
Backbone Index and GNN Models for Skyline Path Query
Evaluation over Multi-cost Road Networks

QIXU GONG, New Mexico State University, Las Cruces, USA
HUIYING CHEN, New Mexico State University, Las Cruces, USA
HUIPING CAO, New Mexico State University, Las Cruces, USA
JIEFEI LIU, New Mexico State University, Las Cruces, USA

Skyline path queries (SPQs) extend skyline queries to multi-dimensional networks, such as multi-cost road networks (MCRNs).
Such queries return a set of non-dominated paths between two given network nodes. Despite the existence of extensive works on
evaluating different SPQ variants, SPQ evaluation is still very inefficient due to the nonexistence of efficient index structures to
support such queries. Existing index building approaches for supporting shortest-path query execution, when directly extended
to support SPQs, use an unreasonable amount of space and time to build, making them impractical for processing large graphs.
In this paper, we propose a novel index structure, backbone index, and a corresponding index construction method that condenses
an initial MCRN to multiple smaller summarized graphs with different granularity. We present efficient approaches to find
approximate solutions to SPQs by utilizing the backbone index structure. Furthermore, considering making good use of historical
query and query results, we propose two models, Skyline Path Graph Neural Network (SP-GNN) and Transfer SP-GNN
(TSP-GNN), to support effective SPQ processing. Our extensive experiments on real-world large road networks show that the
backbone index can support finding meaningful approximate SPQ solutions efficiently. The backbone index can be constructed
in a reasonable time, which dramatically outperforms the construction of other types of indexes for road networks. As far as we
know, this is the first compact index structure that can support efficient approximate SPQ evaluation on large MCRNs. The
results on the SP-GNN and TSP-GNN models also show that both models can help get approximate SPQ answers efficiently.

CCS Concepts: • Computing methodologies → Supervised learning by classification; Instance-based learning; • Information

systems → Query optimization; Graph-based database models.

Additional Key Words and Phrases: Multi-cost Road Networks, Graph Neural Networks, Index, Skyline Path Queries, Data
Augmentation

1 INTRODUCTION

Skyline path queries (SPQs) extend skyline queries to multi-dimensional networks (MDNs) [33]. They generalize
shortest-path queries over single-cost graphs. Given an MDN, SPQs return a set of non-dominated paths between
two given graph nodes. In this paper, we study SPQs on multi-cost road networks (MCRNs), which are the most
widely studied MDNs while considering SPQs [17, 20, 33, 67, 69]. In real applications, the multiple edge costs of
MCRNs can represent different things such as distance, travel time, the number of traffic lights, gas consumption,
etc.

Example 1.1. (Motivation example) Consider that Alice needs to transport from a location A to destination B.
Her concerns encompass various factors: travel time, expenses, and the frequency of traffic lights and stop signs
along the route. Alice desires a swift arrival. At the same time, she is mindful of keeping expenses reasonable (for

Authors’ Contact Information: Qixu Gong, Computer Science, New Mexico State University, Las Cruces, NM, USA, gongwolf@gmail.com;
Huiying Chen, Computer Science, New Mexico State University, Las Cruces, NM, USA, hchen@nmsu.edu; Huiping Cao, Computer Science,
New Mexico State University, Las Cruces, New Mexico, USA, hcao@nmsu.edu; Jiefei Liu, Computer Science, New Mexico State University,
Las Cruces, New Mexico, USA, jiefei@nmsu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses, contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2374-0353/2024/4-ART
https://doi.org/10.1145/3660632

ACM Trans. Spatial Algorithms Syst.

https://doi.org/10.1145/3660632
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3660632&domain=pdf&date_stamp=2024-04-23

2 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

instance, avoiding toll roads that could spike costs). Additionally, Alice has a strong driving preference, avoiding
roads heavily dotted with red lights or stop signs. Given these, she may not favor the path with the lowest expense
(say 𝑝𝑚𝑖𝑛𝐸) which might involve a long travel time and numerous traffic interruptions, nor the path with the shortest
travel time (say 𝑝𝑚𝑖𝑛𝑇), which could come with higher expenses. Instead, Alice may opt for (a) a path with a slightly
higher expense but significantly less travel time than 𝑝𝑚𝑖𝑛𝐸 and a reasonable number of traffic lights, or (b) a path
with a slightly longer travel time but considerably lower expense than 𝑝𝑚𝑖𝑛𝑇 and a small number of traffic lights.
Alice’s choice may not optimize in a singular dimension, but seeks a balance that aligns with her overall preference.

The evaluation of SPQs is very time-consuming due to a large number of solutions [20, 33] and the vast search
space. Many works attempt to accelerate the query process by reducing the search space. In [33], the landmark
index [32] is utilized to stop growing a path when its upper-bound cost is dominated by the cost of at least another
result. To address the cold-start problem in [33], Yang et al. [68] use the shortest path found for each dimension
as the initial results. Other works define different variations of SPQs and propose specialized query processing
approaches by utilizing the properties of their SPQs to reduce the search space [3, 10, 17, 20, 67].

A general idea to speed up query evaluation is to utilize indexes. The major challenge of designing index
structures for SPQs is the large number of skyline paths that need to be pre-calculated. Multiple skyline paths
(not just one shortest path) exist between two nodes on an MCRN. Traditional indexes that are used to support
location-based queries (e.g., shortest path queries) [18, 28, 34, 38, 78], if directly adopted to solve SPQs, either
incur expensive index building and use much space (partition-based method), or increase node degrees and the
number of edges. As a consequence, the query performance deteriorates. To the best of our knowledge, no compact
index structures exist to support efficient SPQs.

We conduct an extensive analysis [19] of an improved SPQ evaluation method of [33] on two real-world MCRNs
to understand how the characteristics of road networks (e.g., high node-degree distribution) and queries (e.g., long
paths between the query nodes) affect query performance. The study shows that the existing methods (even with
improvements) are too inefficient to evaluate SPQs even on small MCRNs.

Considering the above situations, this paper proposes a hierarchical index structure to support getting approximate
answers for SPQs. The design utilizes the concept of backbone, which captures the core graph topology, to abstract
the original graph. The idea is similar to intuitive human behavior when navigating from a source to a destination
in a road network. Let us consider a scenario that a student needs to drive from his/her university in city A to a
hotel in city B. He/she first finds the paths to the main street from the university’s district. Then, the routes from the
main street to the highway entrances of city A are identified. Highways between the cities are utilized to lead him
from city A to city B. Then, a similar idea is adopted to find the paths from freeway ramps to the hotel in city B. As
Figure 1 illustrates, the search involves three levels: the district level (paths to the main street), the intra-city level
(routes to highways’ entrances), and the inter-city level (highways from city A to city B).

Vs

Vt

Fig. 1. Example of a backbone index

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 3

The idea of highway entrances is also utilized in partition-based approaches [28, 34, 78] as border nodes between
partitions. These methods divide the original graph into non-overlapping partitions and store extra information
(e.g. the shortest path weight) between every pair of border nodes for the partitions. The goal of their design is to
minimize the number of border nodes. Our design is different in that we do not minimize the number of entrance
nodes, instead the entrance nodes are used to preserve the overall topology of the original network while conducting
network summarization.

Our proposed backbone index is a hierarchical structure that tries to preserve the topology of the original graph
by condensing/summarizing dense local graph units level by level. The abstracted graphs at higher levels are more
abstract than the lower-level graphs, while maintaining the topological structure.

All the approaches that utilize index techniques to support the evaluation of SPQs do not make use of historical
results. There may be a large amount of historical results when a system supports running such queries for a long
time. This work further explores strategies of utilizing historical results to accelerate query evaluation. It is well
known that most neural network (NN) models can well capture the non-linear patterns hidden in the data and the
NN models are much smaller than the data. Our work thus adopts the use of one type of NN models, Graph neural
networks (GNNs), to take advantage of historical query results to efficiently support SPQ evaluation. We propose
two models, Skyline Path Graph Neural Network (SP-GNN) model and Transfer SP-GNN (TSP-GNN) model, to
support the search. These two models are properly designed to encode historical query results together with the
historical queries) as training instances. In the SPQ query processing stage, these two models serve as a filter to
limit the search space of the query, thus to process the query more efficiently. SP-GNN can effectively support
queries over smaller graphs, while TSP-GNN can support SPQs over larger graphs more effectively. We note that
the novelty of SP-GNN and TSP-GNN is not the design of a new GNN architecture for SPQ processing. Instead,
most GNN architectures can be adopted in our approaches. This makes the design more general and easily to be
utilized.

The main contributions of our work are as follows.
• We propose a novel hierarchical index based on the concept of backbone and clustering to abstract the original

graph to several summarized graphs with different summarization granularity. The index is utilized to find
approximate answers to SPQs. Thus, it can also be utilized to support GNN-based models by generating training
data more efficiently.

• We present an efficient index building algorithm and several variations. The index construction algorithm
summarizes a graph by reducing the density of its dense local units (or clusters).

• A query evaluation algorithm is proposed to get approximate answers to SPQs. The algorithm combines a
dynamic-programming search strategy at lower index levels and an optimized many-to-many landmark-based
skyline search algorithm at the most abstracted graph level. The approximate answers are more succinct than the
exact answers and enable users to focus on choosing from fewer good results.

• We propose two GNN-based models that take advantage of historical query results to further support efficient
SPQ evaluation. These two models can adopt most GNN architectures as the building blocks, which makes them
general to be utilized. The idea of utilizing NN models (or machine learning models in general) to summarize
data and facilitate query processing can be applied to process other types of queries.

• We analyze the quality of the approximate solutions and the complexity of our proposed methods.
• We conduct extensive experiments using nine real-world datasets, including large road networks with millions of

nodes and edges.
The rest of the paper is organized as follows. Section 2 discusses existing works that are related to our study.

Section 3 defines the research problem, related concepts, and notations. Our proposed index structure and the query
algorithm are presented in Sections 4 and 5. Our proposed GNN-based approaches are presented in Sections 6.
Experimental results are reported in Section 7. Section 8 provides an overall discussion of the proposed techniques.
Section 9 concludes the work and discusses possible future works.

ACM Trans. Spatial Algorithms Syst.

4 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

2 RELATED WORKS

2.1 Skyline queries on road networks

The SPQ problem over an MCRN is first proposed and studied in [33, 56]. Kriegel et al. [33] propose to use
landmark index to calculate lower bounds of paths and reduce the search space of SPQs. Tian et al. [56] utilize
the partial path dominance test to prune search space. Yang et al. [68] define a stochastic dominance relationship.
Instead of using the landmark index, the lower bound of the cost on each dimension is calculated using a reverse
Dijkstra [14] search. Shekelyan et al. [52] present a different type of SPQ, linear skyline path queries, which use a
linear combination of multiple cost values to define the optimality of paths.

More recent works evaluate different SPQ variants. The work [17, 67] conducts SPQs over moving objects
on single-dimensional road networks with multi-attributed points of interest (PoIs). Gong et al. [20] propose a
Constrained Skyline Queries problem assuming that PoIs can be off an MCRN. The work [37] proposes a new
concept of skyline groups by considering the strength of social ties and the spatial distance in a single-dimensional
road network.

The previous techniques (except [33]) answer skyline queries without the support of any index structures.
Although using the landmark index [33] and finding shortest paths on each dimension [68] are efficient ways to
prune the search space, the query process using these techniques is still very inefficient when node degrees are high
or the number of hops between query nodes is large. In addition, constructing landmark index on a large graph is
expensive.

The work [73] is most similar to ours. It proposes a partition-based single-level index. However, their index
supports the optimal path finding problem instead of SPQs. The query performance decreases dramatically as
the degree of border nodes grows because one border node in a partition connects to multiple border nodes (or
entrances) of its neighbor partitions.

In summary, existing studies on skyline query processing either do not use index structures or use index structures
with only one level. Our work is different in that we introduce a novel hierarchical index structure with different
levels of abstraction to the graphs. Our GNN-based methods further create highly summarized models by using
historical results to improve query efficiency.

2.2 Location-based queries on road networks

The shortest-path query is one type of fundamental location-based queries for graph structured data. The Dijk-
stra [14] and the A* [23] algorithms are the most successful and widely used search methods. These traditional
search methods are not practical to work for the large graphs collected in recent years. Wagner et al. [60] investigated
reducing the search space of Dijkstra’s algorithm by using geometric containers that encapsulate pre-computed
shortest-path information. Despite the improvement, the graphs that this technique applies to are still relatively
small. Yang et al. [71] addressed the problem of finding the shortest path passing through a set of user-specified
vertices in large graphs. It proposes novel exact and approximate heuristic algorithms to improve search efficiency.
However, their proposed approach cannot be easily extended to answer SPQ over MCRNs.

The design and use of an index structure to keep pre-calculated path information is inevitable. For road networks,
graph-partition [28, 34, 38, 78] and shortcut-based [4, 18, 31, 66] approaches are two typical ways to design indexes
to support location-based queries. When such approaches are directly utilized to process SPQs, the partition-based
methods find an enormous number of skyline paths when the length of paths between partitions is long, which
leads to expensive index construction and large disk use. The shortcut-based approaches create shortcuts between
two graph nodes. Contraction hierarchies (CH) [4, 31] are built using such shortcut-based method while one [4]
focused on answering queries from graphs with time-dependent edges and the other [31] targeted at improving the
pre-processing and memory efficiency through the introduction of time-dependent CH. For shortest path queries or
routing problems, the number of shortcuts is still manageable. However, for SPQ queries, the number of shortcuts
grows exponentially with the increase of node degrees and the length of paths between graph nodes. The huge

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 5

number of shortcuts does not improve the query performance, but deteriorates the query evaluation. Our preliminary
analysis [19] has verified the statements about both types of methods. Several partition-based methods [28, 34, 78]
minimize the number of border nodes so that fewer shortest paths need to be found in a partition. This does not
work to process SPQs because the number of skyline paths and search time increase dramatically in dense partitions,
which has nothing to do with the number of border nodes.

Recent graph-partition based attempts [11, 45, 76] utilize tree decomposition as the pre-process step for building
hubs or shortcuts among tree nodes. These methods either (i) face the issue of huge disk use and high computational
cost while storing the skyline path information from each tree node to its ancestor tree nodes [11, 45] or (ii) generate
large number of shortcuts from each tree node to its neighbors in the SPQ setting. Other approaches [2, 22, 50] to
answer shortest-path queries apply Breadth-First Search (BFS)-based methods with specially designed pruning
conditions. They run slowly if directly adopted to answer SPQs for graphs with high node degrees. Different from
all the existing approaches, our proposed approach condenses local dense units of a graph (i.e., inside a partition)
and utilizes such condensed partitions to support SPQ evaluation.

On MCTN, people also work on answering other types of constrained queries including constrained route
planning (e.g., [62]) and Multi-Constraint Shortest Path (MCSP) (e.g., [40]). Constrained route planning finds the
optimal solution from a source to a destination with a weight constraint. MCSP are still shortest paths w.r.t. one
dimension of the edge weight in an MCRN, while their costs on the other edge weight dimensions are constrained.
These query problems are different from our work because they still use one criterion (e.g., path length, or one
edge weight) to define the optimal/shortest solution.

Traveling salesman path (TSP) problem is another type of location-based queries. Rice et al. [47] woked on
solving the Generalized Traveling Salesman Path Problem (GT-SPP). Their algorithms find the shortest path from
a location to another location that passes through at least one location from each of a set of generalized location
categories.

To summarize, strategies to process existing location-based queries focus on finding shortest paths. Their direct
utilization to process SPQs is prohibitively expensive. For non-shortest path query processing, different constraints
are used to improve their search algorithm. Our research problem does not impose any special constraints, which
makes the existing methods not directly applicable to process SPQs.

2.3 Finding backbones on graphs

Graph backbone extraction identifies critical nodes and edges to preserve the topology and other essential infor-
mation of a graph. Recent works [7, 21, 27, 48, 51] study the backbone extraction problem for different networks
with specialized research interests. In [48], the authors identify a network’s backbone that consists of a set of
paths maximizing the Bimodal Markovian Model likelihood. The work [21] finds a tree-like backbone structure
utilizing both the node attribute and the graph topology in geo-social attribute graphs. Graph backbone can also be
extracted using the graph structure. The work [27] merges nodes and edges by creating shortcuts with the intention
to preserve the topology of the original graph. The works in [7, 51] define a criterion to examine the importance or
relevance to a network, and adopt strategies for edge sampling [5] or edge filtering (or pruning) [7, 13] to create
backbone structures.

The above methods either conduct high-cost inference that is not practical on large graphs, or dramatically
increase the graph size that causes the degradation of queries, or define specific criteria [9, 13, 42] for specialized
MCRNs. Thus, they cannot be directly applied to build indexes to support SPQs over general MCRNs. Moreover,
most of the existing methods [13] cannot guarantee the connectivity of the extracted backbone graph.

2.4 Using machine learning methods in query processing

Observing the success of the machine learning techniques, the database community utilizes such techniques for
different types of database tasks [35]. Given that searching for useful information from database is the cornerstone

ACM Trans. Spatial Algorithms Syst.

6 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

of many database applications, much work has utilized machine learning techniques to improve the efficiency of
query evaluation and optimization (e.g.,[15, 24, 29, 41, 53, 58]).

Increasing amount of work has utilized machine learning techniques to manage and analyze spatial data [49].
For example, deep generative models are used to detect anomalous trajectory [39]. Deep reinforcement learning is
utilized to facilitate similar subtrajectory search [64] and trajectory simplification [63]. Attention-network based
models are designed for approximate trajectory similarity calculation [70]. There are also efforts trying to improve
the efficiency of model training. For example, Zeng et al. [75] introduce a GNN framework COSAL to avoid
aggregating all the modes in a graph when the analysis task is related to a much smaller number of target nodes.
This strategy cannot be directly applied to our work because our trained model is supposed to support future ad-hoc
queries where every node has the potential to be accessed.

Some recent work has utilized GNN models to solve the shortest path searching problem. SPAGAN [72]
used path-based attention to explore the graph structure and aggregate information from distant neighbors more
effectively. Despite their success in improving the shortest path finding problem, these methods unfortunately
only work for unweighted/no-cost graphs. Shortest paths are used to improve the building of neural network (NN)
models. Abboud et al. [1] proposed a novel message passing neural network (NN) that utilizes shortest paths
between nodes. With this message passing NN, a node can directly communicate with its direct neighbors and
shortest-path neighbors.

On general graphs (which may not be road networks and do not have spatial information), NN models are also
utilized to facilitate query processing. Nishad et al. [43] has worked on reachability estimation over graphs by
introducing a position-aware inductive GNN. This GNN can represent both node attributes and node positions in
graphs.

The work proposed by Chang et al. [8] is most related to this work. It proposed to use graph contrastive learning
to learn a task-agnostic road network embedding. However, it is not trivial to directly apply such embedding on
multi-cost road networks.

In a word, no approach applies machine learning models to process SPQs despite different models are utilized to
solve different types of queries including general shortest path queries and specialized queries.

2.5 Learned indexes

Learned indexes are a novel approach that leverages machine learning models to enhance query-processing efficiency
and reduce index size [36, 55, 57, 77]. Different from traditional index techniques such as B+-trees, learned indexes
offer improved query latency and storage optimization. Existing learned indexes have been developed for various
scenarios including key lookup and insertion, concurrency control, and bulk loading, aiming to address practical
challenges in different settings. Researchers have explored spatial learned indexes to handle spatial data efficiently,
with recent advancements focusing on multi-dimensional interpolation functions and dynamic encoding techniques
to enhance prediction accuracy, building time, and storage overhead. These innovative learned index models, such
as DILI [36], demonstrate superior performance in key search time, query execution time, and write performance
compared to traditional index structures. LIMS [57] is proposed to use data clustering and pivot-based data
transformation techniques to build learned indexes for efficient similarity query processing in metric spaces.
Different from the learned indexes technique, this work uses GNN-based models to accelerate query efficiency
without changes to indexes, the backbone index.

3 TERMINOLOGY AND PROBLEM STATEMENT

This section presents the terminology used in our problem statement and solution. Table 1 lists the symbols utilized
in the definitions and our methodology.

A multi-cost road network (MCRN) is represented as an undirected graph 𝐺 = (𝑉 , 𝐸,𝑊) where 𝑉 is the set of
nodes, 𝐸 is the set of edges where 𝐸 ⊆𝑉 ×𝑉 , and𝑊 ∈R |𝐺 .𝐸 |×𝑑 is a weight tensor, where 𝑑 is the dimension of the

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 7

Table 1. Notations used in problem definition and methodology

Symbol Meaning Definition section

𝐺 Graph Sec. 3
𝑣 , 𝑉 , |𝑉 | One graph node, graph node set, number of graph nodes Sec. 3
𝑒, 𝐸, |𝐸 | One graph edge, graph edge set, number of graph edges Sec. 3
𝐷𝑃 (𝑒) Degree pair of edge 𝑒 Sec. 3.2
𝑑𝑒𝑔(𝑣) Degree of a node 𝑣 Sec. 3.2
𝑑 Number/dimension of edge cost Sec. 3
𝑤 ,𝑊 𝑑-dimensional cost of one edge, edge weight tensor Sec. 3

𝑝, 𝑐𝑜𝑠𝑡 (𝑝) one path, the cost of a path Sec. 3
𝑝𝑖 | |𝑝 𝑗 concatenation of two paths 𝑝𝑖 and 𝑝 𝑗 Sec. 3
𝑝 ≺ 𝑝′ path 𝑝 dominates path 𝑝′ Sec. 3.1

𝐺0,𝐺1, · · · ,𝐺𝐿 Different levels of abstracted graph in the backbone index where
𝐺0 = 𝐺

Sec. 4.1

N1𝑠𝑡 (𝑣), N2𝑛𝑑 (𝑣) The 1-hop and 2-hop neighbors of the node 𝑣 Sec. 4.2
cluster_coefficient(v) A node’s cluster coefficient Sec. 4.2
𝑝𝑖𝑛𝑑 Cluster condensing threshold Sec. 4.2
𝐶𝑖, 𝑗 The 𝑗-th dense cluster for level 𝑖 abstract graph 𝐺𝑖 Sec. 4.2.4

X = [x1, · · · , x |𝐺 .𝑉 |]𝑇 Feature matrix (spatial coordinates of nodes) of graph 𝐺 ; X ∈
R |𝐺 .𝑉 |×2

Sec. 6.1

𝐵e, 𝐵gnn, 𝐵fc # of hidden features in GNN models after the embedding layer, GNN
layers, and fully connected layers

Sec. 6.2

H𝑒𝑚𝑏𝑒𝑑 , H𝐺𝑖 , H𝑜 Hidden features in GNN models after the embedding layer, GNN
layers, and fully connected layers

Sec. 6.2

H𝑣𝑠 , H𝑣𝑡 , H𝑞𝑢𝑒𝑟𝑦 Hidden features learned from the GNN model representing the nodes
𝑣𝑠 , 𝑣𝑡 , and query (𝑣𝑠 , 𝑣𝑡)

Sec. 6.2

edge costs. Let |𝐺 .𝑉 | and |𝐺 .𝐸 | be the number of graph nodes and edges respectively. Each edge 𝑒 ∈ 𝐸 representing
a road segment is associated with a 𝑑-dimensional cost vector 𝑤 , where 𝑤𝑖 is the value of the 𝑖-th cost of edge
𝑒. Examples of edge weights include the length of the edge, the speed limit of the edge, and whether there is
construction work going on the road segment. Edge weight can be the estimated travel time, although it can be
calculated from the distance and the speed limit of the edge. All the edge weights in the graphs are static. We will
explore strategies to deal with graphs with dynamic weights as our future work. Roads have directions. Two roads
with opposite directions generally connect two same nodes, and the costs of the two opposite directed roads do not
differ much. Given these, we model a road network as an undirected graph. When road networks are modeled as
directed graphs, our method can be easily extended to work (more discussions see the end of Section 4.3.1).

A path 𝑝 between a node 𝑣𝑠 and another node 𝑣𝑡 is denoted as 𝑝 (𝑣𝑠 ! 𝑣𝑡) or the list of nodes on the path. For
example, (𝑣3, 𝑣4, 𝑣1, 𝑣8) in Figure 2 is a path 𝑝 (𝑣3! 𝑣8). The cost of a path 𝑝, 𝑐𝑜𝑠𝑡 (𝑝), is the summation of the
weights of the edges of 𝑝 on each dimension. The 𝑐𝑜𝑠𝑡 (𝑝) is 𝑑-dimensional. The length of a path is the number of
edges in the path. Given two nodes, the path hop is defined to be the average length of all the shortest paths when a
different single dimension is utilized. Given two paths 𝑝𝑖 and 𝑝 𝑗 where the ending node of 𝑝𝑖 is the same as the
starting node of 𝑝 𝑗 , 𝑝𝑖 and 𝑝 𝑗 can be concatenated as 𝑝𝑖 | |𝑝 𝑗 , where | | denotes the concatenation of two paths.

ACM Trans. Spatial Algorithms Syst.

8 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

3.1 Path domination and skyline path queries

For multiple paths with 𝑑-dimensional cost, we adopt their domination relationship from [20, 33] and define it
below.

Definition 3.1 (Path domination). Given two paths 𝑝 and 𝑝′ with multi-dimensional costs, the path 𝑝 dominates
another path 𝑝′, denoted as 𝑝 ≺ 𝑝′, if and only if ∀𝑖 ∈ [0,𝑑], 𝑐𝑜𝑠𝑡 (𝑝)[𝑖] ≤ 𝑐𝑜𝑠𝑡 (𝑝′)[𝑖] and ∃𝑖 ∈ [0,𝑑], 𝑐𝑜𝑠𝑡 (𝑝)[𝑖] <
𝑐𝑜𝑠𝑡 (𝑝′)[𝑖].

Intuitively, 𝑝 dominates 𝑝′ when 𝑐𝑜𝑠𝑡 (𝑝) is not worse than 𝑐𝑜𝑠𝑡 (𝑝′) on each dimension, and is strictly better than
𝑐𝑜𝑠𝑡 (𝑝′) on at least one dimension.

Definition 3.2 (Skyline Path Query (SPQ)). Given a graph 𝐺 representing an MCRN, a skyline path query (SPQ)
is denoted with a starting node 𝑣𝑠 and a target node 𝑣𝑡 . The answer to an SPQ is a set of paths P satisfying (1)
∀𝑝 ∈ P, 𝑝 is from 𝑣𝑠 to 𝑣𝑡 , (2) ∀𝑝′ ∉P, ∃𝑝 ∈P s.t. 𝑝 ≺ 𝑝′, and (3) ∀𝑝 ∈P, *𝑝′ ∈P s.t. 𝑝′ ≺ 𝑝.

A path 𝑝 (𝑣𝑠 ! 𝑣𝑡) ∈ P is called a skyline path from 𝑣𝑠 to 𝑣𝑡 . Where there is no ambiguity in the context, we use
𝑝 to represent 𝑝 (𝑣𝑠 ! 𝑣𝑡). Given two nodes, one SPQ returns a set of paths between the nodes while such paths do
not dominate each other.

3.2 Degree pairs and single segments

Our approach utilizes graph density information. To better capture and describe the density of subgraphs in a graph,
we introduce several concepts: degree pairs, degree-1 edges, and single segments.

Definition 3.3 (Degree Pair). Given an edge 𝑒 with its two end nodes 𝑣𝑠𝑒 and 𝑣𝑡𝑒 , the degree pair of 𝑒, 𝐷𝑃 (𝑒) =
⟨e.first, ⟨e.second⟩, is defined as follows.

𝐷𝑃 (𝑒) =

{

⟨𝑑𝑒𝑔(𝑣𝑠𝑒),𝑑𝑒𝑔(𝑣𝑡𝑒)⟩ 𝑑𝑒𝑔(𝑣𝑠𝑒) ≤ 𝑑𝑒𝑔(𝑣𝑡𝑒)

⟨𝑑𝑒𝑔(𝑣𝑡𝑒),𝑑𝑒𝑔(𝑣𝑠𝑒)⟩ 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1)

where 𝑑𝑒𝑔(𝑣) is the degree of the node 𝑣 . As the definition shows, the elements in the degree-pair tuple are ordered
where the first element e.first is always smaller than or equal to the second element e.second. An edge that has a
degree pair ⟨1, 𝑥⟩ (𝑥 ≥ 1) is called a degree-1 edge.

v1

e2

v3 v4

e3

e1

e4

v2

v9

v10

v5

v7

v6

v8

Fig. 2. Degree pair example, where 𝐷𝑃 (𝑒1)=⟨4, 4⟩, 𝐷𝑃 (𝑒2) = ⟨2, 3⟩, 𝐷𝑃 (𝑒3) = ⟨3, 4⟩, and 𝐷𝑃 (𝑒4) = ⟨1, 4⟩.

Example 3.4. Let use Figure 2 to demonstrate the concept of degree pairs. For 𝑒1, whose two end nodes are
𝑣1 and 𝑣2, the degree pair 𝐷𝑃 (𝑒1) is ⟨4, 4⟩ because both nodes 𝑣1 and 𝑣2 have degree 4. Similarly, we can get that
𝐷𝑃 (𝑒2) = ⟨2, 3⟩, 𝐷𝑃 (𝑒3) = ⟨3, 4⟩, and 𝐷𝑃 (𝑒4) = ⟨1, 4⟩. 𝑒4 is a degree-1 edge because e4 .first is 1.

Definition 3.5 (Single Segment). A single segment is a path consisting of consecutive ⟨2, 2⟩ degree-pair edges
except the first and the last edges for which one end-node’s degree is greater than 2.

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 9

Cluster/Map 1 Cluster/Map 2

vv

v

Single Segment

Condensing

Fig. 3. Single segment example

Example 3.6. Figure 3 shows an example of a single segment that connects two sub-graphs/maps with consecutive
edges whose degree pairs are ⟨2, 2⟩.

Single segments are utilized to condense graphs (Section 4.3.1).

4 THE BACKBONE INDEX

The core idea for building the Backbone index structure is summarizing the dense local units (clusters) of the
original graph.

4.1 Hierarchical summarization

Before we present the index structure, we first introduce several major factors where the design idea emerges from.
First, the effectiveness of an index for graphs is highly related to the efficiency in the pre-calculation. For

single-cost networks, pre-calculating shortest paths and using them to answer shortest path queries is a commonly
used strategy. On MCRNs, multiple skyline paths exist between two nodes. Compared with pre-calculating shortest
paths from single-cost networks, it is much more expensive to pre-calculate skyline paths because the number
of skyline paths for a given query is highly impacted by node degrees and the distance between two nodes [19].
To leverage this, we identify local units to be dense graph components with nodes having more neighbors (or
neighbors of neighbors). The abstraction occurs on each dense local unit by removing less critical nodes and edges.
The abstraction leads to a smaller index size and a shorter construction time according to [19]. After the abstraction,
we expect that the degree distribution of the graph nodes does not change much, which then can help us find useful
results without missing too much information.

Second, too much information may be missing when directly summarizing the original graph into a very
abstracted graph. Aggressive abstraction strategy may not be able to effectively support queries whose two query
nodes are relatively close to each other. Considering this, we design our index structure to consist of a hierarchy of
multiple abstracted graphs 𝐺0,𝐺1, · · · ,𝐺𝐿−1,𝐺𝐿 with different granularity, where 𝐺0 is the original graph, 𝐺𝐿 is the
most abstracted graph, and 𝐺𝑖+1 (0 ≤ 𝑖 < 𝐿) directly summarizes 𝐺𝑖 .

Third, to compensate for the information loss caused by the removal of nodes and edges in dense clusters when
summarizing a graph 𝐺𝑖 , a facilitating structure 𝐼𝑖 is introduced to keep the skyline paths from graph 𝐺𝑖 to 𝐺𝑖+1. In
particular, it stores the skyline paths from each node in a dense cluster to all the nodes that are still in 𝐺𝑖+1.

Based upon the design of the backbone index considering the above three factors, our query method returns
informative approximate solutions instead of exact solutions by searching the summarized graphs from the finest
granularity to the coarsest granularity. When we cannot find a path to connect two nodes in a lower-level graph 𝐺𝑖 ,
the search has to be conducted on its summarized graph 𝐺𝑖+1 which generates approximate skyline paths since 𝐺𝑖+1

does not keep all the detailed information from its lower-level graph 𝐺𝑖 .

ACM Trans. Spatial Algorithms Syst.

10 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

4.2 Dense local units/clusters at each level

We introduce an important concept, dense clusters, in our backbone index. Intuitively, dense clusters represent
local units or subgraphs of a graph. The nodes in the dense clusters generally have more neighbors (i.e., denser)
than other subgraphs. We use dense clusters and local units exchangeably in this paper.

4.2.1 Dense clusters and node clustering coefficient. DBSCAN [16] is one classical algorithm to find dense
clusters. Density based clustering on road networks [61, 74] adopts the shortest path distance as the distance
measurement. This is not suitable for MCRNs. Without extra information such as user pattern data [44], POIs [61],
and trajectory location data [6], we need to formally define the measurements that can be used to calculate node
density to conduct density based clustering on MCRNs. The well-known local clustering coefficient [65] is designed
for general graphs where a node degree is usually more than hundreds. For MCRNs, where a node degree is
generally no more than 5, the local clustering coefficient cannot be used to distinguish dense nodes from others.
The cluster-coefficient concept should not only reflect the degree of a node, but also consider its neighbors. In
Figure 2, node 𝑣1 and node 𝑣9 have the same number of neighbors, but intuitively, 𝑣1 is more likely the center of its
neighbors than 𝑣9. Considering nodes 𝑣10 and 𝑣9, based on their different degrees (𝑑𝑒𝑔(𝑣10) = 3 and 𝑑𝑒𝑔(𝑣9) = 4), it
seems 𝑣9 is denser. However, 𝑣10 connects tighter with its neighbors in a local community than 𝑣9 when examining
the structure of the graph. Removing 𝑣10 and the edges connecting to it greatly reduces the topological information
of the graph. Overall, it is difficult to differentiate the density of a node by considering only node degrees.

We define a node’s cluster coefficient to capture the density information of graph nodes. Let N1𝑠𝑡 (𝑣) be the set of
neighbors of the node 𝑣 and N2𝑛𝑑 (𝑣) be the set of nodes that are two hops away from 𝑣 (which are also denoted as
two-hop neighbors of 𝑣) except the nodes in N1𝑠𝑡 (𝑣). We consider the node clustering coefficient of a node 𝑣 is
proportional to the number of connections between N1𝑠𝑡 (𝑣) and N2𝑛𝑑 (𝑣). Following this idea, we introduce the
concept of cluster coefficient on road networks.

Definition 4.1 (A node’s cluster coefficient). The cluster coefficient of a node 𝑣 is defined as

cluster_coefficient (v) =
|N 𝑣

𝑐𝑜𝑚 |

|N1𝑠𝑡 (𝑣) | ∗ (|N1𝑠𝑡 (𝑣) | − 1)
(2)

where 𝑁 𝑣
𝑐𝑜𝑚 is the set of node pairs (𝑢,𝑤) where 𝑢 ∈ N1𝑠𝑡 (𝑣) and 𝑤 ∈ N1𝑠𝑡 (𝑣) connect to a same node 𝑣𝑐𝑜𝑚 ∈

N2𝑛𝑑 (𝑣).

Example 4.2 (Node’s cluster coefficients). In Figure 2, the cluster coefficient of node 𝑣1 equals to 3

4∗3 =
1

4
since

𝑣1 has 4 neighbors (𝑣2, 𝑣4, 𝑣6, and 𝑣8) and those neighbors share 3 common nodes (𝑣3, 𝑣5 and 𝑣7) in N2𝑛𝑑 (𝑣1). For
node 𝑣9, the cluster coefficient is 1

4∗3 =
1

12
because the nodes in 𝑁1𝑠𝑡 (𝑣9) share one common node. For node 𝑣10,

cluster_coefficient (v10) is 2

3∗2 =
1

3
.

If more second-order neighbors of 𝑣 are connected through 𝑣’s first-order neighbors (e.g., the center of a district),
𝑣 has a higher probability to be in a dense area. Our approach thus clusters the nodes with a bigger cluster coefficient
first.

4.2.2 Condensing threshold. Our graph summarization is to keep the topology (thus the reachability) of the
graph while condensing a graph. We discuss the rationale behind our design.

Motivation of defining condensing threshold. There are sparse components in real-world networks, such as
secluded roads that connect business areas in a city. These sparse components are treated as noise clusters. Such
noise clusters should not be completely condensed in the summarization stage. Otherwise, the nodes in these
clusters cannot be reached from other graph nodes.

A node 𝑣 can be categorized as a noise node or non-noise node using its node degree (i.e., the number of
its first-order neighbors |𝑁1𝑠𝑡 (𝑣) |) or its cluster coefficient (cluster_coefficient (v)). We observe that using either
measurement is not sufficient to decide whether a node should be condensed or not. This is because the node degree

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 11

(i.e., |𝑁1𝑠𝑡 |) and the cluster coefficient (decided by |𝑁1𝑠𝑡 | or |𝑁2𝑛𝑑 |) of different nodes on road networks have very
similar values. I.e., the value ranges of node degrees and cluster coefficients are small. For instance, most nodes
have degrees 2 and 3, and most nodes’ neighbors share no or few common N2𝑛𝑑 neighbors. This makes the cluster
coefficient values very small. E.g., in Figure 2, cluster_coefficient (v9)= 1

12
and cluster_coefficient (v10)= 1

3
.

We need to investigate other measurements to decide whether a node can be condensed. That measurement
should have a larger range and should capture the neighbor information so that a smaller value indicates a less
important node.

We observe that |𝑁1𝑠𝑡 (𝑣) + 𝑁2𝑛𝑑 (𝑣) | has a much bigger value range. Figure 2, |𝑁1𝑠𝑡 (𝑣10) + 𝑁2𝑛𝑑 (𝑣10) | = 7 is
less than |𝑁1𝑠𝑡 (𝑣9) + 𝑁2𝑛𝑑 (𝑣9) | = 10. The node 𝑣10 is a less important node because it is connected with fewer
other nodes. Thus, the cluster that 𝑣10 belongs to can be condensed later than the cluster that 𝑣9 belongs to since
𝑣9’s cluster is denser than 𝑣10’s cluster. Based on |𝑁1𝑠𝑡 (𝑣) + 𝑁2𝑛𝑑 (𝑣) |, we introduce another parameter, condensing

threshold percentage 𝑝𝑖𝑛𝑑 , to help identify nodes that can be condensed.
Given a graph 𝐺 , we can find the two-hop neighbors of all the nodes and calculate the cardinality of such

neighbor sets. For each distinct two-hop neighbor cardinality 𝑘, we can find the number of nodes having this
cardinality (denoted as 𝑓 𝑟𝑒𝑞(𝑘)). I.e., 𝑓 𝑟𝑒𝑞(𝑘) = |{𝑣}| s.t. |𝑁1𝑠𝑡 (𝑣) + 𝑁2𝑛𝑑 (𝑣) | = 𝑘. Let 0𝐿(𝐺) be the list of sorted
frequency values calculated from a graph 𝐺 , and 0𝐿[𝑗] be the frequency value at the j-th position in 0𝐿(𝐺), where 𝑗
starts with 0. We define the condensing threshold as follows.

Definition 4.3 (Condensing threshold). Given 𝐺 , the sorted frequency list 0𝐿(𝐺), a percentage 𝑝𝑖𝑛𝑑 ∈ (0, 1), the
condensing threshold 𝑛𝑜𝑖𝑠𝑒_𝑣𝑎𝑙 is the cardinality value with frequency 0𝐿[𝑝𝑜𝑠] s.t.

𝑝𝑜𝑠−1
∑

𝑖=0

0𝐿[𝑖] ≤ 𝑝𝑖𝑛𝑑 ∗ |𝐺 .𝑉 | <
𝑝𝑜𝑠
∑

𝑖=0

0𝐿[𝑖]

Example 4.4 (Condensing threshold). Given a graph 𝐺 with 10 nodes, let the cardinality of the two-hop
neighbor sets of the nodes be {8, 3, 6, 3, 6, 4, 4, 8, 2, 8}. The distinct cardinality values are 2, 3, 4, 6, and 8. Then,
0𝐿(𝐺) = (1, 2, 2, 2, 3) because 𝑓 𝑟𝑒𝑞(2)=1, 𝑓 𝑟𝑒𝑞(3)=2, 𝑓 𝑟𝑒𝑞(4)=2, 𝑓 𝑟𝑒𝑞(6)=2, and 𝑓 𝑟𝑒𝑞(8)=3. Let 𝑝𝑖𝑛𝑑 = 0.3, then
𝑝𝑖𝑛𝑑 ∗ |𝐺 .𝑉 | = 3. 0𝐿[0] + 0𝐿[1] = 3 ≤ 3 and 3 < 0𝐿[0] + 0𝐿[1] + 0𝐿[2] = 5. The 𝑛𝑜𝑖𝑠𝑒_𝑣𝑎𝑙 of 𝐺 is the cardinality value
with frequency 0𝐿[1]. Since 0𝐿[1] = 2 = 𝑓 𝑟𝑒𝑞(3), 𝑛𝑜𝑖𝑠𝑒_𝑣𝑎𝑙 of 𝐺 is 3.

A node 𝑣 is treated as a noise node if |𝑁1𝑠𝑡 (𝑣) + 𝑁2𝑛𝑑 (𝑣) | < 𝑛𝑜𝑖𝑠𝑒_𝑣𝑎𝑙 . The clustering procedure sets low-density
nodes as noises when the condensing threshold is used. For example, two clusters, 𝐶1 and 𝐶2, in Figure 4(a)
contain low-density nodes. These two clusters are condensed in the index construction process. However, using the
condensing threshold, these low-density nodes are identified as noise nodes (Figure 4(b)). The noise nodes are not
condensed when creating the index to preserve the topology structure that connects the low-density nodes.

4.2.3 Condensing dense clusters. Nodes on a map are always connected. We desire that the connectivity of a
graph is preserved after condensing. We propose to use a spanning tree to condense a dense cluster because all the
nodes in a spanning tree are connected. Minimum spanning trees (MSTs) are generated for optimization purposes
on single-cost graphs. It is not possible to find MSTs from MCRNs because of the multiple edge weights. When
using spanning trees to summarize a dense cluster, we build a spanning tree from the perspective of preserving the
graph’s topology as much as possible. In particular, we keep higher degree-pair edges because they can keep more
information in the original graph, which is consistent with [59].

4.2.4 Details to process dense clusters of 𝐺𝑖 . A graph 𝐺𝑖 can be abstracted to a more summarized graph
𝐺𝑖+1 by removing its nodes and edges. The removed node and edge information needs to be saved as labels
(Definition 4.7) to support future query processing. This section discusses the process of condensing a graph 𝐺𝑖 by
utilizing its dense clusters. The detailed steps are described in Algorithm 1.

ACM Trans. Spatial Algorithms Syst.

12 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

C1

C2

(a) clusters found without us-
ing condensing threshold

Cnoise

(b) clusters found using
condensing threshold

Fig. 4. Example of dense clusters on C9_NY_5K

The condensing process contains two steps: (i) finding dense clusters of nodes (Lines 7-35) and (ii) abstracting
each dense cluster (Lines 36-39). The cluster finding process grows the node with the highest cluster-coefficient
value (the seed node) to the first cluster (details see below), then grows the node (as seed node), which has the
highest cluster-coefficient value among all the nodes not belonging to any clusters, to the second cluster. This
process of growing a seed node to a dense cluster stops until all the nodes are marked either as belonging to one
cluster or as a noise node. After all the clusters are formed, small clusters (constrained by a parameter𝑚𝑚𝑖𝑛 defined
in Definition 4.8) are merged to avoid cluster fragmentation (Line 35).

The details of growing a seed node 𝑣 to a dense cluster 𝐶𝑖, 𝑗 are as follows. First, we calculate the threshold
𝑛𝑜𝑖𝑠𝑒_𝑣𝑎𝑙 using the parameter 𝑝𝑖𝑛𝑑 (Line 2) and create a cluster list 𝐶 that stores dense clusters of 𝐺𝑖 (Lines 3-5).
We designate a special set (𝐶𝑛𝑜𝑖𝑠𝑒) to keep all the noise nodes and add this noise-node set to 𝐶 (Lines 4-5).

Then, a priority queue 𝑞 is created to manage the growing process (Lines 21-33). Initially, 𝑞 has a seed node 𝑣 .
While 𝑞 is not empty, the node 𝑣𝑝𝑜𝑝 with the highest cluster-coefficient value in 𝑞 is popped out. If 𝑣𝑝𝑜𝑝 is not a
noise node or has not been visited yet, 𝑣𝑝𝑜𝑝 is put into the cluster 𝐶𝑖, 𝑗 (Line 30). Then, all the neighbors 𝑣 ′ of 𝑣𝑝𝑜𝑝
are checked to see whether they need to be added to 𝑞 to grow the cluster 𝐶𝑖, 𝑗 (Lines 31-33). When the cluster 𝐶𝑖, 𝑗

already contains 𝑚𝑚𝑎𝑥 nodes or when 𝑣 ′ is a noise node, we do not need to add 𝑣 ′ to 𝑞. Once 𝑞 is empty, the dense
cluster 𝐶𝑖, 𝑗 is added to the cluster list 𝐶 (Line 34).

The second step of condensing 𝐺𝑖 is to condense each cluster. We form a spanning tree of 𝐺𝑖 using a similar
procedure as the Kruskal’s algorithm with a different strategy for choosing edges. Our method first chooses the
edges (not random edges) with higher degree-pair values. Then degree-1 edges on the tree are recursively removed
to guarantee the road network to be a 2-core graph after the removal. The removed nodes Δ𝑉𝑖 and edges Δ𝐸𝑖 are
kept to create the index structure later (Details see Section 4.3).

4.3 Backbone index

We introduce more terminologies and concepts. A given graph 𝐺𝑖 may have multiple dense clusters, e.g., 𝐶𝑖,1,𝐶𝑖,2,
· · · , 𝐶𝑖,𝑐 . Let 𝐶𝑖, 𝑗 .𝑉 denote the nodes in the dense cluster 𝐶𝑖, 𝑗 and use 𝐶𝑖, 𝑗 .𝑉̃ to denote the remaining nodes after
removal.

Definition 4.5 (Highway Entrance Set). Given 𝐺𝑖 , its dense clusters {𝐶𝑖,1,𝐶𝑖,2, · · · ,𝐶𝑖,𝑐 }, and its abstracted graph
𝐺𝑖+1, the highway entrances of any 𝑣 ∈ 𝐶𝑖, 𝑗 .𝑉 from 𝐺𝑖 to 𝐺𝑖+1 are 𝐶𝑖, 𝑗 .𝑉̃ and are denoted as 𝐻 𝑖+1

𝑣 . Correspondingly,
the overall highway entrances to 𝐺𝑖+1 from 𝐺𝑖 , denoted as 𝐻𝑖+1, form a set of nodes ∪𝑐

𝑗=1𝐶𝑖, 𝑗 .𝑉̃ .

Example 4.6 (condense process and highway entrances). In Figure 5, the given graph has two dense clusters
𝐶𝑖,1 and 𝐶𝑖,2, and two noise nodes 𝑣1 and 𝑣5. The edges are shown in lines (solid and dash lines). Initially, we
find the spanning tree with higher degree-pair edges in each cluster (solid lines). Then the degree-1 edges on the

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 13

Algorithm 1: Creation of dense clusters
Input :Graph 𝐺𝑖 at the 𝑖-th level, maximum cluster size𝑚𝑚𝑎𝑥 , minimum cluster size𝑚𝑚𝑖𝑛 , 𝑝𝑖𝑛𝑑 for the condensing

threshold, removed nodes Δ𝑉𝑖 , removed edges Δ𝐸𝑖
Output :Updated Δ𝑉𝑖 , updated Δ𝐸𝑖 , and a list of clusters C

1 begin

2 noise_val = findNosieIndicator(𝑝𝑖𝑛𝑑);
3 Set the set of clusters C = ∅;
4 Create a noise-node cluster 𝐶𝑛𝑜𝑖𝑠𝑒 = ∅;
5 C.put(𝐶𝑛𝑜𝑖𝑠𝑒);
6 /* Nodes in 𝐺𝑖 .𝑉 are sorted in the descending order of their

cluster_coefficient values */

7 foreach 𝑣 ∈ 𝐺𝑖 .𝑉 do

8 /* If 𝑣 is visited, skip it */

9 if v.isVisited then

10 continue;
11 /* If the number of 𝑣’s two-hop neighbors in N1𝑠𝑡 (𝑣) ∪N2𝑛𝑑 (𝑣) is less than

the condensing threshold, 𝑣 is a noise node, skip it */

12 if |N1𝑠𝑡 (𝑣) + N2𝑛𝑑 (𝑣) | < noise_val then

13 𝐶𝑛𝑜𝑖𝑠𝑒 .add(𝑣);
14 𝑣 .isVisited = true ;
15 continue;
16 /* Nodes in the queue are sorted by their cluster_coefficient values */

17 𝑗=size(C)+1 /* The 𝑗-th cluster for level 𝑖 */;
18 𝐶𝑖, 𝑗= new cluster();
19 𝑞 = new priority queue();
20 𝑞.add(𝑣);
21 while !q.empty() do

22 𝑣𝑝𝑜𝑝 = 𝑞.pop() /* 𝑣𝑝𝑜𝑝 has the highest cluster coefficient */;
23 if 𝑣𝑝𝑜𝑝 .isVisited then

24 continue;
25 else if 𝑣𝑝𝑜𝑝 ∈ 𝐶𝑛𝑜𝑖𝑠𝑒 then

26 𝐶𝑛𝑜𝑖𝑠𝑒 .remove(𝑣𝑝𝑜𝑝);
27 𝐶𝑖, 𝑗 .add(𝑣𝑝𝑜𝑝);
28 else

29 𝑣𝑝𝑜𝑝 .isVisited = true;
30 𝐶𝑖, 𝑗 .add(𝑣𝑝𝑜𝑝);

31 foreach 𝑣 ′ ∈ 𝑣𝑝𝑜𝑝 .neighbors do

32 if |𝐶𝑖, 𝑗 .𝑉 | ≤ 𝑚𝑚𝑎𝑥 & |N1𝑠𝑡 (𝑣 ′) + N2𝑛𝑑 (𝑣
′) | ≥ noise_val then

33 𝑞.add(𝑣 ′);
34 C.add(𝐶𝑖, 𝑗);
35 C.mergeSmallCluster(𝑚𝑚𝑖𝑛);
36 foreach 𝐶𝑖, 𝑗 ∈ C do

37 SpanningTree t = 𝐶𝑖, 𝑗 .findSpanningTree();
38 Δ𝑉𝑖 = Δ𝑉𝑖∪ t.removeNode();
39 Δ𝐸𝑖 = Δ𝐸𝑖∪ t.removeEdges();
40 return C, Δ𝑉𝑖 , Δ𝐸𝑖

ACM Trans. Spatial Algorithms Syst.

14 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

V1

V4

V3

V2

V5
V6

V11

V9

V10

V8 V7

Ci,1

Ci,2

Fig. 5. Example of highway entrances

trees are removed. Finally, thicker solid blue lines are the summary of dense clusters and are kept in 𝐺𝑖+1. This
gives us 𝐶𝑖,1 .𝑉̃ = {𝑣7, 𝑣8, 𝑣10} and 𝐶𝑖,2.𝑉̃ = {𝑣2, 𝑣4}. 𝐺𝑖+1 consists of the noise nodes (𝑣1, 𝑣5) and nodes in 𝐶𝑖,1 .𝑉̃ and
𝐶𝑖,2.𝑉̃ . The nodes in 𝐶𝑖,1 .𝑉̃ and 𝐶𝑖,2 .𝑉̃ are the highway entrances of the nodes in 𝐶𝑖,1 and in 𝐶𝑖,2 to 𝐺𝑖+1 respectively.
𝐻𝑖+1 = 𝐶𝑖,1.𝑉̃ ∪𝐶𝑖,2.𝑉̃ = {𝑣7, 𝑣8, 𝑣10, 𝑣2, 𝑣4} is the highway entrance set from 𝐺𝑖 to 𝐺𝑖+1.

We use a facilitating structure 𝐼𝑖 to store the skyline paths from each node 𝑣 in 𝐶𝑖, 𝑗 to its highway entrance set
𝐻 𝑖+1
𝑣 . An element of 𝐼𝑖 , denoted as 𝑙𝑎𝑏𝑒𝑙 (𝑣), is defined below.
Definition 4.7 (label(𝑣)). Given a graph 𝐺𝑖 , its dense clusters {𝐶𝑖,1,𝐶𝑖,2, · · · ,𝐶𝑖,𝑐 }, and its abstracted graph 𝐺𝑖+1,

the label of a node 𝑣 ∈ 𝐶𝑖, 𝑗 .𝑉 is defined to be a triple (𝑣,𝐻 𝑖+1
𝑣 , P

𝐻 𝑖+1
𝑣

𝑣). Here, 𝐻 𝑖+1
𝑣 is the set of highway entrances

from 𝑣 to 𝐺𝑖+1 and P𝐻
𝑖+1
𝑣

𝑣 = ∪ℎ∈𝐻 𝑖+1
𝑣
Pℎ𝑣 , where Pℎ𝑣 is the set of skyline paths from 𝑣 to a highway entrance ℎ ∈ 𝐻 𝑖+1

𝑣 .

A structure 𝐼𝑖 keeps labels for all the nodes in each cluster 𝐶𝑖, 𝑗 .𝑉 no matter whether the node is removed from
𝐺𝑖+𝑖 or preserved in 𝐺𝑖+1. I.e., 𝐼𝑖 = ∪𝑣∈𝐶𝑖,𝑗 .𝑉 𝑙𝑎𝑏𝑒𝑙 (𝑣). For example, in Figure 5, the label of the highway entrance 𝑣7,
𝑙𝑎𝑏𝑒𝑙 (𝑣7), needs to be created if the path (𝑣7, 𝑣6, 𝑣9, 𝑣11, 𝑣10) is a skyline path from node 𝑣7 to 𝑣10, which uses the
removed edges (𝑣7, 𝑣6), (𝑣6, 𝑣9), (𝑣9, 𝑣11), and (𝑣11, 𝑣10).

Definition 4.8 (Backbone Index). Given a graph 𝐺 , two integer thresholds 𝑚𝑚𝑎𝑥 and𝑚𝑚𝑖𝑛 , and a percentage 𝑝,
the backbone index of 𝐺 consists of (i) a list of graph summarization structures (0, 𝐼0), (1, 𝐼1) · · · , (𝐿 − 1, 𝐼𝐿−1), and
(ii) the most abstracted graph 𝐺𝐿. Here, 𝑚𝑚𝑎𝑥 and 𝑚𝑚𝑖𝑛 are the maximum and minimum number of nodes of a
dense cluster, and 𝑝 is the minimum percentage of edges that must be condensed in each level.

For example, if we set the parameters to be 𝑚𝑚𝑖𝑛 = 30, 𝑚𝑚𝑎𝑥 = 200, and 𝑝 = 0.01, we expect (i) at most 200
nodes exist in each cluster, (ii) clusters containing less than 30 nodes are merged, and (iii) at least 1% of the edges
need to be removed in the process of index construction at each level to avoid generating too many summarization
structures. The parameter 𝑝 decides the number of edges that must be removed, thus controls the index level 𝐿.

Figure 6 shows a backbone index with three layers (i.e., 𝐿 = 3). The index provides a multi-level view of the
original graph with different abstraction power. For instance, 𝐺1 is a summarized view of the original graph 𝐺0 by
condensing three dense clusters (local units) A, B, and C. 𝐼0 keeps the labels of the nodes in 𝐺0. The highest level
graph 𝐺𝐿 (𝐺3) is the most abstracted view of 𝐺0.

4.3.1 Index construction. Algorithm 2 outlines the framework of the index construction process. Initially, the
backbone index takes the original graph𝐺0 as the root. Then, the index is construed recursively. This summarization
works in two steps: (1) regular summarization and (2) aggressive summarization if needed.

Regular summarization. We first remove the degree-1 edges from graph 𝐺𝑖 . This action leads to the removal of
paths consisting of consecutive degree-1 edges. All the degree-1 edges are removed until every remaining node in
𝐺𝑖 has a degree of 2 or higher.

Then, we identify dense clusters (i.e., 𝐶𝑖,1, . . . ,𝐶𝑖, 𝑗 , . . . ,𝐶𝑖,𝑐) of 𝐺𝑖 (Algorithm 1). A more abstracted graph is
formed after the condensation. The removed nodes Δ𝑉𝑖 and edges Δ𝐸𝑖 are returned to create 𝑙𝑎𝑏𝑒𝑙 (𝑣) of each node

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 15

G3

G2

G1

G0

I2

I1

I0

I: { (0, I0), (1, I1), (2, I2), G3}

A
B

C

Fig. 6. Index example

G2

G0

G1

Vs C0,i

C1,i

C2,i

h = h3
h2

h1

Fig. 7. Paths in index

Algorithm 2: Framework of index construction
Input :Graph 𝐺 , percentage 𝑝, maximum and minimum cluster sizes𝑚𝑚𝑎𝑥 and𝑚𝑚𝑖𝑛

Output :Backbone index 𝐼𝑙𝑖𝑠𝑡 : (0, 𝐼0), · · · , (𝐿-1, 𝐼𝐿−1) and the highest graph 𝐺𝐿

1 begin

2 𝑖 = 0;
3 Create index 𝐼𝑙𝑖𝑠𝑡 =∅;
4 do

5 /* Step 1: Regular Summarization of 𝐺𝑖 */

6 (Δ𝐸𝑖 , 𝐼𝑖 , 𝐺𝑖+1) = GraphSummarization(𝐺𝑖 , 𝑝,𝑚𝑚𝑎𝑥 ,𝑚𝑚𝑖𝑛);
7 𝐼𝑙𝑖𝑠𝑡 .put(i, 𝐼𝑖);
8 /* Step 2: Aggressive Summarization of 𝐺𝑖+1 */

9 if |𝐺𝑖+1 .𝑉 | ≠ 0 & Δ𝐸𝑖 ≤ 𝑝 ∗ |𝐺0 .𝐸 | then

10 Δ𝐸𝑛𝑒𝑤 , 𝐼𝑛𝑒𝑤 = AggressiveGraphSummarization(𝐺𝑖+1);
11 if |Δ𝐸𝑛𝑒𝑤 | ≠ 0 then

12 Update 𝐼𝑖 using 𝐼𝑛𝑒𝑤 ;
13 Δ𝐸𝑖 = Δ𝐸𝑖 ∪ Δ𝐸𝑛𝑒𝑤 ;
14 L=i, i=i+1 ;
15 while |𝐺𝑖+1 .𝑉 |≠0 and Δ𝐸𝑖 ≥𝑝∗ |𝐺0 .𝐸 |;
16 landmark(𝐺𝐿);
17 return 𝐼𝑙𝑖𝑠𝑡 , 𝐺𝐿

𝑣 in 𝐶𝑖, 𝑗 . In 𝑙𝑎𝑏𝑒𝑙 (𝑣), the skyline paths from 𝑣 to its highway entrances 𝐻 𝑖+1
𝑣 are generated using only the deleted

edges 𝐸𝑖𝑟 of 𝐶𝑖, 𝑗 where 𝐸𝑖𝑟 ⊆ Δ𝐸𝑖 by applying a single source skyline path query algorithm (e.g., BFS mentioned in
Section 7s). This strategy not only preserves the deleted edge information in the skyline paths, but also speeds up
the query process.

The index height 𝐿 increases rapidly if 𝐺𝑖 is only condensed in one iteration to form 𝐺𝑖+1. To prevent the rapid
increase of the index height, we keep abstracting 𝐺𝑖 until both of the following two conditions are met: (i) some
nodes and edges are left after the current iteration (i.e., |𝐺𝑖+1.𝑉 | ≠ 0), and (ii) a sufficient number of edges are
removed from 𝐺𝑖 (i.e., |Δ𝐸𝑖 | ≥𝑝 ∗ |𝐺0 .𝐸 |). When these conditions are met, the abstracted graph is considered as
𝐺𝑖+1 and used as the input of the summarization to the next level.

ACM Trans. Spatial Algorithms Syst.

16 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

Aggressive summarization. While trying to maintain the graph’s topology, it is possible that the regular sum-
marization function cannot remove sufficient nodes and edges (Line 9), with the construction terminating with a
large 𝐺𝐿 , which leads to high computational cost during the query process. To address this issue, we deploy a more
aggressive strategy that condenses a special type of paths, single segments (Definition 3.5), in 𝐺𝑖+1. In particular, it
builds shortcuts to replace single segments, and creates labels for the deleted nodes in the single segments.

The aggressive summarization strategy is simple, but when to apply it is not trivial. The graph’s topology is
destroyed if the strategy is used during the regular summarization step. If it is not applied, 𝐺𝐿 can still be very large,
thus cannot help support efficient query processing. If this strategy is called too frequently, numerous short single
segments are merged, which increases the node degrees of the graph. This goes against our design principle of
reducing the graph’s node degrees and incurs a longer index-building process.

Example 4.9 (Condensing single segments.). Given a single segment 𝑠=(𝑢, 𝑣0, 𝑣1, · · · , 𝑣 𝑗−1, 𝑣 𝑗 ,𝑤), the aggressive
strategy condenses it to an edge 𝑒 = (𝑢,𝑤) by removing all the nodes 𝑣0, 𝑣1, · · · , and 𝑣 𝑗 . The cost of 𝑒 is the
summation of the edge weights of 𝑠. The labels are created for each 𝑣 to its highway entrances {𝑢,𝑤}. Figure 3
shows an example of condensing a single segment.

The index element 𝐼𝑛𝑒𝑤 , which is generated in the aggressive graph summarization process, is used to update
the existing index item 𝐼𝑖 . In particular, every path 𝑝 ∈ P𝑣

′

𝑣 (where 𝑙𝑎𝑏𝑒𝑙 (𝑣) ∈ 𝐼𝑖) is concatenated with every path
𝑝′ ∈ Pℎ𝑣′ (where 𝑙𝑎𝑏𝑒𝑙 (𝑣 ′) ∈ 𝐼𝑛𝑒𝑤) where 𝑣 ′ is a highway entrance of 𝑣 (i.e., 𝑣 ′ ∈ 𝐻 𝑖+1

𝑣 and 𝐻 𝑖+1
𝑣 is in 𝑙𝑎𝑏𝑒𝑙 (𝑣)).

Finally, the landmark index [32] is built over the highest level graph 𝐺𝐿 .
Index maintenance. The backbone index can be dynamically maintained when there are changes in the underlying
road networks (e.g., addition or removal of nodes and edges). The basic idea is to recalculate the skyline path
information for the cluster nodes that are involved in graph updates. We omit the details and the experimental
results due to space limitation, which can be found from [19].
Extended to directed graphs. When road networks are modeled as directed graphs, the index just needs to
include the extra information from highway entrances to each node in dense clusters. Getting such information
is straightforward because skyline path information between all pairs of nodes in each dense cluster has been
calculated in the regular summarization process.

5 QUERY PROCESSING ALGORITHM

This section explains the query processing algorithm over a graph 𝐺 to get approximate solutions for a SPQ. A
SPQ is denoted by two nodes 𝑣𝑠 and 𝑣𝑡 . The query is processed on the backbone index 𝐼={(0, 𝐼0), (1, 𝐼1), · · · , (𝐿 −
1, 𝐼𝐿−1),𝐺𝐿}.

Given a node 𝑣𝑠 ∈ 𝐺0 .𝑉 , let us use Pℎ𝑖𝑣𝑠 to denote the set of skyline paths from 𝑣𝑠 to a highway entrance ℎ𝑖 ∈ 𝐻 𝑖
𝑣

in 𝐺𝑖 . A path in Pℎ𝑖𝑣𝑠 concatenates multiple skyline paths 𝑝 (𝑣𝑠 ! ℎ1), 𝑝 (ℎ1! ℎ2), · · · , 𝑝 (ℎ𝑖−1! ℎ𝑖) where ℎ𝑖 is a
highway entrance at 𝐺𝑖 . Figure 7 shows an example of one path 𝑝 in Pℎ𝑣𝑠 on subgraphs of 𝐺0, 𝐺1, and 𝐺2 where
blue hollow circles in 𝐺1 and 𝐺2 are the highway entrances. 𝑝 consists of three sub-paths 𝑝 (𝑣𝑠 ! ℎ1) (in 𝐺0),
𝑝 (ℎ1! ℎ2) (in 𝐺1), and 𝑝 (ℎ2! ℎ3) (in 𝐺3).

A node 𝑣 can directly or indirectly reach a highway entrance node ℎ at different index levels through a path
𝑝 (𝑣 ! ℎ). We call the set of highway entrance nodes at different index levels that 𝑣 can reach as 𝑣’s successor

nodes and denote them as 𝑠𝑢𝑐𝑐 (𝑣). For example, all the nodes represented as blue hollow circles in Figure 7 are
successor nodes of the node 𝑣𝑠 .

Given a query with two nodes 𝑣𝑠 and 𝑣𝑡 , the backbone paths are formed as two types: (1) when two sets Pℎ𝑣𝑠 and
Pℎ𝑣𝑡 reach a common highway node ℎ ∈ 𝐻𝑘 where 𝑘 < 𝐿 is an intermediate index level (the first type), or (2) when
both nodes 𝑣𝑠 and 𝑣𝑡 reach the most abstracted graph 𝐺𝐿 through the highway nodes ℎ𝑠 and ℎ𝑡 in 𝐻𝐿 , which means
that Pℎ𝑠𝑣𝑠 and Pℎ𝑡𝑣𝑡 are connected using paths 𝑝 (ℎ𝑠 ! ℎ𝑡) in 𝐺𝐿, where ℎ𝑠 and ℎ𝑡 are successor nodes of 𝑣𝑠 and 𝑣𝑡
respectively (the second type).

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 17

Algorithm 3 describes the process to find the first (Lines 6-28) and the second type (Lines 29-32) of backbone
paths between 𝑣𝑠 and 𝑣𝑡 . Given a node 𝑣 , the function ReadLabel(𝑣) reads the index label of 𝑣 and extracts the
highway entrance nodes 𝐻 𝑖

𝑣 that 𝑣 can reach 𝐺𝑖 from 𝐺𝑖−1 directly. When 𝑣 does not exist in 𝐺𝑖−1, then 𝐻 𝑖
𝑣 is empty.

The function addToSkyline adds paths to the result set R while guaranteeing all the paths in R do not dominate
each other.

Algorithm 3: Query processing algorithm
Input :Query nodes 𝑣𝑠 and 𝑣𝑡 , the most abstracted graph 𝐺𝐿 , backbone index 𝐼
Output :The set of backbone skyline paths R

1 begin

2 Initialize the result set R = ∅;
3 Create a new map S initialized with (𝑣𝑠 , 𝑝𝑣𝑠);
4 Create a new map D initialized with (𝑣𝑡 , 𝑝𝑣𝑡);
5 /* Find the first type of skyline paths */

6 foreach 0 ≤ 𝑖 ≤ 𝐿 do

7 foreach 𝑠ℎ ∈ S.𝑘𝑒𝑦𝑠 do

8 𝑅𝑒𝑎𝑑𝐿𝑎𝑏𝑒𝑙 (𝑠ℎ) and extract the highway entrances 𝐻 𝑖
𝑠ℎ

;
9 foreach ℎ ∈ 𝐻 𝑖

𝑠ℎ
do

10 Get the set of skyline paths Pℎ
𝑠ℎ

from 𝑠ℎ to ℎ (𝑅𝑒𝑎𝑑𝐿𝑎𝑏𝑒𝑙 (𝑠ℎ));

11 Pℎ𝑣𝑠 = combine all the paths in P𝑠ℎ𝑣𝑠 with all the paths in Pℎ
𝑠ℎ

;
12 if ℎ = 𝑣𝑡 then

13 R.addToSkyline(Pℎ𝑣𝑠);
14 else

15 S.put(h, Pℎ𝑣𝑠) ;
16 foreach 0 ≤ 𝑖 ≤ 𝐿 do

17 foreach 𝑑ℎ ∈ D.𝑘𝑒𝑦𝑠 do

18 𝑅𝑒𝑎𝑑𝐿𝑎𝑏𝑒𝑙 (𝑑ℎ) and extract the highway entrances 𝐻 𝑖
𝑑ℎ

;
19 foreach ℎ ∈ 𝐻 𝑖

𝑑ℎ
do

20 Get the set of skyline paths Pℎ
𝑑ℎ

from 𝑑ℎ to ℎ (𝑅𝑒𝑎𝑑𝐿𝑎𝑏𝑒𝑙 (𝑑ℎ));

21 Pℎ𝑣𝑡 = combine all the paths in P𝑑ℎ𝑣𝑡 with all the paths in Pℎ
𝑑ℎ

;
22 if ℎ = 𝑣𝑠 then

23 R.addToSkyline(Pℎ𝑣𝑡);
24 else if ℎ ∈ S then

25 P
𝑣𝑡
𝑣𝑠 = new paths combining Pℎ𝑣𝑡 with S.get(ℎ).Pℎ𝑣𝑠 ;

26 R.addToSkyline(P𝑣𝑡𝑣𝑠);
27 else

28 D.put(h, Pℎ𝑣𝑡) ;
29 /* BFS on 𝐺𝐿 to find the second type of skyline paths */

30 𝑆𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 = 𝐺𝐿 .𝑉 ∩ S.𝑘𝑒𝑦𝑠 ;
31 𝐷𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 = 𝐺𝐿 .𝑉 ∩ D.𝑘𝑒𝑦𝑠 ;
32 R.addToSkyline(m_BBS(𝐺𝐿 , 𝑣𝑠 , 𝑣𝑡 , 𝑆𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 , 𝐷𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒))
33 return R // Return the results

To find the first type of skyline paths, the algorithm grows skyline paths from 𝑣𝑠 and 𝑣𝑡 to their successor nodes.
If the paths from 𝑣𝑠 and 𝑣𝑡 meet at a common successor node, such paths are skyline candidates. To manage the
skyline path growing process, two map structures, S and D, are created (Lines 3 and 4) to store the skyline paths

ACM Trans. Spatial Algorithms Syst.

18 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

from 𝑣𝑠 and 𝑣𝑡 to their successor nodes respectively. In S, a key is the ending node of a path from 𝑣𝑠 and the
corresponding value for the key is a list of skyline paths from 𝑣𝑠 to the ending node. The initial key-value pair in S
is (𝑣𝑠 , {𝑝𝑣𝑠 = {𝑣𝑠 }}) (Line 3). Similarly, D is constructed to manage skyline paths from 𝑣𝑡 .

Lines 6-15 grow the skyline paths from 𝑣𝑠 using the index structure at each level 𝑖 by utilizing the ending node
𝑠ℎ of a path in S. The algorithm finds all the paths Pℎ

𝑠ℎ
from 𝑠ℎ to each highway entrance node ℎ at level 𝑖 (i.e.,

ℎ ∈ 𝐻 𝑖
𝑠ℎ

), which can be extracted from 𝑙𝑎𝑏𝑒𝑙 (𝑠ℎ) (Line 10) and concatenates them with the skyline paths in P𝑠ℎ𝑣𝑠
(which can be found from S with key 𝑠ℎ (Line 11). If the highway entrance node ℎ is another query node 𝑣𝑡 , the
formed skyline paths are used to update the result set R (Line 13). Otherwise, the formed skyline paths are added
to the intermediate skyline path set S. This path growing process may reach level 𝐺𝐿 .

A similar procedure is used to calculate backbone paths from 𝑣𝑡 to its successor nodes (Lines 16-28). The
difference is that one more condition is added to form new candidate paths, when one successor ℎ ∈ 𝑠𝑢𝑐𝑐 (𝑣𝑡) is
also in S (Lines 24-26).

The second type of skyline paths are found when the paths in S and D reach 𝐺𝐿 but cannot be concatenated.
A many-to-many method, m_BBS, is conducted (Line 32) to find the skyline paths 𝑝 (𝑣𝑠 ! 𝑣𝑡) = 𝑝 (𝑣𝑠 !
ℎ𝑠) | |𝑝 (ℎ𝑠 ! ℎ𝑡) | |𝑝 (ℎ𝑡 ! 𝑣𝑡). 𝑝 (ℎ𝑠 ! ℎ𝑡) represents any skyline path from ℎ𝑠 to ℎ𝑡 where ℎ𝑠 and ℎ𝑡 are successor
nodes of 𝑣𝑠 and 𝑣𝑡 in 𝐺𝐿 respectively. The m_BBS method is a modified version of m_BBS by accepting multiple
nodes as input and estimating the lower bounds of a path to all the possible destination (not one destination in the
original algorithm). The proposed m_BBS just needs to be executed once, instead of multiple times, for each pair of
nodes in S.𝑘𝑒𝑦𝑠 and D.𝑘𝑒𝑦𝑠.

Support to other types of queries. The backbone index can be used to support one-to-all SPQs to return
approximate skyline paths to all other nodes from a given query node. The details and experimental results can be
found in [19].

Solution bound. Given a graph 𝐺 , its backbone index, a query (𝑣𝑠 , 𝑣𝑡), the upper bound of an approximate
solution path’s weight is 𝑂 ((𝐹𝑣𝑎𝑙)𝐿). Here, 𝐿 is the height of the index, and 𝐹𝑣𝑎𝑙 is the expected summation of the
weights for all the edges in the minimum spanning tree over a complete graph with a very large number of nodes.

Complexity. The complexities of index construction time and index size are𝑂 (|𝐺 .𝑉 |𝑙𝑜𝑔(|𝐺 .𝑉 |)) and O(|𝐺 .𝑉 |𝑚𝑚𝑎𝑥𝑆𝑛𝑑)
respectively. Here, 𝑑 is the number of dimensions of edge cost, and 𝑆𝑛 is the average number of skyline paths
between every node to its highway entrance in each dense cluster and is almost constant when 𝑚𝑚𝑎𝑥 is small. 𝑆𝑛 is
no more than 10 when𝑚𝑚𝑎𝑥 is 200 in our experiments.

The detailed complexity analysis for the upper bound of an approximate solution, the index construction time,
and the index space is omitted here due to space limit and can be found at [19].

6 GNN-BASED APPROACHES

The Backbone index together with the query processing algorithm presented in the preceding sections establish a
robust foundation for efficient approximate skyline path query (SPQ) evaluation on Multi-Cost Road Networks
(MCRNs). The hierarchical index, rooted in the concepts of backbone and clustering, is a typical representative of
traditional query processing approach.

The Backbone index, like other existing index techniques, does not utilize any historical query information.
Historical queries and their solutions can provide very useful information for future queries when the search space
of future queries overlaps with historical query results. However, all the historical results cannot be directly stored
to support future queries because their size may be huge (even larger than the original graph).

In this section, we propose a strategy to complement the index-based query processing technique. It utilizes
historical query results to support SPQ evaluation through the design of graph neural network (GNN) models. The
ideal case of the historical query results are exact skyline paths (returned by an exact SPQ processing algorithm).
However, for large graphs, it is almost unreasonable and impractical to get exact solutions due to the long running
time and large memory use. Thus, our GNN-based approaches also accept the approximate skyline paths returned by

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 19

the Backbone index as historical results to train the model. Despite approximate, the abstract graphs in the Backbone
index capture essential graph characteristics, they can still guide the GNNs to focus on relevant features during
training and searching. By incorporating the distilled knowledge from the results generated from the Backbone
index into our GNN-based approaches, we enhance the ability of our approaches to leverage historical approximate
query results.

It is worth noting that not all historic results need to be stored. When we get a query’s results, we can use them to
train our GNN model. When the train stage converges, these results can be discarded. Alternatively, a small portion
of the results can be stored for future training. Our experiments demonstrate that not all the historical query results
are needed to train a GNN model for effective approximate query processing.

Machine learning models have been known to be able to capture the patterns hidden in large amounts of data. For
our problem, we consider designing GNN models (instead of other machine learning models) because the result
of a query is a set of skyline paths, which form a subgraph. GNNs are a good candidate to capture connectivity
information among nodes. With the GNN models learned from historical query results, we expect to use the GNN
models to help reduce the search space for a new coming SPQ.

We build one GNN model for each MCRN𝐺 from all the training instances, which can be accumulated historical
results or manually generated query results. For any new SPQ issued to this MCRN 𝐺 , the GNN model is used to
find the search space when evaluating an SPQ query, which is much smaller than the whole graph as the search
space.

We propose two GNN models. The first model, Skyline Path Graph Neural Network (SP-GNN), is directly built
by utilizing the exact query solutions from the original graph. The second model, Transfer SP-GNN (TSP-GNN),
is built using path solutions from the summarized graphs of the original graph. It particularly works on large
graphs. Note that the novelty of the GNN-based approaches is not the design of a new GNN architecture. Instead,
most existing GNN architectures can be adopted in our models. In this paper, we implemented the transformer
model [54], which has shown great success. However, other GNN architectures can be utilized.

In what follows, we explain the details of training-instance construction (Section 6.1), the architecture of
SP-GNN, the loss function, the search process using SP-GNN, and the design of TSP-GNN.

6.1 Construct training instances
The first step of creating an SP-GNN model is to prepare its training instances (or samples). Each training sample

consists of one historical SPQ and its solution (i.e., all the skyline paths for this SPQ).
For a query, based on its solution set of skyline paths, we can categorize all the graph nodes to be three types.

The first type of nodes does not occur in any skyline paths. The nodes in the second type form the skyline paths.
The nodes in the third type of nodes are the direct neighbors of the second type of nodes. Let use 0, 1, and 2 to
denote these three types of nodes respectively. Then, for any given query, we can define its corresponding output
(or ground truth) as a length-|𝐺 .𝑉 | vector Y. The value Y[𝑖] represents the type of a node 𝑣𝑖 .

Formally, we define a training instance as follows.

Definition 6.1 (Training sample). For a graph 𝐺 , a training sample of its corresponding SP-GNN model is a
query together with the set of skyline paths from 𝐺 to answer this query. The output of this training sample is a
length-|𝐺 .𝑉 | vector Y where each Y[𝑖] ∈ {0, 1, 2}.

A training instance provides the approximate search space when evaluating an SPQ. We limit the search space of
a query to be the set of nodes with types 1 or 2. Including nodes with type 2 increases the search space to find more
answers. We also note that the search space increase incurred due to the inclusion of type 2 nodes is not dramatic,
thus it does not increase the query overhead significantly. If we want to further enlarge the search space, we can
label nodes that are 2-hops or 3-hops away from the type-1 nodes as node type 2.

Example 6.2. Figure 8 shows an example of a training instance for a query which are represented with the star
nodes. Assume there are only two skyline paths between them, (𝑣𝑠 , 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣𝑡) and (𝑣𝑠 , 𝑣6, 𝑣2, 𝑣3, 𝑣7, 𝑣5, 𝑣𝑡).

ACM Trans. Spatial Algorithms Syst.

20 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

vs

vt

v1

v3v6

v2
v4

v7

v5

Fig. 8. Example of a training instance and the approximate search space of a query represented with star nodes
(dark blue nodes are labeled with type 1, and light blue nodes are labeled with type 2)

The nodes on the paths are labeled as type 1 and marked using dark blue. Note that nodes 𝑣2, 𝑣3, and 𝑣5 occur in
both paths, which is commonly observed from the answer set. The 1-hop neighbors of these nodes are the type-2
nodes and are marked using light blue in the figure. These nodes form the minimum search space of this query.
During the query stage, an ideal GNN model predicts all these nodes to be in the search space although an actual
GNN model may not accurately predict all these nodes to be in the search space.

The coordinates of the nodes in 𝐺 are normalized to be in the range of [0,1] using min-max normalization. The
normalization is conducted to make the values in the same range. Normalization is a common process in utilizing
gradient descent type of training algorithms to learn a model so that the training can converge faster. Each node
𝑣𝑖 in the graph is associated with the normalized 2-dimensional coordinates, which are stored as a feature vector
x𝑖 ∈ R2. The entire feature matrix for a graph 𝐺 is X = [x1, · · · , x |𝐺 .𝑉 |]𝑇 ∈ R |𝐺 .𝑉 |×2.

6.2 SP-GNN architecture and its training stage

The architecture of the SP-GNN model is shown in Figure 9. SP-GNN consists of a node embedding layer, two
GNN layers, a layer to incorporate query information, two fully connected (FC) layers, and the last output layer.s

The node embedding layer converts the two features of each node (which are the two normalized spatial
coordinates) to a node embedding with 𝐵e hidden features. This transformation can be represented as

H𝑒𝑚𝑏𝑒𝑑 = XW𝑒 + b𝑒

where W𝑒 ∈ R2×𝐵e keeps the weight parameters and b𝑒 ∈ R𝐵e is the bias vector.
Then, the embedded node features H𝑒𝑚𝑏𝑒𝑑 and the adjacency matrix A of the graph 𝐺 are passed to the GNN

layers in the following form.
H𝐺1 = G𝑢𝑝𝑑 (G𝑎𝑔𝑔 (H𝑒𝑚𝑏𝑒𝑑 ,A),A)

G𝑢𝑝𝑑 and G𝑎𝑔𝑔 are differentiable and permutation invariant functions (e.g., element-wise sum, mean, or max). They
are also called the update and message functions respectively. The architecture can include multiple GNN layers.
The features in the next GNN layer are calculated as H𝐺𝑖+1 = G𝑢𝑝𝑑 (G𝑎𝑔𝑔 (H𝐺𝑖 ,A),A). The last GNN layer outputs
the representation of each node that incorporates the node’s neighbor information. Let H𝐺 (H𝐺 = H𝐺2

in this
architecture) represent this representation. For the query’s starting and ending nodes 𝑣𝑠 and 𝑣𝑡 , we can extract their
corresponding hidden features H𝑣𝑠 and H𝑣𝑡 from H𝐺 .

Next, the first layer after the GNN layers concatenates the hidden features H𝑣𝑠 and H𝑣𝑡 to H𝐺 as

H𝑞𝑢𝑒𝑟𝑦 = 𝐶𝑂𝑁𝐶𝐴𝑇𝐸𝑁𝐴𝑇𝐸 (H𝐺 ,H𝑣𝑠 ,H𝑣𝑡).

H𝑞𝑢𝑒𝑟𝑦 captures the information that this representation is for the query (𝑣𝑠 , 𝑣𝑡).
Finally, the hidden features H𝑞𝑢𝑒𝑟𝑦 that incorporate the query information are passed to two fully connected

layers to get H𝑜 as follows.
H𝑜 = (H𝑞𝑢𝑒𝑟𝑦W𝐵fc1

+ b𝐵fc1
)W𝐵fc2

+ b𝐵fc2

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 21

|G.V| x 2 |G.V| x Be

Lat1 Lng1

Lat2 Lng2

.

.

.

.

.

.

.

 ...… … … ...

 ...… … … ...

 ...… … … ...

 ...… … … ...

 …
 …

 …
 …

 …
 …

 ...

…

…

…

…

…

…

|G.V| x Bgnn
|G.V| x Bgnn |G.V| x 3Bgnn

…

…

…

…

…

…
Vs

Vt

 …
 …

 …
 …

 …
 …

 ...

...

...

...

...

...

...

...

...
...
...
...
...

hv

hvs
hvt

 ...… … … ...

 ...… … … ...

 ...… … … ...

 ...… … … ...

 …
 …

 …
 …

 …
 …

 ...

|G.V| x Bfc
|G.V| x 3 |G.V| x 3

FC layer GNN Layer GNN Layer Aggregation of
Query

information

FC layer FC layer log-softmax

Hquery

Hembed

HG1

Hfc

HG2

 …
 …

 …
 …

 …
 …

 ...

Hc

 …
 …

 …
 …

 …
 …

 ...

Ho

Fig. 9. Architecture of SP-GNN (The number of hidden features used in the two GNN layers is set to be the same
𝐵gnn to simply the model representation)

Here, W𝐵fc1
∈ R3𝐵gnn×𝐵fc and W𝐵𝑓 𝑐2 ∈ R

𝐵fc×3 are the weight parameter matrices, where 𝐵gnn and 𝐵fc are the number
of features in the hidden layers and the fully-connected layers respectively, and b𝐵fc1

and b𝐵fc2
are bias vectors. The

Softmax function can be applied to the output tensor H𝑜 to calculate the probabilities of nodes belonging to the
three different classes (node types in this case, which are 0, 1, or 2).

6.3 Loss function

The loss function is defined to be the Negative Log-Likelihood (NLL) function, which is closely utilized together
with the Softmax function.

Let C represent the set of different class labels that a node can belong to (in our case, C={0, 1, 2}) and let
|C| be its cardinality. In our model, for each training instance, the output is a tensor H𝑜 ∈ [0, 1] |𝐺 .𝑉 |∗ | C | , which
represents the predicted probability for all the graph nodes belonging to each class type. Given H𝑜 , each node 𝑣 has
a corresponding |C|-dimensional vector output hv = H𝑜 [𝑣]. The value h𝑣 [𝑐] denotes the probability that the node 𝑣
belongs to the class 𝑐 and is defined below using the Softmax function.

𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (h𝑣 [𝑐]) =
𝑒𝑥𝑝 (h𝑣 [𝑐])

∑ | C |
𝑗=0 𝑒𝑥𝑝 (h𝑣 [𝑗])

Recall that Y[𝑣] is the ground truth node type of the node 𝑣 , the NLL loss of the node 𝑣 is calculated as

𝑁𝐿𝐿(𝑣) = −𝑙𝑜𝑔(𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (h𝑣 [Y[𝑣]])) .

A node 𝑣 that has a higher probability of being the ground-truth node type Y[𝑣] should have a lower 𝑁𝐿𝐿(𝑣) value.
Given all the training instances in the set Q𝑡𝑟𝑎𝑖𝑛 , the optimization loss function is formulated as below.

L𝑚𝑖𝑛 =

∑

𝑞∈Q𝑡𝑟𝑎𝑖𝑛

1

|𝐺 .𝑉 |

|𝐺 .𝑉 |
∑

𝑖=0

𝑁𝐿𝐿(𝑣𝑖)

ACM Trans. Spatial Algorithms Syst.

22 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

6.4 Search using GNN

This section presents the details that an SPQ query is evaluated after a GNN model 𝑀 is trained. Algorithm 4
outlines the major steps.

Algorithm 4: SPQ query evaluation over SP-GNN model
Input :Graph 𝐺 , SPQ 𝑞 = (𝑣𝑠 , 𝑣𝑡), SP-GNN model 𝑀
Output :skyline paths P for 𝑞

1 begin

2 Form a query instance with (𝐺,𝑞) ;
3 Make predictions 𝑉𝑙𝑎𝑏𝑒𝑙 = 𝑀 .predict(𝐺 , 𝑞) ;
4 𝑉𝑠𝑢𝑏 = All the nodes that have a non-zero label in 𝑉𝑙𝑎𝑏𝑒𝑙 ;
5 foreach node 𝑣 ∈ 𝑉𝑠𝑢𝑏 do

6 𝑝𝑠 = Find the shortest path in G from 𝑣 to 𝑣𝑠 on all the cost dimensions;
7 Add all the nodes in 𝑝𝑠 to 𝑉𝑠𝑢𝑏 ;
8 𝑝𝑡𝑔𝑡 = Find the shortest path in G from 𝑣 to 𝑣𝑡 on all the cost dimensions;
9 Add all the nodes in 𝑝𝑡 to 𝑉𝑠𝑢𝑏 ;

10 P = BBS(𝐺 , 𝑞, 𝑉𝑠𝑢𝑏) /* Conduct BBS query over 𝐺 by limiting the search space to be 𝑉𝑠𝑢𝑏*/;
11 Return P;

For a given new query 𝑞, we first form a testing instance for the model (Step 2). For this testing instance, the
model 𝑀 predicts the nodes’ types (which can be 0, or 1, or 2) (Step 3). The nodes with a non-zero node type are
considered in the search space of 𝑞 (Step 4).

Note that the nodes that are predicted in the search space 𝑉𝑠𝑢𝑏 may not form a connected subgraph. Directly
utilizing these nodes, we are not guaranteed to get a solution. To make these nodes connected, and also to make
sure that from 𝑣𝑠 we can reach 𝑣𝑡 by going through some of these nodes, we enlarge the set 𝑉𝑠𝑢𝑏 . We conduct the
shortest path search from each node 𝑣 ∈ 𝑉𝑠𝑢𝑏 to the starting and target query nodes on all the cost dimensions. The
nodes in these shortest paths are added to 𝑉𝑠𝑢𝑏 . Then, we conduct the baseline SPQ approach, BBS method, on the
original graph using 𝑉𝑠𝑢𝑏 to constrain the search space. The algorithm disallows any node in 𝑉𝑠𝑢𝑏 to be expanded.
The returned paths are approximations of the exact skyline paths because of the reduced search space. This method
leads to a good approximation and a very efficient search, which can be verified through our experiments.

6.5 Transfer SP-GNN model and data augmentation

SP-GNN works well on constraining the search space to answer SPQ on small graphs. However, it has two major
issues when applied to large graphs. First, the training sample construction stage becomes very time-consuming or
impossible for large graphs. Even for graphs with just 30K nodes, it can take multiple days to generate the exact
solutions for just one thousand queries whose answers can be found within fifteen minutes [46]. That is the very
reason that we design the backbone index to facilitate the search process. Second, to get a well-trained GNN, a
large number of training instances are needed, which requires generating query solutions for a large number of
SPQs.

To solve the above mentioned issues, this section introduces Transfer SP-GNN (TSP-GNN) to support evaluating
SPQs on large graphs. The idea is to generate training samples from backbone abstracts, which are much smaller
than the original graph. We explain how TSP-GNN works. Given a graph 𝐺 , we first generate backbone abstracts
of 𝐺 , which can be done through the construction of backbone index. Then, we generate training samples by
calculating the skyline paths from the backbone abstracts (instead of the original graph) for a set of queries. One
TSP-GNN model M𝑠 can be trained using all the training samples generated from the backbone abstracts. Note
that all the coordinates of nodes in the graph abstracts are also normalized using the min-max normalization.

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 23

When a new query 𝑞 is issued on 𝐺 , we use the model M𝑠 that is learned from the training samples calculated
using the backbone abstracts to embed the original graph 𝐺 . The query 𝑞 is used in the stage of generating H𝑞𝑢𝑒𝑟𝑦

from the model M𝑠 . After we get the output from the Softmax layer of the M𝑠 model, the same process in
Section 6.4 is applied to generate the search space 𝑉𝑠𝑢𝑏 to finish the SPQ solutions.

6.5.1 Data augmentation. Even with TSP-GNN, generating a large number of training instances still takes a lot
of time. We further propose a strategy to alleviate the issue of training instance generation by introducing several
basic ways to augment training instances. The data augmentation generates more training synthetic instances.

v's v't

vs vs+1 vs+2 vt-2 vt-1 vt

v's v't

vs vs+1 vs+2 vt-2 vt-1 vt vs vs+1 vs+2 vt-2 vt-1 vt

(a) Augmentation Strategies 1&2 (b) Augmentation Strategy 3 (c) Augmentation Strategy 4

Fig. 10. Data Augmentation Strategies

Our data augmentation strategies utilize a small number of skyline paths, which can be either exact or approximate,
and extend such paths to create synthetic training instances for new queries. For a given skyline path 𝑝 (𝑣𝑠!𝑣𝑡):
(𝑣𝑠 , 𝑣𝑠+1, 𝑣𝑠+2, ..., 𝑣𝑡−2, 𝑣𝑡−1, 𝑣𝑡), we augment it to get training instances of other queries using four strategies. The
first data augmentation method finds the direct neighbors of both the starting and the destination nodes 𝑣𝑠 and 𝑣𝑡 to
create new queries. For example, if 𝑣 ′𝑠 (and 𝑣 ′𝑡) is the direct neighbor that does not exist in the path 𝑝, this method
creates an instance (𝑣 ′𝑠 , 𝑝 (𝑣𝑠 ! 𝑣𝑡), 𝑣𝑡 ′) for a new query (𝑣 ′𝑠 , 𝑣

′
𝑡). This method is demonstrated in Figure 10(a).

If there are multiple 𝑣 ′𝑠s (or 𝑣 ′𝑡 s), we choose the one with the least value in the first cost dimension to make sure
the augmented training instance for a new query is still a skyline path. This rule also applies to the augmentation
strategies 2&3. If either 𝑣 ′𝑠 or 𝑣 ′𝑡 does not exist, 𝑝 is augmented using the second strategy which creates new queries
by only replacing either the starting or the ending nodes of the query. One example of instance augmented using
the second strategy from Figure 10(a) is (𝑣 ′𝑠 , 𝑝 (𝑣𝑠 ! 𝑣𝑡)) for query (𝑣 ′𝑠 , 𝑣𝑡).

The third strategy, which is demonstrated in Figure 10(b), utilizes the direct neighbors of the second path node
𝑣𝑠+1 and the second-to-the-last path node 𝑣𝑡−1. Suppose that 𝑣 ′𝑠 and 𝑣 ′𝑡 are the direct neighbors of 𝑣𝑠+1 and 𝑣𝑡−1
respectively and they are not on the path 𝑝. The new augmented instance is (𝑣 ′𝑠 , 𝑣𝑠+1, 𝑣𝑠+2, ..., 𝑣𝑡−2, 𝑣𝑡−1, 𝑣 ′𝑡). I.e.,
replacing 𝑣𝑠 and 𝑣𝑡 in 𝑝 with 𝑣 ′𝑠 and 𝑣 ′𝑡 simultaneously. If either of 𝑣 ′𝑠 and 𝑣 ′𝑡 does not exist, this augmentation
strategy is not utilized.

The fourth strategy, which is demonstrated in Figure 10(c), extracts a sub-path of 𝑝: (𝑣𝑠+1, 𝑣𝑠+2, ..., 𝑣𝑡−2, 𝑣𝑡−1)
and uses it as a skyline path for the new query (𝑣𝑠+1, 𝑣𝑡−1). These four strategies can be extended to create more
augmented training instances for the TSP-GNN model.

6.6 Complexity analysis

A general GNN model aggregates the features of neighbor nodes by utilizing simple functions, such as mean,
summation, and concatenate. The time complexity of these functions is constant. The complexity of the aggregation
operation of a GNN model is

∑𝑛
𝑖=0 𝑑𝑖 where 𝑑𝑖 is the degree of the node 𝑣𝑖 . In real applications, the average degree

of a road network is generally no more than 4. Given a graph 𝐺 with |𝐺 .𝑉 | nodes and |𝐺 .𝐸 | edges, the complexity
of a general GNN model is 𝑂 (|𝐺 .𝐸 |) since

∑ |𝐺 .𝑉 |
𝑖=0 𝑑𝑖 ≈ 𝐶1 |𝐺 .𝐸 |, where 𝐶1 is a constant.

Our SP-GNN model consists of a linear embedding of node coordinates, two GNN layers, one linear layer of
concatenating the node embedding of two query nodes, and two fully connected layers. The computation cost is
𝐶2 |𝐵e | · |𝐵gnn | + 2 ·𝐶3 · |𝐺 .𝐸 | + 2 ·𝐶4 |𝐵fc |2, which is of complexity 𝑂 (|𝐺 .𝐸 | + 𝐵2) where 𝐶2, 𝐶3 and 𝐶4 are constant
factors and 𝐵 =𝑚𝑎𝑥 (|𝐵e |, |𝐵gnn |, |𝐵fc |) is the maximum number of hidden features (Figure 9). For the TSP-GNN

ACM Trans. Spatial Algorithms Syst.

24 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

Table 2. Statistics of road networks

description vertex # edge # raw data size

C9_NY New York 254,346 365,050 16.2 MB
C9_BAY San Francisco Bay Area 321,270 397,415 18.9 MB
C9_COL Colorado 435,666 521,200 38.9 MB
C9_FLA Florida 1,070,376 1,343,951 98.4 MB

C9_E East USA 3,598,623 4,354,029 337.7 MB
C9_CTR Center USA 14,081,816 16,933,413 1304.0 MB
L_CAL California 21,048 21,693 1.3 MB
L_SF San Francisco 174,956 221,802 12.2 MB
L_NA USA 175,813 179,102 11.0 MB

model, the time complexity for constructing the backbone abstracts is 𝑂 (|𝐺 .𝑉 |𝑙𝑜𝑔(|𝐺 .𝑉 |)) and the complexity of
the model is also 𝑂 (|𝐺 .𝐸 | + 𝐵2). In general, the complexity of TSP-GNN is 𝑂 (|𝐺 .𝑉 |𝑙𝑜𝑔(|𝐺 .𝑉 |) + |𝐺 .𝐸 | + 𝐵2).

7 EXPERIMENTS

7.1 Experimental settings

Our experiments are conducted on a desktop with an Intel(R) 3.60 GHz CPU, 32 GB main memory, and 2 TB
HDD, running Ubuntu 18.04. All the algorithms are implemented using Java 13. We use Neo4j1, the most popular
graph database (according to DB-Engines ranking2), to store all the graphs. The page size and cache size of Neo4j
are set to 2 KB and 2 GB respectively. The native JAVA APIs of Neo4j are used to access neighbor nodes. Our
backbone index is not stored in Neo4j. The proposed GNN models are trained on a server with an NVIDIA A100
80G GPU. All the models are implemented using PyTorch Geometric3 which is a well-known library and can be
easily used to train graph neural networks for a wide range of applications. The source code of this paper can be
found from here4.
Default parameter setting. For the backbone index, the condensing threshold 𝑝𝑖𝑛𝑑 (Definition 4.3) is set to 30%,
the minimum and maximum cluster sizes 𝑚𝑚𝑖𝑛 and 𝑚𝑚𝑎𝑥 (Definition 4.8) are set to be 30 and 200 respectively,
and the percentage 𝑝 used to decide whether a sufficient number of edges are removed (Definition 4.8) is 0.01.
More discussions about the effect of these parameters are in Section 7.2.5. For the GNN-based models, two GNN
layers are included as shown in Figure 9. By default, 𝐵e, 𝐵gnn, and 𝐵fc are set to be 128. The training of each GNN
model uses 8100 instances in the training set and 900 instances in the validation set. Each model is trained with
100 epochs.
Parameter value selection. To set values of different parameters, users can take a strategy that is widely adopted
in using machine learning libraries: starting with the default setting and fine-tuning the parameters. For any dataset,
users can use the above default setting to get query results with similar accuracy that we report. If users accept
query results with less accuracy guarantee, they can increase 𝑚𝑚𝑎𝑥 and/or 𝑝. Otherwise, they need to decrease
𝑚𝑚𝑎𝑥 and/or 𝑝. Users need to be aware that the index construction time for larger/smaller datasets is longer/shorter.
Generally,𝑚𝑚𝑖𝑛 and 𝑝𝑖𝑛𝑑 do not need to be changed. Or, users can follow the analysis in Section 7.2.5 to fine-tune
them. For the GNN-based methods, the default parameters can be used. Then, users can adjust them based on the
effect of the GNN model parameters, which is analyzed in Section 7.3.2.
Data. Our experiments use nine real-world road networks, where six datasets including New York city (C9_NY),

Bay Area (C9_BAY), Colorado (C9_COL), Florida (C9_FLA), Eastern USA (C9_E), and Central USA (C9_CTR),
1https://neo4j.com/
2https://db-engines.com/en/ranking
3https://pytorch-geometric.readthedocs.io/en/latest/index.html
4https://github.com/huipingcao/ACMTSAS2024

ACM Trans. Spatial Algorithms Syst.

https://neo4j.com/
https://db-engines.com/en/ranking
https://pytorch-geometric.readthedocs.io/en/latest/index.html
https://github.com/huipingcao/ACMTSAS2024

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 25

(a) RAC on (b) RAC on (c) Goodness on (d) Goodness on
C9_NY_5K C9_NY_15K C9_NY_5K C9_NY_15K

Fig. 11. Comparison of approximation quality

and Full USA (C9_USA) are from the 9th DIMACS Implementation Challenge5 and three datasets including
California (L_CAL), San Francisco (L_SF), and USA (L_NA) are from a real spatial benchmark database6. The
details of these datasets are presented in Table 2. The original networks contain the coordinates of nodes and
one-dimensional edge weights (the spatial length of road segments). We generate two extra synthetic edge weights
by sampling them from a uniform distribution in the range of [1,100] following the practice in [10, 33]. A detailed
comparison of different ways to generate synthetic costs is in Section 7.2.7. When smaller subgraphs with a specific
number of nodes are needed in the experiments, we generate such subgraphs by conducting BFS from a random
node on the real-world networks.
Approximation quality measurements. To evaluate the quality of an approximate result set, we apply the following
measurements.
(1) The ratio of average cost on each dimension (RAC). We introduce RAC𝑖 to measure the similarity between the

approximate results and the exact solutions on the 𝑖th dimension. It is defined as RAC𝑖 =
(
∑

𝑝′ ∈P′ 𝑤
′
𝑖 |𝑤

′
𝑖 ∈𝑐𝑜𝑠𝑡 (𝑝

′))/|P′ |

(
∑

𝑝∈P 𝑤𝑖 |𝑤𝑖 ∈𝑐𝑜𝑠𝑡 (𝑝))/|P |

where P′ and P are the set of approximate skyline paths and the exact SPQ solutions respectively. A RAC𝑖 value
that is closer to 1 is better. When the paths in the approximate solution set P′ are longer than the exact paths, the
RAC values are larger than 1. This is because a longer path generally has a larger per-dimension cost. On the other
hand, when the paths P′ are shorter than the exact paths, the RAC values are shorter than 1. The RAC value can
measure the overall quality of all the paths in P′.
(2) Goodness. We modify the goodness measurement [20] to make it suitable for SPQs, which are different from
the queries in [20]. Given the exact solution set P and an approximate solution set P′ for an SPQ, the goodness score

of P′ is defined as: 𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 (P′) =
∑

𝑝∈P {argmax𝐷𝑝′ ∈P′𝑠𝑖𝑚 (𝑝,𝑝′) }

|P | where 𝑠𝑖𝑚(𝑝, 𝑝′) is the similarity function between
the cost of two paths. We use the cosine similarity (the higher the better) to calculate 𝑠𝑖𝑚(𝑝, 𝑝′). The definition of
the goodness metric shows that it measures the best similarity of paths in the approximate answer set and the exact
paths.
(3) Ratio of exact solutions. The ratio of exact solutions pertains to the possibility of returned skyline paths in
the approximate solution set being exact skyline paths for a given SPQ. Given the exact solution set P and an
approximate solution set P′ for an SPQ, we define the ratio of exact skyline paths to measure the quantity of exact
skyline paths present within the approximate solution set. 𝑒𝑥𝑎𝑐𝑡_𝑠𝑝_𝑟𝑎𝑡𝑖𝑜 (P′) =

| {𝑝′ |𝑝′ ∈P′∧∃𝑝∈P 𝑠 .𝑡 . 𝑝′=𝑝 } |
|P′ | . This

ratio tells us how many exact skyline paths exist in an approximate skyline path set.
Exact method. We implement the SPQ method in [33] and speed up the query by initializing the result set with the
shortest path on each dimension. We call this implementation the Baseline Best-first Search method (abbreviated as
BBS). BBS returns exact SPQ solutions that are used to verify the quality of the approximate solutions.

5http://users.diag.uniroma1.it/challenge9/download.shtml
6https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

ACM Trans. Spatial Algorithms Syst.

http://users.diag.uniroma1.it/challenge9/download.shtml
https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

26 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

Comparison methods. Since no existing index structure is particularly designed to support SPQs, to demonstrate
the effectiveness of our proposed index construction strategy backbone_normal (Algorithm 2), we modify two
representative shortest path indexes, GTree [78] and CH [50], to compare with our index structures. The index
construction process of GTree and CH follows their original contracting process. The difference is that we use
skyline paths (instead of shortest paths) as the new edges. We also implement two more variations (backbone_none
and backbone_each) of our index construction methods by varying the implementation of triggering the aggressive
graph summarization (Section 4.3.1). The backbone_none only conducts regular graph summarization. The
backbone_each triggers the aggressive summarization at each level.

7.2 Experimental results of SQP evaluation based on the backbone index

7.2.1 Effectiveness of the proposed index structure and query method. We compare the query results with
the exact solutions returned by BBS. The BBS method does not work well on large graphs [19]. Thus, we use small
subgraphs of C9_NY with 5K and 15K nodes. On both C9_NY_5K and C9_NY_15K, we randomly generate 300
queries (i.e., pairs of starting and ending nodes of the queries). For these random queries, we run both the BBS
method and our methods to get exact and approximate solutions for comparisons.

We examine how good the approximate results are. Figures 11(a-b) show the RAC values. Three consecutive
bars in the same color and shape represent results from one method. The ratio for each dimension is shown from
left to right. Figures 11(c-d) plot the goodness values. We can see that backbone_none has the best (smallest)
average approximation in most cases among the three variations. This is because the backbone_none variation
keeps many more nodes and edges in 𝐺𝐿 while building the index. One exception is that backbone_none is slightly
worse than backbone_each on C9_NY_15K when𝑚𝑚𝑎𝑥=600 . This is because the level 𝐿 of the index generated by
the backbone_none (𝐿=6) is larger than the level of index generated by backbone_each (𝐿=4). This is consistent
with our analysis of the index structure: an index with a larger 𝐿 (meaning a higher index) loses more information.

The backbone_each and backbone_normal variations perform similarly because they all trigger the aggressive
strategy. They provide rough 1.5-approximation solutions (RAC) and get ∼0.85 goodness scores. The approximation
of backbone_normal is slightly better than that of backbone_each for three settings (𝑚𝑚𝑎𝑥=200 for both graphs,
and 𝑚𝑚𝑎𝑥=600 for C9_NY_5K) because the indexes generated using backbone_normal are larger than those
generated using backbone_each in these three settings. On the other hand, backbone_each slightly outperforms
backbone_normal for the remaining three settings (𝑚𝑚𝑎𝑥=400 for both graphs, and𝑚𝑚𝑎𝑥=600 for C9_NY_15K)
because of a similar reason.

(a) C9_NY_5K (b) C9_NY_15K

Fig. 12. Comparison of result set size (# of skyline paths)

Figures 12 shows that all three variations can hugely reduce the result-set sizes. When more nodes and edges
are kept in 𝐺𝐿 , more skyline paths are found on 𝐺𝐿 , which leads to a larger result set. When cluster size increases,
the backbone_none variation generates larger 𝐺𝐿 compared with the other two variations, which slows down the

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 27

m_BBS significantly. Figure 13 reports the average query time for the 300 queries. The backbone_none variation
even needs more time than BBS in most situations because of the large 𝐺𝐿 . The query time of backbone_each and
backbone_normal is stably small because of a smaller 𝐺𝐿 (Figure 13).

We would like to report the ratio of exact skyline paths in the approximate solution set returned by our approach
backbone_normal (with cluster size 200). For C9_NY_5K and C9_NY_15K, the ratio are 0.62 and 0.46 respectively.
The larger graph has a lower ratio because the larger graph’s index compresses more information (thus loses more
data) in the abstracted graph when their levels are the same.

In summary, our proposed index construction approach can achieve a good trade off in preserving the graph
information and effectively supporting queries.

(a) C9_NY_5K (b) C9_NY_15K

Fig. 13. Comparison of query time

7.2.2 Efficiency of index construction. We conduct experiments to measure the index size and building time by
comparing our index structure backbone_normal (Algorithm 2) with GTree and CH . We use subgraphs of C9_NY
with 5K, 10K, and 15K nodes. For the GTree method, the fan out is set to be 4 and the number of vertices in
a leaf node is set to 64. These parameter values are used to generate the best results in the original paper. The
experimental results are reported in Table 3.

The results show that the index size of GTree is comparable to our proposed method. However, the construction
time of GTree is much more than our method. The main reason is that the graph contracting process of GTree
increases the graph size, which grows exponentially in the number of nodes and edges. Such graph-size increase
slows down the performance of SPQs. For example, the root node in the GTree contains 74794 and 169623 edges
for C9_NY_5K and C9_NY_15K respectively. The index on C9_NY_10K cannot be created in one day while
processing a non-leaf node with 2,754,341 edges. Given these, we can observe that GTree index structure is not
practical in supporting SPQs on large graphs.

Table 3. Comparison of index construction

C9_NY_5K C9_NY_10K C9_NY_15K

Construction
time (sec.)

Backbone 99 251 216

GTree
23,896

(6 hours) -
39,781

(11 hours)
CH 12,000 42,184 26,340

Index size
(MB)

Backbone 27 89 68
GTree 27.5 - 41.6

Size of the
most abstracted graph

CH node #
CH edge #

4,071
22,627

9,654
30,894

13,499
83,302

ACM Trans. Spatial Algorithms Syst.

28 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

For the CH index, we report the graph size instead of the index size because the final graph of the CH is used
to speed up online shortest path queries. The result shows that the number of nodes does not change much after
summarization. However, the number of edges is at least 5 times more than that in the initial graph. The huge final
graph causes the deterioration of query processing. The underlying reason is that multiple skyline paths (instead of
one shortest path) exist between two nodes. Furthermore, the index building time also becomes impractical when
the graph size increases.

7.2.3 Effectiveness of using dense clusters to condense 𝐺𝑖 . We evaluate the effectiveness of our approach
of using dense clusters to condense 𝐺𝑖 (Section 4.2). For comparison purpose, we implement another approach to
partition the nodes in 𝐺𝑖 to different connected components by using BFS. Other partition methods [26, 30] used
in [28, 34, 38] that merely consider the connectivity between partitions but not the density of the partitions get
similar results as the BFS partitioning method. Our method is labeled as NODE and the alternative partition method
is labeled as BFS. We measure the index size and the time to construct the backbone index from the partitions
discovered using our dense-cluster based method and from the partitions found using BFS method.

Figure 14 shows the results on dataset C9_NY_15K. When the cluster size increases, building indexes using the
partitions found from the BFS method requires longer time and uses more space (can be more than three times for
𝑚𝑚𝑎𝑥=800), compared with creating indexes using graph partitions discovered from our method.

This result demonstrates that our design of using dense clusters to condense a graph is more appropriate than
using partitions that does not consider graph density.

(a) Construction time (b) Index size

Fig. 14. Effectiveness of cluster-based condensing

7.2.4 Scalability test of query algorithms. We test the scalability of our approach by comparing it with BBS
on subgraphs of C9_BAY with different number of nodes (from 10K to 100K). We generate ten random queries
for different datasets. To control the randomness of queries, we constrain the distributions of the number of hops
between the starting and ending query nodes to be similar for all the datasets. In particular, for each dataset, two
queries have less than 50 hops, three queries have between 50 to 100 number of hops, and five queries have larger
than 100 hops. We also constrain that these queries can be finished in fifteen minutes using the BBS method so that
comparisons can be done with reasonable time. We run these queries using our approach and the BBS method, and
report the averaged running results in Table 4.

The first observation is that our proposed algorithm achieves reasonable RAC and Goodness score in these
different graphs. Second, although the construction time grows as the graph size increases, the improvement of
query time is significant. Our method speeds up the BBS method dramatically (more than 65 times in all subgraphs).
We are aware that the construction time of our backbone index is not less than the average query time of BBS. This
is because the index construction needs to pre-calculate skyline path information for all the node pairs in each

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 29

Table 4. Scalability of query algorithms (subgraphs of C9_BAY)

of nodes 10K 40K 70K 100K

RAC 1.41, 1.67, 1.63 1.48, 1.79, 1.68 1.85, 1.90, 1.93 1.56, 1.80, 1.71
Goodness

(Cosine similarity) 0.88 0.85 0.87 0.87

BBS method
query time (ms) 34,154 63,557 101,470 30,789

Backbone index
query time (ms) 461 410 437 470

Speed-up ratio 74 155 232 65

Construction time
(ms) 126,450 429,488 815,771 930,892

cluster. We need to emphasize that the backbone index just needs to be built once and can support any ad-hoc
SPQs efficiently. To speed up the index construction process, we need to improve the component of pre-calculating
skyline paths. A reasonable idea is to pre-calculate less (but still good) skyline paths for the node pairs in clusters
utilizing strategies in [20].

The query time of both the BBS method and our method does not show a steady trend with the increase of node
numbers. This is because the performance of the BBS method is more affected by node degrees and the number of
hops of queries according to our preliminary study [19]. On the 100K subgraph, the BBS method has abnormally
low running time because of the lower average node degree of this graph compared with other graphs and the
smaller average number of hops for queries on this subgraph. Our proposed method takes a relatively constant
time on different subgraphs (vary from 410 ms to 470 ms). The queries over the 10K graph have larger query time
because its index has more levels (i.e., a larger 𝐿).

7.2.5 Effect of parameters. Figure 15 shows the impact of the parameters 𝑝 and𝑚𝑚𝑎𝑥 on the performance of
index construction.

(a) Varying𝑚𝑚𝑎𝑥 (b) Varying 𝑝

Fig. 15. Index building time and index size for C9_NY

The index construction process is sensitive to the cluster size as shown in Figure 15(a). Both the time of finding
skyline paths and the number of skyline paths in each cluster grow with the increase of𝑚𝑚𝑎𝑥 . The results indicate
that it is practical to set𝑚𝑚𝑎𝑥 to be 200 and 400 to get reasonable building time and index size. When𝑚𝑚𝑎𝑥 reaches
800, the algorithm can take 6 hours to build the index and the index size is 3.5 times of 𝐺’s size, which is not
workable. On the contrary, the building time and the index size are almost constant when 𝑝 changes (Figure 15(b)
because 𝑝 only affects the levels of the indexes 𝐿, which are almost the same for different 𝑝 values.

ACM Trans. Spatial Algorithms Syst.

30 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

(a) Varying 𝑝𝑖𝑛𝑑 (b) Varying𝑚𝑚𝑖𝑛 (c) Varying𝑚𝑚𝑎𝑥

Fig. 16. Goodness comparison on C9_NY_15K

We further examine the effect of three parameters, condensing threshold 𝑝𝑖𝑛𝑑 , minimum cluster size 𝑚𝑚𝑖𝑛,
and maximum cluster size 𝑚𝑚𝑎𝑥 on the quality of approximation results using a small graph with 15K nodes
(C9_NY_15K) because BBS is inefficient on large graphs. The reported numbers in Figure 16 are averaged from
results of 100 random queries over C9_NY_15K. For the parameter 𝑝𝑖𝑛𝑑 , the overall trend is that its effect fluctuates
before reaching a value (20 for this test) and slightly decreases after that. In this test, the best performance is
achieved with zero. This is because the dataset is obtained using BFS with fewer low-density nodes. This is not the
general conclusion for all the datasets. For 𝑚𝑚𝑖𝑛, a similar overall trend is observed: its effect fluctuates before
reaching a value (𝑚𝑚𝑖𝑛=50) and slightly decreases after that. This is because the approximation is worse when
we do not sufficiently merge small clusters (smaller𝑚𝑚𝑖𝑛) or merge big clusters (larger𝑚𝑚𝑖𝑛). For the parameter
𝑚𝑚𝑎𝑥 , the goodness score shows fluctuations with an overall trend of decreasing performance with the increase of
𝑚𝑚𝑎𝑥 . Given these, smaller𝑚𝑚𝑎𝑥 should be used to achieve better query accuracy. However, very small𝑚𝑚𝑎𝑥 (the
extreme case is𝑚𝑚𝑎𝑥=1) should not be used because of much longer query time.

7.2.6 Performance on larger graphs. We apply our index construction approach to large real-world graphs.
The results are shown in Table 5. The size of the highest graph row shows the number of nodes (top number)

Table 5. Scalability of backbone index construction

C9_NY C9_BAY C9_COL C9_FLA C9_E C9_CTR

Construction time (sec.) 3,305 3,056 4,331 12,082 61,471 532,456
Index size (MB) 2,526 1,954 2,535 6,531 21,484 81,196

Size of the (node #)
highest graph (edge #)

193
193

152
152

4
6

219
306

97
131

167
217

Query time (ms) 419 426 414 505 526 516
(a)

L_CAL L_SF L_NA

Construction time (sec.) 270 3,056 1,472
Index size (MB) 86 1954 709

Size of the (node #)
highest graph (edge #)

173
248

152
152

56
87

Query time (ms) 479 424 418
(b)

and edges (bottom number) in the most abstracted graph 𝐺𝐿. Table 5(a) shows the results on the C9_* datasets
that have higher node degrees. Table 5(b) shows the results on graphs with lower average node degrees. Our

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 31

proposed algorithm scales well as the number of graph nodes increases from 0.01 million (C9_NY_10) to 14
million (C9_CTR). On the graph C9_CTR, the average search time is only 0.5 seconds. A huge jump on the
index construction time occurs on C9_CTR. This is because the graph has higher node degrees, which make the
pre-calculation of skyline paths in dense clusters more expensive than in other graphs.

(a) C9_NY_20K (b) C9_BAY_20K

Fig. 17. Query time (different edge-cost distributions)

(a) C9_NY_20K (b) C9_BAY_20K

Fig. 18. Goodness scores (different edge-cost distribu-
tions)

7.2.7 Effect of edge-cost distribution. We examine the effect of the distribution of edge cost on the query
time and the goodness score. We generate subgraphs with 20K nodes from the C9_NY and C9_BAY datasets. For
these subgraphs, we generate synthetic edge costs that are correlated (CORR) with, or anti-correlated (ANTI) with,
or independent (INDE) from the distance between two nodes. Over these subgraphs, 150 random queries have
been generated and executed. The average query time is reported in Figure 17. The correlated edge cost leads to
the shortest BBS query time. Among the three types of edge cost, BBS method has the longest query time when
edges have anti-correlated cost. On the contrary, the performance of our proposed algorithm is relatively constant
to the edge-cost distributions and is much faster than the BBS method (Figure 17). Figure 18 shows the similar
performance of queries over the backbone index on graphs with different types of edge-cost distributions. It is
interesting to note that our proposed approach works even slightly better on graphs with anti-correlated or random
edge cost than on graphs with correlated edge cost. This shows the potential of applying our methods to networks
other than road networks because road-network cost are generally correlated to the distance between two nodes.

7.3 Experimental results of SPQ evaluation based on the GNN models

7.3.1 Effectiveness of SP-GNN and TSP-GNN. This experiment examines the quality of the approximate
results returned by the query methods on the backbone index, SP-GNN, and TSP-GNN by comparing them with
the exact solutions returned by the baseline BBS method. Because the BBS method takes extremely long time [19]
to get exact solutions, this experiment uses two small subgraphs of C9_NY with 5K and 15K nodes and only one
original graph L_CAL (which is relatively larger). For the Backbone index, backbone-normal is used with the
default parameter setting. For both the SP-GNN and TSP-GNN models, 9000 instances (default setting) are used to
train the models where 10% (i.e., 900 instances) are used as the validation set. For the TSP-GNN model, these
instances are generated using the backbone abstracts either in levels 4-7 (L4-7) or in levels 1-7 (L1-7), where the
number of instances in each level is equal. The choice of utilizing TSP-GNN with both L4-7 and L1-7 abstractions
is intentional. We apply these two settings for the L_CAL dataset, which is the smallest among the real graphs,
aiming to understand the effectiveness of the transfer learning approach across different levels of abstraction. For
larger real graphs (L_SF, C9_BAY, L_NA), a reasonable proportion of lower levels’ backbone skyline results need
to be in the training set to ensure that the model captures information from the original graph. We use the instances
from levels 1-7 for these larger real graphs. We do not test the effect of SP-GNN on these large graphs because, in
reality, it takes too long time (days to weeks) to generate the exact skyline paths for model training.

ACM Trans. Spatial Algorithms Syst.

32 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

To get stable query results from the different methods we report the averaged query performance from 100
randomly generated queries (i.e., pairs of starting and ending nodes of the queries) on all these datasets.
Table 6. Comparing different methods using metrics RAC, Goodness, exact_sp_ratio (L4-7/L1-7: instances are
generated using the backbone abstracts levels 4-7 or in levels 1-7)

Dataset method RAC1 RAC2 RAC3 average |RAC𝑖 -1| Goodness exact_sp_ratio
C9_NY_5K Backbone 1.063 1.09 1.1071 0.09 0.93 0.62

SP-GNN 0.9531 0.9453 0.9292 0.06 0.98 0.86
TSP-GNN (L4-7) 0.9042 0.8379 0.8297 0.14 0.96 0.92

C9_NY_15K Backbone 1.0544 1.0028 1.0219 0.03 0.97 0.46
SP-GNN 1.0245 0.9667 0.9834 0.02 0.97 0.76

TSP-GNN (L4-7) 0.9605 0.8529 0.8805 0.10 0.95 0.88

L_CAL Backbone 1.0100 1.0391 1.0476 0.03 0.94 0.62
SP-GNN 1.0787 1.0386 1.0364 0.05 0.98 0.87

TSP-GNN (L4-7) 0.8955 0.8901 0.9015 0.10 0.98 0.86
TSP-GNN (L1-7) 0.9480 0.9262 0.9357 0.06 0.97 0.87

L_SF Backbone 1.1048 1.0778 1.0772 0.09 0.97 0.49
TSP-GNN (L1-7) 0.9249 0.8266 0.8352 0.14 0.95 0.97

C9_BAY Backbone 1.1477 1.0827 1.0856 0.11 0.97 0.49
TSP-GNN (L1-7) 1.0035 0.9111 0.9221 0.06 0.95 0.94

L_NA Backbone 1.0201 0.9977 0.9952 0.01 0.95 0.64
TSP-GNN (L1-7) 1.0626 1.0718 1.0761 0.07 0.95 0.99

Table 6 shows the RAC values, the goodness scores, and the ratio of the exact skyline paths of the approximate
results from the different methods on the three datasets. Note that when a RAC value is closer to one, it is better.
Thus, we also report the average |RAC𝑖 -1| values in the second to the last column. The results show that SP-GNN
can get the best approximate RAC results (smallest |RAC𝑖-1| values) for C9_NY_5K and C9_NY_15K. This is
because SP-GNN is directly trained using the exact solutions from the original graph. However, for L_CAL, the
RAC results from SP-GNN are not as good as the results calculated from the backbone index. This is because
L_CAL is a larger graph, which requires more training instances. The approximate results from TSP-GNN(L4-7)
are the worst on the RAC metric. This is consistent with the design that TSP-GNN utilizes many approximate
solutions from the higher-level backbone abstracts to train the model. For large graphs (L_SF, L_NA, and C9_BAY),
there is no deterministic superior performer between the Backbone and the TSP-GNN method because multiple
factors affect the results including the number and the length of the returned approximate paths. On the L_SF graph,
TSP-GNN’s worse performance is directly related to its less number of returned paths (3.16 on average), compared
with the slightly more returned number of paths (3.94 and 4.14 on average) for the C9_BAY and the L_NA datasets.

Regarding the Goodness metric, SP-GNN achieves the best performance. TSP-GNN model and the Backbone
index have similar results. This is because the Goodness metric measures the largest similarity of the exact paths
and the approximate paths. The close-to-1 goodness score shows that paths from the TSP-GNN method can be very
close to the exact paths although on average they are not as good as the paths returned by the backbone method.

For the exact_sp_ratio, surprisingly, the results of Backbone method are worse than those from the TSP-GNN
and SP-GNN. This is because Backbone results are generally approximate when it involves higher level index
structure. SP-GNN utilizes exact skyline paths as training instances, thus their results are better than those from the
Backbone index. The results from TSP-GNN and SP-GNN are similar on L_CAL. It indicates that the TSP-GNN
model is able to catch the skyline path representations as that of the SP-GNN model. On small graphs (C9_NY_5K

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 33

and C9_NY_15K), the ratio of the exact skyline paths is higher because fewer paths are returned from TSP-GNN
than from SP-GNN.

7.3.2 Sensitivity test when varying model training parameters. This experiment tests how the results’ quality
is affected by the different model parameters using the C9_NY_5K dataset. We investigate the effect of the number
of hidden dimensions 𝐵gnn and the number of embedding dimensions 𝐵e. Figure 20(a) shows the results for varying
the number of hidden dimensions (from 32 to 256) while fixing the embedding dimension number to be the default
value of 128. It shows that when increasing the number of hidden dimensions, the performance improves gradually.
However, the improvement is not much when it reaches 128 dimensions.

(a) Vary # of hidden dimensions (b) Vary # of embedding dimensions

Fig. 19. RAC and goodness vs. model hidden dimensions (SP-GNN)

(a) SP-GNN (b) TSP-GNN

Fig. 20. RAC and goodness vs. # of epochs

We also vary the number of embedding dimensions when fix the number of hidden dimensions (default value
128). Fig. 20(b) reports the results. It shows that increasing the embedding dimensions may not increase the
performance. Our analysis is that the graph’s overall node degree is low (round 4), thus embedding too many
dimensions may not be helpful.

The number of training epochs also affects the performance of a model. We report the RAC values and the
goodness scores for both the SP-GNN and TSP-GNN models when changing the number of epochs. Figure 20
shows that, when the number of epochs increases, the quality of the query results generally improves (except epoch
number 20 for SP-GNN). The quality does not increase much after 100 epochs. It means that we do not need to
train the GNN models with a huge number of iterations when we are good with the approximation quality. The
abnormal behavior is observed from the SP-GNN model when the epoch number is 20. Its RAC and goodness
scores are even better than those for epoch number 50. This is because the model can only support answering a
much small number of queries (74 out of 100 queries) when the epoch number is 20. These returned results still
show good approximation quality.

ACM Trans. Spatial Algorithms Syst.

34 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

7.3.3 GNN model construction time and query time. The construction of a GNN model requires generating
the training instances and training a model. We do not include the time for training instance generation because the
GNN models are expected to be built upon historical data (queries and query results) that are accumulated. We
also note that, when historical data is not available, generating instances for large graphs may become super time
consuming [19] (e.g., utilizing several days) because it depends on the inefficient BBS method to find the exact
solution. The training time is largely affected by the model parameters (embedding dimensions, hidden dimensions)
and the number of training epochs. This section looks into the training time and query time.

(a) Vary # of hidden dimensions (b) Vary # of embedding dimensions

Fig. 21. Time vs. model parameters

(a) SP-GNN (b) TSP-GNN

Fig. 22. Time vs. # of epochs

We plot the training time and the query time when varying the model parameters. Figure 21(a) and (b) show the
training time for 100 epochs and the query time per query when varying the number of hidden dimensions (while
fixing the embedding dimension to be 128) and changing the number of embedding dimensions (when fixing the
number of hidden dimensions to be 128). The results show that both the training time (in minutes) and the query
time (in milliseconds) grow linearly to the increase of these hidden dimensions. This is better than the worst case
analysis result. Increasing the number of training epochs also linearly increases the training time, but not the query
time, as shown in Figure 22. The query time is almost constant and negligible (several milliseconds) to answer a
query.

We also report the training time of both the SP-GNN and TSP-GNN models for the default number of instances
(i.e., 9000) and the default number of epochs (i.e., 100). The time is reported in Table 7. The training time for
each instance and every epoch is similar. Thus, the reported training time (from the 2nd column) divided by 9000
represents the time required to process one query result, i.e., one training instance.

7.4 Effect of data augmentation

This section examines the effect of the amounts of augmented data on the quality of query results. We run the
TSP-GNN model utilizing the instances from the L_CAL dataset. While fixing the total number of training instances

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 35

Table 7. Comparing training time for different datasets (L4-7/L1-7: instances are generated using the backbone
abstracts levels 4-7 or in levels 1-7)

Dataset training time (min.)
C9_NY_5K (SP-GNN) 38.698
C9_NY_5K (TSP-GNN (L4-7)) 46.203
C9_NY_15K (SP-GNN) 109.391
C9_NY_15K (TSP-GNN (L4-7)) 112.321
L_CAL (SP-GNN) 141.267
L_CAL (TSP-GNN (L4-7)) 142.044
L_CAL (TSP-GNN (L1-7)) 154.510
L_SF (TSP-GNN (L1-7)) 2793.849
L_NA (TSP-GNN (L1-7)) 2593.774
C9_BAY (TSP-GNN (L1-7)) 5707.043

to be 9K (the default setting), we vary the proportion of the exact skyline-path instances from 30% to 70%, while
the corresponding augmented skyline-path instances are from 70% to 30%. Table 8 shows the results.

Table 8. Comparison of different augmentation ratios in TSP-GNN on graph L_CAL

augmentation average avg # of paths
percentage |RAC𝑖 -1| Goodness exact_sp_ratio in result set

0 0.06 0.97 0.87 8.73
30 0.11 0.97 0.88 6.18
40 0.10 0.97 0.89 6.25
50 0.08 0.97 0.89 7.42
60 0.11 0.97 0.90 6.14
70 0.08 0.97 0.89 7.95
80 0.07 0.97 0.89 9.06
90 0.08 0.97 0.90 7.75

The RAC results show variations for different augmentation percentages, which is introduced by the augmentation
approach. We also observe that there is no clear trend with the RAC values as the augmentation ratio varies. This
can be attributed to the intricate relationship between this metric and the average number of paths in the result
set. When there are more paths in the result set (last column), there is less variability in the paths, the |RAC𝑖 -1| is
smaller.

The Goodness scores across different augmentation percentages are the same. This is because it measures the
highest similarity between exact solutions and approximate result sets. This similarity in exct_sp_ratio is also
observed across all augmentation percentages, affirming the model’s ability to return skyline paths that align closely
with the exact solutions.

Despite the inherent randomness in the augmentation process, the overall performance of TSP-GNN remains
consistently high across varying augmentation ratios. This study showcases the models’ competence even when a
smaller portion of the original training set is utilized. The use of naive augmentation strategies proves effective in
mitigating the need for an exhaustive generation of exact skyline paths for training. It is possible to design advanced
techniques to augment the training set, which is not the main focus of this work.

7.5 Effect of alternative GNN models

This section examines the effect of different graph operators over the query results and the training/inference
efficiency. Besides utilizing the graph Transformer model [54] to implement both SP-GNN and TSP-GNN, we have

ACM Trans. Spatial Algorithms Syst.

36 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

implemented two other recent graph neural network models, LightGCN [25] and ClusterGCN [12]. The results are
reported in Table 9.

All three GNN models show similar results on the query results’ quality measured Goodness scores and
exact_sp_ratio. For the RAC value, LightGCN model returns slightly better results thanks to its complex operators,
which also make it suffer from longer training time. The difference of model inference to find the query search
space is negligible.

Our findings suggest that different GNN architectures can be used in SP-GNN or TSP-GNN. When more efficient
GNN architectures are available, they can be adopted to improve training efficiency while retaining reasonable
performance. Note that developing more efficient GNN models is not the focus of this paper.

Table 9. Comparison of different graph operators in TSP-GNN

average Time (min) Time (sec)
GNN model RAC1 RAC2, RAC3 |RAC𝑖 -1| Goodness exact_sp_ratio Training Inference
Transformer 0.948 0.9262 0.9357 0.06 0.97 0.87 151 0.062
ClusterGCN 0.9641 0.937 0.9491 0.05 0.97 0.87 107 0.059
LightGCN 0.9635 0.9408 0.9509 0.05 0.97 0.86 165 0.056

7.6 Use case study

We conduct a case study to provide a more in-depth understanding of the approximate skyline paths returned by
TSP-GNN. The approximate results returned by Backbone and SP-GNN methods show similar characteristics, thus
are not included here. On two real graphs (C9_NY_5K and L_CAL), we randomly pick two queries and plot the
exact solutions, the approximate solutions, and their training instances in Figs. 23 and 24. From Fig. 23 (a-b) and
Fig. 24(a-b), we can see that there are much more exact skyline paths than approximate paths. Accordingly, the
total number of nodes on the exact skyline paths are more than that in the approximate solutions. However, the
approximate paths still look very similar to the exact paths. The smaller number of approximate skyline paths can
give users a reasonable choice of paths to choose from. We also show the training instances for these two queries in
Fig. 23(c) and Fig. 24(c). The instances consist of type-1 (highlighted in green) and type-2 (highlighted in dark
green) nodes, which together form the search space to return the approximate paths.

(a) exact solution (24 paths) (b) approximate solution (c) the training instance
one path is highlighted returned by TSP-GNN (3 paths)

in green one path is highlighted in green

Fig. 23. Skyline path results on C9_NY_5K from source node 56 to destination node 2830

ACM Trans. Spatial Algorithms Syst.

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 37

(a) exact solution (193 paths) (b) approximate solution (c) the training instance
one path is highlighted returned by TSP-GNN (4 paths)

in green one path is highlighted in green

Fig. 24. Skyline path results on L_CAL from source node 19426 to destination node 13307

8 DISCUSSIONS

This section provides a summarized discussion about the advantages, the shortcomings, and the use scenarios of
the backbone index and the two GNN models.

Table 10. Summary of the performance and the overhead of three approaches

Backbone SP-GNN TSP-GNN

Result quality Second best on
RAC; Worst on
Goodness; Worse on
exact_sp_ratio

Best on RAC and Goodness; Sec-
ond best on exact_sp_ratio

Second best on Goodness; Worst on
RAC; Best on exact_sp_ratio

Query time hundreds of ms tens of ms tens of ms
Overhead (1) build backbone in-

dex
(1) build landmark index over the
original graph, (2) run BBS alg. us-
ing landmark index & data aug-
mentation, and (3) train GNN mod-
els

(1) build backbone index, (2) build
landmark index over backbone ab-
stracts, (3) run BBS alg. over back-
bone & data augmentation, and (4)
train GNN models

Table 10 summarizes the result quality with respect to RAC, goodness, and exact_sp_ratio scores, query time,
and the overhead of the three methods. When historical query results are available, which means that there is
no overhead for building the landmark index and running BBS method, the only overhead for SP-GNN is model
training, SP-GNN is the best choice for searching over small graphs. For large graphs, the backbone index needs to
be utilized. It can either directly support queries or support query evaluation through the use of the TSP-GNN.

9 CONCLUSIONS AND FUTURE WORK

This paper introduces a new index structure (denoted as Backbone index) and two GNN models (SP-GNN and
TSP-GNN) to support efficient processing of SPQs over MCRNs. This index structure organizes the summarized
graphs of the original graph with different summarization granularity in a hierarchical structure. Higher-level graphs
summarize lower-level graphs by reducing the graph density. We implement a practical index construction approach

ACM Trans. Spatial Algorithms Syst.

38 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

that utilizes the idea of finding dense clusters to condense graphs. A corresponding query processing method is
introduced to find approximate skyline paths by using our proposed index. We further present two GNN-based
models that can be trained utilizing historical query results to support more efficient query processing. Extensive
experiments are conducted on multiple real-world road networks. Our introduced query method can find reasonable
approximate results efficiently, which are comparable to the results found by an exact SPQ query algorithm. The
results also show that our backbone index has a more efficient index size and building time than two other index
structures adopted from the shortest-path-query supporting indexes.

This work assumes that all the graph edge weights are static. However, in many applications, parameters such
as traffic flow/density vary over time and are measured by road-side sensors. Query processing over graphs with
dynamic edge weights will be explored by leveraging temporal features as future work.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support from the National Science Foundation (NSF) under Awards No.
1914635 and 2151254, and from the United States Department of Agriculture - National Institute of Food and
Agriculture (USDA-NIFA) under Award No. 20196901229853. These funds have been instrumental in advancing
the research presented in this work.

REFERENCES
[1] Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. 2022. Shortest path networks for graph property prediction. In Learning on

Graphs Conference. PMLR, 5–1.
[2] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path distance queries on large networks by pruned landmark

labeling. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. 349–360.
[3] Saad Aljubayrin, Bin Yang, Christian S. Jensen, and Rui Zhang. 2016. Finding non-dominated paths in uncertain road networks.

Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (2016).
[4] G Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter. 2009. Time-dependent contraction hierarchies. In 2009 Proceedings of

the Eleventh Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, 97–105.
[5] Neli Blagus, Lovro Šubelj, and Marko Bajec. 2014. Assessing the effectiveness of real-world network simplification. Physica A: Statistical

Mechanics and its Applications 413 (2014), 134–146.
[6] G. Borruso. 2008. Network Density Estimation: A GIS Approach for Analysing Point Patterns in a Network Space. Trans. GIS 12 (2008),

377–402.
[7] Zhan Bu, Zhiang Wu, Liqiang Qian, Jie Cao, and Guandong Xu. 2014. A backbone extraction method with Local Search for complex

weighted networks. 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)

(2014), 85–88.
[8] Yanchuan Chang, Egemen Tanin, Xin Cao, and Jianzhong Qi. 2023. Spatial Structure-Aware Road Network Embedding via Graph

Contrastive Learning. In EDBT. OpenProceedings.org, 144–156.
[9] S. Chawla, Venkata Rama Kiran Garimella, A. Gionis, and Dominic Tsang. 2016. Backbone discovery in traffic networks. International

Journal of Data Science and Analytics 1 (2016), 215–227.
[10] Yi-Chung Chen and Chiang Lee. 2016. Skyline Path Queries With Aggregate Attributes. IEEE Access 4 (2016), 4690–4706.
[11] Zitong Chen, A. Fu, Minhao Jiang, Eric Lo, and Pengfei Zhang. 2021. P2H: Efficient Distance Querying on Road Networks by Projected

Vertex Separators. Proceedings of the 2021 International Conference on Management of Data (2021).
[12] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. 2019. Cluster-GCN: An Efficient Algorithm for Training

Deep and Large Graph Convolutional Networks. In Proceedings of SIGKDD International Conference on Knowledge Discovery & Data

Mining, KDD, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM, 257–266.
https://doi.org/10.1145/3292500.3330925

[13] Liang Dai, Ben Derudder, and Xingjian Liu. 2018. Transport network backbone extraction: A comparison of techniques. Journal of

Transport Geography 69 (2018), 271–281.
[14] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische mathematik 1, 1 (1959), 269–271.
[15] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query

Executions to Improve Index Recommendations. In SIGMOD Conference. ACM, 1241–1258.
[16] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-based algorithm for discovering clusters in large spatial

databases with noise.. In Kdd, Vol. 96. 226–231.

ACM Trans. Spatial Algorithms Syst.

https://doi.org/10.1145/3292500.3330925

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 39

[17] Xiaoyi Fu, Xiaoye Miao, Jianliang Xu, and Yunjun Gao. 2017. Continuous range-based skyline queries in road networks. World Wide Web

20, 6 (2017), 1443–1467.
[18] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008. Contraction hierarchies: Faster and simpler hierarchical

routing in road networks. In International Workshop on Experimental and Efficient Algorithms. Springer, 319–333.
[19] Qixu Gong and Huiping Cao. [n. d.]. Technical report, TR-CS-NMSU-2022-0223, Supplementary Materials. https://computerscience.

nmsu.edu/research/technical-reports.html.
[20] Qixu Gong, Huiping Cao, and Parth Nagarkar. 2019. Skyline Queries Constrained by Multi-cost Transportation Networks. 2019 IEEE

35th International Conference on Data Engineering (ICDE) (2019), 926–937.
[21] Sheng Guan, Hanchao Ma, and Yinghui Wu. 2019. Attribute-Driven Backbone Discovery. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. 187–195.
[22] Andrey Gubichev, Srikanta J. Bedathur, Stephan Seufert, and Gerhard Weikum. 2010. Fast and accurate estimation of shortest paths in

large graphs. In CIKM ’10.
[23] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE

Trans. Syst. Sci. Cybern. 4 (1968), 100–107.
[24] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas, and Gautam Das. 2020. Deep Learning Models for

Selectivity Estimation of Multi-Attribute Queries. In SIGMOD Conference. ACM, 1035–1050.
[25] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng Wang. 2020. LightGCN: Simplifying and Powering Graph

Convolution Network for Recommendation. In Proceedings of International ACM SIGIR conference on research and development in

Information Retrieval, SIGIR, Jimmy X. Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu
(Eds.). ACM, 639–648. https://doi.org/10.1145/3397271.3401063

[26] Y. Huang, N. Jing, and Elke A. Rundensteiner. 1996. Effective graph clustering for path queries in digital map databases. In CIKM ’96.
[27] Shalev Itzkovitz, Reuven Levitt, Nadav Kashtan, Ron Milo, Michael Itzkovitz, and Uri Alon. 2005. Coarse-graining and self-dissimilarity

of complex networks. Phys. Rev. E 71 (Jan 2005), 016127. Issue 1. https://doi.org/10.1103/PhysRevE.71.016127
[28] N. Jing, Y. Huang, and Elke A. Rundensteiner. 1998. Hierarchical Encoded Path Views for Path Query Processing: An Optimal Model and

Its Performance Evaluation. IEEE Trans. Knowl. Data Eng. 10 (1998), 409–432.
[29] Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, Bertty Contreras-Rojas, Rodrigo Pardo-Meza, Anis Troudi, and Sanjay Chawla. 2020. ML-based

Cross-Platform Query Optimization. In ICDE. IEEE, 1489–1500.
[30] G. Karypis and V. Kumar. 1998. Multilevel k-way Partitioning Scheme for Irregular Graphs. J. Parallel Distributed Comput. 48 (1998),

96–129.
[31] Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. 2010. Distributed time-dependent contraction hierarchies. In Experimental

Algorithms: 9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010. Proceedings 9. Springer, 83–93.
[32] Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Matthias Renz, and Tim Schmidt. 2007. Proximity queries in large traffic networks. In

GIS.
[33] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. 2010. Route skyline queries: A multi-preference path planning approach.

2010 IEEE 26th International Conference on Data Engineering (ICDE 2010) (2010), 261–272.
[34] K. Lee, W. Lee, B. Zheng, and Yuan Tian. 2012. ROAD: A New Spatial Object Search Framework for Road Networks. IEEE Transactions

on Knowledge and Data Engineering 24 (2012), 547–560.
[35] Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. Machine Learning for Databases. Proc. VLDB Endow. 14, 12 (2021), 3190–3193.
[36] Pengfei Li, Hua Lu, Rong Zhu, Bolin Ding, Long Yang, and Gang Pan. 2023. DILI: A distribution-driven learned index. arXiv preprint

arXiv:2304.08817 (2023).
[37] Qiyan Li, Yuanyuan Zhu, and J. X. Yu. 2020. Skyline Cohesive Group Queries in Large Road-social Networks. 2020 IEEE 36th

International Conference on Data Engineering (ICDE) (2020), 397–408.
[38] Zijian Li, Lei Chen, and Yue Wang. 2019. G*-Tree: An Efficient Spatial Index on Road Networks. 2019 IEEE 35th International

Conference on Data Engineering (ICDE) (2019), 268–279.
[39] Yiding Liu, Kaiqi Zhao, Gao Cong, and Zhifeng Bao. 2020. Online Anomalous Trajectory Detection with Deep Generative Sequence

Modeling. In ICDE. IEEE, 949–960.
[40] Ziyi Liu, Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2023. Multi-constraint shortest path using forest hop labeling. The

VLDB Journal 32, 3 (2023), 595–621.
[41] Qingzhi Ma and Peter Triantafillou. 2019. DBEst: Revisiting Approximate Query Processing Engines with Machine Learning Models. In

SIGMOD Conference. ACM, 1553–1570.
[42] A. Maratea, A. Petrosino, and Mario Manzo. 2017. Extended Graph Backbone for Motif Analysis. Proceedings of the 18th International

Conference on Computer Systems and Technologies (2017).
[43] Sunil Nishad, Shubhangi Agarwal, Arnab Bhattacharya, and Sayan Ranu. 2020. GraphReach: Position-aware graph neural network using

reachability estimations. arXiv preprint arXiv:2008.09657 (2020).

ACM Trans. Spatial Algorithms Syst.

https://computerscience.nmsu.edu/research/technical-reports.html
https://computerscience.nmsu.edu/research/technical-reports.html
https://doi.org/10.1145/3397271.3401063
https://doi.org/10.1103/PhysRevE.71.016127

40 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

[44] D. Orellana and M. Guerrero. 2019. Exploring the influence of road network structure on the spatial behaviour of cyclists using
crowdsourced data. Environment and Planning B: Urban Analytics and City Science 46 (2019), 1314 – 1330.

[45] Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Y. Zhang, and Xuemin Lin. 2020. Progressive Top-K Nearest Neighbors Search in Large
Road Networks. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (2020).

[46] Huiping Cao Qixu Gong and Parth Nagarkar. 2018. Skyline Queries Constrained by Multi-Cost Transportation Networks. Technical
Report TR-CS-NMSU-2018-09-02. Department of Computer Science, New Mexico State University, Las Cruces, New Mexico. https:
//www.cs.nmsu.edu/wp/wp-content/uploads/2018/09/constrainedSkyline_TR.pdf

[47] Michael N Rice and Vassilis J Tsotras. 2012. Exact graph search algorithms for generalized traveling salesman path problems. In
International Symposium on Experimental Algorithms. Springer, 344–355.

[48] Ning Ruan, Ruoming Jin, Guan Wang, and Kun Huang. 2012. Network backbone discovery using edge clustering. arXiv preprint

arXiv:1202.1842 (2012).
[49] Ibrahim Sabek and Mohamed F. Mokbel. 2020. Machine Learning Meets Big Spatial Data. In ICDE. IEEE, 1782–1785.
[50] Peter Sanders and Dominik Schultes. 2005. Highway Hierarchies Hasten Exact Shortest Path Queries. In ESA.
[51] M Ángeles Serrano, Marián Boguná, and Alessandro Vespignani. 2009. Extracting the multiscale backbone of complex weighted networks.

Proceedings of the national academy of sciences 106, 16 (2009), 6483–6488.
[52] Michael Shekelyan, Gregor Jossé, and Matthias Schubert. 2015. Linear path skylines in multicriteria networks. In ICDE. IEEE, 459–470.
[53] Jiachen Shi, Gao Cong, and Xiaoli Li. 2022. Learned Index Benefits: Machine Learning Based Index Performance Estimation. Proc.

VLDB Endow. 15, 13 (2022), 3950–3962.
[54] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. 2021. Masked Label Prediction: Unified Message

Passing Model for Semi-Supervised Classification. In Proceedings of International Joint Conference on Artificial Intelligence, IJCAI 2021,
Zhi-Hua Zhou (Ed.). ijcai.org, 1548–1554. https://doi.org/10.24963/IJCAI.2021/214

[55] Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. 2023. Learned index: A comprehensive experimental evaluation. Proceedings of the VLDB

Endowment 16, 8 (2023), 1992–2004.
[56] Yuan Tian, K. Lee, and W. Lee. 2009. Finding skyline paths in road networks. In GIS ’09.
[57] Yao Tian, Tingyun Yan, Xi Zhao, Kai Huang, and Xiaofang Zhou. 2022. A learned index for exact similarity search in metric spaces.

IEEE Transactions on Knowledge and Data Engineering (2022).
[58] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan Jo, and Joseph Antonakakis. 2019. SkinnerDB: Regret-

Bounded Query Evaluation via Reinforcement Learning. In SIGMOD Conference. ACM, 1153–1170.
[59] Ulrike von Luxburg, Agnes Radl, and Matthias Hein. 2010. Hitting and commute times in large graphs are often misleading. arXiv

preprint arXiv:1003.1266.
[60] Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis. 2005. Geometric containers for efficient shortest-path computation. Journal

of Experimental Algorithmics (JEA) 10 (2005), 1–3.
[61] T. Wang, C. Ren, Y. Luo, and J. Tian. 2019. NS-DBSCAN: A Density-Based Clustering Algorithm in Network Space. ISPRS Int. J. Geo

Inf. 8 (2019), 218.
[62] Yishu Wang, Ye Yuan, Hao Wang, Xiangmin Zhou, Congcong Mu, and Guoren Wang. 2021. Constrained Route Planning over Large

Multi-Modal Time-Dependent Networks. In ICDE. IEEE, 313–324.
[63] Zheng Wang, Cheng Long, and Gao Cong. 2021. Trajectory Simplification with Reinforcement Learning. In ICDE. IEEE, 684–695.
[64] Zheng Wang, Cheng Long, Gao Cong, and Yiding Liu. 2020. Efficient and Effective Similar Subtrajectory Search with Deep Reinforcement

Learning. Proc. VLDB Endow. 13, 11 (2020), 2312–2325.
[65] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-world’networks. nature 393, 6684 (1998), 440–442.
[66] Victor Junqiu Wei, R. C. Wong, and Cheng Long. 2020. Architecture-Intact Oracle for Fastest Path and Time Queries on Dynamic Spatial

Networks. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (2020).
[67] Bin Xu, Jun Feng, and Jiamin Lu. 2018. Continuous Skyline Queries for Moving Objects in Road Network Based on MSO. In Proc. of the

12th Intl. Conf. on Ubiquitous Information Management and Communication (Langkawi, Malaysia) (IMCOM). ACM, Article 53, 6 pages.
https://doi.org/10.1145/3164541.3164634

[68] Bin Yang, Chenjuan Guo, Christian S. Jensen, Manohar Kaul, and Shuo Shang. 2013. Multi-Cost Optimal Route Planning Under
Time-Varying Uncertainty.

[69] Bin Yang, Chenjuan Guo, Christian S. Jensen, Manohar Kaul, and Shuo Shang. 2014. Stochastic skyline route planning under time-varying
uncertainty. 2014 IEEE 30th International Conference on Data Engineering (ICDE) (2014), 136–147.

[70] Peilun Yang, Hanchen Wang, Defu Lian, Ying Zhang, Lu Qin, and Wenjie Zhang. 2022. TMN: Trajectory Matching Networks for
Predicting Similarity. In ICDE. IEEE, 1700–1713.

[71] Yajun Yang, Zhongfei Li, Xin Wang, Qinghua Hu, et al. 2019. Finding the shortest path with vertex constraint over large graphs.
Complexity 2019 (2019).

[72] Yiding Yang, Xinchao Wang, Mingli Song, Junsong Yuan, and Dacheng Tao. 2021. SPAGAN: Shortest path graph attention network.
arXiv preprint arXiv:2101.03464 (2021).

ACM Trans. Spatial Algorithms Syst.

https://www.cs.nmsu.edu/wp/wp-content/uploads/2018/09/constrainedSkyline_TR.pdf
https://www.cs.nmsu.edu/wp/wp-content/uploads/2018/09/constrainedSkyline_TR.pdf
https://doi.org/10.24963/IJCAI.2021/214
https://doi.org/10.1145/3164541.3164634

Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks • 41

[73] Yajun Yang, Hang Zhang, Hong Gao, Qing hua Hu, and Xin Wang. 2020. An Efficient Index Method for the Optimal Route Query over
Multi-Cost Networks. ArXiv abs/2004.12424 (2020).

[74] Man Lung Yiu and N. Mamoulis. 2004. Clustering objects on a spatial network. In SIGMOD ’04.
[75] Juxiang Zeng, Pinghui Wang, Lin Lan, Junzhou Zhao, Feiyang Sun, Jing Tao, Junlan Feng, Min Hu, and Xiaohong Guan. 2022. Accurate

and Scalable Graph Neural Networks for Billion-Scale Graphs. In ICDE. IEEE, 110–122.
[76] Mengxuan Zhang, Lei Li, Wen Hua, Rui Mao, Pingfu Chao, and Xiaofang Zhou. 2021. Dynamic Hub Labeling for Road Networks. 2021

IEEE 37th International Conference on Data Engineering (ICDE) (2021), 336–347.
[77] Songnian Zhang, Suprio Ray, Rongxing Lu, and Yandong Zheng. 2022. Efficient learned spatial index with interpolation function based

learned model. IEEE Transactions on Big Data 9, 2 (2022), 733–745.
[78] Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, and Lizhu Zhou. 2013. G-tree: An efficient index for knn search on road networks. In

Proceedings of the 22nd ACM international conference on Information & Knowledge Management. 39–48.

APPENDIX - DETAILED ANALYSIS OF FACTORS AFFECTING SPQ EVALUATION

To get a better understanding of the factors that affect the performance of Skyline Path Query (SPQ) evaluation, we
conduct a detailed analysis of the relationships between SPQ answers and the characteristics of the underlying
graphs using two real-world road networks, California (L_CAL) with 21,048 nodes and 21,693 edges and a
subgraph of the road network in New York City, (C9_NY_22K) containing 22,000 nodes and 30,900 edges. The
L_CAL and the C9_NY_22K datasets are used in previous works [33] and [38, 78] respectively. These two networks
have a similar size from the perspective of the number of nodes and edges. There is only one cost dimension for
the edges in the original graphs. We generate two more cost dimensions for each edge by letting the cost follow a
uniform distribution in the range of [1,100], which is a commonly used strategy when the evaluation is conducted
on multi-cost road networks [10, 20, 33]. In total, three cost weights are associated with each edge. The detailed
node degree distributions of the two networks are listed in Table 11.

Table 11. Node-degree distribution of two graphs

L_CAL C9_NY_22K

Dregree # of nodes Dregree # of nodes

1 182 1 2,836
2 19,683 2 3,611
3 915 3 10,595

4 255 4 4,843
5 7 5 105
6 5 6 10
8 1 - -

With these two similar size graphs, we conduct a detailed analysis to understand how a SPQ algorithm perfor-
mances differently by running the BBS method. We randomly generate 300 queries on each road network. We
summarize basic statistics of the query results and show them in Table 12.

Table 12. SPQ query performance comparison

L_CAL C9_NY_22K

avg. query time (ms) 2,967 68,056
avg. # of hops of the shortest path 287 92
avg. # of skyline path results 82 1,097
avg. coverage 26% 24%
avg. # of nodes in the results 3% 1.5%
of unfinished queries in 30 min. 0 42

Despite that the two road networks have similar numbers of nodes and edges, the results show a vast difference in
query performance. The query time on C9_NY_22K is almost 23 times more than that for queries on L_CAL. The

ACM Trans. Spatial Algorithms Syst.

42 • Qixu Gong, Huiying Chen, Huiping Cao, and Jiefei Liu

number of the skyline paths returned from C9_NY_22K is 10 times more than that from L_CAL. Even worse, 42
queries cannot finish in half an hour on the C9_NY_22K graph. A major reason behind this performance difference
is that the degree distribution is different. Most of the nodes have degree 2 on the L_CAL, but 3 on the C9_NY_22K
dataset.

We further analyze the average number of nodes that are visited during the query process (avg. coverage) and
the number of distinct nodes showing in the returned paths. The results on these two characteristics are similar.
These results indicate that the query process has similar exploration behavior, and the returned paths consist of
approximately the same sets of nodes. However, when more nodes have a higher degree (even one more), there
are more ways that paths can be constructed because more edges can be selected when a candidate path reaches a
high-degree node. It means the probability that other paths do not dominate the candidate path is high when the
node’s degree is high.

The average length of the shortest paths on all the dimensions is 287 on the L_CAL, which is much higher than
92 on the C9_NY_22K graph. Interestingly, we note that the number of the skylines paths found on L_CAL is 82,
which is much smaller than 1097 on C9_NY_22K. It further confirms that more skyline paths are found when the
nodes have a higher degree, despite that these skyline paths have fewer hops. This detailed analysis shows that the
performance of an SPQ algorithm is highly sensitive to the degree distribution of a network.

Table 13. Analysis of running BBS algorithm on C9_NY_22K

of hops of

shortest paths

Query time

(ms)

of

skyline paths

coverage

(%)

of unfinished

queries

10 4.25 12.88 0.57 -
20 17.69 38.31 1.76 -
30 116.00 64.07 3.37 -
40 455.23 202.59 5.11 -
50 640.65 202.83 8.69 -
60 2459.07 415.63 11.61 -
70 6544.39 613.65 19.28 -
80 11825.90 529.80 23.32 -
90 31577.19 1039.26 29.01 -
100 77220.57 1641.71 36.64 -
110 132296.29 1750.67 46.17 -
120 189357.00 2551.67 46.19 1
130 395374.64 3764.79 59.24 3
140 118297.20 1574.20 48.92 7
150 353904.25 5249.13 62.89 5

We further examine the effect of path hops on the performance of SPQ evaluations by running the BBS method
over C9_NY_22K. The results are reported in Table 13. The results show that the number of path hops profoundly
influences the number of results and the query time. Even when the number of hops increases with 10 more hops,
the query time and the size of the result set can be doubled. For example, when the number of hops increases from
50 to 60, the result size and the query time are increased from 202.83 skyline paths and 640.64 ms to 415.63 paths
and 2459.07 ms (on average) respectively. The number of queries that cannot finish in 30 minutes increases when
the number of hops reaches 140. The query time and the number of skyline paths have a sudden drop at 140 and
jump back at 150. This is due to the increasing number of unfinished queries that lead to more missing results.

We also examine the effect of the node coverage on the query performance. Although BBS uses strategies and
auxiliary structures to reduce the search space [33], its exploration space can still reach up to more than half of the
network nodes. When the number of hops reaches 150, the nodes that are visited during the query process are more
than 60% of the nodes in the network. These statistics show that the number of path hops plays a critical role in
SPQ evaluation. It further confirms the difficulty of improving SPQ algorithms due to high node coverage.

ACM Trans. Spatial Algorithms Syst.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Skyline queries on road networks
	2.2 Location-based queries on road networks
	2.3 Finding backbones on graphs
	2.4 Using machine learning methods in query processing
	2.5 Learned indexes

	3 Terminology and Problem Statement
	3.1 Path domination and skyline path queries
	3.2 Degree pairs and single segments

	4 The Backbone Index
	4.1 Hierarchical summarization
	4.2 Dense local units/clusters at each level
	4.3 Backbone index

	5 Query Processing Algorithm
	6 GNN-based Approaches
	6.1 Construct training instances
	6.2 SP-GNN architecture and its training stage
	6.3 Loss function
	6.4 Search using GNN
	6.5 Transfer SP-GNN model and data augmentation
	6.6 Complexity analysis

	7 Experiments
	7.1 Experimental settings
	7.2 Experimental results of SQP evaluation based on the backbone index
	7.3 Experimental results of SPQ evaluation based on the GNN models
	7.4 Effect of data augmentation
	7.5 Effect of alternative GNN models
	7.6 Use case study

	8 Discussions
	9 Conclusions and Future Work
	Acknowledgments
	References

