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—— Abstract

In STOC’95 [6] Arya et al. showed that any set of n points in R? admits a (1 + €)-spanner with
hop-diameter at most 2 (respectively, 3) and O(nlogn) edges (resp., O(nloglogn) edges). They also
gave a general upper bound tradeoff of hop-diameter k with O(nax(n)) edges, for any k > 2. The
function ay is the inverse of a certain Ackermann-style function, where ao(n) = [n/2], a1(n) = [\/ﬁ-l ,
az(n) = [logn], as(n) = [loglogn], au(n) =log* n, as(n) = |3log* n], .... Roughly speaking, for
k > 2 the function ay, is close to | 252 |-iterated log-star function, i.e., log with | 252 | stars.

Despite a large body of work on spanners of bounded hop-diameter, the fundamental question of
whether this tradeoff between size and hop-diameter of Euclidean (1 + ¢)-spanners is optimal has
remained open, even in one-dimensional spaces. Three lower bound tradeoffs are known:

An optimal k versus Q(nay(n)) by Alon and Schieber [4], but it applies to stretch 1 (not 1+ €).

A suboptimal k versus Q(nask+6(n)) by Chan and Gupta [13].

A suboptimal k versus Q(gs7zyar(n)) by Le et al. [38].

This paper establishes the optimal k versus Q(nag(n)) lower bound tradeoff for stretch 1+ ¢, for any
€ > 0, and for any k. An important conceptual contribution of this work is in achieving optimality by
shaving off an extremely slowly growing term, namely 2°%*/2) for k < O(a(n)); such a fine-grained
optimization (that achieves optimality) is very rare in the literature.

To shave off the 261%/2) term from the previous bound of Le et al., our argument has to drill much
deeper. In particular, we propose a new way of analyzing recurrences that involve inverse-Ackermann
style functions, and our key technical contribution is in presenting the first explicit construction
of concave versions of these functions. An important advantage of our approach over previous
ones is its robustness: While all previous lower bounds are applicable only to restricted 1-dimensional
point sets, ours applies even to random point sets in constant-dimensional spaces.
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1 Introduction

Let P be a set of n points in R? and let Gp = (P, (}),]| - ||) be the complete weighted
graph induced by P, which contains an edge (p,q) of weight w(p,q) = ||p — ¢||, for every
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Sparse Euclidean Spanners with Optimal Diameter

p,q € S. A subgraph graph G = (P, E,| - ||) of Gp, E C (123), is called a geometric graph.
For a parameter ¢ > 1, a geometric graph G is called a t-spanner for P if, for all p,q € S, G
contains a t-spanner path between p and ¢ (i.e., a path of weight at most t||p — q||).

Euclidean spanners have been studied extensively [17, 35, 5, 12, 19, 6, 20, 8, 47, 2, 13,
21, 51, 53, 23, 39, 32, 38]. They are important in theory and practice, having found many
applications, e.g., in geometric approximation algorithms, network topology design, and
distributed computing [19, 40, 47, 26, 28, 27, 31, 41]; see also the book [42].

The most basic requirement of a spanner is to be sparse, while achieving small stretch.
Cornerstone results settle the stretch-size tradoeff: for any d-dimensional n-point Euclidean
space and for any € > 0, there exists a (14 ¢)-spanner with O, 4(n) edges [58, 18, 34, 48, 35, 5],
where the O, 4 suppresses the dependence on € and d. (More precisely, the size upper bound
is n- O(e~4*1), and it was shown to be tight [39].) In many applications, however, the
spanner should have additional useful properties of the underlying metric. One such property
is the (hop-)diameter: a t-spanner for P has (hop-)diameter of k if, for any p, ¢ € S, there is
a t-spanner path between p and ¢ with at most k& edges (or hops). Having a small diameter
is important for various applications (e.g., routing protocols) [7, 1, 2, 13, 21, 32].

While the stretch-size tradeoff is fully understood including the dependence on € and d,
the extended tradeoff of stretch-size-diameter is not fully understood yet even for fixed € and
d. Our goal is to achieve a full understanding of this tradeoff for fixed € and d.

If the points are in general position, a 1-spanner must include basically all (Z) edges of
the underlying metric. For points lying on a line, the simple path connecting them provides
l-spanner, but its diameter is worst-possible, n — 1. Surprisingly perhaps, all previous
lower bounds for the stretch-size-diameter tradeoff apply to line metrics. Understanding line
metrics, and more generally tree metrics, is also important from the upper bounds front. In
particular, the problem of constructing sparse 1-spanners with bounded diameter for line
and tree metrics is closely related to several other fundamental problems. As an example,
consider the extremely well-studied problem of partial sums, where we are given an array A
of semigroup elements A[1],..., A[n] and are asked to construct a small-sized data structure,
so that given a query i,j for 1 <4 < j <n, the partial sum >_,_, . ; A[k] can be computed
efficiently. A 1-spanner for the corresponding set A[1],..., A[n] with bounded diameter is
basically what we are looking for: A 1l-spanner path between A[i] and A[j] that consists
of at most k edges can be used for answering a query 4, j within time O(k). Other closely
related problems include the tree product queries in semigroup problem (a generalization of
partial sums) and its variants (see [55, 58, 4, 16, 46, 2], and the references therein), the MST
verification problem [37, 36, 44], and the problem of shortcutting digraphs [56, 57, 10].

1.1 Previous Work on Spanners with Tiny diameter
1.1.1 Upper bounds

1-spanners for line and tree metrics. Let T = (T,7t) be a (possibly weighted) n-vertex
rooted tree, and let Mp be the tree metric induced by 7. A spanning subgraph G of
My is said to be a I-spanner for T, if for every pair of vertices, their distance in G is
equal to their distance in T. One can define t-spanners for T, with ¢ > 1, but essentially
all previous work here concerned stretch 1. Alon and Schieber [4] showed that for any
n-point tree metric, a 1-spanner with diameter 2 (respectively, 3) and O(nlogn) edges (resp.,
O(nloglogn) edges) can be built within time linear in its size; for k > 4, they showed that
1-spanners with diameter at most 2k and O(nax(n)) edges can be built in O(nag(n)) time.
The function ay is the inverse of a certain Ackermann-style function at the |k/2]th level
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of the primitive recursive hierarchy, where ag(n) = [n/2], a1 (n) = [v/n], az(n) = [logn],
az(n) = [loglogn], as(n) = log" n, as(n) = |4 log" n|, etc. Roughly speaking, for k > 2
the function ay, is close to |52 |-iterated log-star function, i.e., log with [ 452 ] stars. Also,

@20(n)+2(n) < 4, where a(n) is the one-parameter inverse Ackermann function, which is an

extremely slowly growing function. (See [38] for a formal definition.) Bodlaender et al. [11]
constructed 1-spanners with diameter at most k& and O(nay(n)) edges, but for k > 4 their
construction time is rather high (2(n?)). Solomon [52] gave a linear-time construction with
the same diameter-size tradeoff k versus O(nay(n)) as [11].

Alternative constructions, by Yao [58] for line metrics and by Chazelle [14] for general
tree metrics, achieve a tradeoff of m edges versus diameter ©(a(m,n)), where a(m,n) is the
two-parameter inverse-Ackermann function (defined in [38]). However, these constructions
provide 1-spanners with diameter IV - k, only for constant T > 30.

1.1.1.1 (1 + €)-spanners.

The seminal STOC’95 of Arya et al. [6] established the “Dumbbell Theorem”: For any d-
dimensional Euclidean space, a (1+e¢, O(logE#))-tree cover can be constructed in O(logg# .
nlogn + =7 -n) = Oca(nlogn) time. (For the definition of tree cover, see e.g. [32].) The
consequence of the Dummbell Theorem is that any construction of 1-spanners for tree metrics
can be tranformed into a construction of Euclidean (1 + €)-spanners, and the running time
of the transformation is O, 4(nlogn) (plus a linear term in the size bound of the 1-spanner
construction). The construction of 1-spanners for tree metrics from [52] thus yields an
O(nlogn)-time construction of Euclidean (1 + €)-spanners with diameter k& and O(nag(n))
edges. Moreover, this result of [52] generalizes for the wider family of doubling metrics via

the recent tree cover theorem of Bartal et al. [9].

1.1.2 Lower bounds

The celebrated work of Yao [58] provided the first lower bound on 1-spanners for tree metrics,
where a tradeoff of m edges versus diameter of Q(a(m,n)) was proved for the uniform line
metric. A stronger lower bound on 1-spanners, still for the uniform line metric, was given in
[4]: diameter k versus Q(nay(n)) edges, for any k; as shown in [38], the lower bound of [4]
implies that of [58], but the converse isn’t true. These lower bounds apply only to 1-spanners.

Chan and Gupta [13] extended the lower bound of [58] to (1 + ¢)-spanners, still for line
metrics, proving a lower bound tradeoff of m edges versus diameter of Q(a(m,n)). This
tradeoff only provides a meaningful lower bound for sufficiently large values of diameter
(above say 30). Specifically, the result of [13] can be used to show that any (1 + €)-spanner
for a certain line metric with diameter at most k& must have Q(nagr46(n)) edges. When
k =2 (resp. k = 3), this gives Q(nlog™** n) (resp. Q(nlog"™*** n)) edges, which is far from
the upper bound of O(nlogn) (resp., O(nloglogn)).

In SoCG’22 Le et al. [38] gave the following suboptimal lower bound tradeoff, for (1 + ¢)-
spanners of the uniform line metric: k versus Q(gsmzzrax(n)). While the result of [38] is
tight for constant k, the following question remains open for more than three decades:

» Question 1.1. Is there a lower bound of k versus Q(nay(n)) between the diameter and the
number of edges, for all k, for Fuclidean (1 + €)-spanners?
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1.1.2.1 Putting Question 1.1 into perspective.

Question 1.1 has been answered affirmatively by [38] for constant values of k. Recall
that aga(n)+4(n) < 4, where a(n) is the one-parameter inverse Ackermann function. In
other words, the gap underlying Question 1.1 holds only for k = w(1),...,O0(a(n)), which
is admittedly a very small regime. The gap itself is exponential in k, which is at most
exponential in «(n), hence it is a very small gap.

One might wonder — why is Question 1.1 of any interest? Indeed, from a quantitative
perspective, a(n) grows asymptotically even more slowly than log* n, which, in turn, is at
most 5 for n < 295536, Thus a gap of exp(a(n)) is a constant factor gap for all practical
purposes. However, we argue that Question 1.1 is important from a qualitative perspective.
Indeed, there are numerous breakthrough works whose “only goal” was to shave off factors
that grow as slowly as inverse-Ackermann type functions. For example, for the Union-Find
data structure, efforts to achieve a linear time algorithm led to a lower bound showing that
inverse-Ackermann function dependence is necessary [25], matching Tarjan’s cornerstone
upper bound [54]. Another prime example is in the context of the MST problem, where the
inverse- Ackermann function dependence was shaved off from the upper bound of [15] to achieve
a linear time algorithm by means of randomization [33] or under certain assumptions [24]; and
it remains a major question whether there exists a linear time deterministic comparison-based
MST algorithm. Yet another example is in the context of Davenport-Schinzel sequences,
whose study involves optimizing inverse-Ackermann style functions — including the functions
a(n) and ag(n) — has led to important advances in discrete and computational Geometry.
Indeed, Davenport and Schinzel [29] gave sharp bounds on sequences of order 1 and 2, namely
A1(n) = n and Aa(n) = 2n — 1, and since then numerous applications of the sequences
have been found, such as to geometric containment problems, computing shortest paths,
and convex hulls. Achieving a tight bound for order-3 sequences spanned a long line of
work [29, 22, 30, 43], and it is now understood that Az(s) = 2na(n) + O(ny/a(n)), i.e., the
asymptotic behavior is known up to the leading constant. The case for k > 4 also spanned
much work [22; 30, 49, 50, 3, 43, 45] and was settled up to leading constants in front of a(n)
in the exponent, i.e., Ay(n) = O(n2%M), A5(n) = O(na(n)2%M), Xg(n) = 2(1+oM)a’(n)/t!,

We stress that in this work we are not merely shaving off an inverse-Ackermann function
dependence slack from a previous upper bound (that of [38]) — we shave off such a slack to
achieve a tight bound. This is a rare example where such a tiny slack is shaved to achieve
optimality, and we believe that it is a significant evidence for the importance of our result,
especially in light of our technical contribution.

1.1.2.2 A robust lower bound?

All previous lower bounds [58, 4, 13, 38] apply to very specific line metrics: either to the
uniform line metric [58, 4, 38] or to one that is derived from hierarchically well-separated
trees (HSTs) and is very far from being uniform [13].

A natural question is whether one can improve the longstanding construction of Euclidean
(1 + €)-spanners by Arya et al. [6] for “typical” point sets, which arise in real-life applications

1ss — such as random points in low-dimensional spaces. While random point sets are important

155

156

157

158

from a practical perspective, none of the previous lower bounds [58, 4, 13, 38] precludes the
existence of improved spanner constructions for such point sets.

» Question 1.2. Can one improve the k versus O(nay(n)) longstanding upper bound by
Arya et al. [6] for random point sets in constant-dimensional Euclidean space?
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1.2 Our Contribution
1.2.1 The basic lower bound (settling Question 1.1 in the affirmative)

We prove that any (1 + €)-spanner for the uniform line metric with diameter & has Q(nag(n))
edges, for any k. We first prove the following general statement, which applies to subspaces
of the uniform line metrics of any density.

» Theorem 1. Let P be a set of p points in the interval [0, L] such that every unit sub-interval
[i,7 + 1] for integer i, 1 <i < L — 1 contains at most 1 point of P. For any € € [0,1/4] and
integer k > 1, any (1 + €)-spanner with diameter k for P contains ((pQ/L)ak(p)) edges.

For technical reasons we prove a more general lower bound, stated in Lemmas 12, 14,
and 16, which applies to Steiner spanners, namely, spanners that may contain additional
Steiner points. The following direct corollary of Theorem 1 improves the previous lower
bound by Le et al. [38] by a factor of 2*(*) and it settles Question 1.1 in the affirmative.

» Corollary 2 (The longstanding upper bound is tight for all k). Let P = {0,1,...,n — 1} be
the set of n points on the uniform line metric contained on interval [0,n). For any e € [0,1/4]
and integer k > 1, any (1 + €)-spanner with diameter k for P contains Q) (nag(n)) edges.

1.2.2 A robust lower bound (settling Question 1.2 in the negative)

Our lower bound of Theorem 1 applies to subspaces of the uniform line metric. We first
demonstrate that this lower bound can be naturally extended to obtain analogs for constant
dimensions. Second, we show that this lower bound carries over for random point sets in
spaces of constant dimension, thereby settling Question 1.2 in the negative. We note that
our approach seamlessly extends to higher constant dimensions.

The constant-dimensional hypercube and grid

The proof of the following theorem is omitted from this version due to space constraints.

» Theorem 3. Let P be a set of p points in the hypercube [0, L)? for a constant d > 2 and
some integer L > 0 such that every unit hypercube with integer vertices in [0, L]? contains at
most one point of P. For any € € [0,1/4] and any integer k > 1, any (1 + €)-spanner with

diameter k for P contains Q ((p*/L*)ay(p?)) edges.
Thus for d = 2 and d = 3, we get lower bounds Q((p?/L?)ax(p?)) and Q((p3/L3)ca(p?)).

» Corollary 4. Let P be the set of n® points on the d-dimensional grid [0,n)%, for a constant
d > 2. Then, for any € € [0,1/4] and any integer k > 1, any (1 + €)-spanner with diameter k
for P contains Q (n“oa(n?)) edges.

Random point sets in the d-dimensional hypercube

We omit the proof of the following theorem from this version due to space constraints.

» Theorem 5. Let P be a set of n points sampled uniformly at random on the hypercube
[0,1] for any constant d > 1. For any € € [0,1/4], and any integer k > 1, any (1+¢)-spanner
with diameter k for P contains Q(nag(n)) edges.

Remark. Theorem 5 applies to d = 1 as well, i.e., random points on the unit interval [0, 1].
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1.2.3 A concave inverse-Ackermann function

Our technique for proving Theorem 1 requires a significantly deeper understanding of inverse-
Ackermann style functions than used in previous works [58, 4, 13, 38]. A key technical
contribution in our work is an explicit construction of continuous versions of these functions.
To our knowledge, this work is the first to introduce such functions for ax(n) for k > 4. We
then show that these functions are concave, which allows us to apply Jensen’s inequality in
our inductive proof, leading to a lower bound that is not only optimal for all values of k,
but is also more robust, and in particular precludes the existence of better constructions for
random point sets.

» Theorem 6. Fiz an arbitrary constant 10000 <AL 256 There exists a family of functions
{fr(x) : k> 2k eZ} such that each f1, : RT — RT is twice differentiable in (0,+00) and:
1. Forz > 1, fa(x) =logx; fs(z) =loglogx; and fr(z) = A+ fi(fr—2(x)) for every k > 4.
For all z € RZ! and k > 4, function 22 fx(x) is convez.

For all x € RZY and k > 4, it holds that fiy(x) > 2ap([z]) —

For all z € RZ° and k > 2, it holds that fr([x]) < ax([z]).

Forallk> 2,k €Z and x > 200, x € R, it holds that Q{fk(w)Jfk <2Lm/1;k(z)J) > z/2.

LI

Ttems 3 and 4 of Theorem 6 imply that fi(n) = O(ax(n)). Item 2 is a key property of
our function fj(x), which does not hold for its discrete counterpart ay(n).

2 One-dimensional instances

This section is dedicated to proving Theorem 1. The proof is by double induction on the
number of points and the diameter of the spanner. There are two base cases in the proof:
k =2 and k = 3 presented in Section 2.2 and Section 2.3, respectively. The proof for k > 4
is given in Section 2.4. Together, they imply Theorem 1. We choose A = 1/256.

For a constant d and given set of points P on the d-dimensional hypercube [0, L]¢, we
require that every unit hypercube with integer vertices in [0, L]% contains at most one point
in P. We call the condition unit interval condition.

2.1 Classification of cross edges

Given a point set P contained on an interval [0,n] and given an € € [0,1/4], let H be any
(1+ ¢€)-spanner for P. Consider Algorithm 1 with parameter ¢ = 0 being the recursion level, k
being the diameter, and I being the interval containing P. This algorithm is used to classify
the edges of H only. It divides I into a smaller set of b subintervals and defines a set of
separators, which are the endpoints of the subintervals excluding the two endpoints of I. A
cross edge of the interval I at level £ is an edge (1) needed to preserve the distance between
two points in P and (2) crossing a separator.
Next we study properties of cross edges and classify them.

» Lemma 7. Let e be a cross edge of some interval I = [c,d] and let L == |d — ¢| denote the
interval length. Then, both endpoints of e are within [c — L/4,d + L/4].

Proof. Suppose toward the contradiction that there is an edge containing an endpoint outside
of [c— L/4,d + L/4]. Without loss of generality we take the case where the right endpoint of
e has coordinate larger than d + L/4. Let x < y be two points in I for which e is on their
(1 + ¢) spanner path, say 7, in H. Since 7, is a (1 + ¢)-spanner path, its length 7, ,
must be at most (1 + €)|y — x| < 5|y — z|/4 < |y — | + L/4. However, the length of «, ,
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Algorithm 1 Procedure describing the terms used in the proof. It is initially invoked with a given
set of p points P on interval I, and £ = 0. Here, H is a (1 + ¢)-spanner for P.
procedure CROSSEDGES(P, I = [¢,d], k, H, /)
if (k<3 and p<1)or (k>4and fp(p) <1) then return
Let b« 2if k=2,b< [\/p|] if k =3, and b < 2- |p/fr_2(p)| otherwise.
M+ (d—c)/b > dividing I into b subintervals
for1<j<b-1do
Li+—lc+(—1)M,c+ jM)]
Pi«— PN+ (j—1)M,c+jM)
P, PNlc+ (b—1)M,c+ bM]
Let {¢c+jM |1 <j <b— 1} be the set of separators of I.
A cross edge of interval I is every edge e = (z,y) of H such that: (i) e is on some
(1 + €)-spanner path between two points in P and (%) there exists a separator s such
that ¢ < s < y.
for 1 < j <bdo CrROSSEDGES(P},I;,k, H,{+ 1)

is strictly greater than |z — y| + L/4 since the right endpoint of e is larger than d + L/4, a
contradiction. <

We classify the cross edges as follows. We call a cross edge of some interval interior if
it contains both endpoints inside of the interval. If both of its endpoints are outside of the
interval, we call it exterior. Otherwise, we call it mized. See Figure 1 for an illustration.

+ 1 1 1 + >
t T T T t >

S 0 X1 So X2 X3 n S3

Figure 1 The separators are marked by short red lines. Here P = {z1,x2,z3}. The spanner
could use Steiner points which are points not in P; they are si, s2, s3 in this figure. The red edge
(s1,s3) is an exterior cross edge of [0, n]; the blue edge (x1, s2) is an interior cross edge of [0, n]; and
the green edge (z2,s3) is a mixed cross edge of [0,n]. Edge (s1, 1) is not a mixed edge since it does
not cross any separator.

» Lemma 8. Let e be an interior cross edge of some interval. Then, it cannot be an interior
cross edge of any other interval.

Proof. Let ¢ be the level at which e is an interior cross edge of some interval I = [c,d].

By definition, e cannot be an interior cross edge of any other interval at level ¢, since the
intervals at the same level are disjoint. Since the intervals of levels lower than ¢ contain no
separators inside [c, d], e cannot be a cross edge at these levels. Finally, after level ¢, I is
split at the separators into smaller intervals, and hence e cannot have two endpoints in the
same interval at levels higher than /. |

» Lemma 9. Let e be an exterior cross edge of some interval. Then, it cannot be an exterior
cross edge of any other interval.

Proof. Suppose that e = (u,v) is an exterior cross edge of more than one interval. Among
such intervals, let [c, d] be of the highest level, say ¢. We have that v < ¢ and d < v since e

is exterior. Let L = |d — ¢|. The length of intervals at levels lower than ¢ are at least 2L.
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From Lemma 7, we know that ¢ — L/4 < u and v < d + L/2, so the length of e is at most
3L /2. This means that e cannot be an exterior edge at levels lower than £. |

» Lemma 10. Let e be a mized cross edge of some interval. Then, it can be a mized cross
edge for at most one other interval, an exterior cross edge for at most one other interval and
an interior cross edge for at most one other interval.

Proof. Let ¢ be the level at which e = (u,v) is a mixed cross edge of some interval I = [c, d]
of length L := |d — ¢|. Without loss of generality, we assume that u € [¢,d] and v > d. By
Lemma 7, v < d+ L/4. Let I' = [/, d’] be another interval such that I’ # I and e is a cross
edge of I'. We cousider three cases.

If the level of I’ is strictly smaller than £. If d is not a separator of I’, then by definition
e cannot be a cross edge of I’. If d is a separator of I, then d’ > d + L. On the other hand,
v <d+ L/4,s0 e = (u,v) must be an interior cross edge of I’. By Lemma 8, it cannot be an
interior cross edge of any other interval.

If the level of I’ is exactly ¢. 1. Since v < d + L/4, the only case where € is a cross edge
of I’ is that d is the left endpoint of I’ and e is a mixed cross edge of I’. Thus, e could not
be a mixed cross edge of any other interval at level /.

If the level of I’ is strictly larger than ¢. Then the length of I’ is at most L/b. Since u is
on the left of at least one separator, say s, of I and v > d, the distance between s and d is at
least L/b. Tt follows that the length of e is at least L/b. Hence, the only possible way for e
to be a cross edge of I’ is that it is an exterior cross edge. By Lemma 9, ¢’ will not be an
exterior cross edge of any other interval. |

» Corollary 11. Every cross edge considered in the process above is counted at most 4 times.

In the sequel, we will be proving the lower bound on the number of cross edges. We say
that a point of P in an interval I is global if it is incident on at least one cross edge of I.
Otherwise, we say that it is non-global.

2.2 Hop-diameter 2

In this section, we show one of the two base cases of our inductive proof: a lower bound for
diameter k = 2.

» Lemma 12. Let P be a set of p > 2 points in the interval [0, L] satisfying the unit interval
condition. For any € € [0,1/4], any Steiner (1 + €)-spanner for P with diameter 2 contains

2
at least To(p, L) > pllngp edges.

Proof. Our proof is by induction on the number of points in P. Let H be any (1 + €)-
spanner for P with diameter 2. We split the interval [0, L] into two disjoint intervals
[0,L/2] and [L/2, L]. Let the number of points in the intervals be p; = |P N[0, L/2]| and
pe = |P N (L/2,L]|. We claim that the number of edges of H can be lower bounded by
T5(p, L) which satisfies:

Ty(p, L) > To(p1, L/2) + To(p2, L/2) + min(p1, p2)/4 (1)

The base cases are T5(0, L) = T»(1, L) = 0, for any Lo > 0. The terms T5(p1, L/2) (resp.,
T (p2, L/2)) come from the cross edges contributed by the intervals in [0, L/2] (resp., [L/2, L])
and their recursive divisions in Algorithm 1. We will show in Claim 13 that the number of
cross edges of [0, L] is at least min(py, p2). By Corollary 11, each cross edge is counted at
most 4 times. Thus, we use min(py,p2)/4 in Equation (1). This implies that the number of
edges of H is bounded by T5(p, L).
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> Claim 13. H contains at least min(py,p2) cross edges of the interval [0, L].

Proof. Without loss of generality, assume p; < ps. For contradiction, assume that the
number of cross edges is less than p;. This means that there is a non-global point a in
[0,L/2]. (Recall that we call a point non-global if it is not incident on any cross edge of
the interval [0, L].) A path from a to any point b in P N [L/2, L] is of the form (a, ap,b),
where ay, is a point on the left of L/2. Then (ay,b) is a cross edge by definition. That is, for
each point in P N [L/2, L], there is a corresponding cross edge in the path to a. Thus, [0, L]
contains py > p; different cross edges, which is a contradiction. <

We now solve the recurrence in Equation (1). We prove by induction that T>(p, L) >
2
%' Note that L > p by the unit interval conditoin in Lemma 12. Assume without loss
of generality that p; < py. First, we assume that p; > p/4.

pllogm p3log po p?log(p/2) pi
To(p. L) > To(pr, L/2) + Ty(ps, L/2 v P OoBWD/2) | PL
2(p, L) > To(p1, L/2) + Ta(p2, L/2) + 4 2 =27 s 12 6L T2
p*(log(p) — 1) +4Lpy _ p*(log(p) —1) +4ppy _ p*logp, .
16L = 16L > g since p1 = p/4)

The second inequality follows by induction hypothesis, third by Jensen’s inequality, fourth
by the unit interval condition, and the fifth since p1 > p/4. When p; < p/4, we have the
following.

(3p/4)*log(3p/4) _ p*logp

p1
> — > >
TQ(p7L)7T2(p1)L/2)+T2(p27L/2)+ 4 7T2(p2)L/2)7 8L — 16L

The penultimate inequality follows by using ps > 3p/4 and the induction hypothesis, whereas

the last one holds for all p > 14. When 2 < p < 13, we use Ts(p1, L/2)+To(pa, L/2) +p1 /4 >

pilogpy 3 logpz p1 p? logp
sL T + 2 6L

lemma now follows <

, where the last inequality can be manually verified. The

2.3 Hop-diameter 3

In this section, we show the remaining base case of our inductive proof: a lower bound for
diameter k£ = 3.

» Lemma 14. Let P be a set of p > 2 points in the interval [0, L] satisfying the unit interval
condition. For any e € [0,1/4], any Steiner (1 + €)-spanner for P with diameter 3 contains
at least T3(p, L) > M edges.

Proof. Let H be any (1 + €)-spanner for P with diameter 3. We split the interval [0, L] into
b= [/p| disjoint intervals of length L/b: [0, L/b],[L/b,2(L/b)],...,[(b—1)(L/b),L]. Let
P, =PnIi—1)(L/b),i(L/b)) for 1 <i<band P, =PN[L—L/bL]. In other words,
we divide the interval as in Algorithm 1. Let the number of points in the i-th interval be
denoted by p; := |P;|. We claim that the number of edges of H can be lower bounded by
T5(p, L) which satisfies:

=

Z pr/b + |EC|/4 (2)

Here E¢ denotes the set of cross edges for the interval [0, L] and the term T5(p;,[;),
where 1 < ¢ < b, is the lower bound on the number of cross edges of H at higher levels
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restricted to preserving distances in P;. By Corollary 11, each cross edge is counted at most
4 times. Thus, we use |E¢|/4 in Equation (2). Thus, |E(H)| > T3(p, L). The base cases are
T3(O,L0) = Tg(l,L()) =0, for any Lo > 0.

We now inductively show that T5(p, L) > IP?&%. Suppose first that there is a collection
of ¢ < /p/2 intervals which in total contain at least 9p/10 points. Without loss of generality,
assume that these are the first ¢ intervals; that is, Zle b; = 9p/10. In this case, we show

that the inequality holds even without the contribution of the cross edges.

prloglogpl C.(loc) loglog( )
800L/b 800L/b

I V

Z Ts(pi, L/b)

N
g P loglog( 5 ) >p210g10gp

— 50 800L —  800L

The first inequality follows from the induction hypothesis, second by Jensen’s inequality,
and third using b > \/p and ¢ < /p/2. We next bound the number of cross edges in the
complementary case.

> Claim 15. Assume that there is no collection of ¢ < /p/2 intervals that in total contain
at least 9p/10 points. Then, |E.| > p/100.

Proof. Suppose first there are at least p/10 global points. The number of cross edges
they contribute is at least p/20, since each edge can be counted at most twice. In the
complementary regime, there are at least 9p/10 non-global points. By the assumption of the
claim, we know that they are contained in at least \/p/2 intervals. Consider two non-global
points x and y contained in two different intervals, X and Y, respectively. Since x and y are
non-global, i.e., they are not incident on any cross edge, every 3-hop path between x and y
must be of the form (z,z’,y’,y), where 2’ € X and ¢y’ € Y. We conclude that every pair of
different intervals containing non-global points induces a different cross edge. Hence, the
number of cross edges can be lower bounded by (\/g/z) > 55 for p> 5. When 2 < p < 4,
there is at least one cross edge, and the bound holds as well. |

We now solve Equation (2) by induction. By Claim 15, we have:

b
piloglogp; . p . (p/b)*loglog(p/b)
) > S Ty(pi, L/b) + >b- -
; (i, L/0) ; S00L/b 400 800L/b 400
_ p’loglog(p/b) . p _ p?loglog(p/b) +2pL _ ploglogp
800L 400 800L = 800L

The second inequality follows from the induction hypothesis, third by Jensen’s inequality,
and the last from the unit interval condition and the choice b = [\/p]. The lemma now
follows. <

2.4 Hop-diameter k£ > 4

In this section, we show a lower bound for k > 4, concluding the proof of Theorem 1. Our
proof will use function fi(z) in Theorem 6 with A = 1/256. In particular, we will show

the lower bound Q(@) on the number of edges. Since fi(p) = Q(ag (b)) by Item 3 of

Theorem 6, the number of edges of the spanner is €( %) as claimed in Theorem 1.
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» Lemma 16. Let P be a set of p > 2 points in the interval [0, L] satisfying the unit interval

condition. For any € € [0, 1/4] any Steiner (1 + €)-spanner for P with hop-diameter k > 2

>Pfk()

contains at least Ty,(p,n) > 5567

edges.

Proof. The base cases k = 2 and k = 3 follow from the definition of f2(z) = logz and

f3(z) = loglog x and Lemmas 12 and 14. The base case for p happens when fi(p) < 1. Here,

P> fx(p)

P
we use the fact that any spanner on p points must have at least p—1 edges and p—1 > =7

so the claim follows.

Let H be any (1+¢)-spanner for P with hop-diameter k. We split the interval [0, L] into b ==
2 |p/ fr—2(p)| disjoint intervals of length L/b: I; = [0,L/b),Is = [L/b,2(L/b)),...,Ip—1 =
[(b—2)(L/b), (b—1)(L/b)), I = [(b—1)(L/b), L]. Let the number of points in the i-th interval
be denoted by p; := |P N I|. By the same proof of Lemma 14, the number of edges of H can
be lower bounded by T (p,n) which satisfies:

b

Z (pi, L/b) + |Ec| /4 (3)

Here E¢ denotes the set of cross edges for the interval [0, L] and the term Ty (p;, L/b), where
1 < i < b, come from the cross edges contributed by the i-th interval and its recursive
subdivisions.

We now inductively show that Ty (p, L) > % for k > 4. Suppose first that there is a
collection of ¢ < b/4 intervals that in total contain at least 3p/4 points. Then the inequality
holds even without considering |E¢c|. Recall that by Item 2 in Theorem 6, 22 fk(z) is convex

and hence we can apply the Jensen’s inequality.

0> Tl 1) > 3 Le®)

~ '800L/b
3p)\2 ¢ (30
>c- (%8)00%/&)46) (Jensen’s inequality)
9 P f(F) 9 P (fiap) :
> 07 > _ st 2/ < =2 —
> 00T 1 S00L (using ¢ < b/4 and b:=2-|p/fr_2(p)])
2
= % . % (by Item 1 in Theorem 6)
2
> pgég(f) using that fi(p) > 1

Now we consider the complementary case where there is no collection of ¢ < b/4 intervals
that in total contain at least 3p/4 points. For this case, we need to take the number of cross
edges into account.

> Claim 17. Assume that there is no collection of ¢ < b/4 intervals that in total contain at
least 3p/4 points. Then, |Ec| > p/25600.

Proof. If there is at least p/4 global points, then we have at least p/8 cross edges. In the
complementary regime, there are at least 3p/4 non-global points. By assumption, they are
contained in at least b/4 non-global blocks. From each interval that contains non-global
points we take exactly one non-global point and let the resulting set of points be denoted
P’. We use the induction hypothesis with k — 2 on P’. Note that |P’| > b/4. The following
observation allows us to use the scaled version of the induction hypothesis.
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» Observation 18. Suppose that a set of points P’ on interval [0, L] satisfies that when we
divide [0, L] into consecutive intervals of length M, every such interval contains at most one
point from P’ and H' be any (1 + €) spanner of P’ with hop-diameter k. Let Q' be a set
of points in P’ scaled down by a factor of L. Such a set of points is contained on interval
[0, L/M] and it satisfies the unit interval condition. Let H" be the scaled version of H'.
Then, H" is a (1 + €)-spanner for Q' with hop-diameter k.

We proceed to lower bound the number of cross edges, using the observation.

2 2lp/fu—2(p)]
b)) Shee (3) _ QLp/fk—z(p)Jfk—z( I ) .
4 - 800b 12800 — 25600

Toos(IP'],b) = Thos (

The second inequality follows by the induction hypothesis for k£ — 2, and the last by Item 5
in Theorem 6. This concludes the proof of Claim 17. <

We now solve Equation (3) by induction. Recall that we choose A = 1/256. By Claim 17,
we have:

b
p
Ti(p, L) > ZTk(pi7 L/b) + 102400
i=1
b g ‘
P fi(pi) + P (induction hypothesis)

= £=800L/b ' 102400

2\2 ¢ (P
>p. (5) /x (§) I (Jensen’s inequality)

- 800L/b 102400

2 p
P (sw7rtam) L P

(replacing b == 2|p/ fr—2(p)])

800L 102400
2 _
o P2(fk(p) —34) L_P
- 800L 102400
S P(p) (using p < L and A = 1/256)
= TR00L gp=
The lemma now follows. <

3 Concave Ackermann-type functions

In this section, we introduce the concave inverse-Ackermann function f(z). We omit the
details from this extended abstract due to space constraints. We fix a constant A < 1/256.

» Definition 19 (f;(n) for even k). For all z € R=° and even k > 2, we let fi(x) be:

fa(z) =logz
fr(@) = apx® 4+ bpa® + cpz — A for0<z<1,k>4
Te(@) = A+ fe(fr—2(z)) forz>1k>4

Constants ay, by, and cx are chosen so that they satisfy the following relations.

ag +bp +cep=A Vk>4 (4)

Ca
3 2b = — 5
ag + 204 + ¢4 oo (5)
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2b4 — C4 In2
6ay +2by = ———— 6
“ * In%2 (©)
3ag + 2bg + ¢, = ¢y, - (3ak_2 + 2bg_o + Ck_g) (7)
6ay, + 2by, = 2by, - (3ak_2 + 2bg_o + Ck_2)2 +cp - (6ak_2 + Qbk_g) (8)

In this section, we solve the recurrence in Definition 19 for even k by giving estimates on
the values of ag, by and c¢;. We will use these estimates in the proof of Theorem 6, which is
omitted from this extended abstract due to space constraints.

For k = 4, by solving a linear system of equations defined by Equations (4), (5), and (8)
we obtain the following estimates.

» Lemma 20. a4, by and cq satisfy the following equation:

—0.0819A < a4 < —0.0818A
0.2966A < by < 0.2967A
0.7852A < ¢4 < 0.7853A (9)

In estimating the values of ay, by and ci, we will use the following sequences:

3AN_2
A= 1.1328A, Ny = ——k2
4 ’ k 1 +4)\k72
A3+ A
ry =11.0439, 1= 2 TRZ2 where Ay = 0.3777 - (34)F2/2 (10)
2A2—2 - 2A%—2 + 7;::22

> Lemma 21. )\, > 0.3265(3A)" % and ry < 25 for all k > 4.
Proof. Solving the recurrence we get

236 - (1 — 3A) - 3(k=2)/2
(625 + 957A) (L) 7272 944 36-2)/2
L 236 (1-34)- (3A)(k=2)/2
= 625 + 957A

The last inequality holds whenever A < 1/32.
We use induction to show that r; < 25; the base case holds by definition of r4. Observe
that 0 < Ap < Ay <0.3777 - (3A) < 0.3777 - %. By induction, rp_o < 25. Thus, we have
A3 A2

A
3 2 k—2
2Ak—272Ak—2+ Th_2

hand side grows with Ag_o for all 0 < A, < 0.3777- %, when 11.0439 < rp_o < 25. It follows

that: 7, < 74 +3000 27272 Ay <7y +3000305°, Ay, < 11.0439 4 3000-0.3777- 1281 < 25,
as desired. <

Ak =

k=2
2 .

> 0.3265 - (3A)

T = < 7g—2 + 3000A;_o, where the last inequality follows since the left-

» Lemma 22. Let X = 2ap + b + A and Yy, = 6ay, + 2bg,.. Then

0.3265 - (3A)*=2)/2 < N, < X}, < 0.3777 - (3A)(F=2)/2 (11)

X
11.041 < 25 <pp < 25 (12)

Y

Xk

A—XkSGkSA—Xk‘Fg (13)

Xk
—3A +3X; — H <bp < -3A+3X; (14)

X,

3A—2Xk§CkS3A—2Xk+§ (15)
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Proof. Observe by Equation (4) that X = 2ap + br + A = 3ay + 2b; + ¢, and that
= % —2X, +3A. Thus, the system from Definition 19 for k£ > 6 can be written as follows.

Y;
X = Xpo- (Ek — 2X}, + 3A)

Y,
Y= X2 5 (6X) —2Y) — 6A) + Yi_s - (?’“ —2X}, + 3A)

Solving the above system of equations for X3 and Y}, we get:

6Xk_2A —Xk—2
X, = ‘(GYkZ - 12X13—2)A (4X1?—2 +2—Y2) _ GA(XIE—2 + X—2)
‘ (4Xk_2+2) —X1_o 2X3 ,+4X2 L4+ 4K o — Yo+ 2
(4Yi—o —12X7% 5) (4X7 ,+2— Yy 2)
‘ (4Xp_2+2) 6X, oA ‘
Y, — (4o — 12X7_,) (6Yp—2 — 12X7 ,)A _ 6A(2X}7 5, —2X2 ,+Y; 2)
‘ (4X)_o+2) — X5 2X3 ,+4X2 L4+ 44X 0 — Yo+ 2
(4Yp—o —12X7% ,) (4X7 ,+2— Yy 0)
(16)
For the base case, X4 = 2a4 + by + A and Yy = 6a4 + 2b4. By Lemma 20, we have:
1.1328A < X, <1.1331A and 0.1018A <Y, <0.1026A (17)

Next, we show both Equation (11) and Equation (12) by induction; the base case (k = 4)

. . . B6A(XE ,+Xj_2)
holds by Equation (17). By Equation (16), we have: X < XD TaxE , axe . T <
3AX) o < 3A-0.3777 - (3A)k=41/2 = 0.3777 - (3A)(=2)/2 The lower bound on X, follows
6A(XE 5+Xp_2) > 3AX)_o 3ANL_2
2XP L HAXZ +AXp 20— Ye o242 T 144X, o = 144X, o
Xk Xp_ o+ Xn—2

tion (10). For the lower bound on if—:, by Equation (16), we have: 3£ = IXT_, X7 ,1Vis =

also by induction: X = = A\; , by Equa-

X2 4 X . . .
ko2 Tk 2 > 11.041, where the last inequality holds since Xj_y < 1.1331A < 11331
2X3_—2x2 k-2 256
k—2 k—2 11.041
3 3
. Xe _ Xk72+Xk—2 Xk72+Xk‘_2
Finally, we show an upper bound on Vo T OAXT L, 2X7 L, S oxi e 5N <
k—2 k—=2" 7Tp_o
A272+Ak,2 . . .
. > — "k <25, by Lemma 21. This concludes the inductive proof of Equa-
2A3  —2A2 4k
k—2 k—=2" 1Tp_o

tion (11) and Equation (12). For Equations (13)—(15), we express ag, by, and ¢ in terms of
X and Y}, as follows: ap = A + % — Xg, by = —3A +3X; — Yy, and ¢, = 3A + % —2X.
Eq. (13)-(15) follow. <
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