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AbstractÐPDF is a popular document file format with a
flexible file structure that can embed diverse types of content,
including images and JavaScript code. However, these features
make it a favored vehicle for malware attackers. In this paper,
we propose an image-based PDF malware detection method that
utilizes pre-trained deep neural networks (DNNs). Specifically,
we convert PDF files into fixed-size grayscale images using an
image visualization technique. These images are then fed into
pre-trained DNN models to classify them as benign or malicious.
We investigated four classical pre-trained DNN models in our
study. We evaluated the performance of the proposed method
using the publicly available Contagio PDF malware dataset.
Our results demonstrate that MobileNetv3 achieves the best
detection performance with an accuracy of 0.9969 and exhibits
low computational complexity, making it a promising solution
for image-based PDF malware detection.

Index TermsÐPDF malware, deep learning, pre-trained deep
neural networks, image visualization

I. INTRODUCTION

Adobe’s PDF (Portable Document Format) is a universally

recognized file format developed to prioritize flexibility and

user-friendliness. Documents in this format are accessible

across a wide range of modern computing devices, irrespective

of their hardware, software, or operating system. PDF files

support diverse content types, such as images and text, and

offer convenient features like hyperlinks for easy navigation.

They can be swiftly generated, shared, downloaded, and

viewed, with some PDFs allowing users to directly modify

their content during viewing.

The PDF format’s widespread adoption across various pro-

fessional fields underscores its inherent flexibility, yet this very

versatility has also rendered it a favored vehicle for mali-

cious activities, including malware dissemination. Malicious

exploitation of PDF files manifests through diverse tactics,

ranging from embedding executable code that triggers upon

opening to leveraging third-party programs to clandestinely

introduce malware before distribution [1]. Furthermore, mal-

ware propagated via PDFs often operates covertly, seamlessly

blending into the file’s background to evade detection, thereby

exhibiting minimal suspicious behavior in appearance and

functionality [2], [3].

Current PDF malware detection methods can be divided into

four main categories: keyword-based, tree-based, code-based,

and learning-based [1]. Keyword-based methods look for

suspicious keywords in indirect objects to identify malicious

PDF files. Tree-based methods utilize the interconnections

between objects to construct a tree structure for a PDF file. The

trees for malicious files usually end with objects containing

suspicious actions. Code-based methods detect malicious PDF

files by analyzing embedded suspicious script code. Learning-

based methods utilize different machine learning algorithms

to build PDF malware detectors, which typically involve a

feature extraction step to extract discriminative features used

as input for learning algorithms. For example, Lux0R [4] uses

features extracted from embedded JavaScript code to detect

malicious PDF files. Hidost [5] extracts features from the

logical structure of a PDF file to classify it as benign or

malicious.

Image-based malware detection has become popular re-

cently, involving the conversion of binary files into grayscale

images first, followed by the classification of the images as

malicious or benign [6], [7]. Corum et al. [8] proposed a robust

image-based PDF malware detection method that employs

manually extracted keypoint descriptors and texture features

from the images to classify PDF files as benign or malicious.

With the recent development of deep learning, deep neural

network (DNN) models such as convolutional neural networks

(CNNs) have been applied for image-based malware detection
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[9]±[12]. Unlike traditional methods, DNNs can automatically

learn discriminative features from images for classification.

In this study, we explored a PDF malware detection method

based on deep learning and image visualization. Specifically,

we investigated the use of pre-trained DNN models for detect-

ing PDF malware. These models were pre-trained on a large-

scale image dataset, such as the ImageNet dataset [13], and can

then be utilized for a broad range of other image classification

tasks. Four classical pre-trained DNN models, MobileNet [14],

ResNet [15], SqueezeNet [16], and VGG [17], were included

in our study. We employed a publicly available PDF malware

dataset for performance evaluation.

The rest of this paper is organized as follows. Section II

introduces the background information about the PDF file

format. The proposed method that utilizes pre-trained DNN

models and image visualization for PDF malware detection

is presented in Section III. Section IV describes the perfor-

mance evaluation experiments and results. Finally, Section V

concludes this paper.

II. PDF FILE FORMAT

A PDF file comprises four main components: the header,

body, cross-reference table, and trailer, as shown in Fig. 1.

The header, typically brief, includes essential details like a

unique format header and the PDF file version. The body

contains all user-visible content such as images, text, streams,

and other elements intended for viewer interaction. The cross-

reference table, a collection of bytes, maps the location of

each object within the PDF body, facilitating rendering by

PDF readers. The trailer, located at the end of the file,

provides instructions for software to access the cross-reference

table, aiding in the orderly rendering of document objects.

PDF readers follow a sequential bottom-up reading process,

beginning with the trailer, accessing the cross-reference table,

organizing the body’s objects accordingly, and concluding with

header-specific information.

Header

Version number

Body

Page objects
Image objects
Form objects

---

Cross-reference Table

Location of objects

Trailer

Location of cross-reference table

Fig. 1. PDF file structure

Malware attacks through PDF files frequently exploit com-

ponents that do not impact the visual rendering of the final

document, such as the header and body. For instance, the

virus might embed itself within the file’s body without being

referenced in the cross-reference table, thereby remaining

hidden from the viewer’s detection. Alternatively, the malware

could conceal itself within the file’s header, activating only

after the document is fully rendered and presented to the

viewer.

III. PROPOSED PDF MALWARE DETECTION METHOD

The proposed method involves two steps for PDF malware

detection, as shown in Fig. 2. First, a PDF file, whether benign

or malicious, is converted into a fixed-size grayscale image.

Then, the image is fed into a pre-trained DNN model to be

classified as benign or malicious.

PDF File
Image Conversion
and Visualization

Pre-trained DNN
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Fig. 2. Proposed image-based PDF malware detection method

A. Image Conversion and Visualization

A simple and effective method to convert any file to a

grayscale image for malware detection is the byte plot pro-

posed in [6]. To create a byte plot image, the file is read as

a sequential byte stream, and each byte is converted into a

pixel with a value ranging from 0 to 255. The width of the

generated image is determined by the file size. For example,

if the file size is less than 10 kB, the image width is set to 32,

while it is set to 1,024 if the file size is larger than 1,000 kB.

Because the size of the byte plot image generated by

the method of [6] varies with the file length, while pre-

trained DNNs require fixed-size inputs, we adopted a modified

approach to convert PDF files of various sizes into fixed-size
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grayscale images. Considering the size of a PDF file is N

bytes, the file is converted into an image with dimensions of

n×n first, where n is equal to
⌈√

N

⌉

. If N is less than n×n,

the file is padded with 0s. After the conversion, all images are

resized to a fixed size of k × k. In our study, k is set to 256.

Fig. 3 shows an example of a 256×256 image generated from

a PDF file.

Fig. 3. An example of a 256× 256 image generated from a PDF file

B. Pre-trained DNNs

In our study, we investigated four pre-trained DNNs: Mo-

bileNetv3, ResNet101, SqueezeNet1.1, and VGG19, all of

which were pre-trained with the ImageNet dataset and have

been widely used for various image classification tasks [18]±

[21]. We transferred the knowledge of these pre-trained models

to our PDF malware detection problem through fine-tuning.

• MobileNetv3: MobileNetV3 is the third version of Mo-

bileNet [14]. The primary objective of MobileNet is to

develop a DNN architecture tailored for deployment on

mobile devices. Unlike its predecessors, MobileNetV3

was developed using the neural architecture search (NAS)

technique for optimized architecture design. The architec-

ture of MobileNetV3 is illustrated in Fig. 4. MobileNetV3

incorporates several advanced deep learning techniques,

such as lightweight depthwise separable convolution op-

erations, linear bottleneck layers, inverted residual blocks,

and the h-swish activation function.

• ResNet101: ResNets (Residual Networks) are a set of

CNN models designed with residual learning [15]. A

ResNet is formed by stacking residual blocks on top of

each other. Each residual block contains two or three

Conv layers with a skip connection connected directly

from the input to the output. ResNet models are named

based on the number of weighted layers in the model.

We adopted ResNet101 in our study, which has an

architecture shown in Fig. 5. There are a total of 33

residual blocks in ResNet101, each containing a 1 × 1

Conv layer, followed by a 3× 3 Conv layer, and another

1× 1 Conv layer, as shown in Fig. 6.

Bottleneck

Layers

Conv 2D Layer

Conv 2D Layer

Pooling Layer

Conv 2D Layers
without BN

Pointwise Convolution
Block

Squeeze-And-Excite
Module

Depthwise Convolution
Block

Pointwise Convolution
Block

Fig. 4. MobileNetv3 architecture

R
es

id
ua

l B
lo

ck

R
es

id
ua

l B
lo

ck

Av
er

ag
e 

Po
ol

in
g

R
es

id
ua

l B
lo

ck

FC

7x
7 

C
on

v

M
ax

 P
oo

lin
g

33 Residual Blocks

Fig. 5. ResNet101 architecture
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Fig. 6. Residual block for ResNet

• SqueezeNet1.1: SqueezeNet is a DNN architecture de-

veloped in [16] to achieve the same level of performance

as AlexNet on the ImageNet dataset with a much smaller

model size. The architecture of SqueezeNet1.1 is illus-

trated in Fig. 7. conv1 is a 3×3 convolution layer with a

stride of 2. poo1, pool3, and poo5 are 3x3 max-pooling

layers with a stride of 2. There are eight fire modules in

the architecture, which are the building blocks designed to

achieve the goal of maintaining mode performance while

having fewer parameters. As can be seen from Fig. 7,

each fire module consists of a 1x1 squeeze convolution

layer and an expand layer with a mix of 1x1 and 3x3
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Fig. 7. SqueezeNet architecture

convolution filters.

• VGG19: VGG, also known as VGGNet, is a CNN archi-

tecture proposed in [17] that improves model performance

by increasing model depth. The architecture of VGG

has inspired the development of other pre-trained DNN

models, such as ResNet. VGG19 is the VGG architecture

that contains 19 weight layers, as illustrated in Fig. 8. The

16 convolution layers in VGG19 are divided into four

groups, with two in each of the first two groups and four

in each of the last two groups. A max-pooling operation

is applied at the end of each group of convolution

operations.

IV. EXPERIMENTS AND RESULTS

We utilized the Contagio PDF malware dataset [22] to

assess the performance of the proposed method, which has

been widely used in learning-based PDF malware detection

research [4], [5], [8]. This dataset comprises 10,980 malicious

and 9,000 benign PDF files. For our experiments, we employed

10-fold cross-validation. Within each fold, 20% of the training

set served as validation data. We retained the structure of the

classification head for each pre-trained model, adjusting the

size of the output layer to two classes: benign or malicious.

Additionally, we modified the number of channels in the input

layer of each model from 3 to 1, given that the inputs are

grayscale images. In addition to the four pre-trained DNN

models, we implemented the CNN model proposed in [10] as

a reference method. This method converts the byte stream of

a PDF file into task-specific embedding using an embedded

layer before the convolution and max-pooling layers. All

models underwent training for 100 epochs. Subsequently, the

architecture yielding the best validation performance for each

model was selected for testing. We used accuracy as the

performance metric for our experiments, which is calculated

as the ratio of correctly classified samples to the total number

of samples in the testing set.

Table I presents the results of our performance evaluation

experiments, showcasing the detection accuracy aggregated

3x3 Conv Layer
3x3 Conv Layer
Pooling Layer

3x3 Conv Layer
3x3 Conv Layer

Pooling Layer

3x3 Conv Layer
3x3 Conv Layer

3x3 Conv Layer
3x3 Conv Layer

Pooling Layer

3x3 Conv Layer
3x3 Conv Layer

FC Layer
FC Layer
FC Layer

3x3 Conv Layer
3x3 Conv Layer
Pooling Layer

Fig. 8. VGG19 architecture

over the 10 folds. It is evident that all four pre-trained DNN

models outperform the reference CNN model due to their

deeper architectures. Among these models, MobileNetV3 and

ResNet101 achieve significantly better performance compared

to SqueezeNet1.1 and VGG19. Specifically, MobileNetV3

stands out as the best-performing model, with a detection

accuracy of 0.9969. Table II shows the computational com-

plexity of the four pre-trained DNN models in terms of the

number of parameters (Params) and the number of floating

point operations (FLOPs). MobileNetV3 and SqueezeNet1.1

have significantly lower computational complexity compared
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to ResNet101 and VGG19, as they were designed to be

deployed on resource-limited devices like mobile phones. It

can be seen that MobileNetV3 has the lowest FLOPs among

the four pre-trained models due to the use of lightweight

depthwise separable convolutions and the NAS approach for

architecture optimization. Considering both performance and

computational complexity, MobileNetV3 clearly emerges as a

promising solution for image-based PDF malware detection.

TABLE I
PERFORMANCE OF PRE-TRAINED DNN MODELS AND THE REFERENCE

CNN MODEL

Model Accuracy

CNN [10] 0.9495
MobileNetv3 0.9969
ResNet101 0.9959

SqueezeNet1.1 0.9800
VGG19 0.9532

TABLE II
COMPUTATIONAL COMPLEXITY OF PRE-TRAINED DNN MODELS

(B= 10
9 , M= 10

6)

Model Params FLOPs

MobileNetv3 4.2 M 566.7 M
ResNet101 42.5 M 20.2 B

SqueezeNet1.1 0.72 M 665.3 M
VGG19 139.6 M 51.1 B

V. CONCLUSIONS

PDF has become a primary target for malware attacks due

to its flexible file structure and the capability of embedding a

variety of content types. In this paper, we present an image-

based PDF malware detection method that utilizes pre-trained

DNN models. We employed an image visualization technique

to convert PDF files into fixed-size grayscale images, which

serve as the input for deep learning models. Unlike traditional

methods that rely on manually extracted features for PDF mal-

ware detection, deep learning models can automatically extract

discriminative features from input images for classification.

In this study, we specifically investigated the use of four

classical pre-trained DNN models for image-based PDF mal-

ware detection: MobileNetv3, ResNet101, SqueezeNet1.1, and

VGG19. We evaluated the performance of the proposed

method using the popular Contagio PDF malware dataset.

Our results indicate that all four pre-trained DNN models

outperform a reference CNN model proposed for PDF mal-

ware detection, demonstrating the validity of using pre-trained

DNN models for this task. Among the four pre-trained models,

MobileNetv3 achieves the highest detection accuracy and

exhibits low computational complexity. The next step in our

work is to develop an improved MobileNetv3 model to further

enhance detection performance.
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