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Abstract1

In STOC’95 [6] Arya et al. showed that any set of n points in Rd admits a (1 + ϵ)-spanner with2

hop-diameter at most 2 (respectively, 3) and O(n log n) edges (resp., O(n log log n) edges). They also3

gave a general upper bound tradeoff of hop-diameter k with O(nαk(n)) edges, for any k ≥ 2. The4

function αk is the inverse of a certain Ackermann-style function, where α0(n) = ⌈n/2⌉, α1(n) =
⌈︁√

n
⌉︁
,5

α2(n) = ⌈log n⌉, α3(n) = ⌈log log n⌉, α4(n) = log∗ n, α5(n) = ⌊ 1
2 log∗ n⌋, . . . . Roughly speaking, for6

k ≥ 2 the function αk is close to ⌊ k−2
2 ⌋-iterated log-star function, i.e., log with ⌊ k−2

2 ⌋ stars.7

Despite a large body of work on spanners of bounded hop-diameter, the fundamental question of8

whether this tradeoff between size and hop-diameter of Euclidean (1 + ϵ)-spanners is optimal has9

remained open, even in one-dimensional spaces. Three lower bound tradeoffs are known:10

An optimal k versus Ω(nαk(n)) by Alon and Schieber [4], but it applies to stretch 1 (not 1 + ϵ).11

A suboptimal k versus Ω(nα2k+6(n)) by Chan and Gupta [13].12

A suboptimal k versus Ω( n

26⌊k/2⌋ αk(n)) by Le et al. [38].13

This paper establishes the optimal k versus Ω(nαk(n)) lower bound tradeoff for stretch 1 + ϵ, for any14

ϵ > 0, and for any k. An important conceptual contribution of this work is in achieving optimality by15

shaving off an extremely slowly growing term, namely 26⌊k/2⌋ for k ≤ O(α(n)); such a fine-grained16

optimization (that achieves optimality) is very rare in the literature.17

To shave off the 26⌊k/2⌋ term from the previous bound of Le et al., our argument has to drill much18

deeper. In particular, we propose a new way of analyzing recurrences that involve inverse-Ackermann19

style functions, and our key technical contribution is in presenting the first explicit construction20

of concave versions of these functions. An important advantage of our approach over previous21

ones is its robustness: While all previous lower bounds are applicable only to restricted 1-dimensional22

point sets, ours applies even to random point sets in constant-dimensional spaces.23
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1 Introduction24

Let P be a set of n points in Rd and let GP = (P,
(︁

P
2
)︁
, ∥ · ∥) be the complete weighted25

graph induced by P , which contains an edge (p, q) of weight w(p, q) = ∥p − q∥, for every26
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p, q ∈ S. A subgraph graph G = (P, E, ∥ · ∥) of GP , E ⊆
(︁

P
2
)︁
, is called a geometric graph.27

For a parameter t ≥ 1, a geometric graph G is called a t-spanner for P if, for all p, q ∈ S, G28

contains a t-spanner path between p and q (i.e., a path of weight at most t∥p− q∥).29

Euclidean spanners have been studied extensively [17, 35, 5, 12, 19, 6, 20, 8, 47, 2, 13,30

21, 51, 53, 23, 39, 32, 38]. They are important in theory and practice, having found many31

applications, e.g., in geometric approximation algorithms, network topology design, and32

distributed computing [19, 40, 47, 26, 28, 27, 31, 41]; see also the book [42].33

The most basic requirement of a spanner is to be sparse, while achieving small stretch.34

Cornerstone results settle the stretch-size tradoeff: for any d-dimensional n-point Euclidean35

space and for any ϵ > 0, there exists a (1+ϵ)-spanner with Oϵ,d(n) edges [58, 18, 34, 48, 35, 5],36

where the Oϵ,d suppresses the dependence on ϵ and d. (More precisely, the size upper bound37

is n · O(ϵ−d+1), and it was shown to be tight [39].) In many applications, however, the38

spanner should have additional useful properties of the underlying metric. One such property39

is the (hop-)diameter : a t-spanner for P has (hop-)diameter of k if, for any p, q ∈ S, there is40

a t-spanner path between p and q with at most k edges (or hops). Having a small diameter41

is important for various applications (e.g., routing protocols) [7, 1, 2, 13, 21, 32].42

While the stretch-size tradeoff is fully understood including the dependence on ϵ and d,43

the extended tradeoff of stretch-size-diameter is not fully understood yet even for fixed ϵ and44

d. Our goal is to achieve a full understanding of this tradeoff for fixed ϵ and d.45

If the points are in general position, a 1-spanner must include basically all
(︁

n
2
)︁

edges of46

the underlying metric. For points lying on a line, the simple path connecting them provides47

1-spanner, but its diameter is worst-possible, n − 1. Surprisingly perhaps, all previous48

lower bounds for the stretch-size-diameter tradeoff apply to line metrics. Understanding line49

metrics, and more generally tree metrics, is also important from the upper bounds front. In50

particular, the problem of constructing sparse 1-spanners with bounded diameter for line51

and tree metrics is closely related to several other fundamental problems. As an example,52

consider the extremely well-studied problem of partial sums, where we are given an array A53

of semigroup elements A[1], . . . , A[n] and are asked to construct a small-sized data structure,54

so that given a query i, j for 1 ≤ i < j ≤ n, the partial sum
∑︁

i≤k≤j A[k] can be computed55

efficiently. A 1-spanner for the corresponding set A[1], . . . , A[n] with bounded diameter is56

basically what we are looking for: A 1-spanner path between A[i] and A[j] that consists57

of at most k edges can be used for answering a query i, j within time O(k). Other closely58

related problems include the tree product queries in semigroup problem (a generalization of59

partial sums) and its variants (see [55, 58, 4, 16, 46, 2], and the references therein), the MST60

verification problem [37, 36, 44], and the problem of shortcutting digraphs [56, 57, 10].61

1.1 Previous Work on Spanners with Tiny diameter62

1.1.1 Upper bounds63

1-spanners for line and tree metrics. Let T = (T, rt) be a (possibly weighted) n-vertex64

rooted tree, and let MT be the tree metric induced by T . A spanning subgraph G of65

MT is said to be a 1-spanner for T , if for every pair of vertices, their distance in G is66

equal to their distance in T . One can define t-spanners for T , with t ≥ 1, but essentially67

all previous work here concerned stretch 1. Alon and Schieber [4] showed that for any68

n-point tree metric, a 1-spanner with diameter 2 (respectively, 3) and O(n log n) edges (resp.,69

O(n log log n) edges) can be built within time linear in its size; for k ≥ 4, they showed that70

1-spanners with diameter at most 2k and O(nαk(n)) edges can be built in O(nαk(n)) time.71

The function αk is the inverse of a certain Ackermann-style function at the ⌊k/2⌋th level72
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of the primitive recursive hierarchy, where α0(n) = ⌈n/2⌉, α1(n) = ⌈
√

n⌉, α2(n) = ⌈log n⌉,73

α3(n) = ⌈log log n⌉, α4(n) = log∗ n, α5(n) =
⌊︁ 1

2 log∗ n
⌋︁
, etc. Roughly speaking, for k ≥ 274

the function αk is close to ⌊k−2
2 ⌋-iterated log-star function, i.e., log with ⌊k−2

2 ⌋ stars. Also,75

α2α(n)+2(n) ≤ 4, where α(n) is the one-parameter inverse Ackermann function, which is an76

extremely slowly growing function. (See [38] for a formal definition.) Bodlaender et al. [11]77

constructed 1-spanners with diameter at most k and O(nαk(n)) edges, but for k ≥ 4 their78

construction time is rather high (Ω(n2)). Solomon [52] gave a linear-time construction with79

the same diameter-size tradeoff k versus O(nαk(n)) as [11].80

Alternative constructions, by Yao [58] for line metrics and by Chazelle [14] for general81

tree metrics, achieve a tradeoff of m edges versus diameter Θ(α(m, n)), where α(m, n) is the82

two-parameter inverse-Ackermann function (defined in [38]). However, these constructions83

provide 1-spanners with diameter Γ′ · k, only for constant Γ′ > 30.84

1.1.1.1 (1 + ϵ)-spanners.85

The seminal STOC’95 of Arya et al. [6] established the “Dumbbell Theorem”: For any d-86

dimensional Euclidean space, a (1+ϵ, O( log(1/ϵ)
ϵd ))-tree cover can be constructed in O( log(1/ϵ)

ϵd ·87

n log n + 1
ϵ2d · n) = Oϵ,d(n log n) time. (For the definition of tree cover, see e.g. [32].) The88

consequence of the Dummbell Theorem is that any construction of 1-spanners for tree metrics89

can be tranformed into a construction of Euclidean (1 + ϵ)-spanners, and the running time90

of the transformation is Oϵ,d(n log n) (plus a linear term in the size bound of the 1-spanner91

construction). The construction of 1-spanners for tree metrics from [52] thus yields an92

O(n log n)-time construction of Euclidean (1 + ϵ)-spanners with diameter k and O(nαk(n))93

edges. Moreover, this result of [52] generalizes for the wider family of doubling metrics via94

the recent tree cover theorem of Bartal et al. [9].95

1.1.2 Lower bounds96

The celebrated work of Yao [58] provided the first lower bound on 1-spanners for tree metrics,97

where a tradeoff of m edges versus diameter of Ω(α(m, n)) was proved for the uniform line98

metric. A stronger lower bound on 1-spanners, still for the uniform line metric, was given in99

[4]: diameter k versus Ω(nαk(n)) edges, for any k; as shown in [38], the lower bound of [4]100

implies that of [58], but the converse isn’t true. These lower bounds apply only to 1-spanners.101

Chan and Gupta [13] extended the lower bound of [58] to (1 + ϵ)-spanners, still for line102

metrics, proving a lower bound tradeoff of m edges versus diameter of Ω(α(m, n)). This103

tradeoff only provides a meaningful lower bound for sufficiently large values of diameter104

(above say 30). Specifically, the result of [13] can be used to show that any (1 + ϵ)-spanner105

for a certain line metric with diameter at most k must have Ω(nα2k+6(n)) edges. When106

k = 2 (resp. k = 3), this gives Ω(n log∗∗∗∗ n) (resp. Ω(n log∗∗∗∗∗ n)) edges, which is far from107

the upper bound of O(n log n) (resp., O(n log log n)).108

In SoCG’22 Le et al. [38] gave the following suboptimal lower bound tradeoff, for (1 + ϵ)-109

spanners of the uniform line metric: k versus Ω( n
26⌊k/2⌋ αk(n)). While the result of [38] is110

tight for constant k, the following question remains open for more than three decades:111

▶ Question 1.1. Is there a lower bound of k versus Ω(nαk(n)) between the diameter and the112

number of edges, for all k, for Euclidean (1 + ϵ)-spanners?113

SoCG 2023
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1.1.2.1 Putting Question 1.1 into perspective.114

Question 1.1 has been answered affirmatively by [38] for constant values of k. Recall115

that α2α(n)+4(n) ≤ 4, where α(n) is the one-parameter inverse Ackermann function. In116

other words, the gap underlying Question 1.1 holds only for k = ω(1), . . . , O(α(n)), which117

is admittedly a very small regime. The gap itself is exponential in k, which is at most118

exponential in α(n), hence it is a very small gap.119

One might wonder — why is Question 1.1 of any interest? Indeed, from a quantitative120

perspective, α(n) grows asymptotically even more slowly than log∗ n, which, in turn, is at121

most 5 for n < 265536. Thus a gap of exp(α(n)) is a constant factor gap for all practical122

purposes. However, we argue that Question 1.1 is important from a qualitative perspective.123

Indeed, there are numerous breakthrough works whose “only goal” was to shave off factors124

that grow as slowly as inverse-Ackermann type functions. For example, for the Union-Find125

data structure, efforts to achieve a linear time algorithm led to a lower bound showing that126

inverse-Ackermann function dependence is necessary [25], matching Tarjan’s cornerstone127

upper bound [54]. Another prime example is in the context of the MST problem, where the128

inverse-Ackermann function dependence was shaved off from the upper bound of [15] to achieve129

a linear time algorithm by means of randomization [33] or under certain assumptions [24]; and130

it remains a major question whether there exists a linear time deterministic comparison-based131

MST algorithm. Yet another example is in the context of Davenport-Schinzel sequences,132

whose study involves optimizing inverse-Ackermann style functions — including the functions133

α(n) and αk(n) — has led to important advances in discrete and computational Geometry.134

Indeed, Davenport and Schinzel [29] gave sharp bounds on sequences of order 1 and 2, namely135

λ1(n) = n and λ2(n) = 2n − 1, and since then numerous applications of the sequences136

have been found, such as to geometric containment problems, computing shortest paths,137

and convex hulls. Achieving a tight bound for order-3 sequences spanned a long line of138

work [29, 22, 30, 43], and it is now understood that λ3(s) = 2nα(n) + O(n
√︁

α(n)), i.e., the139

asymptotic behavior is known up to the leading constant. The case for k ≥ 4 also spanned140

much work [22, 30, 49, 50, 3, 43, 45] and was settled up to leading constants in front of α(n)141

in the exponent, i.e., λ4(n) = Θ(n2α(n)), λ5(n) = Θ(nα(n)2α(n)), λ6(n) = 2(1+o(1))αt(n)/t!.142

We stress that in this work we are not merely shaving off an inverse-Ackermann function143

dependence slack from a previous upper bound (that of [38]) — we shave off such a slack to144

achieve a tight bound. This is a rare example where such a tiny slack is shaved to achieve145

optimality, and we believe that it is a significant evidence for the importance of our result,146

especially in light of our technical contribution.147

1.1.2.2 A robust lower bound?148

All previous lower bounds [58, 4, 13, 38] apply to very specific line metrics: either to the149

uniform line metric [58, 4, 38] or to one that is derived from hierarchically well-separated150

trees (HSTs) and is very far from being uniform [13].151

A natural question is whether one can improve the longstanding construction of Euclidean152

(1 + ϵ)-spanners by Arya et al. [6] for “typical” point sets, which arise in real-life applications153

— such as random points in low-dimensional spaces. While random point sets are important154

from a practical perspective, none of the previous lower bounds [58, 4, 13, 38] precludes the155

existence of improved spanner constructions for such point sets.156

▶ Question 1.2. Can one improve the k versus O(nαk(n)) longstanding upper bound by157

Arya et al. [6] for random point sets in constant-dimensional Euclidean space?158
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1.2 Our Contribution159

1.2.1 The basic lower bound (settling Question 1.1 in the affirmative)160

We prove that any (1 + ϵ)-spanner for the uniform line metric with diameter k has Ω(nαk(n))161

edges, for any k. We first prove the following general statement, which applies to subspaces162

of the uniform line metrics of any density.163

▶ Theorem 1. Let P be a set of p points in the interval [0, L] such that every unit sub-interval164

[i, i + 1] for integer i, 1 ≤ i ≤ L− 1 contains at most 1 point of P . For any ϵ ∈ [0, 1/4] and165

integer k ≥ 1, any (1 + ϵ)-spanner with diameter k for P contains Ω
(︁
(p2/L)αk(p)

)︁
edges.166

For technical reasons we prove a more general lower bound, stated in Lemmas 12, 14,167

and 16, which applies to Steiner spanners, namely, spanners that may contain additional168

Steiner points. The following direct corollary of Theorem 1 improves the previous lower169

bound by Le et al. [38] by a factor of 2Ω(k), and it settles Question 1.1 in the affirmative.170

▶ Corollary 2 (The longstanding upper bound is tight for all k). Let P = {0, 1, . . . , n− 1} be171

the set of n points on the uniform line metric contained on interval [0, n). For any ϵ ∈ [0, 1/4]172

and integer k ≥ 1, any (1 + ϵ)-spanner with diameter k for P contains Ω (nαk(n)) edges.173

1.2.2 A robust lower bound (settling Question 1.2 in the negative)174

Our lower bound of Theorem 1 applies to subspaces of the uniform line metric. We first175

demonstrate that this lower bound can be naturally extended to obtain analogs for constant176

dimensions. Second, we show that this lower bound carries over for random point sets in177

spaces of constant dimension, thereby settling Question 1.2 in the negative. We note that178

our approach seamlessly extends to higher constant dimensions.179

The constant-dimensional hypercube and grid180

The proof of the following theorem is omitted from this version due to space constraints.181

▶ Theorem 3. Let P be a set of p points in the hypercube [0, L]d for a constant d ≥ 2 and182

some integer L ≥ 0 such that every unit hypercube with integer vertices in [0, L]d contains at183

most one point of P . For any ϵ ∈ [0, 1/4] and any integer k ≥ 1, any (1 + ϵ)-spanner with184

diameter k for P contains Ω
(︁
(pd/Ld)αk(pd)

)︁
edges.185

Thus for d = 2 and d = 3, we get lower bounds Ω((p2/L2)αk(p2)) and Ω((p3/L3)αk(p3)).186

▶ Corollary 4. Let P be the set of nd points on the d-dimensional grid [0, n)d, for a constant187

d ≥ 2. Then, for any ϵ ∈ [0, 1/4] and any integer k ≥ 1, any (1 + ϵ)-spanner with diameter k188

for P contains Ω
(︁
ndαk(nd)

)︁
edges.189

Random point sets in the d-dimensional hypercube190

We omit the proof of the following theorem from this version due to space constraints.191

▶ Theorem 5. Let P be a set of n points sampled uniformly at random on the hypercube192

[0, 1]d for any constant d ≥ 1. For any ϵ ∈ [0, 1/4], and any integer k ≥ 1, any (1+ϵ)-spanner193

with diameter k for P contains Ω(nαk(n)) edges.194

Remark. Theorem 5 applies to d = 1 as well, i.e., random points on the unit interval [0, 1].195

SoCG 2023
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1.2.3 A concave inverse-Ackermann function196

Our technique for proving Theorem 1 requires a significantly deeper understanding of inverse-197

Ackermann style functions than used in previous works [58, 4, 13, 38]. A key technical198

contribution in our work is an explicit construction of continuous versions of these functions.199

To our knowledge, this work is the first to introduce such functions for αk(n) for k > 4. We200

then show that these functions are concave, which allows us to apply Jensen’s inequality in201

our inductive proof, leading to a lower bound that is not only optimal for all values of k,202

but is also more robust, and in particular precludes the existence of better constructions for203

random point sets.204

▶ Theorem 6. Fix an arbitrary constant 1
10000 ≤ ∆ ≤ 1

256 . There exists a family of functions205

{fk(x) : k ≥ 2, k ∈ Z} such that each fk : R+ → R+ is twice differentiable in (0, +∞) and:206

1. For x > 1, f2(x) = log x; f3(x) = log log x; and fk(x) = ∆ + fk(fk−2(x)) for every k ≥ 4.207

2. For all x ∈ R≥1 and k ≥ 4, function x2fk(x) is convex.208

3. For all x ∈ R≥0 and k ≥ 4, it holds that fk(x) ≥ ∆
5 αk(⌈x⌉)− 1.209

4. For all x ∈ R≥0 and k ≥ 2, it holds that fk(⌈x⌉) ≤ αk(⌈x⌉).210

5. For all k ≥ 2, k ∈ Z and x ≥ 200, x ∈ R, it holds that 2
⌊︂

x
fk(x)

⌋︂
fk

(︂
2⌊x/fk(x)⌋

4

)︂
≥ x/2.211

Items 3 and 4 of Theorem 6 imply that fk(n) = Θ(αk(n)). Item 2 is a key property of212

our function fk(x), which does not hold for its discrete counterpart αk(n).213

2 One-dimensional instances214

This section is dedicated to proving Theorem 1. The proof is by double induction on the215

number of points and the diameter of the spanner. There are two base cases in the proof:216

k = 2 and k = 3 presented in Section 2.2 and Section 2.3, respectively. The proof for k ≥ 4217

is given in Section 2.4. Together, they imply Theorem 1. We choose ∆ = 1/256.218

For a constant d and given set of points P on the d-dimensional hypercube [0, L]d, we219

require that every unit hypercube with integer vertices in [0, L]d contains at most one point220

in P . We call the condition unit interval condition.221

2.1 Classification of cross edges222

Given a point set P contained on an interval [0, n] and given an ϵ ∈ [0, 1/4], let H be any223

(1 + ϵ)-spanner for P . Consider Algorithm 1 with parameter ℓ = 0 being the recursion level, k224

being the diameter, and I being the interval containing P . This algorithm is used to classify225

the edges of H only. It divides I into a smaller set of b subintervals and defines a set of226

separators, which are the endpoints of the subintervals excluding the two endpoints of I. A227

cross edge of the interval I at level ℓ is an edge (1) needed to preserve the distance between228

two points in P and (2) crossing a separator.229

Next we study properties of cross edges and classify them.247

▶ Lemma 7. Let e be a cross edge of some interval I = [c, d] and let L := |d− c| denote the248

interval length. Then, both endpoints of e are within [c− L/4, d + L/4].249

Proof. Suppose toward the contradiction that there is an edge containing an endpoint outside250

of [c−L/4, d + L/4]. Without loss of generality we take the case where the right endpoint of251

e has coordinate larger than d + L/4. Let x < y be two points in I for which e is on their252

(1 + ϵ) spanner path, say πx,y, in H. Since πx,y is a (1 + ϵ)-spanner path, its length πx,y253

must be at most (1 + ϵ)|y − x| ≤ 5|y − x|/4 ≤ |y − x| + L/4. However, the length of πx,y254
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Algorithm 1 Procedure describing the terms used in the proof. It is initially invoked with a given
set of p points P on interval I, and ℓ = 0. Here, H is a (1 + ϵ)-spanner for P .

245

246

procedure CrossEdges(P, I = [c, d], k, H, ℓ)230

if (k ≤ 3 and p ≤ 1) or (k ≥ 4 and fk(p) < 1) then return231

Let b← 2 if k = 2, b← ⌈√p⌉ if k = 3, and b← 2 · ⌊p/fk−2(p)⌋ otherwise.232

M ← (d− c)/b ▷ dividing I into b subintervals233

for 1 ≤ j ≤ b− 1 do234

Ij ← [c + (j − 1)M, c + jM ]235

Pj ← P ∩ [c + (j − 1)M, c + jM)236237

Pb ← P ∩ [c + (b− 1)M, c + bM ]238

Let {c + jM | 1 ≤ j ≤ b− 1} be the set of separators of I.239

A cross edge of interval I is every edge e = (x, y) of H such that: (i) e is on some
(1 + ϵ)-spanner path between two points in P and (ii) there exists a separator s such
that x ≤ s ≤ y.

240

241

242

for 1 ≤ j ≤ b do CrossEdges(Pj , Ij , k, H, ℓ + 1)243244

is strictly greater than |x− y|+ L/4 since the right endpoint of e is larger than d + L/4, a255

contradiction. ◀256

We classify the cross edges as follows. We call a cross edge of some interval interior if257

it contains both endpoints inside of the interval. If both of its endpoints are outside of the258

interval, we call it exterior. Otherwise, we call it mixed. See Figure 1 for an illustration.259

01s 1x 2s 2x 3x 3sn

Figure 1 The separators are marked by short red lines. Here P = {x1, x2, x3}. The spanner
could use Steiner points which are points not in P ; they are s1, s2, s3 in this figure. The red edge
(s1, s3) is an exterior cross edge of [0, n]; the blue edge (x1, s2) is an interior cross edge of [0, n]; and
the green edge (x2, s3) is a mixed cross edge of [0, n]. Edge (s1, x1) is not a mixed edge since it does
not cross any separator.

260

261

262

263

264

▶ Lemma 8. Let e be an interior cross edge of some interval. Then, it cannot be an interior265

cross edge of any other interval.266

Proof. Let ℓ be the level at which e is an interior cross edge of some interval I = [c, d].267

By definition, e cannot be an interior cross edge of any other interval at level ℓ, since the268

intervals at the same level are disjoint. Since the intervals of levels lower than ℓ contain no269

separators inside [c, d], e cannot be a cross edge at these levels. Finally, after level ℓ, I is270

split at the separators into smaller intervals, and hence e cannot have two endpoints in the271

same interval at levels higher than ℓ. ◀272

▶ Lemma 9. Let e be an exterior cross edge of some interval. Then, it cannot be an exterior273

cross edge of any other interval.274

Proof. Suppose that e = (u, v) is an exterior cross edge of more than one interval. Among275

such intervals, let [c, d] be of the highest level, say ℓ. We have that u < c and d < v since e276

is exterior. Let L = |d − c|. The length of intervals at levels lower than ℓ are at least 2L.277
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From Lemma 7, we know that c− L/4 ≤ u and v ≤ d + L/2, so the length of e is at most278

3L/2. This means that e cannot be an exterior edge at levels lower than ℓ. ◀279

▶ Lemma 10. Let e be a mixed cross edge of some interval. Then, it can be a mixed cross280

edge for at most one other interval, an exterior cross edge for at most one other interval and281

an interior cross edge for at most one other interval.282

Proof. Let ℓ be the level at which e = (u, v) is a mixed cross edge of some interval I = [c, d]283

of length L := |d− c|. Without loss of generality, we assume that u ∈ [c, d] and v ≥ d. By284

Lemma 7, v < d + L/4. Let I ′ = [c′, d′] be another interval such that I ′ ̸= I and e is a cross285

edge of I ′. We consider three cases.286

If the level of I ′ is strictly smaller than ℓ. If d is not a separator of I ′, then by definition287

e cannot be a cross edge of I ′. If d is a separator of I ′, then d′ ≥ d + L. On the other hand,288

v < d + L/4, so e = (u, v) must be an interior cross edge of I ′. By Lemma 8, it cannot be an289

interior cross edge of any other interval.290

If the level of I ′ is exactly ℓ. I. Since v < d + L/4, the only case where e is a cross edge291

of I ′ is that d is the left endpoint of I ′ and e is a mixed cross edge of I ′. Thus, e could not292

be a mixed cross edge of any other interval at level ℓ.293

If the level of I ′ is strictly larger than ℓ. Then the length of I ′ is at most L/b. Since u is294

on the left of at least one separator, say s, of I and v > d, the distance between s and d is at295

least L/b. It follows that the length of e is at least L/b. Hence, the only possible way for e296

to be a cross edge of I ′ is that it is an exterior cross edge. By Lemma 9, e′ will not be an297

exterior cross edge of any other interval. ◀298

▶ Corollary 11. Every cross edge considered in the process above is counted at most 4 times.299

In the sequel, we will be proving the lower bound on the number of cross edges. We say300

that a point of P in an interval I is global if it is incident on at least one cross edge of I.301

Otherwise, we say that it is non-global.302

2.2 Hop-diameter 2303

In this section, we show one of the two base cases of our inductive proof: a lower bound for304

diameter k = 2.305

▶ Lemma 12. Let P be a set of p ≥ 2 points in the interval [0, L] satisfying the unit interval306

condition. For any ϵ ∈ [0, 1/4], any Steiner (1 + ϵ)-spanner for P with diameter 2 contains307

at least T2(p, L) ≥ p2 log p
16L edges.308

Proof. Our proof is by induction on the number of points in P . Let H be any (1 + ϵ)-309

spanner for P with diameter 2. We split the interval [0, L] into two disjoint intervals310

[0, L/2] and [L/2, L]. Let the number of points in the intervals be p1 := |P ∩ [0, L/2]| and311

p2 := |P ∩ (L/2, L]|. We claim that the number of edges of H can be lower bounded by312

T2(p, L) which satisfies:313

T2(p, L) ≥ T2(p1, L/2) + T2(p2, L/2) + min(p1, p2)/4 (1)314

The base cases are T2(0, L0) = T2(1, L0) = 0, for any L0 > 0. The terms T2(p1, L/2) (resp.,315

T2(p2, L/2)) come from the cross edges contributed by the intervals in [0, L/2] (resp., [L/2, L])316

and their recursive divisions in Algorithm 1. We will show in Claim 13 that the number of317

cross edges of [0, L] is at least min(p1, p2). By Corollary 11, each cross edge is counted at318

most 4 times. Thus, we use min(p1, p2)/4 in Equation (1). This implies that the number of319

edges of H is bounded by T2(p, L).320
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▷ Claim 13. H contains at least min(p1, p2) cross edges of the interval [0, L].321

Proof. Without loss of generality, assume p1 ≤ p2. For contradiction, assume that the322

number of cross edges is less than p1. This means that there is a non-global point a in323

[0, L/2]. (Recall that we call a point non-global if it is not incident on any cross edge of324

the interval [0, L].) A path from a to any point b in P ∩ [L/2, L] is of the form (a, ab, b),325

where ab is a point on the left of L/2. Then (ab, b) is a cross edge by definition. That is, for326

each point in P ∩ [L/2, L], there is a corresponding cross edge in the path to a. Thus, [0, L]327

contains p2 ≥ p1 different cross edges, which is a contradiction. ◀328

We now solve the recurrence in Equation (1). We prove by induction that T2(p, L) ≥329

p2 log p
16L . Note that L ≥ p by the unit interval conditoin in Lemma 12. Assume without loss330

of generality that p1 ≤ p2. First, we assume that p1 ≥ p/4.331

T2(p, L) ≥ T2(p1, L/2) + T2(p2, L/2) + p1

4 ≥
p2

1 log p1

8L
+ p2

2 log p2

8L
+ p1

4 ≥
p2 log(p/2)

16L
+ p1

4

= p2(log(p)− 1) + 4Lp1

16L
≥ p2(log(p)− 1) + 4pp1

16L
≥ p2 log p

16L
(since p1 ≥ p/4)332

The second inequality follows by induction hypothesis, third by Jensen’s inequality, fourth333

by the unit interval condition, and the fifth since p1 ≥ p/4. When p1 < p/4, we have the334

following.335

T2(p, L) ≥ T2(p1, L/2) + T2(p2, L/2) + p1

4 ≥ T2(p2, L/2) ≥ (3p/4)2 log(3p/4)
8L

≥ p2 log p

16L
336

The penultimate inequality follows by using p2 ≥ 3p/4 and the induction hypothesis, whereas337

the last one holds for all p ≥ 14. When 2 ≤ p ≤ 13, we use T2(p1, L/2)+T2(p2, L/2)+p1/4 ≥338

p2
1 log p1

8L + p2
2 log p2

8L + p1
4 ≥

p2 log p
16L , where the last inequality can be manually verified. The339

lemma now follows. ◀340

2.3 Hop-diameter 3341

In this section, we show the remaining base case of our inductive proof: a lower bound for342

diameter k = 3.343

▶ Lemma 14. Let P be a set of p ≥ 2 points in the interval [0, L] satisfying the unit interval344

condition. For any ϵ ∈ [0, 1/4], any Steiner (1 + ϵ)-spanner for P with diameter 3 contains345

at least T3(p, L) ≥ p2 log log p
800L edges.346

Proof. Let H be any (1 + ϵ)-spanner for P with diameter 3. We split the interval [0, L] into347

b := ⌈√p⌉ disjoint intervals of length L/b: [0, L/b], [L/b, 2(L/b)], . . . , [(b − 1)(L/b), L]. Let348

Pi = P ∩ [(i − 1)(L/b), i(L/b)) for 1 ≤ i < b and Pb = P ∩ [L − L/b, L]. In other words,349

we divide the interval as in Algorithm 1. Let the number of points in the i-th interval be350

denoted by pi := |Pi|. We claim that the number of edges of H can be lower bounded by351

T3(p, L) which satisfies:352

T3(p, L) ≥
b∑︂

i=1
T3(pi, L/b) + |EC |/4 (2)353

Here EC denotes the set of cross edges for the interval [0, L] and the term T3(pi, li),354

where 1 ≤ i ≤ b, is the lower bound on the number of cross edges of H at higher levels355
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restricted to preserving distances in Pi. By Corollary 11, each cross edge is counted at most356

4 times. Thus, we use |EC |/4 in Equation (2). Thus, |E(H)| ≥ T3(p, L). The base cases are357

T3(0, L0) = T3(1, L0) = 0, for any L0 > 0.358

We now inductively show that T3(p, L) ≥ p2 log log p
800L . Suppose first that there is a collection359

of c ≤ √p/2 intervals which in total contain at least 9p/10 points. Without loss of generality,360

assume that these are the first c intervals; that is,
∑︁c

i=1 bi = 9p/10. In this case, we show361

that the inequality holds even without the contribution of the cross edges.362

c∑︂
i=1

T3(pi, L/b) ≥
c∑︂

i=1

p2
i log log pi

800L/b
≥ c ·

(︁ 9p
10c

)︁2 log log
(︁ 9p

10c

)︁
800L/b

≥ 81
50 ·

p2 log log
(︂

9√
p

5

)︂
800L

≥ p2 log log p

800L
363

The first inequality follows from the induction hypothesis, second by Jensen’s inequality,364

and third using b ≥ √p and c ≤ √p/2. We next bound the number of cross edges in the365

complementary case.366

▷ Claim 15. Assume that there is no collection of c ≤ √p/2 intervals that in total contain367

at least 9p/10 points. Then, |Ec| ≥ p/100.368

Proof. Suppose first there are at least p/10 global points. The number of cross edges369

they contribute is at least p/20, since each edge can be counted at most twice. In the370

complementary regime, there are at least 9p/10 non-global points. By the assumption of the371

claim, we know that they are contained in at least √p/2 intervals. Consider two non-global372

points x and y contained in two different intervals, X and Y , respectively. Since x and y are373

non-global, i.e., they are not incident on any cross edge, every 3-hop path between x and y374

must be of the form ⟨x, x′, y′, y⟩, where x′ ∈ X and y′ ∈ Y . We conclude that every pair of375

different intervals containing non-global points induces a different cross edge. Hence, the376

number of cross edges can be lower bounded by
(︁√

p/2
2

)︁
≥ p

100 for p ≥ 5. When 2 ≤ p ≤ 4,377

there is at least one cross edge, and the bound holds as well. ◀378

We now solve Equation (2) by induction. By Claim 15, we have:379

T3(p, L) ≥
b∑︂

i=1
T3(pi, L/b) + p

400 ≥
b∑︂

i=1

p2
i log log pi

800L/b
+ p

400 ≥ b · (p/b)2 log log(p/b)
800L/b

+ p

400

= p2 log log(p/b)
800L

+ p

400 = p2 log log(p/b) + 2pL

800L
≥ p2 log log p

800L
380

The second inequality follows from the induction hypothesis, third by Jensen’s inequality,381

and the last from the unit interval condition and the choice b = ⌈√p⌉. The lemma now382

follows. ◀383

2.4 Hop-diameter k ≥ 4384

In this section, we show a lower bound for k ≥ 4, concluding the proof of Theorem 1. Our385

proof will use function fk(x) in Theorem 6 with ∆ = 1/256. In particular, we will show386

the lower bound Ω(p2fk(p)
L ) on the number of edges. Since fk(p) = Ω(αk(b)) by Item 3 of387

Theorem 6, the number of edges of the spanner is Ω( p2αk(p)
L ) as claimed in Theorem 1.388
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▶ Lemma 16. Let P be a set of p ≥ 2 points in the interval [0, L] satisfying the unit interval389

condition. For any ϵ ∈ [0, 1/4], any Steiner (1 + ϵ)-spanner for P with hop-diameter k ≥ 2390

contains at least Tk(p, n) ≥ p2fk(p)
800L edges.391

Proof. The base cases k = 2 and k = 3 follow from the definition of f2(x) = log x and392

f3(x) = log log x and Lemmas 12 and 14. The base case for p happens when fk(p) < 1. Here,393

we use the fact that any spanner on p points must have at least p−1 edges and p−1 ≥ p2fk(p)
800L394

so the claim follows.395

Let H be any (1+ϵ)-spanner for P with hop-diameter k. We split the interval [0, L] into b :=396

2 · ⌊p/fk−2(p)⌋ disjoint intervals of length L/b: I1 = [0, L/b), I2 = [L/b, 2(L/b)), . . . , Ib−1 =397

[(b−2)(L/b), (b−1)(L/b)), Ib = [(b−1)(L/b), L]. Let the number of points in the i-th interval398

be denoted by pi := |P ∩ Ib|. By the same proof of Lemma 14, the number of edges of H can399

be lower bounded by Tk(p, n) which satisfies:400

Tk(p, L) ≥
b∑︂

i=1
Tk(pi, L/b) + |EC |/4 (3)401

Here EC denotes the set of cross edges for the interval [0, L] and the term Tk(pi, L/b), where402

1 ≤ i ≤ b, come from the cross edges contributed by the i-th interval and its recursive403

subdivisions.404

We now inductively show that Tk(p, L) ≥ p2fk(p)
800L for k ≥ 4. Suppose first that there is a405

collection of c ≤ b/4 intervals that in total contain at least 3p/4 points. Then the inequality406

holds even without considering |EC |. Recall that by Item 2 in Theorem 6, x2fk(x) is convex407

and hence we can apply the Jensen’s inequality.408

Tk(p, L) ≥
c∑︂

i=1
Tk(pi, L/b) ≥

c∑︂
i=1

p2
i fk(pi)

800L/b
409

≥ c ·
(︁ 3p

4c

)︁2
fk

(︁ 3p
4c

)︁
800L/b

(Jensen’s inequality)410

≥ 9
4 ·

p2fk

(︁ 3p
b

)︁
800L

≥ 9
4 ·

p2fk (fk−2(p))
800L

(using c ≤ b/4 and b := 2 · ⌊p/fk−2(p)⌋)411

= 9
4 ·

p2(fk(p)−∆)
800L

(by Item 1 in Theorem 6)412

≥ p2fk(p)
800L

using that fk(p) ≥ 1413

Now we consider the complementary case where there is no collection of c ≤ b/4 intervals414

that in total contain at least 3p/4 points. For this case, we need to take the number of cross415

edges into account.416

▷ Claim 17. Assume that there is no collection of c ≤ b/4 intervals that in total contain at417

least 3p/4 points. Then, |EC | ≥ p/25600.418

Proof. If there is at least p/4 global points, then we have at least p/8 cross edges. In the419

complementary regime, there are at least 3p/4 non-global points. By assumption, they are420

contained in at least b/4 non-global blocks. From each interval that contains non-global421

points we take exactly one non-global point and let the resulting set of points be denoted422

P ′. We use the induction hypothesis with k − 2 on P ′. Note that |P ′| ≥ b/4. The following423

observation allows us to use the scaled version of the induction hypothesis.424
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▶ Observation 18. Suppose that a set of points P ′ on interval [0, L] satisfies that when we425

divide [0, L] into consecutive intervals of length M , every such interval contains at most one426

point from P ′ and H ′ be any (1 + ϵ) spanner of P ′ with hop-diameter k. Let Q′ be a set427

of points in P ′ scaled down by a factor of L. Such a set of points is contained on interval428

[0, L/M ] and it satisfies the unit interval condition. Let H ′′ be the scaled version of H ′.429

Then, H ′′ is a (1 + ϵ)-spanner for Q′ with hop-diameter k.430

We proceed to lower bound the number of cross edges, using the observation.431

Tk−2(|P ′|, b) ≥ Tk−2

(︃
b

4 , b

)︃
≥

b2

16 fk−2
(︁

b
4
)︁

800b
=

2⌊p/fk−2(p)⌋fk−2

(︂
2⌊p/fk−2(p)⌋

4

)︂
12800 ≥ p

25600432

The second inequality follows by the induction hypothesis for k − 2, and the last by Item 5433

in Theorem 6. This concludes the proof of Claim 17. ◀434

We now solve Equation (3) by induction. Recall that we choose ∆ = 1/256. By Claim 17,435

we have:436

Tk(p, L) ≥
b∑︂

i=1
Tk(pi, L/b) + p

102400437

≥
b∑︂

i=1

p2
i fk(pi)

800L/b
+ p

102400 (induction hypothesis)438

≥ b ·
(︁

p
b

)︁2
fk

(︁
p
b

)︁
800L/b

+ p

102400 (Jensen’s inequality)439

=
p2fk

(︂
p

2⌊p/fk−2(p)⌋

)︂
800L

+ p

102400 (replacing b := 2⌊p/fk−2(p)⌋)440

≥ p2(fk(p)− 3∆)
800L

+ p

102400441

≥ p2fk(p)
800L

(using p ≤ L and ∆ = 1/256)442

The lemma now follows. ◀443

3 Concave Ackermann-type functions444

In this section, we introduce the concave inverse-Ackermann function fk(x). We omit the445

details from this extended abstract due to space constraints. We fix a constant ∆ < 1/256.446

▶ Definition 19 (fk(n) for even k). For all x ∈ R≥0 and even k ≥ 2, we let fk(x) be:447

f2(x) = log x448

fk(x) = akx3 + bkx2 + ckx−∆ for 0 ≤ x ≤ 1, k ≥ 4449

fk(x) = ∆ + fk(fk−2(x)) for x > 1, k ≥ 4450

Constants ak, bk, and ck are chosen so that they satisfy the following relations.451

ak + bk + ck = ∆ ∀k ≥ 4 (4)452

3a4 + 2b4 + c4 = c4

ln 2 (5)453



H. Le, L. Milenković, S. Solomon XX:13

6a4 + 2b4 = 2b4 − c4 ln 2
ln2 2

(6)454

3ak + 2bk + ck = ck · (3ak−2 + 2bk−2 + ck−2) (7)455

6ak + 2bk = 2bk · (3ak−2 + 2bk−2 + ck−2)2 + ck · (6ak−2 + 2bk−2) (8)456

In this section, we solve the recurrence in Definition 19 for even k by giving estimates on457

the values of ak, bk and ck. We will use these estimates in the proof of Theorem 6, which is458

omitted from this extended abstract due to space constraints.459

For k = 4, by solving a linear system of equations defined by Equations (4), (5), and (8)460

we obtain the following estimates.461

▶ Lemma 20. a4, b4 and c4 satisfy the following equation:462

−0.0819∆ ≤ a4 ≤ −0.0818∆
0.2966∆ ≤ b4 ≤ 0.2967∆
0.7852∆ ≤ c4 ≤ 0.7853∆ (9)463

In estimating the values of ak, bk and ck, we will use the following sequences:464

λ4 = 1.1328∆, λk = 3∆λk−2

1 + 4λk−2

r4 = 11.0439, rk =
Λ3

k−2 + Λk−2

2Λ3
k−2 − 2Λ2

k−2 + Λk−2
rk−2

, where Λk = 0.3777 · (3∆)(k−2)/2 (10)465

▶ Lemma 21. λk ≥ 0.3265(3∆) k−2
2 and rk < 25 for all k ≥ 4.466

Proof. Solving the recurrence we get467

λk = 236 · (1− 3∆) · 3(k−2)/2

(625 + 957∆)
(︁ 1

∆
)︁(k−2)/2 − 944 · 3(k−2)/2

≥ 236 · (1− 3∆) · (3∆)(k−2)/2

625 + 957∆ ≥ 0.3265 · (3∆)
k−2

2 .468

The last inequality holds whenever ∆ ≤ 1/32.469

We use induction to show that rk < 25; the base case holds by definition of r4. Observe470

that 0 ≤ Λk ≤ Λ4 ≤ 0.3777 · (3∆) ≤ 0.3777 · 3
256 . By induction, rk−2 < 25. Thus, we have471

rk = Λ3
k−2+Λk−2

2Λ3
k−2−2Λ2

k−2+
Λk−2
rk−2

≤ rk−2 + 3000Λk−2, where the last inequality follows since the left-472

hand side grows with Λk−2 for all 0 ≤ Λk ≤ 0.3777 · 3
256 , when 11.0439 ≤ rk−2 < 25. It follows473

that: rk ≤ r4 +3000
∑︁(k−2)/2

i=1 Λk ≤ r4 +3000
∑︁∞

i=1 Λk ≤ 11.0439+3000 ·0.3777 · 3∆
1−3∆ < 25 ,474

as desired. ◀475

▶ Lemma 22. Let Xk = 2ak + bk + ∆ and Yk = 6ak + 2bk. Then476

0.3265 · (3∆)(k−2)/2 ≤ λk ≤ Xk ≤ 0.3777 · (3∆)(k−2)/2 (11)477

11.041 ≤ Xk

Yk
≤ rk < 25 (12)478

∆−Xk ≤ ak ≤ ∆−Xk + Xk

22 (13)479

−3∆ + 3Xk −
Xk

11 ≤ bk ≤ −3∆ + 3Xk (14)480

3∆− 2Xk ≤ ck ≤ 3∆− 2Xk + Xk

22 (15)481
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Proof. Observe by Equation (4) that Xk = 2ak + bk + ∆ = 3ak + 2bk + ck and that482

ck = Yk

2 − 2Xk + 3∆. Thus, the system from Definition 19 for k ≥ 6 can be written as follows.483

Xk = Xk−2 · (
Yk

2 − 2Xk + 3∆)484

Yk = X2
k−2 · (6Xk − 2Yk − 6∆) + Yk−2 · (

Yk

2 − 2Xk + 3∆)485

Solving the above system of equations for Xk and Yk, we get:486

Xk =

⃓⃓⃓⃓
6Xk−2∆ −Xk−2

(6Yk−2 − 12X2
k−2)∆ (4X2

k−2 + 2− Yk−2)

⃓⃓⃓⃓
⃓⃓⃓⃓

(4Xk−2 + 2) −Xk−2
(4Yk−2 − 12X2

k−2) (4X2
k−2 + 2− Yk−2)

⃓⃓⃓⃓ =
6∆(X3

k−2 + Xk−2)
2X3

k−2 + 4X2
k−2 + 4Xk−2 − Yk−2 + 2

Yk =

⃓⃓⃓⃓
(4Xk−2 + 2) 6Xk−2∆

(4Yk−2 − 12X2
k−2) (6Yk−2 − 12X2

k−2)∆

⃓⃓⃓⃓
⃓⃓⃓⃓

(4Xk−2 + 2) −Xk−2
(4Yk−2 − 12X2

k−2) (4X2
k−2 + 2− Yk−2)

⃓⃓⃓⃓ =
6∆(2X3

k−2 − 2X2
k−2 + Yk−2)

2X3
k−2 + 4X2

k−2 + 4Xk−2 − Yk−2 + 2

(16)487

For the base case, X4 = 2a4 + b4 + ∆ and Y4 = 6a4 + 2b4. By Lemma 20, we have:488

1.1328∆ ≤ X4 ≤ 1.1331∆ and 0.1018∆ ≤ Y4 ≤ 0.1026∆ (17)489

Next, we show both Equation (11) and Equation (12) by induction; the base case (k = 4)490

holds by Equation (17). By Equation (16), we have: Xk ≤
6∆(X3

k−2+Xk−2)

2X3
k−2+4X2

k−2+4Xk−2−
Xk−2
11.041 +2

≤491

3∆Xk−2 ≤ 3∆ · 0.3777 · (3∆)(k−4)/2 = 0.3777 · (3∆)(k−2)/2 The lower bound on Xk follows492

also by induction: Xk = 6∆(X3
k−2+Xk−2)

2X3
k−2+4X2

k−2+4Xk−2−Yk−2+2 ≥
3∆Xk−2
1+4Xk−2

≥ 3∆λk−2
1+4λk−2

= λk , by Equa-493

tion (10). For the lower bound on Xk

Yk
, by Equation (16), we have: Xk

Yk
= X3

k−2+Xk−2
2X3

k−2−2X2
k−2+Yk−2

≥494

X3
k−2+Xk−2

2X3
k−2−2X2

k−2+
Xk−2
11.041

≥ 11.041, where the last inequality holds since Xk−2 ≤ 1.1331∆ ≤ 1.1331
256 .495

Finally, we show an upper bound on Xk

Yk
= X3

k−2+Xk−2
2X3

k−2−2X2
k−2+Yk−2

≤ X3
k−2+Xk−2

2X3
k−2−2X2

k−2+
Xk−2
rk−2

≤496

Λ3
k−2+Λk−2

2Λ3
k−2−2Λ2

k−2+
Λk−2
rk−2

= rk < 25 , by Lemma 21. This concludes the inductive proof of Equa-497

tion (11) and Equation (12). For Equations (13)–(15), we express ak, bk, and ck in terms of498

Xk and Yk as follows: ak = ∆ + Yk

2 −Xk, bk = −3∆ + 3Xk − Yk, and ck = 3∆ + Yk

2 − 2Xk.499

Eq. (13)-(15) follow. ◀500
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