A Unified Framework for Light Spanners

Hung Le! and Shay Solomon?

'University of Massachusetts Amherst
2Tel Aviv University

Abstract

Seminal works on light spanners over the years provide spanners with optimal lightness in various
graph classesﬂ such as in general graphs [I7], Euclidean spanners [26] and minor-free graphs [10].
Three shortcomings of previous works on light spanners are: (i) The runtimes of these constructions
are almost always sub-optimal, and usually far from optimal. (ii) These constructions are optimal
in the standard and crude sense, but not in a refined sense that takes into account a wider range of
involved parameters. (iii) The techniques are ad hoc per graph class, and thus can’t be applied broadly.

This work aims at addressing these shortcomings by presenting a unified framework of light spanners
in a variety of graph classes. Informally, the framework boils down to a transformation from sparse
spanners to light spanners; since the state-of-the-art for sparse spanners is much more advanced than
that for light spanners, such a transformation is powerful. First, we apply our framework to design
fast constructions with optimal lightness for several graph classes. Among various applications, we
highlight the following (for simplicity assume e > 0 is fixed):

e In low-dimensional Euclidean spaces, we present an O(nlogn)-time construction of (1 + e)-
spanners with lightness and degree both bounded by constants in the algebraic computation
tree (ACT) (or real-RAM) model, which is the basic model used in Computational Geometry.
The previous state-of-the-art runtime in this model for constant lightness (even for unbounded
degree) was O(nlog®n/loglogn), whereas O(nlogn)-time spanner constructions with constant
degree (and O(n) edges) are known for years. Our construction is optimal with respect to all the
involved quality measures — runtime, lightness and degree — and it resolves a major problem
in the area of geometric spanners, which was open for three decades (cf. [15] [3 40} 53]).

Second, we apply our framework to achieve more refined optimality bounds for several graph classes,
i.e., the bounds remain optimal when taking into account a wider range of involved parameters, most
notably e. Our new constructions are significantly better than the state-of-the-art for every examined
graph class. Among various applications, we highlight the following (now € > 0 is any parameter):

e For K,.-minor-free graphs, we provide a (1 + €)-spanner with lightness OT)E(E + 6%), where O~T76
suppresses polylog factors of 1/¢ and r, improving the lightness bound Om(Z3) of Borradaile, Le
and Wulff-Nilsen [10]. We complement our upper bound with a highly nontrivial lower bound
construction, for which any (1 + €)-spanner must have lightness Q(Z + 6%) Interestingly, our
lower bound is realized by a geometric graph in R?. Also, the quadratic dependency on 1/e that

we prove is surprising, as prior work suggested that the dependency on € should be around 1/e.

YThe lightness is a normalized notion of weight: a graph’s lightness is the ratio of its weight to the MST weight.

Contents

1__Introduction| 1
[1.1 Research Agenda: From Sparse to Light Spanners| 3
[.2 Our Contribution] 4
1.3 Our Unified Framework: Technical and Conceptual Highlights|. 6

B Prelninarics 11

[3 Lightness Lower Bounds| 12

I Our Unified Framework: Applications (Section |4| and Section |5))| 17

[4 Applications of the Unified Framework: Fast Constructions| 17
4.1 Kuclidean Spanners and UDG Spanners| oL 17
4.2 General Graphs|. e 20
4.3 Minor-free Graphs| 21

[5 Applications of the Unified Framework: Fine-Grained Optimality| 22
[5.1 General Sparse Spanner Oracles|. 22
5.2 Constructing General Sparse Spanner Oracles| 25

[5.2.1 General graphs and high dimensional metric spaces: Prootf of Theorem [1.6] and |

[Theorem 1.8 e 25

[5.2.2 Steiner Euclidean Spanners| L o 26
5.3 Light Spanners for Minor-Free Graphs L. 27

II Our Unified Framework: The Proof (Section |6 — Section [12))| 28

[6 Unified Framework: Technical Setup| 28
6.1 The Frameworkl e 28
6.2 Designing A Potential Function| o 31
6.3 Summary|] e e e e e e e 34

[7_Fast Construction: Proof of Theorem [1.10|(1)| 35
[7.1 Constructing Level-(i +1) Clusters| 36
[7.2" Constructing H;: Proof of Theorem [L.IO[1)| 38

[8 Clustering: Proof of Lemma [7.3| 42
8.1 Propertiesof X| e 48
[8.2 Constructing a Partition of V;|. 48

[9 Light Spanners for Minor-free Graphs in Linear Time| 52

(10 Fine-Grained Optimal Lightness: Proof of Theorem [1.10|(2)| 52

[11 Clustering for Stretch ¢ > 2: Proof of Lemma [10.3|(1)| 55

[11.1 Constructing H;: Proof of Lemma[10.3[for ¢ >2.| 56
[11.2 Clustering] e e e e e e 58
[11.2.1 Constructing X|« o e 63

[11.2.2 Constructing the partition of ot &;: Prootf of Lemma(11.1) 65

[12 Clustering for Stretch t =1 1 ¢ 67
[12.1 Constructing H;: Proof of Lemma[l0.3|for t =14+¢€| 68
[12.2 Clustering] e e e e e 69

[12.2.1 Constructing X and the partition of &;: Proof of Lemma|12.1] 71

1 Introduction

For a weighted graph G = (V, E, w) and a stretch parametert > 1, a subgraph H = (V, E’) of G is called a
t-spanner if dg(u,v) < t-dg(u,v), for every e = (u,v) € E, where dg(u,v) and dy(u,v) are the distances
between u and v in G and H, respectively. Graph spanners were introduced in two celebrated papers
from 1989 [54] 55] for unweighted graphs, where it is shown that for any n-vertex graph G = (V| E) and
integer k > 1, there is an O(k)-spanner with O(n!T'/*) edges. We shall sometimes use a normalized
notion of size, sparsity, which is the ratio of the size of the spanner to the size of a spanning tree, namely
n — 1. Since then, graph spanners have been extensively studied, both for general weighted graphs
and for restricted graph families, such as Euclidean spaces and minor-free graphs. In fact, spanners for
Fuclidean spaces— Fuclidean spanners—were studied implicitly already in the pioneering SoCG’86 paper
of Chew [19], who showed that any 2-dimensional Euclidean space admits a spanner of O(n) edges and
stretch /10, and later improved the stretch to 2 [20].

As with the sparsity parameter, its weighted variant—lightness—has been extremely well-studied; the
lightness is the ratio of the weight of the spanner to w(MST(G)). Seminal works on light spanners over
the years provide spanners with optimal lightness in various graph classes, such as in general graphs [17],
Euclidean spanners [26] and minor-free graphs [10]. Despite the large body of work on light span-
ners, the stretch-lightness tradeoff is not nearly as well-understood as the stretch-sparsity
tradeoff, and the intuitive reason behind that is clear: Lightness seems inherently more challenging to
optimize than sparsity, since different edges may contribute disproportionately to the overall lightness due
to differences in their weights. The three shortcomings of light spanners that emerge, when considering
the large body of work in this area, are: (i) The runtimes of these constructions are usually far from opti-
mal. (ii) These constructions are optimal in the standard and crude sense, but not in a refined sense that
takes into account a wider range of involved parameters, most notably e, but also other parameters, such
as the dimension (in Euclidean spaces) or the minor size (in minor-free graphs). (iii) The techniques
are ad hoc per graph class, and thus can’t be applied broadly (e.g., some require large stretch
and are thus suitable to general graphs, while others are naturally suitable to stretch 1+).

In this work, we are set out to address these shortcomings by presenting a unified framework of light
spanners in a variety of graph classes. Informally, the framework boils down to a transformation from
sparse spanners to light spanners; since the state-of-the-art for sparse spanners is much more advanced
than that for light spanners, such a transformation is powerful.

Our ultimate goal is to bridge the gap in the understanding between light spanners and sparse span-
ners. This gap is prominent when considering (i) the construction time of light versus sparse spanners, and
(ii) a fine-grained optimality of the lightness. In terms of (ii), the state-of-the-art spanner constructions
for general graphs, as well as for most restricted graph families, incur a (multiplicative) (1+¢)-factor slack
on the stretch with a suboptimal dependence on € as well as other parameters in the lightness bound. In
this work, we present new spanner constructions, all of which are derived as applications and implications
from a unified framework developed in this paper.

e In terms of (i), i.e., runtime, our constructions are significantly faster than the state-of-the-art for
every examined graph class; moreover, our runtimes are near-linear or linear and usually optimal.
Our main result in this context is an O(nlogn) time algorithm in the ACT model for constructing
a Fuclidean spanner with constant lightness and degree.

e In terms of (ii), i.e., fine-grained optimality, our constructions are significantly better than the state-
of-the-art for every examined graph class; our main result in this context is for minor-free graphs,
where we achieve tight dependencies on both € and the minor size — the upper bound follows as an
application of the unified framework, and the lower bound is obtained by different means.

We now highlight three completely different yet well-studied settings to which our framework applies.

Fast construction of Euclidean spanners in the algebraic computation tree (ACT) model.
Spanners have had special success in geometric settings, especially in low-dimensional Euclidean spaces.
The reason Euclidean spanners have been extensively studied over the years — in both theory and practice
— is that one can achieve stretch arbitrarily close to 1. The algebraic computation tree (ACT) introduced
by Ben-Or [6] model is used extensively in computational geometry, and in the area of Euclidean spanners
in particular; it is intimately related to the real RAM model. (The reader can refer to [6] and Chapter
3 in the book [53] for a detailed description of ACT model.) Computing (1 + €)-spanners for point sets
in R%, d = O(1), in ACT model requires Q(nlogn) time [I8, 32]. Despite a large body of work on light
Euclidean spanners [51] 15], 23] 26, 24], 25] [3, 56l 40} 53, B} [50] since the late 80s, the following problem
has been open for nearly three decades:

Question 1 (Question 22 in [53]). Can one construct a Euclidean (1+ €)-spanner with constant lightness
and degree (and thus constant sparsity) in optimal time O(nlogn) in the ACT model, for any fized e < 17

While Question [1] asks for both constant lightness and degree, it is even not known how to achieve
constant lightness only in O(nlogn) time in the ACT model. The best-known algorithm has running
time O(nlgogfz ") [40]. If one assumes indirect addressing, then there is an algorithm with running time
O(nlogn) T4 i But indirect addressing is a very strong operation: the lower bound of Q(nlogn) in
ACT model for Euclidean spanners mentioned earlier no longer applies. Some applications of light
spanners [56], 22] require that they can be computed in O(nlogn) time. Euclidean spanners of bounded
degree have applications in designing routing schemes (see, e.g., [14, 37, 12]), and more generally,
the degree of the spanner determines the local memory constraints when using spanners also for other

purposes, such as constructing network synchronizers and efficient broadcast protocols.

Fast construction of general weighted graphs. Althofer et al [2] shown that for every n-vertex
weighted graph G = (V, E,w) and integer k > 1, there is a greedy algorithm for constructing a (2k — 1)-
spanner with O(n't1/¥) edges, which is optimal under Erdés’ girth conjecture. Moreover, there is an
O(m)-time algorithm for constructing (2k — 1)-spanners in unweighted graphs with sparsity O(n%) [41].
Therefore, not only is the stretch-sparsity tradeoff in general graphs optimal (up to Erdés’ girth con-
jecture), one can achieve it in optimal time. For weighted graphs, one can construct (2k — 1)-spanners
with sparsity O(k‘n%) within time O(km) [0, 57]. On the other hand, the best running time for achieving
lightness bound O(n!/*) for stretch (2k — 1)(1 + €) for a fized € is super-quadratic in n: O(n?+1/5+<) [1]
for any fixed constant € < 1. Other faster constructions have a worst dependency on n and k& [30].

Question 2. Can one construct a (2k — 1) - (1 + €)-spanner in general weighted graphs with lightness
O(n'/*), within (nearly) linear time for any fived e < 12

Fine-grained lightness bound for minor-free graphs. The gap between sparsity and lightness is
prominent in minor-free graphs, for stretch 1 + €. Indeed, minor-free graphs are sparse to begin with,
and the sparsity is trivially (:)(r) On the other hand, for lightness, bounds are much more interesting.
Borradaile, Le, and Wulff-Nilsen [10] showed that the greedy (1 + €)-spanners of K,-minor-free graphs
have lightness Or,e(e%)7 where the notation O,(.) hides polylog factors of 7 and 1. Moreover, this is
the state-of-the-art lightness bound also in some sub-classes of minor-free graphs, particularly bounded
treewidth graphs. Past works provided strong evidence that the dependence of lightness on 1/€ of (1+¢)-
spanners should be linear: O(%) in planar graphs by Althéfer et al. [2], O(2) in bounded genus graphs
by Grigni [39], and OT(“O%) in K,-minor-free graphs by Grigni and Sissokho [38].

Question 3. Is there a (1 + €)-spanner of lightness O(1/€) for K,-minor-free graphs for a fixed r?

Other open problems. There are several settings where the fast constructions of light spanners for
fized € remains open.

e Unit disk graph. There is a significant gap between the fastest constructions of sparse versus
light spanners in UDGs. Fiirer and Kasiviswanathan [35] showed that sparse (1 + €)-spanners for
UDGs can be built in nearly linear time when d = 2, and in subquadratic time when d is a constant
of value at least 3. However , no o(n?)-time (1+ ¢)-spanner construction for UDGs with a nontrivial
lightness bound is known, even for d = 2. Can we construct a light (1 4 €)-spanner for UDGs in
O(nlogn) time for d = 2, and in truly subquadratic time for general d?

e Minor-free graphs. The fastest algorithm for constructing light spanners in K,-minor-free graphs
is greedy [2] with quadratic running time O,(n?r?). Can we construct a light (1 + €)-spanner for
K,-minor-free graphs in nearly linear time?

For fine-grained lightness bounds, there are two additional settings where the lightness bounds are not
well-understood.

e General graphs. While the stretch-sparsity tradeoff for spanners of general graphs is resolved
up to the girth conjecture, the stretch-lightness tradeoff, on the other hand, is still far from being
resolved. A long line of research [2, [15] [30} 17, B4] over the past three decades leads to a (2k — 1) -
(1 4 €)-spanner with lightness O(n'/*(1/¢)3+2/%) [I7, [34]. While the dependence on n and k are
optimal assuming Erdés’ girth conjecture, the dependence on 1/e is super-cubic. Can we reduce
the dependency of the lightness on € to linear?

e Euclidean Steiner spanners in low dimensional spaces. Le and Solomon [50] studied Steiner
spanners, namely, spanners that are allowed to use Steiner points, which are additional points that
are not part of the input point set. It was shown there that Steiner points can be used to improve
the sparsity quadratically, i.e., to O(e#), which was shown to be tight for dimension d = 2 in
[50], and for any d = O(1) by Bhore and Téth [§]. An important question left open in [50] is
whether one could use Steiner points to improve the lightness bound quadratically to O(e_d/ 2) for
any dimension d. Previous results either have a dependency on the spread of the metric [47] which
could be huge, or only work for d = 2 [7].

1.1 Research Agenda: From Sparse to Light Spanners

Thus far we exemplified the statement that the stretch-lightness tradeoff is not as well-understood as the
stretch-sparsity tradeoff. As we showed, this lack of understanding is prominent when considering (i)
the construction time, and (ii) fine-grained dependencies. This statement is not to underestimate in any
way the exciting line of work on light spanners, but rather to call for attention to the important research
agenda of narrowing this gap and ideally closing it.

All questions regarding fast constructions of light spanners ask the same thing: Can one achieve fast
constructions of light spanners that match the analogous results for sparse spanners?

Goal 1. Achieve fast constructions of light spanners that match the corresponding constructions of sparse
spanners. In particular, achieve (nearly) linear-time constructions of spanners with optimal lightness for
basic graph families, such as the ones covered in the aforementioned questions.

A fine-grained optimization of the stretch-lightness tradeoff, which takes into account the exact de-
pendencies on € and the other involved parameters, is a highly challenging goal.

Goal 2. Achieve fine-grained optimality for light spanners in basic graph families.

Some of the papers on light spanners employ inherently different techniques than others, e.g., the
technique of [I7] requires large stretch while others are naturally suitable to stretch 1+ €. Since the
techniques in this area are ad hoc per graph class, they can’t be applied broadly. A unified framework
for light spanners would be of both theoretical and practical merit.

Goal 3. Achieve a unified framework of light spanners.

1.2 Our Contribution

Our work aims at meeting the above goals (Goal Goal by presenting a unified framework for optimal
and fast constructions of light spanners in a variety of graph classes. Basically, we strive to translate
results — in a unified manner — from sparse spanners to light spanners, without significant loss in any
of the parameters. Our paper achieves Goal [T1] and Goal [3| or achieves Goal 2] and Goal [3} achieving all
three goals simultaneously is left open by our work.

We also answer almost all the aforementioned open problems, either positively or negatively. In
particular, we answer Question [I] and Question [2| positively, and Question [3] negatively. For other open
problems, we completely resolve them in the affirmative.

Two of our results are particularly surprising. First, we show that the optimal lightness bound of
(1 + ¢) for K,-minor-free graphs is éne(% + 6%) (Theorem . That is, the lightness dependency on
1/e is quadratic, despite ample evidence [2, 39, [38] of a linear dependency on 1/e in subclasses of minor-
free graphs. In particular, our result negatively settles Question [3] Second, we construct light spanners
in general graphs with near-optimal lightness in O(ma(m,n)) time (Theorem [I.2)); our algorithm is
significantly faster than the best algorithms for sparse spanners with the same sparsity bound.

Fast constructions. @ We present a spanner construction that achieves constant lightness and degree,
within optimal time of O(nlogn) in ACT model; this proves the following theorem, which affirmatively
resolves Question [I| which was open for three decades.

Theorem 1.1. For any set P of n points in R, any d = O(1) and any fived € > 0, one can construct in
the ACT model a (14 €)-spanner for P with constant degree and lightness within optimal time O(nlogn).

For general graphs we provide a nearly linear-time spanner construction with optimal lightness, as-
suming Erdds’ girth conjecture (and up to the e-dependency), thus answering Question

Theorem 1.2. For any edge-weighted graph G(V, E), a stretch parameter k > 2 and an arbitrary small
fized € < 1, there is a deterministic algorithm that constructs a (2k —1)(1+€)-spanner of G with lightness
O(n*) in O(ma(m,n)) time, where a(-,-) is the inverse-Ackermann function.

We remark that a(m,n) = O(1) when m = Q(nlog*n). Thus, the running time in Theorem
is linear in m in almost the entire regime of graph densities, i.e., except for very sparse graphs. The
previous state-of-the-art runtime for the same lightness bound is super-quadratic [I]. Surprisingly, the
result of Theorem outperforms the analog result for sparse spanners in weighted graphs: for stretch
2k — 1, the only spanner construction with sparsity O(nl/ k) is the greedy spanner, whose runtime is
O(mn“'%). Other results [1l 28] with stretch (2k — 1)(1 + €) have (nearly) linear running time, but the
sparsity is O(n'/Flog(k)), which is worse than our lightness bound by a factor of log(k).

Subsequent work. In a subsequent and consequent follow-up to this work, the authors [48] used
our framework here to present a fast construction of spanners with near-optimal sparsity and lightness
for general graphs [48]. We also adapted and simplified our construction here to construct a sparse
spanner (with unbounded lightness) in O(ma(m,n) + SORT(m)) time in the pointer-machine model,

where SORT(m) is the time to sort m integers. Even in a stronger Word RAM model, the best known
algorithm for sorting m integers takes O(m+/loglogm) [42] expected time. Thus, the running time of the
sparse spanner algorithm is still inferior to our running time in Theorem In the Word RAM model,
a linear time algorithm for constructing a sparse spanner was presented; we do not consider this model
in our work here.

Our framework also resolves two open problems regarding fast constructions of light spanners in
two different settings. In particular, we get an O(nlogn) time algorithm for UDGs; the running time
is optimal in the ACT model. For minor-free graphs, we get the first linear time algorithm, which
significantly improves over the best known algorithm for this problem.

Theorem 1.3. For any set P of n points in R%, any d = O(1) and any fized ¢ > 0, one can construct
a (1 + €)-spanner of the UDG for P with constant sparsity and lightness. For d = 2, the construction
runtime is O(nlogn) in the ACT model; for d = 3, the runtime is O(n*/3); and for d > 4, the runtime

_ 2
is O(n2 (fd/21+1>+6) for any constant 6 > 0.

Theorem 1.4. For any K,-minor-free graph G and any fized € > 0, one can construct a (1 + €)-spanner

of G with lightness O(r+/logr) in O(nry/logr) time.

Fine-grained lightness bounds. The most important implication of our framework in terms of
fine-grained lightness bounds is to minor-free graphs, where we obtain a tight dependence on ¢ in the
lightness.

Theorem 1.5. Any K,-minor-free graph admits a (1 + €)-spanner with lightness Om(% + 6%) for any
e<1andr > 3.

Furthermore, for any fixedr > 6, anye <1 andn > r+ (%)6(1/6), there is an n-vertex graph G excluding
K, as a minor for which any (1 + €)-spanner must have lightness (% + E%)

The O, (.) notation in Theorem hides a poly-logarithmic factor of 1/e¢ and r. Theorem (1.5
resolves Question |3| negatively. We remark that, in Theorem the exponential dependence on 1/e
in the lower bound on n is unavoidable since, if n = poly(1/e), the result of [38] yields a lightness of

Or(% log(n)) = OT,G(%)'

Interestingly, our lower bound applies to a geometric graph, where the vertices correspond to points
in R? and the edge weights are the Euclidean distances between the points. The construction is recursive.
We start with a basic gadget and then recursively “stick” many copies of the same basic gadgets in a
fractal-like structure. We use geometric considerations to show that any (1 + €)-spanner must take every
edge of this graph, whose total edge weight is Q(1/€2)w(MST).

A prominent application of light spanners for K,.-minor-free graphs is to the Traveling Salesperson
Problem (TSP). Theorem implies a PTAS (polynomial time approximation scheme) with approxi-
mation 1 + € and running time o1/¢® nOM) improving upon the algorithm by Borradaile, Le, and Wulff-
Nilsen [I0] with running time 20(1/¢H0() - Our lower bound of Theorem implies that to further
improve the runtime for TSP one has to significantly deviate from the standard technique [27] that relies
on light spanners.

Using our framework, we obtain near-optimal lightness bounds in two different settings: general graphs
(Theorem and Steiner Euclidean spanners (Theorem [1.7)). Both results resolve two open problems
mentioned above.

Theorem 1.6. Given an edge-weighted graph G(V,E) and two parameters k > 1l,e < 1, there is a
(2k —1)(1+¢€)-spanner of G with lightness O(g(n, k)/e) where g(n, k) is the minimum sparsity of n-vertex
graphs with girth 2k + 1. As g(n, k) = O(n'/*), the lightness is O(n'/* /e).

The Erdds’ girth conjecture implies that g(n, k) = Q(n'/¥). While the conjecture is very commonly
used in the computer science community as evidence for spanners’ optimality, the combinatorics com-
munity is quite skeptical about it [9, 3], 21} [44]; in particular, a bipartite version of the conjecture was
refuted [I3] 21]. Consequently, the fact that our Theorem gives a near-optimal lightness bound that
does not rely on Erdés’ girth conjecture is a significant advantage. We are not aware of any prior work
showing the existence of a near optimal spanner without the Erdés’ girth conjecture.

Theorem 1.7. For any n-point set P € RY and any d > 3, d = O(1), there is a Steiner (1 + €)-spanner
for P with lightness O(e_(d+1)/2) that is constructable in polynomial time.

We also obtain improved lightness bounds for light spanners in high dimensional Euclidean spaces.
The literature on spanners in high-dimensional Euclidean spaces is surprisingly sparse. Har-Peled, Indyk
and Sidiropoulos [43] showed that for any set of n-point Euclidean space (in any dimension) and any
parameter ¢ > 2, there is an O(t)-spanner with sparsity O(n'/t* - (lognlogt)). Filtser and Neiman [33]

1
gave an analogous but weaker result for lightness, achieving a lightness bound of O(t*n% logn). They also

o2
generalized their results to any ¢, metric, for p € (1, 2], achieving a lightness bound of O(%nl o logn).

Our results improve all of these results.

Theorem 1.8. e [For any n-point set P in a Euclidean space and any given t > 2, there is an O(t)-

1
spanner for P with lightness O(tnt logn) that is constructible in polynomial time.

e For any n-point £, normed space (X,dx) with p € (1,2] and any t > 2, there is an O(t)-spanner
o 2
for (X, dx) with lightness O(tnltht logn).

1.3 Owur Unified Framework: Technical and Conceptual Highlights

In this section, we give a high-level overview of our framework for constructing light spanners with
stretch ¢(1 4 €), for some parameter ¢ that depends on the examined graph class; e.g., for Euclidean
spaces t = 1+ ¢, while for general graphs ¢t = 2k — 1. We shall construct spanners with stretch ¢(1+ O(e))
and assume w.l.o.g. that € is sufficiently smaller than 1; a stretch of ¢(1 4 €), for any 0 < e < 1, can be
achieved by scaling.

Let L be a positive parameter, and let H.1, be a t(1 + 7e)-spanner for all edges in G = (V, E, w) of
weight < L, for some constant v > 1. That is, V(H.) = V and for any edge (u,v) € E with w(u,v) < L:

di_, (u,v) < 1+ ye)w(u,v). (1)

Note that by the triangle inequality, H., is also a t(1 + 7ye)-spanner for every pair of vertices of
distance < L. Our framework relies on the notion of a cluster graph, defined as follows.

Definition 1.9 ((L, ¢, 5, Y)-Cluster Graph). An edge-weighted graph G = (V,E,w) is called an (L, €, B)-
cluster graph with respect to spanner H.p, for positive parameters L,e, 5, T > 1, if it satisfies the
following conditions:

1. Fach node pc € V corresponds to a subset of vertices C € V, called a cluster, in the original graph
G. For any pair oc,, pc, of distinct nodes in V', we have C1 N Cy = ().

2. Fach edge (pc,,pc,) € € corresponds to an edge (u,v) € E, such that u € C; and v € Cs.
Furthermore, w(ec,, vc,) = w(u,v).

3. L <w(ecy:pcy) < TL, for every edge (pcy; pc,) € €.

4. Dm(H.[C]) < BeL, for any cluster C' corresponding to a node oo € V.
Here Dm(X) denotes the diameter of a graph X, i.e., the mazimum pairwise distance in X.

Condition (1) asserts that clusters corresponding to nodes of G are vertex-disjoint. Condition (3)
asserts that edges in £ have the same weight up to a factor of Y, which is always at most 2 in our
construction.. Furthermore, Condition (4) asserts that they induce subgraphs of low diameter in H.y,.
In particular, if 8 is constant, then the diameter of clusters is roughly € times the weight of edges in the
cluster graph. That is, the diameter of the clusters is much smaller than the weight of the edges when €
is sufficiently small.

In our framework, we use the cluster graph to compute a subset of edges in G of weights in [L, TL)
to add to the spanner H.p, so as to obtain a spanner, denoted by H.~vr, for all edges in G of weight
less than TL. As a result, we extend the set of edges whose endpoints’ distances are preserved (to within
the required stretch bound) by the spanner. By repeating the same construction for edges of higher and
higher weights, we eventually obtain a spanner that preserves all pairwise distances in G.

There are two values that Y can take, depending on whether we wish to optimize the running time
or the fine-grained dependence on € and other parameters such as the size of the excluded minor. In the
former case we set T = 1 + ¢, whereas in the latter we set T = 2.

Note that a single edge of G may correspond to multiple edges of G to facilitate the transformation of
edges of G to edges of G, we assume access to a function source(+) that supports the following operations in
O(1) time: (a) given a node ¢¢, source(y¢) returns a vertex 7(C) in cluster C, called the representative of
C, (b) given an edge (¢, , pc,) in &, source(yc, , ¢c,) returns the corresponding edge (u,v) of (¢, ©c,),
which we refer to as the source edge of (u,v), where u € C; and v € Cy; we note that u (resp., v) need
not be r(C1) (resp., r(C2)). Constructing the function source(-) efficiently is straightforward; the details
are in Section [7l

For optimizing the construction time, our framework assumes the existence of the following algorithm,
hereafter the sparse spanner algorithm (SSA), which computes a subset of edges in G, whose source edges
are added to H.y. Recall that the parameter T is set as T = 1 + ¢ in this case.

SSA: Given an (L, €, 5, T = 1+ ¢)-cluster graph G(V, £, w) and function source(-) as defined above,
the SSA outputs a subset of edges EP™U"ed C £ such that:

1. (Sparsity) |EPuned| < x|V for some x > 0.

2. (Stretch) For each edge (¢c,.¢c,) € &€, du_, ., (u,v) < (1 + sssa(B)e)w(u,v) where
(u,v) = source(pc,, pc,) and sssa () is some constant that depends on 3 only, and H_(11)1,
is the graph obtained by adding the source edges of EP"ed to H_.

Let Timessa = O((m’ + n')7(m/,n)) be the running time of the SSA, where 7 is a monotone
non-decreasing function, n’ = [V| and m’ = |€|.

Intuitively, the SSA can be viewed as an algorithm that constructs a sparse spanner for an unweighted
graph, as edges of G have the same weights up to a factor of (1 + €) and the only requirement from the
edge set EPUned returned by the SSA, besides achieving small stretch, is that it would be of small size.
While the interface to the SSA remains the same across all graphs, its exact implementation may change
from one graph class to another; informally, for each graph class, the SSA is akin to the state-of-the-art
unweighted spanner construction for that class, and this part of the framework is pretty simple.

For optimizing the fine-grained dependence on € and other parameters (such as minor size) in the
lightness bound, our framework assumes the existence of the following algorithm, called sparse spanner

oracle (SSO), which computes a subset of edges in G to add to H.. Recall that the parameter T is set
as T = 2 in this case.

SSO: Given an (L, ¢, 3, T = 2)-cluster graph G(V, £,w), the SSO outputs a subset of edges F C E
in polynomial time such that:

1. (Sparsity) w(F) < x|V|L for some x > 0.

2. (Stretch) For each edge (¢c,,vc,) € &, du_,, (u,v) < t(14 ssso(B)e)w(u,v) where (u,v)
is the corresponding edge of (¢¢, , ¢c,) and ssso (/) is some constant that depends on S only,
and H_oy, is the graph obtained by adding F' to H.y.

We can interpret the SSO as a construction of a sparse spanner in the following way: If F' contains
only edges of G corresponding to a subset of &, say EPU"ed C £ then, w(e) > L for every e € F; in this
case |F| < x|V|. The edges in the set F' produced by the SSO may not correspond to edges in £ of G.
This allows for more flexibility in choosing the set of edges to add to H., and is the key to obtaining
a fine-grained optimal dependencies on € and the other parameters, such as the Euclidean dimension or
the minor size. Importantly, for all classes of graphs considered in this paper, the implementation of SSO
is very simple, as we show in Section

The highly nontrivial part of the framework is given by the following theorem, which provides a
black-box transformation (i) from an SSA to an efficient (in terms of running time) meta-algorithm for
constructing light spanners and (ii) from an SSO to an efficient (in terms of fine-grained dependencies)
meta-algorithm for constructing light spanners. We note that this transformation remains the same across
all graphs.

Theorem 1.10. Let L, e, t,v, B be non-negative parameters where v, 3 > 1 only take on constant values,
and € < 1. Let F be an arbitrary graph class. If, for any graph G in F:

(1) the SSA can take any (L,e,8,T = 1+ €)-cluster graph G(V,E,w) corresponding to G as input
and return as output a subset of edges EPM"d C & satisfying the aforementioned two properties of
and , then for any graph in F we can construct a spanner with stretch t(1 +
(5ssa(O(1)) +O(1))e), lightness O((xe 3+ e 4)log(1/e)), and in time O(me ' (a(m,n) +7(m,n)+
e 1) log(1/e).

(2) the SSO can take any (L,e,3,T = 2)-cluster graph G(V,E,w) corresponding to G as input and
return as output a subset of edges F' of G satisfying the aforementioned two properties of
and (Stretch), then for any graph in F we can construct a spanner with stretch t(1+ (2ssso(O(1)) +
O(1))e), lightness O((xe ™' + €2)) when t = 1 + ¢, and lightness O((xe™")) when t > 2.

See Figure [1] for an illustration of how Theorem [1.10] is used to derive various results in our paper.
We remark the following regarding Theorem

Remark 1.11. If the[SSA| can be implemented in the ACT model with the stated running time, then the
construction of light spanners provided by Theorem [1.10] can also be implemented in the ACT model in
the stated running time.

In the implementations of [SSA| for Euclidean spaces and UDGs, we rely on the condition that H.p,
preserves distances smaller than L within a factor of ¢(1 4+ ve). However, we do not need this condition
to hold for general graphs and minor-free graphs; for them all we need is Condition 4 in Definition (1.9

For fast constructions, the transformation provided by Theorem [1.10] — from sparsity in almost
unweighted graphs (as captured by the SSA) to lightness — has a constant loss on lightness (for constant

Theorem [[.10I
Unified Framework

(Section (Section
Lemma Lemma [5.6]

SSAGen 5500rac

Y y

Theorem [I.2] o Theorem [5.3] - Theorem [L.6]
Fast Construction |- stretch t > 2 » General Graphs
General Graphs
é | Theorem [L.§]
o z High Dim.
> .
7 s Euclidean t > 2
(Section = O : —
A s (Section [5.2))
Lemma (4.8 S B
cza ; Theorem [5.7] L Theorem
z E GSSO High Dim. Normed
\i g @) t>2 > Spaces t > 2
Theorem [1.4] %
Fast Construction [
Minor-free
Theorem [L.3]

> Minor-free Graphs

t=1 .
(Section te (Section [5.2.2))
Lemma Theorem [£.11]
[SSAGeon] GSSO Euclidean

Y \

Theorems [.1] and [.3] Theorem
Fast Constructions | Theorem [5.4] _ | Steiner Euclidean
ACT Euclidean | | stretch t =1+ t=1+e¢
and UDG

Figure 1: Applications of our framework in obtaining fast constructions of light spanners (on the left)
and spanners with truly optimal lightness (on the right). The notion of general sparse spanner oracle
(GSSO) is another abstraction that we will formally introduce in Section

€) and a small running time overhead. In Section 4] we provide simple implementations of the SSA
for several classes of graphs in time O(m + n), for a constant €; Theorem thus directly yields a
running time of O((m + n)a(m,n)). For minor-free graphs, with an additional effort, we remove the
factor a(m,n) from the runtime. For Euclidean spaces and UDGs, we apply the transformation not on
the input space but rather on a sparse spanner, with O(n) edges, hence the runtime O((m + n)a(m,n))

of the transformation is not the bottleneck, as it is dominated by the time ©(nlogn) needed for building
Euclidean spanners.

For obtaining fine-grained lightness bounds, the transformation from sparsity to lightness in Theo-
rem only looses a factor of 1/e for stretch ¢ > 2, and, in addition, another additive term of —1—6% is lost
for stretch t = 1+ €. Later, we complement this upper bound by a lower bound (Section [3)) showing that
for t = 1+ ¢, the additive term of +€% is unavoidable in the following sense: There is a graph class — the
class of bounded treewidth graphs — where we can implement an SSO with xy = O(1) for stretch (1 +¢),
and hence the lightness of the transformed spanner is O(1/€2) due to the additive term of —i—e%, but any
light (1 + €)-spanner for this class of graphs must have lightness 2(1/¢2?). (We modify this construction
to obtain the lower bound for minor-free graphs in Theorem [1.5])

Despite the clean conceptual message behind Theorem [I.I0] — in providing a transformation from
sparse to light spanners — its proof is technical and highly intricate. This should not be surprising as
our goal is to have a single framework that can be applied to basically any graph class. The applicability
of our framework goes far beyond the specific graph classes considered in the current paper, which
merely aim at capturing several very different conceptual and technical hurdles, e.g., complete vs. non-
complete graphs, geometric vs. non-geometric graphs, stretch 1 + € vs. large stretch, etc. The heart of
our framework is captured by Theorem whose proof appears in Part The starting point of our
proof of Theorem is a basic hierarchical partition, which dates back to the early 90s [4] 15], and was
used by most if not all of the works on light spanners (see, e.g., [29 30, 17, 10, 11, 50]). The current
paper takes this hierarchical partition approach to the next level, by proposing a unified framework that
reduces the problem of efficiently constructing a light spanner to the conjunction of two problems: (1)
efficiently constructing a hierarchy of clusters with several carefully chosen properties, and (2) efficiently
constructing a sparse spanner; these two problems are intimately related, in the sense that the “carefully
chosen properties” of the clusters are set so that we can efficiently apply the sparse spanner construction.

To minimize the dependency on € in the transformation in Theorem [1.10] we construct clusters in such
a way that (1) a cluster at a higher level should contain as many clusters as possible, called subclusters, at
lower levels, and (2) the augmented diameter of the cluster must be within a restricted bound. Condition
(1) implies that each cluster has a large potential change, which is used to “pay” for spanner edges that
the algorithm adds to the spanner, while condition (2) implies that the constructed spanner has the
desired stretch. The two conditions are in conflict with each other, since the more subclusters we have
in a single cluster, the larger the diameter of the cluster gets. Achieving the right balance between these
two conflicting conditions is the main technical contribution of this paper.

Another significant technical contribution of our paper in this context is in introducing the notion
of augmented diameter of a cluster. The definition of augmented diameter appears in Section [2| but
at a high level, the idea is to consider weights on both nodes and edges in a cluster, where the node
weights are determined by the potential values of clusters computed (via simple recursion) in previous
levels of the hierarchy. The main advantage of augmented diameter over the standard notion of diameter
is that it can be computed efficiently, while the computation of diameter is much more costly. Informally,
the augmented diameter can be computed efficiently since (i) we can upper bound the hop-diameter of
clusters, and (ii) the clusters at each level are computed on top of some underlying tree; roughly speaking,
that means that all the distance computations are carried out on top of subtrees of bounded hop-diameter
(or depth), hence the source of efficiency.

We next argue that our approach is inherently different than previous ones. First, the
very fact that our approach is unified makes it inherently different than previous approaches, which, as
mentioned, are ad hoc per graph class. Second, our approach is not just a unified framework for reproving
known results — we employ it to break through the state-of-the-art. To this end, we highlight one concrete
result — on Euclidean spanners in the ACT model — which breaks a longstanding barrier in the area
of geometric spanners, by using an inherently non-geometric approach. All the previous algorithms for

10

light Euclidean spanners were achieved via the greedy and approximate-greedy spanner constructions.
The greedy algorithm is non-geometric but slow, whereas the approximate-greedy algorithm is geometric
and can be implemented much more efficiently. The analysis of the lightness in both algorithms is done
via the so-called leapfrog property [23, 26], 24], 25], [40}, 53], which is a geometric property. The fast spanner
construction of GLN [40] implements the approximate-greedy algorithm by constructing a hierarchy of
clusters with O(log)fgogn) levels and, for each level, Dijkstra’s algorithm is used for the construction of
clusters for the next level. The GLN construction incurs an additional O(nlogn) factor for each level

to run Dijkstra’s algorithm in the ACT model, which ultimately leads to a runtime of O(nlg‘g)glzg”n). Our
approach is inherently different, and in particular we do not need to run Dijkstra’s algorithm or any
other single-source shortest (or approximately shortest) path algorithm. The key to our efficiency is in a
careful usage of the new notion of augmented diameter, as well as its interplay with the potential function
argument and the hierarchical partition that we use. We stress again that our approach is non-geometric,
and the only potential usage of geometry is in the sparse spanner construction that we apply. (Indeed,

the sparse spanner construction that we chose to apply is geometric, but this is not a must.)

2 Preliminaries

Let G be an arbitrary weighted graph. We denote by V(G) and E(G) the vertex set and edge set of G,
respectively. We denote by w : E(G) — R* the weight function on the edge set. Sometimes we write
G = (V, E) to clearly explicate the vertex set and edge set of G, and G = (V, E, w) to further indicate the
weight function w associated with G. We use MST(G) to denote a minimum spanning tree of G; when

the graph is clear from context, we simply use MST as a shorthand for MST(G).

For a subgraph H of G, we use w(H) & > ecr(m) w(e) to denote the total edge weight of H. The

distance between two vertices p, ¢ in G, denoted by dg(p, q), is the minimum weight of a path between
them in G. The diameter of G, denoted by Dm(G), is the maximum pairwise distance in G. A diameter
path of G is a shortest (i.e., of minimum weight) path in G realizing the diameter of G, that is, it is a
shortest path between some pair u, v of vertices in G such that Dm(G) = dg(u,v).

Sometimes we shall consider graphs with weights on both edges and vertices. We define the augmented
weight of a path to be the total weight of all edges and vertices along the path. The augmented distance
between two vertices in G is defined as the minimum augmented weight of a path between them in
G. Likewise, the augmented diameter of G, denoted by Adm(G), is the maximum pairwise augmented
distance in G; since we will focus on non-negative weights, the augmented distance and augmented
diameter are no smaller than the (ordinary notions of) distance and diameter. An augmented diameter
path of G is a path of minimum augmented weight realizing the augmented diameter of G.

Given a subset of vertices X C V(G), we denote by G[X] the subgraph of G induced by X: G[X] has
V(G[X]) = X and E(G[X]) = {(u,v) € E(G) | u,v € X}. Let F C E(G) be a subset of edges of G; we
denote by G[F] the subgraph of G with V(G|[F]) = V(G) and E(G[F]) = F.

Let S be a spanning subgraph of GG; weights of edges in S are inherited from G. The stretch of S is

given by max, ,cv (@) gg E‘f”y/g, and it is realized by some edge e of G. We say that S is a t-spanner of G if

the stretch of S is at most ¢. There is a simple greedy algorithm, called path greedy (or shortly greedy),
to find a ¢-spanner of a graph G: Examine the edges e = (x,y) in G in nondecreasing order of weights,
and add to the spanner edge (x,y) iff the distance between = and y in the current spanner is larger than
t-w(z,y).
We say that a subgraph H of G is a ¢-spanner for a subset of edges X C E if max(y y)ex Z}GI((ZS; <t.
In the context of minor-free graphs, we denote by G/e the graph obtained from G by contracting e,
where e is an edge in G. If G has weights on edges, then every edge in G/e inherits its weight from G.

11

In addition to general and minor-free graphs, this paper studies geometric graphs. Let P be a set of
n points in R, We denote by ||p, ¢|| the Euclidean distance between two points p,q € R%. A geometric
graph G for P is a graph where the vertex set corresponds to the point set, i.e., V(G) = P, and the
edge weights are the Euclidean distances, i.e., w(u,v) = |lu,v|| for every edge (u,v) in G. Note that G
need not be a complete graph. If G is a complete graph, i.e., G = (P, (g), IIIl), then G is equivalent to
the Fuclidean space induced by the point set P. For geometric graphs, we use the term wverter and point
interchangeably.

We use [n] and [0,n] to denote the sets {1,2,...,n} and {0,1,...,n}, respectively.

3 Lightness Lower Bounds

In this section, we provide lower bounds on light (1+€) spanners to prove the lower bound in Theorem
Interestingly, our lower bound construction draws a connection between geometry and graph spanners:
we construct a fractal-like geometric graph of weight Q(MGSZT) such that it has treewidth at most 4 and
any (1 + €)-spanner of the graph must take all the edges.

Theorem 3.1. For any n = Q(e®1/9) and e < 1, there is an n-vertex graph G of treewidth at most 4
such that any light (1 4 €)-spanner of G must have lightness Q(g%)

Before proving Theorem [3.1, we show its implications to the lower bound in Theorem [1.5
Proof: [Proof of the lower bound in Theorem First, construct a complete graph Hy on r — 1 vertices
for which any (1 4 €)-spanner has lightness (%) as follows: Let Xy C V/(Hi) be a subset of r/2 vertices
and Xo = V(H;) \ X1. We assign weight 2¢ to every edge with both endpoints in X; or X9, and weight
1 to every edge between X; and Xj. Clearly MST(H;) = 1 + (r — 2)2e. We claim that any (1 + €)-
spanner S; of Hj must take every edge between X; and Xo; otherwise, if e = (u,v) is not taken where
u € X1,v € Xo, then dg, (u,v) > dg,\o(u,v) = 1+ 2¢ > (1+€)dg(u,v). Thus, w(S1) > | X1[|Xa| = Q(r?).
This implies w(S1) = Q(%)w(MST(Hy)).

Let Hy be an (n —r + 1) vertex graph of treewidth 4 guaranteed by Theorem [3.1} Hs excludes K, as
a minor for any r > 6. We scale edge weights of H; appropriately so that w(MST(Hz)) = w(MST(H;)).
Connect H; and Hj by a single edge of weight 2w(MST(H;)) to form a graph G. Then G excludes K,
as minor (for r > 5) since Hy and Hy both exclude K, as a minor. Furthermore, any (1 + €)-spanner of
G must have lightness at least Q(% + E%) as w(MST(G)) = 4w(MST(Hy)). O

We now focus on proving Theorem The core gadget in our construction is depicted in Figure
Let C; be a circle on the plane centered at a point o of radius r. We use ab to denote an arc of C, with
two endpoints a and b. We say ab has angle 0 if Zaob = .We use |ab| to denote the (arc) length of ab,
and ||a, b|| to denote the Euclidean length between a and b.

By elementary geometry and Taylor’s expansion, one can verify that if ab has angle @, then:

|ab| = 6r
||a, b|| = 2rsin(6/2) = ro(1 — 6% /24 + o(6%)) (2)
laobll = 2B Ry — (122 1 o0

Core Gadget. The construction starts with an arc ab of angle /e of a circle C;.. W.l.o.g., we assume
that 1 is an odd integer. Let k = $(1 +1). Let {a = 21, z2,..., 22, = b} be the set of points, called break

points, on the arc ab such that Zz;ozi 1 = €3/2 for any 1 < i < 2k — 1.

12

2k

(b)

(c)

Figure 2: (a) The core gadget. (b) A different view of the core gadget. (c) A tree decomposition of the core gadget.

Let H, be a graph with vertex set V(H,) = {x1,...,z9r}. We call 1 and xo; two terminals of H,.
For each i € [2k — 1], we add an edge x;x; 1 of weight w(z;zit1) = ||zi, xit1]| to E(H,). We refer to
edges between x;z;;1 for i € [2k — 1] as short edges. For each i € [k], we add an edge x;z;;x of weight
||zi, xiyr||. We refer to these edges as long edges. Finally, we add edge ||z1,zg|| of E(H,), that we refer
to as the terminal edge of H,. We call H, a core gadget of scale r. See Figure [Ja) for a geometric
visualization of H, and Figure [2(b) for an alternative view of H,.

We observe that:

Observation 3.2. H, has the following properties:
1. For any edge e € E(H,), we have:
orsin(e¥/2/2) if e is a short edge
w(e) = < 2rsin(ke’/2/2) if e is a long edge (3)
2r sin(/€/2) if e is the terminal edge
2. w(MST(H,)) < ry/e.

3. w(Hy) > when € < 1.

r
6+/e
Proof: We only verify (3); other properties can be seen by direct calculation. By Taylor’s expansion,
each long edge of H, has weight w(e) = 2sin(3(v/e + €¥/2)) = L(\/e + o(€)) > r\/e/3 when € < 1. Since
H, has k long edges, w(H,) > kry/e/3 > GL\E' O

Next, we claim that H, has small treewidth.

13

Claim 3.3. H, has treewidth at most 4.

Proof: We construct a tree decomposition of width 4 of H,. In fact, we can construct a path decompo-

sition of width 4 for H,. Let Bj,..., Box_o be set of vertices where Ba;—1 = {x2i—1,Z2;+k—1, T2i+k} and
By = {x9i—1, T2k, T2} for each i € [k — 1] (see Figure[2c)). We then add z; and zj, to every B;. Then,
P ={Bi,...,Bg;_2} is a path decomposition of H, of width 4. O

Remark: It can be seen that H, has K4 as a minor, thus
has treewidth at least 3. Showing that H, has treewidth
at least 4 needs more work.

Lemma 3.4. There is a constant ¢ such that any (1 +
e/c)-spanner of H, must have weight at least

w(MST(H,))
Ge ’

Proof: Let e be a long edge of H, and G, = H, \ {e}.
We claim that the shortest path between e’s endpoints in
G. must have length at least (1 + ¢/c)w(e) for some constant ¢. That implies any (1 + €/c)-spanner of
H, must include all long edges. The lemma then follows from Observation since H, has at least 1/2¢
long edges, and each has length at least w(MST(H,))/3 for e < 1.

Suppose that e = z;x;1,. Let P. is a shortest path between z; and z;y; in Ge. Suppose that
w(P.) < (1 + €¢/c)w(e). Since the terminal edge has length at least 3/2w(e), P. cannot contain the
terminal edge. For the same reason, P, cannot contain two long edges. It remains to consider two cases:

Figure 3: Paths P. between x; and x;1, are
highlighted.

1. P, contains exactly one long edge. Then, it must be that P, = {z;, 11, Titxs1, fci+k}E| (Figure (a))
or P. = {xj,xi—1, 2451, %i+x} (Figure (b)) In both case, w(P;) = w(e) + 4rsin(e3/2/2) >
sin(e3/2 /92
w(e)(1+ 2385408 > (14 26)w(e).
2. P, contains no long edge. Then, P, = {z;, zi+1,...,Z;1r}. Thus we have:
w(P,) 2krsin(e¥/?/2)
w(e) 2rsin(ke3/2/2)

= 14¢/96+0(e) > 14 ¢/100

Thus, by choosing ¢ = 100, we derive a contradiction. ([l

Proof of Theorem (3.1 The construction is recursive. Let Hj the core gadget of scale 1. Let s1 (¢1)
be the length of short edges (long edges) of Hy. Let z1,...,z} be break points of Hy. Let § be the ratio
of the length of a short edge to the length of the terminal edge. That is:

_ llahadll _ sin(e¥2/2)
|lzf, zg |l sin(v/e/2)
Let L = % We construct a set of graphs G, ..., Gy, recursively; the output graph is Gr. We refer to G;

is the level-¢ graph.
Level-1 graph G; = H;. We refer to breakpoints of H; as breakpoints of G.

=€+ o(e) (4)

2indices are mod 2k.

14

NQ

Figure 4: An illustration of the recursive construction of G with two levels.

Level-2 graph (G2 obtained from G by: (1) making 2k — 1 copies of the core gadget Hy at scale § (each
H; is obtained by scaling every edge the core gadget by J), (2) for each ¢ € [2k — 1], attach each copy
of Hs to (G1 by identifying the terminal edge of Hs and the edge between two consecutive breakpoints
z}xzl,, of Gi. We then refer to breakpoints of all Hs as breakpoints of Ga. (See Figure) Note that
by definition of 6, the length of the terminal edge of Hy is equal to ||z}, z},||. We say two adjacent
breakpoints of Go consecutive if they belong to the same copy of Hs in Go and are connected by one
short edge of Hj.

Level-j graph G; obtained from G;_1 by: (1) making (2k —1)7 copies of the core gadget Hg; 1 at scale
6971 (2) for every two consecutive breakpoints of G,_1, attach each copy of Hg;-1 to Gj_1 by identifying
the terminal edge of Hsj—1 and the edge between the two consecutive breakpoints. This completes the
construction.

We now show some properties of Gr. We first claim that:

Claim 3.5. GG;, has treewidth at most 4.

Proof: Let T} be the tree decomposition of GG of width 5, as guaranteed by Claim Note that for
every pair of consecutive breakpoints a:zl, le 41 of Gy, there is a bag, say X;, of T7 contains both le and
:L'Zl 1- Also, there is a bag of T containing both terminals of T7.

We extend the tree decomposition T} to a tree decomposition T of G5 as follows. For each gadget Hj
attached to (G1 via consecutive breakpoints x’i,x}H, we add a bag B = {:E’i,xilﬂ}, connect B to X; of
T1 and to the bag containing terminals of the tree decomposition of Hs. Observe that the resulting tree
decomposition T, has treewidth at most 4. The same construction can be applied recursively to construct
a tree decomposition of Gy, of width at most 4. O

Claim 3.6. w(MST(Gr)) = O(1)w(MST(Hy)).

Proof: Let r(e) be the ratio between MST(H;) and the length of the terminal edge of H;. Note that
MST(H;) is a path of short edges between x| and z},. By Observation we have:

M) < — Y Lo <14 (5)

2r sin(/€/2)

when ¢ < 1. When we attach copies of Hs to edges between two consecutive breakpoints of GG1, by re-
routing each edge of MST(H;) through the path MST(Hs) between Hs’s terminals, we obtain a spanning

15

tree of Gg of weight at most r(e)w(MST(Hy)) < (14 €)w(MST(H;)). By induction, we have:
w(MST(G;)) < (1 + €)w(MST(Gj-1)) < (1 + €)' "w(MST(Hy))
This implies that w(MST(GL)) < (1 + €)X 1w(MST(H;)) = O(1)w(MST(Hy)). O

Let S be an (1+¢€/100)-spanner of G, (¢ = 100 in Lemma[3.4). By Lemma[3.4] S includes every long
edge of all copies of H, at every scale r in the construction. Recall that ||z}, 2}, || is the terminal edge of

G1. Let L; be the set of long edges of all copies of Hg;—1 added at level j. Since lﬁlSlT(GlH) = r(e), we have:
r(e) 1,1 24 1,1
WOMST(G1) = 1 (OMSTG) — fled bl > 2 (wusT(G) ~ ek abd) (©

By Lemma we have:

w(la) > Sw(MST(Gh)) > 5

w(l) > 5(w(MST(G2) ~ MST(G1))

(w(MST(Gh)) — |21, 23l1)

w(Ly) 2 5 (w(MST(Gy)) ~ w(MST(G; 1))
Thus, we have:

1 1
2

L
Z > 13 (WMST(GL) — ||t #h/]) = (5)w(MST(GL)

By setting € < €/100, we complete the proof of Theorem The condition on n follows from the
fact that G, has |V (GL)| = O((2k — 1)¥) = O((%)%) vertices. O

16

Part 1
Our Unified Framework: Applications (Section
and Section [5))

In this part, we show applications of our unified framework described in Theorem in obtaining results
in Section [Il

4 Applications of the Unified Framework: Fast Constructions

In this section we implement the [SSA| for each of the graph classes. By plugging the SSA on top of the
general transformation, as provided by Theorem we shall prove all theorems stated in Section
We assume that € < 1, and this is without loss of generality since we can remove this assumption by
scaling € « €'/c for any € € (0,1) and c is sufficiently large constant. The scaling will incur a constant
loss on lightness and runtime, as the dependency on 1/e is polynomial in all constructions below.

4.1 Euclidean Spanners and UDG Spanners
In this section we prove the following theorem.

Theorem 4.1. Let G = (V, E,w) be a (14 €)-spanner either for a set of n points P or for the unit ball
graph U of P in RL. There is an algorithm that can compute a (1 + O(e€))-spanner H of G in the ACT
model with lightness O((e~4*2) + e*)1og(1/€)) in time O(me ' (a(m,n) 4+ e~ log(1/e)).

We now show that Theorem implies Theorem and Theorem Our construction for UDGs
relies on the following result by Fiirer and Kasiviswanathan [35].

Lemma 4.2 (Corollary 1 in [36]). Given a set of n points P in R?, there is an algorithm that con-

structs a (1 + €)-spanner of the unit ball graph for P with O(ne'=%) edges. For d = 2, the running

time is O(n(e~2logn)); for d = 3, the running time is O(n*3¢=3); and for d > 4, the running time is
2

O(nQ_Ud/?Hl)Me*dH + ne=?) for any constant § > 0.

Proof: [Proofs of Theorem and Theorem

It is known that a Euclidean (1 + ¢)-spanner for a set of n points P in R? with degree O(e!'~%) can be
constructed in O(nlogn) time in the ACT model (cf. Theorems 10.1.3 and 10.1.10 in [53]). Furthermore,
when m = O(ne'~%), we have that:

a(m,n) = a(nO(e%),n) = O(a(n) +log(e %) = O(a(n) + dlog(1/e)).

Thus, Theorem [I.1] follows from Theorem
By Lemma we can construct sparse (1+ ¢)-spanners for unit ball graphs with m = O(ne' %) edges
~ 2
in O(n(e 2logn) time when d = 2, O(n*/3¢~?) time when d = 3, and O(n2_<fd/21+1)+5e*d+1 +ne~?) time
for any constant § > 0 when d > 4. Thus, Theorem [L.3] follows from Theorem O

By Theorem in order to prove Theorem it suffices to implement the [SSA| for Euclidean
and UDG spanners. Next, we give a detailed geometric implementation of the [SSA] hereafter SSAgeom:
note that the stretch parameter ¢ in the geometric setting is 1 + €. The idea is to use a Yao-graph like
construction: For each node p¢ € V, we construct a collection of cones of angle € around the representative
r(C) = source(pc) of the cluster C' corresponding to ¢¢. Recall that we have access to a source function

17

that returns the representative of each cluster in O(1) time. Then for each cone, we look at all the
representatives of the neighbors (in G) of C that fall into that cone, and pick to gpruned the edge that
connects 7(C') to the representative that is closest to it.

SSAGeom (Euclidean and UDG): The input is a (L, ¢, 8)-cluster graph G(V,E,w) that corre-
sponds to a Euclidean or UDG spanner. The output is EPU"ed: initially, EPured = ().

For each node ¢, € V, do the following:

e Let N(pc,) be the set of neighbors of ¢, in G. We construct a collection of
7 = O(¢'=%) cones Cone(Cy) = {Q1,Q2,...,Q.} that partition R? each of angle
e and with apex at r(C,), the representative of C,. It is known (see, e.g. Lemma
5.2.8 in [53]) that we can construct Cone(C,,) in time O(e'~9) in the ACT model.

e For each j € [7]:
— Let Rj = {r(C") : pcr € N(pc,) N (r(C") € Q;)} be the set of representatives
that belong to the cone Q; € Cone(Cy). Let r; = argmin,er;||r(Cy), 7| be
the representative in R; that is closest to r(C,).
— Let ¢¢, be the node of G whose cluster C, has 7} as the representative. By
the definition of R;, (¢c,,¢c,) is an edge in €. Add (pc,, ¢c,) to EPruned.

/* We add at most one edge to £P"¢d incident on ¢, for each of the 7 cones. */

We next analyze the running time of SSAgeom, and also show that it satisfies the two properties of
(Sparsity]) and required by the abstract these properties are described in Section
Recall that H_ (14, is the graph obtained by adding the source edges of gpruned to H_p, which is the
spanner for all edges in G of weight < L. Note that the stretch of H., is t(1 4 ve) for t = 1 + ¢, where
v is a constant. Furthermore, as mentioned, we assume w.l.o.g. that € is sufficiently smaller than 1.

Figure 5: Illustration for the stretch bound proof of Lemma [4.3] Black dashed curves represent three
clusters Cy, Cy, Cy. The solid red edge (z,y) corresponds to an edge added to &£ pruned " while the dashed
red edge (u,v) is not added. The green shaded region represents cone @); of angle € with apex at r,.

18

Lemma 4.3. can be implemented in O((|V|+|E])e =) time in the ACT model. Furthermore, 1.
(Sparsity) |EP"d| = O(e!=N)|V|, and 2. (Stretch) For each edge (¢, ¢c,) € E, dH_ (1o (W v) <UL+

55SAceom (B)E)w(u, v), where (u,v) = source(c,, P,)s 55SAcwm (B) = 2(198 4+ 14) and € < min{%, Wl—%}'

Proof: We first analyze the running time. We observe that, since we can construct Cone(C,) for a
single node ¢, in O(¢'~%) time in the ACT model, the running time to construct all sets of cones
{Cone(Cy)}pe, ev is O([V]e! ™). Now consider a specific node ¢, . For each neighbor pcr € N(¢c,) of
¢c, , finding the cone Q; € Cone(C,,) such that r(C’) € Q; takes O(1) = O(e!~¢) time. Thus, {R;}]_; can
be constructed in O(JNV (¢c,)|e!~?) time. Finding the set of representatives {r}7_; takes O(|N (¢c,)|)
time by calling function source(-). Thus, the total running time to implement is:

O(VIe=) + Y O(N(wc,)le'™") = O((IVI +[€])e' ™) ,

Po, EV

as claimed.

By the construction of the algorithm, for each node pc € V, we add at most 7 = O(e'~%) incident
edges in £ to EPU"ed: this implies Item 1.

It remains to prove Item 2: For each edge (vc,,¢c,) € &, the stretch in H (¢ of the corre-

sponding edge (u,v) = source(pc,, @c,) is at most (1 + sssac.,,(8)e) with sssac...(8) = 2(1958 + 14).
Let 7, dgf'r(Cu) and 7, dg'r(Cv) be the representatives of C, and C,, respectively. Let Q; be the cone
in Cone(Cy) such that r, € Q; for some j € [7] (we are using the notation in [SSAgeom). If 7, = 77,
then (u,v) € H_ (14¢r by the construction in and so the stretch is 1. Otherwise, let C,,
be the level-i cluster that contains the representative 7. By the construction in there is an
edge (v,y) € Ho(14or where z € C, and y € C,. (See Figure) By property 4 of G in Defini-
tion max{Dm(H_(116r[Cu]), DM(H (140 L[C]), Dm(H (146 [Cy])} < BeL. Note that edges in £

have weights in [L, (1 + €)L) by property 3 in Definition By the triangle inequality:
7ws ol < ||u,v|| +28eL < (14 (1 +28)e)L
17w, T3 < [l yll +26L < (14 (1 +2B)e) L (8)
[w, ol < lru,roll +28eL and|lz, y[| < ||ru, 77| + 28€L
Furthermore, since L < [ju,v||, ||z, y|| < (1 + €)L, it follows that:
Ju, | < X+ &)lz,yll and |z,y]| < (14 €)llu, v 9)

Claim 4.4. [[ry,7}| < (88 +6)eL.

Proof: Recall that |7y, 77[| < |[ry, 7ol Let p be the projection of r} onto the segment r, 7, (see Figure [5)).
Since Zryryry <€ |[r}, pll < sin(e)|ru, 7]l < sin(e)|ru, moll < €(1+ (14 28)e)L. We have:

7o, 7511 < oy 75 1L+ llrws pIE < Hlps P51 [l7s 7oll = Cllras 7511 = 177, pI]) (10)
< (Irws roll = 7w, 7311) 4 26(1 4 (1 + 28)€) L
We now bound (||ry, 7y — [|7u, 7}[]). By Equation and Equation @, it holds that:
17w, Toll = lrw, 751 < llu, vl + 28eL — (|2, yl| — 28eL) < (48 + 1+ €)eL (11)
Plugging Equation into Equation , we get:
7o, 77| < (48 + 1+ €)eL + 2¢(1 4 (1 +28)e) L < (88 + 6)eL (since € < 1),
as claimed. This completes the proof of Claim [4.4] O

19

Next we continue with the proof of Lemma By Claim [ro, 77|l < L when € < 1/(88 + 6).
If the input graph is a UDG, then £ # () only if L < 1. Thus, [[r,, 7“3"” < 1 and hence, there is an edge
(rv, rj) of length ||r, rj|| in the input UDG. (This is the only place, other than starting our construction
with a (1 + €)-spanner for the input UDG, where we exploit the fact that the input graph is a UDG.)

Since |ry,r}|| < L, the distance between r, and r} is preserved up to a factor of (1 + e) in Hep.

J
That is, d_,,, (re,7}) < (1+7€)[|ry, 7} -

Note that ry, 7y, 7} are all in the input point set P by the definition of representatives. By the triangle
inequality, it follows that:
dH<(1+5)L (’U,, U) S dH<(1+€)L (U, .’IJ) + H.’IJ, yH + dH<(1+e)L <y7 r;k) + dH<(1+e)L (7’;, T'U) + dH<(1+s)L (T’v, ’U)
< BeL + ||z, yl + BeL + (1 4 ve)|[ry, 75| + BeL
<|lz,y|| +3BeL+ (1+4+~ve) (85+6)eL (by Claim (12)
———
< 2sincee < 1/y
<z, y|| + (1958 + 12)eL
By Equation (9), |lz,yl| < (1+ €)|lu,v| < |lu,v|| + (1 + €)eL < |ju, v|| + 2¢L. Thus, by Equation (12)):
llu,vl|>L/2

dH<(1+e)L (U, U) S ||U, U” + (19B + 14)6L S (1 + 2(195 + 14)6)”uva
That is, the stretch of (u,v) in Ho (¢ is at most 1 + sssac,,, (8)€ with sssac,..(8) = 2(198 +14). O

Remark 4.5. can be implemented slightly faster, within time O(|V|e! =2+ |E|1log(1/¢)), by using
a data structure that allows us to search for the cone that a representative belongs to in O(log(1/€)) time.
Such a data structure is described in Theorem 5.3.2 in the book by Narasimhan and Smid [53).

Proof: [Proof of Theorem We use SSAgeom in place of the abstract in Theorem to construct
the light spanner. By Lemma we have sssa(8) = 2(198 + 14), x = O(¢'=%) and 7(m’, n’) = O(e!~%).
Thus, by plugging in the values of xy and 7, we obtain the lightness and the running time as required
by Theorem[4.1] The stretch of the spanner is (14€)(14(sssa(O(1))+0(1))e) = (1+0(e)) when e < 1. O

4.2 General Graphs

In this section, we prove Theorem by giving a detailed implementation of [SSA] for general graphs,
hereafter SSAgen. Here we have t = 2k — 1 for an integer parameter k& > 2. We will use as a black-box
the linear-time construction of sparse spanners in general unweighted graphs by Halperin and Zwick [41].

Theorem 4.6 (Halperin-Zwick [41]). Given an unweighted n-vertex graph G with m edges, a (2k —1)-
spanner of G with O(nH%) edges can be constructed deterministically in O(m + n) time, for any k > 2.

SSAGen (General Graphs): The input is a (L, ¢, 3)-cluster graph G(V,E,w). The output is
goruned. ipitially, gPruned — ()

We construct a new unweighted graph J = (V;, Ey) as follows. For each node in ¢ € V,
we add a vertex v, to V. For each edge (¢1,¢2) € V, we add an edge (vy,,vy,) to Ej.

Next, we run Halperin-Zwick’s algorithm (Theorem on J to construct a (2k — 1)-
spanner S; for J. Then for each edge (vy,,vy,) in E(Sy), we add the corresponding
edge (1, p2) to EPruned,

20

We next analyze the running time of SSAge,, and also show that it satisfies the two properties of

(Sparsity|) and ([Stretch)) required by the abstract these properties are described in Section

Lemma 4.7. can be implemented in O(|V| + |E|) time. Furthermore, 1. (Sparsity) EPrined =
O(n'/®)|V|, and 2. (Stretch) For each edge (¢, pc,) € &, dH 110 (U, 0) < (2k—1)(14sssA,, (B)e)w(u, v),
where (u,v) = source(c,, PC,), SSSAq,(8) = (28+1) and e < 1.

Proof: The running time of SSAge, follows directly from T heorem Also, by Theorem |gpruned| —
O(|V|™*V/F) = O(n'/*#|V)); this implies Ttem 1.

It remains to prove Item 2: For each edge (y¢c,,¥c,) € €, the stretch in H_ (11 (constructed as
described in of the corresponding edge (u,v) = source(yc,,¢c,) is at most (2k — 1)(1 + (28 +
1)e)w(u,v). Recall that H_(i4), is the graph obtained by adding the source edges of gpruned to H ;.

Let (u1,v1) be the edge in Ej that corresponds to the edge (pc,,¢c,). By Theorem there
is a path P between u; and vy in J such that P contains at most 2k — 1 edges. We write P =
(w1 = o, (z0,21), 21, (z1,22),...,2p = v1) as an alternating sequence of vertices and edges. Let
P = (¢o, (v0, 1), 01, (¢1,92),...,¢p) be a path of G, written as an alternating sequence of vertices
and edges, that is obtained from P where ¢; corresponds to z;, 1 < j < p. Note that ¢1 = ¢, and

Pp = PC,-

~~~~~~~~~~

Figure 6: A path from u to v.

Let {y;}?_, and {z}!_, be two sequences of vertices of G such that (a) zp = u and y, = v, and (b)
(yi—1, zi) is the edge in G corresponding to edge (¢i—1,p;) in P, for 1 <i < p. Let Q;, 0 < i < p, be a
shortest path in H.1[C;] between z; and y;, where Cj is the cluster corresponding to ¢;. See Figure |§| for
an illustration. Observe that w(Q;) < BeL by property 4 in Deﬁnition Let P' = Qoo (y0,21)0...0Q)
be a (possibly non-simple) path from u to v in H <(1+¢L; here o is the path concatenation operator.

w(P') < (2k — 1)(1 4+ €)L + (2k)BeL < (2k — 1)(1 + € + 28¢)L
< (2k—-1)(1 4+ (26 + 1)e)w(u,v) (since w(u,v) > L)
Thus, the stretch of edge (u,v) is at most (2k — 1)(1 + (28 + 1)e), as required. O

(13)

Proof: [Proof of Theorem We use algorithm SSAge, in place of the abstract @ in Theorem to
construct the light spanner. By Lemma we have sssa(8) = (28 + 14), x = O(n'/F) and 7(m/,n') =
O(1). Thus, by plugging in the values of x and 7, we obtain the lightness and the running time as required
by Theorem The stretch of the spanner is (2k — 1)(1 4 (sssa(O(1)) + O(1))e) = (2k — 1)(1 4+ O(e)).
By scaling, we get the required stretch of (2k — 1)(1 + €). O

4.3 Minor-free Graphs

In this section, we prove a weaker version of Theorem where the running time is O(nr/ra(nr/r,n)).
In Section |§|we show how to achieve a linear running time, via an adaptation of our framework (described

21



in detail in Section @ to minor-free graphs.
The implementation of the abstract algorithm [SSA|for minor-free graphs, hereafter SSApminor, simply
outputs the edge set £. Note that the stretch in this case ist =1+ e.

SSAMinor (Minor-free Graphs): The input is a (L, ¢, )-cluster graph G(V,E,w). The output is
gpruned_

The algorithm returns EPUred = £,

We next analyze the running time of SSApminor, and also show that it satisfies the two properties of

(Sparsity)) and (Stretch|) required by the abstract

Lemma 4.8. can be implemented in O((|V| + |E])) time. Furthermore, 1. (Sparsity) EPrned =

O(ry/logr)|V|, and 2. (Stretch) For each edge (¢c,,pc,) € €, du_ ., (U, 0) < (146) (14855 Ay, (B))w (U, v),
where (u,v) = source(Yc,, PC,); S5SAwne (8) =0 and e < 1.

Proof: The running time of SSApminer follows trivially from the construction. Noting that G is a mi-
nor of the input graph G, G is K,-minor-free. Thus, |E] = O(r/logr)|V| by the sparsity of minor-free
graphs [45], 59]; this implies Item 1. Since we take every edge of £ to P4 the stretch is 1 and hence
55SAuine (3) = 0, yielding Item 2. g

We are now ready to prove a weaker version of Theorem for minor-free graphs, where the running
time is O(nry/ra(nry/r,n)).
Proof: [Proof of Theorem We use algorithm SSApminor in place of the abstract in Theorem to
construct the light spanner. By Lemma we have sssa(3) =0, x = O(ry/logr) and 7(m/,n') = O(1).
Thus, by plugging in the values of x and 7, we obtain the lightness claimed in Theorem and a running
time of O(nry/ra(nry/r,n)), for a constant e. The stretch of the spanner is:

(1+6)(1+ (ss5a(O(1)) + O(1))e) = (1 4 O(¢))

By scaling, we get a stretch of (1 + ¢). O

5 Applications of the Unified Framework: Fine-Grained Optimality

In this section, we use the framework outlined in Section to obtain all results regarding fine-grained
lightness bounds stated in Section Theorem Theorem Theorem and Theorem We
do so by introduce another layer of abstraction via an object that we call general sparse spanner oracle
(GSSO) in Section we show that the existence of GSSO implies the existence of light spanners. In
Section [5.2] we construct GSSOes for different class of graphs: general graphs, high dimensional Euclidean
spanners, and Steiner Euclidean spanners. Finally, in Section [5.3], we construct a light spanner for minor-
free graphs by directly implementing See Figure [1] for relationships between theorems/lemmas.

5.1 General Sparse Spanner Oracles

We introduce the notion of a general sparse spanner oracle (GSSO). Our GSSO for stretch ¢t = 1 + ¢
coincides with a notion called spanner oracle, introduced by Le [47]; nonetheless, our goal is much more
ambitious: First we wish to optimize the fine-grained dependencies and second we wish to do so while
considering a much wider regime of the stretch parameter ¢, which may even depend on n.

22



Definition 5.1 (General Sparse Spanner Oracle). Let G be an edge-weighted graph and let t > 1 be a
stretch parameter. A general sparse spanner oracle (GSSO) of G for a given stretch t is an algorithm
that, given a subset of vertices T C V(G) and a distance parameter L > 0, outputs in polynomial time a
subgraph S of G such that for every pair of vertices x,y € T,z # y with L < dg(x,y) < 2L:

dS’(xvy) St'dG(‘T’y)' (14)

We denote a GSSO of G with stretch t by Ogy, and its output subgraph is denoted by Og+(T, L), given
two parameters T C V(G) and L > 0.

Definition 5.2 (Sparsity). Given a GSSO Og of a graph G, we define weak sparsity and strong sparsity
of Og ., denoted by Wso, and Sso,, respectively, as follows:

w (Og(T, L))

Wsp., = sup
o TCV,LeR+ T|L (15)
“ B (0T, 1))
SOz, =  Sup
TCV,LeR+ T
We observe that:
Wsog , <t- SSOG,w (16)

since every edge E (Og (T, L)) must have weight at most ¢ - L; indeed, otherwise we can remove it from
O (T, L) without affecting the stretch. Thus, when ¢ is constant, strong sparsity implies weak sparsity;
note, however, that this is not necessarily the case when ¢ is super-constant.

Our main result in this section is to show that for stretch ¢ > 2, we can construct a light spanner
with lightness bound roughly O(%) times the sparsity of the spanner oracle (Theorem [5.3|). For stretch
t =1+ €, we can construct a light spanner with lightness bound roughly O(%) times the sparsity of the
spanner oracle plus an additive factor 1/¢2.

Theorem 5.3. Let G be an arbitrary edge-weighted graph that admits a GSSO Og,; of weak sparsity
Wsog, fort > 2. Then for any e > 0, we can construct in polynomial time a t(1 + €)-spanner for G with

~ /W
lightness O (%)

Theorem 5.4. Let G be an arbitrary edge-weighted graph that admits a GSSO Og 14 of weak sparsity
~ /W
Wsog. 4. for any € > 0. Then there exists an (1 + O(e))-spanner for G with lightness O, (ﬁ + 6%)

€

In both Theorem H and Theorem Oc(.) hides a factor of log % The proofs of these theorem are
presented in Section [5.1

The bound in Theorem improves over the lightness bound due to Le [49] by a factor of 6% The
stretch of S in Theorem [5.4]is 1 4+ O(¢), but we can scale it down to (1 + €) while increasing the lightness
by a constant factor. Moreover, this bound is optimal, as we shall assert next. First, the additive factor
#e0a. is unavoidable: the authors showed in [50] that there exists a set of n points in R? such that any
(1 + €)-spanner for it must have lightness Q(e~%), while the result of Le [49] implies that point sets in
R¢ have GSSOes with weak sparsity O(e!~?). Second, the additive factor 6% is tight by the following
theorem.
Theorem 5.5. For anye <1 andn > (%)@(%), there is an n-vertex graph G admitting a GSSO of stretch

(1 + €) with weak sparsity O(1) such that any (1 + €)-spanner of G must have lightness Q(}Z)

23



Proof: Le (Theorem 1.3 in [49]), building upon the work of Krauthgamer, Nguyén and Zondiner [46],
showed that graphs with treewidth tw have a 1-spanner oracle with weak sparsity O(tw?). Since the
treewidth of G in Theorem is 4, it has a 1-spanner oracle with weak sparsity O(1); this implies The-
orem O

Light spanners from GSSO. We now turn to proving Theorem and Theorem We do so by
providing an implementation of @ using a GSSO. We assume that we are given a GSSO O¢ ; with weak
sparsity Wsop.,. We denote the algorithm by SSOoyacle: We assume that every edge in G is a shortest
path between its endpoints; otherwise, we can safely remove them from the graph.

s ~

SSOoracle: The input is an (L, €, 8)-cluster graph G = (V, £, w). The output is a set of edges F'.

For each node pc € V(G) corresponding to a cluster C, we choose a v € C. Let S be
the set of chosen vertices. Let

F = B(064(5, L/2)) U B(Oc.4(S, L)) U E(Og4(S, 2L)) (17)

be the edge set of the spanner returned by the oracle. We then return F.

We now show that SSOgyacle has all the properties as described in the abstract [SSO}

Lemma 5.6. Let I be the output of|SSOoraclel Then w(F) = O(Wsog,)L-|V|. Furthermore, d_,, (u,v) <
t(1 + 555000 (B)€)w(u,v) for every edge (u,v) corresponding to an edge in £, where $ss04,...(8) = 45
and € is sufficiently smaller than 1, in particular € < 1/(40).

Proof: Since we only choose exactly one vertex in S per node in G, |S| = |V|. By the definition of
the sparsity of an oracle (Definition , w(F) < Wsog,(L/2) - |S| +Wsog L - |S| + Wsog 2L - |S] =
O(Wsog )L - |V]; this implies the first claim.

Let (u,v) be an edge in G corresponding to an edge (¢, ,¢c,) € €. We have that L < w(u,v) < 2L
by property 3 in Definition [I.9} By the construction of S in[SS0g¢,acie} there are two vertices u; € C,, and
vy € C, that are in S. Let P,, (P, ») be the shortest path in H.[Cy,] (H<1[C,]) between u and uy (v
and v1). By property 4 in Definition we have that max{w(Py, ), w(Py, v)} < fel. By the triangle
inequality, we have:

da(u1,v1) < w(u,v) + 2Bel < (24 20¢)L < 4L, (18)
since € < 1//. Also by the triangle equality, it follows that:
dg(ui,v1) > w(u,v) —2Bel > (1 — 2BeL) > L/2, (19)

since € < ﬁ. Thus, dg(ui,v1) € [L/2,2L). It follows by the definition of GSSO (Definition that
there is a path, say Py, ., of weight at most ¢ - dg(u1, v1) between u; and vy in the graph induced by F.
Let P,y = Py, 4w© Py, v, © Py, be the path between u and v obtained by concatenating Py, v, Pu, v, > Po,v -
By the triangle inequality, it follows that:

W(Pup) < w(Pyy 1) +w(Puyu) +w(Fyy0) <T-da(ur,vr) +2¢BL

Ea (), | (p(u,0) + 28L) + 2641 (20)
<t-(w(u,v) +4eBL) <t-(1+4ef)w(u,v) (since w(u,v) > L and t > 1),
as desired. 0

24



Proof: [Proof of Theorem By Theorem and Lemma we can construct in polynomial time
a spanner H with stretch t(1 + (25ss0q,...(O(1)) + O(1))e) where ssso,,...(3) = 88. Thus, the stretch of
H is t(1 + O(e)); we then can recover stretch #(1 + €) by scaling. The lightness of H is O((xe™!)) with
x = O(Wso,). That implies a lightness of Oe((WS@G,te_l)) as claimed. O

Proof: [Proof of Theorem [5.4] The proof follows the same line of the proof of Theorem 5.3} The difference
is that we apply Lemma and Theorem with ¢ = 1 4 € to construct H. Thus, the stretch of H is

~ Ws
t(1+O(¢e)) = 14 O(e). Since x = Wso,, ,,., the lightness is O, ( Ot 4 E%) as claimed. O

5.2 Constructing General Sparse Spanner Oracles

We construct GSSQOes for different class of graphs: general graphs, high dimensional metric spanners,
and Steiner Euclidean spanners. This together with Theorem and Theorem give Theorem [1.6

Theorem and Theorem

5.2.1 General graphs and high dimensional metric spaces: Proof of Theorem and
Theorem [1.8

Theorem 5.7. The following GSSOes exist.

1. For any weighted graph G and any k > 2, Wsog,,_, = O(g(n, k)).

2. For the complete weighted graph G corresponding to any Euclidean space (in any dimension) and
forany t > 1, Wso o) = O(tnt% logn).

3. For the complete weighted graph G corresponding to any finite ¢, normed space for p € (1,2] and
forany t > 1, Wsog, o, = O(tnl%’t logn).

Theorem follows directly from Theorem and Item (1) of Theorem Theorem follows
directly from Theorem and Item (2) and Item (3) of Theorem with € = 1/2; any constant € < 1
works. See Figure [I] for a graphical illustration of the relationships between these theorems. We now
focus on proving Theorem

General graphs. For a given graph G(V,E) and T' C V, we construct another weighted graph
G (T, Ep,wr) with vertex set T such that for every two vertices u, v that form a critical pair, we add an
edge (u,v) with weight wr(u,v) = dg(u,v).

We apply the greedy algorithm [2] to Gy with ¢t = 2k — 1 and return the output of the greedy spanner,
say St, (after replacing each artificial edge by the shortest path between its endpoints) as the output of
the oracle Og 2x—1. We now bound the weak sparsity of Og ax—1.

It was shown (Lemma 2 in [2]) that St has girth 2k+1 and hence has at most g(|T|, k)|T| < g(n, k)|T|
edges. It follows that w(St) < |g(n,k)|T|2L = O(g(n,k))|T|L. That implies:

O(g(n,k))|T|L
WSOg o1 = sup (o |Tl);)‘ | = O(nl/k)-
TCV,LER*
This implies Item (1) of Theorem

High dimensional metric spaces. Let (X,dx) be a metric space and P be a partition of (X, dx)
into clusters. We say that P is A-bounded if Dm(P) < A for every P € P. For each x € X, we denote
the cluster containing x in P by P(z). The following notion of (¢, A, §)-decomposition was introduced by
Filtser and Neiman [33].

25



Definition 5.8 ((t,A,n)-decomposition). Given parameters t > 1,A > 0,n € [0,1], a distribution D
over partitions of (X,dx) is a (t, A,n)-decomposition if:

(a) Every partition P drawn from D is t - A-bounded.
(b) For every x #y € X such that dx(x,y) < A, Prpp[P(x) = P(y)] > n
(X,d) is (t,n)-decomposable if it has a (¢, A, n)-decomposition for any A > 0.

Claim 5.9. If (X, dx) is (t,n)-decomposable, it has a GSSO Ox o) with sparsity Wsoy o, = O(“%lx‘).
Furthermore, there is a polynomial time Monte Carlo algorithm constructing Ox o) with constant success

probability.

Proof: Let T be a set of terminals given to the oracle Ox o). Let D be a (t,2L,n)-decomposition of
(X,dx).

Initially the spanner S has V(S) = T and E(S) = (). We sample p = QIHT‘Tl partitions from D, denoted
by Pi,...,P,. For each i € [p] and each cluster C' € P;, if |[T'NC| > 2, we pick a terminal ¢ € C' and add
to S edges from t to all other terminals in C. We then return S as the output of the oracle.

For each partition P;, the set of edges added to S forms a forest. That implies we add to S at most
|T'| — 1 edges per partition. Thus, |E(S)| < (|T|—1)p = O(W). Observe that w(S) < |E(S)|-t2L =

(W) since each edge has weight at most ¢ - (2L). Thus, Wsp = O(ﬂ%m) = O(ﬂ%lx‘).

It remains to show that with constant probability, ds(z,y) < O(t)dx(z,y) for every x # y € T such
that L < dx(z,y) < 2L. Observe by construction that if z and y fall into the same cluster in any
partition, there is a 2-hop path of length at most 4tL = O(t)dx (z,y). Thus, we only need to bound the
probability that  and y are clustered together in some partition. Observe that the probability that there
is no cluster containing both = and y in p partitions is at most:

! 0 ) 21n |T| 1
_ — —_ n < —
(1=n)f=@1-n) S TR
2
Since there are at most % distinct pairs, by union bound, the desired probability is at least % ]

Filtser and Neiman [33] showed that any n-point Euclidean metric is (t,n_o(t%))—decomposable for

any given t > 1; this implies Item (2) in Theorem If (X,dx) is an ¢, metric with p € (1,2), Filtser

logt

and Neiman [33] showed that it is (¢, n~OCE)
Theorem [(.71

)-decoposable for any given ¢ > 1; this implies Item (3) in

5.2.2 Steiner Euclidean Spanners

To prove Theorem we allow the oracle to include Steiner points, i.e., points in R%\ P in the construction
of GSSO (Theorem remains true for GSSO with Steiner points). Formally, a GSSO with Steiner points,
given a subset of points 7' C P and a distance parameter L > 0, outputs a Euclidean graph S(Vg, Eg)
with T' C Vg such that dg(z,y) < (1+¢€)||z,y|| for any z # y in Tﬁwhere ||z, y|| € [L,2L]. We denote the
oracle by Op 4. Our construction of the GSSO with Steiner points uses the sparse Steiner (1+¢)-spanner
from our previous work [50] (in the full version) as a black-box.

Theorem 5.10 (Theorem 1.3 [50]). Given an n-point set P € RY, there is a Steiner (1 + €)-spanner for
P with O (e~ 4=V/2|P|) edges.

’|

|z, y|| is the Euclidean distance between two points z,y € R%.

26



Theorem 5.11. Any point set P in R? admits a GSSO with Steiner points that has weak sparsity
Wsop,,. = Og(e_(d_l)ﬂ).

We note that Theorem [1.7] follows directly from Theorem and Theorem
Proof: Let T' C P be a subset of points given to the oracle and L be the distance parameter. By
Theorem we can construct a Steiner (1 + €)-spanner S for T with |E(S)| = O (e~ @=D/2|T|). We
observe that:

Observation 5.12. Let x # y be two points in T such that ||x,y|| < 2L, and Q be a shortest path between
x andy in S. Then, for any edge e such that w(e) > 4L, e ¢ P when € < 1.

Proof: Since S is a (1 + €)-spanner, w(P) < (1 +¢€)||z,y|| < (1+¢€)2L < 4L. O

Let Op (14 (T, L) be the graph obtained from S by removing every edge e € E(S) such that w(e) >
4L. By Observation Op,1+6(T, L) is a (1 + ¢)-spanner for T'. Observe that

W(Op 11T, L)) < ALIE(Op140(T, )] < ALIE(S)| = Oc(e @ D2T|L),
It follows that Wso,, , = Oc(e=(@=1)/2). This completes the proof of Theorem

5.3 Light Spanners for Minor-Free Graphs

In this section, we provide an implementation of [SSOJ for minor-free graphs, which we denote by SSOpinor-
The algorithm simply outputs the edge set £. Note that in this case, we set t =1 + €.

SSOwminor: The input is an (L, €, 5)-cluster graph G = (V, £, w). The output is a set of edges F.

Let F be the subset of edges of G that correspond to edges in £. We then return F'.

We now show that SSOwminor has all the properties as described in the abstract [SSO] which implies
Theorem [L.5l

Theorem 1.5. Any K,-minor-free graph admits a (1 4 €)-spanner with lightness Or,e(% + 6%) for any
e<1andr>3.

Furthermore, for any fixedr > 6, anye <1 andn > r+ (%)9(1/6), there is an n-vertex graph G excluding
K, as a minor for which any (1 + €)-spanner must have lightness Q(% + %).

Proof: Since we add every edge corresponds to an edge in £ in $5SOune, (B) = 0. By
Theorem and Lemma we can construct in polynomial time a spanner H with stretch #(1 +

(255504 (O(1)) + O(1))€) = (1 4 O(€)); note that t = (1 + €) in this case. We then can recover stretch
(14 €) by scaling.

We observe that G is a minor of G and hence is K,-minor-free. Thus, by the sparsity of minor-free
graphs, |€] = O(r/logr)|V|. Tt follows that w(F) = O(rv/logr)L - |V| since every edge in G has weight
at most 2L. This gives x = O(ry/logr). By Theorem for the case t = 1 + ¢, The lightness of H is
Oc((xe™) +€72) = Ocr(re™! + ¢72) as claimed. O

27



Part 11

Our Unified Framework: The Proof (Section [§
— Section [12))

In this part, we present the proof of Theorem in detail. We start by setting in a technical framework
on which the proof rests.

6 Unified Framework: Technical Setup

In Section [6.I, we outline a technical framework that we use to prove Theorem [I.I0] The proof of
Theorem boils down to constructions of clusters and associated subgraphs. In Section [/, we show
how to design a fast algorithm to find the clusters and the subgraphs. In Section we construct the
clusters and the subgraphs that have a small dependency on 1/e.

6.1 The Framework

Our starting point is a basic hierarchical partition, which dates back to the early 90s [4, [15], and was
used by most if not all of the works on light spanners (see, e.g., [29, 30, 17, 10, 11, 50]). The current
paper takes this hierarchical partition approach to the next level by proposing a unified framework.

Let MST be a minimum spanning tree of the input n-vertex m-edge graph G = (V, E, w). Let Tyist
be the running time needed to construct MST. By scaling, we shall assume w.l.o.g. that the minimum
edge weight is 1. Let w = % We remove from G all edges of weight larger than w(MST); such
edges do not belong to any shortest path, hence removing them does not affect the distances between
vertices in G. We define two sets of edges, Ejgn: and Ejeqyy, as follows:

Elight = {6 SO w(e) < } & Eheavy =FK \ Elight (21)

o | g

It could be that > < 1; in this case, Ejgnt = (). The next observation follows from the definition of .

Observation 6.1. w(Ejgn) < LI\EST).

Recall that the parameter € is in the stretch ¢(1 + €) in Theorem It controls the stretch blow-up
in Theorem and ultimately, the stretch of the final spanner. There is an inherent trade-off between
the stretch blow-up (a factor of 1+ €) and the blow-up of the other parameters, including runtime and
lightness, by at least a factor of 1/e.

By Observation we can safely add Ejgp¢ to our final spanner, while paying only an additive +%
factor to the lightness bound. Hence, as the stretch of a spanner is realized by some edge of the graph,
in the spanner construction that follows, it suffices to focus on the stretch for edges in Ejpeqoy. Next, we
partition the edge set Epeqyy into subsets of edges, such that for any two edges e, ¢’ in the same subset,
their weights are either almost the same (up to a factor of 1 + 1) or they are far apart (by at least a

1

factor of m), where 1 is a parameter to be optimized later. In fast constructions (Section , we

choose 1) = € and in optimal lightness constructions (Section , we choose ¥ = 1/250.

Definition 6.2 (Partitioning Eheqvy). Let ¢ be any parameter in the range (0,1]. Let py = [logy 1y 17.
We partition Epeqyy into subsets {EU}UE[M] such that E7 = U;en+ EY where:

E° = {e: liiw <w(e) < Lz} with L; = Lo /€', Ly = (1 +¢)° . (22)

28



By definition, we have L; = L;_;/e for each ¢ > 1. Readers may notice that if log, ﬂ[,% is not an
integer, by the definition of E?, it could be that E** N E' # (), in which case {E7}oelu,) is not really
a partition of Epeqyy. This can be fixed by taking to EF¥ edges that are not in Ui<,<y,—1E7. We
henceforth assume that {EU}UE[M o] is a partition of Ejpequy. The following lemma shows that it suffices
to focus on the stretch of edges in E7, for an arbitrary o € [juy).

Lemma 6.3. If for every o € [puy], we can construct a k-spanner H? C G for E° with lightness at
most Lightgo in time Timego(m,n) (where Lighty. and Timego(m,n) do not depend on o), then we can

construct a k-spanner for G with lightness O (LightH+og(Ue) + %) in time O (TimeH"(mf) log(1/¢) | TMST>.

Proof: Let H be a graph with V(H) = V(G) and E(H) = Ejgn U (UUG[W]HU) The fact that H
is a k-spanner of G follows directly from the fact that the stretch of a spanner is realized by some edge
of the graph. The lightness bound follows from the fact that p, = O(lzzg((llﬁp))) O(log(1/€e)/v) and
Observation

To bound the running time, note that the time needed to construct Ej;gns is Tmst+O0(m) = O(Tmst)-
Since we remove edges of weight at least MST from G and every edge in Ejeqyy has a weight at least

L= wMST) *the number of sets that each E° is partitioned to is O(logl/((Hw)E)(em)) = O(log(m)) for

eEm
any € < 1/2. Thus, the partition of E}eqyy can be trivially constructed in O(m) time. The running time

bound now follows. OJ

We shall henceforth focus on constructing a spanner for £, for an arbitrarily fixed o € [uy]. In what
follows we present a clustering framework for constructing a spanner H? for E? with stretch t(1+¢€). We
will assume that e is sufficiently smaller than 1.

Subdividing MST. We subdivide each edge e € MST of weight more than w into (%] edges of
weight (of at most w and at least w/2 each) that sums to w(e). (New edges do not have to have equal

weights.) Let MST be the resulting subdivided MST. We refer to vertices that are subdividing the MST
edges as virtual vertices. Let V be the set of vertices in V' and virtual vertices; we call V' the extended
set of vertices. Let G = (V| E) be the graph that consists of the edges in MST and E°.

Observation 6.4. |E| = O(m).

Proof: It suffices to show that |E(1\//I\S'/F)| = O(m). Indeed, since w(l\//I\S'/F) = w(MST) and each edge of
MST has weight at least w/2, we have |[E(MST)| < 2m. O

The t(1 4 €)-spanner that we construct for E? is a subgraph of G containing all edges of MET we
can enforce this assumption by adding the edges of MST to the spanner. By replacing the edges of MST
by those of MST, we can transform any subgraph of G that contains the entire tree MST to a subgraph
of G that contains the entire tree MST. We denote by H? the t(1 + €)-spanner of E? in G; by abusing
the notation, we will write H? rather than H? in the sequel, under the understanding that in the end we
transform H? to a subgraph of G.

Recall that E7 = U;cn+ Y where EY is the set of edges defined in Equation . We refer to edges
in EY as level-i edges. We say that a level ¢ is empty if the set EY of level-i edges is empty; in the sequel,
we shall only consider the nonempty levels.

Claim 6.5. The number of (nonempty) levels is O(logm).

Proof: The claim follows from the fact that every edge of E°? has weight at least % and at most
w(MST) = maw, and the weight of edges in EY ; is at least (1+w) times the weight of edges EY. O

29



Our construction crucially relies on a hierarchy of clusters. A cluster in a graph is simply a subset
of vertices in the graph. Nonetheless, as will become clear soon, we care also about edges connecting
vertices in the cluster, and of the properties that these edges possess. Our hierarchy of clusters, denoted
by H = {C1,Co, ...} satisfies the following properties:

e (P1) For any i > 1, each C; is a partition of V. When i is large enough, C; contains a single set
V and Ciyq = 0.

e (P2) C;is an Q(L)-refinement of Ciy1, ie., every cluster C € Ciiq is obtained as the union of
Q(2) clusters in C; for i > 1.

e (P3) For each cluster C € C;, we have Dm(H?[C]) < gL;_1, for a sufficiently large constant g to
be determined later. (Recall that L; is defined in Equation (22)).)

Remark 6.6. (1) We construct H° along with the cluster hierarchy. Suppose that at some step s of
the algorithm, we construct a level-i cluster C. Let HJ be H® at step s. We shall maintain by
maintaining the invariant that Dm(HZ[C]) < gL;_1; indeed, adding more edges in later steps of the
algorithm does not increase the diameter of the subgraph induced by C.

(2) 1t is time-expensive to compute the diameter of a cluster exactly. Thus, we explicitly associate with
each cluster C' € C; a proxy parameter of the diameter during the course of the construction. This proxy
parameter has two properties: (a) it is at least the diameter of the cluster, and (b) it is lower-bounded by
Q(Li—1). Property (a) is crucial in arguing for the stretch of the spanner. Property (b) is crucial to have
an upper bound on the number of level-i clusters contained in a level-(i + 1) cluster, which speeds up its
(the level-(i + 1) cluster’s) construction.

When e is sufficiently small, specifically smaller than the constant hiding in the Q2-notation in property
by at least a factor of 2, it holds that |C;11| < |C;|/2, yielding a geometric decay in the number of
clusters at each level of the hierarchy. This geometric decay is crucial to our fast constructions.

Our construction of the cluster hierarchy H will be carried out level by level, starting from level
1. After we construct the set of level-(i + 1) clusters, we compute a subgraph H? C G as stated in
Theorem The final spanner H? is obtained as the union of all subgraphs { H };cn+. To bound the
weight of H?, we rely on a potential function ® that is formally defined as follows:

Definition 6.7 (Potential Function ®). We use a potential function ® : 2V — R* that maps each cluster
C' in the hierarchy H to a potential value ®(C), such that the total potential of clusters at level 1 satisfies:

> 2(C) < w(MST) . (23)
ceCy

Level-i potential is defined as ®; = ZCGCZ_ ®(C) for any i > 1. The potential change at level i, denoted
by A; for every i > 1, is defined as:
Ap = B — B . (24)

The key to our framework is the following lemma.

Lemma 6.8. Let ¢ € (0,1],t > 1,e € (0,1) be parameters, and E” = U;en+ E? be the set of edges defined
in Equation . Let {a;};en+ be a sequence of positive real numbers such that Y-, v a; < A-w(MST)
for some A € RY. Let Hy = MST. For any level i > 1, if we can compute all subgraphs Hy,...,H; C G

as well as the cluster sets {C,...,C;,Cit1} in total runtime O35, (ICs| + |EZ[) f(n,m) +m) for some
function f(-,-) such that:

(1) w(H;) < AAj+1 + a; for some A >0,

30



(2) for every (u,v) € EY, dy_, (u,v) < t(1+p-e)w(u,v) when € € (0,€) for some constants p and €,
where H.p,, is the spanner constructed for edges of G of weight less than L;.

mf(n,m)

Then we can construct a t(1+pe)-spanner for G(V, E) with lightness O()‘+TA+]L log 2+1) in time O(==5— log 1y
Tvst) when € € (1,€).

Proof: Let H? = UjenH;. The stretch bound ¢(1+ pe) follows directly from the fact that E7 = U;en+ EY,
Item (2), and Lemma By condition (1) of Lemma and Equation (23], we have:

w(HT) <A A+ Y ai+wMST) < A+ @+ A-w(MST) + w(MST) < (A + A + Dw(MST) .
[IS\ha 1eENT

This and Lemma implies the lightness upper bound; here Lightyo = (O(\) + A+ 1). To
bound the running time, we note that ), .+ [EY| < m and by property (P2), we have >, y+ [Ci| =
IC1] D ienvt % = O(|C1|) = O(m). Thus, by the assumption of Lemma the total running time to
construct H? is Timego(m,n) = O (X ;en+(|Ci]) + |Ei]) f(m,n) + m) = O (mf(m,n)). Plugging this
runtime bound on top of Lemma yields the required runtime bound in Lemma [1.10] O

Remark 6.9. In Lemma 6.8, we construct spanners for edges of G level by level, starting from level 1.
By Item (2), when constructing spanners for edges in EY, we could assume by induction that all edges of
weight less than L;/(1 + ) already have stretch t(1 4 pe) in the spanner constructed so far, denoted by
H_r,/14¢)- By defining Hep,, = Hop, /(144) YU Hi, we get a spanner for edges of length less than L.

In summary, two important components in our spanner construction is a hierarchy of clusters and a
potential function as defined in Definition In Section [6.2] we present a construction of level-1 clusters
and a general principle for assigning potential values to clusters. The construction of clusters at any level
i+ 1 for ¢ > 1, which basically gives the proof of Theorem [I.10] is presented in Section [7] and Section

6.2 Designing A Potential Function

In this section, we present in detail the underlying principle used to design the potential function ® in
Definition [6.7] We start by constructing and assigning potential values for level-1 clusters.

Lemma 6.10. In time O(m), we can construct a set of level-1 clusters Ci such that, for each cluster
C € C1, the subtree MST[C] of MST induced by C satisfies Lo < Dm(MST[C]) < 14Ly.

Proof: We apply a simple greedy construction to break MST into a set S of subtrees of diameter at
least Ly and at most 5L¢ as follows. (1) Repeatedly pick a vertex v in a component 7" of diameter at least
4Lg, break a minimal subtree of radius at least Lo with center v from 7', and add the minimal subtree to
S. (2) For each remaining component 7" after step (1), there must be an MST edge e connecting 7" and
a subtree T' € S formed in step (1); we add 77 and e to T'. Finally, we form C; by taking the vertex set of
each subtree in S to be a level-1 cluster. The running time bound follows directly from the construction.

We now bound the diameter of each subtree in S. In step (1), the diameter is at most 2(Lo + w). In

step (2), each subtree T' is augmented by subtrees of diameter at most 4L via MST edges in a star-like
way. Thus, the diameter of the resulting subtrees is at most 2(Lo+w)+2(4Lo+w) < 14Lg, as required. [J

By choosing g > 14, clusters in C; satisfy properties (P1)) and (P3]). Note that (P2]) is not applicable

to level-1 clusters by definition. As for (P3), Dm(H?[C]) < 14Ly, for each C € C;.
Next, we assign a potential value for each level-1 cluster as follows:

31



&(C) =Dm(MST[C]) VC e (25)
We now claim that the total potential of all clusters at level 1 is at most w(MST) as stated in Deﬁnition
Lemma 6.11. ¢; < w(MST).

Proof: By definition of &1, we have:

¢ = Y (C) = > Dm(MST[C)) < > w(MSTIC]) < w(MST) = w(MST) .
CceCy Cely Cely

The penultimate inequality holds since level-1 clusters induce vertex-disjoint subtrees of MST. g

While the potential of a level-1 cluster is the diameter of the subtree induced by the cluster, the
potential assigned to a cluster at level at least 2 need not be the diameter of the cluster. Instead, it is an
overestimate of the cluster’s diameter, as imposed by the following potential-diameter (PD) invariant.

PD Invariant: For every cluster C' € C; and any ¢ > 1, Dm(H.p, ,[C]) < ®(C). (Recall
that H.p, , is the spanner constructed for edges of G of weight less than L;_1, as defined in

Lemma6.8])

Remark 6.12. As discussed in Remark[6.6], it is time-expensive to compute the diameter of each cluster.

By the we can use the potential ®(C') of a cluster C' € C; as an upper bound on the diameter
of Her, ,[C]. As we will demonstrate in Section@, ®(C) can be computed efficiently.

To define potential values for clusters at levels at least 2, we introduce a cluster graph, in which the
nodes correspond to clusters. We shall derive the potential values of clusters via their structure in the
cluster graph, as described next.

Definition 6.13 (Cluster Graph). A cluster graph at level i > 1, denoted by G; = (V;,El,w), is a simple
graph where each node corresponds to a cluster in C; and each inter-cluster edge corresponds to an edge
between wvertices that belong to the corresponding clusters. We assign weights to both nodes and edges
as follows: for each node pc € V; corresponding to a cluster C € C;, w(pc) = ®(C), and for each edge
e = (pc,,vc,) € E corresponding to an edge (u,v) of G, w(e) = w(u,v).

Remark 6.14. The notion of cluster graphs in Deﬁm’tz’on is slightly different from that of (L, €, 3)-
cluster graphs defined in Definition[1.9 In particular, cluster graphs in Definition[6.13 have weights on
both edges and nodes, while (L, €, B)-cluster graphs in Deﬁm’tz’on have weights on edges only.

In our framework, we want the cluster graph G; to have the following basic properties.

Definition 6.15 (Properties of G;). (1) The edge set E! of G; is the union MST; U &, where MST; is
the set of edges corresponding to edges in MST and &; is the set of edges corresponding to a subset
of edges in EY .

(2) 1\7[§TZ induces a spanning tree of G;. We abuse notation by using 1\//I\Sﬁfl to denote the induced
spanning tree.

At the outset of the construction of level-(i + 1) clusters, we construct a cluster graph G;. We assume

that the spanning tree 1\//15'/1) of G; is given, as we construct the tree by the end of the construction of
level-i clusters. After we complete the construction of level-(i 4+ 1) clusters, we construct MST; ;4 for the
next level.

32



Observation 6.16. At level 1, both V1 and 1\//FS/T1 can be constructed in O(m) time.

Proof: Edges of ml correspond to the edges of MST that do not belong to any level-1 cluster, i.e.,
to any MST[C], where C' € C;. Thus, the observation follows from Observation and Lemma O

The structure of level-(i + 1) clusters. Next, we describe how to construct the level-(i + 1) clusters
via the cluster graph G;. We shall construct a collection of subgraphs X of G;, and then map each subgraph
X € X to a cluster Cy € C;j41 as follows:

Cy = UwceV(X)C . (26)

That is, C'y is the union of all level-¢ clusters that correspond to nodes in X.

For any subgraph X in a cluster graph, we denote by V(X) and £(X) the vertex and edge sets of X,
respectively. To guarantee properties — defined before Remark for clusters in C;y1, we will
make sure that subgraphs in X satisfy the following properties:

e (P1’). {V(X)}rex is a partition of V.
o (P2). V(X)) =0(;)

Recall that Adm(X) is the augmented diameter of X', a variant of diameter defined for graphs with
weights on both nodes and edges, see Section [2] Recall that the augmented diameter of X' is at least the
diameter of the corresponding cluster Cly.

We then set the potential of cluster Cy corresponding to subgraph & as:

B(Cy) = Adm(X). (27)

Thus, the augmented diameter of any such subgraph X will be the weight of the corresponding
node in the level-(i 4+ 1) cluster graph G; 1. Our goal is to construct H; along with C;11 as guaranteed
by Theorem H; consists of a subset of the edges in EY (and in the case of optimal lightness
constructions, some edges of G as well). We can assume that the vertex set of H; is just the entire set
V. Up to this point, we have not explained yet how H; is constructed, since the exact construction of H;
depends on specific incarnations of our framework, which may change from one graph class to another.

While properties and directly imply properties and of C'y, property does
not directly imply property ; although the diameter of any weighted subgraph (with edge and vertex
weights) is upper bounded by its augmented diameter, we need to guarantee that the (corresponding)
edges of X belong to H.y,. Indeed, without this condition, the diameter of H., could be much larger
than the augmented diameter of X.

Lemma 6.17. Let X € X be a subgraph of G; satisfying properties —. Suppose that for every
edge (vc,,pc,) € E(X), (u,v) € Hep,. By setting the potential value of Cx to be ®(Cx) = Adm(X) for

every X € X, the is satisfied, and that Ciy satisfies all properties (P1)-([P3).

Proof: It can be seen directly that properties and of X directly imply properties (P1))
and of Cx, respectively. We prove, by induction on 4, that property holds and that the
is satisfied. The basis ¢ = 1 is trivial. For the induction step, we assume inductively
that for each cluster C' € C;, Dm(H<p, ,)[C] < gL;—; and that the is satisfied: ®(C) >
Dm(H<p, ,)[C]. Consider any level-(i + 1) cluster Cx corresponding to a subgraph X € X. Let Hc,
be the graph obtained by first taking the union U, cyx)H< L;_,[C] and then adding in the edge set

33



{(w,0) Y e, oo, e () Observe that He,, is a subgraph of H., by the assumption that (u,v) € Hcp, for
every edge (pc,,¢c,) € £(X). We now show that Dm(H¢, ) < Adm(X'), which is at most gL; by property
(P3’). This would imply both property and the for Cy since ®(Cy) = Adm(X'), which
would complete the proof of the induction step.

Let u, v be any two vertices in H¢, whose shortest distance in Hc,, realizes Dm(Hc,, ). Let oc,, pc, be
the two nodes in & that correspond to two clusters C,,, C,, containing u and v, respectively. Let P, , a path
in G; of minimum augmented weight between ¢¢, and ¢¢,. Observe that w(Py,) < Adm(&X’). We now con-
struct a path P, , between v and v in H¢,, as follows. We write Py, = (pc, = ¢©c1,€1, 905, €2, ..., 90, =
@, ) as an alternating sequence of nodes and edges. For every 1 < p < /¢ —1, let (up,v,) be the edge in
E¢ that corresponds to e,. We then define vy = u, 4, = v and

Puw=Qu_;_ c1)(vo,u1) o (u1,v1) 0o @, [cy)(v1,u2) 0 (ug,v2) 0.0 Qp_, (o) (ve—1,ue)

where Qp_ Li_1[0p}(vp_1’ up) for 1 < p < ¢ denotes the shortest path in the corresponding subgraph (be-
tween the endpoints of the respective edge, as specified in all the subscripts), and o is the path concatena-
tion operator. By the induction hypothesis for theand i, w(QHdF1 (] (Vp—1,up)) < w(pc,)
for each 1 < p < ¢. Thus, w(Py) < wW(Puw) < Adm(X). It follows that Dm(Hc, ) < w(Py,») < Adm(X)
as desired. ]

Local potential change. For each subgraph X € X, we define the local potential change of X, denoted
by Ai+1(X) as follows:

[N
e

Air1(X) Y. 2O —2(Crx)=| D wlpc)| —Adm(X). (28)

PCEV(X) PceEV(X)
Claim 6.18. Ai—i—l = ZXEX Az—i—l(X)

Proof: By property (P1)), subgraphs in X are vertex-disjoint and cover the vertex set V;, hence
> xex(Xgpoevr) @(C) = Xcee, ®(C) = @;. Additionally, by the construction of level-(i 4+ 1) clus-
ters, 3 yex (Cx) = X oree,,, P(C’) = Piy1. Thus, we have:

d A=) > B(C) ]| - 2(Cx) | =i — Pig1 = A,

XeX Xex PeEV(X)

as claimed. O

The decomposition of the (global) potential change into local potential changes makes the task of
analyzing the spanner weight (Item (1) in Theorem easier as we can do so locally. Specifically, we
often construct H; by considering each node in V; and taking a subset of (the corresponding edges of)
the edges incident to the node to H;. We then calculate the number of edges taken to H; incident to all
nodes in X, and bound their total weight by the local potential change of X'. By summing up over all X,
we obtain a bound on w(H;) in terms of the (global) potential change A, ;.

6.3 Summary

We have introduced the technical framework (Lemma for constructing light spanners that we will
use to both design fast construction of light spanners (Section [7]) and spanners with optimal lightness

34



(Section . The construction boils down to constructing two objects: (a) clusters for level i satisfying
all properties — and (b) a spanner H; for E)i” whose weight is bounded by potential change at
level i (Item (1) in Lemma. The cluster construction is based on a cluster graph Deﬁnition each
level i + 1 cluster X' corresponds to a subgraph of the cluster graph G; satisfying properties —.
The detailed construction of level ¢ + 1 clusters for fast algorithms is different from the construction for
optimal lightness, and is deferred to the corresponding sections (Section [7|and Section . Table|l| below
summarizes the notation introduced in this section.

Notation Meaning

Elight {e€ E(G) :w(e) <w/e}

heavy E\ Elioht

E° UieN+ Eza

E? {e € E(G): 1<Lﬁw <w(e) < L;}

g constant in [property (P3)

Gi = (Vi M§i U&;,w) | cluster graph; see Definition [6.13

& corresponds to a subset of edges of EY
X a collection of subgraphs of G;

X, V(X),E(X) a subgraph in X, its vertex set, and its edge set
P; Zceci ®(c)

AVER] D; — Diyq

Ais1(X) (X poecx ©(C)) —2(Cx)

Cx Ugeeax ©

Table 1: Notation introduced in Section [6l

7 Fast Construction: Proof of Theorem (1.10|(1)

In this section, we give the detailed construction of level ¢ + 1 clusters and graph H;, thereby proving
Item (1) in Theorem We set ¢ = € where v is the parameter in Equation .

We guarantee that the cluster graph G; introduced in Section [6.2] satisfies an additional property,
which we will exploit for efficient construction.

Definition 7.1 (Additional Properties of G;). G; satisfies properties (1) and (2) in Definition[6.15, and
the following property:

(3) Gi has no removable edge: an edge (¢c,,vc,) € & is removable if (3a) the path MST; (e, ec,] be-
tween pc, and @, only contains nodes in MST; of degree at most 2 and (3b) w(MST;[pc,, vc,]) <
t(1 4 6ge)w(pvc,, vc,)-

As we will show in the sequel, if an edge (¢¢,, ¢c,) satisfies property (3b), there is a path of stretch
at most t(1 4 6ge) in H.y, , between u and v and hence, we do not need to consider edge (u,v) in the
construction of H;. To meet the required lightness bound, it turns out that it suffices to remove edges
satisfying both properties (3a) and (3b), rather than removing all edges satisfying property (3b).

35



7.1 Constructing Level-(i + 1) Clusters

To obtain a fast spanner construction, we will maintain for each cluster C' € C; a representative vertex
r(C) € C. If C contains at least one original vertex, then r(C) is one original vertex in C; otherwise,
r(C) is a virtual vertex. (Recall that virtual vertices are those subdividing MST edges.) For each vertex
v € C, we designate r(C) as the representative of v, i.e., we set r(v) = r(C) for each v € C. We use
the UNION-FIND data structure to maintain these representatives. Specifically, the representative of v
will be given as FIND(v). Whenever a level-(i + 1) cluster is formed from level-i clusters, we call UNION
(sequentially on the level-i clusters) to construct a new representative for the new cluster.

A careful usage of the Union-Find data structure. We will use the UNION-FIND data struc-
ture [58] for grouping subsets of clusters to larger clusters (via the UNION operation) and checking whether
two given vertices belong to the same cluster (via the FIND operation). To reduce the amortized time
to O(a(m,n)), we only store original vertices in the UNION-FIND data structure. To this end, for each
virtual vertex, say x, which subdivides an edge (u,v) € MST, we store a pointer, denoted by p(z), which
points to one of the endpoints, say u, in the same cluster with x, if there is at least one endpoint in
the same cluster with x. In particular, any virtual vertex has at most two optional clusters that it can
belong to at each level of the hierarchy. Hence, we can apply every UNION-FIND operation to p(x) instead
of x. For example, to check whether two virtual vertices x and y are in the same cluster, we compare

r(p(z)) e r(p(y)) via two FIND operations. The total number of UNION and FIND operations in our
construction remains O(m) while the number of vertices that we store in the data structure is reduced
to n. Thus, the amortized time of each operation reduces to O(«a(m,n)) and the total runtime due to all
these operations is O(ma(m,n)).

Following the approach in Section [6.2] we construct a graph G; satisfying all properties in Defini-
tion and Definition Then we construct a set X of subgraphs of G; satisfying the three properties
and a subgraph H; of G (and of G as well). Each subgraph X € X is then converted to a
level-(i + 1) cluster by Equation (126]).

Constructing G;. We shall assume inductively on 4,7 > 1 that:

e The set of edges 1\7[§/T1 is given by the construction of the previous level ¢ in the hierarchy; for the
base case i = 1 (see Section , MST; is simply a set of edges of MST that are not in any level-1
cluster.

e The weight w(pc) on each node ¢ € V; is the potential value of cluster C' € C;; for the base case
i = 1, the potential values of level-1 clusters were computed in O(m) time by Section

By the end of this section, we will have constructed the edge set 1\//I\S/TZ-+1 and the weight function on
nodes of G;11, in time O(|Vi|a(m,n)). Computing the weight function on nodes of G;1; is equivalent to
computing the augmented diameter of X', which in turn, is related to the potential function. The fact
that we can compute all the weights efficiently in almost linear time is the crux of our framework.

Note that we make no inductive assumption regarding the set of edges EJ, which can be computed
once in O(m) overall time at the outset for all levels i > 1, since the edge sets EY, EJ,... are pairwise
disjoint and the number of levels is O(m) by Claim

Lemma 7.2. G; = (V;,&; Umi,w) can be constructed in O (a(m,n)(|V;i| + |E?|)) time, where a(-,-) is
the inverse-Ackermann function.

Proof: Note that Méi and EY are given at the outset of the construction of G;. To construct the edge

set &, we do the following. For each edge e = (u,v) € EY, we compute the representatives r(u), r(v);

36



this can be done in O(a(m,n)) amortized time over all the levels up to ¢ using the UNION-FIND data
structure. Equipped with the representatives, it takes O(1) time to check whether e’s endpoints lie in
the same level-i cluster and check in O(1) time whether edges e = (u,v) and ¢’ = (u/,v') are parallel in
the cluster graph. Next, we remove all removable edges from G; as specified by property (3b) in Defini-
tion First we find in O(|V;|) time a collection P of mazimal paths in I\Z\Sﬁ?Z that only contain degree-2
vertices. We then find for each path P € P a subset of edges Ep C &; whose both endpoints belong to
P. Finally, for each path P € P and each edge (¢c,,¢c,) € Ep, we can compute w(Plec,, ¢c,]) in O(1)
time, after an O(]V(P)]|) preprocessing tim by fixing an endpoint - € P and for every node p¢ € P,
we compute w(P[pc, pcr]) in total O(|V(P)]) time. Given w(Plec,,pc,]), we can check in O(1) time
whether (¢, , ¢c, ) is removable and if so, we remove it from &;. The total running time is O(|V;|+|E?|). O

The following key lemma states all the properties of clusters constructed in our framework; the details
of the construction are deferred to Section [§

Lemma 7.3. Given G;, we can construct in time O((|Vi| + |&i])e™!) (i) a partition of Vi into three sets
{Vih'gh, VZI-°W+, VZ|-°""7} and (ii) a collection X of subgraphs of G; and their augmented diameters, such that:

(1) For every node pc € Vi: If oo € Vzhigh, then ¢ is incident to Q(1/€) edges in &; otherwise
(pc € VZ'-°WJr U VY™ ) the number of edges in &; incident to pc is O(1/e).

2) If a subgraph X contains at least one node in V!V | then every node of X is in VIO . Let X"~ C X
7 7
be a set of sugraphs whose nodes are in Vl!°""7 only.

(3) Let Af (X) = A(X) + Zeemmgw)w(e). Then, Af, | (X) >0 for every X € X, and

i+1
D AL@ = 3 V@)L, (29)
xex\Xlew™ xex\Xlow™
(4) There is no edge in &; between a node in Vz-high and a node in VI . Furthermore, if there exists an
edge (pc,.pc,) € & such that both pc, and @, are in VI, then VI =V and |&] = O(%);
we call this case the degenerate case.

(5) For every subgraph X € X, X satisfies the three properties - with constant g = 31 and
and |£(X) N &] = O(V(X))).

1
€< 31

Furthermore, the construction of X can be constructed in the pointer-machine model with the same
running time.

We observe the following observations about subgraphs of X in Lemma [7.3]
Observation 7.4. If a subgraph X € X has V(X) N (VI UV £ 0, then V(X) C (VIEN U View™),
Proof: Follows from Item (2) in Lemma and the fact that {Vzh 'eh VZ'-°W+, VoW 1 is a partition of V;.00

Observation 7.5. Unless the degenerate case happens, for every edge (pc,,vc,) with one endpoint in
VW™ “w.lo.g. ¢c,, the other endpoint o, must be in VI . As a result, E(X)NE =0 if X € X'

Proof: If the degenerate case does not happen, by Item (4) in Lemma any edge incident to a node
in V" must be incident to a node in V", By Item (2), if X € X" then V(X) C V" and hence,
there is no edge between two nodes in X. Thus, £(X)NE; = 0. O

37



Next, we show how to construct miH for the construction of the next level.

Lemma 7.6. Given the collection of subgraphs X of G; and their augmented diameters, we can construct
the set of nodes Viy1, and their weights, and the cluster tree MST;11 of Git1 in O(|V;|a(m,n)) time.

Proof: For each subgraph X € X, we call UNION operations sequentially on the set of clusters corre-
sponding to the nodes of X’ to create a level-(i + 1) cluster Cx € C;y1. Then we create a set of nodes
Viy1 for Gi1: each node ¢p¢, corresponds to a cluster Cx € Ciy1 (and also subgraph X € X). Next, we
set the weight w(pc, ) = Adm(X). The total running time of this step is O(|Vi|a(m,n)).
—— —— out —— —— ——
We now construct MST; 1. Let MSTju = MST; \ (Urex(E(X) N MST;)) be the set of MST; edges
—~—/
that are not contained in any subgraph X € X. Let MST,,; be the graph with vertex set V;;1 and there
—~—out
is an edge between two nodes (X,)) in V41 of there is at least one edge in MST?u between two nodes
— —~—/

in the two corresponding subgraphs & and V. Since MST; is a spanning tree of G;, MST, ; must be

—~ —~—/
connected. MST; ;1 is then a spanning tree of MST), ;. O

7.2 Constructing H;: Proof of Theorem [1.10{(1)

Recall that to obtain a fast algorithm for constructing a light spanner, Lemmal6.8|requires a fast construc-
tion of clusters at every level and a fast construction of H;, the spanner for level-i edges Ef. In Section|[7.1]
we have designed an efficient construction of level-i clusters (Lemma . In this section, we show to
construct H; efficiently with stretch ¢(1 + max{sssa(2g) + 4¢,10g}¢); that is parameter p in Lemma
is p = max{sssa(2¢g) + 4¢g,10g}. By induction, we assume that the stretch of every edge of weight less
than L;/(1 + 1) in Hep, /a4y is t(1 + max{sssa(2g) + 4g,10g}e). Note that Hop, = H_p, 14y U Hi;
see Remark

Our construction of H; assumes the existence of [SSAl Since edges of the input graph to [SSA] must
have weights in [L, (1 + €)L) for some parameter L, we set parameter 1) in Lemma to be e. Thus,
level-i edges EY (and hence edges in & of G;) have weights in [L; /(1 + ¢€), L;).

We now go into the details of the construction of H;. We assume that we are given the collection X
of subgraphs as described in Lemma Define:

xhieh — fx € X: V(x) nVhE £ g}

low™ . low™T (30)
X" — (X e X V@) NV £ ()

It could be that XMeh 0 X'ow" £ (. By Observation {xhigh | xlow™ xlow™} is a partition of X.
Recall that each edge (¢c,,¢c,) € & has a corresponding edge (u,v) € EY where u and v are in two
level-i clusters Cy, and C,, respectively. Our goal in this section is to prove the following lemma.

Lemma 7.7. Given we can construct H; in total time O((|V;| +|&|)T(m, n)) satisfying Lemmal6.§
with A = O(xe 2+ €7 3), and A = O(xe 2 + €3), when € < 1/(2g). Furthermore, the stretch of every
edge in EY in Hcp, is t(1 4+ max{sssa(2g) + 4g,10g}e).

We apply SSA to Vzh 8" that has size at most n since every level-i cluster corresponding to a node

in V"8 contains at least one original vertex in G. Furthermore, |£"8"| is bounded by m and hence,
high high
T(|gil |7|ViI |) ST(man)‘

Remark 7.8. If SSA can be implemented in the ACT model in time O((\Vihigh| + \5zhigh|)7'(m,n)), then
the construction of H; can be implemented in the ACT model in time O((|V;| + |&i|)T(m,n)).

38



Constructing H;. We construct H; in three steps, as briefly described in the construction overview
above. Initially H; contains no edges.

e (Step 1). For every sugraph X € X and every edge e = (¢, ,¢c,) € E(X) such that e € &;, we

add the corresponding edge (u,v) to H;. (Note that if e € &;, it is in MST; and hence (u,v) belongs
to H())

e (Step 2). For each node ¢¢, € VZ'»°W+ UVlew” and for each edge (¢c,, ¢c,) in & incident to pc,,
we add the corresponding edge (u,v) to H;,

e (Step 3). Let Eihigh C & be the set of edges whose both endpoints are in Vihigh, and K; =

(Veh ghieh ) be a subgraph of G;. We run on K; to obtain E"Y. For every edge (¢c,, 0, ) €

7 i)

Sfr”ned, we add the corresponding edge (u,v) to H;.

Analysis. In Claim Claim and Claim below, we bound the running time to construct
H;, the stretch of edges in EY, and the weight of H;, respectively. The following claims follows directly
from the construction.

Claim 7.9. H; can be constructed in time O((|Vi| + |&|)7(m,n)).

We bound the stretch of edges in E. We first show that the input to @ satisfies its requirement.

Claim 7.10. ; = (V?igh, Elhigh,w) is a (L,e, 8, T = 1+e€)-cluster graph with L = L;/(1+¢€), 8 = 2g, and
Hop = Hp,j(14¢), where Hop, j14¢) is the spanner constructed for edges of weight less than Li/(1 + €)
(see Remark |6.9 with 1 = €). Furthermore, the stretch of H.y for edges of weight less than L is

t(1 + max{sssa(2g) + 4g, 10g}e).

Proof: We verify all properties in Deﬁnition Properties (1) and (2) follow directly from the definition
of IC;. Since we set 1) = €, every edge (u,v) € EY has L;/(1+¢€) < w(u,v) < L;. As L = L;/(1+¢), prop-
erty (3) follows. By property Dm(Hcp,/1+0[C]) < gLi—1 = g(1 + €)eL < 2gel = BeL when € < 1.
Thus, K; is a (L, €, B)-cluster graph. By induction, the stretch of H., is t(14+max{sssa(2g)+4g, 10g}e). O

Claim 7.11. V(u,v) € EY, dy_, (u,v) < (1 + max{sssa(29) + 49, 10g}te)w(u,v) when € < 1/(2g).

Proof: Let F? = {(u,v) € EY : 3(pc,,¢c,) € &} be the set of edges in EY that correspond to the
edges in &;. We first show that:

di_p, (u,v) < t(1+ sssa(2g)e)w(u,v) V(u,v) € FY. (31)

To that end, let (¢c,, ¢c,) € & be the edge corresponding to (u,v) where (u,v) € F?. If at least one
of the endpoints of (¢¢,,¢c,) is in VZ'-°W+ U VW™ then (u,v) € H; by the construction in Step 2, hence
Equation holds. Otherwise, {¢c,, ¢c,} C Vhigh, which implies that (¢, , ¢c,) € Ez.high. Since we add
all edges of Efr”"ed to H;, by property (2) of@‘ and Claimm the stretch of (u,v) is t(1 + sssa(29)€).

It remains to bound the stretch of any edge (v/,v") € EY \ FY. Recall that (v/,v") is not added to
&; because (a) both «' and v' are in the same level-i cluster in the construction of the cluster graph
in Lemma , or (b) (u/,v') is parallel with another edge (u,v) also in Lemma or (c) the edge
(e, ¢c, ) corresponding to (u’,v’) is a removable edge (see Definition .

In case (a), since the level-i cluster containing both «’ and v" has diameter at most gL;_1 by property

1) we have a path from «’ to v in Hop, | of diameter at most gL,—; = geL; < 1_%1# < w0

39



when € < 1/(2g). Thus, the stretch of edge (u/,v’) is 1. For case (c), the stretch of (v/,v") in Hep, , is
t(1 + 6ge) since € < 1. Thus, in both cases, we have:

Ay, (u0) < 4(1 + 6ge)u(ul, o) (32)

We now consider case (b). Let C, and C, be two level-i clusters containing u and v, respectively.
W.lLo.g, we assume that v’ € C, and v’ € C,,. Since we only keep the edge of minimum weight among all
parallel edges, w(u,v) < w(u’,v’). Since the level-i clusters that contain u and v have diameters at most
gL;_1 = geL; by property , it follows that Dm(H.1,[Cy]), Dm(H<r.[Cy]) < geL;. We have:

ity (0,0') < dig_,, (1,0) + Dm(Her, [Cu]) + Dm(H1,[CL])
< ¢(1 + max{sssa(2g), 6g}e)w(u,v) + 2geL; (by Equation and Equation (32))
< t(1 + max{sssa(29), 6g}e)w(u’,v') + 2geL; < t(1 + max{sssa(29) +4g, 10g}e)w(u’, v")

Since w(u',v") > L;/(1 +¢€) > L;/2 and t > 1. The lemma now follows. O

Claim 7.12. Let I\E/TZN = Uxex(E(X) OI\Z\STZ) be the set of MST; edges that are contained in subgraphs
in X. Then, w(H;) < A1+ a; for A= O(xe 2+ ¢73) and a; = (xe2) w(I\Z\S/TZn) + O(L;/€?).

Proof: Let 1\//[‘\5'/1‘2”(2\’) =E(X)N MST,; for each subgraph X € X. By the definition of X' and Xhieh
(see Equation (30)), it holds that:

VPR < ST )] and PRV < Y V()

33
XEXhigh X€X|°W+ ( )

First, we consider the non-degenerate case where VZ!OW_ # V;. By Observation any edge in &;
incident to a node in V1!°W7 is also incident to a node in Vl'-°W+. We bound the total weight of the edges
added to H; by considering each step in the construction of H; separately. Let Fi(a) C EY be the set of
edges added to H; in the construction in Step a, a € {1, 2, 3}.

By Observation E(X)NE =0 if X € X . Recall that XMieh U Xlow" — X\ Xlw™ By Item (5)
in Lemma the total weight of the edges added to H; in Step 1 is:

wr = Y oL o) Y AL@=0(z) Y LW

X eXhighxlowT X eXhighxlowT XeX
1 —~—1in 1 —~—in .
= 0(5) 3 (Bir1(¥) + w(MST; (X)) = O() (Avss + w(MST; ) (by Claim B15) .
XeX

(34)

Next, we bound w(Fi(z)). Let (u,v) be an edge added to H; in Step 2 and let (¢, ,¢c,) be the
corresponding edge of (u,v). Since V" # V;, at least one of the endpoints of (¢c,, vc, ), w.l.o.g. vc,,
isin VZ!°W+ by Observation . Recall by Item (1) of Lemma that all nodes in VZ!OW+ have low degree,
i.e., incident to O(1/¢) edges in &;. Thus, \Fi(Q)] = O(%)]VZ'»°W+|. We have:

2 1 wt Eq. (33 1
wE?) o i o) Y p@in = o) Y p@iL

(]
xexlowt X eXhighxXlowt

"B o) Y AR = 0(5) B +w(VET) |

1
3 i+1
X eXhighxlowt

40



By property (1) of |SSA| the number of edges added to H; in Step 3 is at most X]Vh'gh\ Thus:

; Eq. l
w(E®) < xSy S XY VW)IL
XEXh'gh XeXhighUXIOW+ (36)
-(29) _ _ —~—in
"B one?) Y ALLA) = O ) (Ai1 + w(MST)) .
X eXhighxXlowt
By Equations (34) to , we conclude that:
w(H;) = O(xe 2 + e 3)(Ajs1 + w(MST; ) < MAjp1 + w(MST; ) (37)

for some A = O(xe™2 +¢73).

It remains to consider the degenerate case where VZ!°W7 =Y. Even if we add every single edge that
corresponds to an edge in & to H;, Item (3) in Lemma implies that the number of such edges is at
most O(E%) Thus, we have:

w(H;) = 0(67) <A (A +w(MST; ) + 0(7) (38)
where in the last equation, we use the fact that:
Ajs1 +w(MST; ) Cleimbld Z (Ajp(X) + MST Z AL (X
Xex xXex
by Item (3) of Lemma Thus, the claim follows from Equations and (38). O

Proof: [Proof of Lemma The running time follows from Claim By Claim the stretch
is t(1 4+ max{sssa(2g) + 4g,10g}¢). By Claim [7.12, we have ), n+ a; = Ziew(kl\/fS/TZn + O(L;/€?)).
Observe by the definition that the sets of corresponding edges of 1\7?8?2” and 1\7?8?3” are disjoint for any
i#j>1. Thus, Y+ Mﬁjn < w(MST). Observe that:

3063 = 0l X i = Ogg) = Oz wusT)

£ ehmax—1 €2(1—e) €2
ieNT i=1

here imax is the maximum level. The last equation is due to that e <1 /2 and every edge has weight at most
w(MST) (by the removal step in the construction of G'). Thus, A = A4+O(e72) = O(xe 2+ 3)+0(e72) =
O(xe 2+ €73) as claimed. O

We are now ready to prove Item (1) of Theorem [1.10}

Proof of Item (1) of Theorem By Lemma [7.3| and Lemma level-(i 4 1) clusters can be
constructed in time O((|Vi| + |&])e™t + Vila(m,n)) = O((|C;i| + |E?Z|)(a(m,n) + ¢1) when € < 1. By
Lemma 7.7, H; can be constructed in time O((|Vy] + |&])7(m, n)) = O((|Ci| + |EZ|)7(m,n).

We can construct a minimum spanning tree in time Tyist = O((n + m)a(m, n)) by using Chazelle’s
algorithm [16]. Thus, by Lemma [6.8] the construction time of the light spanner is

O(me (r(m,n) + a(m,n) + e 1) log(1/e) + Tust) = O(me Y (r(m,n) + a(m,n) + e ) log(1/e) .

41



By Lemma [7.7] and Lemma the lightness of the spanner is

A+1 1 1
O(M_% log - + g) = O((X€_3 + 6_4) log(1/e)).

Note that we set ) = € in this case. Since g = 31, by Lemma [7.7] and Lemma the stretch of the
spanner is
(1 + max{sssa(29) + 49, 10g}¢) < (1 + (s55a0(1)) + O(1))e)

This completes the proof of the theorem. O

8 Clustering: Proof of Lemma

In this section, we construct the set of subgraph X of the cluster graph G; = (V;, 1\//I\S/TZ U&i,w) as claimed
in Lemmal[7.3] See Table[T]for a summary of notation we introduced in Section[6] Our construction builds
upon the construction of Borradaile, Le and Wulff-Nilsen (BLW) [10]. However, unlike their construction,
which is inefficient, our main focus here is on having a linear-time construction. Using the augmented
diameter, we could bound the size of subgraphs (specifically in the construction of Step 4) arising during
the course of our algorithm, and compute the augmented diameters of clusters efficiently. We note that
in Borradaile, Le and Wulff-Nilsen [I0], the efficiency of the construction is not relevant since they use
the cluster hierarchy to analyze the greedy algorithm, not in the construction of the spanner.

Our construction has five main steps (Steps 1-5). In Step 1, we group all vertices of Vih'gh and their
neighbors into subgraphs of X; see Lemma In Step 2, we deal with branching nodes of 1\//I\Sﬁ_‘i; see
Lemma In Step 3, we augment existing subgraphs formed in Steps 1 and 2, to guarantee a special
structure of the ungrouped nodes In Step 4, we group subpaths of MST; connected by an edge e in
MST into clusters; see Lemma Finally, in Step 5, we deal with the remalmng nodes of V.

Recall that ¢ is a constant deﬁned in (by Lemma |7.3), g = 31), and that MST is a
spanning tree of G;. We refer readers to Table [I] for a summary of the notatlon.

Lemma 8.1 (Step 1). Let Vihigh = {pc € V : @c is incident to at least 2?9 edges in &}. Let V?igh+ be
obtained from V?'gh by adding all neighbors that are connected to nodes in Vih'gh via edges in &. We can
construct in O(|V;| + |&]) time a collection of node-disjoint subgraphs Xy of G; such that:

(1) Each subgraph X € Xy is a tree.

(2) Uxex, V(X) = V&,

(3) Li < Adm(X) < 13L;, assuming that e < 1/g.
(4) V(x)| = 2.

Proof: Let J = (V;,&;) be the subgraph of G; with the same vertex set and with edge set &;. Let N7(p)
be the set of neighbors of a node ¢ in J, and N7[¢] = N7(p) U {p}. We construct X; in three steps;
initially, X; = 0.

(1) Let Z be a mazimal set of nodes in VM&" such that for any two nodes @1, 92 € Z, Ni7[p1]NN7[pa] =
(). For each node ¢ € Z, we form a subgraph X that consists of ¢, its neighbors N7[p], and all
incident edges in &; of . We then add X to Xj.

(2) We iterate over all nodes of Vh'gh

pE Vh'gh \ Z, there must be a neighbor ¢’ that is already grouped to a subgraph, say X € Xy; if
there are multiple such neighbors, we pick one of them arbitrarily. We add ¢ and the edge (¢, ¢')

\ Z that are not grouped yet to any subgraph. For each such node

to X. Observe that every node in Vlh ieh s grouped to some subgraph at the end of this step.

42



(3) For each node ¢ in Vihithr that has not grouped to a subgraph in steps (1) and (2), there must be
at least one neighbor, say ¢', of ¢ that is grouped in step (1) or step (2) to a subgraph X € X;; if
there are multiple such nodes, we pick one of them arbitrarily. We then add ¢ and the edge (¢, ¢’)
to X.

This completes the construction of X;. We now show that subgraphs in X; have all desired properties.
Observe that Items (1) and (2) follow directly from the construction. For Item (4), we observe that
every subgraph X € X is created in step (1) and hence, contains a node ¢ € Vih 'eh and all of its neigh-
bors (in J) by the definition of Z. Thus, |V(X)| > 2g/e since ¢ has at least 2g/e neighbors. For Item
(3), we observe that each subgraph X € X; after step (3) has hop-diameter at least 2 and at most 6.
Thus, Adm(X') < 7geL; + 6L; < 13L;. Furthermore, since every edge e € & has a weight of at least
L;/(14+ 1) > L;/2 and X has at least two edges in &;, Adm(X) > 2(L;/2) = L;. The construction time

follows straightforwardly from the algorithm. O

Given a tree T, we say that a node x € T is T-branching if it has degree at least 3 in T'. For brevity,
we shall omit the prefix T in “T-branching” whenever this does not lead to confusion. Given a forest F,
we say that x is F-branching if it is T-branching for some tree 7' C F. The construction of Step 2 is
described in the following lemma.

Lemma 8.2 (Step 2). Let E@) be the forest obtained from 1\//[\S/Tz by removing every mode in Vihithr

(defined in Lemma ﬂ) We can construct in O(|V;|) time a collection Xo of subtrees of E@) such that
for every X € Xo:

(1) X is a tree and has an X-branching node.
(2) L; < Adm(X) < 2L;.
(3) V(X)| = QL) when e < 1/g.

(4) Let 1?;(3) be obtained from ﬁi(g) by removing every node contained in subgraphs of Xo. Then, for
every tree T C ﬁi(g), either (4a) Adm(T) < 6L; or (4b) T is a path.

Proof: We say that a tree T’ € I?’Z@) is long if Adm(T) > 6L; and short otherwise. We construct Xa,
initially empty, as follows:

e Pick a long tree T of ﬁi@) that has at least one T—branching node, say ¢. We traverse T starting
from ¢ and truncate the traversal at nodes whose augmented distance from ¢ is at least L;, which
will be the leaves of the subtree. (The exact implementation details are delayed until the end of
this proof.) As a result, the augmented radius (with respect to the center ¢) of the subtree induced
by the visited (non-truncated) nodes is at least L; and at most L; + w + geL;. We then form a
subgraph, say X, from the subtree induced by the visited nodes, add X to Xy, remove every node
of X from TV, and repeat this step until it no longer applies.

We observe that Item (1) follows directly from the construction. Since the algorithm only stops when
every long tree has no branching node, meaning that it is a path, Item (4) is satisfied. By construction,
X is a tree of augmented radius at least L; and at most L; + geL; + w, hence L; < Adm(X) < 2(L; +
geL;+w) < 6L; since w < L; and € < 1/g; this implies Item (2). Let D be an augmented diameter path
of X; Adm(D) > L; by construction. Note that every edge has a weight of at most w < L;_; and every

node has a weight of in [L;_1,gL;_1] by [property (P3’)l Thus, D has at least 232(2) > 2g€iLi = Q(l)

€

nodes; this implies Item (3). The construction of X5 can be implemented efficiently in O(|V;|) by simply

maintaining a list B of branching nodes of ﬁi(z). O

43



The goal of constructing a subgraph from a branching node ¢ is to guarantee that there must be at
least one neighbor, say ¢, of ¢ that does not belong to the augmented diameter path of X'. Thus, we
could show that the amount of corrected potential change A}, (X) is at least w(¢’) > Li_1 = eL;. This
will ultimately help us show that the corrected potential change A;:_l(X ) is Q(e2|V(X)|L;).

Step 3: Augmenting X; UX,. Let ﬁi(g) be the forest obtained in Item (4b) in Lemma Let A be

(3) (3)

the set of all nodes ¢ in F;™ such that ¢ is in a tree T e F3™ of augmented diameter at least 6L; and

 is a branching node in MST . For each node ¢ € A such that ¢ is connected to a node, say o, in a
subgraph X € X; U Xy via an MST edge e, we add ¢ and e to X. We note that ¢’ exists since ¢ has
degree at least 3 in MST (If there are many such nodes ¢, we choose an arbitrary one.)

The following lemma follows directly from the construction.

Lemma 8.3. The augmentation in Step 3 can be implemented in O(|V;|) time, and increases the aug-
mented diameter of each subgraph in X1 UXo by at most 4L; when ¢ < 1/g.

Furthermore, let 152-(4) be the forest obtained from ﬁi(g) by removing every node in A. Then, for every tree
T - ]51»(4) , either:

(1) Adm( ) < 6L; or
(2) T is a path such that (2a) every node in T has degree at most 2 in MST; and (2b) at least one

endpoint ¢ of T is connected via an MST; edge to a node ¢ in a subgraph of X1 U X, unless
X uUXy = 0.

The main intuition behind Step 3 is to guarantee properties (2a) and (2b) for every long path T e F( )
Recall that in Item (3) of Definition we guarantee that G; has no removable edge. Thus, any edge
between two nodes in 7" is not removable. Later, we use this property to argue that the corrected potential
change A;CH(X ) is non-trivial for every subgraph & formed in the construction of Step 4 below.

Required definitions/preparations for Step 4. Let ﬁi(4) be the forest obtained from 1?;(3) as
described in Lemma By Item (2b) in Lemma every tree of augmented diameter at least 6L; of

Fl.(4) is a simple path, which we call a long path.

Red/Blue Coloring. Given a path P - ﬁi(4), we color their nodes red or blue. If a node
has augmented distance at most L; from at least one of the path’s endpoints, we color it red;
otherwise, we color it blue. Observe that each red node belongs to the suffix or prefix of P;
the other nodes are colored blue.

Lemma 8.4 (Step 4). Let ﬁi(4) be the forest obtained from ﬁi(?’) as described in Lemma . We can
construct in O((|Vi| + |&|)e™t) time a collection Xy of subgraphs of G; such that every X € Xy:

(1) X contains a single edge in &;.

(3) [V(X)| = ©(¢) when ¢ <1/(8(g +1)).

(4) AL (X) = QV(X)|Ly).

(5) Let F( ) be obtained from ﬁ(4) by removing every node contained in subgraphs of X4. If we apply

|Red/Blue Colomngl to each path of augmented diameter at least 6L; in F( ) then there is no edge
)

in & that connects two blue nodes in F;

44



Proof: We only apply the construction to paths of augmented diameter at least 6L; in 1?‘1(4), called long
paths. Let P be a long path. For each blue node ¢ € P, we assign a subpath 7 () of P, called the interval
of ¢, which contains every node within an augmented distance (in P) at most L; from . By definition,
we have:

Claim 8.5. For any blue node v, it holds that

(a) (2— (39 +2)e)L; < Adm(Z(v)) < 2L;.
(b) Denote by Z; and Zy the two subpaths obtained by removing v from the path Z(v). Each of these
subpaths has ©(L) nodes and augmented diameter at least (1 —2(g + 1)e)L;.

We keep track of a list B of edges in & with both blue endpoints. We then construct Xy, initially
empty, as follows:

e Pick an edge (v, ) with both blue endpoints, form a subgraph X = {(v, u) UZ(v) UZ ()}, and add
& to X4. We then remove all nodes in 7, UZ, from the path or two paths containing v and p,
update the color of nodes in the new paths to satisfy |[Red/Blue Coloring| and the edge set B, and
repeat this step until it no longer applies.

We observe that Items (1) and (5) follow directly from the construction. For Item (2), we observe
by Claim that Z(v) has augmented diameter at most 2L; and at least L; when e < m, and the
weight of the edge (i, v) is at most L;. Thus, L; < Adm(X) < L; +2-2L; = 5L;, as claimed. Item (3)
follows directly from Claim [8.5]since [Z(v)| = ©(1) and |Z(u)| = O(1).

Next, we show that the construction of X4 can be implemented efficiently. Since the interval Z(v)
assigned to each blue node v consists of O(2) nodes by Claim 8.5{(b), it takes O(|&;|e™!) time to construct
B. For each edge (v, 1) € B picked in the construction of Xy, forming X' = {(v, u)UZ(v)UZ(u)} takes O(1)
time. When removing any such interval Z(v) from a path P, we may create two new sub-paths P;, P», and
then need to recolor the nodes following [Red /Blue Coloring} Specifically, some blue nodes in the prefix
and /or suffix of P;, P, are colored red; importantly, a node’s color may only change from blue to red, but

it may not change in the other direction. Since the total number of nodes to be recolored as a result of

removing such an interval Z(v) is O(1), the total recoloring running time is O(|V(ﬁi(4))|e_1) = O(|Vile }).
To bound the time required for updating the edge set B throughout this process, we note that edges are
never added to B after its initiation. Specifically, when a blue node v is recolored as red, we remove all
incident edges of v from B, and none of these edges will be considered again; this can be done in O(%)
time per node v, since v is incident to at most 2?9 = O(%) edges in &; due to the construction of Step
1 (Lemma [8.1)). Once a node is added to X, it will never be considered again. It follows that the total
running time required for implementing Step 3 is O(|Vile™!), as claimed.
We now prove Item (4). We consider two cases.

Case 1: Z(v)NZ(n) = 0. Let X = (v, u) UZ(v)UZ(u) where e = (v, 1) is the only edge in &; contained
in X. For any subgraph Z of X', we define:

oHZ) =D w@+ > wle) (39)

acz e’ eMST;NE(Z)
to be the total weight of nodes and 1\//1‘\S>'/I‘Z edges in Z. Let D be an augmented diameter path of X, and

Y = X \ V(D) be the subgraph obtained from X by removing nodes on D. Let Z(v) and Z(u) be two
intervals in the construction on Step 4 that are connected by an edge e = (v, ).

45



Claim 8.6. ®+() = 22 + Q(|V(V)eL;).

(
Proof: Let A=Y\ (Z(v)UZ(p)) be the subgraph of Y obtained by removing every node in Z(v) UZ(u)
from Y, and B = YN (Z(r)UZ(u)) be the subgraph of Y induced by nodes of Y in (Z(v) UZ(u)). Observe
that ®+(A) > [V(A)|L;_1 = [V(A)|eL;.. If D does not contain the edge (v, u) (see Figure [7(a)), then
Z(v)N'D = {, say, which implies *(B) > Adm(Z(v)) > (2 — (3g +2)e)L; by Claim[8.5] If D contains the
edge (v, p) (see Figure[7[(b)), then at least two sub-intervals, say Z;, I», are disjoint from D. By Claim[8.5
(:I’Z(B)i/—\dﬁ(uil) +Adm(Zs) > (2 — 4(g + 1)e)L;. In both cases, ®(B) > (2 — 4(g + 1)e)L; > 3¢ when

U
U

— 8(g9+1)
3Li 5LZ’ 5Li
(DY) 2 (A + = = - HAUVA+ VB))eLi) = == + AV(V)[eLy),
which concludes the proof of Claim [8.6] O

Note that V(D) < Lgi—L_il = O(2) since ev-
ery node has weight at least L;_1 by [property
(P3’)l Thus, we have:

AF(X) = B5(D) + B+ (V) — Adm(X) = B(Y) — w(e)
> L[4+ Q(V(Y)|eL;) (by Claim
= Q(V(D)leLi) + AV (V)|eLi) = QV(X)eLi) - (a)
Thus, Item (4) of Lemma [8.4] follows.

) Figure 7: D is the diameter path and enclosed trees are
Case 2: I(V) N I(M) # . Let D be a diam- augmented to a Step-4 subgraph in Step 5A. The green shaded

eter pathof X, and Y = X \ V(’D) Recall that regions contain nodes in D. (a) D does not contain e. (b) D
X contains only one edge e = (v, u) € &;. Let contains e.
Pe = (v, e, 1) be the path that consists of only edge e and its endpoints. Let P[v, u] be the subpath of
k/mi between v and p.

We observe that e is not removable by Item (3) of
Definition [6.151 Then it follows that:

S(Plvp]) = wlP) > b (e) —wlv) —ule) Pkl ot /by 7
> 6geL;/2 — 2gel; = gel;

In particular, this means that w(P(v, u)) > w(e).

Thus, if D contains both v and u, then it must con-
tain e, since otherwise, D must contain P[v, u| and by
replacing Plv, u] by Pe we obtain a shorter path by Equa-

tion (see Figure. Observe that Figure 8: Nodes enclosed in dashed red
Observation 8.7. [V(Plv, u])| < % and [V(D)| < 2. curves are augmented to X in Step 4.

€

D

We consider two cases:

e Case 1 If D does not contain edge e, then (a) D C MST; and (b) {v,p} N D| < 1. From (a) and
Observation we have:

AL (X) = Adm(D) + @F(Y) — Adm(X) = & (Y)
> Adm(P[u, v]) + (Y \ Py, v])
> w(e) + V(Y \ Plu, v])|Li—1 > Li/2 + V(Y \ Plu, v])|eLi
= Q(e([V(Pl, v])[ + V(D)) Li) + V(Y \ Plu, v])|eLi = QV(X)[eL;)

(41)

46



e Case 2 If D contains e, then D N P(v, ) = 0; here P(v, ) is the path obtained from P[v, u| by

removing its endpoints. It follows that
A (X) = Adm(D) + T (Y) — Adm(X) = (V) — w(e)

> Adm(Pp,v]) + @ (Y \ P, v]) — w(e)

42
> geL; + V(Y \ Plu, v])|Li—1 (by Equation ) (42)
= Q(V(Plp, V)| + V(D))e’Li) + VY \ Plu, v])|eLs = Q|V(X)|€*L;)
In both cases, we have A/, | (X) = Q(|V(X)|€’L;) as claimed in Item (4) of Lemma O

Observation 8.8. For every tree T C ﬁi(g)) such that Adm(f) < 6L;, then T is connected via 1\//I\Si“l
edge to a node in some subgraph X € X1 U Xo U Xy, unless there is no subgraph formed in Steps 1-4, i.e,
X UXoUXy = 0.

We call the case where X; U Xy U Xy = 0 the degenerate case. When the degenerate case happens,
G; has a very special structure, which will be described later (in Lemma [8.11)); for now, we focus on the
construction of the last step.

Step 5. Let T be a path in ﬁi(B) obtained by Item (5) of Lemma We construct two sets of
subgraphs, denoted by Xt and Xgref, of G;. The construction is broken into two steps. Step 5A is only
applicable when the degenerate case does not happen; Step 5B is applicable regardless of the degenerate
case.

e (Step bA) If T has augmented diameter at most 6L;, let e be an 1\//I§TZ edge connecting T’Nand a
node in some subgraph X € X; UXy U Xy; e exists by Observation We add both e and T to X'.

e (Step 5B) Otherwise, the augmented diameter of T is at least 6L; and hence, it must be a path by
Item (4) in Lemma In this case, we greedily break T into ~subpaths of augmented diameter at
least L; and at most 2L Let P P be a subpath broken from T If P is connected to a node in a
subgraph X via an edge e € MSTz, we add P and e to X. If P contains an endpoint of T we add
P to Xpref otherwise, we add P to Xintrnl,

Lemma 8.9. We can implement the construction of Xi™ and Xgref in O(|V;]) time. Furthermore, every
subgraph X € Xirtml Xgre'c satisfies:

(1) X is a subpath ofl\//I\Si“i.
(2) L; < Adm(X) < 2L; when e < 1/g.
(3) V(X)| = 6(y).

Proof: Items (1) and (2) follow directly from the construction. For Item (3), we observe the following
facts: Adm(X) > L;, each edge has a weight of at most L;_1, and each node has a weight of at most
gL;—1. Thus, |V(X)| > W = Q(1). By the same argument, since each node has a weight at least
Li—1 by [property (P3))}, [V(X)| < £E-
algorithm greedily.

Finally, we construct the collection X of subgraphs of G; as follows:

= O(1/e). The construction time follows by implementing the

X = X; U Xy U Xy UXintl xeref, (43)

To complete the proof of Lemma we need to:

47



1. show that subgraphs in X satisfies three properties: [P1°)] [[P27) and [[P37)] and that |&; NE(X)| =
O(|V(X)|). This implies Item (5) of Lemma We present the proof in Section

2. construct a partition {Vzhigh, VZ!°W+, VIow 1 of V;, show Items (1)-(4) and the running time bound as
claimed by Lemma We present the proof in Section
8.1 Properties of X

In this section, we prove the following lemma.

Lemma 8.10. Let X be the set of subgraph as defined in Equatz'on . For every subgraph X € X,
X satisfies the three properties - with g = 31 and € < and |E(X) N & = O(V(X))).
Furthermore, X can be constructed in O((|V;| + |&|)e™t) time.

8(g+1) +1)’

Proof: We observe that follows directly from the construction. Additionally,
(P2’)| follows from Item (4) of Lemma Items (3) of Lemma Lemma and Lemma The
lower bound L; on the augmented diameter of a subgraph X € X follows from Item (3) of Lemma [8.]]

Items (2) of Lemma Lemma and Lemma . Thus, to complete the proof of [property (P3’)
it remains to show that Adm(X) < gL; with g = 31 and € < . Observe that the condition that

1)
e < S eE) +1) follows by considering all constraints on € in Lemmas h to ﬂ and W

If X is formed in Step 5B, that is &' € Xintr! UXEref, then Adm(X) < 2L; by Lemma. Otherwise,
excluding any augmentation to X due to Step 5, Lemma Lemmam 2land Lemmaﬂyleld Adm(X) <
13L; + 4L; < 17L; where +4L; is due to the augmentation in Step 3 (see Lemma . By Lemma
Adm(X) < max(l?Li, 5Ll) = 17Li.

We then may augment X with trees of diameter at most 6L; (Step 5A) and/or with subpaths of

diameter at most 2L; (Step 5B). As the augmentation is star-like and via 1\//I\S/T2 edges, if we denote the
resulting subgraph by X*, then

Adm(Xt) < Adm(X) + 20 + 12L; < Adm(X) + 14L; < 31L;.

[Property (P3’)[now follows.

The fact that |E(X) N E;| = O(]V(X)|) and the running time bound follow directly from Lemma
Lemma Lemma Lemma and Lemma Recall that the augmentation in Step 3 is in a
star-like way and hence, no cycle is formed in subgraphs of X; U Xy after the augmentation. O

8.2 Constructing a Partition of V;

We first consider the degenerate case where X; U Xy U Xy = (.

Lemma 8.11 (Structure of Degenerate Case). If X1 UXy U Xy = 0, then ﬁ(5) Mﬁl, and Mﬁ 18
a single (long) path. Moreover, every edge e € & must be incident to a node in Py U Pg, where Py and

P, are the prefix and suffix subpaths of MST of augmented diameter at most L;. Consequently, we have
that |&;| = O(1/€2).

Proof: By the assumption of the lemma, no subgraph is formed in Steps 1-4.

48



Since no subgraph is formed in Step 1,
ﬁi@) = hﬁJTZ Since no subgraph is formed
in Step 2, there is no branching node in E@);
thus ﬁi(g) = ﬁi@) and it is a single (long) path.
Since X; UXy = (), there is no augmentation in
Step 3. Since no subgraph is formed in Step 4,
Fi(5) = Z( ) and both are equal to MST“ which
is a long path (see Figure E[)

By Item (5) in Lemma any edge e € & must be incident to a red node. The augmented distance
from any red node to at least one endpoint of 1\//[\S/TZ is at most L; by the definition of |Red/ Blue ColoringL
and hence every red node belongs to P U P». Since each node has a weight of at least L;_1 by [property

(P37} we have:

Figure 9: Red edges are edges in &;; every edge is
incident to at least one red node.

~ o~ 2L; 2
|V(P1 U P2)| < L =Z
Li—l €

Since each node of P; U P, is incident to at most 2?9 edges in &; (as there is no subgraph formed in Step
1; Vih'gh = (), it holds that |&| = O(1/€?), as desired. O

We are now ready to describe the construction of the partition {Vlh igh, Vl!°""+, Viow 1 of V;

Construct Partition {Vzh igh, VZ'~°W+, VZ'~°W_ }: If the degenerate case happens, we define VZ!°W_ =Y,
and Vih ieh VZ'»°W+ = (). Otherwise, we define Vh'gh to be the set of all nodes that are incident to at
least 2g/€ edges in &, VIV~ = UXexisntrnIV(X) and V'OW =V \ (V yrieh Plow ™)

We show the following property of {Vihigh, ]/1!0‘”+ , Vo1 which is equivalent to Item (4) in Lemma
Lemma 8.12. (1) If X contains a node in V', then V(X) C V'V .
(2) There is no edge in &; between a node in Vihigh and a node in VI .

(8) If there exists an edge (pc,, ¢c,) € & such that both pc, and pc, are in VI, then the degenerate
case happens.

Proof: Item (1) follows directly from the construction. By the construction of Step 1 (Lemma, any
neighbor, say ¢, of a node in Vihigh is in Vihithr. Thus, ¢ will not be considered after Step 1. It follows
that there is no edge between a node in Vzh 'eh and a node in VZ!O""_ since nodes in VZ!°W_ are in Step 5;
Item (2) follows. To show Item (3), we observe that every node, say ¢c,, in V'°¥ is a blue node of some
long path P in f’i(g)). If the degenerate case does not happen, then by Item (5) of Lemma every edge
(¢, , ¢c, ) must have the node ¢, being a red node of P. But then by the construction of Step v,
belongs to some subgraph of Xgref and hence is not in V'O . O

Next, we focus on bounding the corrected potential change A;F(X ) of every cluster X' € X. Specifically,
we show that:

o if ¥ € Xy, then AH_l(X)
o if X € Xy, then Az+1(X)
o if X € Xy, then A}, (X)

Q(|V(X)|Lse); the proof is in Lemma[8.13|
Q(|V(X)|L;€?); the proof is in Lemma [8.14
Q(|V(X)|L;e?); the proof is in Lemma [8.15

49



e the corrected potential change is non-negative and we provide a lower bound of the average corrected
potential change for subgraphs in X \ X'°¥" in Lemma

Lemma 8.13. For every subgraph X € X1, it holds that A;_l(X) > W

Proof: Let X € X; be a subgraph formed in Step 1. By Item (4) of Lemma V(x)| > 2. By
definition of A% (X) (Lemma [7.3), we have:

L;_ V(X)|L;—
A;ti-l( )> Z ( ) Adm ZLz L\ —gL; = | ( )| 1+(| ( ;| lfgLi)
PeEV(X) peX

>0 since P(X)|>(2g)/c  (44)
o V@) Lioa _ [V(X)]eLi
- 2 2 b

as claimed. OJ

Lemma 8.14. For every subgraph X € Xa, it holds that A} (X) = Q(|V(X)|Li?).

Proof: Let X' be a subgraph that is initially formed in Step 2 and could possibly be augmented in Steps
3 and 5. Recall that in the augmentation done in Step 3, we add to X nodes of V; via MST edges, and
in the augmentation done in Step 5, we add to X subtrees of MST via MST edges. Thus, the resulting
subgraph after the augmentation remains, as prior to the augmentation, a subtree of MST That is,
E(X) C MST;. Letting D be an augmented diameter path of X', we have by definition of augmented

diameter that
Adm(X) =D w(p)+ > wle)
p€ED ec&(D)

Let Y = V(X)\ V(D). Then |Y| > 0 since X has a X-branching node by Item (1) of Lemma 8.2 and that

AL = [ Tw+ 3 wle)| - Adn@) > Y wie) S L (45)

pEX c€E(X) pEY

As Adm(D) < gL;, it holds that |V(D)| = O(1/e¢) = ( ) Thus,

|V|Li—1
2

Af (X)) 2 +Q(eV(D)|Li1) = (Y] + V(D))eLi—1) = UV(X)[e*La),

as claimed. OJ

Lemma 8.15. For every subgraph X € Xy, it holds that Af,,(X) = Q (JV(X)|Li?).

Proof: Let X € X, be a subgraph initially formed in Step 4; X is possibly augmented in Step 5. Let X'™
be X after the augmentation (if any). Let DT be the augmented diameter path of X+ and D = DTN X.
By the same argument in Lemma

ATL(X) = QV(X)[€2Li) = Q(V(X) UV(DT)|€Ly). (46)

50



Furthermore,

AL =Y we)+ ) we)—w(Dh)
pext ecE(X+)NMST;
> we)+ Y we)+ >, w(e)—w(D)
ey peX ec&(X)NMST;
> QLielY)) + Afy, (%) "B Q(|VleLy) + Q(V(X) UV(DT)|ELy)
= QV(X)UV(DF) UY[E*Ly) = Q(V(XT)[e*Ly),
as claimed. ]

Next, we show Item (3) of Lemma regarding the corrected potential changes of subgraphs in X.

Lemma 8.16. Af (X) >0 for every X € X, and

SoAL )= > a(v)eLy).

X eX\Xlow™ XEX\Xlow™

Proof: If X € X; UXsUXy, then A;CH(X) > 0 by Lemmas to Otherwise, X € Xgref U Xg‘“”',
and hence is a subpath of MST;. Thus, by definition, AL (X) = Y pexw(p) + Zeeg(é’()ﬂl\mi w(e) —
Adm(X) = 0. That is, A ;(X) > 0 in every case.

We now show a lower bound on the average potential change of subgraphs in X \ X' . We assume
that the degenerate case does not happen; otherwise, X \ X'ow™ = ) and there is nothing to prove. By
Item (1) of Lemma Xlow™ — Xg’tr"' and only subgraphs in Xg’mf may not have positive potential
change. By Lemmas to on average, each node ¢ in any subgraph X € X; UXoUXy has Q(e2L;)
corrected potential change, denoted by A(y).

By construction, a subgraph in Xgref is a prefix (or suffix), say ]51, of a long path P. The other suffix,
say 152, of Pis augmented to a subgraph, say X € X;UXsUX, by the construction of Step and Item
(2) Lemmaﬁ Since [V(Py)| = Q(1/e€) by Item (3) of Lemma Z@eﬁg Ap) = Q1/e)(2L;) = Q(eLy).
We distribute half this corrected potential change to all the nodes in 131, by Item (3) of Lemma each

gets Q(iﬁé) = Q(e2L;). This implies:

oAb = Y a@lLy= Y a(v@)eL),

XeX\Xlow™ PEV;\VIow™ XeEX\Xlow™

as desired. ]

We are now ready to prove Lemma [7.3
Proof: [Proof of Lemma We observe that Items (1), (2) and (4) follow directly Lemma and
Lemma Item (5) follows from Lemma Item (3) follows from Lemma The construction
time is asymptotically the same as the construction time of X, which is O((|V;|+|&i|)e~!) by Lemma
Finally, we compute the augmented diameter of each subgraph X € X. We observe that the augmen-
tations in Step 3 and Step 5 do not create any cycle. Thus, if X is initially formed in Steps 1, 2 or 5B,
then finally X is a tree. It follows that the augmented diameter of X can be computed in O(|V(X)])

—

time by a simple tree traversal. If X’ is formed in Step 4, then it has exactly one edge e not in MST; by
Item (1) in Lemma and that X contains at most one cycle. Let Z be such a cycle (if any); Z has

o1



O(1/e) edges by Item (3) in Lemma[8.4] Thus, we can reduce computing the diameter of X to computing
the diameter of trees by guessing an edge of Z that does not belong to the diameter path of X and
remove this edge from X'; the resulting graph is a tree. There are O(%) guesses and each for each guess,
computing the diameter takes O(|V(X)|) time, which implies O(|V(X)|e~1) time to compute Adm(X)ﬂ
Thus, the total running time is > ycx O([V(X)]e™1) = O(|Vile ™). O

9 Light Spanners for Minor-free Graphs in Linear Time

In Section [4 we show a construction of a light spanner for K,-minor-free graphs with running time
O(nry/ra(nry/r,n)). The extra factor a(nry/r,n) is due to UNION-FIND data structure in the proof of
Theorem[1.10} To remove this factor, we do not use UNION-FIND. Instead, we follow the idea of Mares [52]
that was applied to construct a minimum spanning tree for K,.-minor-free graphs. Specifically, after the
construction of level-(i + 1) clusters, we prune the set of edges that are involved in the construction of
levels at least ¢ + 1, which is U;j>;11E7, as follows.

Let EZ; = U;j>;E7. We inductively maintain a set of edges &>, where each edge in £>; corresponds
to an edge in EZ,. (Note that only those in & are involved in the construction of spanner at level
i.) Furthermore, we inductively guarantee that |E>;| = O(r/logr)|Vi|; we call this the size invariant.
Upon completing the construction of level-(i 4+ 1) clusters, we construct the set of nodes V;;+1. We now
consider the set of edges €L, | = &5\ €. Let (‘:’22-“ be obtained from £, ; by removing parallel edges:
two edges (p1,p2) and (¢}, ¢,) are parallel if there exist two subgraphs X,Y € X such that, w.l.o.g,
01,9) € V(X) and ¢, ¢, € V()). (Among all parallel edges, we keep the edge with minimum weight in
5~¢+1.) We construct the edge set £>i11 (between vertices in V1) at level (i + 1) from gZi+1 by creating
one edge (X,)) € E>441 for each corresponding edge (¢x, ¢y) € Esi11 where ¢, € V(X) and ¢, € V());
w(X,Y) = w(pa, pr)'

Observe that &1 corresponds to a subset of edges of EZ, | since &L, 41, by definition, corresponds
to a subset of edges of £, ;. The stretch is in check (at most (14 O(¢))), since we only remove parallel
edges and that level-(i + 1) clusters have diameter O(e) times the weight of level-(i + 1) edges by
(P3)l Furthermore, since £>; = O(r+/logr|V;|) by the size invariant, the construction of &1 can be done
in O(]V;|) time. Since the graph (Viy1,€>i+1) is a minor of G and hence, is K,-minor-free, we conclude
that |E>i+1] = O(rv/logr)|Vit1] by the sparsity of minor-free graphs, which implies the size invariant for
level ¢ + 1.

By the size invariant, we do not need UNION-FIND data structure, as £>; now has O(r/logr|V;|) =
O(ry/logr|C;|) edges. Thus, the running time to construct G; in Lemma becomes Oc(|C;| + |&i]) =
Oc(rv/logr|C;|), and the running time to construct 1\//I§Ti+1 in Lemma also becomes O((rv/logr|C;|).
The rest of the proof is the same as the proof in Section [£.3]

10 Fine-Grained Optimal Lightness: Proof of Theorem [1.10|(2)

Our goal is to construct a cluster graph G; and a collection X of subgraphs of G; satisfying properties
(PTH(P3’)} We set ¢ = 1/250 where ¢ is the parameter in Equation (22)).

By Lemma the set of level-(i + 1) obtained from subgraphs in X obtained by applying the
transformation in Equation (26]) will satisfy properties [(P1)H(P3)l To be able to bound the set of edges in
H; (constructed in Sections [11{ and , we need to guarantee that subgraphs in X have sufficiently large

“It is possible to compute the augmented diameter of X in O(]V(X)|) time using a more involved approach.

52



potential changes. This indeed is the crux of our construction. We assume that ¢ > 0 is a sufficiently
small constant, i.e., e < 1,e = Q(1).

Constructing G;. We shall assume inductively on ¢,7 > 1 that:

e The set of edges 1\7[5?Z is given by the construction of the previous level i in the hierarchy; for the
base case i = 1 (see Section , MST; is simply a set of edges of MST that are not in any level-1
cluster.

e The weight w(yc) on each node g € V; is the potential value of cluster C' € C;; for the base case
i = 1, the potential values of level-1 clusters were set in Equation (25]).

After completing the construction of X, we can compute the weight of each node of G; 1 by computing
the augmented diameter of each subgraph in X’; the running time is clearly polynomial. By the
we show to compute the spanning tree MST;;; for G;11 for the construction of the next
level.

Realization of a path. Let P = (o, (90, ¥1), 1, (¥1,92),--.,9p) be a path of G;, written as an
alternating sequence of vertices and edges. Let C; be the cluster corresponding to ¢;, 0 <7 < p. Let u
and v be two vertices such that u is in the cluster corresponding to g and v is in the cluster corresponding
to ¢p. See Figure |§| for an illustration.

Let {y;}/_, and {z;}}_, be sequences of vertices of G such that (a) zp = v and y, = v and (b) (yi—1,2)
is the edge on G corresponds to edge (¢;—1,p;) in P for 1 <i <p. Let Q;, 0 < i < p, be a shortest path
in Hep, ,[C;] between z; and y; where C; is the cluster corresponding to ¢;. Let P = Qoo (yo, z1)0...0Qp
be a (possibly non-simple) path from u to v. We call P a realization of P with respect to u and v. The
following observation follows directly from the definition of the weight function of G;.

Observation 10.1. Let P be a realization of P w.r.t two vertices w and v. Then w(P) < w(P).

Next, we show that to construct H;, it suffices to focus on the edges of EY that correspond to edges
in gz Of Qz

Lemma 10.2. Let 1p = 1/250. We can construct a cluster graph G; = (V;, & U mi,w) in polynomial
time such that G; satisfies all properties in Definition . Furthermore, let FY be the set of edges in EY
that correspond to &;. If every edge in F? has a stretch t(1+s-€) in Hey, for some constant s > 1, then
every edge in EY has stretch t(1 4 (2s + 16g + 1)e) when € < m.

Proof: Since 1\//I\S/Tl is given at the outset of the construction of G;, we only focus on constructing
&;. For each edge e = (u,v) € EY, we add an edge (¢c,,¢c,) to G;. Next, we remove edges from G;.
(Step 1) we remove self-loops and parallel edges from G;; we only keep the edge of minimum weight
in G; among parallel edges. (Step 2) If ¢t > 2, we remove every edge (¢¢,,¢c,) from G; such that
w(l\m, [ec,,po,]) < t(1+6ge)w(pc,, o, ); the remaining edges of G; not in MST; 4 are &. If t = 1 +e¢,
we apply the path greedy algorithm to G; with stretch ¢(1+6ge¢) to obtain S;. (Note that we use augmented
distances rather than normal distances when apply the greedy algorithm.) It was shown [2] that the
path greedy algorithm contains the minimum spanning tree of the input graph. Thus, S; contains l\//Igi
as a subgraph. We then set & = £(S;) \ MST;; this completes the construction of ;.

We now show the second claim: the stretch of E? in H.y, is t(1 + max{s + 4g, 10g}€). Let (u/,v) be
any edge in EY \ F?. Recall that (u/,v’) is not in F7 because (a) both u' and v" are in the same level-i
cluster in the construction of the cluster graph in Lemma[10.2} or (b) (u,¢’) is parallel with another edge
(u,v), or (c) the edge (vc,,,¥c,,) corresponding to (u',v") is removed from G; in Step 2.

53



Case (a) does not happen since otherwise, there is a path inH.p, of length at most gL;—1 = geL; <
#w < w(u/,v") when e < m, contradicting that every edge is a shortest path between its endpoints.

For case (c), observe that if ¢ > 2, then by construction, dp_, (u',v") < t(14+6ge)w(u’,v"). Otherwise
(t =1+¢), let P’ be the shortest path between ¢c , and p¢ , in S;. Since S; is a t(1 4 6ge)-spanner of
G;, we have:

w(P') < (1+€)(1 +6ge)w(pc, . vc,) < (L+ (129 + De)w(u',v') (47)

Observe that P’ contains at most one edge in &. Let P’ be a realization of P’ w.r.t v/ and o'. If
P’ contains no edge in &;, then P’ is a path in H.y, ,. This implies that dy<;(v/,v") < (14 (129 +
De)w(u/,v") <t(1+(12g+1)e)w(u,v") since t > 1. Otherwise, P’ contains exactly one edge (z,y) € F?.
Let @ be obtained from P’ by replacing edge (z,y) by a shortest path from z to y in H.r,. Since
dr_,, (z,y) <t(1+4s-e)w(zx,y). Then by Equation , we have:

w(@Q) <t(l+s-w(P) <t(1+ (2s+12g+1) - e)w(u',v) (since (12g 4+ 1)e < 1)

Thus, in all cases, dg,(u/,v") < t(1+4 (25 +12g + 1) - e)w(u’,v’).

We now consider case (b); that is, (u/,v) is not in F7 because it is parallel with another edge (u,v).
Let C,, and C,, be two level-i clusters containing u and v, respectively. W.l.o.g, we assume that v’ € C,, and
v € C,. Since we only keep the edge of minimum weight among all parallel edges, w(u,v) < w(u/,v").By
property 7 Dm(H<Li [Cu])v Dm(H<Li [C’U]> < geL;.

i, (u',v") < dp_,, (u,0) + Dm(Hcp,[Cul) + Dm(Hep, [Co])
<t(1+ (2s+ 129 + De)w(u,v) + 2geL;
< (1+ (25 + 169 + 1)e)w(u',v) (since t > 1),

Since w(u',v") > L; /(1 + ) > L;/2. O

To construct the set of subgraphs X of G;, we distinguish between two cases: (a) t = 1 + € and (b)
t > 2. Subgraphs in X constructed for the case t = 1 + € have properties similar to those of subgraphs
constructed in Section [7} the key difference is that subgraphs constructed in our work have a larger
average potential change, which ultimately leads to an optimal dependency on € of the lightness. When
the stretch t > 2, we show that one can construct a set of subgraphs X of G; with much larger potential
change, which reduces the dependency of the lightness on € by a factor 1/e compared to the case t = 1+e.
Our construction uses [SSO| as a black box. The following lemma summarizes our construction.

Lemma 10.3. Given [SSO| we can construct in polynomial time a set of subgraphs X such that every
subgraph X € X satisfies the three properties — with constant g = 223, and graph H; such that:

dr_,, (u,v) < (1 4+ max{ssso(29), 6g}e)w(u,v) V(u,v) € F7
where FY is the set of edges defined in Lemma . Furthermore, w(H;) < MA;+1 + a; such that

1. whent >2: A= 0O(xe '), and A= O(xe ).
2. whent=1+e: A=0(xe ' +e2), and A= O(xe ! +e2).

Here A € RT such that Y, n+ ai < A-w(MST).

€N
The proof of Lemma is deferred to Section for the case ¢ > 2 and Section for the case
t=1+4ce€.

54



—— ——— out — —— —

Constructing MST;;;. Let MST, = MST; \ (Uvex(E(X) N MST;)) be the set of MST; edges that
—~—/

are not contained in any subgraph & € X. Let MST),,; be the graph with vertex set ;1 and there is an

——— out
edge between two nodes (X,)) in V41 of there is at least one edge in MST?U between two nodes in the
—~—/
two corresponding subgraphs X and ). Note that MST, | could have parallel edges (but no self-loop).
—~ —~—/ —~—
Since MST); is a spanning tree of G;, MST,,; must be connected. MST;;; is then a spanning tree of
—~—/
MST, ;.
We are now ready to prove Item (2) of Theorem [1.10}
Proof: [Proof of Item (2) of Theorem [1.10] We apply Lemma [6.8| to construct a light spanner H for G
where each graph H;, i € N, is constructed using Lemma, [10.3

When t > 2, by Item (1) of Lemma/|10.3|and Lemma the lightness of H is O((O(XE_I)L%XE_I)H) log(1)+

1) = Oc(xe™). When t = 1 + ¢, by Item (2) of Lemma and Lemma the lightness of H is

O((Qae Oty 155 (1) 4 L) = O, (xe ! + €2).

We now bound the stretch of H. By Lemma and Lemma the stretch of edges in EY in
the graph H.p, is t(1 + (2sss0(2g) + 16g + 1)€) with g = 223. Thus, by Lemma the stretch of H is
t(1+ (2sss0(29) + 169 + 1)e) = t(1 + (2s550(0(1)) + O(1))e) as claimed. O

11 Clustering for Stretch ¢ > 2: Proof of Lemma [10.3|(1)

In this section, we prove Item (1) of Lemma [10.3] (when the stretch ¢ is at least 2). The general idea is to
construct a set X of subgraphs of G; such that each subgraph in X has a sufficiently large local potential
change, and carefully choose a subset of edges of G;, with the help from [SSO] such that the total weight
could be bounded by the potential change of subgraphs in X and distances between endpoints of edges
in &; are preserved. (By Lemma it is sufficient to preserve distances between the endpoints of edges
in &.) In Lemma below, we state desirable properties of subgraphs in X. Recall that H.y, , is the
spanner constructed for edges of G of weight less than L; ;.

Lemma 11.1. Let G; = (V;, ;) be the cluster graph. We can construct in polynomial time (i) a collection
X of subgraphs of G; and its partition into two sets {XT, X~} and (ii) a partition of &; into three sets
{gfcake greduce gredunt} such that:

7 b} pi} ‘

(1) For every subgraph X € X, degguke(V(X)) = O([V(X)|) where G2k = (V;, £12%¢), and E(X)NE; C

gke . Furthermore, if X € X, there is no edge in E{educe incident to a node in X.

(2) Let H_; be a subgraph obtained by adding corresponding edges of E;‘ake to Her, . Then for every
edge (u,v) that corresponds to an edge in £t dH*L (u,v) < 2dg(u,v).
<L
(3) Let Af, (X) = A(X>+Zeeﬁ§i-m5(x) w(e) be the corrected potential change of X. Then, Al (X) >
0 for every X € X and
S AL = D QV(A)eLy). (48)

XeX+ Xex+

(4) For every edge (¢1,92) € & such that p1 € X,p9 € Y for some subgraphs X, € X~, then
(¢1,92) € EFIUN unless a degenerate case happens, in which EF = () and £ = O(1).

(5) For every subgraph X € X, X satisfies the three properties — with constant g = 223.
Furthermore, if X € X~ , then |E(X)N&]| = 0.

95



Lemma [11.1] is analogous to Lemma Here we point out two major differences, which ultimately
lead to the optimal dependency on € of the lightness. In Lemma roughly O(1/¢) edges are added
to H; per node of V;. Furthermore, each node has Q(L;e?) average potential change. These two facts
together incur a factor of (1/€3) in the lightness. Another factor of 1/e is due to ¢ = ¢ for the purpose
of obtaining a fast construction. The overall lightness has a factor of 1/e* dependency on e. Our goal is
to reduce this dependency all the way down to 1/e. By choosing ¢ = 1/250, we already eliminate one
factor of 1/e. By carefully partitioning & into three set of edges {£fake, greduce gredunty “and only taking
edges of Ez»take to H;, we essentially reduce the number of edges we take per node in every subgraph X
from O(1/€) to O(1) (by Item (1) in Lemma [11.1]), thereby saving another factor of 1/e. Finally, we
show that (by Item (3) in Lemma , each node in XT has (L;e) average potential change, which
is larger than the average potential change of nodes in Lemma by a factor of 1/e. We crucially use
the fact that ¢ > 2 in bounding the average potential change here. All of these ideas together reduce the
dependency on € from 1/¢* to 1/¢ as desired.

Next we show to construct H; given that we can construct a set of subgraphs X as claimed in
Lemma The proof of Lemma is deferred to Section [11.2

11.1 Constructing H;: Proof of Lemma for t > 2.

In this section, we construct graph H; as described in Lemma [10.3|in two steps. In Step 1, we take every
edge in Ez»take to H;. In Step 2, we use to construct a subset of edges F' to provide a good stretch
for edges in E{educe. Note that edges in F' may not correspond to edges in E{educe. As the implementation
of [SS0] depends on the input graph, this is the only place in our framework where the structure of the
input graph plays an important role in the construction of the light spanner.

Constructing H;: We construct H; in two steps; initially H; contains no edges.

e (Step 1). We add to H; every edge of EY corresponding to an edge in £f2ke,

e (Step 2). Let J; be a subgraph of G; induced by 4. Observe that J; is a (L;/(1 +
V), €, 8, T = 2)-cluster graph w.r.t Her, ,. We run on J; to obtain a set of edges F.
We then add every edge in F' to H;.

Analysis.  Recall that F} is the set of edges in EY that correspond to &;.
Lemma 11.2. For every edge (u,v) € F7, dH<Li(u, v) < t(1 + ssso(2¢9)e)w(u,v).

Proof: By construction, edges in F; that correspond to Ez-take are added to H; and hence have stretch
1. By Item (2) of Lemma edges in FY that correspond to £/°4U" have stretch 2 <t in H.,. Thus,
it remains to focus on edges corresponding to S{educe. Let (pc,, pc,) € Ezfeduce be the edge corresponding
to an edge (u,v € F7. Since we add all edges of F' to H;, by property (2) of [SSO] the stretch of edge
(u,v) in Hep, is at most ¢(1 + ssso(5)e) = t(1 + ssso(2g)e) since B = 2g. O

Let 1\/4§T§”(X) = &E(X)N MST; for each X € X. Let Mﬁjn = Uxex(E(X) N MS@) be the set of
MST; edges that are contained in subgraphs in X. We have the following observations.

Observation 11.3. (1) Y yox AL (X) = (A +w(1\f§ﬁ")) Furthermore, (A;41 +w(1\//[§i“zn)) > 0.
(2) Siens MST; < w(MST).

Lemma 11.4. w(H;) < M1+ a; for A= O(xe™ 1) and a; = O(Xefl)w(l\//[\S/Tzn) + O(Li/e).

56



Proof: First, we consider the non-degenerate case. Note by the [construction of H,|that we do not add
any edge corresponding to an edge in &} edunt to ;. Thus, we only need to consider edges in E;‘ake Ué'ireduce.
Let V}F = Uyex+ V(X) and V| = Uyex-V(X). By Observation any edge in £k incident to a node
in V;” is also incident to a node in Vf . Let Fi(a) be the set of edges added to H; in the construction in
Step a, a € {1,2}.

By Item (3) of Observation m EX)N& =0 if X € X~. By the construction in Step 1, Fz-(l)
includes edges in E corresponding to Eitake. By Item (1) in Lemma the total weight of the edges
added to H; in Step 1 is:

w(F) = > o(v@))L; L Oé) Yo oAb @) =o<§><Am+w<ﬁs’T§”>>. (49)
Xex+ Xext

Next, we bound w(FZ-(Q)). By Item (1) of Lemma there is no edge in £°9U°® incident to a node
in V; . Thus, V(J;) C V;". By property (1) of it follows that

w(F®) < XL < xVHL = x 32 VA)IL = O(y/e)(Asr + w(MSTS)) . (50)
Xex+

By Equations and , we conclude that:
w(H;) = Ox/€)(Bi1 +w(MST;")) < MAi1 + w(MST; ")) (51)

for some A = O(x/e).
It remains to consider the degenerate case. By Item (4) of Lemma we only add to H; edges
corresponding to €2k, and there are O(1/¢) such edges. Thus, we have:
L; i L;
w(Hy) = O() < A+ (A1 +w(MST)) + 0(2), (52)

€

since A1 —|—w(1\//I§Tzn) > 0 by Item (1) in Observation|11.3] Thus, the lemma follows from Equations
and (52). O

We are now ready to prove Lemma [I0.3] for the case ¢ > 2, which we restate below.

Lemma 10.3. Given [SSO|, we can construct in polynomial time a set of subgraphs X such that every
subgraph X € X satisfies the three properties — with constant g = 223, and graph H; such that:

dr_,, (u,v) < t(1 4+ max{ssso(29), 6g}te)w(u,v) V(u,v) € F7
where FY is the set of edges defined in Lemma . Furthermore, w(H;) < AA;+1 + a; such that

1. when t >2: A= O(xe 1), and A = O(xe™).
2. whent=1+e: A=0(xe ' +e2), and A= O(xe ' +c2).

Here A € RY such that ), o+ ai < A-w(MST).

Proof: [Proof of Item 1.] The fact that subgraphs in X satisfy the three properties (P1’))-(P3’) with
constant g = 223 follows from Item (5) of Lemmam The stretch in H.r, of edges in F} follows from
Lemma [11.2]

57



By Lemma |11.4) w(H;) < AA;+1 + a; where A = O(xe 1) and a; = O(Xe_l)w(lv[\S/Tzn) +O(L;/e). It
remains to show that A =", a; = O(xe !). Observe that

L; 1 e L; 1
O(=) = O(= —max . — O(—2 ) = O(=)w(MST) ;
306 = 0 Y G = 0(==) = O()u(MST)
ieNT i=1
here imax is the maximum level. The last equation is due to that € < 1/2 and every edge has weight at
most w(MST) since the weight of every is the shortest distance between its endpoints. By Item (2) of

Observation [11.3, > .+ mzn < w(MST). Thus, A = O(x/e) + O(1/€) = O(x/¢) as desired. O

11.2 Clustering

In this section, we give a construction of the set of subgraphs X of the cluster graph G; as claimed in
Lemma [IT.T] Our construction builds on the construction in Section [§f However, there are two specific
goals we would like to achieve: the total degree of nodes in each subgraph X in Gf2*¢ is O(|V(X)|), and the
average potential change of each node (up to some edge cases) is 2(eL;) (instead of Q(¢2L;) as achieved
in Section ,

Our construction has 6 main steps (Steps 1-6). The first five steps are similar to the first five steps in
the construction in Section [8} The major differences are in Step 2 and Step 4. In particular, in Step 2,
we need to apply a clustering procedure of [50] to guarantee that the formed clusters have large average
potential change. In Step 4, by using the fact that the stretch is at least 2, we form subgraphs in such
a way that the potential change of the formed subgraphs is large. Step 6 is new in this paper. The idea
is to post-process clusters formed in Steps 1-5 to form larger subgraphs that are trees, and hence, the
average degree of nodes is O(1). For those that are not grouped in the larger subgraphs, the total degree
of the nodes in each subgraph is O(1/¢), which is at most the number of nodes. In this step, we also rely
on the fact that the stretch ¢ > 2.

Now we give the details of the construction. Recall that g is a constant defined in
(9 = 223 in Lemma , and that MST; is a spanning tree of G; by Item (2) in Definition We
reuse the construction in Lemma for Step 1 which applies to the subgraph IC; of G; with edges in &;,
as described by the following lemma.

Lemma 11.5. Let Vihigh = {pc €V : @ is incident to at least %—Z edges in E;}. Let Vihithr be obtained

from Vz-high by adding all neighbors that are connected to nodes in Vzhigh via edges in E. We can construct
in polynomial time a collection of node-disjoint subgraphs X1 of K; = (V;, ;) such that:

(1) Each subgraph X € X is a tree.

(2) Uxex, V(X) = V'

(8) Li < Adm(X) < (6 + Tn)L;, assuming that every node of V; has weight at most nL;.

(4) X contains a node in Vihigh and all of its neighbors in K;. In particular, this implies |V(X)| > %.

We note Lemma [11.5] is slightly more general than Lemma [8.1]in that we parameterize the weights of
nodes in V; by nL;. Clearly, we can choose 1 = ge < 1 when e < 1/g since every node in V; has a weight
at most gel; by property for level i — 1. By parameterizing the weights, it will be more convenient
for us to use the same construction again in Step 6 below.

Given a tree T, we say that a node x € T is T-branching if it has degree at least 3 in T'. For brevity,
we shall omit the prefix T in “I-branching” whenever this does not lead to confusion. Given a forest F',
we say that z is F-branching if it is T-branching for some tree T' C F. Our construction of Step 2 uses
the following lemma by [50].

58



Lemma 11.6 (Lemma 6.12, full version [50]). Let T be a tree with vertex weights and edge weights. Let
L.,n,v, 8 be parameters where n < v < 1 and f > 1. Suppose that for any vertexr v € T and any edge
eeT,we) <w()<nL and w(v) >nL/B. There is a polynomial-time algorithm that finds a collection
of vertez-disjoint subtrees U= {T1,...,Tx} of T such that:

(1) Adm(T;) < 190vL for any 1 <i < k.

(2) Every branching node is contained in some tree in U.

(8) Each tree T; contains a T;-branching node b; and three internally node-disjoint paths Py, Pa, Ps shar-
ing b; as the same endpoint, such that Adm(P1UP2) = Adm(T;) and Adm(P3\{b;}) = Q(Adm(T;)/f).
We call b; the center of T;.

(4) Let T be obtained by contracting each subtree of U into a single node. Then each T -branching node
corresponds to a sub-tree of augmented diameter at least vL.

(a) (b)

Figure 10: (a) A collection U = {71, 72, T3} of a tree T as in Lemma Yellow nodes are 7-branching
nodes. Big yellow nodes are the centers of their corresponding subtrees in U. (b) The shaded node in T
is a T-branching node and has an augmented diameter of at least ~yL.

Let TREECLUSTERING(T, L, 1,7, ) be the output of Lemma for input 7 and parameters L, n,, 5.
See an illustration of Lemma in Figure We are now ready to describe Step 2. Recall that

¢ = 1/250 is the constant in property |(P3’)|

Lemma 11.7 (Step 2). Let f’i@) be the forest obtained from h//FSTTZ by removing every node in Vihithr
(defined in Lemma |11.5). Let U = Ufeﬁ_(g)TREECLUSTERING(T, Li,ge,(,9/C) and Xo = {T € U :
Adm(T) > CL;}. Then, for every X € Xy,

(1) X is a subtree of MST;.

(3) V()| = QL) when ¢ < 2/g.

(4) AL (X) = Q(Ly).

Furthermore, let f@ be obtained from ﬁi@) by removing every tree in U that is added to Xo, and

' 3)

contracting each remaining tree in U into a single node. Then every tree T C F,” is a path.

Proof: We observe that Items (1), (2), and (3) follows directly from the construction. We focus on
showing Item (4). Let ¢p be the center node of X. By Item (3) in Lemma there are three in-
ternally node-disjoint paths P;, P, Ps sharing ¢, as the same endpoint. There must be an least one

59



path, say Pi, such that P1 N D C {yp}. That is, P is internally disjoint from the diameter path D.
Also by Item (3) in Lemma Adm(P1 \ {pp}) = QAdIm(X)/B) = QCLi/(g9/C)) = Q(L;). Thus,
AL (X) = Adm(Pr\ {pp}) = Q(L;), as claimed. O

By Item (4) of Lemma the amount of potential change of subgraphs in Xy is Q(L;), while in
subgraphs in Xy in the construction in Section [8| only have Q(eL;) potential change.

We note that there might be isolated nodes in F,L»B , which we still consider as paths. We refer to nodes

in F,(S) that are contracted from U as contracted nodes, and nodes that correspond to original nodes of

(2 (3)

Fi( ) as uncontracted nodes. For each node @ € F;”, we abuse notation by denoting ¢ the subtree of ﬁi@)

corresponding to the node ¢; ¢ could be a single node in ﬁi@) for the uncontracted case. We then define
the weight function of ¢ as follows:

w(p) = Adm(p) (53)
In the RHS of Equation , we interpret ¢ as a subtree of ﬁi@) with weights on nodes an edges.

Observation 11.8. w(p) < (L; for every node ¢ € 7,

For each subpath P C fl(-g), let PUtt be the subtree of Mg'i‘Z obtained by uncontracting the contracted

nodes in P. We say that a node ¢ € )

;18 incident to an edge e € Méﬁ“, U &; if one endpoint of e
belongs to @.

Step 3: Augmenting X; UX,. Let 7O be the forest obtained in Item (4b) in Lemma Let A

i
be the set of all nodes ¢ in FES) such that there is (at least one) MST; edge e = (1, 2) between a node
p1 € @, and a node @9 € X for some subgraph X € X; UXy. Then, for each node ¢ € A, we augment X
by adding ¢ and e to X.

The following lemma follows directly from the construction.

Lemma 11.9. The augmentation in Step 3 increases the augmented diameter of each subgraph in X1 UXy

by at most AL; when € < 1/g.

Furthermore, let Fl@) be the forest obtained from Fl(s)

PC F§4), at least one endpoint € P has an Mﬁz edge to a subgraph of X1 U Xy, unless X1 UXs = ().

by removing every node in A. Then, for every path

Required definitions/preparations for Step 4. Let FEA) be the forest obtained from Ff’) as

described in Lemma We call every path of augmented diameter at least 6L; of FZ(-4)
use red/blue coloring, which is analogous to [red /blue coloring]in Section

a long path. We

Red/Blue Coloring. Given a path P C F§4), we color their nodes red or blue. If a node
has augmented distance at most L; from at least one of the path’s endpoints, we color it red;
otherwise, we color it blue. Observe that each red node belongs to the suffix or prefix of P;
the other nodes are colored blue.

For each blue node 7 in a long path P, we denote by I(7) the subpath of P containing every node
within an augmented distance (in P) at most (1 — ¢)L; from ©. We call I(7) the interval of v. Recall
that ¢ = 1/250 is the constant defined in Equation .

We define the following set of edges between nodes of FZ@).

E ={(i,v)]3u € fi,v € v and (u,v) € &}. (54)

60



We note that there is no edge in & whose nodes belong to the same tree, say [, that corresponds to

a node in FE ), because such an edge, say e, will have weight at most w(i) < (L; < L;/2 < w(e), a
contradiction.
Next, we define the weight:
w(@, ) = min w(y,v) (55)
(mv)€Es
That is, the weight of edges (fi,7) is the minimum weight over all ec_iges between two trees p and .
We then denote (i, v) the edge in &; corresponding to an edge (fi, ) € &;. Next, we define:

Efar( ) {(7, 1) € &color(v) = color(ji) = blue and I(v) NI (i) = 0}
56“’86( ) {(p, i) € &|color(v) = color(ji) = blue and I(v) NI(j) # 0}

We note that the definition of &*" (F(4)) and gflose(F(4)) depends on the underlying forest Y,

Lemma 11.10 (Step 4). Let FZ(-4) be the forest obtained from FZ(-S) as described in Lemma . We can
construct a collection X4 of subgraphs of G; such that every X € Xy:

(1) X is a tree and contains a single edge in &;.
(3) [V(X)| =Q(1/€) when e <1/8.
(4) AL (X) = Q(Ly).

Let F§5) be obtained from F§4) by removing every node whose corresponding tree is contained in subgraphs

of Xy4. If we apply |Red/Blue Colom’ngl to each path of augmented diameter at least 6L; in FZ@, then
EJGT(F(B)) = 0. Furthermore, for every path P C FZ@, at least one endpoint of P has an MST; edge to

a subgraph of X1 UXs UXy, unless X1 UXo UXy = 0.

Proof: We only apply the construction to long paths of FZ(~4); those that have augmented diameter at
least 6L;. We use the following claim which is analogous to Claim [8.5]

Claim 11.11. For any blue node v, it holds that

(a) (2— 3¢ — 2 — 26) L; < Adm(Z(#)) < 2(1 — ).
(b) Denote by I1 and Lo the two subpaths obtained by removing v from the path Z(v). Each of these
subpaths has augmented diameter at least (1 —2¢ — e — 1) L;.

We now construct Xy, which initially is empty.

e Pick an edge (7, i) with both blue endpoints and form a subgraph X = {(7, 1) UZ(?) UZ(ji)}. We
remove all nodes in Z(#) UZ(ji) from the path or two paths containing 7 and i, update the color
of nodes in the new paths to satisfy [Red/Blue Coloringl We then uncontract nodes in X to obtain
a subgraph X of G;, add X to X4, and repeat this step until it no longer applies.

Items (1), (2) and (3) follows from the same argument in Lemma[8.4, We only focus on Item (4). Let
T1,Z2,Z3,Z4 be four paths obtained from Z(ji) and Z(¥) by removing i and . Let D be the diameter
path of X. Then D contains at most 2 paths among the four paths, and possibly contains edge (7, i) as

well. Since each path has augmented diameter at most 2L; and w(7, i) < L;, we have that:

61



Deltal, ,(X) > [ Y w(@)+ > w(e)| —Adm(D) > (1 - 8¢ — 4e — 4)L; = Q(L;)
peX ec&(X)NMST;
when € < 1/8. O

As each node has weight at most geL; 1, we have:

Observation 11.12. Let P C FES) be a path of augmented diameter Q(L;). Then |V(P't)| = Q(1/e).

Step 5. Let P be a path in FEB) obtained by Item (5) of Lemma |11.10f We construct two sets of
subgraphs, denoted by Xt and XgrEf, of G;. The construction is broken into two steps. Step 5A is only
applicable when X; U Xy U Xy # 0.

e (Step 5A) If P has augmented diameter at most 6L;, let e be an MST; edge connecting ﬁ“c“iand
a node in some subgraph X € X; U X5 U Xy; e exists by Lemma 11.10L We add both e and Puctt
to X.

. LStep 5B) Otherwise, the augmented diameter of Pis at least 6L;. In this case, we greedily break
P into subpaths {Qq,...,Q} such that for each j € [1, k], Q;Ctrt has augmented diameter at least

L; and at most 2L;. If @j is connected to a node in a subgraph X € X; U Xy U Xy via an edge
e € M%@, we add Q;Ctrt and e to X. If Q; contains an endpoint of P, we add @;’Ctrt to Xgref;

otherwise, we add Q;’Ctrt to Xintrnl,

In Step 5B, we want Q;Ctrt to have augmented diameter at least L; (to satisfy property(P3’)|) instead
of requiring Adm(@j) > L; because a lower bound on the augmented diameter of Qj does not translate
to a lower bound on the augmented diameter of Q;‘Ct’t.

Lemma 11.13. Fvery subgraph X € Xg‘tm' U Xgmf satisfies:

(1) X is a subtree ofmi.
(3) V(X)) =Q(1/e).

Furthermore, if X € Xgmf, then X the uncontraction of a prefizx subpath Q of a long path P, and addi-

tionally, the (uncontraction of) other suffix @/ of P is augmented to a subgraph in X; U Xy U Xy, unless
XjuUuXoUXy = 0.

Proof: Items (1) and (2) follow directly from the construction. Item (3) follows from Observation|11.12
The last claim about subgraphs in Xgref follows from Lemma [11.10 g

Lemma 11.14. Let X' = X; UXo UXy U Xg’tm' U Xgref. Every node of V; is grouped to some subgraph in
X'. Furthermore, for every X € X/,

(1) X is a tree. Furthermore, if X & Xy, it is a subtree of MST;.
(2) ¢L; < Adm(X) < 31L; when ¢ < 1/g.

62



(3) (X)) =Q(1/e).

Proof: The fact that every node of V; is grouped to some subgraph in X’ follows directly from the
construction. Observe that only subgraphs in X’ formed in Step 4 contain edges in &;, and such subgraphs
are trees by Item (1) of Lemma this implies Item (1). Item 3 follows directly from Lemmas [11.5
1.7 [[1.10] and [[1.13]

We now focus on bounding Adm(&Xx’). The lower bound on Adm(X’) follows directly from Item (3) of
Lemma Items (2) of Lemmas [11.7], [11.10[ and [11.13] For the upper bound, we observe that if X
is formed in Step 1, it could be augmented further in Step 3, and hence, by Item (3) of Lemma m
(here n = ge), and Lemma Adm(X) < (6 + 7ge)L; + 4L; < 17L; since € < 1/g. By Items (2) of
Lemmas [11.7} [11.10| and [11.13] Adm(X) < 5L; if X is not initially formed in Step 1. Furthermore, the
augmentation in Step 5A and 5B increases Adm(X’) by at most 2(w + 6L;) < 14L;. This implies that, in
any case, Adm(X) < max{17L;,5L;} + 14L; = 31L;. O

Except for subgraphs in Xg‘“”' UXgref, we can show every subgraph X € X;UXsUX, has large potential
change: A;11(X) = Q(L;). The last property that we need to complete the proof of Lemma is to
guarantee that the total degree of vertices in X € Xo U Xy U Xintml Xgref in greduce is O(1/¢) (we have
not defined Gredie® yet). To this end, we need Step 6. The basic idea is that if any subgraph has many
out-going edges in & (defined in Equation ), then we apply the clustering procedure in Step 1 to
group it to a larger subgraph.

Required definitions/preparations for Step 6. We construct a graph ﬁz(ﬁl,a,@) as follows.
Each node @y € V; corresponds to a subgraph X € X’. We then set W(Px) = Adm(X). There is an edge
(Px, Py) € & between two different nodes P, Py if there exists an edge (@1, 92) € & between a node
1 € X and a node @y € ). We set the weight &(@x, Py) to be the minimum weight over all edges in &;
between X and ). We call nodes of I/C\Z supernodes.

We call px a heavy supernode if |[V(X)| > zg or Py is incident to at least 24 ? edges in K;. Otherw1se
we call py a light supernode. By definition of a heavy supernode and by Itern (4) in Lemma if X
is formed in Step 1, then @y is a heavy supernode. We then do the following.

We apply the construction in Lemma m to graph /6 (171,5’,,5&) where )A)high is the set of
phieh” 5o obtained from Vh igh by adding neighbors in IC Let X6

be the set of subgraphs of IC (Vz, 5,,, W) obtained by the construction. Every subgraph X X6
satisfies all properties in Lemma [I1.5| with n = 31.

heavy supernodes in K and V;

Let Xg be obtained from §A§6 by uncontracting supernodes. This completes our Step 6.
By the construction and a simple calculation, we have:

Lemma 11.15. Every subgraph X € X¢ has (L; < Adm(X) < 223L;.

In Section [11.2.1]| we construct the set of subgraphs X, and show several properties of subgraphs in X.
In Section [11.2.2] we construct a partition of &; into three sets, and prove Lemma [11.1

11.2.1 Constructing X

For each i € {2,4,5} let X;” be obtained from X; by removing subgraphs corresponding to nodes in Vh'gh

(which then form subgraphs in Xg). We now define X and a partition of X into two sets X* and X~
X'o%" as claimed in Lemma We distinguish two cases:

63



Degenerate Case. The degenerate case is the case where X] UX; UX, = XMl = (). In this case,
we set X = X~ = Xintml  xPf and X+ = ).

Non-degenerate case. If X{ UX5 UX] = Xg # (0, we call this the non-degenerate case. In this case,
we define.

Xt =X; UX; UXE®UXg, X7 =Xl (57)
X=Xtux"
We note that every subgraph in X; corresponds to a heavy supernode in k\z and hence, it will be
grouped in some subgraph in Xg.
In the analysis below, we only explicitly distinguish the degenerate case from the non-degenerate case
when it is necessary, i.e, in the proof Item (4) of Lemma Otherwise, which case we are in is either
implicit from the context, or does not matter.

Lemma 11.16. Let X be the subgraph as defined in Equation . For every subgraph X € X, X is a
tree and satisfies the three properties — with g = 223. Consequently, Item (5) of Lemma m
holds.

Proof: We observe that property [(P1)] follows directly from the construction. Property [(P27)] follows

from Item (3) of Lemma[11.14] Property [(P3") follows from Lemma [11.15
By Item (1) of Lemma|11.14] every subgraph X € X' is a tree. Since subgraphs in X6 in the construc-

tion of Step 6 are trees, subgraphs in X are also trees. Thus, |[£(X) N &;| = O(|V(X)]). Furthermore, if
X € X7, by the definition X~, X ¢ X4. Thus, X is a subtree of MST; by Item (1) of Lemma|11.14] That
implies £(X) N & = 0, which implies Item (5) of Lemma [I1.1] O

Our next goal is to show Item (3) of Lemma Lemma [11.17|below implies that if X € X is formed
in Steps 2,4, and 6, then A, (X) = Q(eLs|V(X))).

Lemma 11.17. For any subgraph X € X such that |[V(X)| > 22 or Af,
QeLi|V(X))).

Proof: We fist consider the case where |V(X)| > %. By definition of corrected potential change in Item
(3) of Lemma we have:

AfH(X) = Y w(p) — Adm(X) = (CeLi|V(X)]) — Adm(X)
PEV(X)
> (CeLi|V(X)])/2 — gL + (CeLi| V(X)) /2 = Q(eLs[V(X)]) -
Next, we consider the case where AT (X) = Q(L;). If [V(X)] > 29 , then A (X) = Q(eLi|V(X)]) as we
have just shown. Otherwise, we have:

(X) = Q(Li), then A7, (X) =

AL (X) = QL) = ﬂ(eLfﬁ) = QL V())),

as claimed. OJ

Lemma 11.18. Af (X) >0 for every X € X and

STALIX) = D Q(V(X)|eLy).

xex+ Xex+
Consequently, Item (3) of Lemma holds.

64



Proof: The fact that A;-'EH(X ) > 0 follows directly from the definition. By Lemma [11.17] for every
X € X5 UX], UXg, it holds that

AR (X) = QeLi V(X)) (58)

By the definition of X' in Equation , the only case where A/, | (X) could be 0 is X € XPre~ | Next,
we use an averaging argument to assign potential change to X'. Observe that X is an uncontraction of
some prefix Q of some path P € F(E)). By Lemma the uncontraction of the other suffix Q’ of P,
say @' , is augmented to a subgraph in X; U Xo U Xy4. It follows that @’ is a subgraph of some graph
Y e X5 UX UXg. If we distribute the corrected potential change Ajﬂ(y) to nodes in ), each node gets
Q(eL;) potential change. Thus, the total potential change of nodes in Q' is Q(eLi|V(Q)]). By Item (3) of

Lemma [11.13, [V(Q')| = Q(1/¢). Thus the potential change of nodes in Q' is Q(L;|). We distribute half
of the potential change to X. Thus, X has Q(L;) potential change, and by Lemma [11.17, the potential

change of X is Q(eL;|V(X)|). This, with Equation (58), implies that:

S AL = Y QVX)|eLy),

XeX+ XeXx+

as desired. ]

11.2.2 Constructing the partition of of &;: Proof of Lemma [11.1

In this section, we construct a partition of £ and prove Lemma Items (3) and (5) of Lemma [I1.1]
were proved in Lemma and Lemma respectively. In the following, we prove Items (1), (2)
and (4). Indeed, Item (2) follows directly from the construction (Observation [11.20). Item (1) is proved
in Lemma and Item (4) is proved in Lemma and Lemma [11.28

Recall that we define X' = X; U Xy U Xy UXE™ U XM in Lemma [11.14 We say that a subgraph
X € X' is light if it corresponds to a light supernode in k\z (defined in Step 6); otherwise, we say that X
is heavy. We construct £f2k¢ and £/°dU" in two steps below; £reduce = &, \ (£f2ke y gredunt) | Tnitially, both
sets are empty.

s ~

Constructing £k and £*dunt: Let X8t be the set of light subgraphs in X'

e Step 1: For each subgraph X € X, we add all edges of & in X to El-take. That is,

Erke  glake (g, N E(X)).

e Step 2: We construct a graph H; = (Vi,l\//[\S/Ti U El-take,w). We then consider every edge
e = (vUpu) € &, where both endpoints are in subgraphs in X8 in the non-decreasing order
of the weight. If:

dy, (v, 1) > 2w(e) , (59)

then we add e to £k (and hence, also to H;). Otherwise, we add e to £°dU"t. Note that
the distance in H; in Equation is the augmented distance.

The construction in Step 2 is the path greedy algorithm. We observe that:

Observation 11.19. For every edge e € S,L»'Educe, at least one endpoint of e is in a heavy subgraph.

65



Observation 11.20. Let H_; be a subgraph obtained by adding corresponding edges of ERke to H |
Then for every edge (u,v) that corresponds to an edge in U, dH*L (u,v) < 2dg(u,v).
<L;

We now focus on proving Item (1) of Lemma The key idea is the following lemma.

Lemma 11.21. Any subgraph X € X'\ X can be partitioned into k = O(1/¢) subgraphs {J1,...,Vk}
such that Adm(Y;) < 9CL; for any 1 < j < k when € < %.

Proof: Let ¢ be a branching node in ﬁ(z) the tree in Lemma We say that ¢ is special if
there exists three internally node disjoint paths Pl,PQ,Pg of F® Sharmg the same node ¢ such that
Adm(P; \ {¢}) > (L;. Observe by the construction in Lemma n that

Observation 11.22. Any special node ¢ of F® s contained in a subgraph in Xso.

By Lemma X is a tree. Let X’ be a maximal subtree of X’ such that X’ is a subtree of 1\/4§Tl
If X isin Xo UXE™® UXMml then X = X. Otherwise, X € X4, and thus it has a single edge in & by
Item (1) of Lemma That is, X has exactly two such maximal subtrees X’. Thus, to complete the
lemma, we show that X’ can be partitioned into O(1/¢) subtrees as claimed in the lemma.

Let D be the path in X’ of maximum augmented diameter. Let J be the forest obtained from X’ by
removing nodes of D. Then,

Observation 11.23. Adm(7) < 2(L; Y treeT € J

Now we greedily partition D into k& = O(1/() subpaths {P1,...,Px}, each of augmented diame-
ter at least (L; and at most 3CL;. This is possible because each node/edge has a weight at most
max{geL;, w} < max{geL;,eL;} < (L; when ¢ < (/g. Next, for every tree T € 7, if T is connected to a

node ¢ € P; via some MST; edge e for some j € [1, k], we augment e and 7 to P;. By Observation|11.23
the augmentation increases the diameter of P by at most 2(w + 2¢(L;) < 6¢L; additively. O

Lemma 11.24. Let X, be two (not necessarily distinct) subgraphs in X8 Then there are O(1) edges
m Sz»take between nodes in X and nodes in ).

Proof: Let {A,..., Az} ({Bi1,...,By}) be a partition of X (Y) into x = O(1/¢) (y = O(1/()) subgraphs
of augmented diameter at most 9 L; as guarantee by Lemma Observe that by Equation , there
is at most one edge in £k between Aj and By, for any 1 < j < 2,1 <k <y. Thus, the number of edges
in £tk between X and Y is at most x -y = O(1/¢?) = O(1). O

We obtain the following corollary of Lemma
Corollary 11.25. For any X € X'8" deggue(V(X)) = O(1/€) = O(|V(X)]) where G2*¢ = (V;, £F2ke).
We now prove Item (1) of Lemma [I1.1]

Lemma 11.26. For every subgraph X € X, deggute(X) = O([V(X)|) where Gk = (V;,ER*), and
E(X)NE; C 2. Furthermore, if X € X™, there is no edge in Ezreduce incident to a node in X .

Proof: Let X be a subgraph in X. Observe by the construction of £k in Step 1, £ N E(X) C Efake,
Clearly, the number of edges incident to nodes in X added in Step 1 is O(|V(X)|) since every subgraph
in X is a tree by Lemma [I1.14] Thus, it remains to bound the number of edges added in Step 2.

IfX e X;UX) UXpref_ Xt then X corresponds to a light supernode in ;. Thus, deggtake(V(X)) =

O(|V(X)|) by Corollary m Otherwise, X € Xg. By construction in Step 6, X is the union heavy

66



subgraphs and light subgraphs (and some edges in &;). By construction of £k, only light subgraphs
have nodes incident to edges in Efake. Let {J1,...,),} be the set of light subgraphs constituting X'
Then, by Corollary [11.25] we have that:

p p
deggue (X) <Y deggre(V) = D _(IV(Ih)]) = O(V(X)]) .
k=1 k=1

We now show that there is no edge in Sireduce incident to a node in X € X~. Suppose otherwise, let
e be such an edge. By Observation [11.19] e is incident to a node in a heavy subgraph, say ). That is,
Py € Vh'gh By the construction in Step 6, Py € Vh'gh and hence X is grouped to a larger subgraph in
Xe, contradlctlng that X € X7 O

We now focus on proving Item (4) of Lemma In Lemma [11.27, we consider the non-degenerate
case, and in Lemma [11.28) we consider the degenerate case.

Lemma 11.27. Let (1, p2) be any edge in &; between nodes of two light subgraphs X,Y in Xg‘”"'. Then,
(9017902) c giredunt‘

Proof: By the construction of Step 5, X and ) correspond to two subpaths X and ) of two paths P
and Q in F(S). Note that all nodes in X and ) have a blue color since the suffix/prefix of P and Q are
either in Xgref or are augmented to existing subgraphs in Step 5B.

Since there is an edge in & between X and Y, there must be an edge in &;, say (i, 7) between a node
of fi € X and a node of ¥ € Y by the definition of & (in Equation (54))) such that ¢1 € fi, o2 € 7.

As fi and 7 both have a blue color, either (i, 7) € & (f(S)) or (i, v) € EFo%¢(F e )) by the definition in

Equation . By Lemma Sifm(F(E))) = (). Thus, (f1,7) € EFo%(F e )). This implies I(7)N1(f) # 0,

and hence, X and ) are broken from the same path, say PE F(E)), in Step 5B.
Furthermore, by the definition of I(7), every node ¢ € I(7) is within an augmented distance (along
P) of at most (1 — 1/J)L from 7. This means, Adm(P[v, i]) < 2(1 —v)L;. Note that the uncontraction of

P, ji] is a subtree of MST;. Thus, dggst, (¢1,p2) < Adm(Pp, fi]) < 2(1 —¢)L; < 124573; < 2w(p1,p2). As

MSTi is a subgraph of H;, (¢1,p2) will be added to E{ed”"t in Step 2, Equation (5 . O

Lemma 11.28 (Structure of Degenerate Case). If the degenerate case happens, then FEE)) = F§4)

and F§5) is a single (long) path. Moreover, |ER%¢| = O(1/e).

=7,

Proof: Recall that the degenerate case happens when X UX; UX; = Xg = (. This implies
X; UXpUXy = 0. Thus, FZ@ = FZ@) = ng). Furthermore, FZ@ is a single (long) path since FE?))
is a path by Lemma This gives |Xgref\ = 2. By Lemma|11.27, there is no edge in £k between two

subgraphs in X" Thus, any edge in £2* must be incident to a node in a subgraph of X € Xgref. By
Corollary [11.25| there are O(1/¢) such edges. O

12 Clustering for Stretch ¢t =1+ ¢

In this section, we prove Lemma when the stretch t = 1 4+ €. The key technical idea is the following
clustering lemma, which is analogous to Lemma in Section the highlighted texts below are the
major differences. Recall that H.r,, | is the spanner constructed for edges of G of weight less than L; ;.

67



Lemma 12.1. Let G; = (V;,&;) be the cluster graph. We can construct in polynomial time (i) a collection
X of subgraphs of G; and its partition into two sets {XT, X"} and (ii) a partition of & into three sets
{gg:ake’ gireduce7 gzredunt} such that:

(1) For every subgraph X € X, deggue(V(X)) = O([V(X)|/€) where GP* = (V;, %), and E(X)NE; C

Eke  Furthermore, if X € X, there is no edge in é'{educe incident to a node in X.

2) Let H_, be a subgraph obtained by adding corresponding edges of £2%¢ to H.r. .. Then for every
<L7, 7 i—1
edge (u,v) that corresponds to an edge in Er3Unt, dH*L (u,v) < (14 6g€)2dg(u,v).
<Li
(3) Let Af, (X) = A(X)+Zeem-m£(x) w(e) be the corrected potential change of X. Then, Af, | (X) >
0 for every X € X and

ST ALY = 3 QV(A)eLy). (60)

XeX+ Xex+

(4) There exists an orientation of edges in Ezf‘ake such that for every subgraph X € X~ if X has t out-
going edges for some t > 0, then Af(X) = Q(|V(X)|te’L;), unless a degenerate case happens, in
which £°44 = () and

w(EfPke) = O(E%)(erx A;FH(X) + L;).
(5) For every subgraph X € X, X satisfies the three properties — with constant g = 31.

The total node degree of X in Q;‘ake in Lemma is worst than the total node degree of X in
Lemma|[l1.1] by a factor of 1/e. Furthermore, Item (4) of Lemma is qualitatively different from Item
(4) of Lemma and we no longer can bound the size of £2k¢ in the degenerate case. All of these are
due to the fact that the stretch ¢ =14 € < 2 when € < 1.

Next we show to construct H; given that we can construct a set of subgraphs X as claimed in
Lemma The proof of Lemma is deferred to Section [12.2

12.1 Constructing H;: Proof of Lemma fort=1+e.

Let 1\/4§T§"(X) =&X)N MST; for each X € X. Let mzn = Uxex(E(X) N mz) be the set of MST;
edges that are contained in subgraphs in X. The construction of H; is exactly the same as the construction
of H; in Section first, add every edge of Eitake to H;, and then apply on the subgraph of G;
induced by £r¢duee. Furthermore, Claim and Observation hold here.

Recall that F is the set of edges in EY that correspond to &;. By the same proof in Lemma we
have:

Lemma 12.2. For every edge (u,v) € FY, du_, (u,v) < (1 +max{ssso(29),6g}e)w(u,v).
Next, we bound the total weight of H;.
Lemma 12.3. w(H;) < MA;11+a; for A= O(xe ' +¢72) and a; = O(xe? +e—2)w(1\Z§T§") +O(L;/€2).

Proof: First, we consider the non-degenerate case. Note that edges in E{Gd“”t are not added to H;. Let

VI =Upex+ V(X) and V| = Uypex- V(X). Let Fi(a) be the set of edges added to H; in the construction
in Step a, a € {1,2}.

68



By the construction in Step 1, Fi(l) includes edges in £f2%¢. Let AW C Fi(l) be the set of edges incident

to at least one node in V;' and A = Fi(l) \ AW, By Item (1) in Lemma the total weight of the
edges added to H; in Step 1 is:

1 1 1 —in
A( ) Z O ’V L Ea._( O —2 Z Az+1 ) = O(?)(AH-I —|—w(MSTi )) . (61)
XeX+ XeX+

By definition A® is the set of edges with both endpoints in subgraphs of V. Consider the orientation
of Eitake as in Lemma Then, every edge of A is an out-going edge from some node in a graph in
X~. For each graph X € X, by Item (4) of Lemma the total weight of incoming edges of X is
O(tL;) = O(1/e*) A, (X). Thus, we have:

w(A 2 Z Az—i—l O(

xXeX

= O()(Bis1 +w(VBT) ©2)

Thus, by Equations EI) and 1) we have w(F1)) = O(H)(Aip +w(MST )) By the exactly the same
argument in Lemma [12.3) we have that w(F®) = O(x/e)(Air1 + w(MSTZ- )). This gives:

w(H;) = O(x/e + 1/E)(Asp1 + w(MST, ) < A(Asy1 + w(MST, ")) (63)

for some A = O(x/e +1/€?).
It remains to consider the degenerate case, and in which case, we only add to H; edges corresponding
to 2%, Thus, by Item (4) of Lemma we have:

h
m\h

w(H) = 0(5) < A+ (Aar +w(MST))) + O(), (64)

since Aj11 +w(1\//I\Si“zn) = > vex A1 (X) by Item (1) in Observation [11.3] Thus, the lemma follows from
Equations and . O]

We are now ready to prove Lemma [10.3] for the case t = 1 +e.
Proof: [Proof of Item 2 of Lemma [10.3] The fact that subgraphs in X satisfy the three properties (P
(P3’) with constant g = 31 follows from Item (5) of Lemma The stretch in Hoy, of edges in Ff
follows from Lemma [12.21 .

By Lemma [12.3, w(H;) < AA;11 + a; where A = O(xe ' +¢72) and a; = O(xe ! + e_Q)w(MST;n) +
O(L;/€%). It remains to show that A =", a; = O(xe* + ¢ 2). Observe that

L’i 1 Tmax Limax Limax 1
D 0(5) = 0(5)d. 2% = O(5722) = O()w(MST) ;

here ipayx is the maximum level. The last equation is due to that € < 1/2 and every edge has weight at
most w(MST) since the weight of every is the shortest distance between its endpoints. By Item (2) of

Observation [11.3) > .+ 1\/4§T§” < w(MST). Thus, 4 = O(x/€?) + O(1/€®) as desired. O

12.2 Clustering

In this section, we prove Lemma [12.1] The construction of X has 5 steps. The first four steps are exactly
the same as the first four steps in the construction in Section In Step 5, we construct X" differently,
taking into account of edges in é_’flose in Equation . Recall that when the stretch parameter t > 2, we
show that edges in &; corresponding to gflose are added to S{ed”"t (implicitly in Lemma [11.27)). However,
when t = 1 + ¢, we could not afford to do so, and the construction in Step 5 will take care of these edges.

69



Steps 1-4. The construction of Steps 1 to 4 are exactly the same as Steps 1-4 in Section to obtain

three sets of clusters X, Xy and X4 whose properties are described in Lemmas|11.5} |[11.7], [11.9/and [11.10]
(5)

7

After the four steps, we obtain the forest F;”’, where every tree is a path. In particular, for every edge
(5)

(fi,7) € & with both endpoints in ng)’ either (i) the edge is in é_’flose(Fi ), or (ii) at least one of the
endpoints must belong to a low-diameter tree of FZ(-E)) or (iii) in a (red) suffix of a long path in Fl(»g’) of
augmented diameter at most L;.

Before moving on to Step 5, we need a preprocessing step in which we find all edges in S{ed“"t. The
construction of Step 5 relies on edges that are not in Ez-red“”t.

(

Constructing £/°" and Efake_. Let ﬁz@ be obtained from F;)) by uncontracting the contracted
nodes. We apply the greedy algorithm. Initially, both S{Qd“”t and Sitake* are empty sets. We construct a

graph H; = (V;, MST; U Sl-takef,w), which initially only include edges in MST;. We then consider every
edge e = (vU p) € &;, where both endpoints are in V(ﬁi(5)), in the non-decreasing order of the weight. If:

dy, (v, p) < (14 6ge)w(e) (65)

then we add e to £°dunt. Otherwise, we add e to Eitake_ (and hence to ;). Note that the distance in
‘H; in Equation is the augmented distance. We have the following observation which follows directly
from the greedy algorithm.

Observation 12.4. For every edge e = (v, 1) € EP*™ dyy, (v, 1) > (1 + 6ge)w(e).

Step 5. Let P be a path in Fz@ obtained by Item (5) of Lemma [11.10, We construct two sets of
subgraphs, denoted by Xg‘tm' and Xgref, of G;. The construction is broken into two steps. Step HA is

only applicable when X; UXo U Xy # (. In Step 5B, we need a more involved construction by [50], as
described in Lemma [12.5

e (Step 5A) If P has augmented diameter at most 6L;, let e be an MST; edge connecting ﬁ“c“iand
a node in some subgraph X € X; U X, U Xy; e exists by Lemma 11.10L We add both e and PU<t"
to X.

e (Step 5B) Otherwise, the augmented diameter of P is at least 6L;. Let {Q;, @5} be the suffix and
—suctrt

prefix of P such that Q;  and @;Ctrt have augmented diameter at least L; and at most 2L;. If @j,

J € {1,2} is connected to a node in a subgraph X € X; U Xy U X, via an edge e € mi, we add
Q4™ and e to X. If Q; contains an endpoint of P, we add QY™ to Xgmf.

Next, denote by P the path obtained by removing Q;, @, from P. We then apply the construction

in Lemma|12.5/to P to obtain a set of subgraphs Cs(P ) and an orientation of edges in £~ (P,
the set edges of £2¢~ with both endpoints in the uncontraction of P . We add all edges of £2ke~ (P
to a set 5}53) (which is initially empty). We then add all subgraphs in Cs(P ) to Xintnl,

The construction of Step 5B is described in the following lemma, which is a slight adaption of Lemma
6.17 in [50]. See Figure |11 for an illustration. The construction crucially exploit the fact that dy, (v, u) <
(1+ 6ge)wl(e).

Lemma 12.5 (Step 5B, Lemma 6.17 in [50]). Let P be a path in ng). Let £2%~(P) be the edges of
El-take_ with both endpoints in PUt. We can construct a set of subgraphs Cs(P) such that:

70



(1) Subgraphs in Cs(P) contain every node in PU<t™t.

2) For every subgraph X € C4(P), ¢(L; < Adm(X) < 5L;. Furthermore, X is a subtree of Puetrt gnd
(2) y subgrap ; )
some edges in E2%~(P) whose both endpoints are in X.

(8) There is an orientation of edges in Sfake_ (P) such that, for any subgraph X € Cy(P), if the total
number of out-going edges incident to nodes in X is t for any t > 0, then:

AL (X) = Qte) L (66)

Figure 11: A path P, a cluster X, and a set of (blue) edges in £2~(P). White nodes are uncontracted
nodes and black nodes are those in contracted nodes (triangular shapes). A;:_l(X ) is proportional to
the number of out-going edges from nodes in X', which is 3 in this case; there could be edges with both
endpoints in X.

We observe the following from the construction.

take—
gi

Observation 12.6. For every edge e € , either at least one endpoint of e is in a subgraph in Xgref,

or both endpoints of e are in 52-(53).

The following lemma is analogous to Lemma

Lemma 12.7. Every subgraph X € Xg‘”"' U Xgref satisfies:

(1) X is a subtree of MST; if X € Xgref.
(3) P(X)] = Q(1/e).

Furthermore, if X € Xgref, then X the uncontraction of a prefir/suffix subpath Q of a long path P, and

additionally, the (uncontraction of) other suffix @, of P is augmented to a subgraph in X; U Xy U Xy,
unless X1 UXo UXy = 0.

In the next section, we prove Lemma [12.1

12.2.1 Constructing X and the partition of &;: Proof of Lemma [12.1

We distinguish two cases:

Degenerate Case. The degenerate case is the case where X; U Xo UXy = (. In this case, we set
X = X~ = Xintml g xPefand X+ = .

71



Non-degenerate case. We define:

Xt =X UXp UX, UXE® X = xineen!

67

X=X"uXx" (&%)

Next, we construct the partition of {£f2ke gredunt greduce} of £, Recall that we constructed two edge
sets £/°dU" and £~ above (Equation (65))). We then construct £ as described below. It follows that

gireduce — gz \ (gitake U giredunt).

Constructing £2*¢: Let VI = Uyex+ V(X) and V| = Uyex-V(X). First, we add all edges in
grake™ o grake Next, we add (UxexE(X) NE;) to E2%¢. Finally, for every edge e € & \ £ such
that e is incident to at least one node in V;”, we add e to Sitake.

In the analysis below, we only explicitly distinguish the degenerate case from the non-degenerate case
when it is necessary, i.e, in the proof Item (4) of Lemma Otherwise, which case we are in is either
implicit from the context, or does not matter.

We observe that Item (2) in Lemma follows directly from the construction of £r¢4Ut. Henceforth,
we focus on proving other items of Lemma [12.1] We first show Item (5).

Lemma 12.8. Let X be the subgraph as defined in Equation . For every subgraph X € X, X satisfies
the three properties — with g = 31. Consequently, Item (5) of Lemma holds.

Proof: We observe that property follows directly from the construction. Property follows
directly from Lemmas|[11.5} [11.7,[12.7|and [11.10f, We now bound Adm(&X’). The lower bound on Adm(X’)
follows directly from Item (3) of Lemma Items (2) of Lemmas [11.7] [12.7| and [11.10} For the upper
bound, by the same argument in Lemma if X is initially formed in Steps 1-4, then Adm(X’) < 31L;.
Otherwise, by Lemma Adm(X') < 5L;, which implies property with g = 31. O

We observe that Lemma [11.17|and Lemma [11.18 holds for X*, which we restate below in Lemma m
and Lemma |12.10] respectively. In particular, Lemma [12.10| implies Item (3) of Lemma m

Lemma 12.9. For any subgraph X € X such that |V(X)| > %‘Z or AT (X) = Q(L;), then A;:_l(X) =
QeLi[V(X)]).-

Lemma 12.10. A*

i+1(X) >0 for every X € X and

ST AL X)) = 3 QV(A)eLy).

Xex+ xXex+
We now prove Item (1) of Lemma which we restate here for convenience.

Lemma 12.11. For every subgraph X € X, deggue(V(X)) = O(|V(X)|/€) where GP* = (V;,ER*¢), and
E(X)NE; C &k, Furthermore, if X € X~, there is no edge in £ incident to a node in X.

Proof: Let Vihigh+ = Uxex, X. Note by the construction in Step 1 (Lemma IE , nodes in V; \ Vz.hig"h+
have degree O(2). Let €i(1) be the set of edges in £2¢ with both endpoints in Vihigh“ and £2 = glake \51;(1).
Also by the construction in Step 1 (Lemma, both endpoints of every edge in £? have degree O(1/e).
Thus, for any & € X, the number of edges in 52-(2) incident to nodes in X is O(|V(X)|/e).

Next, we consider Ei(l). Observe by the construction of Sfake that there is no edge in Ei(l) with two
endpoints in two different graphs of Xy. Furthermore, since X is a tree for every subgraph X € Xy, the

72



number of edges in Si(l) incident to nodes in X is O(|V(X)]). This bound also holds for every subgraph X
not in Xj since the number of incident edges in 52-(1) is 0; this implies the claimed bound on deggtake (V(&X)).

For the last claim, we observe that nodes in subgraphs of X~ are in V; . Thus, by the construction of
Ef2ke every edge incident to a node of X € X~ is either in £k or gredunt, O

We now focus on proving Item (4) of Lemma which we restate below.

Lemma 12.12. There exists an orientation of edges in E;»‘ake such that for every subgraph X € X=, if X
has t out-going edges for some t > 0, then A;rl(X) = Q(|V(X)|te?L;), unless a degenerate case happens,
in which £ = () and

W(ER) = 0(5)(Y A (X) + L)
xeX

Proof: First, we consider the non-degenerate case. Recall that {V;L , V. } is a partition of V; in the
lconstruction of £l We orient edges of £f2*¢ as follows.
First, for any e = (u,v) € Sitake such that at least one endpoint, say u € V;r , we orient e as out-

we orient e arbitrarily). Remaining edges are subsets of €i(5B)

going from p. (If both p,v are in Vi

i
by Observation We orient edges in 5553) as in the construction of Step 5B. For every subgraph
X € X7, by construction, out-going edges incident to nodes in X are in 51'(53)‘ By Item (3) of Lemma
AL (X) = Q(V(X)[te’Ls).

It remains to consider the degenerate case. In this case, by the same argument in Lemma [11.28
T = F(»?)), and Fz@ is a single (long) path. Furthermore, £2k¢ = £k~ and ]XgrEf| =2. We

3 (2 K3
)

orient edges in 57;(53 as in the construction of Step 5B, and other edges of Sl-take, which must be incident to

nodes in subgraphs of Xgref, are oriented as out-going from subgraphs in Xgref. By Item (3) of Lemma/|12.1
for any subgraph X € Xg’tm' that has t out-going edges, the total weight of the out-going edges is at most

5B
tLi = O(1/)Af; (X). Thus, w(EP) = O(1/€) X ey A1 (X) = O(1/€3) ¥y AL (X).
It remains to consider edges incident to at leas one node in a subgraph in Xgref by Observation m
Let X € X2, Observe that if [V(X)] > %—‘Z, then

A;ZA(X) = O(|V(X)leL;) (by Lemma
= 0] deggtake(x)k?l/i) (by Item (1) of Lemma

Ce?
that the total weight of edges incident to X is at most | degguke(X)|L; = O(1/€?)(Af, | (X) + L;). Since

XP®f| — 2 and A}, (X) > 0 for every X € X by Item (3) of Lemma we have that the total weight
of edges ncident to at leas one node in a subgraph in Xgref is O(%) (X vex Af1(X) + L;). The lemma
now follows. O

Otherwise, |V(X)| < 22, and hence | degguake (X)| = O(1/€?) by Item (1) of Lemma This implies

Acknowledgement. Hung Le is supported by a start up funding of University of Massachusetts at
Ambherst and by the National Science Foundation under Grants No. CCF-2121952 and No. CCF-2237288.
Shay Solomon is partially supported by the Israel Science Foundation grant No.1991/19. We thank Oded
Goldreich for his suggestions concerning the presentation of this work and we thank Lazar Milenkovié¢ for
his support.

73



References

1]

[11]

[12]

S. Alstrup, S. Dahlgaard, A. Filtser, M. Stockel, and C. Wulff-Nilsen. Constructing light spanners
deterministically in near-linear time. In 27th Annual European Symposium on Algorithms (ESA
2019), pages 4:1-4:15, 2019.

I. Althofer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs.
Discrete Computational Geometry, 9(1):81-100, 1993.

S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: Short, thin, and
lanky. In Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing,
STOC 95, pages 489-498, 1995. , [2]

B. Awerbuch, M. Luby, A. V. Goldberg, and S. A. Plotkin. Network decomposition and locality in
distributed computation. In Proceedings of the 30th Annual Symposium on Foundations of Computer
Science, FOCS ’89, pages 364-369, 1989.

Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for computing
sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532-563, 2007.

M. Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, STOC’83, pages 80-86, 1983. 2]

S. Bhore and C. D. Téth. Light Euclidean Steiner Spanners in the Plane. In $7th International
Symposium on Computational Geometry, SoCG ‘21, pages 15:1-15:17, 2021.

S. Bhore and C. D. Téth. On Euclidean Steiner (1 4 €)-Spanners. In 38th International Symposium
on Theoretical Aspects of Computer Science (STACS 2021), pages 13:1-13:16, 2021.

G. Bodwin. Personal communication, 2022. |§|

G. Borradaile, H. Le, and C. Wulff-Nilsen. Minor-free graphs have light spanners. In 2017 IEEE
58th Annual Symposium on Foundations of Computer Science, FOCS 17, pages 767-778, 2017. ,[1}

2 Bl [0} 28} 12

G. Borradaile, H. Le, and C. Wulff-Nilsen. Greedy spanners are optimal in doubling metrics. In
Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ‘19, pages
2371-2379, 2019. [1I0] 28]

Milutin Brankovic, Joachim Gudmundsson, and André van Renssen. Local routing in a tree metric 1-
spanner. In COCOON, volume 12273 of Lecture Notes in Computer Science, pages 174—-185. Springer,
2020.

D. De Caen and L. A. Székely. The mazimum size of 4-and 6-cycle free bipartite graphs on m,n
vertices. Rheinische Friedrich-Wilhelms-Universitit, 1991. [§]

T.-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On hierarchical routing
in doubling metrics. ACM Trans. Algorithms, 12(4):55:1-55:22, 2016. Preliminary version appeared
in SODA 2005.

B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on graph spanners. In
Proceedings of the Eighth Annual Symposium on Computational Geometry, 1992. | [2]

74



[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

B. Chazelle. A minimum spanning tree algorithm with inverse-ackermann type complexity. Journal
of the ACM, 47(6):1028-1047, 2000.

S. Chechik and C. Wulff-Nilsen. Near-optimal light spanners. In Proceedings of the 27th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA’16, pages 883-892, 2016. , [}

D. Z. Chen, G. Das, and M. Smid. Lower bounds for computing geometric spanners and approximate
shortest paths. Discrete Applied Mathematics, 110(2-3):151-167, 2001.

L. P. Chew. There is a planar graph almost as good as the complete graph. In Proceedings of the
Second Annual Symposium on Computational Geometry, SCG ‘86, pages 169-177, 1986.

L. P. Chew. There are planar graphs almost as good as the complete graph. Journal of Computer
and System Sciences, 39(2):205 — 219, 1989.

David Conlon, Jacob Fox, Benny Sudakov, and Yufei Zhao. The regularity method for graphs with
few 4-cycles. Journal of the London Mathematical Society, 104(5):2376-2401, 2021. |§|

Artur Czumaj and Andrzej Lingas. Fast approximation schemes for euclidean multi-connectivity
problems. In International Colloquium on Automata, Languages, and Programming, pages 856—868.
Springer, 2000. [2]

G. Das, P. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-dimensional euclidean
space. In Proceedings of the 9th Annual Symposium on Computational Geometry, SCG 93, pages
53-62, 1993. [2 [17]

G. Das, G. Narasimhan, and J. Salowe. A new way to weigh malnourished euclidean graphs. In
Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 95, pages
215-222, 1995. [2} [IT]

Gautam Das and Paul J Heffernan. Constructing degree-3 spanners with other sparseness properties.
International Journal of Foundations of Computer Science, 7(02):121-135, 1996.

Gautam Das and Giri Narasimhan. A fast algorithm for constructing sparse euclidean spanners. In
Proceedings of 10th SoCG, pages 132-139, 1994. | [1] 2| [IT]

Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Contraction decom-
position in h-minor-free graphs and algorithmic applications. In Proceedings of the 43rd ACM Sym-
posium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 441-450,
2011.

M. Elkin and O. Neiman. Efficient algorithms for constructing very sparse spanners and emulators.
ACM Transactions on Algorithms, 15(1), 2018. Announced at SODA ‘17.

M. Elkin and S. Solomon. Fast constructions of lightweight spanners for general graphs. ACM
Transactions on Algorithms, 12(3), 2016.

Michael Elkin, Ofer Neiman, and Shay Solomon. Light spanners. In Proc. of 41th ICALP, pages
442-452, 2014. 2] [3] [10] 28]

Michael Elkin and Shay Solomon. Optimal euclidean spanners: Really short, thin, and lanky. Journal
of the ACM (JACM), 62(5):1-45, 2015.

75



[32]

[33]

[34]

M. Farshi and A. Poureidi. A lower bound for computing geometric spanners. Computational
Geometry, 53:21-26, 2016. [2]

Arnold Filtser and Ofer Neiman. Light spanners for high dimensional norms via stochastic decom-
positions. In 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018,
Helsinki, Finland, pages 29:1-29:15, 2018. [6]

Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing, PODC ’16, pages 9-17, 2016. to
appear in SICOMP 2020.

M. Fiirer and S. P. Kasiviswanathan. Approximate distance queries in disk graphs. In International
Workshop on Approximation and Online Algorithms, WAOA ‘06, pages 174-187, 2006.

Martin Fiirer and Shiva Prasad Kasiviswanathan. Spanners for geometric intersection graphs with
applications. J. Comput. Geom., 3(1):31-64, 2012.

Lee-Ad Gottlieb and Liam Roditty. Improved algorithms for fully dynamic geometric spanners and
geometric routing. In SODA, pages 591-600. STAM, 2008.

M. Grigni and P. Sissokho. Light spanners and approximate TSP in weighted graphs with forbidden
minors. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
'02, pages 852-857, 2002.

Michelangelo Grigni. Approximate TSP in graphs with forbidden minors. In Automata, Languages
and Programming, 27th International Colloguium, ICALP 2000, Geneva, Switzerland, July 9-15,
2000, Proceedings, pages 869-877, 2000.

J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithms for constructing
sparse geometric spanners. SIAM J. Comput., 31(5):1479-1500, 2002. ,

S. Halperin and U. Zwick. Linear time deterministic algorithm for computing spanners for unweighted
graphs, 1996. Manuscript.

Y. Han and M. Thorup. Integer sorting in o(n\/(loglogn)) expected time and linear space. In
Proceedings of the 43rd Annual Symposium on Foundations of Computer Science, FOCS ’02.

S. Har-Peled, P. Indyk, and A. Sidiropoulos. Euclidean spanners in high dimensions. In Proceedings
of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ‘13, pages 804-809, 2013.
0]

Shlomo Hoory and Nathan Linial. Colorings of the d-regular infinite tree. Journal of Combinatorial
Theory, Series B, 91(2):161-167, 2004. [6]

A. V. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices.

Metody Diskret. Analiz., (38):37-58, 1982,

Robert Krauthgamer, Huy L. Nguyen, and Tamar Zondiner. Preserving terminal distances using
minors. SIAM J. Discrete Math., 28(1):127-141, 2014.

H. Le and S. Solomon. Light euclidean spanners with steiner points. In 28th Annual European
Symposium on Algorithms, 2020. Full version at https://arxiv.org/pdf/2007.11636.pdf.

76


https://arxiv.org/pdf/2007.11636.pdf

[48]

[51]

[52]

[53]

[54]
[55]

[56]

H. Le and S. Solomon. Near-optimal spanners for general graphs in (nearly) linear time. In Pro-
ceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’22, pages
3332-3361. 2022. [

Hung Le. A PTAS for subset TSP in minor-free graphs. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 2279-2298, 2020. Full version: jarxiv:1804.01588| 23] [24]

Hung Le and Shay Solomon. Truly optimal euclidean spanners. In 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019,
pages 1078-1100, 2019. Full version at https://arxiv.org/abs/1904.12042.

B8, 59 [70

C. Levcopoulos and A. Lingas. There are planar graphs almost as good as the complete graphs and
as short as minimum spanning trees. In International Symposium on Optimal Algorithms, pages
9-13, 1989. [

M. Mares. Two linear time algorithms for mst on minor closed graph classes. Archivum Mathe-
maticum, 40(3):315-320, 2004.

G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press, 2007. ,
(L1} [17} [18} 20

D. Peleg and A. A. Schéffer. Graph spanners. Journal of Graph Theory, 13(1):99-116, 1989.

D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. STAM J. Comput., 18(4):740—
747, 1989. [I]

S. B. Rao and W. D. Smith. Approximating geometrical graphs via “spanners” and “banyans”. In
Proceedings of the 30th Annual ACM Symposium on Theory of Computing, STOC ’98, pages 540—
550, 1998. Full version at http://graphics.stanford.edu/courses/cs468-06-winter /Papers/rs-tsp.pdf.

Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate distance
oracles and spanners. In International Colloguium on Automata, Languages, and Programming,
pages 261-272. Springer, 2005. [2]

Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM,
22(2):215-225, 1975.

A. Thomason. An extremal function for contractions of graphs. Mathematical Proceedings of the
Cambridge Philosophical Society, 95(2):261-265, 1984.

77


https://arxiv.org/abs/1804.01588
https://arxiv.org/abs/1904.12042

	Introduction
	Research Agenda: From Sparse to Light Spanners
	Our Contribution
	Our Unified Framework: Technical and Conceptual Highlights

	Preliminaries
	Lightness Lower Bounds
	I Our Unified Framework: Applications (sec:applications-fast and sec:applications-light)
	Applications of the Unified Framework: Fast Constructions
	Euclidean Spanners and UDG Spanners
	General Graphs
	Minor-free Graphs

	Applications of the Unified Framework: Fine-Grained Optimality
	General Sparse Spanner Oracles
	Constructing General Sparse Spanner Oracles
	General graphs and high dimensional metric spaces: Proof of thm:light-general-spanner and thm:Euclidean-high
	Steiner Euclidean Spanners

	Light Spanners for Minor-Free Graphs


	II Our Unified Framework: The Proof (sec:framework — sec:stretch1E)
	Unified Framework: Technical Setup
	The Framework
	Designing A Potential Function
	Summary

	Fast Construction: Proof of lm:framework(1)
	Constructing Level-(i+1) Clusters
	Constructing Hi: Proof of lm:framework(1)

	Clustering: Proof of lm:ClusteringFast
	Properties of X
	Constructing a Partition of Vi

	Light Spanners for Minor-free Graphs in Linear Time
	Fine-Grained Optimal Lightness: Proof of lm:framework(2)
	Clustering for Stretch t≥2: Proof of lm:ConstructClusterHi(1)
	Constructing Hi: Proof of lm:ConstructClusterHi for t≥2.
	Clustering
	Constructing X
	Constructing the partition of of Ei: Proof of lm:Clustering2


	Clustering for Stretch t = 1+ ε
	Constructing Hi: Proof of lm:ConstructClusterHi for t = 1+ε.
	Clustering
	Constructing X and the partition of Ei: Proof of lm:ClusteringE




