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SUMMARY

The fossils preserved in the Rancho La Brea ‘““tar”
seeps in southern California span the past
~50,000 years and provide a rare opportunity to
assess the ecology of predators (e.g., the American
lion, sabertooth cats, cougars, dire wolves, gray
wolves, and coyotes), including clarifying the
causes and consequences of the terminal Pleisto-
cene extinction event. Here, a multi-proxy approach
elucidates dietary responses of carnivorans to
changing climates and megafaunal extinctions.
Using sample sizes that are unavailable anywhere
else in the world, including hundreds of carni-
voran and herbivore specimens, we clarify the
paleobiology of the extinct sabertooth cats and
dire wolves—overturning the idea that they heavily
competed for similar prey. Canids (especially the
dire wolf) consumed prey from more open environ-
ments than felids, demonstrating minimal competi-
tion for prey throughout the latest Pleistocene
and largely irrespective of changing climates,
including just prior to their extinction. Coyotes
experienced a dramatic shift in dietary behavior
toward increased carcass utilization and the con-
sumption of forest resources (prey and/or plant
resources) after the terminal Pleistocene mega-
faunal extinction. Extant predators’ ability to effec-
tively hunt smaller prey and/or utilize carcasses
may have been a key to their survival, especially
after a significant reduction in megafaunal prey
resources. Collectively, these data suggest that
dietary niches of carnivorans are not always static
and can instead be substantially affected by the
removal of top predators and abundant prey re-
sources.
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INTRODUCTION

Rancho La Brea is a late Pleistocene lagerstatte in southern Cal-
ifornia that has been excavated for over 100 years, yielding more
than 3.5 million specimens representing >600 species [1]. Collo-
quially termed the La Brea Tar Pits, Rancho La Brea “tar” —or
rather asphaltum—trapped herbivorous species whose car-
casses subsequently lured and trapped carnivores and scaven-
gers [1]. More than 90% of excavated mammal bones belong
to the order Carnivora, and these specimens provide a rare
opportunity to clarify the paleobiology of carnivorans over the
past ~50,000 years [1, 2], an interval that included profound
climate change [3], the arrival of humans [4], and megafaunal
extinctions [5].

Earlier studies of Rancho La Brea’s carnivorans suggested
that they experienced “tough times” prior to their extinction, as
indicated by a greater incidence of broken teeth in extinct taxa
as compared to extant carnivorans [6]. However, more recent
studies that employed dental microwear texture analysis
(DMTA) suggest that broken teeth were the consequence of
hunting larger prey and/or increased defensive interactions—
and not indicative of increased carcass utilization [7, 8]. Specif-
ically, the cougar (Puma concolor), which survived the extinction
event, consumed both flesh and bones with clear evidence of
scavenging [9], in stark contrast to the extinct American lion
(Panthera atrox) that had ~30% broken canines and primarily
ate tough flesh [7]; the cougar’s opportunistic diet may have
been key to its survival [9].

The dire wolf (Canis dirus), the most abundant carnivoran at La
Brea [1], ranged from Canada to South America during the Pleis-
tocene [10] before becoming extinct. However, the coyote (Canis
latrans), a smaller canid, survived the late Pleistocene extinction
event, as did gray wolves, cougars, bobcats, and other smaller
carnivorans [1]. As coyotes are highly opportunistic today, eating
smaller prey (e.g., rodents and lagomorphs) and also scavenging
larger prey, such as deer [11, 12], their “key to success” may
have been similar to the La Brea cougars. Alternatively, coy-
otes—in contrast to cougars—may have opportunistically
altered their diet following the extinction of numerous large
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Table 1. Descriptive Statistics of Stable Carbon Isotope Values from All Taxa Examined from Rancho La Brea in Southern California

Diet Order Taxon N Min. (%) Max. (%) Range (%,) Mean (%,) SD (%)
Carnivorous Carnivora Canis dirus 41 —10.8 -3.9 6.9 —-8.7 1.5
Canis latrans 50 —-12.9 -5.2 7.7 —-10.7 1.4
Panthera atrox —-13.2 -9.8 3.4 —11.7 1.0
Puma concolor —-11.6 -11.3 0.3 —-11.5 0.2
Smilodon fatalis 30 -13.9 -10.2 3.7 -11.9 0.9
Herbivorous Artiodactyla Bison antiquus® 31 —-10.3 —-4.9 5.4 —6.7 11
Camelops hesternus® 16 -10.6 -5.2 5.4 -8.4 1.8
Capromeryx minor 1 —7.1 -7.1 - —7.1 -
Proboscidea Mammuthus columbi 4 —-8.3 -5.2 3.1 —6.8 1.7
Perissodactyla Equus occidentalis® 26 —-10.7 -2.0 8.7 -7.5 2.0
Pilosa Nothrotheriops shastensis 2 1.4 1.9 0.5 1.7 0.4
Paramylodon harlani 6 1.9 7.5 5.6 5.4 2.1

See also Figure S1 and Tables S1-S3. Max., maximum; Min., minimum; N, number of specimens sampled; SD, SD (n — 1). Note that all 3'3C values of
carnivorous taxa are raw 3'3C values (1.3%, was not added to these values to reflect the 5'3C of prey consumed per [16]; however, an enrichment of

1.3%, between predators-prey was included via MixSIAR).
3Includes published 3'3C data from [24].

predators and prey species, only recently becoming true
opportunists.

Here, we clarify mesopredator (i.e., middle-sized predators
that are also preyed upon) responses to changing climates and
the terminal Pleistocene extinction event—of direct relevance
to assessing long-term biotic responses to the loss of apex pred-
ators and subsequent trophic cascades, today. As predators are
extraordinarily rare in the fossil record (absent of asphalt-seep
localities, which are also rare) [1], this multi-proxy study repre-
sents the most comprehensive dietary analysis of both carnivo-
rous and herbivorous mammals from any fossil locality, with the
aim of understanding the consequence of megafaunal extinc-
tions on surviving predators.

Dietary Proxies
Analysis of stable carbon isotopes preserved in tooth enamel
bioapatite and bone collagen reflect the 3'*C values of diet sour-
ces (prey and vegetation for primary and secondary consumers,
respectively) minus tissue- and taxon-specific isotope trophic
discrimination factors [13-16] (STAR Methods). It is therefore
possible to estimate the relative contributions of different food
sources to the diets of consumers. Primary consumer 6130ename.
values <—-99, are reflective of the consumption of a predomi-
nantly Cz diet (with lower values indicative of consuming Cj
vegetation in denser forests) [13, 17, 18]. In contrast, values
> -39, indicate the consumption of a predominantly C, diet
(with C,4 grasses and/or shrubs occurring in more open habitats)
[13, 17, 18]. Secondary consumer 3'3Cename Values are reflective
of the vegetation consumed by prey, as noted above, but are
deplete by 1.39, as compared to primary consumers [16].
DMTA can further clarify the paleobiology and dietary niches of
carnivorans through three-dimensional study of microwear tex-
tures, a method that also minimizes observer biases [19, 20].
Inferring dietary behavior of carnivores, including carcass utiliza-
tion, is possible using DMTA [7-9, 19-22]. In extant felids [7-9,
21, 22] and canids [8], tough flesh consumers are inferred from
high anisotropy (epLsar) values while high-complexity (Asfc)

values are instead indicative of the consumption of hard-food
items —such as bone. Further, high textural fill volume (Tfv) values
indicate large features and are highest in taxa known to engage in
increased bone processing [7-9, 19-22].

RESULTS AND DISCUSSION

Previous isotopic analysis of bone collagen demonstrated that
the sabertooth cat Smilodon fatalis and C. dirus had overlapping
3'3C and 5'°N values, which suggested that they competed for
similar prey [23]. In stark contrast to this interpretation, stable
carbon isotope data from tooth enamel (from the first lower
molar in both felids and canids) here reveals that C. dirus has
significantly higher mean 3'*Cgnamel Values than S. fatalis (p <
0.0001) and all other co-occurring predators (i.e., all felids and
C. latrans; Tables 1 and S1) with minimal overlap throughout
the latest Pleistocene (~31-11 ka; Figure 1; Tables 1 and 2).
Canis dirus had a distinct preference for prey occupying more
open environments, even more so than C. latrans throughout
the Late Pleistocene (Table S2). Although stable isotope-mixing
models using MixSIAR [25] indicate the potential for competition
for some similar prey (Figure S1; Table S3), these models also
clearly demonstrate that Rancho La Brea felids relied on more
closed-habitat prey than did most canids (Figure 1; Table
S1)—consistent with habitat interpretations based on limb
morphology [26]. Further, all felids have nearly identical means
and ranges of 8'3Cenamel Values and S. fatalis consistently
consumed prey occupying more closed environments (i.e., all
comparisons between pits 61/67, 13, and 77 yield p > 0.26).
Note that S. fatalis is indistinguishable from Pa. atrox (Table
S1); Pu. concolor values are within the ranges of both S. fatalis
and Pa. atrox (Figure 1; Table 1), although the small sample
size of cougars prohibits statistical comparisons. Extant coyotes
from Santa Barbara (CA, USA) demonstrate a notable decline in
3"®Cenamel Values as compared to C. latrans from Rancho La
Brea (collectively, and as compared to each sampled pit,
including the Holocene aged pit 10; Figure 1; Table S2),
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Figure 1. Stable Carbon Isotope Data of All
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indicative of a shift in diet to prey from more forested C3 environ-
ments (e.g., deer) and/or a more omnivorous diet, including Cs
plant components (e.g., fruits and seeds). Further, extant canids
(represented by only C. latrans) demonstrate more negative
3"3Cenamer than all Pleistocene canids combined (p < 0.0001)
and extant felids (represented by only Pu. concolor) are similarly
indistinguishable from all Pleistocene felids combined. Today,
felids are indistinguishable from canids in southern California
(p = 0.930), and canids have more positive 8'3Cgnamel Values

unclear. It is possible that differences in

3'%C enamel and collagen values are

due to ontogenetic differences in diet,
with C. dirus consuming prey from more open environments at
the time of enamel mineralization of the lower first molar and
eating prey from forests during the last year of their life; however,
such a dramatic shift in feeding ecology from open environments
to denser vegetation is unlikely. Ongoing analyses instead
demonstrate that canids have higher offsets between 51sCename.
and 5"®Ccopiagens but it is not yet clear whether these differences
are due to physiological differences between canids and felids
or differences in the prey consumed. Although further work is

Table 2. Summary Statistics of Canis dirus and Smilodon fatalis Stable Carbon Isotope Values from Each Pit Examined

Pit Taxon N Min. (%,) Max. (%) Range (%) Mean (%,) SD (%) p Value Overlap (%,)

61/67 Canis dirus 10 -9.6 —6.2 3.4 -8.4 1.1 <0.0001° 0
Smilodon fatalis 11 —-13.9 —-11.2 2.7 —12.2 0.8

13 Canis dirus 13 -10.8 —6.7 4.1 —9.1 1.2 <0.0001° 0.3
Smilodon fatalis 7 -12.9 —-10.5 2.4 -12 0.9

7 Canis dirus 10 -10.5 -3.9 6.6 -7.9 22 <0.001° 0.3
Smilodon fatalis 10 -12.5 -10.2 2.3 -11.6 0.9

See also Figure S1 and Data S1. Overlap, the total isotopic overlap between the two taxa; p value, resulting p values from Student’s t tests (for pit 13
and 61/67 taxonomic comparisons) and Mann-Whitney test for the pit 77 taxonomic comparison as S. fatalis from pit 77 had 5'3C values that were
not normally distributed (Shapiro-Wilk); Pit, pit excavation number; Range, total range; Taxon, extinct species examined.

p values are considered significant with alpha < 0.05.
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Table 3. Descriptive Statistics of DMTA Attribute Values from All Carnivoran Taxa Examined from Pleistocene-Dated Pits at Rancho La
Brea in Southern California

Family Taxon N Min. Max. Range Median Mean SD
Canidae Canis dirus® 113 Asfc 0.831 12.213 11.382 3.565 4.097 2.363
eplsar 0.0011 0.0059 0.0048 0.0025 0.0027 0.0010
Tfv 4,919 18,568 13,649 12,149 12,161 2,498
Canis latrans® 65 Asfc 0.558 3.182 2.624 1.830 1.798 0.611
eplsar 0.0010 0.0053 0.0042 0.0026 0.0027 0.0010
Tfv 7,111 15,271 8,160 11,574 11,607 1,875
Canis lupus® 13 Asfc 0.865 6.563 5.698 3.033 3.142 1.860
epLsar 0.0009 0.0052 0.0043 0.0023 0.0027 0.0012
Tfv 8,939 14,800 5,861 12,461 12,589 1,752
Felidae Panthera atrox” 15 Asfc 0.822 2.438 1.616 2.049 1.812 0.563
eplLsar 0.0017 0.0060 0.0043 0.0029 0.0033 0.0012
Tfv 341 12,683 12,342 7,063 6,051 4,636
Puma concolor® 12 Asfc 0.804 16.371 15.567 3.222 4.592 4.530
eplLsar 0.0009 0.0080 0.0071 0.0027 0.0035 0.0021
Tfv 3,145 16,597 13,452 14,008 12,860 3,609
Smilodon fatalis® 135 Asfc 0.950 8.443 7.493 3.368 3.822 1.928
eplsar 0.0007 0.0080 0.0073 0.0026 0.0028 0.0015
Tfv 38 18,725 18,688 10,310 9,654 4,790

See also Tables S4 and S5 and Data S1. Asfc, area-scale fractal complexity; epLsar, anisotropy; Tfv, textural fill volume.
?Includes published DMTA data from [8].

PIncludes published DMTA data from [7].

°Published DMTA data from [9].

needed to resolve the discrepancy between 3'3Cgnamer and Dental microwear data of feliforms and caniforms (Tables 3
513000"agen values, the pattern of canids (i.e., C. dirus) having and S4-S6) [7, 8] suggest that Pu. concolor, S. fatalis, and
more positive 3'3Cenamel Values than felids (i.e., S. fatalis) persists ~ C. dirus have DMTA attribute values indicative of moderate dur-
through time at La Brea (Figure 1C; Table S2) and at sites in Flor-  ophagy (Figure 2). The textural properties of S. fatalis dental mi-
ida during the Pleistocene (albeit different taxa, Canis edwardii  crowear is highly variable over time (Figure 2D; Table S6). As ice

and Smilodon gracilis) [27]. sheets grew to their maximum extent between 33 and 26.5 ka
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Figure 3. DMTA Attribute Values from Modern and Fossil Specimens
of the Carnivorans that Survived the Terminal Pleistocene Extinction
Event

Complexity and anisotropy values of Canis latrans (A), Canis lupus (B), and
Puma concolor (C). Pleistocene Rancho La Brea (RLB) in black, Holocene
Rancho La Brea in blue, and extant specimens in red and orange are shown.
See also Tables S5 and S9-S11 and Data S1.

(pits 77 and 91), maintained their positions from 26.5 to 19 or 20
ka (pits 3, 13, and 16 all overlapping with this date range), and
later shrank with the onset of Northern Hemisphere deglaciations
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(3; pits 61/67) during interglacial warming (Figure 2D), S. fatalis
engaged in increased carcass utilization during cooler glacial
periods as inferred from higher Asfc and Tfv values (p = 0.031
and p = 0.013, respectively). C. dirus has complexity values
indistinguishable from extant African wild dogs and extant coy-
otes (Table S5) that are known to both take down prey and
scavenge carcasses [28]. DMTA attributes of C. dirus fluctuate
between pits yet are independent of body size fluctuation [29]
and changing climates (Figure 2C; Table S7).

The extinction of top predators impacts the abundance of
mesopredators (and their prey)—a phenomenon termed meso-
predator release [30]. For example, the extirpation of Canis
lupus (the gray wolf) in much of the contiguous United States
has resulted in increased coyote populations, reduction of their
prey, and/or the suppression of smaller bodied mesopredator
populations (e.g., foxes) [30, 31]. Here, we document substantial
shifts in the diet of coyotes after the extinction of numerous
predators and prey at the end of the Pleistocene. Specifically,
C. latrans exhibits lower complexity values than C. dirus
throughout the latest Pleistocene (Figure 2C; Table S8), indi-
cating that coyotes consistently consumed softer food items
than dire wolves during the Pleistocene. Further, Pleistocene
C. latrans specimens have significantly lower complexity values
than Holocene specimens from La Brea and modern specimens
(see data from C. latrans in southern California and C. latrans
from throughout the USA; Figures 2 and 3; Tables S5, S9, and
S10). Thus, the shift to harder foods occurs coincident with
the shift to forest resources, indicative of new dietary prefer-
ences in southern California that include the scavenging of
deer carcasses (as is observed today, and potentially also Cs
plant resources, 11-12). These data suggest a profound shift
in coyote diets after the extinction of dire wolves (and numerous
other top predators and large prey species) and following
the historic extirpation of wolves from southern California. In
contrast, the diets of two extant apex predators that were Pleis-
tocene mesopredators (e.g., gray wolves and cougars) did not
change over time (Figure 3; Table S11) [9].

Itis challenging to disentangle the influence of the extinction of
C. dirus and the extirpation of C. lupus on coyote diets in the
past, but we gained insight by examining the dietary behavior
of C. lupus and C. latrans where they co-exist in Alaska today.
Whereas today C. lupus consumes tougher and softer foods
than C. latrans in southern Alaska, coyotes from Alaska exhibit
DMTA attribute values similar to those of coyotes in places
where wolves are absent (Figures 3 and 4; Tables S11 and
S12). Thus, the presence or absence of C. lupus likely has less
of an impact on coyote diets than did the extinction of the dire
wolves, numerous other large predators, and herbivorous mega-
fauna. Although it is recognized that wolves are known to antag-
onize coyotes, which subsequently can result in coyotes avoid-
ing wolves where they co-occur today [32-34], the presence of
wolves can also benefit coyotes [35, 36] and facilitate year-round
consumption of carrion, including increased carcass feeding in
areas of high wolf use [37]. Although coyotes are fully capable
of scavenging and are known to currently compete with wolves
for access to carcasses [32, 35, 36], as one of the smallest mem-
bers of the diverse guild of Pleistocene carnivorans [1] (despite
being larger during the Pleistocene than modern coyotes) [38],
C. latrans may not have been able to acquire and/or defend
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Figure 4. DMTA Attribute Values and 3D Models of Dental Micro-
wear Features of Modern Specimens of Canis latrans and Canis
lupus from Alaska

Complexity and anisotropy values of Alaskan canids from overlapping
geographic ranges and collected between 1951 and 1971 (A); 3D models of
dental microwear of Canis latrans (B; PSM 24875) and Canis lupus (C; PSM
24953).

See also Tables S11 and S12 and Data S1.

carcasses during the Pleistocene because of the presence of
numerous competing predators. Alternatively, C. latrans may
have had less catholic diets in the past as compared to

today—consuming primarily flesh during the Late Pleistocene.
The extinction of numerous large prey may have subsequently
contributed to C. latrans engaging in increased durophagy today
(even if only as a “pulsed” resource) [35]—consistent with a
reduced shearing arcade and expanded grinding areas in their
lower jaws and coincident with reduced body size that may be
a result of reduced resource availability [38, 39].

Assessing the ubiquity of these results is challenging due to
the rarity of carnivoran fossils outside of tar seeps; however,
these data provide unique insights into the ecology of extant
and extinct predators that would otherwise not be possible.
Collectively, this multi-proxy analysis demonstrates that the
Rancho La Brea felids and canids exhibited minimal competition
for prey up to the time of their extinction. Most notably, coyotes
exhibited profound dietary shifts following the terminal Pleisto-
cene extinction event—indicating that the extinction of top pred-
ators and herbivorous megafauna had downstream impacts on
mesopredators.

STARXxMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY
EXPERIMENTAL MODEL AND SUBJECT DETAILS
METHOD DETAILS

O Stable isotope analyses

O Dental microwear texture analyses

® QUANTIFICATION AND STATISTICAL ANALYSIS
o DATA AND CODE AVAILABILITY
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Stable isotope data from tooth enamel This paper Data S1

Dental microwear texture data This paper Data S1

Software and Algorithms

ToothFrax Surfract Corp. http://www.surfract.com

Sfrax Surfract Corp. http://www.surfract.com

Markov Chain Monte Carlo simulation MixSIAR [25] https://githubcom/brianstock/MixSIAR;

https://doi.org/10.5281/zenodo.56159

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Larisa
DeSantis (larisa.desantis@vanderbilt.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Faunal specimens of both fossil and modern specimens were accessed in publically accessible collections housed in the Denver
Museum of Natural History (Denver, Colorado, USA), Natural History Museum of Los Angeles La Brea Tar Pits and Museum (Los
Angeles, California, USA), Santa Barbara Museum of Natural History (Santa Barbara, California, USA), Slater Museum at the Univer-
sity of Puget Sound (Tacoma, Washington, USA), and University of Wyoming Geological Museum (Laramie, Wyoming, USA).

METHOD DETAILS

Stable isotope analyses

Geochemical bulk samples of tooth enamel were extracted from excavated faunal material from Rancho La Brea (La Brea Tar Pits
and Museum, n =238, including data from ref. 24; see Data S1 for dates associated with each pit examined) and extant C. latrans and
Pu. concolor specimens from southern California (Santa Barbara Museum of Natural History, n = 20). All teeth sampled (see Data S1)
were drilled with a low speed dental-style drill and carbide dental burrs. Bulk samples were taken parallel to the growth axis of the
tooth. All enamel powder was pretreated with 30% hydrogen peroxide for 24 hours and 0.1 N acetic acid for 12 hours to remove
organics and secondary carbonates, respectively [27, 40]. Approximately 1 mg of these samples were then run on a VG Prism stable
isotope ratio mass spectrometer with an in-line ISOCARB automatic sampler in the Department of Geological Sciences at the Uni-
versity of Florida or the Department of Geology and Geophysics at the University of Utah. The analytical precisionis + 0.1%,, based on
replicate analyses of samples and standards (NBS-19). Stable isotope data were normalized to NBS-19 and are reported in conven-
tional delta (3) notation for carbon (3'°C) and oxygen (3'20), where 3'3C (parts per mil, %) = ((Rsampie/Rstandara)-1)*1000, and
R = "3C/"2C; and, 580 (parts per mil, %) = (Rsampie/Rstandard)-1)*1000, and R = '80/'®0; and the standard is VPDB (Pee Dee Belem-
nite, Vienna Convention [41]. All stable isotopes (carbon and oxygen) are from the carbonate portion of tooth enamel hydroxylapatite.

Dental microwear texture analyses

Dental microwear replicas of all extant and fossil taxa (n = 648; see Data S1), including previously published data from refs [7-9, 22].)
were prepared by molding and casting using polyvinylsiloxane dental impression material and Epotek 301 epoxy resin and hardener,
respectively. Dental microwear texture analysis (DMTA) using white-light confocal profilometry and scale-sensitive fractal analysis
(SSFA), was performed on all replicas of lower first molars (in felids) and lower second molars (in canids) that preserved ante-mortem
microwear similar to prior studies [7-9, 22]. While some dental microwear studies have only examined the homologous lower m1
facet on all carnivorans (including felids and canids) [42], these facets do not record durophagous behavior in canids [43]—as lower
m1 sheering facets and lower m2 crushing facets have different forms and functions [20].

All specimens were scanned in three dimensions in 9 areas (in a 3x3 grid), subsequently stitched together, leveled, and then sub-
divided into four adjacent areas of equal size (102 x 138 um?) for a total sampled area of 204 x 276 pm?, identical sized areas as
previously published DMTA data [7-9, 21]. The measured neighbor algorithm was applied to all areas on the scan where no data
were collected, this is typically due to steep surfaces and approximately < 2% of a given surface, and resulting surface files (.sur)
were created. The majority of specimens were scanned on a Sensofar PLu neox optical profiler at Vanderbilt University (n = 510).
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Although some previously published data were analyzed on a white-light confocal microscope at the University of Arkansas (n = 138)
[7-9, 21], these confocal microscopes yield DMTA data statistically indistinguishable from one another [44]. All scans were analyzed
using SSFA software (ToothFrax and SFrax, Surfract Corp., http://www.surfract.com) to characterize tooth surfaces according to the
variables of anisotropy (epLsar), complexity (Asfc), and textural fill volume (Tfv) [20, 45-47]. Complexity is the change in surface
roughness with scale and used to distinguish taxa that consume hard, brittle foods (such as bone in carnivorous animals) from those
that eat softer ones [7, 8, 20, 22, 45-47]. Anisotropy is the degree to which surfaces show a preferred orientation, such as the
dominance of parallel striations having more anisotropic surfaces (as can occur in those eating primarily tough foods—including
flesh) [7, 8, 20, 22, 45-47]. Textural fill volume measures the volume filled by large (10 um diameter) and small (2 um diameter) square
cuboids, with high Tfv values indicating potentially deeper and/or larger features [7-9, 22, 47].

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses follow the same methods of a priori geochemical and DMTA analysis [7, 22, 27]. Specifically, all carbon isotope
values were analyzed using ANOVA and post hoc Tukey HSD multiple comparisons, Student’s t tests (for comparisons between two
normally distributed samples), and other non-parametric alternatives when appropriate (Mann-Whitney tests and Kruskal-Wallis
tests and Dunn’s procedure for multiple comparisons) [48]. When comparing modern and fossil specimens of C. latrans, 1.5%,
was first added to all 3'3C values of modern specimens (per ref. 13). Pit ages are uncalibrated radiocarbon years before present (stan-
dard deviations noted in parentheses in Data S1), all ages are uncalibrated dates taken from ref. 2, with the exception of Pit 9 dates
which are uncalibrated and taken from ref [49]. All statistical comparisons are noted in relevant supplemental tables.

Proportions of prey in predator diets were calculated using MixSIAR, a Bayesian isotopic mixing model [25]. An assumption for this
model is that the 3'3C values from the prey groupings represent the sources from which the predators sampled. To identify sources,
prey taxa from Rancho La Brea were compared using ANOVA and post hoc Tukey HSD tests, with significance set at p < 0.05. Taxa
that were not statistically different from one another were combined into a single source. Three source groups were identified in this
manner including (from highest to lowest mean §'3C value): Paramylodon harlani and Nothrotheriops shastensis; Bison antiquus,
Capromeryx sp., Equus occidentalis and Camelops hesternus; and, Odocoileus sp. and Tapirus sp. MixSIAR uses a Markov Chain
Monte Carlo simulation to model the proportions of sources in a consumer’s diet on the basis of the isotopic values of the prey sour-
ces and predators [25]. MixSIAR also incorporates the uncertainty in the isotopic trophic enrichment factor (i.e., discrimination factor)
between the prey sources and the predators in the model. The trophic enrichment factor used (—1.39%, + 0.29,) was based on the
discrimination factor between predator and prey bioapatite from previous studies [16]. Because of some uncertainty regarding
the reliability of sloth isotope values (as their teeth are composed of dentin and lack enamel and thus more prone to diagenetic alter-
ation) [50], besides the three source model, we ran an additional iteration of the model, a two source model where sloth taxa were not
included. We confirmed model convergence using the MixSIAR diagnostics (e.g., Gelman-Rubin and Geweke tests) for each of the
three model iterations. The mean and median proportions as well as the 95% credible interval are used to compare the contributions
of the different sources for the predator species. Although the source proportions for a specific taxon change among the models, the
overall pattern among predators among the two models is similar. Overall, the Bayesian model provided by MixSIAR provides a better
understanding of the proportion of prey sources included in the diet of each predator (Figure S1; Table S3).

We were unable to isotopically sample tapirs from Rancho La Brea due to the limited fossils available (i.e., three individual ele-
ments, in the Hancock Collection, one jaw with teeth, and 2 phalanges from the University of California Museum of Paleontology
pit 2051) and the small number of deer (likely mule deer, cf. Odocoileus hemionus) specimens available. Tapirs have limited carbon
isotopic variability of only —14.39%,to —10.1%,, spanning ~10 million years [51], with average values from two Pleistocene localities in
Florida of —12.7%, and —12.8Y%, (from Leisey Shell Pit 1A and Inglis 1A, respectively) [52]. While the 3'3C values of deer can vary de-
pending on their presence during glacial or interglacial periods, as seen in Florida [52], the values of white-tailed deer (Odocoileus
virginianus) in Florida average —12.89,, and one sample from the Pleistocene Fairmead locality in California is —12.59,, [53]. Thus,
we used —12.79,, as the average isotopic value of C3 browsers (with a range of —15.39%,, to —10%,,, the total range of deer and tapir
values spanning a glacial and interglacial site in Florida) [52]. Comparable isotopic data for tapirs and deer, beyond Fairmead (one
deer sample), are not available from Pleistocene fossil sites in California.

Dental microwear texture analysis variables are not normally distributed (Shapiro-Wilk tests, p > 0.05 for DMTA variables for certain
taxa); therefore, we used non-parametric statistical tests (Kruskal-Wallis) to compare differences among all taxa. Further, we used
Dunn’s procedure [48] to conduct multiple comparisons (between extant and/or extinct taxa) absent of the Bonferroni correction. As
the Bonferroni correction is meant to reduce the likelihood of false positives (Type | errors) by taking into consideration the number of
comparisons being made, it also increases the probability of false negatives (Type Il errors) [54, 55]. Furthermore, we do not want the
number of extant and/or extinct comparisons to affect statistical differences between taxa; thus, the Bonferroni correction is not
appropriate for our comparisons.

DATA AND CODE AVAILABILITY

All data are available in Data S1 and Tables S1-S12.
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