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Abstract

An essential requirement of spanners in many applications is to be fault-tolerant: a (1 + ϵ)-
spanner of a metric space is called (vertex) f -fault-tolerant (f -FT) if it remains a (1+ϵ)-spanner
(for the non-faulty points) when up to f faulty points are removed from the spanner. Fault-
tolerant (FT) spanners for Euclidean and doubling metrics have been extensively studied since
the 90s.

For low-dimensional Euclidean metrics, Czumaj and Zhao in SoCG’03 [CZ03] showed that
the optimal guarantees O(fn), O(f) and O(f2) on the size, degree and lightness of f -FT
spanners can be achieved via a greedy algorithm, which näıvely runs in O(n3) ⋅ 2O(f) time.1

An earlier construction, by Levcopoulos et al. [LNS98] from STOC’98, has a faster running
time of O(n logn) + n2O(f), but has a slack of 2Ω(f) in all the three involved parameters. The
question of whether the optimal bounds of [CZ03] can be achieved via a fast construction has
remained elusive, with the lightness parameter being the bottleneck: Any construction (other
than [CZ03]) has lightness either 2Ω(f) or Ω(logn). Moreover, in the wider family of doubling
metrics, it is not even clear whether there exists an f -FT spanner with lightness that depends
solely on f (even exponentially): all existing constructions have lightness Ω(logn) since they are
built on the net-tree spanner, which is induced by a hierarchical net-tree of lightness Ω(logn).

In this paper we settle in the affirmative these longstanding open questions. Specifically, we
design a construction of f -FT spanners that is optimal with respect to all the involved
parameters (size, degree, lightness and running time): For any n-point doubling metric, any
ϵ > 0, and any integer 1 ≤ f ≤ n − 2, our construction provides, within time O(n logn + fn), an
f -FT (1 + ϵ)-spanner with size O(fn), degree O(f) and lightness O(f2).

To break the Ω(logn) lightness barrier, we introduce a new geometric object — the light
net-forest. Like the net-tree, the light net-forest is induced by a hierarchy of nets. However,
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to ensure small lightness, the light net-forest is inherently less “well-connected” than the net-
tree, which, in turn, makes the task of achieving fault-tolerance significantly more challenging.
Further, to achieve the optimal degree (and size) together with optimal lightness, and to do so
within the optimal running time — we overcome several highly nontrivial technical challenges.
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1 Introduction

1.1 Euclidean Spanners

Let P be a set of n points in Rd and let ϵ > 0 be any parameter. A spanning subgraphH = (P,E, ∥⋅∥)
of the complete Euclidean graph induced by P is called a (Euclidean) (1+ ϵ)-spanner for the point
set P if ∀p, q ∈ P , there is a (1+ϵ)-spanner path in H between p and q, i.e., a path of weight at most
(1+ϵ) ⋅∥p−q∥, where the weight of a path is the sum of all edge weights in it and ∥p−q∥ denotes the
Euclidean distance between p and q. Euclidean spanners find applications in various areas, including
in geometric approximation algorithms, network topology design and distributed systems, and they
have been studied extensively since the 80s [Che86, Cla87, KG92, ADD+93, ADM+95, AWY05];
see also the book by Narasimhan and Smid [NS07] titled “Geometric Spanner Networks”, which is
devoted to Euclidean spanners and their applications.

A natural requirement from a spanner, which is essential for real-life applications, is to be robust
against failures, so that even when part of the network fails, we still have a good spanner for the
functioning part of the network. Formally, a Euclidean spanner H for point set P is called a (vertex)
f -FT (1+ ϵ)-spanner, for 1 ≤ f ≤ n− 2, if for any F ⊆ P with ∣F ∣ ≤ f , the graph H ∖F (obtained by
removing from H the vertices of F and their incident edges) is a (1 + ϵ)-spanner for P ∖ F .2 (The
basic (non-FT) setting corresponds to the case f = 0.) To perform efficiently in these applications,
we would like the underlying spanner to be “sparse”. The size (number of edges) of the spanner is
perhaps the most basic sparsity measure; the spanner sparsity is defined as the ratio of the spanner
size to the minimum size n−1 of a connected spanning subgraph. The weight (sum of edge weights)
of the spanner is a natural generalization of the size, and in many applications (such as for the
metric TSP) we need to have small weight rather than small size; the spanner lightness is defined
as the ratio of the spanner weight to the minimum spanning tree (MST) weight. The spanner size
corresponds to the average degree of a vertex, yet the stronger property of a small (maximum)
degree (over all vertices) is important in various applications in Computational Geometry, as well
as for reducing the space usage in compact routing schemes and in distributed systems.

A construction of Euclidean (1 + ϵ)-spanners with constant degree (and sparsity) and lightness
can be built in time O(n logn) [AS94, DN94, GLN02]. In their pioneering work, Levcopoulos,
Narasimhan and Smid [LNS98] introduced the notion of FT spanners and generalized the basic
construction of [AS94, DN94, GLN02] to obtain an f -FT (1+ϵ)-spanner with degree (and sparsity)
and lightness bounded by 2O(f), within a running time of O(n logn) + n2O(f). Clearly, the degree
of any vertex in any f -FT spanner (for any stretch) must be at least f + 1, and thus any f -FT
spanner must have Ω(fn) edges. There are also simple point sets (even in 1 dimension), for which
any f -FT spanner must have lightness Ω(f2) [CZ03]. Finally, the time needed to compute a k-FT
spanner is Ω(n logn + fn): The term Ω(n logn) is the time lower bound for computing a basic
(non-FT) spanner in the algebraic computation tree model [CDS01], and the term Ω(fn) is the
aforementioned lower bound on the size of any f -FT spanner.

There are also bunch of other constructions of Euclidean FT spanners (see Table 1 for a summary
of FT constructions), and they can be grouped into two categories.

In the first category, which contains almost all known constructions, the lightness parameter is
either ignored or bounded from below by Ω(logn); this line of work was culminated with the con-

2We shall restrict the attention to vertex faults, but that does not lose generality: Any FT (1 + ϵ)-spanner that
is resilient to f vertex faults is also resilient to f edge faults (see [LNS98, NS07]), while the lower bounds discussed
below — of Ω(f) on sparsity and degree and Ω(f2

) on lightness of f -FT spanners — apply also to edge faults.
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Reference Sparsity Degree Lightness Runtime Metric

[LNS98] 2O(f) 2O(f) 2O(f) O(n logn) + n2O(f) Euclidean

[LNS98] O(f2
) unspecified unspecified O(n logn + f2n) Euclidean

[LNS98] O(f logn) unspecified unspecified O(fn logn) Euclidean

[Luk99] O(f) unspecified unspecified O(n logd−1 n + fn log logn) Euclidean

[CZ03] O(f) O(f) O(f2
) Ω(n3

) ⋅ 2O(f)) Euclidean

[CZ03] O(f) O(f) O(f2 logn) O(fn logd n + nf2 log f) Euclidean

[CLN12] O(f) unspecified unspecified unspecified doubling

[CLN12] O(f2
) O(f2

) unspecified unspecified doubling

[CLNS13] O(f2
) O(f2

) O(f2 logn) O(n logn + f2n) doubling

[Sol14] O(f) O(f) O(f2
+ f logn) O(n logn + fn) doubling

New O(f) O(f) O(f2
) O(n logn + fn) doubling

Table 1: A comparison between previous and our constructions of FT spanners with small size, degree, lightness
and runtime, for low-dimensional Euclidean and doubling metrics. The O-notation ignores dependencies on ϵ and d.

struction of Solomon [Sol14] from STOC’14, which achieves the optimal degree O(f) and running
time O(n logn+nf), and it applies to the wider family of doubling metrics (see Section 1.2). In ad-
dition to optimal degree and running time, the construction of [Sol14] also achieves a near-optimal
tradeoff of O(f2 + f logn) versus O(logn) between the lightness and another property called the
(hop-)diameter;3 importantly, any construction of diameter O(logn) must have lightness Ω(logn),
and more precisely this tradeoff between lightness and diameter is optimal up to a factor log f slack
on the diameter and a factor min{log f, lognf } = O(log logn) slack on the lightness. (For a detailed

discussion on the lower bound tradeoff between the lightness and diameter, we refer to [Sol14].)
The second category concerns “light” spanners, and there are only two such constructions to

date. The first is the one by [LNS98] mentioned above, and the second is a greedy construction due
to Czumaj and Zhao from SoCG’03 [CZ03], and it achieves the optimal lightness guarantee of O(f2)
together with the optimal degree (and sparsity) of O(f). However, a näıve implementation of the
greedy FT spanner construction requires time Ω(n3)⋅2Ω(f) or more precisely Ω(n2 ⋅Paths(n, f+1,1+
ϵ)), where Paths(n, f + 1,1 + ϵ) is the time needed to check whether an n-vertex Euclidean graph
with O(fn) edges contains f + 1 vertex-disjoint (1 + ϵ)-spanner paths between an arbitrary pair of
vertices. Indeed, in the greedy FT construction, the (n2) edges of the underlying Euclidean metric
are traversed by nondecreasing weights, and each edge (x, y) is added to the current spanner iff it
does not contain f + 1 vertex-disjoint (1+ ϵ)-spanner paths between x and y. We note that a more
sophisticated implementation of the basic (non-FT) greedy algorithm takes time O(n2 logn) in
Euclidean and doubling metrics [BCF+10], but it is unclear if this implementation can be extended
to the FT greedy algorithm; moreover, even if such an extension is possible and even if we completely
ignore the dependence on f , it would still lead to a super-quadratic in n runtime.

Up to this date no construction of Euclidean f -FT spanners with runtime better than the
Ω(n3) ⋅ 2Ω(f) bound of [CZ03], let alone the optimal O(n logn + fn) runtime bound, could achieve
lightness min{o(logn),2o(f)}, let alone the optimal lightness of O(f2). In particular, the following

3A spanner for point set P is said to have a (hop-) diameter of k if it provides a (1+ ϵ)-spanner path with at most
k edges, for every p, q ∈ P .
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question, stated in the book of Narasimhan and Smid [NS07], has remained open even for 2-
dimensional point sets since the STOC’98 work of [LNS98].

Question 1 (Open Problem 28 in [NS07]). Is there an algorithm that constructs, within O(n logn+
fn) time, an f -FT (1 + ϵ)-spanner with lightness O(f2)?

Further, is it possible to construct, ideally still in time O(n logn + fn), a single construction
that combines the optimal lightness O(f2) with the optimal degree (and sparsity) O(f)?

Question 2. Is there an algorithm that constructs, within O(n logn + fn) time, an f -FT (1 + ϵ)-
spanner with lightness O(f2) and degree O(f)?

1.2 Doubling Metrics

A metric is called doubling if its doubling dimension is constant, where the latter is the smallest
value d such that every ball B in the metric can be covered by at most 2d balls of half the radius of
B. We note that the doubling dimension generalizes the standard Euclidean dimension, since the
doubling dimension of the Euclidean space Rd is Θ(d). Spanners for doubling metrics have been
intensively studied; see [GGN04, CGMZ05, CG06, HPM06, GR08a, GR08b, Smi09, CLN12, ES15,
CLNS13, Sol14, BLW19, LT22, KLMS22], and the references therein. Many of these works share a
common theme, namely, to devise spanners for doubling metrics that are just as good as the analog
Euclidean spanner constructions.

Some of the constructions mentioned in Section 1.1 apply to doubling metrics; see Table 1. Much
weaker variants of Questions 1 and 2 from Section 1.1 can be asked for the wider family of doubling
metrics. Indeed, in such metrics, it is not even clear whether there exists an f -FT spanner with
lightness that depends solely on f (even exponentially): All existing constructions have lightness
Ω(logn) since they are built on the net-tree spanner, which is induced by a hierarchical net-tree of
lightness Ω(logn). The net-tree incurs a lightness of Ω(logn) even for line metrics!

Question 3. � Does there exist, for any doubling metric, an f -FT (1+ϵ)-spanner with lightness
O(f2)? Does there exist such a spanner that also achieves degree O(f)?

� Further, is there an algorithm that constructs, for any doubling metric, within O(n logn+fn)
time, an f -FT (1 + ϵ)-spanner with lightness O(f2) and degree O(f)?

1.3 Our Contribution

The main result of this work is the following theorem.

Theorem 1. Let (X,δ) be an n-point doubling metric, with an arbitrary doubling dimension d.
For any 0 < ϵ < 1

2 and any integer 1 ≤ f ≤ n − 2, an f -FT (1 + ϵ)-spanner with lightness ϵ−O(d) ⋅ f2

and degree ϵ−O(d) ⋅ f can be built within ϵ−O(d)(n logn + fn) time.

The construction provided by Theorem 1 is optimal with respect to all the involved
parameters and it settles all the aforementioned questions, Questions 1-3, in the affirmative. We
note that our construction improves the previous state-of-the-art constructions of FT spanners
(with sub-cubic runtime) not only for doubling metrics, but also for Euclidean ones.

A central challenge that we faced on the way to proving Theorem 1 is breaking the Ω(logn)
lightness barrier. To this end we introduce a new geometric object — the light net-forest. Like the
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net-tree, the light net-forest is induced by a hierarchy of nets. However, to ensure small lightness,
the light net-forest is inherently less “well-connected” than the net-tree, which, in turn, makes
the task of achieving fault-tolerance significantly more challenging. We demonstrate the power of
the light net-forest in achieving the optimal lightness, but our construction does not stop there.
Further, to achieve the optimal degree (and size) together with optimal lightness, and to do so
within the optimal running time — we overcome several highly nontrivial technical challenges. In
the following section we describe the technical and conceptual contributions of this work.

1.4 Technical Overview and Conceptual Highlights

The previous constructions of Euclidean FT spanners [LNS98, Luk99, CZ03, NS07] rely on geomet-
ric properties of low-dimensional Euclidean metrics, such as the gap property [AS94] and the leapfrog
property [DHN93]. In particular, achieving small lightness crucially relies on the leapfrog property,
which is not known to extend to arbitrary doubling metrics. On the other hand, the previous con-
structions of doubling FT spanners [CLN12, CLNS13, Sol14] use standard packing arguments of
doubling metrics, but they all rely on the standard net-tree spanner of [GGN04, CGMZ05], which
is induced by a hierarchical net-tree T = T (X) that corresponds to a hierarchical partition of the
metric (X,δ). The lightness of the net-tree alone is Ω(logn), even in 1-dimensional Euclidean
spaces; as such, all the constructions of [CLN12, CLNS13, Sol14] incur a lightness of Ω(logn) even
when ignoring the dependencies on f .

As in all previous constructions that apply to arbitrary doubling metrics, the starting point of
our construction is the net-tree spanner T = T (X). To break the lightness barrier of Ω(logn), we
will not be able to use the entire net-tree, and consequently we will not be able to use the entire
net-tree spanner that is derived from it. We start with a brief overview of the net-tree spanner and
the previous constructions of [CLN12, CLNS13, Sol14].

Any tree node x is associated with a single point rep(x) that belongs to the point set L(x) of
its descendant leaves. For any pair x, y of level-i tree nodes that are close together with respect to
the distance scale (or radius) 2i at that level, a cross edge (x, y) is added (edge (x, y) translates
to edge (rep(x), rep(y)); for brevity we sometimes write (x, y) as a shortcut for (rep(x), rep(y)));
specifically, the weight of any level-i cross edge (x, y) is at most λ2i, where λ = Θ(1ϵ ) and rad(x) =
rad(y) = 2i. The net-tree spanner is the union of the tree edges (i.e., the edges of T ) and the cross
edges. For every pair u, v of points, a (1+ϵ)-spanner path, denoted by ΠT (u, v), goes up in the tree
T from a leaf x corresponding to u (i.e., rep(x) = u) to some ancestor x′ of u, then takes a cross
edge (rep(x′), rep(y′)) from x′ to an ancestor y′ of y in the net-tree, and finally goes down in T
from y′ to y, where rep(y) = v. The reason ΠT (u, v) is a (1+ϵ)-spanner path is due to the following
key observation of the net-tree, which implies that the weight of the cross edge constitutes almost
the entire weight of ΠT (u, v):

Observation 1. Both δ(rep(x), rep(x′)) and δ(rep(y), rep(y′)) are at most ϵδ(u, v). Thus (1 −
ϵ)δ(u, v) ≤ δ(rep(x′), rep(y′)) ≤ (1 + ϵ)δ(u, v).

To achieve fault-tolerance, the general idea in [CLNS13] was to associate each tree node x with
a surrogate set S(x) of (up to) f +1 points from L(x) rather than a single point; the FT spanner is
obtained by replacing each edge (x, y) of the basic net-tree spanner by a bipartite clique between
the corresponding sets S(x) and S(y). To achieve a degree of O(f2), [CLNS13] used a “rerouting”
technique from [GR08b] that assigns representative points for the tree nodes so as to minimize the
maximum degree, but achieving degree o(f2) using this approaches is doomed for two reasons.
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“Global” reason: If each edge (x, y) of the basic net-tree spanner is replaced by a bipartite clique
between S(x) and S(y), then since S(x) and S(y) may contain Ω(f) points each, the size of this
bipartite clique may be Ω(f2). As the basic net-tree spanner has Ω(n) edges, the FT spanner
obtained in this way will contain Ω(f2n) edges (and will have degree Ω(f2)).
“Local” reason: As a node x is associated with a set S(x) of (up to) f + 1 points from L(x), the
same leaf point p may belong to Ω(f) different sets S(x) of internal nodes x. For each edge (x, y)
of the basic net-tree spanner that is incident on any of these Ω(f) nodes, p ∈ S(x) is connected via
edges to all Ω(f) points of S(y), and so the degree of p will be Ω(f2).

The key idea of [Sol14]. The idea of associating nodes of net-trees and other hierarchical tree
structures, such as split trees and dumbbell trees, with points from their descendant leaves has been
widely used in the geometric spanner literature; see [ADM+95, GGN04, CGMZ05, CG06, NS07,
GR08b, CLN12], and the references therein. Indeed, by Observation 1, any point in L(x) is close
to the original net-point rep(x) of x, with respect to the distance scale rad(x) of x. Instead of
associating nodes x with points chosen exclusively from L(x), the key idea of [Sol14] is to consider a
wider set B(x) of all points in the ball of radius O(rad(x)) centered at rep(x). By associating nodes
x with points from B(x), one obtains a hierarchical cover of the metric (rather than a hierarchical
partition). As the doubling dimension is constant, this cover has a constant degree, i.e., every point
belongs to Oϵ,d(1) sets B(⋅) at each level of the tree T .

Similarly to [CLNS13], [Sol14] associates each tree node x with a set S(x) of (up to) f +1 points
called surrogates, but as mentioned the surrogates in [Sol14] are chosen from the superset B(x)
of L(x). Moreover, [Sol14] doesn’t naively replace each edge (x, y) of the basic net-tree spanner
by a bipartite clique between S(x) and S(y) as in [CLNS13], since (due to the “Global” reason
above) that would lead to Ω(f2n) edges. Instead, whenever the number of surrogates in S(x)
and S(y) is f + 1, a bipartite matching suffices for achieving fault-tolerance. [Sol14] assigns the
surrogates bottom-up (first for level-0 nodes (leaves) in the net-tree T , then for level-1 nodes, etc.)
via a complex procedure that guarantees that, for any level i and any level-i node x in T , there
are enough points of small degree in B(x) to choose surrogates from, which ultimately leads to the
desired degree bound of O(f). However, as mentioned, the lightness of the construction of [Sol14],
as well as any other construction that applies to doubling metrics, is lower bounded by the lightness
Ω(logn) of the underlying net-tree; more precisely, the state-of-the-art lightness of any construction
of FT spanners in doubling metrics prior to this work, due to [Sol14], is Θ(f2 + f logn).

1.4.1 Our approach

To breach the Ω(logn) lightness barrier incurred by the net-tree, our first insight is that a “light”
(1 + ϵ)-spanner G of X, which is given as input, can be used for computing a light subtree of the
net-tree — which we name the light net-forest and abbreviate as LNF. Equipped with the LNF,
a natural approach would be to (i) apply the standard net-tree spanner construction on top of
the LNF (instead of the net-tree) in order to get a light net-tree spanner, and (ii) transform the
light net-tree spanner into a light FT spanner by replacing each edge (x, y) of the spanner with a
bipartite clique / matching between S(x) and S(y) similarly to [Sol14]. However, since the LNF is
not a tree but rather a forest, it is inherently less “well-connected” than the net-tree, which renders
step (ii) of achieving fault-tolerance highly challenging, as we next describe.

In the standard net-tree spanner, as mentioned, for every pair u, v of points, there is a path
ΠT (u, v) that uses a single cross edge, which we denote here by (u′, v′), where u′ and v′ are ancestors
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of u and v in the net-tree T , respectively. A non-faulty (1 + ϵ)-spanner path in the FT spanner
constructions of [CLNS13, Sol14], for a non-faulty pair u, v of points, consists of going up in T
from u and from v to some non-faulty surrogates of S(u′) and S(v′), respectively, and it includes
a single cross edge between those surrogates. There are non-faulty surrogates in S(u′) and S(v′)
due to two reasons: (1) u and v are non-faulty descendant leaves of u′ and v′, respectively, and
(2) there is only one cross edge in the path. Indeed, if ∣S(u′)∣ < f + 1 then, since u is a descendant
leaf of u′, one can guarantee that u ∈ S(u′); otherwise u may not belong to S(u′), but in that
case too S(u′) contains a non-faulty surrogate; the same goes for S(v′). However, when using the
LNS, we no longer have such a path ΠT (u, v) for any pair u, v of points. Instead, we can afford
to use such a path ΠT (u, v) only for edges (u, v) that belong to the light (1 + ϵ)-spanner G (with
constant lightness) that we receive as input; it can be shown that the union of all those paths over
the edges of G has constant lightness. Consider now a pair u, v of points that are not incident in
G, and let ΠG(u, v) = (u1 = u,u2, . . . , uk = v) be a shortest path (which is a (1 + ϵ)-spanner path)
between u and v in G. Naturally, we would like to translate this path ΠG = ΠG(u, v) into a union
of non-faulty subpaths of the net-tree plus cross edges, as that union should provide a non-faulty
(1+ ϵ)-spanner path between u and v. However, we cannot argue that ancestors u′i of intermediate
nodes ui, ui ≠ u, v on the path contain non-faulty surrogates, since u and v are not necessarily
descendant leaves of u′i! This is the crux in achieving a light FT-spanner from the LNS,
and it entails multiple challenges.

When translating ΠG into a non-faulty path, the basic idea is to replace every cross edge by a
bipartite matching. First note that the cross edges corresponding to the edges of ΠG may be located
at different levels. Indeed, for an edge ei = (ui, ui+1) in G, the respective cross edge, denoted by
cross(ei) = (ûii, ûii+1), lies at level roughly log δ(ui, ui+1), and edge weights in the path ΠG may be
very different one from another; thus ûii+1 and ûi+1i+1, which are the “second” endpoint of cross(ei)
and the “first” endpoint of cross(ei+1), respectively, may lie at very different levels of the net-tree.
Next, we stress that replacing a cross edge by a bipartite matching is possible only in the case
that, for each cross edge cross(ei) = (ûii, ûii+1) along the path, there are f + 1 “nearby” points
around the two endpoints ûii and ûii+1 of the edge. By nearby we mean within distance that is an
O(ϵ)-fraction of the distance between ûii and ûii+1, and thus these nearby points can serve as part
of the surrogate sets of S(ûii) and S(ûii+1) of ûii and ûii+1, respectively. Let us consider this simpler
case first. Then the distance between a pair of surrogates of ûii and ûii+1 is the same, up to a factor
of 1+O(ϵ), as the distance between ûii and ûii+1. It thus suffices to take a perfect matching between
S(ûii) and S(ûii+1) for every i, and then at least one of the matching edges must function for every
i (following at most f vertex faults). One technicality is that when going from ûi−1i−1 to ûi−1i through
a matching edge we end up at a surrogate of ûi−1i , say si−1i , and then when continuing from ûii to
ûii+1 through a matching edge we start at a surrogate of ûii (rather than ûi−1i ), say sii, and these
two surrogates si−1i and sii might be different, so in general the union of the matched edges along
the path does not form a valid path; however, as the distance between si−1i and sii is negligible with
respect to the weight of ei, our construction will provide a non-faulty path between si−1i and sii by
induction. The challenging case is when for some cross edges along the path, there are less than
f + 1 “nearby” points around the two endpoints; we refer to such edges as irreplaceable. Dealing
with irreplaceable edges requires special care; we will get back to this issue towards the end of this
section, when we discuss how to construct a non-faulty spanner path. For now we focus on the
following fundamental issue.

A major issue is that there could be nodes with less than f + 1 nearby points. For an edge
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ei, there might be no functioning vertex near the endpoints of cross(ei), which means that there
might be no functioning edge which is a good approximation of ei in H −F (in terms of its weight).
We resolve this issue by adding more cross edges to guarantee fault tolerance. Specifically, for every
node x for which we cannot find f + 1 surrogates, we add the bipartite clique between S(x) and
S(y) for all y within distance O(rad(x)/ϵ) from x. There are two possible cases when we cannot
find f + 1 surrogates for a node x. The first (and obvious) case is when x is at a low level and
there are not enough (less than f + 1) points near rep(x). The second (and more challenging) case
is that the choices of surrogates must be subjected to other constraints such as bounded degree; if
we choose the surrogates carelessly, there might be fewer usable vertices in the vicinity of rep(x)
since all vertices close to rep(x) were overused as surrogates by nodes at levels lower than x. In
both cases, we add the bipartite clique between S(x) to the surrogate set of every nearby node.
However, each case contributes differently to the lightness. While adding many edges at low levels
does not affect the lightness significantly, adding those in higher levels could blow up the lightness
by a factor of logn; recall that we want to avoid using all the cross edges since they add a logn
factor to the lightness. Thus, we must choose the surrogates carefully to ensure that the second
case essentially does not happen. This is where our aforementioned LNF (light net forest) comes to
the rescue. Our key insight is that all nodes in the net-tree with less than f + 1 nearby surrogates
form an LNF, which consists of node-disjoint subtrees of T that span all those nodes, such that
the total radii associated with those nodes exceeds the weight of MST(X) by at most a constant
factor, implying that the LNF is light. The structure of the LNF depends heavily on the input
spanner G and on our strategy to select surrogates.

The strategy of selecting surrogates directly affects all important parameters of our spanner:
stretch, lightness and degree. First, the surrogates of a node x must be close to rep(x) to guarantee
the stretch. Second, to guarantee the bounded degree property, we must avoid overusing any point
as a surrogate (i.e., using it as a surrogate for too many nodes in the tree). One idea is to use the
leaves of a node as surrogates since the distance between (the representative of) a node x to its
leaves is small compared to any cross edge incident to x. However, using only leaves for surrogates
might increase the degree of a single vertex to Ω(n); for example, there might be a long branch of T
with only one leaf, say z, where we have to add edges to all the nodes in the branch to guarantee a
good stretch, leaving z with many incident edges. To overcome this issue, we choose the surrogates
of x in a ball centered at rep(x) with radius c ⋅ rad(x), for an appropriate constant c. Once the
degree (in the spanner) of a vertex reaches a certain threshold, it is forbidden for that vertex to
serve as a surrogate ever again.

A new problem arises: choosing surrogates from a ball as suggested above does not guarantee
the bounded lightness property. Balls centered at net points at different levels might interact in a
complex manner, and as a result, we might not be able to find enough (at least f + 1) surrogates
for some nodes at high levels, since overused vertices are forbidden to be used again. If we follow
the suggestion outlined in the previous paragraph, we will have to add bipartite cliques from the
surrogates of these nodes to other nodes’s surrogates. Unfortunately, this will break the property
of the LNF and, in particular, it will be harder to control the lightness. To resolve this problem,
we will guarantee the following property: if a node has at least f +1 surrogates, any of its ancestors
will also have f + 1 surrogates. To this end, our key idea is to prioritize the choice of high-degree
vertices in a large ball B(x,16rad(x)) over vertices of lower degree in B(x,4rad(x)). This is
somewhat counter-intuitive as one might expect to prioritize low degree vertices (to have a better
chance of bounding the degree of the spanner) over high degree vertices. However, the intuition
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is that by prioritizing high degree vertices, we actually “save” the low degree ones to be used as
“fresh” surrogates of other nodes at higher levels. Furthermore, when a high degree vertex becomes
overused, many of its neighbors of low degree are closer to its ancestors, relative to the radii of the
ancestors, leaving the ancestors more room to choose surrogates.

We stress that even if we only try to control the lightness bound (regardless of the degree and
even the size of the spanner), and even if we are aiming for a suboptimal dependence on f in
the lightness bound, it is still highly challenging to get an FT-spanner with lightness o(logn). As
discussed above, using cross edges restricted to the input light spanner is not enough to guarantee
fault-tolerance. The challenge is to identify (or even just prove the existence of) a set of cross
edges that has small lightness on the one hand and that can guarantee fault-tolerance on the other;
achieving these two contradictory requirements simultaneously is highly non-trivial.

u=u1 v

Path in H - F
Path in G

u2 u3 u4 u5 u6

T

Cross edge u2 u6~~

u2^u1^

Figure 1: A path from u to v in H ∖ F . Every purple node has f + 1 surrogates. We replace
some edges and some subpaths of the shortest path from u to v in G by the cross edges between
nodes having f +1 surrogates. It might be misleading that δ(ũ2, ũ6) is much smaller than δ(u2, u6).
Indeed, δ(u2̃, u6̃) is a good approximation of the length of (u2, u3, u4, u5, u6).

Finally, we return to the issue of finding a non-faulty spanner path between any two points.
Recall that our idea is to carefully choose some (but not all) cross edges of T and add the edges
between the respective surrogates of each chosen cross edge to the VFT spanner. For any two
points u and v in X, if the lowest good approximation (in terms of its weight) cross edge (ü, v̈) of
(u, v) is at a “low” level, meaning that there are not enough (less than f + 1) surrogates for either
ü or v̈, our construction guarantees that (ü, v̈) is chosen, and there is an non-faulty edge between
S(ü) and S(v̈). If ü and v̈ are at a high enough level, then (ü, v̈) might not be chosen. In that case,
we follow the shortest path P = {u = u1, u2, u3, . . . ul = v} between u and v in the light spanner G
(if there are multiple shortest paths, we fix one arbitrarily). If (u1, u2) is replaceable, meaning that
there is at least one non-faulty edge in the bipartite matching between S(û1) and S(û2), where û1
and û2 are ancestors of u1 and u2, respectively, at an appropriate level, we replace (u1, u2) by a
non-faulty edge in the matching. Otherwise, the edge (u1, u2) is irreplaceable, and we find a good
approximation cross edge of (u1, ui) for some i > 2. Our construction guarantees that we choose
a good approximation cross edge (ũ1, ũi) of distP (u1, ui) for some i > 2; proving this is highly
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challenging and is the key in our argument for finding a non-faulty spanner path. Then,
we replace the prefix (u1, u2, . . . ui) of P by a non-faulty edge in the bipartite matching between
S(ũ1) and S(ũi) and continue the process recursively with the remaining suffix of P . Finally, the
replaced edges can be “glued together” by induction via subpaths of total length negligible with
respect to the weight of P ; in this way, we have provided a spanner path from u = u1 to ul = v. See
Figure 1 for an illustration.

2 Preliminaries

Given a graph G, we denote by V (G) and E(G) the vertex and edge set of G, respectively. Given
a metric (X,δ), a graph G = (V,E,w) is a geometric graph in (X,δ) if V ⊆X and w(u, v) = δ(u, v)
for every edge (u, v) ∈ E. In this paper, we only consider geometric graphs, so we will refer to points
and vertices interchangeably. The weight of a graph G, denoted by w(G), is the total weight of all
edges in G. For any set of edges E′, w(E′) = ∑(u,v)∈E′ δ(u, v). For any two vertices u and v in G,
the distance between u and v in G is denoted by distG(u, v). The minimum spanning tree of X,
denoted by MST(X), is the minimum spanning tree of (X, (X2 ),w) with (

X
2
) is the set containing

all pairs of points in X.
We say that G is a t-spanner of (X,δ) if G is a geometric graph in (X,δ) with X being its

vertex set and for any two points u, v ∈ X, distG(u, v) ≤ tδ(u, v). A path between u and v in a
geometric graph G in (X,δ), which might not be a spanner of (X,δ), is a t-spanner path if the total
weight of edges of the path is at most tδ(u, v). A t-spanner G of X is an f -vertex-fault-tolerant
(f -VFT) if for any set of points F ⊆X such that ∣F ∣ ≤ f , the graph G−F obtained by removing F
from G is still a t-spanner of X ∖ F .

Let (X,δ) be a metric of doubling dimension d. We denote by B(p, r) the set of points in X
with distance at most r from p. The spread of P is the ratio between the maximum distance and
minimum distance between points in P . We say that P is r-separated if the distance between every
two distinct points in P is at least r. The following lemma is well known:

Lemma 1 (Packing bound). Let R ≥ r > 0 and Y be an r-separated set contained in a ball of radius

R. Then, ∣Y ∣ ≤ (4Rr )
d
.

Net. An r-net of a subset of points P ∈ X is an r-separated subset N of P such that for each
point v in P , there exists u ∈ N such that δ(u, v) ≤ r.

3 VFT Spanner Construction Algorithm

In this section, we present a construction of an (f +1)-VFT (1+ϵ)-spanner with degree Oϵ,d(f) and
lightness Oϵ,d(f2) as described in Theorem 1. We focus on presenting the ideas of the construction;
a fast implementation will be delayed to Section 7.

3.1 Net tree, surrogate sets, and bipartite connections

By scaling, we assume that the minimum and maximum distance in X is 64 and ∆, respectively.
We set the minimum distance to 64 to handle some corner cases more gratefully. Throughout this
paper, for every positive integer a, we use the notation log a = log5 a to avoid the subscript.
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Definition 1 (Greedy Net Tree). Let r0 = 1,N0 = X, ζ = ⌈log∆⌉, and ri = 5ir0 for every i ∈ [1, ζ].
Let N0 ⊋ N1 ⊋ . . . ⊋ Nζ be a hierachy of nets where Ni is an ri-net of Ni−1. The hierarchy of nets
induces a hierarchical tree T where:

1. For every level i ∈ [0, ζ], there is one-to-one correspondence between nodes in at level i in T
and points in Ni.

2. The parent in T of a point in Ni−1 is the closest point in Ni for 1 ≤ i ≤ ζ, breaking tie
arbitrarily.

We refer to points in the nets and nodes in the tree T interchangeably. As a point u can belong
to multiple nets, to avoid confusion, we sometimes write (u, i) ∈ Ni to indicate the copy of u in Ni.
For each node (u, i), the value ri is called the radius of (u, i). In our net-tree, we use the radius
ri = 5i instead of 2i as other works, e.g., [CGMZ16], because of a specific property that we need:
the sum of radii associated with any set of nodes such that no two of them are ancestors of each
other is bounded by a constant time the weight of the minimum spanning tree; see Lemma 8.

For a node x = (u, i), we sometimes write x in place of u in, e.g., the distance function. For
example δ(x, y) for two nodes x = (u, i) and y = (v, j) refers to δ(u, v). A point w is a leaf of x if
(u,0) is a leaf of the subtree with root x. We use the notation lvl(x) for the level of x. (If x = (u, i)
then lvl(x) = i.)

For each node x = (u, i), let L(x) or L(u, i) be the set of leaves of x. The distance between any
node to any of its descendants is at most a constant times the node’s radius.

Claim 1. Let (u, i) be a node in T and (v, j) be a descendant of (u, i) (j < j), then δ(u, v) ≤ 5ri/4,
implying that δ(u, v) ≤ 2ri.

The second bound δ(u, v) ≤ 2ri is usually used when we want to work with integers and the
distance between a node to one of its leaves does not contribute significantly to the total distance.

Proof of Claim 1. By Definition 1, the distance between a node at level i to its child is at most ri.
Hence, δ(u, v) ≤ ∑i

k=j+1 rk. Using geometric sum,

δ(u, v) ≤
i

∑
k=j+1

rk ≤
i

∑
k=0

rk = ri(1 + 1/5 + 1/52 + . . .) ≤ 5ri/4, (1)

as claimed.

A net tree is an important tool in almost all spanner constructions in doubling metric, e.g., see
[CGMZ16]. In the construction of f -VT (1 + ϵ)-spanner, Solomon [Sol14] introduced the notion of
surrogate sets, which was used on top of the net-tree spanners.

Definition 2 (Surrogate Sets). Each node x ∈ T at level i ∈ [0, ζ] is associated with a set of points
S(x) ∈X ⊆ B(x,16 ⋅ ri) of size at most f + 1 called a surrogate set.

An useful operation that we will use on top of the surrogate sets is forming a bipartite connection.

Definition 3 (Bipartite Connection). Let S(x) and S(y) be the surrogate sets of two differ-
rent nodes x and y in T , a bipartite connection between them is a set of edges, denoted by
M(S(x), S(y)), that is defined as folllows. If min{∣S(x)∣, ∣S(y)∣∣} < f + 1 then M(S(x), S(y))
includes all edges between S(x) and S(y), i.e, M(S(x), S(y)) = S(x) × S(y). Otherwise, by Defi-
nition 2, ∣S(x)∣ = S(y) = f + 1 and in this case, M(S(x), S(y)) is an (arbitrary) perfect matching
between S(x) and S(y).
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3.2 The construction algorithm

Our construction is fairly simple compared to existing fault-tolerant spanner constructions. Let
λ = 520(1+1/ϵ). Let x, y be two nodes of T at the same level ixy. We say that (x, y) is a cross edge
if δ(x, y) ≤ λriuv . The notion of cross edges is central in all spanner constructions based on the net
tree. If (x, y) is a cross edge, we say that x and y are cross neighbors of each other. Let NC(x) be
the set of cross neighbors of x, and NC[x] = NC(x) ∪ {x}.

Let A be a set of nodes at some level i of T , we denote by Cross(A) be the set of cross edges
between nodes in A.

For every node x ∈ T , let T (x) be the subtree rooted at x of T . Let ix be the level of x and
j ∈ [0, ζ], we define Augj(x) as follows: if j < ix, then Augj(x) is the union of Cross(NC[y])
for all descendant nodes y at level j of x; otherwise, Augj(x) = Cross(NC[y]) where y is the
ancestor at level j of x. We view Augj(x) as a set of augmented cross edges at level j of x. Let

Aug(x, l, h) = ⋃ix+h
j=ix+l

Augj(x).
Let (u,0) and (v,0) be two nodes at level 0 of T . We say that (û, v̂) is an original cross edge of

(u,0) and (v,0) if û and v̂ are two ancestors at lowest level, say iuv, of (u,0) and (v,0) respectively
such that δ(û, v̂) ≤ λruv. It could be that û = (u,0) and v̂ = (v,0).

Algorithm 1 describes the construction: it can be divided into two phases: Phase 1 is from
lines 1 to 9 and Phase 2 from lines 10 to 22.

In the first phase, we start with a (1+ ϵ)-spanner G of (X,δ) with lightness O(ϵ−O(d)) that can
be constructed in O(n logn) time [FS16]. The edges of G will serve as guidance for our construction,
as we will later bound the lightness of the output VFT spanner H by charging to edges of G. The
goal of this phase is to construct a set of cross edges E∗. Unlike other (both fault-tolerant and
non-fault-tolerant) spanner constructions [Sol14, CGMZ16], where one would add a cross edge for
every pair of points in X, we only add cross edges corresponding to edges of G. Specifically for each
edge (u, v) ∈ E(G), we first add to E∗ the original cross edge, say (û, v̂) of (u,0) and (v,0) (line 5).
It is not hard to see that δ(û, v̂) is approximately δ(u, v). Next, we add to E∗ the augmented cross
edges from the ancestors that are within O(logλ) levels from û and v̂. Note that: (i) we only add
edges that are long enough (line 8) and (ii) by definition of Aug(⋅, ⋅, ⋅), E∗ includes not only cross
edges incident to the ancestors of û and v̂, but also those that are between the cross neighbors of
the ancestors. As agumented cross edges are not much longer than (û, v̂), we can later show that
w(E∗) = ϵ−O(d)w(G), which is a part of the proof of Lemma 5.

In the second phase, we use edges in E∗ found in the first phase to add edges to the spanner H
to guarantee the fault-tolerant property. Specifically, we visit the levels of T from lower to higher,
and for each edge (x, y) in E∗ at level i (set E∗i in line 18), we would add a bipartite connection
(Definition 3) between two surrogate sets S(x) and S(y) as in line 22. (Suppose for now that S(x)
and S(y) are chosen arbitrarily following Definition 2). However, this is not enough. In particular,
the nodes x that are marked as small in line 13 are problematic. That is if there exists a small
descendant within O(logλ) levels of x that is small and has at most f leaves in its subtree (line 14
and line 15), then we may not able to find f + 1 vertices for S(x). (We later prove that the set of
small nodes, each of which has at most f leaves, can be partitioned into LNF.) To fix this issue,
we add (long enough) cross edges between nodes in NC[x] in line 16 to E∗. Using the argument
outlined in Section 1.4, which is the key technical contribution of our work, we are able to show
that adding the bipartite connection between two surrogate sets S(x) and S(y) for every edge
(x, y) ∈ E∗ at level i suffices to guarantee f -VFT, and furthermore, the spanner will have lightness
O(f2). However, the degree could be Ω(n) if S(x) and S(y) are chosen arbitrarily.
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Algorithm 1: Spanner Construction

Input : Doubling metric (X,δ) of dimension d
Output: An (f + 1)-FT (1 + 5ϵ)-spanner H with degree Oϵ,d(f) and lightness Oϵ,d(f2)

1 Construct a light (1 + ϵ)-spanner G of X and a net-tree T ;
2 E∗ ← ∅,H ← (X,∅), λ = 520(1 + 1/ϵ);
3 for e = (u, v) ∈ E(G) do
4 Let (û, v̂) be the original cross edge of (u,0) and (v,0);
5 E∗ ← E∗ ∪ {(û, v̂)} ;
6 for (x, y) ∈ Aug(û,0,5 logλ) ∪Aug(v̂,0,5 logλ) do
7 Let ixy be the level of x (and y) in T ;
8 if δ(x, y) ≥ 64 ⋅ rixy then
9 E∗ ← E∗ ∪ {(x, y)};

10 ξ = ϵ−O(d), c1 = 50 logλ ⋅ ξ, c2 = 51 logλ ⋅ ξ, c3 = 55 logλ ⋅ ξ ;
11 for i ∈ [0 . . . ζ − 1] do
12 for each node x at level i of T do
13 Mark x as small if every leaf of x has degree at most c1 ⋅ f in H ;
14 Dx ← set of all descendants of x at levels from i − 5 logλ to i;
15 if there exists w ∈Dx s.t w is small and T (w) has at most f leaves then
16 E∗ ← E∗ ∪ {(y, z) ∣ y, z ∈ NC[x] and 64ri ≤ δ(y, z) ≤ λri} ;

17 Mark all vertices with degree in H larger than c3f as saturated ;
18 E∗i ← set of edges (x, y) ∈ E∗ s.t both x and y are at level i;
19 for each edge (x, y) ∈ E∗i do
20 S(x) ← SelectSurrogate(x) ;
21 S(y) ← SelectSurrogate(y) ;
22 E(H) ← E(H) ∪M(S(x), S(y)) ;

23 return H;

Algorithm 2 shows how to choose S(x) carefully to reduce the degree all the way down to
Oϵ,d(f) while keeping the fault tolerant property in check. If the degree in H of a node is at least
c3 ⋅f , the algorithm will mark it as saturated in line 17, and it will not be used in any surrogate set of
the nodes considered in future iterations. (Only edges incident to points in surrogate sets are added
to H.) If x is small (line 1), then one can show that every leaf of T (x) is not saturated by definition
and hence can safely be added to S (line 2). Otherwise, we consider two sets S′ ⊆ B(x,16ri) (line 4)
and S′′ ⊆ B(x,4ri) (line 5) containing unsaturated vertices . We prefer adding vertices of S′ to
S(x) over vertices of S′′ as those in S′ are closer to being saturated. While it is not hard to see
that our final spanner has degree Oϵ,d(f) due to the choice of the surrogate sets, showing that it
remains f -VFT is extremely challenging. Indeed, this is another major technical contribution of
our paper.

The main result in our paper is that Algorithm 1 returns a light and bounded degree VFT
spanner in optimal time.

Theorem 2. The output graph H of Algorithm 1 is a f -VFT (1 + ϵ)-spanner of X with maxi-
mum degree 2c3f and lightness Oϵ,d(f2). Furthermore, Algorithm 1 can be implemented to run in
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Algorithm 2: SelectSurrogate

Input : A node x ∈ V (T )
Output: A surrogate set S(x)

1 if x is small then
2 S(x) ← arbitrary f + 1 leaves of T (x) if T (x) has at least f + 1 leaves; otherwise

S(x) ← all leaves of T (x);
3 else
4 S′ ← {u ∈X ∩B(x,16ri) ∶ degH(u) ≥ c2 ⋅ f and u is not saturated};
5 S′′ ← {u ∈X ∩B(x,4ri) ∶ degH(u) < c2 ⋅ f};
6 if ∣S′∣ ≥ f + 1 then
7 S(x) ← arbitrary f + 1 vertices in S′;
8 else
9 S(x) ← S′ ∪ {arbitrary f + 1 − ∣S′∣ vertices in S′′};

10 return S(x);

O(n(logn + f)) times.

We show that H has maximum degree 2c3f in Section 4, O(f2) lightness in Section 5 and prove
that H is f -vertex fault tolerant in Section 6. All together prove Theorem 2. We construct a fast
implementation of our algorithm in Section 7.

4 Degree Analysis

Observe from Algorithm 1’s for loop (line 11) that before iteration i, each non saturated point has
a degree less than c3f . After being saturated, the degree of a point does not increase. To show that
H has a bounded maximum degree, it remains to prove that at the last iteration before any point u
become saturated, the degree of u increases by at most Oϵ,d(f). Indeed, we prove a stronger result:
the degree of each point increases by at most Oϵ,d(f) after each iteration of the for loop in line 11.

Since after adding a complete bipartite connection to H, the degree of each point increases
by at most f , we need to show that any point u is in a constant number of surrogate sets (with
multiplicity) at level i. Note that u can belong to the surrogate set of a node x multiple times.
An edge in H is a level-i edge for a non-negative integer i ≤ ζ if it is in M(S(x), S(y)) for some
x, y ∈ V (T ). If an edge is added to H at multiple levels, we choose the lowest one.

Lemma 2. Every point v ∈ X belongs to Oϵ,d(1) surrogate sets (with multiplicity) at level i for
every i ∈ [0 . . . ζ]. Furthermore, v is incident to at most ξf level-i edges in H with ξ = O(1/ϵ)d
chosen in line 10.

To prove Lemma 2, we first show that any node in V (T ) is only incident to Oϵ,d(1) edges in
E∗.

Observation 2. Every node (u, i) is incident to O(1/ϵ)d cross edges in E∗.

Proof. Let N(u, i) = {v1, v2, . . .} be the set of cross neighbors of (u, i). By Algorithm 1, for every
vj ∈ N(u, i), δ(vj , u) ≤ λri, implying that vj ∈ B(u,λri). Additionally, N(u, i) is an ri-separated

13



set since it is a subset of an ri-net. Hence, by packing bound (Lemma 1), ∣N(u, i)∣ ≤ (4λriri
)
d
=

O(1/ϵ)d.

We now prove Lemma 2.

Proof of Lemma 2. For any node (u, i) such that v is in the surrogate set of (u, i), δ(u, v) ≤ 16ri,
implying that u ∈ B(v,16ri). By Observation 2, for each u, v is chosen to be a surrogate of (u, i)
for O(1/ϵ)d times. Let Sv = {u1, u2, . . .} be the set of points in X satisfying for each uk ∈ Sv, v is
a surrogate of (uk, i). By Algorithm 2, δ(v, uk) ≤ 16ri for every uk ∈ Sv. Since Sv is a subset of an

ri-net, ∣Sv ∣ ≤ (4×16riri
)
d
= 26d by Lemma 1.

Because each node (uk, i) (uk ∈ Sv) is incident to O(1/ϵ)d cross edges and adding the bipartite
connection of each cross edge increases the degree of a point in S(uk, i) by at most f in line 22,
there are 26d ⋅O(1/ϵ)d ⋅ f level-i edges incident to v.

We are now ready to bound the degree of H.

Lemma 3. H has a maximimum degree bounded by 2c3f .

Proof. Observe that when a point is saturated, it will never be used later in the algorithm. Thus,
it is sufficient to bound the degree of any point after the last iteration when it is not marked as
saturated in line 17 of Algorithm 1. For each point u, let iu be the highest level such that u is not
saturated. By Lemma 2, the degree of u in H increases by at most ξf after iteration iu. Since u is
not marked as saturated in line 17, the degree of u before we add the bipartite connection of cross
edges at level iu is at most c3f . Hence, the degree of u after we add level-iu edges to H is at most
(c3 + ξ)f ≤ 2c3f by the choice of c3.

5 Lightness

In this section, we analyze the lightness of H. Recall that for each edge (u, v) in G, we add the
original cross edge (û, v̂) of (u, v) and the cross edges in Aug(û,0,5 logλ)∪Aug(v̂,0,5 logλ) to E∗;
let E∗O be the set contains all these cross edges for every (u, v) ∈ E(G). Let EO be the set of edges
added to H from every bipartite connection of all cross edges in E∗O. Formally,

EO = {M(S(x), S(y)) ∶ (x, y) ∈ E∗O} . (2)

In Lemma 5 , we show that w(EO) = O(f2)w(MST(X)). In Lemma 6, we show that w(E(H)∖
EO) = O(f2)w(MST(X)). Given the two lemmas, we now prove:

Lemma 4. H has lightness ϵ−O(d)f2.

Proof. Observe that w(E(H)) ≤ w(EO) +w(E(H) ∖EO). Since w(EO) = ϵ−O(d)w(MST(X)) by
Lemma 5 and w(E(H) ∖EO) = ϵ−O(d)w(MST(X)) by Lemma 6, w(E(H)) ≤ ϵ−O(d)w(MST(X)),
which implies the lemma.

First, we list some properties that we need for the proofs of Lemma 5 and Lemma 6.

Property 1. We have the following properties:

1. Let (x, y) be a cross edge in E∗. For every (u, v) ∈M(S(x), S(y)), δ(u, v) ≤ 2δ(x, y).
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2. Let x be an arbitrary level-i node in T . For every non-negative integer γ, w(Aug(x,0, γ)) =
ϵ−O(d)5γri. Recall that Aug(x,0, γ) = ⋃i+γ

j=i Augj(x) with Augj(x) (j ≥ 0) is the set of cross
edges between cross neighbors of the ancestor of x at level j.

3. For every original cross edge (û, v̂) at level i, δ(û, v̂) ≥ λri/6.

4. Let e = (u, v) be a pair of points in X and (û, v̂) be the original cross edge of e. Then,
δ(û, v̂) ≤ (1 + ϵ)δ(u, v).

Proof. Item 1: Let i be the level of x and y. Note that δ(x,u), δ(y, v) ≤ 16ri by Definition 2. By
triangle inequality, δ(u, v) ≤ δ(x, y) + δ(x,u) + δ(y, v) ≤ δ(x, y) + 32ri ≤ 2δ(x, y) since δ(x, y) ≥ 64ri
by the choice of cross edges in E∗.

Item 2: Let k be a level such that k ≥ i. The weight of a cross edge at level k is at most
λrk = λri ⋅ 5k−i by the definition of cross edges. Let xk be the ancestor of x at level k. Recall
that Augk(x) is the set of cross edges with both ends in NC[xk]. Since NC[xk] is a subset of
a rk-net with diameter 2λrk, ∣NC[xk]∣ ≤ (4λ)d = ϵ−O(d) by packing bound (Lemma 1). Then,
∣Augk(x)∣ ≤ ∣NC[xk]∣2 = ϵ−O(d). Hence,

w(Aug(x,0, γ)) =
i+γ

∑
k=i

w(Augk(x)) = ϵ−O(d)λri ⋅
i+γ

∑
k=i

5k−i ≤ 5γϵ−O(d)ri ,

as claimed.
Item 3: Let (u, v) be the pair of points in X of which (û, v̂) is the original cross edge. Let

(u′, i−1) and (v′, i−1) be the ancestors at level i−1 of (u,0) and (v,0), respectively. Since û and v̂
are parents of (u′, i−1) and (v′, i−1), δ(û, u′), δ(v̂, v′) ≤ ri. By the minimality of i, δ(u′, v′) > λri−1.
Using the triangle inequality, we have:

δ(û, v̂) ≥ δ(u′, v′) − (δ(û, u′) + δ(v̂, v′)) ≥ λri−1 − 2ri ≥ (λ/5 − 2)ri > λri/6 ,

as λ = 520(1 + ϵ−1).
Item 4: Let i be the level of (û, v̂). By triangle inequality, δ(û, v̂) ≤ δ(u, v) + δ(û, u) + δ(v̂, v).

Recall from Claim 1 that δ(û, u), δ(v̂, v) ≤ 5ri/4. Therefore,

δ(u, v)
δ(û, v̂)

≥ δ(û, v̂) − 5ri/4 − 5ri/4
δ(û, v̂)

≥ 1 − 5ri
2δ(û, v̂)

≥ 1 − 15

λ
,

since δ(û, v̂) ≥ λri/6 by Item 4. Hence, δ(û, v̂) ≤ δ(u,v)
1−15/λ ≤ (1 + ϵ)δ(u, v).

5.1 Weight of edges due to light spanner

Lemma 5. w(EO) = ϵ−O(d)f2w(MST(X)).

Proof. For each cross edge (x, y) ∈ E∗O, the bipartite connection M(S(x), S(y)) contains at most
(f + 1)2 edges, each of those has weight at most 2δ(x, y) by Item 1 of Property 1. Hence, by the
definition of EO in Equation (2), w(EO) ≤ 2(f + 1)2w(E∗O). It remains to bound w(E∗O).

Let O be the set of original cross edges of edges in E(G). By Item 4 of Property 1, w(O) ≤
(1 + ϵ)w(G). Observe that:

E∗O ⊆ ⋃
(û,v̂)∈O

[{(û, v̂)} ∪Aug(û,0,5 logλ) ∪Aug(v̂,0,5 logλ)]
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Recall that for each node x, lvl(x) is the level of x. We have:

w(E∗O) ≤ ∑
(û,v̂)∈O

(δ(û, v̂) +w(Aug(û,0,5 logλ) +w(Aug(v̂,0,5 logλ))))

≤ ∑
(û,v̂)∈O

(δ(û, v̂) + 2 ⋅ 55 logλϵ−O(d)rlvl(û)) (by Item 2 of Property 1)

≤ ∑
(û,v̂)∈O

(δ(û, v̂) + 2 ⋅ λ5ϵ−O(d)
δ(û, v̂)
λ/4

) (by Item 3 of Property 1)

≤ ∑
(û,v̂)∈O

ϵ−O(d)δ(û, v̂) = ϵ−O(d)w(O)

≤ ϵ−O(d)w(G) ≤ ϵ−O(d)w(MST(X)) (since G is a light spanner of X),

as desired.

5.2 Weight of remaining edges

Throughout this section, we show that:

Lemma 6. w(E(H) ∖EO) = ϵ−O(d)f2w(MST(X)).

We partition E(H) ∖ EO into two sets Einc and Ecom, whose formal definition will be given
later. We then bound the total weight of each set in Lemma 9 and Lemma 10. Recall that each
edge in E(H) ∖EO is added to H by some bipartite connection of cross edges in E∗ ∖E∗O. Those
cross edges are added to E∗ by line 15–16.

To formally define Einc and Ecom, we need more notation. A node is large if it is not small, i.e.,
there exists a leaf in its subtree with degree at least c1f . A node is incomplete if it is small and has at
most f leaves, otherwise it is complete. That is a node is complete if it is either large or has at least
f +1 leaves. By line 15–16, if a node x is incomplete or has an incomplete descendant within 5 logλ
levels, we add all long enough cross edges from Cross(NC[x]) to E∗. Recall that Cross(NC[x])
is the set of cross edges with both ends in NC[x]. Hence, for each cross edge (y, z) in E∗ ∖ E∗O,
both y and z are cross neighbors of some node x such that x is either incomplete or is an ancestor
within 5 logλ level of an incomplete node. Let E∗com be the set of cross edges in E∗ ∖ E∗O having
both complete end nodes. More formally, E∗com = {(x, y) ∣ (x, y) ∈ E∗ ∖E∗O and x, y are complete}.
Let E∗inc = E∗ ∖ (E∗O ∪E∗com), meaning that E∗inc contains every cross edge in E∗ ∖E∗O that has at
least one incomplete end node. We denote by Ecom and Einc the sets of edges added to H by the
bipartite connection of edges in E∗com and E∗inc. Formally,

Ecom = {M(S(x), S(y)) ∶ (x, y) ∈ E∗com} and Einc = {M(S(x), S(y)) ∶ (x, y) ∈ E∗inc}. (3)

The key to our proof is the following lemma:

Lemma 7. If a node x in T is complete, S(x) always has size f + 1.

While the statement of Lemma 7 is simple and easy to understand, the proof of Lemma 7 is
intricate. Here, we sketch the ideas of our proof. The full proof is deferred to Section 5.2.1. If x is
small, we know that the subtree at root x has at least f + 1 leaves with a low degree. Therefore,
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there are always f + 1 points with a low degree to be added to S(x). If x is large, then one of its
leaves, say v, is incident to many edges. We keep track of the degree change of points close to v.
By Lemma 2, the degree of v in level i−2 logλ is still significantly large (at least 48 logλ ⋅ ξf), then
for any edge (v,w) incident to a point close to v, all the low degree points close to w will be in
B(x,4ri). We prove after the iterations from i − 2 logλ to i − 1, there are still 4f + 4 points with
degree less than c2f in B(x,4ri). For this to hold, we have to choose the surogates carefully, which
explains the choice of points with high and low degrees in Algorithm 2. Hence, there are always
enough candidates for S(x), which will prove Lemma 7.

Observe that the set of incomplete nodes in T can be viewed as a set of disjoint subtrees of T .
We call those subtrees a light net-forest (LNF).

Definition 4. A light net-forest of T with respect to G, denoted by LNFG(T ), is a subgraph of T
whose vertex set containing all incomplete nodes in T and edge set is the set of edges in T between
any two incomplete nodes. If the net-tree T and the light spanner G are clear in the context, we
use the notation LNF.

By the definition of E∗inc, every cross edge in E∗inc is incident to at least one node in LNF.
Then, we will bound w(E∗inc) by w(LNF). To do that, we first claim that LNF is a set of (rooted)
subtrees of T .

Observation 3. Every leaf node of T is in LNF.

Proof. By definition of a small node, every leaf node (u,0) is small since the degree of every u
before the first iteration is 0 < c1f . Since (u,0) has only one leaf in its subtree (which is itself),
(u,0) is incomplete.

The following claim implies that the ancestor of every almost complete node is complete.

Claim 2. The parent of a complete node is complete.

Proof. For each point v ∈ X and each level i ∈ [0, ζ], let deg
<i(v) be the degree of v before ith

iteration. Let x be a complete node and p be the parent of x. If x is large, then by definition of
a large node, there exists a leaf v of T (x) such that deg

<i(v) ≥ c1f . Therefore, since deg
<i(v) is

non-decreasing as level i gets larger, p also has a leaf v of degree at least c1f , implying that p is
large and thus complete.

If x is small, then T (x) has at least f +1 leaves. If p is small, T (p) also has at least f +1 leaves
since p is the parent of x, implying that p is complete by definition. If p is large then p is also
complete.

From Claim 2, we obtain that the LNF contains a set of node-disjoint subtrees of T . Hence,
we will bound the weight of cross edges incident to nodes in LNF by the total radius of the roots,
which are called almost complete nodes. Formally, an almost complete node is an incomplete node
whose parent is complete. From Claim 2, any two almost complete nodes do not have the ancestor-
descendant relationship. Thus, there is no almost complete node that is an ancestor/descendant of
another almost complete node, meaning that the subtrees in LNF are node-disjoint.

By a relatively simple argument, one can show that the total radius of the root nodes of the LNF
is a good approximation of the weight of MST(X). Note that Lemma 8 is not true for arbitrary
construction of the net-tree T . We need the property that our net-tree is constructed by a greedy
method, meaning the parent of a net-point at level i is its closest net-point at level i + 1.

17



Lemma 8. Let A be a subset of V (T ) such that there is no pair of nodes in A having the ancestor-
descendant relationship. Then, ∑x∈A rlvl(x) = O(w(MST(X))).

Proof. The crucial property to prove Lemma 8 is the greedy property of the net-tree. Recall that
in our net-tree construction (Definition 1), the parent of a node (u, i) is the one corresponding to
the closest point to u in Ni+1. Let B = {B(x, rlvl(x)/5) ∶ x ∈ A}.

We claim that every point v ∈X is in at most one ball in B. Since no node in A is an ancestor
of another, it is sufficient to show that if a ball B(x, rlvl(x)/5) in B contains v for some x, v has to
be a leaf of x. Then, all nodes x such that B(x, rlvl(x)/5) containing v must lie on the path from
(v,0) to the root of T , and only one node in that path can belong to A.

Assume that there exists a node x = (u, i) such that B(u, ri/5) contains v and v is not a leaf of
(the subtree rooted) x. Let y = (w′, i−1) and z = (w, i) be the ancestor of (v,0) at level i−1 and i,
respectively. By our choice of children for each node in the net, δ(u,w′) ≥ δ(w,w′), implying that:

δ(u,w′) ≥ (δ(u,w′) + δ(w′,w))/2 ≥ δ(u,w)/2 ≥ ri/2 . (4)

On the otherhand, by Claim 1, δ(w′, v) ≤ 5ri−1/4. Using the triangle inequality, we obtain:

δ(u,w′) ≤ δ(u, v) + δ(v,w′) ≤ ri/5 + 5ri−1/4 = 9ri/20 < ri/2 ,

contradicting to Equation (4).
Therefore, each point in X belongs to at most one ball in B. Thus, for any two nodes x, y ∈ A,

δ(x, y) ≥max{rlvl(x), rlvl(y)}/5.
Let XA be the set of points in A (we translate each node in A by its representative in X). By a

folkore result, w(MST(XA)) ≤ 2 ⋅w(MST(X)). For each node x ∈ A, let e(x) be an arbitrary edge
incident to x in MST(XA). Hence, w(e(x)) ≥ rlvl(x)/5, implying that:

∑
x∈A

w(e(x)) ≥ ∑
x∈A

rlvl(x)/5 . (5)

On the other hand, since each edge in MST(XA) is incident to at most 2 nodes in A, we have:

∑
x∈A

w(e(x)) ≤ 2 ∑
e∈E(XA)

w(e) ≤ 2w(MST(XA)) . (6)

By Equation (5) and Equation (6), ∑x∈A rlvl(x)/5 ≤ 2w(MST(XA)) ≤ 4w(MST(X)). Therefore,

∑x∈A rlvl(x) = O(w(MST(X))).

We are now ready to bound w(Einc) (in Lemma 9) and w(Ecom) (in Lemma 10).

Lemma 9. w(Einc) = ϵ−O(d)f2w(MST(X)).

Proof. Let A be the set of roots of subtrees in LNF (or the set of almost complete nodes of T ).
There is no node in A being the ancestor of another. Hence, by Lemma 8,

∑
x∈A

rlvl(x) = O(w(MST(X))). (7)

By Definition 4 and Claim 2, each incomplete node has exactly one almost complete ancestor in
A. For each point u ∈X, let iu be the level of the root of the subtree in LNF containing (u,0). Let

18



Einc(u) be the set of all edges with level from 0 to iu incident to u in Einc, then Einc = ⋃u∈X Einc(u).
Note that there might be other edges in Einc that are incident to u; however, each of those edges
must be incident to some vertex v with iv larger than the level of that edge.

By Lemma 2, u is incident to at most ξf level-i edges for every 0 ≤ i ≤ ζ. Hence, the total
weight of level-i edges incident to u is at most ξf ⋅ λri. This gives:

w(Einc(u)) ≤ ∑
0≤i≤iu

ξf ⋅ λri ≤ 2λξf ⋅ riu

by geometric sum.
As Einc = ⋃u∈X Einc(u), w(Einc) ≤ ∑u∈X 2λξf ⋅ riu . By Observation 3, we partition the set X

into the representatives of leaves within the same subtree in LNF. Thus,

w(Einc) ≤ 2λξf ⋅ ∑
u∈X

riu ≤ ϵ−O(d)f ⋅ ∑
x∈A

∑
u∈L(x)

riu
´¸¶
=rlvl(x)

≤ ϵ−O(d)f ⋅ ∑
x∈A

∣L(x)∣ ⋅ rlvl(x)
(8)

Since each node in LNF is incomplete, each of its subtrees has at most f leaves by the definition
of incomplete. Hence, from Equation (8), we have:

w(Einc) ≤ ϵ−O(d)f ⋅ ∑
x∈A

∣L(x)∣ ⋅ rlvl(x) ≤ ϵ−O(d)f2 ⋅ ∑
x∈A

rlvl(x)

≤ ϵ−O(d)f2 ⋅w(MST(X)) (by Equation (7)),

as claimed.

Lemma 10. w(Ecom) = ϵ−O(d)f2w(MST(X)).

Proof. We bound the weight of Ecom by the weight of E∗com. Since the bipartite connection of each
cross edge (y, z) in E∗com has exactly f + 1 edges. Each edge in M(S(y), S(z)) has both ends in
B(y,16rlvl(y)) and B(z,16rlvl(z)) (lvl(y) = lvl(z)), and hence has weight at most (λ + 32)rlvl(y) by
the triangle inequality. We obtain that:

w(Ecom) ≤ ∑
(y,z)∈E∗com

(f + 1)(λ + 32)rlvl(y)

≤ ∑
(y,z)∈E∗com

(f + 1)(λ + 32)δ(y, z)/64 (since δ(y, z) ≥ 64rlvl(y))

≤ ∑
(y,z)∈E∗com

(f + 1)λδ(y, z) = (f + 1)λw(E∗com)

(9)

By line 15–16, every cross edge(y, z) in E∗ ∖E∗O is in Cross(NC[x]) for some node x such that x
is either in the LNF or x is an ancestor within 5 logλ levels of the root of some subtree in LNF.
Let A = {a1, a2, . . . ak} be the set contains all roots of subtrees in LNF. By Lemma 8,

k

∑
i=1

rlvl(ai) = O(w(MST(X))). (10)

We have:
E∗ ∖E∗O ⊆ ⋃

x∈A

Aug(x,0,5 logλ)⋃ ⋃
y∈LNF

Cross(NC[y]).
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Since E∗com = E∗ ∖ (E∗O ∪E∗inc) ⊆ E∗ ∖E∗O, we have the following bound on w(E∗com):

w(E∗com) ≤w(E∗ ∖E∗O) ≤ ∑
x∈A

w(Aug(x,0,5 logλ)) + ∑
y∈LNF

w(Cross(NC[y])). (11)

The reason behind the exclusion of E∗inc is to make sure that each bipartite connection of cross
edges in E∗com contains exactly f + 1 edges in H.

By Item 2 of Property 1, we get:

w(Aug(x,0,5 logλ) ∖E∗inc) ≤w(Aug(x,0,5 logλ)) = ϵ−O(d)rlvl(x) . (12)

We then bound ∑y∈LNFw(Cross(NC[y])). By the packing bound (Lemma 1), NC[y] contains
at most ϵ−O(d) nodes. Thus, Cross(NC[y]) contains at most ϵ−O(d) cross edges, each of them has
weight λrlvl(y). Thus,

∑
y∈LNF

w(Cross(NC[y])) ≤ ∑
y∈LNF

λrlvl(y). (13)

We partition the nodes in LNF into the set of nodes in subtrees of T . Let {T1, T2, . . . Tk}
is the set of subtrees in T with root {a1, a2, . . . ak} respectively (T1, T2, . . . Tk are node-disjoint).
Then LNF = T1 ∪ T2 ∪ . . . Tk. For each i ∈ [1, k], let Ti,j be the set of nodes of Ti at level j. Let
A = {a1, a2, . . . ak} be roots of T1, T2, . . . Tk.

Since each subtree has at most f leaves, ∣Ti,j ∣ ≤ f for every i ∈ [1, k] and j ≤ lvl(ai). We have:

∑
y∈LNF

λrlvl(y) = λ
k

∑
i=1
∑
y∈Ti

rlvl(y) = λ
k

∑
i=1

lvl(ai)

∑
j=0

∑
y∈Ti,j

rlvl(y) = λ
k

∑
i=1

lvl(ai)

∑
j=0

∑
y∈Ti,j

rj

= λ
k

∑
i=1

lvl(ai)

∑
j=0

∣Ti,j ∣rj ≤ λ
k

∑
i=1

lvl(ai)

∑
j=0

frj (since ∣Ti,j ∣ ≤ f)

≤ λf
k

∑
i=1

2rlvl(ai) (by geometric sum)

≤ λf ⋅w(MST(X)) (by Equation (10)).

(14)

By Equation (9) and Equation (11), we have:

w(Ecom) ≤ λ(f + 1) ⋅w(E∗com) ≤ λ(f + 1)
⎡⎢⎢⎢⎢⎣
∑
x∈A

w(Aug(x,0,5 logλ)) + ∑
y∈LNF

w(Cross(NC[y]))
⎤⎥⎥⎥⎥⎦

≤ λ(f + 1)
⎡⎢⎢⎢⎢⎣
∑
x∈A

ϵ−O(d)rlvl(x) + ∑
y∈LNF

w(Cross(NC[y]))
⎤⎥⎥⎥⎥⎦

(by Equation (12))

≤ λ(f + 1)
⎡⎢⎢⎢⎢⎣
∑
x∈A

ϵ−O(d)rlvl(x) + ∑
y∈LNF

λrlvl(y)

⎤⎥⎥⎥⎥⎦
(by Equation (13))

≤ λ(f + 1) [ϵ−O(d)w(MST(X)) + λf ⋅w(MST(X))] (by Eq. 10 and Eq. 14)

= ϵ−O(d)f2 ⋅w(MST(X)),

as desired.
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We now ready to prove Lemma 6.

Proof of Lemma 6. Observe that E(H)∖EO = Ecom ∪Einc, we obtain w(E(H)∖EO) ≤w(Ecom)+
w(Einc) = ϵ−O(d)f2 ⋅w(MST(X)) by Lemma 9 and Lemma 10.

5.2.1 Proof of Lemma 7

In this section, we provide a detailed proof of Lemma 7. First, we introduce some notation. A point
v is clean if it has a degree of at most c2f and is semi-saturated if it is not marked as saturated
and has a degree larger than c2f . Point v is saturated if it is marked as saturated in line 17 of
Algorithm 1. Note that “clean” and “semi-saturated” are time-sensitive properties, meaning that
they change over time. Specifically, a vertex may change from clean to semi-saturated after the
execution of line 22 of Algorithm 1. In this section, we say a point is “clean” or “semi-saturated”
with respect to some specific moment while running Algorithm 1; this usually happens when we
select surrogates in Algorithm 2 or before/after the execution of line 22 in some iteration.

For every node (u, i), recall that we choose the surrogate set of (u, i) by:

� If (u, i) is small and incomplete, S(u, i) = L(u, i) where L(u, i) is the set of leaves of the
subtree of T with root (u, i).

� If (u, i) is small and complete, S(u, i) contains f +1 arbitrary non-saturated points in L(u, i).

� If (u, i) is large, we find all semi-saturated points in B(u,16ri) and select arbitrary f + 1 of
them to S(u, i). If there are not enough f + 1 such points, we add clean points in B(u,4ri)
to S(u, i) until ∣S(u, i)∣ reaches f + 1.

To prove Lemma 7, we show that there are always more than f + 1 points in B(u,4ri) if (u, i)
is large. Hence, the surrogate set of (u, i) always contains f + 1 points.

For each point v, let deg
<i(v) and deg

≤i be the degree of v before and after the ith iteration,
respectively. A point v is i-clean if deg

<i(v) ≤ c2f and is i-saturated if deg
<i(v) > c3f . Recall that

a small node is complete if it has at least f + 1 leaves and a large node is always complete.

Lemma 11. For every large node (u, i), the number of i-clean points in B(u,4ri) is at least (4f+4).

We will show that Lemma 7 follows from Lemma 11.

Proof of Lemma 7. Let x = (u, i) be a large node. We consider two cases:
Case 1. If x is small, then x has at least f + 1 leaves by the definition of a complete node. We

claim that there are f + 1 non-saturated points in L(u, i). For every leaf v of x, i.e., v ∈ L(u, i), the
degree of v before iteration i is at most c1f since x is small. Hence, v is not marked as saturated
before iteration i since c1f ≤ c3f . (Note that v is not marked as saturated during the execution of
level i.) Therefore, v is either clean or semi-saturated when we update S(u, i). (In Algorithm 1,
S(u, i) might be updated multiple times.) Since all leaves of x are either clean or semi-saturated,
there must be at least f + 1 non-saturated points in L(u, i) as x has at least f + 1 leaves. By line 2
in Algorithm 2, ∣S(u, i)∣ = f + 1.

Case 2. If x is large, by Lemma 11, the number of i-clean points in B(u,4ri) is at least 4f + 4.
Let C be the set of clean points in B(u,4ri). During the execution of level i, the points in C
are not marked as saturated. Therefore, they either remain clean or become semi-saturated while
updating S(u, i). From line 4–9, S(u, i) is formed by choosing semi-saturated points in B(u,16ri)
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and clean points in B(u,4ri). As C ⊆ B(u,4ri) ⊆ B(u,16ri), all points in C are eligible to be
selected to S(u, i). Thus, there are enough f + 1 ”candidates” for surrogates in S(u, i), implying
∣S(u, i)∣ = f + 1.

We now focus on proving Lemma 11. First, we list some properties of the net-tree T . Recall
that for a given node (u, i), D(u, i) is the set of descendants of (u, i).

Property 2. We have the following properties:

1. Let (u, i) be an arbitrary complete node in T . For any (v, j) ∈ D(u, i) and any α ≥ 2,
B(v,αrj) ⊆ B(u,αri).

2. Let (u, i) be an arbitrary node in T , v be a point in B(u,3ri) and (v,w) be a level-k edge
with k ≤ i − 2 logλ. Then, w ∈ B(u,4ri).

3. For every level-i edge (u, v), δ(u, v) ≥ 32ri.

Proof. Item 1: Since i > j, we have rj ≤ ri/5. By Claim 1, δ(u, v) ≤ 5ri/4. Thus, for each point
w ∈ B(v,αrj), we get:

δ(u,w) ≤ δ(u, v) + δ(v,w) ≤ 5ri/4 + αrj ≤ (5/4 + α/5)ri ≤ αri , (15)

since α ≥ 2.
Item 2: By triangle inequality, δ(v,w) ≤ (λ + 32)rk ≤ λ+32

λ2 ri ≤ ri/2. Then, by the triangle
inequality, δ(u,w) ≤ δ(u, v) + δ(v,w) ≤ 3ri + ri/2 ≤ 4ri.

Item 3: Let (ũ, ṽ) be the level-i cross edge such that (u, v) ∈M(S(ũ), S(ṽ)). By construction,
δ(ũ, ṽ) ≥ 64ri. Since u ∈ B(ũ,16ri) and v ∈ B(ṽ,16ri), we have δ(u, v) ≥ δ(ũ, ṽ) − δ(u, ũ) − δ(v, ṽ) ≥
32ri.

We show that for any set A of small diameter, any large node using a clean point in A as a
surrogate must also use all semi-saturated points in A. This property is due to the fact that we
prioritize the use of semi-saturated points over clean ones.

Claim 3. Let i and i′ be two levels such that i′ ≥ i, x be a node at level i′ and S(x) be the result
of SelectSurrogate(x) (Algorithm 2). For any set A of diameter at most 8ri, if S(x) contains any
clean point in A, then S(x) also contains all semi-saturated points in A.

Proof. Since ∣S(x)∣ ≤ f + 1, ∣A ∩ S(x)∣ ≤ f + 1. Let x = (u, i′) and v be a clean point in A ∩ S(x).
Recall that in the construction of S(x), first, we find all semi-saturated points in B(u,16ri′). If
there are not enough f + 1 points in B(u,16ri′), we pick some clean points in B(u,4ri′). Thus,
v ∈ B(u,4ri′). Since diam(A) ≤ 8ri, for every w ∈ A,

δ(w,u) ≤ δ(w, v) + δ(u, v) ≤ diam(A) + 4ri′ ≤ 8ri + 4ri′ ≤ 12ri′ , (16)

implying that A ⊆ B(u,16ri′). Let As be the set of semi-saturated points in A. Observe that
As ⊂ S(x) since otherwise, there is no clean point in S(x).

Note that in the proof of Claim 3, we only need that for every node x with i = lvl(x), all
the semi-saturated vertices in B(x,12ri) must be in S(x) before any clean vertex is added to
S(x). Hence, we prioritize selecting semi-saturated vertices in B(x,16ri) over the clean vertices in
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B(x,4ri) in line 4. Throughout Algorithm 1’s analysis, the proof of Claim 3 is the first (and also
the only) proof that requires some geometric property other than the radius of the set where we
choose the semi-saturated vertices from in Algorithm 2 (which is B(x,16ri)). Indeed, for all the
other proofs in Section 4, Section 5 and Section 6, we only need: (i) all semi-saturated vertices
in S(x) have distance at most 16ri from x and (ii) the set where we choose the semi-saturated
vertices in line 5 contains the set where we choose clean vertices in line 4.

Remark 1. Claim 3 still holds if we replace the B(x,16ri) (i is the level of x) in line 4 of Algo-
rithm 2 by any subset of B(x,16ri) containing B(x,12ri). Furthermore, the correctness of Algo-
rithm 1 still holds if we choose the semi-saturated vertices in S′ (in line 4 of Algorithm 2) from
any subset of B(x,16ri) containing B(x,12ri).

By Claim 3, if a surrogate set S(x) contains a clean point in a low-diameter set A, then the
total number of semi-saturated points in A is less than f + 1. More importantly, assuming that we
are considering a cross edge (x, y) in line 19, then after adding M(S(x), S(y)) to H, there are still
f + 1 semi-saturated points in A, since we only change the degree of at most f + 1 points in A and
prioritize using semi-saturated points over clean ones. Then, we have the following direct corollary
of Claim 3:

Corollary 1. Let i and i′ be two levels such that i′ ≥ i, A be a set of points with a diameter
at most 8ri and (x, y) be a level-i′ cross edge in E∗. If S(x) contains a clean point in A before
M(S(x), S(y)) is added to H, then the total number of semi-saturated points in A after the adding
of M(S(x), S(y)) is at most f + 1.

For each point u ∈ X, let degi(u) be the number of level-i edges incident to u in H. We have
deg

≤i(u) = ∑i
k=0 degk(u) and deg

<i(u) = ∑i−1
k=0 degk(u). For two integers i1 and i2 that 0 ≤ i1 ≤

i2 ≤ ζ, let deg
[i1,i2](u) be the total number of edges at a level within the range [i1, i2]. Formally,

deg
[i1,i2](u) = ∑

i2
k=i1

degk(u).
We now prove that if the maximum degree increase of a set is less than the gap between saturated

and clean, there are at most f +1 points in that set becoming semi-saturated. For every A ⊆X, let
maxdegi(A) =maxw∈A degi(w) and maxdeg

[i,j](A) =maxw∈A deg
[i,j](w)

Lemma 12. Let i be a level and A be a set of i-clean points with a diameter at most 8ri. For
every k such that maxdeg

[i,i+k](A) ≤ (c3 − c2)f , the number of (i + k)-clean points in A is at least
∣A∣ − (f + 1).

Proof. Let A = {a1, a2, . . . a∣A∣}. If ∣A∣ ≤ f + 1, Lemma 12 trivially holds. Assume that ∣A∣ > f + 1.
We prove that at most f + 1 points in A are semi-saturated before the execution of level i + k
in line 11 of Algorithm 1. For any j ∈ [1 . . . ∣A∣], since aj is i-clean, deg

<i(aj) ≤ c2f . Then,
deg

≤i+k(aj) ≤ c2f +maxw∈A deg
[i,i+k](w) ≤ c3f by the assumption of the lemma. Thus, no point in

A is saturated before level i + k.
We prove by contradiction that A contains at least ∣A∣ − (f + 1) clean points before iteration

i+ k. Let (x, y) be the first cross edge such that after adding M(S(x), S(y)) to E(H), A contains
less than ∣A∣ − (f + 1) clean points. Let ixy be the level of (x, y); we have i ≤ ixy ≤ i + k. Thus,
no point in A is saturated during the execution of level ixy, implying that A contains only clean
and semi-saturated points before and after adding M(S(x), S(y)). Since some points in A become
semi-saturated after adding M(S(x), S(y)), either S(x) or S(y) contains some clean points in A.
Without loss of generality, assume that S(x) does. We claim that S(y) does not contain any point
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in A. Let u be a point in S(x) ∩A. By the construction of S(x) in Algorithm 2, δ(x,u) ≤ 16rixy .
For every point v ∈ A, we have:

δ(v, y) ≥ δ(x, y) − δ(x,u) − δ(u, v) ≥ 64rixy − 16rixy − diam(A) ≥ 40rixy ,

since diam(A) ≤ 8ri ≤ 8rixy . Hence, S(y) does not contain any point in A because by Algorithm 2,
points in S(y) are selected from B(y,16rixy). By Corollary 1, there are at most f +1 semi-saturated
points in A after adding M(S(x), S(y)), a contradiction.

By Lemma 2, each point’s degree can only increase by ξf after each iteration, which means
that after a small number of iterations, a set of clean points has at most f + 1 points turning into
non-clean.

Corollary 2. Let x = (u, i) be a node in T and x′ = (u′, i′) be a descendant of x with i′ ≥ i−4 logλ.
If B(u′,4ri′) contains a set A of i′-clean points, then the number of i-clean points in B(u,4ri) is
at least ∣A∣ − (f + 1).

Proof. By Lemma 2, maxdeg
[i′,i](w) ≤ (i−i′)⋅ξf ≤ 4 logλ⋅ξf < (c3−c2)f . By Lemma 12, the number

of i-clean points in A is at least ∣A∣−(f +1). From Item 1 of Property 2, A ⊆ B(u′,4ri′) ⊆ B(u,4ri).
Therefore, the number of i-clean points in B(u,4ri) is at least ∣A∣ − (f + 1).

The next lemma shows that for each node (u, i), B(u,4ri) contains some clean points of the balls
in lower levels close to some descendant (u′, i′) of (u, i). To find such balls, we monitor the changes
in the degree of points near u′ and prove that for every degree gained, there are a corresponding
number of clean points “contributed” to B(u,4ri). If there is an edge from a point near u′ to a leaf
of a small node, the leaves of that node are clean and we can reuse them after a constant number
of levels. If the edge is between a point near u′ to a leaf of a large node, we assume that there
are some clean points close to the representative of each large node. This assumption will be our
induction hypothesis in the proof of Lemma 11.

Lemma 13. Let (u, i) be a node at level i > ⌈2 logλ⌉+1 and (u′, i′) be a descendant of (u, i) at level
i′ = i − (⌈2 logλ⌉ + 1). Assume that for every large node (u′′, i′) at level i′, the number of i′-clean
points in B(u′′,4ri′) is at least 4f + 4. Then, there exists a subset A of B(u,4ri) containing only

i-clean points such that ∣A∣ ≥ ⌈maxdegi′B(u
′,4ri′)

ξ ⌉ and A ∩B(u′,4ri′) = ∅.

Proof. Let z be a point in B(u′,4ri′) such that degi′(z) = maxdegi′(B(u′, ri′)). Let W be the set
of points connected to z by level-i′ edges. Thus, ∣W ∣ = degi′(z). We consider two cases:

Case 1: If deg
<i′(w) ≤ c1f for every w ∈W , then by Lemma 2, deg

<i′(w) ≤ c1f+(⌈2 logλ⌉+1)⋅ξf ≤
c2f . Hence, for all w ∈W , w is (i′+⌈2 logλ⌉+1)-clean (or i-clean). By setting A =W , we claim that
A satisfies all properties in Lemma 13. First, W is a set of i-clean points contained in B(ui,4ri) and
∣W ∣ = degi′(z) = maxdegi′(B(u, ri′)) ≥ ⌈

maxdegi′B(u
′,4ri′)

ξ ⌉. Furthermore, for every w ∈W , δ(w, z) ≥
32ri′ by Item 3 in Property 2. By triangle inequality, δ(w,u′) ≥ δ(w, z)−δ(z, u′) ≥ 32ri′−4ri′ = 28ri′ ,
implying that w /∈ B(u′,4ri′). Thus, W ∩B(u′,4ri′) = ∅.

Case 2: There exists a point w0 ∈W such that deg
<i′(w0) > c1f . Hence, the ancestor of (w0,0)

at level i′, denoted by (w′, i′), is a large node. By the lemma’s assumption, the number of i′-clean
points in B(w′,4ri′) is at least 4f+4. Let C be the set of i′-clean points in B(w′,4ri′). By Lemma 2,
for every level k, maxdegk(C) ≤ ξf ; hence, ∑i

k=i′maxdegk(C) ≤ (⌈2 logλ⌉ + 1) ⋅ ξf ≤ (c3 − c2)f by
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the choice of c2 and c3 in Algorithm 1. Thus, by Lemma 12, the number of i-clean points in C is

at least ∣C ∣ − (f + 1) ≥ 3(f + 1) ≥ ⌈maxdegi′B(u
′,4ri′)

ξ ⌉ since maxdegi′B(u′,4ri′) ≤ ξf by Lemma 2.
Let A be the set of i-clean points in C satisfies conditions in Lemma 13. We show that A

satisfies the conditions in Lemma 13. Since A ⊆ C ⊆ B(u′,4ri′), diam(A) ≤ diam(C) ≤ 8ri′ . For
every point v ∈ C, by the triangle inequality,

δ(u, v) ≤ δ(u,u′) + δ(u′, v) ≤ 2ri + δ(u′, v) (by Claim 1)

≤ 2ri + δ(u′, z)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
≤4ri′

+δ(z,w0) + δ(w0,w
′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤2ri′

+ δ(w′, v)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

4ri′

≤ 2ri + 10ri′ + δ(z,w0)

≤ 2ri + 10ri′ + (λ + 32) ri′
´¸¶
≤ri/λ2

(since (z,w0) is a level-i edge)

≤ 2ri +
λ + 42
λ2

ri ≤ 4ri.

(17)

Therefore, C ⊆ B(u,4ri), implying that A ⊆ B(u,4ri). Furthermore, for each v ∈ C, we have:

δ(v, u′) ≥ δ(w0, z) − δ(v,w0) − δ(u′, z) (by the triangle inequality)

≥ 32ri′ − δ(v,w0) − δ(u′, z)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
≤4ri′

(since δ(z,w0) ≥ 32ri′)

≥ 32ri′ − δ(v,w′)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
≤4ri′

− δ(w′,w0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤2ri′

−4ri′ ≥ 32ri′ − 4ri′ − 2ri′ − 4ri′ ≥ 22ri′ > 4ri′ .
(18)

This implies that v /∈ B(u′,4ri′) for every v ∈ C. Since A ⊆ C, it follows that A∩B(u′,4ri′) = ∅.

We now return to the proof of Lemma 11. The idea is to track the degree change of points in
some path P of T from (u, i) to one of its leaves. If there is a point whose degree changed, then
there is at least one cross edge between (a node in) P to another node, say (v, i′). The clean points
in B(v,4ri′) become “closer” to the P at higher levels relative to the level radius and eventually
can be used as surrogates by nodes in P .

Proof of Lemma 11. We induct on the level i. When i = 0, Lemma 11 holds trivially since there is
no large node at level 0. Assume that Lemma 11 holds for all large nodes at levels lower than i.
Since x is large, there exists a leaf v of x whose deg

<i(v) ≥ c1f . Let i′ = i − 2 logλ and x′ be the
ancestor of (v,0) at level i′. By Lemma 2, deg

<i′(v) ≥ c1f − 2 logλ ⋅ ξf . We show that the number
of i′-clean points in B(u′,4ri′) is at least 6f + 6.

For k ∈ [0 . . . i′], let (vk, k) be the ancestor of (v,0) at level k. Let l = ⌈2 logλ⌉ and i′′ be the
highest level such that ∑i′

k=i′′maxdegk(B(vk,4rk)) ≥ (l + 1) ⋅ 2ξ ⋅ (6f + 6). The level i′′ exists since
v ∈ B(vk,4rk) for every k by Claim 1 and

deg
<i′(v) ≥ c1f − 2 logλ ⋅ ξf ≥ 48 logλ ⋅ ξ ⋅ f ≥ (l + 1) ⋅ 2ξ ⋅ (6f + 6) (by the choice of c1).

We partition the set I = {i′′, i′′ + 1, . . . i′} into congruent classes I0, I1, I2, . . . Il of modulo l + 1.
Formally, Iα = {k ∈ I ∶ k − α ≡ 0 mod l + 1} for each α ∈ [0 . . . l]. By the pigeonhole principle, there
exists an integer β ∈ [0 . . . l] such that:

∑
k∈Iβ

maxdegk(B(vk,4rk)) ≥ 2ξ ⋅ (6f + 6) (19)
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For simplicity, assume that i′ ≡ i′′ ≡ β mod l + 1. Let Iβ = {i′′ = i0, i1, i2, . . . is = i′} with ij =
i′′ + j ⋅ (l + 1) and s = i′−i′′

l+1 .
By Lemma 13, for each k ∈ [0,1, . . . s − 1], there exists a setAik of ik+1-clean points inB(vik+1 , rik+1)

such that ∣Aik ∣ ≥ ⌈
maxdegik

(B(vik ,4rik))

ξ ⌉. For each h ≤ k, Aih is a subset of B(vih+1 ,4rih+1) and hence

is a subset of B(vik+1 ,4rik+1). Since Aik+1 ∩B(vik+1 ,4rik+1) = ∅, Aih ∩ Aik+1 = ∅ for every h ≤ k,
implying that Ai1 ,Ai2 , . . .Ais−1 are pairwise-disjoint. See Figure 2 for an illustration of the inclusion
relation between Ai1 ,Ai2 and Ai3 with B(vi2 ,4ri2),B(vi3 ,4ri3) and B(vi4 ,4ri4). One can see from
Figure 2 that, if we keep going up the path, we gain more clean points.

Ai1
,4ri2

Ai2

Ai3

level i4

level i3

level i2

B(v i2 )

,4ri3B(v i3 )

,4ri4B(v i4 )

Figure 2: An example of Ai1 ,Ai2 and Ai3 . Here, Ai1 ,Ai2 and Ai3 are disjoint. For each k′ ∈ {1,2,3},
Aik′ ⊆ B(vik ,4rik) for all k > k

′.

We then bound the total number of points in Aik for all k ∈ [1, s − 1]:

∣
s−1

⋃
k=1

Aik ∣ =
s−1

∑
t=1

∣Aik ∣ ≥
s−1

∑
k=1

⌈
maxdegikB(vik ,4rik)

ξ
⌉ ≥

s−1

∑
k=1

maxdegikB(vik ,4rik)
ξ

= (
s

∑
k=1

maxdegikB(vik ,4rik)
ξ

) −
maxdegisB(vis ,4ris)

ξ
≥ 2ξ(6f + 6) − ξf

ξ
≥ 6f + 6.

(20)

In the next part of the proof, we show that only f + 1 of those clean points gained from lower
levels turned into semi-saturated.

Let A = ⋃s−1
k=1Aik . We prove by contradiction that at most f + 1 points in A are not is-clean,

which will give us the lemma. We have two observations. First, if a point is k-clean for some k,
it is also k′-clean for every k′ ≤ k. Similarly, if a point is k′-saturated, it is also k-saturated for
every k ≥ k′. Hence, every point in A is i0-clean. Second, every point in A is not saturated before
iteration is.

Claim 4. There is no point in A becoming saturated before iteration is.

Proof. Let w be an arbitrary point in A and k ∈ [0, s − 1] be the index that w ∈ Aik . Since w
is ik+1-clean, deg<ik+1(w) ≤ c2f . On the other hand, w ∈ B(vik+1 ,4rik+1). Recall that for every
i0 ≤ h′ ≤ h ≤ is, (vh, h) is the ancestor of (vh′ , h′) and hence B(vh′ ,4rh′) ⊆ B(vh,4rh). Thus,
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for every h ∈ [ik+1, is], w is also in B(vh,4rh), implying that degh(w) ≤ maxdegh(B(vh,4rh)).
Therefore,

deg
<is(w) = deg<ik+1(w) +

is−1

∑
h=ik+1

degh(w) ≤ c2f +
is−1

∑
h=ik+1

maxdegh(B(vh,4rh))

≤ c2f +
i′

∑
h=i′′

maxdegh(B(vh,4rh)) (since i′′ = i0 ≤ ik+1 ≤ is = i′)
(21)

Recall that i′′ is the highest index such that ∑i′

k=i′′maxdegk(B(vk,4rk)) ≥ (l + 1) ⋅ 2ξ ⋅ (6f + 6). By
the maximality of i′′, ∑i′

k=i′′+1maxdegk(B(vk,4rk)) < (l + 1) ⋅ 2ξ ⋅ (6f + 6), implying that:

i′

∑
k=i′′

maxdegk(B(vk,4rk)) ≤
i′

∑
k=i′′+1

maxdegk(B(vk,4rk)) +maxdegi′′(B(vi′′ ,4ri′′))

≤ (l + 1) ⋅ 2ξ ⋅ (6f + 6) + ξf ≤ (c3 − c2)f.
(22)

The last equation holds by the choice of c2 and c3. By Equation (21) and Equation (22), we get
deg

<is(w) ≤ c3f and hence, w is non-saturated before iteration is.

Assume that A contains more than f + 1 non-clean points before iteration is. Let (x, y) be
the first cross edge in E∗ such that after M(S(x), S(y)) is added to H, A has more than f + 1
non-clean points. Let j be the level of (x, y) and t be index such that it ≤ j < it+1 (0 ≤ t < s).
Let τ(x, y) be the time when M(S(x), S(y)) is added to H. Since all points in A are not is-
saturated by Claim 4, A contains only clean and semi-saturated points before τ(x, y). Furthermore,
the number of semi-saturated points in A is at most f + 1 before τ(x, y). Let A<it = ⋃k<tAik

and A≥it = A ∖ A<it = ⋃k≥tAik . Since all points in A≥it are it+1-clean, they are also clean after
τ(x, y). Then, all semi-saturated points in A before and after τ(x, y) are in A<it . Recall that
A<it ⊆ B(uit ,4rit); hence, diam(A<it) ≤ 8rit ≤ 8rj as it ≤ j. Since the number of clean points in
A<it before τ(x, y) is smaller than that after τ(x, y), there must be a clean point in A<it becoming
semi-saturated. Thus, S(x) or S(y) must contain a clean point in A<it . However, by Corollary 1,
there are at most f + 1 semi-saturated points in A<it after τ(x, y), contradicted to the assumption
that A contains more than f + 1 non-clean points after τ(x, y).

Therefore, the number of is-clean points in A is at least (6f + 6) − (f + 1) = 5f + 5. Since
A ⊆ B(uis ,4ris) = B(ui′ ,4ri′) (recall is = i′), B(ui′ ,4ri′) contains at least 5f + 5 clean points at
level i′. Using Corollary 2, we obtain that the number of i-clean points in B(u,4ri) is at least
(5f + 5) − (f + 1) = 4f + 4.

6 Fault-tolerance

In this section, we prove the fault tolerance property, meaning that after removing any f points
from H, the remaining graph is still a spanner. Throughout this section, we assume that ϵ ≤ 1

20 .

Lemma 14. Algorithm 1 produces a f -VFT (1 + 5ϵ)-spanner H of X, i.e., for any set F of at
most f points in X, H[X − F ] is a (1 + 5ϵ)-spanner of (X − F, δ).
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Equivalently, we need to show that for every pair of points (u, v) and every set F ⊆ X ∖ {u, v}
of at most f points, there is a path from u to v in H − F whose length is at most (1 + ϵ)δ(u, v).
We prove by induction on the length δ(u, v). To find a short path from u to v in H −F , we follow
the shortest path P from u to v in G. Intuitively, we find a cross edge, denoted by (x, y), in E∗

from an ancestor x of (the leaf corresponding to) u to the ancestor y of some point u′ between u
and v in P . Hence, we create a path in H − F from u to a surrogate of x to a surrogate of y, and
recursively do the same for the path from u′ to v. For this method to work, we need (x, y) to have
two properties:

� δ(x, y) is a good approximation of (u,u′). This is the case when (x, y) is a low ancestor of
the original cross edge of (u,u′) (the formal definition of an ancestor of a cross edge will be
given later).

� Each surrogate set of x and y has f + 1 points; otherwise, if one surrogate set, say S(x),
has less than f + 1 points, then there is no non-faulty edges in the bipartite connection
M(S(x), S(y)) in case F = S(x) (a faulty edge is an edge with at least one end in F ). By
Lemma 7, a complete node always has f + 1 points in its surrogate. Hence, we find x among
the complete ancestors of (u,0).

For each incomplete node x in T , the lowest complete ancestor (LCA) of x, denoted by LCA(x),
is the parent of the almost complete ancestor of x. Recall that an almost complete node is an
incomplete node whose parent is complete. For each point u ∈ X, let LCA(u) = LCA(u,0). For
each cross edge (x, y), a cross edge (x̃, ỹ) is an ancestor (parent) of (x, y) if x̃ and ỹ are ancestors
(parents) of x and y, respectively. For each pair (u, v) ∈X2, assume that (û, v̂) is the original cross
edge of (u, v). The κ-cross edge of (u, v) is the ancestor of (û, v̂) at level lvl(û) + κ. If κ ≤ 10, we
call (x, y) a good cross edge of (u, v).

Recall that an original cross edge of (u, v) is the lowest-level cross edge (x, y) such that x and
y are ancestor of (u,0) and (v,0). For each level-i node x and a level j, consider two cases:

� If j ≥ i, Augj(x) is Cross(NC[x′]), with x′ is the ancestor of x at level j.

� If j < i, Augj(x) is the union among all descendants x′′ of x at level j of Cross(NC[x′′]).

Recall that Cross(A) is the set of cross edges between nodes in A for every X ⊆ V (T ).

Property 3. We have the following properties:

1. Let (u, v) be any pair of points in X, i be the level of the original cross edge of (u, v) and κ be
any integer in [0, ζ − i]. For every κ-cross edge (ũ, ṽ) at level j = i+κ, δ(ũ, ṽ) ≥ rj ⋅ ( λ

6⋅5κ − 4).
Furthermore, if κ ≤ 10, δ(ũ, ṽ) ≥ 64rj.

2. Let (u, v) be any pair of points in X, (ũ, ṽ) be any good cross edge of (u, v) and j be the level

of (ũ, ṽ). For every two points u′ ∈ B(ũ,16rj) and v′ ∈ B(ṽ,16rj), 1−5−3ϵ ≤ δ(u′,v′)
δ(u,v) ≤ 1+5

−3ϵ.

3. Let x be any node in T , i be a level in T such that lvl(x) ≤ i ≤ ζ and (y, z) be any level-i cross
edge in Augi(x). Then, δ(x, y) ≤ (λ + 2)ri.

4. For any original cross edge (û, v̂), log δ(û,v̂)
λ ≤ lvl(û) < log δ(û,v̂)

λ + 2.
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5. Let (x, y) be a cross edge at level i (δ(x, y) ≤ λri). For any ancestor (x′, y′) of (x, y) at
level i′, (x′, y′) is also a cross edge, i.e., δ(x′, y′) ≤ λri′, which implies that x′ ∈ NC[y′] and
y′ ∈ NC[x′].

Proof. Item 1: Let (û, v̂) be the original cross edge of (u, v). By Item 3 of Property 1, δ(û, v̂) ≥
λri/6. By Claim 1, δ(û, ũ), δ(v̂, ṽ) ≤ 2rj . By the triangle inequality,

δ(ũ, ṽ) ≥ δ(û, v̂) − δ(ũ, û) − δ(ṽ, v̂) ≥ λri/6 − 4rj = rj (
λ

6 ⋅ 5κ
− 4) , (23)

as claimed. When κ ≤ 10, δ(ũ, ṽ) ≥ rj ⋅ ( λ
6⋅510
− 4) = rj ⋅ (58(1 + ϵ−1) − 4) ≥ 64rj as λ = 520(1 + ϵ−1).

Item 2: Let (û, v̂) be the original cross edge of (u, v) and i = lvl(û). By Claim 1, δ(ũ, û), δ(ṽ, v̂) ≤
2rj . Using the triangle inequality, we have:

δ(u′, v′) ≤ δ(û, v̂) + δ(u′, û) + δ(v′, v̂)
≤ δ(û, v̂) + δ(u′, ũ)

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
≤16rj

+ δ(v′, ṽ)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
≤16rj

+ δ(ũ, û) + δ(ṽ, v̂)

≤ δ(û, v̂) + 16rj + 16rj + 2rj + 2rj ≤ δ(û, v̂) + 36rj ≤ δ(û, v̂) + 513ri.

(24)

Similarly, δ(u′, v′) ≥ δ(û, v̂) − 513ri.

δ(u′, v′)
δ(u, v)

≤ δ(û, v̂) + 513ri
δ(û, v̂) − 4ri

= 1 + 513ri + 4ri
δ(û, v̂) − 4ri

= 1 + 513 + 4
δ(û, v̂)/ri − 4

≤ 1 + 513 + 4
λ/6 − 4

(by Item 3 of Property 1)

= 1 + 513 + 4
519 (1 + 1/ϵ) − 6

≤ 1 + 5−3ϵ ,

(25)

Using similar argument,
δ(u′,v′)
δ(u,v) ≥ 1 − 5

−3ϵ.

Item 3: Let xi be the ancestor of x at level i. Since (y, z) ∈ Augi(x), y and z are both in
NC[xi]. Hence, δ(xi, y) ≤ λri. By the triangle inequality, we have δ(x, y) ≤ δ(x,xi) + δ(xi, y) ≤
2ri + λri ≤ (λ + 2)ri since δ(x,xi) ≤ 2ri by Claim 1.

Item 4: Let i = lvl(û). By the definition of cross edges, δ(û, v̂) ≤ λri. By Item 3 of Property 1,
δ(û, v̂) ≥ λri/6. Taking the logarithm of both sides, we obtain the desired inequality.

Item 5: We only need to show that Item 5 is true when (x′, y′) is the parent of (x, y) (i′ = i+1),
the result for any ancestor of (x, y) follows by induction. By Claim 1, δ(x′, x), δ(y′, y) ≤ 2ri′ . Using
the triangle inequality,

δ(x′, y′) ≤ δ(x′, x) + δ(x, y) + δ(y, y′) ≤ 2ri′ + λri + 2ri′
≤ (λ/5 + 4) ri′ ≤ λri′ (since ri′ = 5ri and λ > 5),

(26)

as claimed.

By Item 1, a good cross edge (x, y) at level i is always longer than 64ri. Hence, when Algorithm 1
discovers a good cross edge (x, y) either in line 6 or line 16, (x, y) is always added to E∗.

Given a path P = (u1, u2, . . . ul) in G, a cross edge (x, y) is a P -detour if:
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� (x, y) is a good cross edge of (u1, ul) or

� (x, y) is a good cross edge of (u1, uk) for some integer k ∈ (1, l) and both x and y are complete.

We consider some properties of a P -detour:

Property 4. Let u and v be two points in X and P be the shortest path from u to v in G. Let
(x, y) be a P -detour in E∗ and i = lvl(x) (= lvl(y)). We have the following properties:

1. There exists a non-faulty edge (w, z) in H such that w ∈ B(x,16ri) and z ∈ B(y,16ri).

2. ri ≤ 5−8ϵ ⋅min{δ(u, v), δ(x, y)}.

Proof. Item 1: Consider the time we add M(S(x), S(y)) to H in line 22. We show that there is at
least one remaining edge in M(S(x), S(y)) after f points (not including u or v) is deleted.

If x and y are complete, S(x) and S(y) contains f + 1 points each, and by Definition 3,
M(S(x), S(y)) is a matching of size f + 1. Hence, when we delete f points, there is still at least
one remaining edge in M(S(x), S(y)). By Algorithm 2, S(x) ⊆ B(x,16ri) and S(y) ⊆ B(y,16ri),
which completes our proof.

If either S(x) or S(y) is incomplete, then x and y are ancestors of (u,0) and (v,0) by the
definition of a P -detour. By Definition 3, M(S(x), S(y)) is the complete bipartite graph between
S(x) and S(y). Hence, we only need to show that S(x) ∖ F and S(y) ∖ F are non-empty. This
is true if ∣S(x)∣ = f + 1 or ∣S(y)∣ = f + 1. If ∣S(x)∣ ≤ f , since the surrogate set of an incomplete
node must contain all of its leaves, S(x) must contain u. Then, S(x)∖F is non-empty since u /∈ F .
Similarly, S(y) ∖ F is non-empty.

Item 2: Since (x, y) is a good cross edge of (u,u′) for some u′ ∈ P , (x, y) is a κ-cross edge of
(u,u′) with κ ≤ 10. From Item 1, we have δ(x, y) ≥ ri ( λ

6⋅5κ − 4). Hence,

ri ≤ δ(x, y) ⋅ (
λ

6 ⋅ 5κ
− 4)

−1

≤ δ(u,u′)
1 + 5−3ϵ

⋅ ( λ

6 ⋅ 5κ
− 4)

−1

(by It. 2 of Prop. 3)

≤ distG(u,u′)
1 + 5−3ϵ

⋅ ( λ

6 ⋅ 5κ
− 4)

−1

≤ distG(u, v)
1 + 5−3ϵ

⋅ ( λ

6 ⋅ 5κ
− 4)

−1

(since P contains u′)

≤ (1 + ϵ)δ(u, v)
1 + 5−3ϵ

( λ

6 ⋅ 5κ
− 4)

−1

≤ (1 + ϵ)δ(u, v)
1 + 5−3ϵ

( λ

6 ⋅ 510
− 4)

−1

(since κ ≤ 10)

= 1 + ϵ
1 + 5−3ϵ

⋅ 6 ⋅ 510

520(1 + ϵ−1) − 24 ⋅ 510
δ(u, v) ≤ 5−8ϵδ(u, v)

(27)

The first equation of Equation (27) also gives us:

ri ≤ δ(x, y) (
λ

6 ⋅ 5κ
− 4)

−1

≤ δ(x, y) ⋅ ( λ

6 ⋅ 510
− 4)

−1

(since κ ≤ 10)

= 6 ⋅ 510

520(1 + ϵ−1) − 24 ⋅ 510
δ(x, y) ≤ 5−8ϵδ(x, y),

(28)

as claimed.

We have the following lemma:
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Lemma 15. For every pair of points (u, v) in X, let P be any shortest path from u to v in G.
Then, there exists a P -detour in E∗.

We now show that Lemma 14 follows from Lemma 15.

Proof of Lemma 14. Let u and v be two points of X ∖ F and P = (u = u1, u2, . . . ul = v) be a
shortest path from u to v in G. We induct on the length δ(u, v). If δ(u, v) ≤ λ (the minimum
distance between two points is 64), we claim that the cross edge between (u,0) and (v,0) is in E∗.
Observe that both (u,0) and (v,0) are incomplete since each of them has one leaf with degree 0
before iteration 0. Hence, by line 12–16, the cross edge between (u,0) and (v,0) is in E∗ since
δ(u, v) ≥ 64 ≥ 64r0. By line 22, M(S(u,0), S(v,0)) is added to H. By line 2 of Algorithm 2
S(u,0) = {u} and S(v,0) = {v}. Thus, (u, v) ∈ E(H).

Assume that for any two points in X ∖ F with distance less than δ(u, v), there is an (1 + 5ϵ)-
spanner path between them inH−F . By Lemma 15, there exist a P -detour (x1, y1). Let i1 = lvl(x1).
We consider two cases:

Case 1: (x1, y1) is a good cross edge of (u, v). We claim that there is a path from u to v with
total weight less than (1+ 5ϵ)δ(u, v). Let u′, v′ be two points in B(x1,16ri1) and B(y1,16ri1) such
that (u′, v′) ∈ E(H − F ). u′ and v′ exist by Item 1 of Property 4.

Since (u,0) is a leaf of x1, δ(u,x1) ≤ 2ri1 by Claim 1. By the triangle inequality,

δ(u′, u) ≤ δ(u,x1) + δ(x1, u′) ≤ 2ri1 + 16ri1 = 18ri1 (29)

By Item 2, ri1 ≤ 5−8ϵδ(u, v). Plugging in Equation (29), we obtain δ(u′, u) ≤ 18⋅5−8ϵδ(u, v) < δ(u, v).
By our induction hypothesis, distH−F (u′, u) ≤ (1 + 5ϵ)δ(u,u′). Using the same argument, we get
δ(v, v′) ≤ 18ri1 and distH−F (v, v′) ≤ (1 + 5ϵ)δ(v, v′). By the triangle inequality,

distH−F (u, v) ≤ distH−F (u,u′) + δ(u′, v′) + distH−F (v′, v)
≤ (1 + 5ϵ) δ(u,u′)

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
≤18ri1

+δ(u′, v′) + (1 + 5ϵ) δ(v′, v)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
≤18ri1

≤ (1 + 5ϵ)36ri1 + δ(u
′, v′) ≤ (1 + 5ϵ)36ri1 + (1 + 5

−3ϵ)δ(u, v) (by It. 2 of Prop. 3)

≤ (1 + 5ϵ)36 ⋅ 5−8ϵδ(u, v) + (1 + 5−3ϵ)δ(u, v) (by It. 2 of Prop. 4)

≤ (1 + 2ϵ)δ(u, v) ≤ (1 + 5ϵ)δ(u, v) (since ϵ ≤ 1/20),
(30)

as claimed.
Case 2: (x1, y1) is a good cross edge of (u1, ua1) for some a1 ∈ (1, l). For each j ∈ [1, l], let

Pj be the subpath (uj , uj+1, . . . ul). By Lemma 15, there exists a Pa1-detour, denoted by (x2, y2),
such that (x2, y2) is a good cross edge of (ua1 , ua2) for some a2 > a1. Recursively, for each k > 0,
we find the Pak -detour, denoted by (xk+1, yk+1), such that (xk+1, yk+1) is a good cross edge of
(uak , uak+1) until ak+1 = l. Assume that we have s + 1 of such detours with s > 0. Let D =
{(x1, y1), (x2, y2), . . . (xs, ys), (xs+1, ys+1)}.

Observation 4. We have the following properties:

1. For every k ∈ [1, s + 1], (xk, yk) is a good cross edge of (uak , uak+1).

2. For every k ∈ [1, s], xk and yk are complete.
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3. For every k ∈ [1, s], xk+1 and yk are ancestors of (uak ,0). Hence, either xk+1 or yk is the
ancestor of the other.

4. a1 < a2 < a3 < . . . < as+1 = l.

For every k ∈ [1, s+1], let ik = lvl(xk). For k ∈ [1, s], let wk and zk be two points in B(xk,16rik)
and B(yk,16rik), respectively, such that (wk, zk) ∈ E(H). wk and zk exist by Item 1 of Property 4.
See Figure 3 for an illustration.

u ua1
ua2

ua3a1

x1

x2

x3

y1

w1 z1

w2 z2

w3 z3

y3

y2

P

Cross edge in E*
Edge in H
Path P in G

B(xk, 16r  )ik

B(yk, 16r  )ik

Figure 3: An illustration of (xk, yk), (wk, zk) for i ∈ [1,3]. Here, it might be misleading that uak is
far from xk+1 and yk. In fact, uak is in both B(xk+1,16rk+1) (the blue ball) and B(yk,16rk) (the
yellow ball). Furthermore, the higher ball in {B(xk+1,16rk+1),B(yk,16rk)} contains the other.

Let a0 = 1. Using the triangle inequality, we have:

distH−F (u, zs) ≤ distH−F (u,w1) +
s

∑
k=1

distH−F (wk, zk) +
s−1

∑
k=1

distH−F (zk,wk+1)

= distH−F (u,w1) +
s

∑
k=1

δ(wk, zk) +
s−1

∑
k=1

distH−F (zk,wk+1)
(31)

By Item 2 of Property 3, δ(wk, zk) ≤ (1 + 5−3ϵ)δ(uak−1 , uak) for every k ∈ [1, s]. Hence,

s

∑
k=1

δ(wk, zk) ≤ (1 + 5−3)
s

∑
k=1

δ(uak−1 , uak) ≤ (1 + 5
−3)

s

∑
k=1

distG(uak−1 , uak)

≤ (1 + 5−3ϵ)distG(u,uas) .

(32)

The last equation holds since ua0 = u1 = u and the shortest path from u to uas in G, which is P ,
contains ua1 , ua2 . . . uas−1 .

We claim that δ(u,w1) and δ(zk,wk+1) for k ∈ [1, s−1] are less than δ(u, v). Hence, distH−F (u,w1)
and distH−F (zk,wk+1) are approximate their distances in (X,δ). Since δ(u,x1) ≤ 2ri1 by Claim 1
and w1 ∈ B(x,16ri1), using the triangle inequality, we have:
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δ(u,w1) ≤ δ(u,x1) + δ(x1,w1) ≤ 18ri1 < 32ri1 . (33)

For every k ∈ [1, s − 1], zk ∈ B(yk,16rik) and wk+1 ∈ B(xk+1,16rik+1). By Item 3 of Observation 4,
either yk or xk+1 is the ancestor of the other. If yk is an ancestor of xk+1, then B(xk+1,16rik+1) ⊆
B(yk,16rik) by Item 1 of Property 2, implying that wk+1 ∈ B(yk,16rik). Hence, δ(zk,wk+1) ≤ 16rik+
16rik = 32rik . Otherwise, xk+1 is an ancestor of yk. Using similar argument, we get δ(zk,wk+1) ≤
32rik+1 . Therefore, we obtain:

δ(zk,wk+1) ≤ 32max{rik , rik+1}. (34)

We then prove that δ(u, v) > 32rk for every k ∈ [1, s]. Since G is a (1 + ϵ)-spanner of X, for
every k ∈ [1, s + 1], we have:

δ(u, v) ≥ distG(u, v)
1 + ϵ

≥
δ(uak , uak+1)

1 + ϵ
(since P contains (uak , uak+1))

≥ δ(xk, yk)
(1 + 5−3ϵ)(1 + ϵ)

(by It. 2 of Prop. 3)

≥
58ϵ−1rik
(1 + ϵ)2

. (by It. 2 of Prop. 4),

(35)

implying that δ(u, v) > 32rik . By Equation (33), Equation (34), Equation (35), we get δ(u,w1)
and δ(zk,wk+1) are less than δ(u, v). Hence, by the induction hypothesis, distH−F (u,w1) ≤ (1 +
5ϵ)δ(u,w1) and distH−F (zk,wk+1) ≤ (1 + 5ϵ)δ(zk,wk+1). Then, Equation (33) implies that:

distH−F (u,w1) ≤ (1 + 5ϵ)δ(u,w1) ≤ (1 + 5ϵ)32ri1 ≤ (1 + 5ϵ)32
s

∑
k=1

rik . (36)

Similarly, Equation (34) implies that:

s−1

∑
k=1

distH−F (zk,wk+1) ≤ (1 + 5ϵ)
s−1

∑
k=1

δ(zk,wk+1) ≤ (1 + 5ϵ)32
s−1

∑
k=1

max{rik , rik+1} ≤ (1 + 5ϵ)64
k

∑
i=1

rik .

(37)
We then bound ∑s

k=1 rik . For every index k ∈ [1, s], by Item 2 of Property 4, rik ≤ 5−8ϵδ(xk, yk).
Since (xk, yk) is a good cross edge of (uak−1 , uk), rik ≤ 5−8ϵδ(xk, yk) ≤ 5−8ϵ(1 + ϵ)δ(uak−1 , uk) by
Item 1 of Property 3. Hence,

s

∑
k=1

rik ≤ 5
−8ϵ(1 + ϵ)

s

∑
k=1

δ(uak−1 , uak) ≤ 5
−8ϵ(1 + ϵ)distG(u,uas) , (38)

since the shortest path between u to uas in G contains ua1 , ua2 , . . . uas−1 . Plugging Equation (32),
Equation (36) and Equation (37) in Equation (31), we get:

distH−F (u, zs) ≤ (1 + 5−3ϵ)distG(u,uas) + (1 + 5ϵ) ⋅ 96
s

∑
k=1

rik

≤ (1 + 5−3ϵ)distG(u,uas) + (1 + 5ϵ)96 ⋅ 5−8
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1/2 as ϵ ≤ 1/20

ϵ(1 + ϵ)distG(u,uas) (by Eq. 38)

≤ (1 + 3ϵ/4)distG(u,uas) ≤ (1 + 3ϵ/4)(1 + ϵ)δ(u,uas) (since G is a (1 + ϵ)-spanner of X)

≤ (1 + 2ϵ)δ(u,uas)
(39)
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The proof of Equation (39) contains all the key ideas of this lemma. The remaining part of the
proof focuses on how to deal with a tricky corner case when xs+1 is incomplete.

We consider (xs+1, ys+1). If xs+1 is complete, let ws+1 and zs+1 be two points in B(xs+1,4ris+1)
and B(ys+1, ris+1) such that (ws+1, zs+1) ∈ E(H − F ). ws+1 and zs+1 exist by Item 1 of Property 4.
Using the same argument in Equation (39), we have distH−F (u, zs+1) ≤ (1+2ϵ)δ(u, v). By Claim 1,
δ(v, ys+1) ≤ 2ris+1 . Using the triangle inequality, we get:

δ(v, zs+1) ≤ δ(v, ys+1) + δ(ys+1, zs+1) ≤ 2ris+1 + 16ris+1
= 18ris+1 ≤ 18(1 + ϵ)

25−8ϵδ(u, v) (by Eq. 35)

≤ ϵδ(u, v)/2 ,

(40)

implying that δ(v, zs+1) < δ(u, v). By our induction hypothesis, distH−F (v, zs+1) ≤ (1+5ϵ)δ(v, zs+1) ≤
(1 + 5ϵ)ϵδ(u, v)/2. Thus,

distH−F (u, v) ≤ distH−F (u, zs+1) + distH−F (zs+1, v)
≤ (1 + 2ϵ)δ(u, v) + (1 + 5ϵ)ϵδ(u, v)/2 ≤ (1 + 3ϵ)δ(u, v) ,

(41)

as ϵ ≤ 1/20.
The last case is when xs+1 is incomplete. Let t = LCA(uas) and i = lvl(z) and ṽ be the ancestor

of (v,0) at level i. Since (t, ṽ) is an ancestor of a cross edge, δ(t, ṽ) ≤ λri by Item 5 of Property 3.
Consider two cases:

uas-1 uas uas+1a

xs

xs+1

ws zs

ys+1

ys

P

t v~
w

uas-1 uas uas+1a

xs

xs+1

ws zs

ys+1

ys

P

t v~
w v''

(a) (b)
Figure 4: An illustration of two cases. The blue, orange edges and the cyan and yellow balls have
the same meaning as those in Figure 3. The purple node is the LCA of uas and the white node ṽ is
the ancestor of v = uas+1 at the same level. The cross edge between t and ṽ is not in E∗ for the first
case (a). In figure (b), (t, ṽ) ∈ E∗ and hence there is an edge of H − F in the bipartite connection
between S(t) and S(ṽ).
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Case 1: δ(t, ṽ) < 64ri. Let w be a point in B(t,16ri) ∖ F . w exists since by Lemma 11,
B(t,4ri) contains at least 4f + 4 points. See Figure 4 (a) for an illustration. Since i ≤ is, we get
ys is an ancestor of z, implying that B(t,16ri) ⊆ B(ys,16ris) by Item 1 of Property 2. Hence,
w ∈ B(ys,16ris). Both zs and w are in B(ys,16ris), δ(zs,w) ≤ 32ris < δ(u, v) by Equation (35),
which implies:

distH−F (zs,w) ≤ (1 + 5ϵ)δ(zs,w) ≤ (1 + 5ϵ)32ris (42)

by the induction hypothesis. On the other hand,

δ(w, v) ≤ δ(w, t) + δ(t, ṽ) + δ(ṽ, v)
≤ δ(w, t) + 64ri + δ(ṽ, v) (by our assumption)

≤ 16ri + 64ri + δ(ṽ, v) ≤ 80ri + δ(ṽ, v) (since w ∈ B(t,16ri))
≤ 96ri ≤ 96ris (since δ(ṽ, v) ≤ 2ri by Claim 1).

(43)

Since ris ≤ 2−8ϵ(1 + ϵ)2δ(u, v) (Equation (35)), we get δ(w, v) ≤ 96 ⋅ 2−8ϵ(1 + ϵ)2δ(u, v) < δ(u, v) as
ϵ ≤ 1/20. By the induction hypothesis,

distH−F (w, v) ≤ (1 + 5ϵ)δ(w, v) ≤ (1 + 5ϵ)96ris (44)

Hence,

distH−F (u, v) ≤ distH−F (u, zs) + distH−F (zs,w) + distH−F (w, v)
≤ (1 + 2ϵ) δ(u,uas)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤w(P )≤(1+ϵ)δ(u,v)

+distH−F (zs,w) + distH−F (w, v) (by Eq. 39)

≤ (1 + 2ϵ)(1 + ϵ)δ(u, v) + (1 + 5ϵ)32ris + (1 + 5ϵ)96ris (by Eq. 42 and Eq. 44)

≤ (1 + 4ϵ)δ(u, v) + 128(1 + 5ϵ)ris
≤ (1 + 4ϵ)δ(u, v) + 128(1 + 5ϵ) ⋅ 5−8ϵ(1 + ϵ)2δ(u, v) (by Eq. 35)

≤ (1 + 4ϵ)δ(u, v) + ϵδ(u, v) = (1 + 5ϵ)δ(u, v) (since ϵ ≤ 1/20),
(45)

as claimed.
Case 2: δ(t, ṽ) ≥ 64ri. Then, (t, ṽ) ∈ E∗ since δ(t, ṽ) ≤ λris and Augi(t) ⊆ E∗ as z has at

least one incomplete child (line 16). Let w and v′′ be two points in S(t) and S(ṽ) such that
(w, v′′) ∈ E(H −F ). w and v′′ exist since S(t) contains f + 1 points and S(ṽ) contains either f + 1
points or v. See Figure 4 (b) for an illustration.

Since both w and uas are in B(t,16ri) (δ(uas , t) ≤ 2ri by Claim 1), we have δ(w,uas) ≤ 32ri ≤
32ris . Similarly, δ(zs,w), δ(v′′, v) ≤ 32ris . Since 32ris < δ(u, v) by Equation (35), using the induc-
tion hypothesis, we obtain:

distH−F (zs,w) ≤ (1 + 5ϵ)δ(zs,w) ≤ (1 + 5ϵ)32ris .

Similarly, distH−F (v′′, v) ≤ (1 + 5ϵ)32ris . Using the triangle inequality, we have:
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distH−F (zs, v) ≤ distH−F (zs,w) + distH−F (w, v′′) + distH−F (v′′, v)
≤ (1 + 5ϵ)32ris + δ(w, v′′) + (1 + 5ϵ)32ris (since (w, v′′) is in H − F )

≤ (1 + 5ϵ)64ris + δ(w,uas) + δ(uas , v) + δ(v, v′′)
≤ (1 + 5ϵ)64ris + 32ris + δ(uas , v) + 32ris (since w,uas ∈ B(ys,16ri2) and v, v′′ ∈ B(ṽ,16ri))
≤ (1 + 5ϵ)128ris + δ(uas , v).

(46)

Consider a path from u to v passing through zs, we have the following bound based on the triangle
inequality:

distH−F (u, v) ≤ distH−F (u, zs) + distH−F (zs, v)
≤ (1 + 2ϵ)δ(u,uas) + (1 + 5ϵ)128ris + δ(uas , v) (by Eq. 31 and Eq. 46)

≤ (1 + 2ϵ)(δ(u,uas) + δ(uas , v)) + (1 + 5ϵ)128ris
≤ (1 + 2ϵ)(1 + ϵ)δ(u, v) + (1 + 5ϵ)128 ⋅ 5−8ϵ(1 + ϵ)2δ(u, v) (by Eq. 35)

≤ (1 + 5ϵ)δ(u, v) (since ϵ ≤ 1/20),

(47)

as desired.

In the rest of this section, we focus on proving Lemma 15. We first define some notation. Given
a path P = (u1, u2, . . . ul) in G. A cross edge (x, y) is a P -jump if:

1. x is a complete ancestor of (u1,0) and y is an ancestor of (uj ,0) for some j ∈ (1, l].

2. (x, y) is a κ-cross edge of (u1, uj) with 0 ≤ κ ≤ 2.

A P -jump is different from a P -detour. In general, a P -detour has two complete end nodes
while the definition of P -jump only guarantees one end to be complete. A P -jump (x, y) with
incomplete y is a P -detour if and only if y is an ancestor of (ul,0).

For every set of cross edges A, let Pa(A) be the set of all cross edges (x′, y′) such that there
exists a child (x, y) of (x′, y′) in A. We call Pa(A) the parent set of A. Given a positive integer i,
let Pa1(A) = Pa(A) and Pai(A) = Pa(Pai−1(A)). For each node x and a nonnegative integer i, we
also use the notation Pai(x) for the ancestor of x at level lvl(x)+ i. We prove the following lemma:

Lemma 16. Let u and v be two points in X, P = (u = u1, u2, . . . ul = v) be the shortest path between u
and v in G, i1 be the level of LCA(u1) and v1 be the ancestor v at level i1. If δ(LCA(u1), v1) > λri1,
then there exists a P -jump (x0, y0) in E∗. Furthermore, Pa2(Aug(x0,0, logλ)) and Pa2(Aug(y0,0, logλ))
are subsets of E∗.

To prove Lemma 16, we first show that if a cross edge (y, z) is an augmented cross edge of a
node x, then some particular augmmented cross edges of y and z are also augmented cross edges
of x.

Claim 5. Let x be a node in T , γ1 and γ2 be two non-negative integers such that γ1 < γ2 − 2 and
(y, z) is a cross edge in Aug(x,0, γ1). Then, Pa2(Aug(y,0, γ2−γ1−2)) and Pa2(Aug(z,0, γ2−γ1−2))
are subsets of Aug(x,0, γ2).
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Proof. By symmetric property, we only need to show Pa2(Aug(y,0, γ2−γ1−2)) ⊆ Aug(x,0, γ2). Let
ix and iy be the levels of x and y, ix ≤ iy ≤ ix+γ1. For each cross edge (z,w) ∈ Aug(y,0, γ2−γ1−2),
let izw be the level of z and w (iy ≤ izw ≤ iy + γ2 − γ1 − 2), z′ = Pa2(z) and w′ = Pa2(w). We prove
that (z′,w′) ∈ Aug(x,0, γ2).

Since (z,w) is a cross edge, its ancestor (z′,w′) is also a cross edge by Item 5 of Property 3.
Observe that lvl(z′) = izw+2 ≤ iy+γ2−γ1 ≤ ix+γ2. Then, to finish the proof of (z′,w′) ∈ Aug(x,0, γ2),
we only need to show that both z′ and w′ are in the cross neighborhood of the ancestor of x at
level lvl(z′).

Let x′ and y′ be the ancestors of x and y at level lvl(z′) = izw + 2. By Item 3 of Property 3,

δ(x, y) ≤ (λ + 2)riy and δ(y, z) ≤ (λ + 2)rizw (48)

We show that δ(x′, z′) ≤ λrizw+2 and hence z′ ∈ NC[x′]. By the triangle inequality, we have:

δ(x′, z′) ≤ δ(x′, x)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
≤2rlvl(x′)

+δ(x, z) + δ(z, z′)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
≤2rlvl(z′)

≤ 4rizw+2 + δ(x, z) (since lvl(x′) = lvl(z′) = izw + 2)

≤ 4rizw+2 + δ(x, y) + δ(y, z) (by triangle inequality)

≤ 4rizw+2 + (λ + 2)riy + (λ + 2)rizw (by Eq. Equation (48))

≤ (4 + λ + 2
25
+ λ + 2

25
) rizw+2 ≤ λrizw+2 (since iy ≤ izw and λ = 520(1 + ϵ−1)),

(49)

as claimed. Similarly, w′ ∈ NC[x′]. Therefore, (z′,w′) ∈ Aug(x,0, γ2).

Proof of Lemma 16. We find a P -jump from the set of cross edges of E(G) if there is a long edge
in some prefix of P . Otherwise, we claim that there exist P -jump from the set of argumented cross
edges of nodes in LNF.

Let x1 = LCA(u1) and x2, x3, . . . xl be the ancestors of u2, u3, . . . ul at level i1, respectively.
Let j be the largest integer in [1, l] such that δ(x1, xj) ≤ λri1 . Since δ(LCA(u1), v1) > λri1 ,
j < l. Let (û1, ûj+1) be the original cross edge of (u1, uj+1). Because of the maximality of j,
lvl(û1) = lvl(ûj+1) > i1. Then, (û1, ûj+1) is a P -jump.

If lvl(û1) ≤ i1 + 3 logλ then (û1, ûj+1) ∈ E∗ by line 3 – 9 in Algorithm 1. Using Claim 5 with
γ1 = 3 logλ and γ2 = 5 logλ, we obtain Pa2(Aug(û1,0, γ2 − γ1 − 2)) is a subset of Aug(x1,0,5 logλ).
Since γ2 − γ1 − 2 = 5 logλ− 3 logλ− 2 ≥ logλ, Pa2(Aug(û1,0, logλ)) is a subset of Aug(x1,0,5 logλ)
and hence is in E∗. Similarly, Pa2(Aug(ûj+1,0, logλ)) is also in E∗.

The last case is when lvl(û1) > i1+3 logλ. Let (ũj , ũj+1) be the original cross edge of (uj , uj+1).
By line 3 – 9, (ũj , ũj+1) ∈ E∗. Let î and ĩ be the levels of ûj+1 and ũj+1, respectively. We claim
that ĩ − 2 ≤ î ≤ ĩ + 2, and therefore, there exists a good cross edge of (u1, uj+1) in E∗. To do that,
we show the following claim:

Claim 6. 1
2 ≤

δ(û1,ûj+1)

δ(ũj ,ũj+1)
≤ 2.

Proof. We first prove that δ(û1, ûj+1) ≤ 2δ(ũj , ũj+1). Since lvl(û1) > i1 + 3 logλ, δ(û1, ûj+1) ≥ λ3ri1 .

By triangle inequality, δ(u1, uj) ≤ (λ + 32)ri1 ≤
(λ+32)δ(û1,ûj+1)

λ3 ≤ δ(û1,ûj+1)

λ because λ2 ≥ 2λ ≥ λ + 32.
By Item 2 of Property 3, δ(û1, ûj+1) ≤

δ(u1,uj+1)

1−5−3ϵ
. Using the triangle inequality,
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δ(u1, uj) ≤ (λ + 32)ri1 ≤
δ(û1, ûj+1)

λ
≤

δ(u1, uj+1)
λ ⋅ (1 − 5−3ϵ)

≤
δ(u1, uj) + δ(uj , uj+1)

λ ⋅ (1 − 5−3ϵ)
, (50)

implying that δ(u1, uj) ≤
δ(uj ,uj+1)

λ⋅(1−5−3ϵ)−1
≤ ϵδ(uj , uj+1). By triangle inequality, δ(u1, uj+1) ≤

δ(uj , uj+1) + δ(u1, uj) ≤ (1 + ϵ)δ(uj , uj+1). Then, we have:

δ(û1, ûj+1) ≤ (1 + 5−3ϵ)δ(u1, uj+1) (by It. 2 of Prop. 3)

≤ (1 + 5−3ϵ)(1 + ϵ)δ(uj , uj+1) ≤ (1 + ϵ)2δ(uj , uj+1)

≤ (1 + ϵ)
2

1 − 5−3ϵ
δ(ũj , ũj+1) (by It. 2 of Prop. 3)

≤ 2δ(ũj , ũj+1) ,

(51)

as claimed. Similarly, δ(û1, ûj+1) ≥ 1/2 ⋅ δ(ũj , ũj+1).

Hence, from Item 4 of Property 3, we have î ≤ log δ(û1,ûj+1)

λ + 2 and ĩ ≥ log δ(ũj ,ũj+1)

λ . Therefore,

î − ĩ ≤ log
δ(û1, ûj+1)

λ
+ 2 − log

δ(ũj , ũj+1)
λ

= log
δ(û1, ûj+1)
δ(ũj , ũj+1)

+ 2 < 3 , (52)

implying that î ≤ ĩ + 2 since both î and ĩ are integers. Similarly, î ≥ ĩ − 2.
Let (w1,wj+1) be the 2-cross edge of (u1, uj+1), i.e., the ancestor at level î + 2 of (û1, ûj+1).

(w1,wj+1) is a P -jump by definition. We complete our proof by showing that (w1,wj+1) ∈ E∗. By
line 3 – 9, Aug(ũj+1,0,5 logλ) ⊆ E∗. Observe that lvl(wj+1) = î+ 2 ∈ [ĩ, ĩ+ 4], implying that wj+1 is
an ancester of ũj+1 at a level lower than or equal to ĩ + 4. Hence, (w1,wj+1) ∈ Aug(ũj+1,0,5 logλ).
Furthermore, by Claim 5, we also obtain Pa2(Aug(w1,0, logλ)) and Pa2(Aug(wj+1,0, logλ)) are
in E∗.

To construct a P -detour, we keep finding a jump recursively on subpaths of P until we reach a
complete end. We later prove that the set of those jumps has a structure called P -stair-jump.

An oriented cross edge (x → y) is a cross edge with direction from x to y. We formally define
a P -stair-jump.

Definition 5. Given a path P = {u1, u2, . . . ul} of G, an ordered set of oriented cross edges
Ð→
D =

{(x1 → y1), (x2 → y2), . . . (xh → yh)} is a P -stair-jump if:

� For any k, (xk, yk) is a good cross edge of (uak , ubk), ak < bk, a1 = 1 and ak+1 = bk for any

k < ∣
Ð→
D ∣.

� (xk, yk) is a Pak-jump with Pj = {(uj , uj+1), (uj+1, uj+2), . . . (ul−1, ul)} for every j ∈ [1, l].

� lvl(x1) < lvl(x2) < . . . < lvl(xh).

See Figure 5 for an illustration. The set D containing undirected versions of cross edges in
Ð→
D

is an undirected P -stair-jump. The node yh is the tail of D and
Ð→
D .
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ua1 ub1a
P

x1

ua2=

y1

x2 y2

ub2 ua3=

y3

ub3 ua4=

x3

Figure 5: An example of a P -stair-jump with three cross edges. Note that ua1 = u. Each pink node
yk is a descendant of a purple node xk+1. When we construct a P -stair-jump later in the proof of
Lemma 15, every pink node is incomplete and every purple node is complete.

We prove that the total weight of
Ð→
D is approximate the weight of the highest cross edge.

Claim 7. Let u and v be two points in X and P = (u = u1, u2, . . . ul = v) be the shortest path from

u to v in G. For any P -stair-jump
Ð→
D = {(x1 → y1), (x2 → y2), . . . (xh → yh)} with the last point u′,

λ
250(1+ϵ)2

rlvl(xh)
≤ δ(u1, u′) ≤ 2λ

1−ϵrlvl(xh)
.

Proof. By Definition 5, we have lvl(x1) < lvl(x2) < . . . lvl(xh). By Definition 5, there exists
{ai, bi}i∈[1,h] such that a1 = 1, ak+1 = bk for every k ∈ [1, h − 1] and (xk, yk) is a good cross edge of
(uak , ubk) for every k ∈ [1, h]. Note that u′ = ubh . For every k ∈ [1, h], since (xk, yk) is a cross edge,
δ(xk, yk) ≤ λrlvl(xt)

. Hence,

h

∑
k=1

δ(xk, yk) ≤ λ ⋅
h

∑
k=1

rlvl(xk)
≤ 2λ ⋅ rlvl(xh)

(53)

by a geometric sum. By Item 2 of Property 3, 1− 5−3ϵ ≤ δ(xk,yk)
δ(uak

,ubk
)
≤ 1+ 5−3ϵ for any k. Then, using

the triangle inequality, we obtain:

δ(u1, ubh) ≤
h

∑
k=1

δ(uak , ubk) ≤
1

1 − 5−3ϵ

h

∑
k=1

δ(xk, yk) ≤
2λrlvl(xh)

1 − 5−3ϵ
≤
2λrlvl(xh)

1 − ϵ
. (54)
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For the lower bound, since G is an (1 + ϵ)-spanner of X, we have:

δ(u1, ubh) ≥
distG(u1, ubh)

1 + ϵ
= 1

1 + ϵ

h

∑
k=1

distG(uak , ubk)

≥ 1

1 + ϵ

h

∑
k=1

δ(uak , ubk) ≥
1

(1 + ϵ)(1 + 5−3ϵ)

h

∑
k=1

δ(xk, yk) (by It. 2 of Prop. 3).

(55)

Since (xk, yk) is a κ-cross edge of (uak , ubk) with 0 ≤ κ ≤ 2, δ(xk, yk) ≥ ( λ
6⋅52
− 4) rlvl(xk)

≥ λ
250 ⋅rlvl(xk)

by Item 1 of Property 3. Thus, we have:

δ(u1, ubh) ≥
1

(1 + ϵ)(1 + 5−3ϵ)

h

∑
k=1

λ

250
⋅ rlvl(xk)

≥ 1

(1 + ϵ)2
λ

250
⋅ rlvl(xk)

, (56)

as claimed.

In the next lemma, we show that the highest cross edge of a P -stair-jump
Ð→
D is approximately

equal to the total distance from u to the last point of
Ð→
D , meaning that there is a P -detour whose

level close to the highest cross edge in
Ð→
D .

Lemma 17. Let u and v be two points in X and P = (u = u1, u2, . . . ul = v) be the shortest path

from u to v in G. For any P -stair-jump
Ð→
D = {(x1 → y1), (x2 → y2), . . . (xh → yh)} with the last

point u′, if yh is complete, there exists a good cross edge (x, y) of (u1, u′) in Pa2(Aug(xh,0, λ))
such that x and y are complete.

Proof. Let {(ak, bk)}k∈[1,h] be the notation as in Definition 5. We claim that the original cross edge
of (u,ubh) locates at a level not too far from lvl(xh).

Claim 8. For every integer k ∈ [1, h], let ik be the level of the original cross edge of (u,ubk). Then,
lvl(xk) − 3 ≤ ik ≤ lvl(xk) + 3.

Proof. Let e = (u,ubk) and (ǔ, ǔbk) be the original cross edge of e. From Claim 7,
λrlvl(xk)
250(1+ϵ)2

≤

δ(u1, ubk) ≤
2λrlvl(xk)

1−ϵ . Combining with Item 2 of Property 3, we obtain:

δ(ǔ, ǔbk) ≤ (1 + 5
−3ϵ)δ(u1, ubk) ≤

2λrlvl(xk)
⋅ (1 + 5−3ϵ)

1 − ϵ
. (57)

Hence, by Item 4 of Property 3, we have

lvl(ǔ) ≤ log
δ(ǔ, ǔbk)

λ
+ 2 ≤ log

2λrlvl(xk)
⋅ (1 + 5−3ϵ)

(1 − ϵ)λ
+ 2 ≤ lvl(xk) + 3 , (58)

implying that ik ≤ lvl(xk) since ik = lvl(ǔ). On the other hand:

δ(ǔ, ǔbk) ≥ (1 − 5
−3ϵ)δ(u1, ubk) ≥ (1 − 5

−3ϵ)
λrlvl(xk)

250(1 + ϵ)2
⋅ (by Claim 7). (59)
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Thus, by Item 4 of Property 3, we have:

lvl(ǔ) ≥ log
δ(ǔ, ǔbk)

λ
≥ log(

(1 − 5−3ϵ)rlvl(xk)

250(1 + ϵ)2
)

≥ lvl(xk) + log(
1 − 5−3ϵ

250(1 + ϵ)2
) ≥ lvl(xk) − 3 ,

(60)

as ϵ ≤ 1/20. Therefore, we get lvl(ǔ) ≥ lvl(xk) − 3, or ik ≥ lvl(xk) − 3 as claimed.

Let (û, ûbh) be the original cross edge of (u,ubh). By Claim 8, lvl(xh) − 3 ≤ lvl(û) ≤ lvl(xh) + 3.
Let (z5, t5) be the 5-cross edge of (u,ubh), we prove that (z5, t5) is in Aug(xh,0, λ), implying that
the 7-cross edge of (u,ubh) is in Pa2(Aug(xh,0, logλ)). Let x′h be the ancestor of xh at level lvl(z5).
x′h exists since

lvl(x′h) = lvl(z5) = lvl(û) + 5 ≥ lvl(xh) + 2 > lvl(xh). (61)

The set of cross edges between nodes in NC[x′h] is a subset of Aug(xh,0, logλ) because lvl(x′h) =
lvl(û) + 5 ≤ lvl(xh) + 8 ≤ lvl(xh) + logλ. Since (xh, yh) is a κ-cross edge of (uah , ubh) with 0 ≤ κ ≤ 2
and (x′h, t5) is an ancestor of (xh, yh), t5 ∈ NC[x′h] by Item 5 of Property 3. We claim that z5
is also in NC[x′h]. Let (ũ, ũbh−1) be the originial cross edge of (u,ubh−1). By Claim 8, lvl(ũ) ≤
lvl(xh−1)+3 ≤ lvl(xh)+2, which is at most lvl(x′h) by Equation (61). Hence, (z5, x′h) is an ancestor
of (ũ, ũbh−1) and therefore, z5 ∈ NC[x′h] by Item 5 of Property 3.

We finish our proof by showing that both ends of the 7-cross edge of (u,ubh) are complete. Since
the 7-cross edge of (u,ubh) is an ancestor of (z5, t5), it is enough to show that both z5 and t5 are
ancestors of some complete ancestors of u and ubh by Claim 2. Since lvl(z5) > lvl(xh) ≥ lvl(x1) by
Equation (61) and x1 is a complete ancestor of (u,0), z5 is an complete ancestor of (u,0). Similarly,
lvl(t5) = lvl(z5) ≥ lvl(yh). Hence, t5 is an ancestor of a complete ancestor yh of (ubh).

We now prove for any shortest path from u to v in G, there is a P -detour set in E∗. For the
case that two points u and v are close, the next claim shows that if the level of the original cross
edge of (u, v) is less than the level of the lowest complete ancestor of any point in the shortest path
between u and v, there exists a good cross edge of (u, v) in E∗ (which is also a P -detour).

Claim 9. Let u and v be two points in X, i be the level of the original cross edge of (u, v) and
P = (u = u1, u2, . . . ul = v) be a shortest path from u to v in G. For any point uj ∈ V (P ) (1 ≤ j ≤ l),
if i ≤ lvl(LCA(uj)), there is a good cross edge of e in E∗.

Proof. Let il, ir be the level of the original cross edges of (u,uj) and (uj , v), respectively. We claim
that il, ir ≤ i + 2. Let (û, v̂) and (ũ, ũj) be (u, v)’s and (u,uj)’s original cross edges, respectively.
By Item 2 of Property 3, we have:

δ(ũ, ũj) ≤ (1 + 5−3ϵ)δ(u,uj) ≤ (1 + 5−3ϵ)distG(u,uj)
≤ (1 + 5−3ϵ)distG(u, v) (since P contains uj and distG(u, v) =w(P ))
≤ (1 + 5−3ϵ)(1 + ϵ)δ(u, v) (since G is a (1 + ϵ)-spanner of X)

≤ (1 + ϵ)1 + 5
−3ϵ

1 − 5−3ϵ
δ(û, v̂) ≤ 2δ(û, v̂) (by It. 2 of Prop. 3).

(62)

By Item 4 of Property 3, il ≤ log
δ(ũ,ũj)

λ + 2 ≤ log 2δ(û,v̂)
λ + 2 < i+ 3, implying that il ≤ i+ 2 since both

il and i are integers. Similarly, ir ≤ i+2. Let ǔ, ǔj and v̌ be the ancestor of (u,0), (uj ,0) and (v,0)
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at level i + 3. Since il, ir ≤ i + 3, (ǔ, ǔj) and (ǔj , v̌) are ancestors of (u,uj)’s and (uj , v)’s orginal
cross edges, respectively. Hence, ǔ, v̌ ∈ NC[ǔj] by Item 5 of Property 3. Furthermore, (ǔ, v̌) is a
good cross edge of (u, v) by definition. If ǔj is incomplete, then all cross edges between nodes in
NC[ǔj] is in E∗ by line 16 of Algorithm 1, implying that (ǔ, v̌) ∈ E∗. If ǔj is complete, then ǔj
has an incomplete ancestor at level lvl(LCA(uj)) − 1 by the definition of lowest complete ancestor.
Since lvl(LCA(uj))−1 ≥ i−1 ≥ lvl(ǔj)−5 logλ, by line 16, all (long enough) cross edges in NC[ǔj]
are also in E∗, implying that (ǔ, v̌) ∈ E∗.

We now ready to prove there is always a P -detour for every shortest path P in G.

Proof of Lemma 15. The idea is to find a P -stair-jump
Ð→
D . If the tail y of

Ð→
D is complete, there

exists a P -detour in E∗ by Lemma 17. Otherwise, if y is incomplete, we keep adding another jump

to
Ð→
D . If we cannot find any jump, then the subtree containing y, denoted by Ty, in the LNF is

close to both u and v, implying that we can find a detour directly from an ancestor of (u,0) to an
ancestor of (v,0) in the set of augmented cross edges of nodes in Ty.

Let P = (u = u1, u2, . . . ul = v), i1 be the level of LCA(u1) and v1 be the ancestor of v at level i1.
We denote by i the level of the original cross edge of (u, v). We claim that there is either a good
cross edge of (u, v) or a P -stair-jump in E∗.

Let
Ð→
D be a list of oriented cross edges. At the beginning,

Ð→
D = ∅ and we consider P1. If

δ(LCA(u1), v1) ≤ λri1 , then the original cross edge of (u, v) has level at most i1. By Claim 9,
there exists a good cross edge of (u, v) in E∗. Otherwise, δ(LCA(u1), v1) > λri1 , by Lemma 16,
E∗ contains a good cross edge (x1, y1) of (u1, ub1) for some b1 > 1. Let a1 = 1. Furthermore, we
have Pa2(Aug(x1,0, logλ)) and Pa2(Aug(y1,0, logλ)) are also in E∗. If y1 is complete, then we
found a P -stair-jump with one element. Otherwise, we keep doing this process with the path Pb1 .

Assuming that at current step,
Ð→
D = {(x1, y1), (x2, y2), . . . (xh, yh)} with h > 0 such that:

� For every k ∈ [1, h], (xk, yk) is a good cross edge of (uak , ubk) with ak < bk, a1 = 1 and ak+1 = bk
if k < h.

� yk is incomplete for every k ∈ [1, h].

� Pa2(Aug(xk,0, logλ)) and Pa2(Aug(yk,0, logλ)) are in E∗ for every k ∈ [1, h].

See Figure 5 for an illustration. For every k ∈ [1, h], let ik = lvl(xk) (= lvl(yk)). Let j = bh,
gj = lvl(LCA(uj)) and vj be the ancestor of (v,0) at level gj . If δ(LCA(uj), vj) ≤ λrgj , we claim
that there is an good cross edge between u and v in E∗.

Claim 10. If δ(LCA(uj), vj) ≤ λrgj , then there exists a good cross edge (x, y) of (u, v) in E∗.

Proof. By Claim 7, λ
250(1+ϵ)2

rlvl(xh)
≤ δ(u1, uj) ≤

2λrlvl(xh)
1−ϵ . Let (û, v̂) be the original cross edge of

(u, v) and i is the level of û. We have δ(û, v̂) ≤ λri. We show that i ≤ gj + 2. Observe that:

δ(û, v̂) ≤ (1 + 5−3ϵ)δ(u, v) ≤ (1 + 5−3ϵ)(δ(u,uj) + δ(uj , v)) (by Eq. 2 of Prop. 3)

≤ (1 + 5−3ϵ) (
2λrih
1 − ϵ

+ δ(uj , v)) (by Claim 7)
(63)
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Since δ(LCA(uj), vj) ≤ λrij , (LCA(uj), vj) is an ancestor of the original cross edge of (uj , v),
denoted by (ũj , ṽ). Let ĩ = lvl(ṽ), then δ(ũ, ṽ) ≤ λrĩ ≤ λrgj by the minimality of the level of the
original cross edge. Using Item 2 of Property 3, we get:

δ(uj , v) ≤
δ(ũj , ṽ)
1 − 5−3ϵ

≤
λrgj

1 − 5−3ϵ
≤
λrgj
1 − ϵ

. (64)

Plugging in Equation (63), we have:

δ(û, v̂) ≤ λ(1 + 5−3ϵ)
1 − ϵ

(2rih + rgj) (65)

Since yh is incomplete, we have ih = lvl(xh) = lvl(yh) ≤ gj − 1, implying that 2rih ≤ rgj . Then, by

Equation (65), δ(û, v̂) ≤
2(1+5−3ϵ)λrgj

1−ϵ . From Item 4 of Property 3,

i ≤ log δ(û, v̂)
λ

+ 2 ≤ log
2(1 + 5−3ϵ)rgj

1 − ϵ
+ 2 ≤ gj + 3 (as ϵ ≤ 1/20) (66)

If i ≤ gj , by Claim 9, there is a good cross edge of (u, v) in E∗. Otherwise, i > gj . Let (û3, v̂3) be the
ancestor of (û, v̂) at level i+3. Let ûj be the ancestor of uj at level i+3. Since i+3 ≤ gj +6 ≤ gj +5λ,
Augi+3(LCA(uj)) ⊆ Aug(LCA(uj),0,5 logλ) ⊆ E∗ by line 14 – 16 of Algorithm 1. In other words,
all cross edges between nodes in NC[ûj] are in E∗. From Claim 8, the level of the original cross
edge of (u,uj) is at most lvl(xh) + 3 = ih + 3 ≤ gj + 2 ≤ i + 2, then (û3, ûj) is an ancestor of the
original cross edge of (u,uj). By Item 5 of Property 3, û3 ∈ NC[ûj]. Since δ(LCA(uj), vj) ≤ λrgj
and (ûj , v̂3) is an ancestor of (LCA(uj), vj), v̂3 ∈ NC[ûj]. Since (û3, v̂3) is a good cross edge of
(u, v) and û3, v̂3 ∈ NC[ûj], (û3, v̂3) ∈ E∗.

By Claim 10, if δ(LCA(uj), vj) ≤ λrij , there exists a good cross edge of (u, v) in E∗, which gives
us the lemma. Otherwise, by Lemma 16, there exists a Pj-jump (xh+1, yh+1) with xh is a complete
ancestor of (uj ,0) and yh is an ancestor of (uj′ ,0) for some j′ > j. Set ah+1 = j and bh+1 = j′.

We append (xh+1 → yh+1) to
Ð→
D . If yh+1 is incomplete, we continue the process recursively with

Pj′ . Otherwise
Ð→
D is a P -detour-path with complete tail. From Lemma 17, there exists a good

cross edge (x, y) of (u,uj′) such that both x and y are complete. Hence, (x, y) is a P -detour by
definition.

7 Fast Implementation

In this section, we describe an implementation of Algorithm 1 in time O(nf + n logn), which is
asymptotically optimal. We consider the running time of each step in Algorithm 1:

� Line 1: Constructing a light spanner can be done in O(n logn) time [FS16]. A net tree T is
constructed in O(n logn) [HPM06].

� Line 3–9: The total number of cross edges in T is Oϵ,d(n). Hence, finding all the original
cross edges and adding them to E∗ cost Oϵ,d(n) time. For each original cross edge (û, v̂), we
add (long enough) cross edges in Aug(û,0,5 logλ) and Aug(v̂,0, logλ) to E∗. Since each of
these sets has a constant size and can be found in constant time, the for loop in line 3–9 can
be implemented in O(n) time.
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� Line 11–22: In this (nested) for loop, we have two for loops. We indeed do not perform ζ
loops since there are many levels with no cross edge. Since the number of cross edges is at
most O(n), we actually only need to consider the running time for O(n) loops.

– Line 12–16: For each node x, finding whether x has a small descendant w such that
w has at most f leaves (recall that such w is called incomplete) needs constant time.
Adding cross edges between nodes in NC[x] to E∗ also requires only constant time since
the size of NC[x] is constant due to the packing bound (Lemma 1).

– Line 19–22: Since H has at most O(nf) edges, adding egdes to H in line 22 only need
O(nf) time in total (O(f) on average). Let U be the upper bound time complexity for
Algorithm 2, the amount of time needed to run this for loop is 2U +O(f).

In total, the time complexity of Algorithm 1 is O(nf + n logn + nU). The running time of
Algorithm 2 is therefore crucial if we want to achieve optimal time. We then focus on how to
implement Algorithm 2 such that its amortized cost is O(f + logn), meaning the total running time
of all calls to Algorithm 2 is O(n(logn + f)).

We generalize the set B(u,4ri) as the pool set of (u, i), denoted by P (u, i), and B(u,16ri) as
the extended pool set of (u, i), denoted by P +(u, i). We re-write Algorithm 2 as Algorithm 3.

Algorithm 3: Implement-SelectSurrogate

Input : A node x ∈ V (T )
Output: A surrogate set S(x)

1 if x is small then
2 S(x) ← arbitrary f + 1 leaves of T (x) if T (x) has at least f + 1 leaves; otherwise

S(x) ← all leaves of T (x);
3 else
4 S′ ← {u ∈X ∩ P +(x) ∶ degH(u) ≥ c2 ⋅ f and u is not saturated};
5 S′′ ← {u ∈X ∩ P (x) ∶ degH(u) < c2 ⋅ f};
6 if ∣S′∣ ≥ f + 1 then
7 S(x) ← arbitrary f + 1 vertices in S′;
8 else
9 S(x) ← S′ ∪ {arbitrary f + 1 − ∣S′∣ vertices in S′′};

10 return S(x);

Given a node x = (u, i), we choose the set P (x) and P +(x) such that Algorithm 1 with the call
to Algorithm 3 in line 20 and line 21 still returns a bounded degree, bounded lightness (1+ ϵ)-VFT
spanner. We keep the same setting for the pool set as in Algorithm 2, i.e., P (u, i) = B(u,4ri). To
maintain a set of clean and semi-saturated points, we use two lists attached to each node in the
tree. For each node (u, i), we store a list Clean(u, i) of at most 4f + 4 clean points in P (x). We
maintain this set by following exactly the proof of Lemma 11: when a point in Clean(u, i) becomes
semi-saturated, we look down to the path of T from (u, i) to one of its leaf with a high current
degree, call v. We denote this path by P = {xi, xi−1, . . . x0} with xk is the ancestor of (v,0) at level
k (xi = (u, i)). Then, we find the clean points near that branch to add to B(u,4ri).

A problem with this approach is that we may have to search at some level much lower than i
to find enough clean points. This problem is due to the fact that for many level j, there might be
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no level-j edge incident to some point in P (xj). However, we do not have to search over all the
levels until getting enough 4f + 4 clean points. For each node x, we store a pointer pointing to its
descendant x′ such that the subtree rooted x′ also contains x’s highest-degree leaf and there exists
a level-j edge incident to some point in P (x). Hence, at the time a point in P (x) turns from clean
to semi-saturated, we only need to look down at most 4f + 4 nodes to find a substitution in P (x).
Since each point only turns from clean to semi-saturated once, we only need Oϵ,d(nf) time in total
for updating from clean to semi-saturated.

The harder task is to maintain the list of semi-saturated points in P +(x). We do not have any
information about how many semi-saturated points are in P +(x). Since semi-saturated points in
P +(x) are prioritized over the clean points in P (x), we need to make sure that all up to f +1 semi-
saturated points in P +(x) can be found in an efficient way. However, there is no information about
where should we look for semi-saturated points in P +(x) if we keep setting P +(x) = B(u,16ri).
Observe that it is easier if we can compute the set P +(x) recursively from the extended pool of
some below nodes. Then, we want to modify P +(x) such that it still preserves the crucial properties
needed to prove the maximum degree, bounded lightness, and fault-tolerant property but can be
computed recursively.

From Remark 1, to ensure the correctness of Algorithm 1, it is sufficient that B(x,12ri) ⊆
P +(x) ⊆ B(x,16ri). Then, we define P +(x) recursively as follow:

� If i ≤ 3, P +(x) = B(x,16ri)

� If i > 3, let Di−2(x) be the set of node y at level i− 2 such that B(y,12ri−2) ∩B(x,12ri) ≠ ∅.
Then, P +(x) = ⋃y∈Di−2(x) P

+(y).

We prove P +(x) possesses the required property in Remark 1.

Claim 11. For every node x at level i, B(x,12ri) ⊆ P +(x) ⊆ B(x,16ri).

Proof. If i ≤ 3, P +(x) = B(x,16ri). Claim 11 holds trivially. Assume that Claim 11 holds for every
node at any level lower than i. Let C+(x) be the set of nodes at level i − 2 such that for every
y ∈ C+(x), B(y,12ri−2) intersects B(x,12ri). By Claim 1, for every point w in X, the distance
between w and its ancestor at level i−2 is at most 5ri−2/4. Hence, the union of B(y,12ri−2) over all
node y at level i− 2 covers the whole space X, implying that the union of B(y,12ri−2) ∩B(x,12ri)
over all y ∈ C+(x) covers B(x,12ri). Thus, P +(x) contains B(x,12ri).

We complete our proof by showing δ(x,w) ≤ 16ri for every w ∈ ⋃y∈C+(x) P
+(y). For every w ∈

P +(x), let y be the node in C+(x) that w ∈ P +(y). By our induction hypothesis, w ∈ B(y,16ri−2).
Since B(y,12ri−2) ∩B(x,12ri) ≠ ∅, δ(x, y) ≤ 12ri−2 + 12ri. By the triangle inequality,

δ(x,w) ≤ δ(x, y) + δ(y,w) ≤ 12ri−2 + 12ri + 16ri−2 ≤ ri(12 + 12/25 + 16/25) ≤ 16ri ,

implying that w ∈ B(x,16ri). Hence, P +(x) ⊆ B(x,16ri).

Now, we describe how to maintain P +(x). For each node x, we store a list C+(x) of nodes
at level i − 2 such that for every y ∈ C+(x), B(x,12ri) ∩B(y,12ri−2) ≠ ∅. Each node in C+(x) is
called an extended child of x and x is an extended parent of every node in C+(x) (a node might
have multiple extended parents). Similarly, a node x is called an extended ancestor of y if x is
the extended parent of either y or of some extended ancestor of y. The node y is then called an
extended descendant of x. Observe that x does not have any extended descendant at a level j if
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i− j is odd. Similarly, there is no extended ancestor of x at level k if k − i is odd. We construct an
extended graph T+ whose nodes are V (T ) plus O(n) additional nodes that we will define later.

For any two nodes x and y in V (T ), (x, y) ∈ E(T+) if and only if x is an extended parent of
y. The idea to compute P +(x) is to merge the lists of semi-saturated points from some extended
descendants of x plus the new semi-saturated points. However, storing all the semi-saturated points
in P +(y) for all y ∈ V (T ) will increase the time needed to find semi-saturated points since the ex-
tended pool of all extended children might share many points in common. Moreover, merging two
lists with multiplicity in sublinear time is impossible. Thus, we only store the list of semi-saturated
points in the extended pool of leaf nodes of T+, meaning nodes with no extended child.

Information stored on each node: For each node x, we store a list of cf semi-saturated
points in P +(x), denoted by SSList(x). Here, c = ϵ−O(d) is the constant in Claim 12. If x is a leaf,
we store all semi-saturated points in x. The lists of semi-saturated points of each node must be
computed upward. We set SSList(x) to be the union (up-to cf points) of all SSList(y) such that
y ∈ C+(x). During some iterations, there might be some points in P +(x) turning to semi-saturated
and some turning to saturated. While the former ones only require a local modification on some
nodes, the latter ones are more challenging to update.

Update when a point becomes semi-saturated: When some point u turns into semi-
saturated, u might belong to some extended pools of nodes at a much lower level. However, it
is unnecessarily costly to update every P +(y) such that u ∈ P +(y). In fact, a new semi-saturated
point at level i only affects the extended pool sets of nodes at level i and i + 1 since for nodes at
higher levels, we update their extended pools recursively. Hence, for each node x at level i in V (T ),
we create an extended child x′ of x and add (x,x′) to T+. P +(x′) contains points in P+(x) which
turn into semi-saturated during iteration i or i − 1. Observe that x′ is a leaf of T +. We show that
the total points in P +(x′) is at most ϵ−O(d)f .

Claim 12. Let x be a node at level i in V (T ). Then, the number of points in P +(x) becoming
semi-saturated during iteration i or i − 1 is at most cf where c = ϵ−O(d).

Proof. We only consider the number of points in P +(x) turning into semi-saturated in iteration i,
those in iteration i− 1 will be counted similarly. A point u ∈ P +(x) becomes semi-saturated during
iteration i only if it is a surrogate of some node y at level i. Using the triangle inequality, we have:

δ(x, y) ≤ δ(x,u) + δ(u, y) ≤ 16ri + 16ri = 32ri. (67)

Hence, y ∈ B(x,32ri). By packing bound (Lemma 1), there are at most 2O(d) such y. Furthermore,
from Lemma 2, for every node y at level i, there are at most ϵ−O(d)f points which are used as
surrogates of y. Hence, the total number of surrogates of y becoming semi-saturated is ϵ−O(d).
Therefore, the total number of points in P +(x) turning into semi-saturated during iteration i is
at most the number of nodes in B(x,32ri) times the maximum number of surrogates of a node
turning into semi-saturated, which is ϵ−O(d).

Update when a point becomes saturated: A node y is marked as DELETED if all semi-
saturated points in all leaves of y have become saturated. For each node x at level i, we add a
pointer pointing to a leaf of x, denoted by ρ(x), such that ρ(x) is not deleted. Initially, ρ(x) = ρ(z)
for some z ∈ C+(x) such that ρ(z) ≠ NULL. When a point u becomes saturated after iteration i,
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we update SSList(x) for every x at level i and i − 1 such that SSList(x) contains u. By packing
bound (Lemma 1), there are a constant number of such nodes x. We then focus on updating only
one node x at level i such that SSList(x) contains u.

We use ρ(x) to find an extended leaf of x that still has more semi-saturated points. Let
z = ρ(x). If there exists a semi-saturated point in SSList(z), we update SSList(x) by adding that
point. However, if there is no semi-saturated point in SSList(z), a recursive procedure named
NodeDeletion(z) is invoked to delete z. The procedure is as follows:

For every node x′ at level i or i − 1 such that ρ(x′) = z, we update ρ(x′). First, we find an
extended parent z′ of z such that x′ is the ancestor of z′. Second, we update ρ(z′) by finding an
extended child of z′ which is not deleted and set ρ(z′) to be that child. If all extended children
of z′ are deleted, we mark z′ as deleted and recursively run NodeDeletion(z′). Otherwise, we set
ρ(x′) = ρ(z′). We later argue that each call to procedure NodeDeletion(⋅) runs in O(logn).

Running time analysis of all updates: First, we prove that the total number of nodes
in T+ is ∣V (T )∣ +Od(n).

Claim 13. The total number of nodes in T+ is ∣V (T )∣ +Od(n).

Proof. We prove that the size of the set containing extended leaves added to T+, call A, is O(n).
Recall that for each node x at level i, we add an extended leaf to x at level i−1 containing all points
in P +(x) that become semi-saturated during iteration i−1 or i. The leaf corresponding to x, call x′,
is an artificial node that contains all points in P +(x) turning into semi-saturated during iteration
i or i − 1. We call x′ an artificial leaf. Since each point u ∈ X only turns into semi-saturated once,
it is easy to verify that there are 2O(d) artificial leaves y such that u ∈ P+(y). Let Au be the set of
those artificial leaves, we have:

∣A∣ ≤ ∑
u∈X

∣Au∣ ≤ ∑
u∈X

2−O(d) = n ⋅ 2O(d). (68)

Therefore, ∣V (T +)∣ = ∣V (T )∣ + ∣A∣ ≤ ∣V (T )∣ +O(n).

In our construction, we only focus on relevant nodes. A relevant node is either a leaf or a node
with at least 2 extended children in T+. Observe that a non-leaf node x at level i is relevant if there
is a node y at level i−2 such that δ(x, y) ≤ 12ri−2 +12ri = O(ri−2). The number of such pairs (x, y)
is bounded by O(n) by using the similar technique as in bounding the number of cross edges (See
Theorem 5.3 [CGMZ16]). Thus, the total number of nodes in T+ is O(n). The update procedure
when a point becomes semi-saturated therefore needs O(n) time in total. It remains to prove that
NodeDeletion(⋅) can be done in O(nf + n logn) time in total.

Observe that for each node z, NodeDeletion(z) only updates z’s extended parents and z’s
extended ancestors at level i and i−1 with i is the current iteration in Line 11 of Algorithm 1. The
following observation of the packing bound implies that NodeDeletion(z) only updates a constant
number of nodes.

Observation 5. For every node x at level i of T +, we have:

1. The number of x’s extended children is O(1).

2. For every level k > i, the number of extended ancestors of x at level k is O(1).
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We complete our implementation by showing that for each node, all of its extended ancestors
can be found in O(logn) time.

For each node x at level i, we store the extended ancestors of x in T+ at level i+1, i+2, i+4, . . . i+2h
for h ∈ [0, logn]. Since x has a constant number of ancestors at a certain level, we only need time
(and space)O(logn) for each node x. Therefore, the total time complexity for this step isO(n logn).
For each node x, computing the ancestor of x at level k > i is done in O(logn) time.

In total, for each node in T+, we will delete it once, and each deletion procedure takes time
O(logn). The construction of T+ requires time O(∣V (T+)∣f) since each node x in T + has at most
cf points in its surrogates list SSList(x). Therefore, the total running time of computing all P +(⋅)
is then O(n logn + nf).
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