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Abstract—PDF is a popular document file format with a
flexible file structure that can embed diverse types of content,
including images and JavaScript code. However, these features
make it a favored vehicle for malware attackers. In this paper,
we propose an image-based PDF malware detection method that
utilizes pre-trained deep neural networks (DNNs). Specifically,
we convert PDF files into fixed-size grayscale images using an
image visualization technique. These images are then fed into
pre-trained DNN models to classify them as benign or malicious.
We investigated four classical pre-trained DNN models in our
study. We evaluated the performance of the proposed method
using the publicly available Contagio PDF malware dataset.
QOur results demonstrate that MobileNetv3 achieves the best
detection performance with an accuracy of 0.9969 and exhibits
low computational complexity, making it a promising solution
for image-based PDF malware detection.

Index Terms—PDF malware, deep learning, pre-trained deep
neural networks, image visualization

I. INTRODUCTION

Adobe’s PDF (Portable Document Format) is a universally
recognized file format developed to prioritize flexibility and
user-friendliness. Documents in this format are accessible
across a wide range of modern computing devices, irrespective
of their hardware, software, or operating system. PDF files
support diverse content types, such as images and text, and
offer convenient features like hyperlinks for easy navigation.
They can be swiftly generated, shared, downloaded, and
viewed, with some PDFs allowing users to directly modify
their content during viewing.

The PDF format’s widespread adoption across various pro-
fessional fields underscores its inherent flexibility, yet this very
versatility has also rendered it a favored vehicle for mali-
cious activities, including malware dissemination. Malicious
exploitation of PDF files manifests through diverse tactics,
ranging from embedding executable code that triggers upon
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opening to leveraging third-party programs to clandestinely
introduce malware before distribution [1]. Furthermore, mal-
ware propagated via PDFs often operates covertly, seamlessly
blending into the file’s background to evade detection, thereby
exhibiting minimal suspicious behavior in appearance and
functionality [2], [3].

Current PDF malware detection methods can be divided into
four main categories: keyword-based, tree-based, code-based,
and learning-based [1]. Keyword-based methods look for
suspicious keywords in indirect objects to identify malicious
PDF files. Tree-based methods utilize the interconnections
between objects to construct a tree structure for a PDF file. The
trees for malicious files usually end with objects containing
suspicious actions. Code-based methods detect malicious PDF
files by analyzing embedded suspicious script code. Learning-
based methods utilize different machine learning algorithms
to build PDF malware detectors, which typically involve a
feature extraction step to extract discriminative features used
as input for learning algorithms. For example, LuxOR [4] uses
features extracted from embedded JavaScript code to detect
malicious PDF files. Hidost [5] extracts features from the
logical structure of a PDF file to classify it as benign or
malicious.

Image-based malware detection has become popular re-
cently, involving the conversion of binary files into grayscale
images first, followed by the classification of the images as
malicious or benign [6], [7]. Corum et al. [8] proposed a robust
image-based PDF malware detection method that employs
manually extracted keypoint descriptors and texture features
from the images to classify PDF files as benign or malicious.
With the recent development of deep learning, deep neural
network (DNN) models such as convolutional neural networks
(CNNs) have been applied for image-based malware detection

Authorized licensed use limited to: NEW MEXICO TECH. Downloaded on May 15,2024 at 22:00:42 UTC from IEEE Xplore. Restrictions apply.



[9]-[12]. Unlike traditional methods, DNNs can automatically
learn discriminative features from images for classification.

In this study, we explored a PDF malware detection method
based on deep learning and image visualization. Specifically,
we investigated the use of pre-trained DNN models for detect-
ing PDF malware. These models were pre-trained on a large-
scale image dataset, such as the ImageNet dataset [13], and can
then be utilized for a broad range of other image classification
tasks. Four classical pre-trained DNN models, MobileNet [14],
ResNet [15], SqueezeNet [16], and VGG [17], were included
in our study. We employed a publicly available PDF malware
dataset for performance evaluation.

The rest of this paper is organized as follows. Section II
introduces the background information about the PDF file
format. The proposed method that utilizes pre-trained DNN
models and image visualization for PDF malware detection
is presented in Section III. Section IV describes the perfor-
mance evaluation experiments and results. Finally, Section V
concludes this paper.

II. PDF FILE FORMAT

A PDF file comprises four main components: the header,
body, cross-reference table, and trailer, as shown in Fig. 1.
The header, typically brief, includes essential details like a
unique format header and the PDF file version. The body
contains all user-visible content such as images, text, streams,
and other elements intended for viewer interaction. The cross-
reference table, a collection of bytes, maps the location of
each object within the PDF body, facilitating rendering by
PDF readers. The trailer, located at the end of the file,
provides instructions for software to access the cross-reference
table, aiding in the orderly rendering of document objects.
PDF readers follow a sequential bottom-up reading process,
beginning with the trailer, accessing the cross-reference table,
organizing the body’s objects accordingly, and concluding with
header-specific information.

Header

Version number

Body
Page objects

Image objects
Form objects

PDF

Cross-reference Table

Location of objects

Trailer

Location of cross-reference table

Fig. 1. PDF file structure

Malware attacks through PDF files frequently exploit com-
ponents that do not impact the visual rendering of the final

document, such as the header and body. For instance, the
virus might embed itself within the file’s body without being
referenced in the cross-reference table, thereby remaining
hidden from the viewer’s detection. Alternatively, the malware
could conceal itself within the file’s header, activating only
after the document is fully rendered and presented to the
viewer.

III. PROPOSED PDF MALWARE DETECTION METHOD

The proposed method involves two steps for PDF malware
detection, as shown in Fig. 2. First, a PDF file, whether benign
or malicious, is converted into a fixed-size grayscale image.
Then, the image is fed into a pre-trained DNN model to be
classified as benign or malicious.
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Fig. 2. Proposed image-based PDF malware detection method

A. Image Conversion and Visualization

A simple and effective method to convert any file to a
grayscale image for malware detection is the byte plot pro-
posed in [6]. To create a byte plot image, the file is read as
a sequential byte stream, and each byte is converted into a
pixel with a value ranging from O to 255. The width of the
generated image is determined by the file size. For example,
if the file size is less than 10 kB, the image width is set to 32,
while it is set to 1,024 if the file size is larger than 1,000 kB.

Because the size of the byte plot image generated by
the method of [6] varies with the file length, while pre-
trained DNNSs require fixed-size inputs, we adopted a modified
approach to convert PDF files of various sizes into fixed-size
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grayscale images. Considering the size of a PDF file is NV
bytes, the file is converted into an image with dimensions of
n X n first, where n is equal to {\/N—‘ .If N is less than n X n,
the file is padded with Os. After the conversion, all images are
resized to a fixed size of k£ x k. In our study, k is set to 256.

Fig. 3 shows an example of a 256 x 256 image generated from
a PDF file.

Fig. 3. An example of a 256 X 256 image generated from a PDF file

B. Pre-trained DNNs

In our study, we investigated four pre-trained DNNs: Mo-
bileNetv3, ResNetl01, SqueezeNetl.l, and VGGI19, all of
which were pre-trained with the ImageNet dataset and have
been widely used for various image classification tasks [18]—
[21]. We transferred the knowledge of these pre-trained models
to our PDF malware detection problem through fine-tuning.

o MobileNetv3: MobileNetV3 is the third version of Mo-
bileNet [14]. The primary objective of MobileNet is to
develop a DNN architecture tailored for deployment on
mobile devices. Unlike its predecessors, MobileNetV3
was developed using the neural architecture search (NAS)
technique for optimized architecture design. The architec-
ture of MobileNetV3 is illustrated in Fig. 4. MobileNetV3
incorporates several advanced deep learning techniques,
such as lightweight depthwise separable convolution op-
erations, linear bottleneck layers, inverted residual blocks,
and the h-swish activation function.

e ResNetl101: ResNets (Residual Networks) are a set of
CNN models designed with residual learning [15]. A
ResNet is formed by stacking residual blocks on top of
each other. Each residual block contains two or three
Conv layers with a skip connection connected directly
from the input to the output. ResNet models are named
based on the number of weighted layers in the model.
We adopted ResNetlOl in our study, which has an
architecture shown in Fig. 5. There are a total of 33
residual blocks in ResNetl101, each containing a 1 x 1
Conv layer, followed by a 3 x 3 Conv layer, and another
1 x 1 Conv layer, as shown in Fig. 6.
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Fig. 5. ResNetl01 architecture

Residual Block

1x1 Conv
3x3 Conv
1x1 Conv

Fig. 6. Residual block for ResNet

o SqueezeNetl.1: SqueezeNet is a DNN architecture de-

veloped in [16] to achieve the same level of performance
as AlexNet on the ImageNet dataset with a much smaller
model size. The architecture of SqueezeNetl.1 is illus-
trated in Fig. 7. convl is a 3 x 3 convolution layer with a
stride of 2. pool, pool3, and poo5 are 3x3 max-pooling
layers with a stride of 2. There are eight fire modules in
the architecture, which are the building blocks designed to
achieve the goal of maintaining mode performance while
having fewer parameters. As can be seen from Fig. 7,
each fire module consists of a 1x1 squeeze convolution
layer and an expand layer with a mix of 1x1 and 3x3
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Fig. 7. SqueezeNet architecture

convolution filters.

VGG19: VGG, also known as VGGNet, is a CNN archi-
tecture proposed in [17] that improves model performance
by increasing model depth. The architecture of VGG
has inspired the development of other pre-trained DNN
models, such as ResNet. VGG19 is the VGG architecture
that contains 19 weight layers, as illustrated in Fig. 8. The
16 convolution layers in VGGI19 are divided into four
groups, with two in each of the first two groups and four
in each of the last two groups. A max-pooling operation
is applied at the end of each group of convolution
operations.

IV. EXPERIMENTS AND RESULTS

We utilized the Contagio PDF malware dataset [22] to
assess the performance of the proposed method, which has
been widely used in learning-based PDF malware detection
research [4], [5], [8]. This dataset comprises 10,980 malicious
and 9,000 benign PDF files. For our experiments, we employed
10-fold cross-validation. Within each fold, 20% of the training
set served as validation data. We retained the structure of the
classification head for each pre-trained model, adjusting the
size of the output layer to two classes: benign or malicious.
Additionally, we modified the number of channels in the input
layer of each model from 3 to 1, given that the inputs are
grayscale images. In addition to the four pre-trained DNN
models, we implemented the CNN model proposed in [10] as
a reference method. This method converts the byte stream of
a PDF file into task-specific embedding using an embedded
layer before the convolution and max-pooling layers. All
models underwent training for 100 epochs. Subsequently, the
architecture yielding the best validation performance for each
model was selected for testing. We used accuracy as the
performance metric for our experiments, which is calculated
as the ratio of correctly classified samples to the total number
of samples in the testing set.

Table I presents the results of our performance evaluation
experiments, showcasing the detection accuracy aggregated
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Fig. 8. VGG19 architecture

over the 10 folds. It is evident that all four pre-trained DNN
models outperform the reference CNN model due to their
deeper architectures. Among these models, MobileNetV3 and
ResNet101 achieve significantly better performance compared
to SqueezeNetl.l and VGGI19. Specifically, MobileNetV3
stands out as the best-performing model, with a detection
accuracy of 0.9969. Table II shows the computational com-
plexity of the four pre-trained DNN models in terms of the
number of parameters (Params) and the number of floating
point operations (FLOPs). MobileNetV3 and SqueezeNet].1
have significantly lower computational complexity compared
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to ResNetlOl and VGGI19, as they were designed to be
deployed on resource-limited devices like mobile phones. It
can be seen that MobileNetV3 has the lowest FLOPs among
the four pre-trained models due to the use of lightweight
depthwise separable convolutions and the NAS approach for
architecture optimization. Considering both performance and
computational complexity, MobileNetV3 clearly emerges as a
promising solution for image-based PDF malware detection.

TABLE I
PERFORMANCE OF PRE-TRAINED DNN MODELS AND THE REFERENCE
CNN MODEL
Model Accuracy

CNN [10] 0.9495

MobileNetv3 0.9969

ResNet101 0.9959

SqueezeNetl.1 0.9800

VGGI19 0.9532
TABLE II

COMPUTATIONAL COMPLEXITY OF PRE-TRAINED DNN MODELS
(B= 109, M= 106)

Model Params FLOPs
MobileNetv3 42 M | 566.7 M
ResNet101 425M 20.2 B
SqueezeNetl.1 072 M | 6653 M
VGG19 139.6 M 51.1 B

V. CONCLUSIONS

PDF has become a primary target for malware attacks due
to its flexible file structure and the capability of embedding a
variety of content types. In this paper, we present an image-
based PDF malware detection method that utilizes pre-trained
DNN models. We employed an image visualization technique
to convert PDF files into fixed-size grayscale images, which
serve as the input for deep learning models. Unlike traditional
methods that rely on manually extracted features for PDF mal-
ware detection, deep learning models can automatically extract
discriminative features from input images for classification.

In this study, we specifically investigated the use of four
classical pre-trained DNN models for image-based PDF mal-
ware detection: MobileNetv3, ResNet101, SqueezeNetl.1, and
VGGI19. We evaluated the performance of the proposed
method using the popular Contagio PDF malware dataset.
Our results indicate that all four pre-trained DNN models
outperform a reference CNN model proposed for PDF mal-
ware detection, demonstrating the validity of using pre-trained
DNN models for this task. Among the four pre-trained models,
MobileNetv3 achieves the highest detection accuracy and
exhibits low computational complexity. The next step in our
work is to develop an improved MobileNetv3 model to further
enhance detection performance.
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