched random interacting
latent factors (green). f, Linear (Spearman correlations) and nonlinear (MIC)
relationships between key components of the latent factors and MRSS. g, MRSS
and expression of genes with a significant linear relationship with MRSS.

h, MRSS and expression of genes with a significant nonlinear relationship with
MRSS. UPR, unfolded protein response. i, Scatter plot between each significant
latent factor from SLIDE and MRSS. j, The number of known drivers, identified
from previously published bulk RNA-seq studies recovered by the SLIDE, VAE
and MOFA+models. k, Effect sizes of the SLIDE, MOFA+ and VAE latent factorsin
stratifying patients by their MRSS. P calculated by a Mann-Whitney Utest. The
null distributionis built with random size-matched non-significant SLIDE latent
factors. **P < 0.05.n.s., not significant. I, Significant standalone and interacting
latent factors underlying changes in MRSS on treatment with tofacitnib. For box
plots, the box spans from the first to the third quartile, and the whiskers extend
from the first quartile 1.5 interquartile range (IQR) to the third quartile +1.5IQR.

recent approaches (for example, MOFA+ or VAE-based methods) try
to identify context-specific groups. To better evaluate how SLIDE
performs relative to these approaches, we compared the quality
of the inferred latent factors across the relevant approaches (that
is, approaches that use latent factors or equivalent entities in the
model). We first benchmarked these approaches by comparing
their recovery of known drivers (from prior bulk RNA-seq studies)
of SSc pathogenesis'®?°?**°, While MOFA+ and VAE captured only
four and two known genes, respectively, underlying the severity

of SSc, SLIDE captured nine (Fig. 2j and Supplementary Fig. 1f,g).
This demonstrates the superior performance of SLIDE in recapit-
ulating known markers of SSc severity. Next, we moved beyond
individual genes to context-specific groups. SLIDE latent factors,
compared to both MOFA+ and VAE latent factors were significantly
more correlated to MRSS (Fig. 2k and Supplementary Fig. 1f,g) dem-
onstrating that SLIDE also better captures context-specific groups
that can stratify by disease severity. SLIDE also outperforms other
unsupervised clustering approaches, confirming thatithonesinon
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meaningful significant latent factors underlying outcomes of interest
(Supplementary Fig. 1h-j).

Tomorerigorously test the biological significance of these latent
factors, we moved to a ‘human perturbation experiment’ where 10 of
these 24 subjects had recently been in a clinical trial with tofacitinib
(tofa) (Fig. 21)*. We used SLIDE to identify significant interacting latent
factors thatunderlie the reductionindisease severity (change in MRSS
from pre to post). Remarkably, SLIDE very accurately honed in on the
known IL6/JAK/STAT-centric molecular mechanism® underlying tofa
treatment. This demonstrates SLIDE’s power in meaningful inference
of complex high-dimensional datasets (Fig.21). And it was abletodo so
evenatan early time point (we used 6 week scRNA-seq datato predict
outcomes at week 24, Fig. 21), demonstrating the sensitivity of SLIDE
in capturing subtle changes over the course of treatment.

SLIDE uncovers latent factors underlying immune cell
partitioning by 3D localization

We applied SLIDE to spatial transcriptomic datasets to uncover latent
factors underlying the 3D spatial partitioning of immune cells in dif-
ferent contexts. First, 10X Visium was performed in a murine allergy
model*>** where animals were treated intranasally with house dust mite
(HDM) for five consecutive days and mediastinal lymph nodes (mLNs)
wereisolated from these animals after the third (D3) and fifth (D5) day
followed by spatial RNA-seq (Fig. 3a and Methods). Clustering results
of the spatial regions were overlayed with fluorescence microscopy
images, designating spatial labels of border, central and intermediate
zones (Fig. 3b). Border regions showed B cell enrichment, while central
areasshowed CD4 T celland dendritic cell enrichment (Fig. 3b). These
labels denoted only spatial locations, not cell types. This allows us to
test the biological significance of the factors uncovered by the differ-
ent methods—if they are indeed meaningful, they should reflect this
immune cell partitioning.

SLIDE was able to accurately predict spatial labels for the D3 sam-
ples, and outperformed PLS, PCR and PHATE-regression in terms of
prediction accuracy (Fig. 3c and Supplementary Fig. 2a-c). Further,
SLIDE provides the same predictive power as ER but stronger inference
with fewer latent factors (Supplementary Fig. 2d). The SLIDE latent
factors, relative to the other methods that have similar prediction
performance (LASSO, MOFA+ and VAE), also provided more mean-
ingful inference of factors underlying immune cell partitioning by
3D location.

Interestingly, although SLIDE was only given spatial labels, the
identified latent factors consisted of genes that mark B cells, CD4
T cellsand dendritic cells (DCs), aligning with fluorescence microscopy
images (Fig. 3d). The seven latent factors represent multiple immune
cell canonical functionsincluding broad adaptiveimmune responses,
antigen processing and presentation and specific humoral responses
(Fig.3d). When compared to a size-matched set of random latent fac-
tors, the actual latent factors performed significantly better at differ-
ent stability parameters for the selection of significant latent factors
viathe repeated application of knockoffs (Fig. 3e and Supplementary
Fig. 2e). When keeping the actual standalone latent factors fixed but
shuffling the interactors, the performance of this model (at different
stability parameter settings) was significantly lower compared to the
actual model (Fig. 3e and Supplementary Fig. 2e). While some genes
in the significant latent factors had significant linear relationships
with spatial labels (Fig. 3f and Supplementary Fig. 2f), several others
only had nonlinear relationships (Fig. 3f and Supplementary Fig. 2f).

Next, we found significant relationships betweenindividual latent
factors and the spatial region labels (Fig. 3g). SLIDE captures true
context-specific biological group structure where each individual
context-specific group (latent factor) has meaningful information
regarding the spatial region label of interest. These inferences provided
by SLIDE surpass those provided by other methods that had compara-
ble prediction performance—LASSO and MOFA+. LASSO inherently

(because of L1 regularization) provides only individual biomarkers.
The SLIDE latent factors had significantly higher effect sizes than the
MOFA+ latent factors inidentifyingimmune cell partitioning by spatial
location (Fig. 3h and Supplementary Fig. 2g-i).

We also sought to evaluate whether SLIDE could recapitulate
spatial partitioning at D5 (Fig. 3i). While there is noticeable cell migra-
tionfrom D3 to D5 post HDM treatment, the overall orientation of cells
remains the same®. SLIDE outperformed all the benchmarksin terms
of prediction (Fig. 3j and Supplementary Fig. 3a,b). Among the six
latent factors (Fig. 3k) selected by SLIDE, we indeed observe recapitula-
tion of both individual genes (for example, Trbc2, Cd3d and Ms4a4b)
and broader signatures from the D3 analyses. Moreover, while there
are some differences in membership in the latent factors, the overall
processes represented by the latent factors remain similar across the
D3 and D5 analyses (Fig. 3k). However, the MOFA+ and VAE latent fac-
tors are unstable and fail to recapitulate this trend (Supplementary
Fig.3c,d). As earlier, SLIDE outperforms both a size-matched set of
random latent factors and a size-matched set of latent factors where
the standalone factors are ‘real’,but the interactors are shuffled (Fig. 31).
We also evaluated SLIDE's stability and interpretability on another
replicate of this experiment. As expected, SLIDE captured similar latent
factors (Fig. 3m and Supplementary Fig. 4a-h). SLIDE accurately and
stably, across time points and replicates, captures immune cell parti-
tioningin an allergy model of asthma.

SLIDE enables discovery of significant latent factors
underlying spatial partitioning for a wide range of spatial
datamodalities
Next, we evaluated SLIDE on awide range of other spatial data modalities
and technologies—Slide-seq**, MERFISH* and CODEX**. We used SLIDE
toagain examineimmune cell partitioning by spatial localization within
alymphnodeinamurine model of asthma. However, we now used spa-
tial data generated using Slide-seq instead of the 10X Visium platform
(Fig.4a,b and Methods). Immunofluorescence confirmed that border
regions were enriched for B cells (blue) and the central regions for CD4
T cells (green) and DCs (pink, Fig. 4b). However, as earlier, the actual
immune cell partitioning was not used in the labels at all-the labels only
corresponded to spatial location. SLIDE was able to accurately predict
spatial labels, outperforming PLS, PCR and PHATE-regression (Fig. 4c
and Supplementary Fig. 5a,b). The SLIDE latent factors, relative to
the other methods that have similar prediction performance (LASSO,
MOFA+ and VAE) also provided more meaningful inference of factors
underlying partitioning by 3D location (Supplementary Fig. 5c,d).
Using only spatial labels, SLIDE identified six latent factors con-
sisting of genes that mark B cells, CD4 T cells and DCs, in agreement
with the true spatial partitioning (Fig. 4d). As earlier, the latent factors
uncovered by SLIDE included processes related toinnate and adaptive
immuneresponses (Fig.4d). More interestingly, SLIDE uncovered two
additional processes: antibody-mediated complementactivation, reca-
pitulating a well-known but complex role of the complement system
in allergic asthma® and PPAR signaling, hinting at a relatively novel
mechanism of pathogenic type Il immune responses in lung inflam-
mation as asthma mediated by PPARy expressed by DCs and T cells™.
We also analyzed the predictive power and SLIDE’s actual latent factors
performed significantly better than a random size-matched latent
factors and those with shuffled interactors (Fig. 4e). Further, SLIDE
captured genes which only had nonlinear relationships that would have
been missed by traditional regression methods (Fig. 4f). The inferences
provided by SLIDE surpass those provided by other methods that had
comparable prediction performance—in particular, MOFA+ (Fig. 4g).
Next, weemployed SLIDE to dissect differencesinthe spatiallocaliza-
tion of five different subclasses of glutamatergic neurons, including five
extratelencephalic projecting (LSET), layer 5/6 near-projecting (L5/6 NP),
layer 6 CT (L6 CT), layer 6b (L6b) and intratelencephalic (IT) neurons, in
the murine primary motor cortex™® (Fig. 4h). SLIDE accurately predicted
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Fig. 3 | SLIDE uncovers latent factors underlying immune cell partitioning
by 3D localization in amurine model of asthma. a, Schematic of the 10X
Visium experiment. b, K-nearest neighbors (KNN) clustering of the spatial
regions overlayed with microscopic images of three D3 technical replicates
(blue, B cells; green, CD4 T cells; pink, dendritic cells). ¢, Spearman correlations
between true and predicted spatial region for D3 lymph nodes using different
methods—SLIDE (spec = 0.1), ER, LASSO, VAE, MOFA+-regression, PHATE-
regression, PLSR and PCR. Model performance is plotted across 50 replicates of
fivefold cross-validation framework with permutation testing. **exact Pfrom a
permutation test <0.01. d, Significantinteracting latent factors for D3 samples.
Green, significant standalone latent factors; purple, significant interacting
latent factors. e, Performance of the real model (spec = 0.1) for D3 samples
relative to nullmodels as described in Fig. 2e. f, Linear (Spearman correlations)
and nonlinear (MIC) relationships between key components of the D3 latent
factors and spatial region. g, Box plotsillustrating the distributions (across
cells) of each SLIDE latent factor across spatial regions. Pvalues are calculated
using Kruskal-Wallis test. ***P < 0.01, **P < 0.05. h, Effect sizes of the SLIDE

Pearson correlation

latent factors from g and top size-matched MOFA+ latent factors (each dot
corresponds to alatent factor) in discriminating by spatial localization. Pfroma
two-sided Mann-Whitney Utest. The null distribution is built with random size-
matched nonsignificant SLIDE latent factors. **P = 0.028. n.s., not significant.

i, KNN clustering of the spatial regions overlayed with microscopic images of
two D5 technical replicates (blue, B cells; green, CD4 T cells; pink, dendritic
cells). j, Spearman correlations between true spatial region and spatial region
predicted for D5 lymph nodes using different methods—SLIDE (spec = 0.1), ER,
LASSO, VAE, MOFA+, PHATE-regression, PLSR and PCR. Model performance is
plotted across 50 replicates of k-fold cross-validation with permutation testing.
***P < 0.01.k, Significant interacting latent factors for D5 samples identified by
SLIDE. Other conventions correspond tod. BCR, B cell receptor. 1, Performance
of the real model for D5 samples relative to models as described in Fig. 2e. m,
Linear Spearman correlations and nonlinear relationships (quantified using MIC)
between key components of the D5 latent factors and spatial region. For box
plots, the box spans from the first to the third quartile, and the whiskers extend
from the first quartile 1.5 interquartile range (IQR) to the third quartile +1.5IQR.

theneuronlocalization and captured highly interpretable latent factors
that represent and capture multiple well-known aspects of neuronal
differentiation and axonal development (Fig. 4i-k). Furthermore, SLIDE
identified several genes that only had nonlinear relationships (Fig. 41).

SLIDE was also applied to spatial proteomic data from healthy
(BALBc) and lupus (MRL/Ipr) mice®. Here, instead of focusing on
immune cell partitioning by spatial location (a cellular phenotype), we
focus onspatial differences in protein abundance between healthy and
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Fig. 4 |SLIDE uncovers latent factors underlying spatial localizations and
phenotypes from different spatial transcriptomic and proteomic modalities.
a, Schematic summarizing the Slide-seq experiment. b, KNN clustering of the
spatial regions and microscopic images of two technical replicates of mLNs. (blue,
B cells; green, CD4 T cells; pink, dendritic cells). ¢, Spearman correlations between
true and predicted spatial region for D3 lymph nodes using different methods—
SLIDE (spec = 0.1), ER, LASSO, VAE, MOFA+-regression, PHATE-regression, PLSR
and PCR. Model performance is plotted across 50 replicates of fivefold cross-
validation with permutation testing. ***P < 0.01. d, Significant interacting latent
factorsidentified by SLIDE. Green, significant standalone latent factors; purple,
significantinteracting latent factors. e, Performance of the real model (spec = 0.1)
relative to null models as described in Fig. 2e. f, Linear (Spearman correlations)
and nonlinear (MIC) relationships between key components of the latent factors
and spatial region. g, Effect sizes of the SLIDE latent factors fromd and top
size-matched MOFA+ latent factors (each dot corresponds to a latent factor)
indiscriminating by spatial localization. Pfrom aMann-Whitney Utest. The

null distribution is built with random size-matched nonsignificant SLIDE latent
factors.**P < 0.05.n.s., not significant. h, Schematic summarizing MERFISH data

from different subsets of glutamatergic neurons spatially distributed across the
murine motor cortex. i, Spearman correlations between true spatial region and
spatial region predicted for day 3 treated lymph nodes using different methods—
SLIDE (spec =0.1), ER, LASSO, VAE, MOFA+-regression, PHATE-regression,

PLSR and PCR. Model performance plotted across 50 replicates of fivefold
cross-validation framework with permutation testing. ***P < 0.01.j, Significant
interacting latent factors identified by SLIDE. Green, significant standalone
latent factors; purple, significant interacting latent factors. k, Performance

of the real model for D5 samples relative to null models as described in Fig. 2e.

1, Linear Spearman correlations and nonlinear relationships (quantified using
MIC) between key components of latent factors and spatial region. m, Schematic
summarizing CODEX data from BALBc and MRL/Ipr murine spleens. n, Significant
interacting latent factors identified by SLIDE. Green, significant standalone latent
factors; purple, significant interacting latent factors. o, Performance of the real
model for D5 samples relative to null models as described in Fig. 2e. AUC, area
under the receiver operating characteristic curve. For box plots, the box spans
from the first to the third quartile, and the whiskers extend from the first quartile
-L5interquartile range (IQR) to the third quartile +1.5IQR.

SLE individuals (organismal phenotypes) (Fig. 4m). SLIDE uncovered
interesting latent factors reflective of well-known rewired cellular pro-
grams in SLE, including altered antigen processing and presentation,

cell proliferation and adhesion as well as Ca* signaling (Fig. 4n). The
actual latent factors performed significantly better than a random
size-matched set of latent factors, as well as a size-matched set of actual
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Fig. 5| SLIDE elucidates novel interacting latent factors underlying the clonal
expansion of CD4 T cellsin T1D. a, Schematic summarizing scRNA-seq and TCR-
seq data from NOD mice used to infer mechanisms underlying clonal expansion
of CD4 T cells. b, UMAP visualization of the three stages of clonal expansion.

¢, Spearman correlations between true stage of clonal expansion and stage of
clonal expansion predicted using different methods—SLIDE (spec = 0.1), ER,
LASSO, PLS, PCR and PHATE-regression. Model performance is measured across
50 replicates of fivefold cross-validation with permutation testing. **P < 0.01.

d, Significantinteracting latent factors (LFs) identified by SLIDE. Green, significant
standalone latent factors; purple, significant interacting latent factors.

e, Performance of the real model (spec = 0.1) relative to null models as described
inFig. 2e.f, Volcano plotsillustrating genes in the significant latent factors.
Highlighted genes indicate membersin latent factors identified by the SLIDE
model. Pvalues from a Wald test. g, Linear Spearman correlations and nonlinear
relationships (quantified using MIC) between key components of the latent
factors and extent of clonal expansion. FC, fold change. h, Dot plotsillustrating

frequency (circle size) and median expression (color intensity) of well-known
markers of T cell activation, exhaustion and inhibitory receptors at the three
stages of clonal expansion. Frequency/expression calculated using data from

our study. i, Box plotsillustrating the distributions of each SLIDE latent factor
(across) cells at the three different stages of clonal expansion. Kruskal-Wallis test
is performed to calculate Pvalues. ***P < 0.01. j, Effect sizes of the SLIDE latent
factors fromd (excluding ribosomal) and top-sized matched MOFA+and scVI
latent factors in stratifying CD4 T cells by extent of clonal expansion. Pvalue

is calculated using aMann-Whitney Utest. The null distribution is built with
random size-matched nonsignificant SLIDE latent factors. ***P < 0.01. n.s., not
significant. k, Dot plots illustrating frequency (circle size) and median expression
(color intensity) of well-known markers of T cell activation, exhaustion and
inhibitory receptors at the three stages of clonal expansion. Frequency/
expression calculated using data from Unanue and colleagues. For box plots, the
box spans from the first to the third quartile, and the whiskers extend from the
first quartile -1.5 interquartile range (IQR) to the third quartile +1.51QR.

latent factors with shuffled interactors (Fig. 40). Overall, SLIDE works
very well across a wide variety of spatial datasets.

SLIDE elucidates novel interacting latent factors underlying
clonal expansionin TID

Finally, we sought to analyze paired multiomic datasets using SLIDE
and uncover interacting latent factors underlying clonal expansion
intype-1diabetes (T1D). Using paired scRNA-seq and T-cell receptor

sequencing (TCR-seq) dataonislet-derived CD4 T cellsinanonobese
diabetic (NOD) mouse model, we labeled cells (Fig. 5a) on the basis
of their clonal expansion levels—single (1 clone), low (2-10 clones) or
medium/high (>10 clones). Here we use paired multiomic data drawn
from different distributions and examine the ability of SLIDE to iden-
tify factors underlying a cellular phenotype at single-cell resolution.
While transcriptomic profiles showed differences between cells
at different stages of clonal expansion (Fig. 5b), there is significant
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intragroup heterogeneity inthe profiles ofindividual cells (Fig. 5b). SLIDE
transcends this heterogeneity and accurately predicts and infers extent
of clonal expansion, outperforming several benchmarksincluding PLS,
PCRand PHATE-regressioninterms of predictionaccuracy (Fig. Scand
Supplementary Fig. 6a—c). LASSO, ER, scVI*’, VAE and MOFA+-regression
had comparable prediction performance (Fig. 5c and Supplementary
Fig. 6¢); however, SLIDE provides the same predictive power as ER but
stronger inference with fewer latent factors (Supplementary Fig. 6d).

The SLIDE latent factors, relative to the other methods that have
similar prediction performance, also provided more meaningful infer-
ence of states underlying the extent of clonal expansion. The four latent
factors uncovered by SLIDE included (1) markers of naive CD4 T cells,
(2) activation markers and inhibitory receptors, (3) alatent factor that
capturedintracellular regulation of receptor signaling and (4) riboso-
mal proteins (Fig. 5d). As earlier, we tested if the interactions of (1) with
(3) and (2) with (4) provided better prediction and additional inference
that (1) and (2) alone would not provide. As expected, the actual latent
factors significantly outperformed the random size-matched set at
different stability parameters for the selection of significant latent
factors via the repeated application of knockoffs (Fig. 5e and Sup-
plementary Fig. 6e). When keeping the two standalone latent factors
fixed but shuffling the interactors, the performance of this model
significantly dropped (Fig. 5e and Supplementary Fig. 6e), highlight-
ing theimportance of correctinteractinglatent factors for prediction
and correspondinginference of mechanisms underlying clonal expan-
sion. These four significant latent factors also capture bothlinear and
nonlinear relationships. (Supplementary Fig. 6f).

Importantly, the four significant latent factors included
well-known inhibitory receptors and markers of clonal expansion/
exhaustion including Lag3, Pdcd1 (Pd1) and Tigit*° that standard DE
analyses would have picked up (Fig. 5f). As expected, SLIDE grouped
these inhibitory receptors in one latent factor. Interestingly, the
intracellular signaling regulation latent factor also contained Ndfipl
(ref. 41), which was shown to induce apoptosis in self-reactive T cells.
Theassociation of other potential mediators of apoptosis such as Anxa5
(ref. 42), suggests a different pathway of action than the inhibitory
receptor latent factor. Compared to DE analysis, SLIDE’s grouping of
genes with convergent functionsled to theidentification of inhibitory
receptors and intracellular restriction on proliferation as two parallel
mechanisms in clonally expanded T cells.

SLIDE alsoidentified novel markers that standard DE analyses would
have missed (Fig. 5g). Of particular interest is Ccr7, which is elevated in
naive T cells, aswellasmemory T cells. Co-expression of Ccr7 with Selland
Lefl are hallmarks of naive T cells**, confirming that unexpanded CD4*
T cells are naive in their phenotype. Overall, the significant interacting
latent factors encapsulate additive effects and are far better at capturing
the molecular basis of clonal expansion than individual canonical mark-
ers, which show weak univariate trends (Fig. 5h,i). SLIDE latent factors
were also significantly better than the MOFA+ and sCVI latent factors
in stratifying by extent of clonal expansion (Fig. 5j and Supplementary
Fig. 6g-k). Thus, corresponding biological inference, both at the level
ofindividual gene and latent factors, is superior to existing approaches.

To further validate and contextualize discoveries made by SLIDE,
we analyzed scRNA-seq data from an independent recent study** on
T1D disease progression markers. Several key markers aligned with our
results (Fig. 5k) confirming the robustness of our findings. Importantly,
some differences arose since our markers reflect the extent of clonal
expansion while the study identified markers of T1D disease progres-
sion. Overall, SLIDE can identify highly context-specific markers of
clonal expansion of CD4 T cellsinaNOD model of T1D.

Discussion

With a surge in technologies for deep profiling, there is a deluge
of high-dimensional datasets quantifying multiscale multimodal
responses. Most current methods, such as black-box deep learning

approaches or classification/regression techniques, focus primarily
on prediction. Thus, they are useful in predictive contexts but do not
offer insights into actual mechanisms of complex molecular, cellular
or organismal phenotypes.

To address these key challenges, we present SLIDE, an interpret-
able latent factor regression-based machine learning approach for
ubiquitous biological discovery from high-dimensional multiomic
datasets. SLIDE incorporates nonlinear relationships and comes with
rigorous guarantees regarding identifiability of the latent factors and
correspondinginference. These give SLIDE asignificant edge over other
modern techniques (for example, VAEs) that incorporate nonlinear
relationships, but are sensitive to parameter initialization and often get
stuck withlocal minima'. Further, current state-of-the-art methods (for
example, MOFA+) provide discovery of latent factors withno FDR con-
trol, while SLIDE creatively adapts knockoffs for rigorous FDR control.
SLIDE is also compatible with different preprocessing and batch-effect
correction methods and/or technological-platform-specific analysis
tools, because it makes no assumptions regarding data-generating
mechanisms (the input data has to be continuous, but there are no
otherdistributional assumptions). SLIDE providesinferencein addition
to, and not at the cost of, predictive performance. SLIDE is currently lim-
itedtoinference solely from the input data, but future approaches may
furtherimprove inference via the incorporation of prior knowledge.

Critically, SLIDE infers context-specific groups (latent factors).
Canonical biomarker approaches do not have group information at
all, while pathway-centric approaches have group information that
is context independent and irrelevant in specific scenarios. SLIDE’s
context-specific group inference provides accurate guidance for down-
stream analyses and experimentation. Thus, SLIDE is a first-in-class
interpretable machine learning framework for biological discovery.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods
Research reported in the manuscript complies with all ethical
regulations.

Initial LFD framework

The same latent factor discovery (LFD) framework is employed for
all analyses. We first performed FDR thresholding on the covariance
matrix, followed by the optimization of two key hyperparameters
(deltaand lambda) using k-fold cross-validation. The delta parameter
controls the number of latent factors, while the lambda parameter has
an impact on the sparsity of the allocation matrix of latent factors.
Consideringthelarge and continuous search space of deltaand lambda,
we perform the search in multiple steps and ranges. The first step of
the framework performsa coarse grid search of deltain four different
numerical ranges: 0-0.001, 0.001-0.01, 0.01-0.1 and 0.1-1. The sub-
sequent models utilize the most optimal delta within each range and
identify the final delta using cross-validation and permutation testing.
Once an optimal delta has been identified, lambda is tuned using a
coarsegrid search coupledto cross-validation and permutation testing.

Simulations
The simulations aimed to evaluate model performance on different
values of feature size (p) and sample size (n) with and without interac-
tion terms. The numbers of latent factors (K), significant standalone
andsignificantinteracting latent factors were set 100, 2 and 5, respec-
tively. For the models with no interactions, the number of interacting
latent factors was set to O. For varying features, we fixed the number of
observations at 300. For simulations that have avarying n, we fixed the
number of features to1,000. To generate the simulated data, R package
mvnormwas utilized torandomly generate datapoints K times, where
Krepresents the number of latent factors.

For the model with interaction terms, the dependent variable is
generated using equation (2) with coefficients generated randomly
from standard normal distributions.

Analyses of transcriptomic profiles in patients with SSc

We analyzed scRNA-seq data from 24 previously described patients
with SSc**** where 10 of these patients were treated with tofacitnib
for 24 weeks. Standard 10x Genomics sequencing pipeline was used
including cellranger. The aligned samples were then normalized and
clustered with Seurat. scRNA-seq data from 24 patients with SSc all
using the same V2 chemistry was processed using a standard analytic
pipeline. This consisted of alignment via cellranger and dimension-
ality reduction and clustering using Seurat (Methods). We used R
(version 4.00) for the data analysis. Seurat (R package version 3.2.2)
was adopted for cell population identification and visualization. To
transform the 24 scRNA-seq samples into pseudo-bulk format, we
utilized the ‘Average Expression Function’ to reduce the cell dimension
by calculating the average expression of each gene across all cells in
each cell-type-specific cluster per patient. Clusters with fewer than 20
cells on average across all patients were excluded. Eighteen clusters
passed the filtration process, and the top 50 highest variance genes
across patients for each cluster were choseninan unsupervised man-
ner as features for the subsequent analysis. For each of the retained
clusters, we tried a range of feature engineering approaches and
converged on a cell-type-specific pseudo-bulk average of the most
variable genes, where variance was calculated inan unsupervised fash-
ion without using the disease severity labels in any form. We utilized
cell-type-specific pseudo-bulk average of the most variable genes as
input features while keeping all preprocessing steps unsupervised
and do not use the MRSS scores.

Post preprocessing, for the 24 untreated samples, the input
data for the analysis are a sample by gene matrix with dimensions
of 24 by 804. Using the LFD framework with tenfold cross-validation
and 20 replicates, optimal delta and lambda values were identified

(Supplementary Fig. 1a,b). With optimal parameter values set at 0.6
and1fordeltaandlambda, respectively, the final model produced 120
latent factors. We then used SLIDE toidentify the significant standalone
latent factors using the iterative knockoff procedure as described
above. Corresponding parameters of spec (afrequency-based param-
eter to quantify the stability of stages 1and 2 of the multistage knockoff
approach), FDR and F (feature split size) are set to 0.3, 0.1 and 100,
respectively. The analysisresulted in five significant standalone factors
and four significantinteracting latent factors. Fivefold cross-validation
with 50 replicates was used to compare the predictive power SLIDE
with ER, LASSO, PHATE, PLSR and PCR. Since PHATE is an unsupervised
approach, we coupled it to a standard regression model (that is, we
ranregressionon PHATE1 and PHATE2). Gimnet and PhateR packages
were used to build the LASSO and PHATE models, respectively. The
PLS package was employed for PCR and PLSR model construction.
Additionally, to implement MOFA+ and VAE, we utilized the Python
packages MOFA2, and Keras, respectively, throughout the study. All
these methods were implemented using the R interpreter package
reticulate. For VAEs in Keras, we used a sigmoid activation function
in the encoder and rectified linear unit (RELU) activation functions
for the decoder. The number of latent factors in VAE were adjusted to
match SLIDE. For MOFA+, we used the default settings, and a similar
size-matched number of latent factors.

We used the Spearman correlation and maximal information
criterion (MIC) to evaluate the linear and nonlinear relationships of
important genes with MRSS, respectively. Theseimportant genes have
highloadingsthat correspondto the significant latent factors obtained
fromthe SLIDE model. The effect sizes of each significant latent factor
chosen by SLIDE are quantified by Spearman correlation coefficient
between the latent factors and MRSS (Fig. 2k). Pvalue is calculated by
constructing a null distribution as follows. Random nonsignificant
latent factors, size-matched with the SLIDE output, were chosen 30
times followed by Spearman correlation calculation. AMann-Whitney
Utestis performed to calculate the Pvalue between thereal correlation
coefficients and the null correlation coefficients.

For the tofa-treated SScanalysis, post quality control, normaliza-
tion and clustering using Seurat, we matched the cluster identities
to the untreated samples. To transform the scRNA-seq dataset into
pseudo-bulk format, we used the same averaging calculation men-
tioned above and feature matched with the untreated analysis resulted
intheinput sample by gene matrix with dimensions of 10 and 728. Using
the LFD framework, and leave-one-out cross-validation (LOOCV), a
deltaof 0.009 (175 latent factors) and alambda of 1 were identified as
optimal hyperparameters. SLIDE was then applied to identify signifi-
cantstandalone and interacting latent factors. The SLIDE parameters
of spec, FDR and Fwere set to 0.3, 0.1and 100, respectively. The final
SLIDE model produced one significant standalone latent factor and
three significant interacting latent factors.

Analyses of spatial 10X Visium (RNA-seq) data in lymph nodes

Twenty-five micrograms of LPS-low HDM (Stallergenes-Greer Pharma-
ceuticals) in 25 pl of sterile 1x phosphate-buffered saline was delivered
intranasally under anesthesia to C57BL/6 mice (Jax Laboratory, male
mice 6-8 weeks) daily for 3 days. mLNs were isolated on day 4, snap
frozen and embedded in chilled optimal cutting temperature com-
pound (Tissue-Tek) ondryice, and stored at —80 °C. mLN samples were
cryosectioned (10 pm) at —20 °C on a cryostat (Leica) and mounted
directly onto the 6.5 x 6.5 mm capture areas of a single Visium Spatial
Gene Expression slide (10x Genomics). The slides were sealed in indi-
vidual 50 mlFalcontubes at-80 °C until further processing according
to the manufacturer’s protocol (10x Genomics). The Visium Spatial
Tissue Optimization Slide & Reagent kit (10x Genomics) was used to
determine optimal permeabilization timing of 18 min. Immunofluo-
rescence staining was done using ‘Methanol Fixation, Immunofluo-
rescence Staining & Imaging for Visium Spatial Protocols (CGO00312)".
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Slides were stained with anti-B220 eFluor 450 (RA3-6B2, eBioscience),
anti-CD4 Alexa Fluor 488 (G.K.1.5, BioLegend) and anti-CD11c Biotin
(N418, BioLegend) followed by secondary detection with streptavidin
Alexa Fluor-647. Images were acquired using EVOS M7000 Imaging
System (AMF7000) under the Visium assay mode. Tissue sections
were then permeabilized, and messenger RNA molecules within cells
captured by poly (dT) sequence on the slide surface, followed by on
slidereversetranscriptionto generate complementary DNA. cDNA was
amplified and further processed into sequencing libraries according to
the manufacturer’s protocol (10x Genomics). Libraries were sequenced
onanllluminaNextseq2000 at 50,000 read pairs per spot covered by
tissue. Sequencingresults were initially processed by spaceranger (10x
Genomics) to align sequencing data with the image. Here we filtered
the genes more than 900 zeros threshold, which resulted in matrix of
1,932 genes by 3,779 regions.

Seurat was employed for the quality control, normalization and
clustering analyses. By overlaying the uniformmanifold approximation
and projection (UMAP) clusters and the fluorescent microscopy plot
(Fig.3b,i), celltypes predominantin each cluster were identified. Genes
that are not expressed in at least 900 regions were filtered to control
the sparsity. Using the LFD framework with tenfold cross-validation
and 20replications the optimal value for delta parameter was obtained
as 0.049 with21latent variables (Supplementary Fig.2a,b). SLIDE was
applied to identify factors underlying immune cell partitioning by
spatial localization. We set an FDR threshold at 0.1 for each knockoff
replicate and F = 21 for this dataset. Two significant standalone latent
factors and five significant interacting latent factors were identified.

The effect sizes of the significant latent factorsidentified by SLIDE
inpartitioning by the spatiallocalization ofimmune cells are quantified
by Cliff’s delta values (Fig. 3h). Cliff’s delta calculation is performed
utilizing the R library, effsize. P value is calculated by constructing a
null distribution as follows. Random nonsignificant latent factors,
size-matched with the SLIDE output, were chosen 30 times followed by
Cliff’s delta calculation. Mann-Whitney-Wilcoxon test is performed
to calculate the P value between the real Cliff’s deltas and the null
Cliff’s deltas.

Analyses of spatial Slide-seq data in lymph nodes

Curio Seeker tile was removed and placed in a 1.5-ml Eppendorf
LoBind tube with Hybridization Reaction Mix. Reverse transcrip-
tion was performed to generate cDNA followed by tissue clearing
and Curio Seeker Bead resuspension. Second strand synthesis was
done followed by cDNA amplification, which after purifying was sub-
jected totagmentation (Nextera XT) and library generation. Libraries
were sequenced on an lllumina Nextseq2000 at 200 M reads per tile.
Demultiplexed FastQ files were initially processed by the Curio Seeker
bioinformatics pipeline.

Seurat was employed for the quality control, normalization and
clustering analyses. By overlaying the UMAP clusters and the fluores-
centmicroscopy plot, predominant cell typesin each cluster wereiden-
tified. Genes that are not expressedinatleast 600 regions were filtered
to control the sparsity. After applying the filtering, the final matrix
consisted of 11,421 regions and 3,851 genes. Using the LFD framework
with tenfold cross-validation and 20 replications the optimal value
for delta parameter was obtained as 0.6755 and lambda value of 1with
47 latent variables (Supplementary Fig. 5a,b). SLIDE was applied to
identify factors underlineimmune cell partitioning by spatial localiza-
tion. For this dataset, we set an FDR threshold of 0.1 for each knockoff
replicate and performed SLIDE with aspecof 0.5and F = 47. Asaresult,
we identified two significant standalone latent factors and three sig-
nificantinteracting latent factors. For VAEs in Keras, we used a sigmoid
activation function in the encoder and RELU activation functions for
the decoder. The number of latent factors is size matched with that
of SLIDE latent factors. For the MOFA+, we used the default setting of
the software. The libraries and the packages that were used for this

analysis are the same as previous analysis. The effect sizes of the sig-
nificant latent factors from SLIDE in stratifying by spatial localization
are quantified by Cliff’s delta values as described above.

Analysis of spatial transcriptomics data generated from
MERFISH imaging
We first used the LFD framework to identify latent factors. The input
data consisted of a cell-by-gene matrix, comprising 16,200 cells and 241
genes. Parameter tuning was performed via tenfold cross-validation
with20replicates. The LFD framework, utilizing adelta value of 0.109
and lambda value of 1, ultimately identified 31 latent factors.
Subsequently, SLIDE was applied to discern the significant inter-
acting latent factors that underlie the differences in subclasses of the
glutamatergic neurons in the mouse primary motor cortex. In this
analysis, we set the SLIDE parameters as follows: specat 0.2, FDRat 0.1
and feature partition size at 31. This configuration led to the identifica-
tion of two significant standalone latent factors and seven significant
interacting latent factors. For VAEs in Keras, we used a sigmoid activa-
tion function in the encoder and RELU activation functions for the
decoder. The number of latent factors in VAE is adjusted to match that
of SLIDE. For MOFA+, we initially used default parameters followed
by tuning of the number of latent factors. To perform benchmarking
across methods, we utilized the same packages asin the previous analy-
sis, ensuring consistency and comparability across the evaluations.

Analysis of spatial proteomics data generated by CODEX
We first applied the LFD framework to uncover latent factors. The
dataset consisted of the cell-by-protein matrix comprising 10,000 cells
and 30 proteins. The parameter tuning LFD framework was conducted
via tenfold cross-validation with 20 replicates. Ultimately, utilizing
a delta value of 0.081 and a lambda value of 0.5, the LFD framework
identified a total of nine latent factors as the final model. For VAEs in
Keras, we used asigmoid activation functioninthe encoderand RELU
activation functions for the decoder. The number of latent factors in
VAE is adjusted to match that of SLIDE. For MOFA+, we initially used
default parameters followed by tuning of the number of latent factors.
Next, SLIDE was employed to discernsignificantinteracting latent
factors. With the SLIDE parameter configuration set at spec 0.5, FDR
0.1and a feature partition size of 9, the analysis identified two sig-
nificant standalone latent factors and three significant interacting
latent factors.

scRNA-seq and TCR-seq of islet infiltrating CD4 T cells

NOD mice (6-, 8- or 10-week-old female NOD/ShiLtJ) were euthanized by
CO, asphyxiation and immediately dissected for pancreas perfusion.
Pancreas perfusion was performed under a dissecting Zeiss micro-
scope. Pancreatic duct was clamped using surgical clamps and 3 ml
of 600 U mlI™ collagenase dissolved in Hank’s Balanced Salt Solution
(HBSS) wasinjected using a30 G needle. Perfused pancreata were col-
lected and incubated at 37 °C for 30 min. After the incubation, HBSS
with R10 was added to quench collagenase. After washing twice with
HBSS +R10, the tissue was plated ona10-cm plate, individual islets were
picked usingamicropipettor. Islets were thenincubated in dissociation
buffer, centrifuged and resuspended in the staining mix (1:500 dilution
ofanti-Thy1.2-BV605 +1:500 dilution of Live/Dead-APC-Cy7, and 1:100
dilution of cell hashing anti-mCD45 TotalSeq-C antibodies (BioLeg-
end)). After staining, the cells were resuspended in phosphate-buffered
saline + 0.04% bovine serum albumin and sorted on BD FACS Aria lll
sorter. After sorting the cells, they were counted and processed for
scRNA-seq. Cells were processing using 10 x 5’ single cell gene expres-
sion kit v3ina Chromium controller according to the manufacturer’s
protocols. V(D)J enrichment was done using the single-cell 5’ VDJ
enrichment kit according to the manufacturer’s protocols. Libraries
were sequenced on HiSeq4000 (Novogene) with a 70:20:10 mix for
gene expression:VDJ:hashing libraries.
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Sequence data were downloaded and aligned to the mouse
genome (Mm10) using cellranger (10x Genomics). TCR annotation
was performed using cellranger vdj using mouse GRCm38 assembly.
All three time points were sequenced and processed separately. Cell-
ranger and cellranger vdj output files were used asinputsin Seurat for
normalization, scaling, and dimensionality reduction. The packaged
scRepertoire was used for TCR clonotype calling and analyses. The
datawere normalized using NormalizeData and scaled using ScaleData
functions in Seurat. The scRepertoire functions combineTCR and
combineExpression were used to add TCR clonotypes to each cell.
HTODemux function in Seurat was used to demultiplex cell hashes
and assign the correct mouse identity to each cell. At this point, all
three time points were merged in Seurat using the merge function.
After merging, integration was done using FindIntegrationAnchors
and IntegrateData functions. Principle component analysis was per-
formed using RunPCA. Top 20 principal components were used for
UMAP, followed by cluster identification using FindNeighbors and
FindClusters. CD4" T cells were subsetted using FeatureScatter and
CellSelector functions, and reclustered. Cluster markers were defined
by FindAllIMarkers function. Clonotype data were sorted according
to expansion and exported as a csv file. UMAP representations with
clonotypes were generated using highlightClonotypes function in
scRepertoire. Differentially expressed genes were identified using
FindMarkers function using DESeq2 statistics and represented using
EnhancedVolcano function. After obtaining scRNA-seq and TCR-seq
data on islet-derived cells in a NOD mouse model, analysis was done
through the standard 10x Genomics pipeline. We labeled cells based
ontheir clonal expansion stages followed by the postprocessing of the
scRNA-seqdatainR (4.1.0) using Seurat (R package, version 3.2.2). The
columnsrepresenting genes and rows representing cells are filtered on
the basis 0f 1,200 threshold, meaning that if the sparsity exceeds 1,200,
the cell row or gene column will be removed. The SLIDE input matrix
was finalized with 1,776 genes and 2,482 cells.

TheLFD frameworkis first utilized to discover latent factors. The
input data is a cell by gene matrix, consisting of 2,484 cells and 1,776
genes. Asdescribed previously, tenfold cross-validation with 20 repli-
cations was performed for optimal parameter tuning (Supplementary
Fig. 6a,b). The final model constructed by the LFD framework using
deltaas 0.0912 and lambda as 1discovered 40 latent factors. We then
performed SLIDE to identify significant interacting latent factors
underlying differences in clonal expansion in CD4 T cells. We set the
SLIDE parameter specat 0.2, FDR at 0.1and feature partition size at 40,
resultingin the identification of two significant standalone and two sig-
nificantinteracting latent factors. For VAEs in Keras, we used a sigmoid
activation function in the encoder and RELU activation functions for
the decoder. The number of latent factors in VAE is adjusted to match
that of SLIDE. As for MOFA+, we used the default setting, and the num-
ber of latent factors was fine-tuned within the software. Inaddition to
MOFA+and VAE, we also performed linear and nonlinear scVlanalyses
using the Python package scvi-tools and the Rinterpreter reticulate. We
used scvi.model.LinearSCVIand scvi.model.SCVIfunctions for linear
and nonlinear models, respectively. The effect sizes of the significant
latent factors identified by SLIDE in stratifying by the extent of clonal
expansions are quantified by Cliff’s delta values as described above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data including the SSc scRNA-seq, 10X Visium, Slide-seq, CD4
T cell scRNA-seq and TCR-seq datasets and associated documenta-
tion are available at https://github.com/jishnu-lab/SLIDE and at
https://github.com/jishnu-lab/SLIDEpre. Corresponding stable
releases are available at https://doi.org/10.5281/zenod0.10159961
and https://doi.org/10.5281/zenodo.10159957, respectively.
Therelevant datasets have also been deposited at the Gene Expres-
sion Omnibus (accession IDs: GSE245112 and GSE247410 for the
spatial and T1D datasets, respectively). Source data are provided
with this paper.

Code availability

All code and documentation is available at https://github.com/
jishnu-lab/SLIDE and at https://github.com/jishnu-lab/SLIDEpre. Cor-
responding stable releases are available at https://doi.org/10.5281/
zeno0do.10159961 and https://doi.org/10.5281/zenod0.10159957,
respectively.
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