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Toeplitz operators is independent of the weight t and obtain 
a local formula for the Helton-Howe trace for all weighted 
Bergman spaces using harmonic analysis and quantization.
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1. Introduction

Toeplitz extensions are fundamental objects in noncommutative geometry. They are 

natural examples of finite summable Fredholm modules and define elements in the cor-

responding K-homology group. Trace on Toeplitz operators has been well studied with 
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many interesting results, cf. [53]. Since the 70s, trace has been employed to extract ge-

ometric information of Toeplitz extension. In particular, Connes [14, Sec. 2., Theorem 

5] used trace on products of semi-commutators to define the Connes-Chern character of 

finite summable extensions.

For the unit disk D in C, let L2
a(D) be the Bergman space of L2 analytic functions 

on D. Given f ∈ C ∞(D), let T
(0)
f be the Toeplitz operator on L2

a(D) associated to 

the symbol f . The commutator [T
(0)
f , T

(0)
g ] := T

(0)
f T

(0)
g − T

(0)
g T

(0)
f for f, g ∈ C ∞(D) is 

a trace class operator. Helton and Howe [30] discovered an interesting formula for the 

commutator

Tr
(
[T

(0)
f , T (0)

g ]
)

=
1

2π
√

−1

∫

D

df ∧ dg.

The above result is deeply connected to the Pincus function for a pair of noncommuting 

selfadjoint operators, cf. [10,11,42].

Let Bn be the open unit ball of C
n and Sn = ∂Bn the unit sphere. For Bn, the 

commutator [T
(0)
f , T

(0)
g ] for two Toeplitz operators with smooth symbols f, g on L2

a(Bn)

is a Schatten-p class operator for p > n. Suppose f1, ..., f2n ∈ C ∞(Bn). Then the product 

of the commutators

[T
(0)
f1

, T
(0)
f2

] · · · [T
(0)
f2n−1

, T
(0)
f2n

]

may not be a trace class operator. Helton and Howe [31,33] made a breakthrough by 

considering the antisymmetric sum of T
(0)
f1

, ..., T
(0)
f2n

defined by

[T
(0)
f1

, ..., T
(0)
f2n

] :=
∑

τ∈S2n

sgn(τ)T
(0)
fτ(1)

T
(0)
fτ(2)

...T
(0)
fτ(2n)

,

where S2n is the permutations group of 2n elements and sgn is the sign of the permutation 

τ . The following is a remarkable generalization of the Helton-Howe trace formula for the 

commutator of two Toeplitz operators on L2
a(D).

Theorem 1.1 (Helton-Howe). On the Bergman space L2
a(Bn) (and the Hardy space 

H2(Sn)), the antisymmetric sum [T
(0)
f1

, ..., T
(0)
f2n

] is a trace class operator, and

Tr
(
[T

(0)
f1

, ..., T
(0)
f2n

]
)

=
n!

(2π
√

−1)n

∫

Bn

df1 ∧ df2 ∧ · · · ∧ df2n. (1.1)

We observe that by Stoke’s theorem, the above integral only depends on the value of 

f1, ..., f2n on the unit sphere Sn = ∂Bn, i.e.

n!

(2π
√

−1)n

∫

Bn

df1 ∧ df2 ∧ · · · ∧ df2n =
n!

(2π
√

−1)n

∫

Sn

f1df2 ∧ · · · ∧ df2n.
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The above idea of Schatten-p commutators was revolutionized by Connes [14] into a 

fundamental concept in noncommutative geometry as p-summable Fredholm modules. 

And the Helton-Howe trace formula in Theorem 1.1 inspired Connes to his ingenious dis-

covery of cyclic cohomology and the Chern character for p-summable Fredholm modules. 

The building block of the Connes-Chern character is the semi-commutator

σt(f, g) = T
(t)
f T (t)

g − T
(t)
fg .

Modulo constants, the Connes-Chern character for the Toeplitz extension is defined to 

be

τt(f1, · · · , f2p) := Tr
(
σt(f1, f2)...σt(f2p−1, f2p)

)
− Tr

(
σt(f2, f3)...σt(f2p, f1)

)
, (1.2)

for p > n. And the Helton-Howe trace, Equation (1.1), is the top degree component 

of the above Connes-Chern character. Through out this paper, for the formula of τt, 

we have used {f1, · · · , f2p} instead of {f0, · · · , f2p−1}, a different one from the classical 

convention, cf. [14], to make its appearance compatible with the Helton-Howe trace 

formula.

Connes observed that the above cocycle in general is not local, i.e. the value of 

τt(f1, · · · , f2p) can not be expressed by the germ of f1 ⊗ · · · ⊗ f2p on the diagonal in

Bn × · · · × Bn︸ ︷︷ ︸
2p

.

Connes [15,16] improved the Chern character, Equation (1.2), by employing the Dixmier 

trace on the operator ideal L1,∞. In a series of works, Engliš and his coauthors, e.g. 

[22,23,25,26], studied a generalization of the Helton-Howe trace formula by considering 

the Dixmier trace on the product

[T
(0)
f1

, T
(0)
f2

] · · · [T
(0)
f2n−1

, T
(0)
f2n

].

They expressed the Dixmier trace of the above product as an integral of the product of 

Poisson brackets between f2k−1 and f2k, k = 1, · · · , n.

In this article, we take a different approach to study the Connes-Chern character (1.2)

and the Helton-Howe trace, Theorem 1.1. Our main idea is to put the Bergman space 

and Hardy space into the family of weighted Bergman spaces L2
a(Bn, λt) := L2

a,t(Bn) for 

the measure

dλt(z) =
(n − 1)!

πnB(n, t + 1)
(1 − |z|2)tdm(z),

where B(n, t + 1) is the Beta function. Let T
(t)
f be the associated Toeplitz operator on 

L2
a,t(Bn) with symbol f . We study the large t behavior of the Connes-Chern character 

and the Helton-Howe trace.
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Our first result is about the Helton-Howe trace for T
(t)
f1

, . . . , T
(t)
f2n

for functions 

f1, . . . , f2n ∈ C 2(Bn), which generalizes Theorem 1.1 to all weighted Bergman spaces.

Theorem 1.2. (Theorem 8.1) Suppose f1, f2, . . . , f2n ∈ C 2(Bn) and t ≥ −1.

1. [T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] is in the trace class S1.

2.

Tr[T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] =
n!

(2πi)n

∫

Bn

df1 ∧ df2 ∧ . . . ∧ df2n, (1.3)

which is independent of t.

Thanks to the use of pseudodifferential calculus and its generalization in the proof, 

Helton-Howe’s original theorem needs to assume that the pseudodifferential operators 

have smooth symbols. For smooth symbols, Theorem 8.1 might be known to some experts 

(cf. [22,32]). In this paper, we develop a new approach to study the trace formula using 

harmonic analysis. As a result, we obtain an improvement of the Helton-Howe trace 

formula for Toeplitz operators with C 2 symbols.

Our second result is about the Connes-Chern character τt(f1, . . . , f2p) for f1, . . . , f2p ∈
C 2(Bn). Different from the Helton-Howe trace, τt vanishes as t goes to ∞. In the following 

theorem, we identify the leading term of τt as t → ∞.

Theorem 1.3. (Theorem 8.6) Suppose p ≥ n +1 is an integer and f1, f2, . . . , f2p ∈ C 2(Bn). 

Set f2p+1 := f1. Then

lim
t→∞

tp−nτt(f1, f2, . . . , f2p)

=
np

πn

∫

Bn

( p∏

j=1

C1(f2j−1, f2j)(z) −
p∏

j=1

C1(f2j , f2j+1)(z)

)
dm(z)

(1 − |z|2)n+1
,

where C1(f, g) is defined as follows,

C1(f, g)(z) = − 1

n
(1 − |z|2)

[ n∑

i=1

∂if(z)∂̄ig(z) − Rf(z)R̄g(z)

]
,

R =

n∑

i=1

zi∂zi
, R =

n∑

i=1

z̄i∂zi
. (1.4)

Our approach to the above two main theorems is heavily influenced by the idea of 

quantization, [6,8,9,12,17–20]. Geometrically the defining function ψ = 1 − |z|2 on Bn

defines the Bergman metric in the following way.
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ω :=i
−ψ∂∂̄ψ + ∂ψ ∧ ∂̄ψ

ψ2

=i
(1 − |z|2)

∑n
j=1 ∂zj ∧ ∂̄z̄j + (

∑
j z̄j∂zj) ∧ (

∑
j′ zj′ ∂̄z̄j′)

(1 − |z|2)2

defines a symplectic form on Bn, cf. [37, Prop. 2.6]. The Toeplitz operator T
(t)
f gives a 

quantization of the symplectic form iω, e.g. [20, Theorem 3], satisfying

||T (t)
f T (t)

g −
k∑

j=0

t−jT
(t)
Cj(f,g)|| = O(t−k−1), t → ∞, (1.5)

and the Cj are bilinear operators discussed later in Section 6, and C1 is defined in 

Equation (1.4). The asymptotic expansion formula (1.5) provides the key tool to study 

the semi-commutator

σt(f, g) = T
(t)
f T (t)

g − T
(t)
fg ,

and therefore also the commutator [T
(t)
f , T

(t)
g ], since

[T
(t)
f , T (t)

g ] = T
(t)
f T (t)

g − T (t)
g T

(t)
f = σt(f, g) − σt(g, f).

The asymptotic expansion formula (1.5) in the literature, e.g. [20], was well studied for 

estimates on the operator norm. Estimates about the Schatten-p norm in the expansion 

(1.5) are needed in our applications to the tracial property in Theorem 1.2 and 1.3. We 

prove these estimates in Theorem 6.3. As we need to study Toeplitz operators with C 2

symbols in Theorem 1.2 and 1.3 and an estimate on Schatten-p norm in Theorem 6.3, 

we need a new method to develop the asymptotic estimate in Theorem 6.3 different 

from the classical method via pseudodifferential/Toeplitz operator calculus [7,8,18,20,

22,23,25,26,35], which requires to work with smooth symbols. Our main tool comes from 

integration formulas in Lemma 2.10 and Lemma 2.15 developed in Section 4 of [47]. 

Theorem 1.3 follows from the Schatten-p estimate of the semi-commutator σt(f, g). As 

a byproduct, our method also provides an explicit algorithm to compute the bilinear 

differential operator Cj in the asymptotic expansion (1.5), which is in general hard to 

compute.

A crucial fact used in our estimate is the different behavior of the quantization in 

complex normal and complex tangential directions (see Remark 6.4 and Corollaries 6.7

and 6.8). Roughly speaking, in the term Iei1,...,ik+1
,ej1,...,jk+1 (z − w) that appears in the 

quantization formula (6.6) (especially in (6.7)), the Schatten-p membership improves by 
1
2 for each ei, ej in the complex tangential direction, whereas improves by 1 for each 

ei, ej in the complex normal direction. Essentially, this allows us to reduce our estimates 

to the complex tangential direction (see Lemma 2.2 (6) and the proof of Lemma 6.1). 

In contrast, in pseudodifferential calculous, Helton and Howe [31] considered symbol 
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functions that are homogeneous of order 0 in the ξ variable far away from the zero section 

of the cotangent bundle, which simplifies the corresponding estimates. The difference 

between tangential and radial estimates suggests a deep link of our study with the 

Heisenberg calculus for contact manifolds, e.g. [5,32,43,48].

Instead of a direct computation as in [31], we prove Theorem 1.2 in two steps. Take 

the t > −1 case for example. Suppose f1, f2, . . . , f2n ∈ C 2(Bn). We prove the following.

1.

Tr[T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] = Tr[T
(t+1)
f1

, T
(t+1)
f2

, . . . , T
(t+1)
f2n

]. (1.6)

2.
lim

s→∞
Tr[T

(s)
f1

, . . . , T
(s)
f2n

] =
n!

(2πi)n

∫
df1 ∧ . . . ∧ df2n. (1.7)

Again, the proof of Equation (1.6) takes two steps.

(a)

Tr
{

[T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] − [T
(t+1,t)
f1

, T
(t+1,t)
f2

, . . . , T
(t+1,t)
f2n

]
}

= 0. (1.8)

(b)
Tr[T

(t+1,t)
f1

, . . . , T
(t+1,t)
f2n

] = Tr[T
(t+1)
f1

, . . . , T
(t+1)
f2n

]. (1.9)

Here the operator T
(t+1,t)
fi

is the restriction of T
(t+1)
fi

on L2
a,t(Bn). It serves as a bridge 

between the weighted spaces L2
a,t(Bn) and L2

a,t+1(Bn). The proof of (1.8) is quite com-

plicated and lengthy. We give it in Section 5. Let us briefly sketch the proof. First, 

we apply the integration formula in Lemma 2.14 and get the decomposition formula 

T
(t)
fi

= T
(t+1,t)
fi

+ Bi in Lemmas 5.5 and 5.7. We observe that T
(t+1,t)
fi

is the “principal 

part” of T
(t)
fi

for fi ∈ C 2(Bn). We point out that the “minor part” Bi does not live in 

Schatten class Sp for p small enough. This fact prevents us from proving (1.8) only using 

operator-theoretic tools. Then we develop Hypotheses A which handles the operator-

theoretic part of the proof of (1.8), and Hypotheses B, where the rest is handled. The 

proof of (1.9) is an application of Lemma 2.4. Note that [T
(t+1,t)
f1

, . . . , T
(t+1,t)
f2n

] is the 

restriction of [T
(t+1)
f1

, T
(t+1)
f2

, . . . , T
(t+1)
f2n

] on L2
a,t(Bn). This is done in Section 8, in the 

proof of Theorem 8.1, after we obtain the trace class membership of [T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

]

and prove (1.7) in Corollary 7.7.

Equation (1.7) is proved in Section 7. The proof relies heavily on the Toeplitz 

quantization formula and their asymptotic Schatten-norm estimates developed in Sec-

tion 6. To see the cancellations more clearly (and potentially give new geometric in-

variants) we introduce first and second partial antisymmetrizations in Section 7. For 

f1, ..., fn, g1, ..., gn ∈ L∞(Bn), define

[f1, g1, . . . , fn, gn]fst
t =

∑

τ∈Sn

sgn(τ)σt(fτ(1), g1) . . . σt(fτ(n), gn),
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and

[f1, g1, . . . , fn, gn]scd
t =

∑

τ∈Sn

sgn(τ)σt(f1, gτ(1)) . . . σt(fn, gτ(n)).

After a full antisymmetrization they become a constant multiple of [T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

]. 

We observe that in general the product

σt(f1, f2) . . . σt(f2n−1, f2n)

is not a trace class operator (cf. Remark 7.6). Thus the fact that each [T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

], 

or the partial antisymmetric sums belong to the trace class is already nontrivial. Besides 

the quantization this fact also relies on a further antisymmetrization over the complex 

tangential direction (see Equation (7.9)). This leads to the following.

Theorem 1.4. (Theorem 7.3) Suppose t ≥ −1 and f1, g1, . . . , fn, gn ∈ C 2(Bn). Then the 

partial antisymmetrizations [f1, g1, . . . , fn, gn]fst
t and [f1, g1, . . . , fn, gn]scd

t are in the trace 

class. Moreover,

lim
t→∞

Tr[f1, g1, . . . , fn, gn]fst
t = lim

t→∞
Tr[f1, g1, . . . , fn, gn]scd

t

=
1

(2πi)n

∫

Bn

∂f1 ∧ ∂̄g1 ∧ . . . ∧ ∂fn ∧ ∂̄gn.

As a corollary of Theorem 1.4, we obtain Equation (1.7) by further antisymmetrization 

of the first (second) antisymmetric sums. Altogether, Equations (1.6) and (1.7) imply 

Theorem 1.2.

The proofs of Theorem 1.3 and 1.4 both involve quantization with asymptotic 

Schatten-norm estimates. In Theorem 1.3, we need to assume that p is greater than 

or equal to n + 1 in order for the Connes-Chern character to be well defined. This as-

sumption simplifies the estimates in its proof. In Theorem 1.4, there are only 2n functions 

in [f1, g1, . . . , fn, gn]fst
t and [f1, g1, . . . , fn, gn]scd

t . The finiteness of these traces requires 

a careful proof. To prove Theorem 1.4, we need to consider antisymmetrization over all 

the complex tangential directions (i.e. Equation (7.9)).

Our proof of the generalized Helton-Howe trace formula through quantization is closely 

related to the method developed in [9] for a solution to the Atiyah-Weinstein conjecture 

for quantized contact transform. Such a similarity suggests that our developments can 

be generalized to strongly pseudoconvex domains, egg domains, Fock spaces, submodules 

and their quotient modules of L2
a,t(Bn), e.g. [27], and the Dury-Arveson spaces. More 

generally, we hope that our study will shed a light on constructing new cyclic cocy-

cles beyond the Helton-Howe traces, which could have applications in noncommutative 

geometry.
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The paper is organized as follows. In Section 2, we recall the definitions of weighted 

Bergman spaces and Hardy spaces together with their basic properties and properties of 

Schatten p-class operators. Some tools developed in [47] are also reviewed. In Section 3, 

we develop criteria for integral operators to be bounded between different weighted spaces 

L2
a,t(Bn). We develop some useful estimate for integral operators to belong to Schatten-p

class in Section 4. In Section 5, we prove Equation (1.8). We develop the asymptotic 

expansion formula and its Schatten norm estimates in Section 6. We introduce the first 

and second antisymmetrization and prove Theorem 7.3 and Equation (1.7) in Section 7. 

The two main theorems, Theorems 1.2 and 1.3, are proved in Section 8.
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2. Preliminaries

In this section, we recall some basic definitions and properties about weighted 

Bergman spaces and Schatten-p class operators.

2.1. Spaces on Bn

Recall that Bn is the open unit ball of Cn and Sn = ∂Bn is the unit sphere. Let m

be the Lebesgue measure and σ be the surface measure on Sn. Denote σ2n−1 = σ(Sn) =
2πn

(n−1)! .

Hardy Space: The Hardy space H2(Sn) is the Hilbert space of holomorphic functions on 

Bn with the norm

‖f‖2
H2(Sn) = sup

0<r<1

∫

Sn

|f(rz)|2 dσ(z)

σ2n−1
.

Equivalently, H2(Sn) is the closure of analytic polynomials in L2(Sn) := L2(Sn, dσ
σ2n−1

). 

The Hardy space is a reproducing kernel Hilbert space on Bn and the reproducing kernel 

is

K(−1)
w (z) =

1

(1 − 〈z, w〉)n
, ∀w ∈ Bn.

For any f ∈ L∞(Sn), the Toeplitz operator on H2(Sn) with symbol f is defined to be 

the compression
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T
(−1)
f = P (−1)Mf |H2(Sn),

where Mf is the pointwise multiplication on L2(Sn), and P (−1) is the orthogonal pro-

jection from L2(Sn) onto H2(Sn). Using the reproducing kernel, we can write T
(−1)
f as 

an integral operator. For h ∈ H2(Sn),

T
(−1)
f h(z) =

∫

Sn

f(w)h(w)K(−1)
w (z)

dσ(z)

σ2n−1
, ∀z ∈ Bn.

Our discussion will also involve Hankel operators. The Hankel operator with symbol f

is

Hf = (I − P (−1))Mf P (−1)

from H2(Sn) to L2(Sn).

Weighted Bergman Spaces: For t > −1, define the probability measure on Bn:

dλt(z) =
(n − 1)!

πnB(n, t + 1)
(1 − |z|2)tdm(z).

Here B(n, t + 1) is the Beta function. The weighted Bergman space L2
a,t(Bn) is the 

subspace of L2(Bn, λt) consisting of holomorphic functions on Bn. The reproducing kernel 

of L2
a,t(Bn) is

K(t)
w (z) =

1

(1 − 〈z, w〉)n+1+t
, ∀w ∈ Bn.

For any f ∈ L∞(Bn), the Toeplitz operator T
(t)
f is the compression

T
(t)
f = P (t)M

(t)
f |L2

a,t(Bn),

where P (t) is the orthogonal projection from L2(Bn, λt) onto L2
a,t(Bn), and M

(t)
f is the 

multiplication operator on L2(Bn, λt). The Hankel operator with symbol f is

H
(t)
f = (I − P (t))M

(t)
f P (t).

Using the reproducing kernels, we can write T
(t)
f , H

(t)
f as integral operators. For h ∈

L2
a,t(Bn), we have the following expressions,

T
(t)
f h(z) =

∫

Bn

f(w)h(w)K(t)
w (z)dλt(w), ∀z ∈ Bn,
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H
(t)
f h(z) =

∫

Bn

(
f(z) − f(w)

)
h(w)K(t)

w (z)dλt(w), ∀z ∈ Bn.

For various reasons including the forms of the reproducing kernels, the Hardy space is 

often regarded as the t = −1 Bergman space. The two spaces can have distinct properties 

in many ways. But most of the results we prove in this paper will hold for both t = −1

and t > −1. However in spite of the similarities in these results, the two cases generally 

require separate (although similar) formulations and proofs. We will generally present 

them one after the other and note that when we do it.

An important tool on Bn is the Möbius transform.

Definition 2.1. For z ∈ Bn, z 
= 0, the Möbius transform ϕz is the biholomorphic mapping 

on Bn defined as follows.

ϕz(w) =
z − Pz(w) − (1 − |z|2)1/2Qz(w)

1 − 〈w, z〉 , ∀w ∈ Bn.

Here Pz and Qz denote the orthogonal projection from Cn onto Cz and z⊥, respectively. 

Define

ϕ0(w) = −w, ∀w ∈ Bn.

It is well-known that ϕz is an automorphism of Bn satisfying ϕz ◦ ϕz = Id. Also, the 

two variable function ρ(z, w) := |ϕz(w)| = |ϕw(z)| defines a metric on Bn. Moreover, 

β(z, w) := tanh−1 ρ(z, w) coincides with the Bergman metric on Bn.

We list some lemmas that serve as basic tools on Bn. Most of the following can be 

found in [44,52]. Some are proved in our paper [47].

For non-negative values A, B, by A � B we mean that there is a constant C such that 

A ≤ CB. Sometimes, to emphasize that the constant C depends on some parameter a, 

we write A �a B. The notations �, �a, ≈, ≈a are defined similarly.

Lemma 2.2. ([47, Lemma 2.2]) Suppose z, w, ζ ∈ Bn.

(1) 1
1−〈ϕζ(z),ϕζ(w)〉 = (1−〈z,ζ〉)(1−〈ζ,w〉)

(1−|ζ|2)(1−〈z,w〉) .

(2) 1 − |ϕz(w)|2 = (1−|z|2)(1−|w|2)
|1−〈z,w〉|2 .

(3) For any R > 0 we have

1 − |z|2
1 − |w|2 ≈R 1,

|1 − 〈z, ζ〉|
|1 − 〈w, ζ〉| ≈R 1

whenever β(z, w) < R and ζ ∈ Bn.

(4) The real Jacobian of ϕz is (1−|z|2)n+1

|1−〈z,·〉|2n+2 on Bn and (1−|z|2)n

|1−〈z,·〉|2n on Sn.
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(5) For z ∈ Bn,

z − ϕz(w) =
(1 − |z|2)Pz(w) + (1 − |z|2)1/2Qz(w)

1 − 〈w, z〉 :=
Azw

1 − 〈w, z〉 ,

where Az = [aij
z ] is an n × n matrix depending on z, and w is viewed as a column 

vector.

(6) For any z ∈ Bn, z 
= 0,

|z − Pz(w)| ≤ |ϕz(w)||1 − 〈z, w〉|, |Qz(w)| � |ϕz(w)||1 − 〈z, w〉|1/2, (2.1)

and

|z − w| � |ϕz(w)||1 − 〈z, w〉|1/2. (2.2)

If n = 1, then Qz is identically zero, and the definition of ϕz(w) directly gives 

|z − w| = |ϕz(w)||1 − zw̄|.
(7) 1 − |z|2 ≤ 2|1 − 〈z, w〉| for all z, w ∈ Bn.

Lemma 2.3. ([47, Lemma 2.4])

(1) Suppose t > −1, c ∈ R. Then

∫

Bn

(1 − |w|2)t

|1 − 〈z, w〉|n+1+t+c
dm(w) �t,c

⎧
⎪⎪⎨
⎪⎪⎩

(1 − |z|2)−c, c > 0,

ln 1
1−|z|2 , c = 0,

1, c < 0,

(2.3)

and

∫

Sn

1

|1 − 〈z, w〉|n+c
dσ(w) �t,c

⎧
⎪⎪⎨
⎪⎪⎩

(1 − |z|2)−c, c > 0,

ln 1
1−|z|2 , c = 0,

1, c < 0,

(2.4)

for any z ∈ Bn.

(2) Suppose t > −1, a, b, c > 0, a ≥ c, b ≥ c, and a + b < n + 1 + t + c. Then for any 

z, ξ ∈ Bn,

∫

Bn

(1 − |w|2)t

|1 − 〈z, w〉|a|1 − 〈w, ξ〉|b dm(w) �a,b,c,t
1

|1 − 〈z, ξ〉|c . (2.5)

(3) Suppose φ : (0, 1) → [0, ∞) is measurable. Suppose a > −n, b ∈ R, and

φ(s) � sa(1 − s)b, s ∈ (0, 1).
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Then for any t > −1 − b, c > −b there exists C > 0 such that for any z ∈ Bn,

∫

Bn

φ(|ϕz(w)|2)
(1 − |w|2)t

|1 − 〈z, w〉|n+1+t+c
dm(w) ≤ C(1 − |z|2)−c. (2.6)

Lemma 2.4. Suppose s > t ≥ −1 and T is a bounded operator on L2
a,s(Bn). Sup-

pose L2
a,t(Bn) is invariant under T . Denote T̂ its restriction to L2

a,t(Bn). By the 

closed graph theorem, T̂ is bounded on L2
a,t(Bn). Assume that T ∈ S1

(
L2

a,s(Bn)
)

and 

T̂ ∈ S1
(
L2

a,t(Bn)
)
. Then

TrT = TrT̂ .

Proof. The set {zα}α∈Nn
0

forms an orthogonal basis of both L2
a,s(Bn) and L2

a,t(Bn). For 

α ∈ N
n
0 , we write

Tzα = T̂ zα =
∑

β∈Nn
0

aα,βzβ .

Compute the traces of T and T̂ as follows.

TrT =
∑

α∈Nn
0

〈Tzα, zα〉L2
a,s(Bn)

‖zα‖2
L2

a,s(Bn)

=
∑

α∈Nn
0

aα,α〈zα, zα〉L2
a,s(Bn)

‖zα‖2
L2

a,s(Bn)

=
∑

α∈Nn
0

aα,α

=
∑

α∈Nn
0

〈T̂ zα, zα〉L2
a,t(Bn)

‖zα‖2
L2

a,t(Bn)

= TrT̂ .

This completes the proof of Lemma 2.4. �

2.2. Schatten class operators

For p > 0, a bounded operator T on a Hilbert space H is said to be in the Schatten-p

class Sp if |T |p belongs to the trace class. The Schatten-p class operators Sp are analogues 

of lp spaces in the operator-theoretic setting. Conventionally, S∞ denotes the space of 

compact operators. The following two lemmas will be used constantly.

Lemma 2.5. ([46, Theorem 2.8]) Suppose A, B are bounded operators on a Hilbert space, 

and 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1
r . If A ∈ Sp and B ∈ Sq, then
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AB ∈ Sr, and ‖AB‖Sr ≤ ‖A‖Sp‖B‖Sq .

Lemma 2.6. ([46, Corollary 3.8]) Suppose A, B are bounded operators on a Hilbert space. 

If both AB and BA are in the trace class then TrAB = TrBA or equivalently,

Tr[A, B] = 0.

Remark 2.7. Suppose n > 1 and X1, X2, . . . , Xn are bounded operators on a Hilbert 

space such that

Xi ∈ Sp, ∀p > n,

and there exists j ∈ {1, . . . , n} such that Xj is in Sp for some p < n. Then we can choose 

p1, . . . , pj−1, pj+1, . . . , pn > n and 1 ≤ pj < n such that

Xi ∈ Spi , i = 1, . . . , n, and
1

p1
+

1

p2
+ . . . +

1

pn
= 1.

By an inductive application of Lemma 2.5 we have

X1X2 . . . Xn ∈ S1.

Moreover, by Lemma 2.6, for any k = 1, . . . , n,

TrX1X2 . . . Xn = TrXkXk+1 . . . XnX1 . . . Xk−1.

This will be used repeatedly in this paper.

2.3. Integration by parts

Some integral formulas developed in [47] will be used in our proofs. These formulas 

come from a generalized version of the Bochner-Martinelli formula in several complex 

variables and are essential to the proof of Equation (1.8) in Section 5 and the Toeplitz 

quantization formulas in Lemma 6.1. We give a brief review here. Some further remarks 

about these formulas are given in Remarks 2.11, 2.12 and 2.13. Let us start with intro-

ducing some auxiliary functions and operations.

Recall that by Lemma 2.2 (5), for z ∈ Bn,

(1 − |z|2)Pz(w) + (1 − |z|2)1/2Qz(w) = (1 − 〈w, z〉)(z − ϕz(w)) = Azw,

where Az is an n × n matrix depending on z, and w is treated as a column vector. In 

particular, if z = (z1, 0, . . . , 0) and w = (w1, . . . , wn) then

Azw =
(

(1 − |z1|2)w1, (1 − |z1|2)1/2w2, . . . , (1 − |z1|2)1/2wn

)
.
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Definition 2.8. For multi-indices α, β ∈ N
n
0 and ζ ∈ C

n, denote

Iα,β(ζ) = ζαζ̄β .

Suppose z ∈ Bn, define

dα,β(z) =

∫

Sn

Iα,β (Azζ)
dσ(ζ)

σ2n−1
.

In particular, d0,0 = 1, and

dα,β(z) = δα,β(1 − |z|2)α1+|α| (n − 1)!α!

(n − 1 + |α|)! , if z = (z1, 0, . . . , 0). (2.7)

Definition 2.9. For t ∈ R, denote

φt(s) = (1 − s)t.

Suppose φ : (0, 1) → [0, ∞) is a measurable function. For a positive integer m and any 

t > −1, define the operations on φ

F (t)
m φ(s) =

1∫

s

rm−1φ(r)(1 − r)tdr ∈ [0, ∞], (2.8)

and

G(t)
m φ(s) =

1

smφt+1(s)
F (t)

m φ(s) =

∫ 1

s
rm−1φ(r)(1 − r)tdr

sm(1 − s)t+1
∈ [0, ∞]. (2.9)

For any t > −1, inductively define the functions

Φ
(t)
n,0 ≡ 1, Φ

(t)
n,k+1 = Mφ1

(
G(t)

n+k

)2
Φ

(t)
n,k.

Equivalently,

Φ
(t)
n,k = Mφ1

(
G(t)

n+k−1

)2
. . . Mφ1

(
G(t)

n

)2
Φ

(t)
n,0. (2.10)

Lemma 2.10. ([47, Lemma 4.2]) Suppose t > −1, α, β ∈ N
n
0 . Suppose φ : (0, 1) → [0, ∞)

is measurable and v ∈ C 1(Bn). Then the following hold.

1. If |α| ≥ |β| and all integrals converge absolutely, then

∫

Bn

φ(|ϕz(w)|2)Iα,β(z − w)v(w)K(t)
w (z)dλt(w) (2.11)
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dα,β(z)
B(n,t+1) · F (t)

n+|β|φ(0)v(z)

−
∑n

j=1

∫
Bn

G(t)
|β|+nφ(|ϕz(w)|2)Iα,β+ej (z − w)Sj(w)K

(t)
w (z)dλt(w),

v(z) 
= 0, F (t)
n+|β|φ(0) < ∞,

−
∑n

j=1

∫
Bn

G(t)
|β|+nφ(|ϕz(w)|2)Iα,β+ej (z − w)Sj(w)K

(t)
w (z)dλt(w),

v(z) = 0, F (t)
n+|β|φ(0) ≤ ∞,

where

Sj(w, z) =
(1 − |w|2)∂̄wj

[
(1 − 〈z, w〉)|β|v(w)

]

(1 − 〈w, z〉)(1 − 〈z, w〉)|β|
.

2. If |α| ≤ |β| and all integrals converge absolutely, then

∫

Bn

φ(|ϕz(w)|2)Iα,β(z − w)v(z)K(t)
w (z)dλt(z) (2.12)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dα,β(w)
B(n,t+1) · F (t)

n+|α|φ(0)v(w)

+
∑n

i=1

∫
Bn

G(t)
|α|+nφ(|ϕz(w)|2)Iα+ei,β(z − w)S̃i(z)K

(t)
w (z)dλt(z),

v(w) 
= 0, F (t)
n+|α|φ(0) < ∞,

∑n
i=1

∫
Bn

G(t)
|α|+nφ(|ϕz(w)|2)Iα+ei,β(z − w)S̃i(z)K

(t)
w (z)dλt(z),

v(w) = 0, F (t)
n+|α|φ(0) ≤ ∞,

where

S̃i(z, w) =
(1 − |z|2)∂zi

[
(1 − 〈z, w〉)|α|v(z)

]

(1 − 〈w, z〉)(1 − 〈z, w〉)|α|
.

Remark 2.11. For readers who are familiar with the computation of currents, when z = 0, 

Formula (2.11) can be abstracted into an equation of the following form

∂̄
[
Iα,β(w)Ψ(|w|2) ∧ ∂|w|2 ∧

(
∂∂̄|w|2

)n−1
]

= cδ0 + Iα,β(w)Φ(|w|2)
(
∂∂̄|w|2

)n
.

And the operations F (t), G(t) come from solving Ψ and c from the equation above. Here 

δ0 is the point mass at the origin. From this point of view we see Formula (2.11) can be 

used the same way as Cauchy’s formula or the Bochner-Martinelli formula — to solve 

∂̄-equation of some sort.

Remark 2.12. We observe that on the right hand side of Formula (2.11), the function v

is differentiated, while the weight is improved by 1 (the term “(1 − |w|2)” in Sj(w, z)
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adds to the weight). For this reason we consider it as integration by parts. Also observe 

the resemblance of the integrals on both sides of (2.11) and (2.12). This resemblance 

allows us to iterate them. In fact, this is exactly how we get the quantization formulas 

in Lemma 6.1 — by iterating the formulas above.

Remark 2.13. There is one more benefit of the formulas. Technically, it is easier to 

work with integral operators with higher weights to study their boundedness, Schatten-

class membership, etc.. Applying the integral formula on a Toeplitz operator increases 

the weight by 1. This improvement offers more flexibility in analyzing these operators. 

Moreover, since the weight goes up by 1, the integral formula builds a bridge between 

Toeplitz operators on different weighted Bergman spaces. This idea plays a crucial role 

in Section 5, where we give the proof of Equation (1.8).

A particular case is to take α = β = 0, z = 0, φ = 1 in (2.11), which gives the 

following. The estimates (2) and (3) are straightforward to verify.

Lemma 2.14. For any t > −1 the following hold.

(1) For any v ∈ C 1(Bn),

∫

Bn

v(z)dλt(z) = v(0) +
t + 1

n + t + 1

∫

Bn

G(t)
n 1(|z|2)R̄v(z)dλt+1(z). (2.13)

(2) G(t)
n 1(s) ≈ s−n in a neighborhood of 0, and lims→1− G(t)

n 1(s) = 1
t+1 .

(3) |G(t)
n 1(s) − 1

t+1 | � 1 − s for s in a neighborhood of 1.

Lemma 2.15. ([47, Lemma 4.6]) Suppose α, β ∈ N
n
0 , and v ∈ C 1(Bn). Then the following 

hold.

1. If |α| ≥ |β|, then

∫

Sn

Iα,β(z − w)v(w)K(−1)
w (z)

dσ(w)

σ2n−1
(2.14)

=dα,β(z)v(z)

− 1

n

n∑

j=1

∫

Bn

|ϕz(w)|−2|β|−2nIα,β+ej (z−w)
∂̄j

[
(1−〈z, w〉)|β|v(w)

]

(1−〈z, w〉)|β|(1−〈w, z〉)K(−1)
w (z)dλ0(w).

2. If |α| ≤ |β|, then

∫

Sn

Iα,β(z − w)v(z)K(−1)
w (z)

dσ(z)

σ2n−1
(2.15)
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=dβ,α(w)v(w)

+
1

n

n∑

i=1

∫

Bn

|ϕz(w)|−2|α|−2nIα+ei,β(z−w)
∂i

[
(1−〈z, w〉)|α|v(z)

]

(1−〈z, w〉)|α|(1−〈w, z〉)K(−1)
w (z)dλ0(z).

Lemma 2.16. ([47, Lemma 4.3]) Suppose k is a non-negative integer and Γ ⊂ N
n
0 × N

n
0

is a finite set of multi-indices with |α| = |β| = k for every (α, β) ∈ Γ. Suppose for some 

ε > −1 − t, {Fα,β}(α,β)∈Γ ⊂ C 2(Bn × Bn) and

∣∣∣∣
∑

(α,β)∈Γ

Iα,β(z − w)Fα,β(z, w)

∣∣∣∣ � |ϕz(w)|2k|1 − 〈z, w〉|2k+ε, (2.16)

∣∣∣∣
n∑

j=1

∑

(α,β)∈Γ

Iα,β+ej (z − w)∂̄wj
Fα,β(z, w)

∣∣∣∣ � |ϕz(w)|2k+1|1 − 〈z, w〉|2k+ε. (2.17)

Then

∫

B2
n

Φ
(t)
n,k(|ϕz(w)|2)

∑
(α,β)∈Γ Iα,β(z − w)Fα,β(z, w)

|1 − 〈z, w〉|2k
K(t)

w (z)dλt(w)dλt(z)

=
F (t)

n+kΦ
(t)
n,k(0)

B(n, t + 1)

∫

Bn

(1 − |z|2)−2k
∑

(α,β)∈Γ

dα,β(z)Fα,β(z, z)dλt(z) (2.18)

−
∫

B2
n

Φ
(t)
n,k+1(|ϕz(w)|2)

×
∑n

i,j=1

∑
(α,β)∈Γ Iα+ei,β+ej (z − w)Di,jFα,β(z, w)

|1 − 〈z, w〉|2(k+1)
K(t)

w (z)dλt(z)dλt(w).

Here Di,j denotes the operation

Di,j = (1 − 〈z, w〉)2∂zi
∂̄wj

.

Lemma 2.17. Suppose k is a nonnegative integer. Then there exist C > c > 0 such that 

for t large enough,

ct−n−k ≤ F (t)
n+kΦ

(t)
n,k(0) ≤ Ct−n−k, (2.19)

and

1∫

0

Φ
(t)
n,k(s)sn+k−1(1 − s)

t
4 ds ≤ Ct−n−k. (2.20)
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Proof. The case when k = 0 is simply a consequence of [47, Equation (8.9)]. We assume 

k > 0.

From the Sterling’s asymptotic formula (cf. [2, Theorem 1.4.1]) and the well-known 

identity B(x, y) = Γ(x)Γ(y)
Γ(x+y) it follows that for fixed x > −1,

B(x, y) ≈x y−x

for large y. By [47, Lemma 8.4], we compute F (t)
n+kΦ

(t)
n,k(0) as follows,

F (t)
n+kΦ

(t)
n,k(0)

=F (t)
n+kMφ1

(
G(t)

n+k−1

)2
. . . Mφ1

(
G(t)

n

)2
1(0)

=
∞∑

j1,...,jk=0

B(n + k + j1 + . . . + jk, t + 1)

1 · (1 + j1)(2 + j1)(2 + j1 + j2) . . . (k + j1 + . . . + jk−1)(k + j1 + . . . + jk)

=
∑

0≤s1≤...≤sk<∞

B(n + k + sk, t + 1)

(1 + s1)(2 + s1) . . . (k − 1 + sk−1)(k + sk−1)(k + sk)

≤
∞∑

sk=0

∞∑

s1,...,sk−1=0

B(n + k + sk, t + 1)

(1 + s1)(2 + s1) . . . (k − 1 + sk−1)(k + sk−1)(k + sk)

=
∞∑

sk=0

B(n + k + sk, t + 1)

(k − 1)!(k + sk)

=
1

(k − 1)!

1∫

0

( ∞∑

sk=0

xn−1+(k+sk)

k + sk

)
(1 − x)tdx

≤ 1

(k − 1)!

1∫

0

( ∞∑

sk=0

xn−1

(
ln

1

1 − x

)
(1 − x)tdx

�

1∫

0

xn−1(1 − x)t−1dx

=B(n, t)

�t−n−k,

when t is large. The other inequality F (t)
n+kΦ

(t)
n,k(0) � t−n−k is also obvious from the 

equation above. This proves (2.19).

By the expansion

1

(1 − s)
3t
4

=
∞∑

j=0

Γ( 3t
4 + j)

j!Γ(3t
4 )

sj ,
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we directly compute the following integral,

1∫

0

Φ
(t)
n,k(s)sn+k−1(1 − s)

t
4 ds

=

∞∑

j=0

Γ( 3t
4 + j)

j!Γ(3t
4 )

1∫

0

Φ
(t)
n,k(s)sn+k+j−1(1 − s)tds

=
∞∑

j0=0

Γ( 3t
4 + j0)

j0!Γ(3t
4 )

F (t)
n+k+j0

Φ
(t)
n,k(0).

Similarly as the proof of (2.19), assuming t is large enough, we estimate the above term 

as follows,

≤
∑

0≤s0≤sk<∞

Γ( 3t
4 + s0)B(n + k + sk, t + 1)

(s0 + 1)!Γ(3t
4 )(k − 1)!(k + sk)

=
∞∑

a=0

∞∑

b=0

Γ( 3t
4 + a)B(n + k + a + b, t + 1)

(a + 1)!Γ(3t
4 )(k − 1)!(k + a + b)

≤
∞∑

a=0

Γ( 3t
4 + a)

(a + 1)!Γ(3t
4 )(k − 1)!

1∫

0

∞∑

b=0

sb+1

k + a + b
sn+k+a−2(1 − s)tds

≤
∞∑

a=0

Γ( 3t
4 + a)

(a + 1)!Γ(3t
4 )(k − 1)!

1∫

0

∞∑

b=0

sb+1

b + 1
sn+k+a−2(1 − s)tds

=
∞∑

a=0

Γ( 3t
4 + a)

(a + 1)!Γ(3t
4 )(k − 1)!

1∫

0

sn+k+a−2(1 − s)t ln
1

1 − s
ds

�

∞∑

a=0

Γ( 3t
4 + a)

(a + 1)!Γ(3t
4 )(k − 1)!

B(n + k + a, t)

≤
1∫

0

sn+k−1(1 − s)t−1− 3t
4 ds

=B(n + k,
t

4
)

�t−n−k.

This completes the proof of Lemma 2.17. �
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3. Operators between weighted spaces

For our proofs in this paper it is important to obtain criteria for integral operators 

to be bounded between different weighted spaces. In this section, we introduce some 

useful criteria to be used in our study. Most of the lemmas established in this section 

follow from standard techniques from, for example, [44,52]. One thing less standard is 

that our integral kernels may involve functions of |ϕz(w)|2. These functions come from 

applying the integration by parts formulas in Subsection 2.3 on integral formulas of 

Toeplitz operators.

Lemma 3.1. Suppose t > −1, s > −1, a > −n, b ≥ 0, and c < t + 1 + b − s+1
2 . Suppose 

F (z, w) is measurable on Bn × Bn, and

|F (z, w)| ≤ |ϕz(w)|2a(1 − |ϕz(w)|2)b

|1 − 〈z, w〉|n+1+t−c
, ∀z, w ∈ Bn.

Then the integral operator

Th(z) =

∫

Bn

h(w)F (z, w)dλt(w)

is bounded from L2(λs+2c) to L2(λs).

Proof. By assumption, we can take x ∈ R so that

max{−1 − t − b, −c − s − 1 − b} < x < min{b − c, t + b − 2c − s}.

Then we have the following inequalities,

t + x > −1 − b, −x − c > −b, x + c + s > −1 − b, t − x − 2c − s > −b.

Take p(w) = (1 −|w|2)x and q(z) = (1 −|z|2)x+c. The integral kernel of T as an operator 

from L2(λs+2c) to L2(λs) is

B(n, s + 2c + 1)

B(n, t + 1)
F (z, w)(1 − |w|2)t−s−2c.

Then by the inequalities above and Lemma 2.3 (3), we have the following estimates of 

integrals,

∫

Bn

|F (z, w)|(1 − |w|2)t−s−2cp(w)dλs+2c(w)
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�

∫

Bn

|ϕz(w)|2a(1 − |ϕz(w)|2)b (1 − |w|2)t+x

|1 − 〈z, w〉|n+1+t−c
dm(w)

�(1 − |z|2)x+c = q(z),

and

∫

Bn

|F (z, w)|(1 − |w|2)t−s−2cq(z)dλs(z)

�

∫

Bn

|ϕz(w)|2a(1 − |ϕz(w)|2)b (1 − |w|2)t−s−2c(1 − |z|2)x+c+s

|1 − 〈z, w〉|n+1+t−c
dm(z)

�(1 − |w|2)x = p(w).

The conclusion follows from Schur’s test (cf. [53, Theorem 3.6]). This completes the 

proof of Lemma 3.1. �

Lemma 3.2. Suppose t > −1 and 0 < d < c < t + 1. Suppose F (z, w) is measurable on 

Bn × Bn, and

|F (z, w)| ≤ 1

|1 − 〈z, w〉|n+1+t−c
, ∀z, w ∈ Bn.

For any 0 < r < 1, define the integral operator

Trh(z) =

∫

Bn

h(w)F (rz, w)dλt(w), z ∈ Sn.

Then each Tr defines a bounded operator from L2(λ−1+2d) to L2(Sn). Moreover,

sup
0<r<1

‖Tr‖L2(λ−1+2d)→L2(Sn) < ∞.

Proof. Take p(w) = (1 − |w|2)−d, q(z) = 1. The integral kernel of Tr is

Tr(z, w) :=
B(n, 2d)

B(n, t + 1)
F (rz, w)(1 − |w|2)t+1−2d.

As t − d > −1 and d < c, by Lemma 2.3, we have the following estimates of integrals,

∫

Bn

|Tr(z, w)|p(w)dλ−1+2d(w) �

∫

Bn

(1 − |w|2)t−d

|1 − 〈rz, w〉|n+1+t−c
dm(w) � 1 = q(z),

and
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∫

Sn

|Tr(z, w)|q(z)
dσ(z)

σ2n−1
�

∫

Sn

(1 − |w|2)t+1−2d

|1 − 〈z, rw〉|n+1+t−c
dσ(z)

� (1 − |w|2)c−2d � (1 − |w|2)−d = p(w).

The estimates are independent of r. Thus the conclusion follows from Schur’s test. This 

completes the proof of Lemma 3.2. �

Lemma 3.3. Suppose t > −1 and 0 < d < c < t + 1. Suppose F (z, w) is piecewise 

continuous on Bn × Bn, and

|F (z, w)| ≤ 1

|1 − 〈z, w〉|n+1+t−c
, ∀z, w ∈ Bn.

Assume further that F (z, w) is holomorphic in z for each fixed w. Define the operator

Th(z) =

∫

Bn

h(w)F (z, w)dλt(w), z ∈ Bn.

Then T defines a bounded operator from L2(λ−1+2d) to H2(Sn).

Proof. Since F (z, w) is holomorphic in z, for every h, the function Th is holomorphic in 

Bn. Denote

M = sup
0<r<1

‖Tr‖L2(λ−1+2d)→L2(Sn) < ∞.

Then for any h ∈ L2(λ−1+2d), we verify the following estimate

sup
0<r<1

∫

Sn

|Th(rz)|2dσ(z) = sup
0<r<1

‖Trh‖2
L2(Sn) ≤ M2‖h‖2

L2(λ−1+2d).

Therefore T is bounded. This completes the proof of Lemma 3.3. �

The following fact about embedding operators between different weighted spaces is 

well-known to experts. In our proof, estimates of the operator norms and Schatten norms 

of these embeddings are needed. We give the calculation for completeness.

Lemma 3.4. Suppose t ≥ −1 and c > 0. Then for any p > 2n
c the following hold.

(1) The embedding map Et,c from L2
a,t(Bn) to L2

a,t+c(Bn) (identifying La,−1(Bn) with 

H2(Sn)) is in the Schatten p class Sp.

(2) There exists C > 0, independent of t, such that

‖Et,c‖ = 1, ‖Et,c‖p ≤ C(t + n + 1)
n
p .
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Proof. For any multi-index α ∈ N
n
0 , we have the norm

‖zα‖2
L2

a,t(Bn) =
Γ(n + t + 1)α!

Γ(n + |α| + t + 1)
.

Thus Et,c is unitarily equivalent to a diagonal operator with entry

‖zα‖L2
a,t+c(Bn)

‖zα‖L2
a,t(Bn)

=

√
Γ(n + t + c + 1)Γ(n + |α| + t + 1)

Γ(n + |α| + t + c + 1)Γ(n + t + 1)
=

√
B(n + |α| + t + 1, c)

B(n + t + 1, c)

at α ∈ N
n
0 . It follows immediately that ‖Et,c‖ = 1. Thus it suffices to show

∑

α∈Nn
0

(
B(n + |α| + t + 1, c)

B(n + t + 1, c)

) p
2

=

∞∑

d=0

(d + n − 1)!

d!(n − 1)!
·
(

B(n + d + t + 1, c)

B(n + t + 1, c)

) p
2

� (t + n + 1)n.

Since B(n + d + t + 1, c) is decreasing in d, and (d+n−1)!
d! ≈ dn−1 for d ≥ 1, we have the 

following inequalities,

∞∑

d=0

(d + n − 1)!

d!(n − 1)!
·
(

B(n + d + t + 1, c)

B(n + t + 1, c)

) p
2

�1 +

∞∫

0

xn−1

(
B(n + x + t + 1, c)

B(n + t + 1, c)

)p/2

dx

�1 +

∞∫

0

xn−1

(
n + t + 1

n + x + t + 1

) pc
2

dx.

If we take the change of variable y = x
n+t+1 then the integral above has the following 

bounds,

� 1 + (n + t + 1)n

∞∫

0

yn−1

(
1

1 + y

) pc
2

dy � (n + t + 1)n

when n < pc
2 , i.e., p > 2n

c . This completes the proof of Lemma 3.4. �

4. Schatten class criteria

In this section, we obtain criteria for integral operators to belong to Schatten class. 

As explained in the beginning of Section 3, the integral kernels may involve functions of 

|ϕz(w)|2. Thus we need to modify some of the well-known results to fit our case.
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A standard way of proving Schatten class membership of integral operators is to use 

the following lemma. See [53, Lemma 8.26] for a proof when n = 1, using interpolation. 

The exact same proof works for general n.

Lemma 4.1. Suppose t > −1 and G(z, w) is measurable on Bn × Bn. Suppose p ≥ 2 and

∫

B2
n

|G(z, w)|p|K(t)
w (z)|2dλt(w)dλt(z) < ∞.

Define the operator

Th(z) =

∫

Bn

h(w)G(z, w)K(t)
w (z)dλt(w).

Then T defines a bounded operator on L2(λt) that belongs to Sp.

Corollary 4.2. Suppose t > −1 and F (z, w) is measurable on Bn × Bn. Suppose c > 0

and

|F (z, w)| ≤ 1

|1 − 〈z, w〉|n+1+t−c
, z, w ∈ Bn.

Define the integral operator

Th(z) =

∫

Bn

h(w)F (z, w)dλt(w), h ∈ L2(λt).

Then T is bounded on L2(λt), and for any p > n
c and p ≥ 2, T ∈ Sp.

Proof. Let

G(z, w) =
F (z, w)

K
(t)
w (z)

, z, w ∈ Bn.

Then by assumption, we have the following bound,

|G(z, w)| = |F (z, w)| · |1 − 〈z, w〉|n+1+t ≤ |1 − 〈z, w〉|c.

Choose p so that n
c < p < n+1+t

c . Then by Lemma 2.3, we compute the following integral.

∫

Bn

∫

Bn

|G(z, w)|p|K(t)
w (z)|2dλt(w)dλt(z)
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�

∫

Bn

∫

Bn

(1 − |z|2)t(1 − |w|2)t

|1 − 〈z, w〉|2(n+1+t)−cp
dm(w)dm(z)

�

∫

Bn

(1 − |z|2)t−(n+1+t−cp)dm(z)

=

∫

Bn

(1 − |z|2)−1+(cp−n)dm(z) < ∞.

Since G(z, w) is bounded, for p ≥ n+1+t
c the integral is also finite. Therefore we have the 

following bound,

∫

Bn

∫

Bn

|G(z, w)|p|K(t)
w (z)|2dλt(w)dλt(z) < ∞, ∀p >

n

c
.

Finally, by Lemma 4.1, T ∈ Sp for any p > n
c and p ≥ 2. This completes the proof of 

Corollary 4.2. �

Corollary 4.3. Let t, c, F, T be as in Corollary 4.2. Then for any Lipschitz function u on 

Bn and any p > n
c+ 1

2

and p ≥ 2, the commutator

[T, Mu] ∈ Sp.

Proof. By definition, for h ∈ L2(λt), we have the following expression,

[T, Mu]h(z) =

∫

Bn

(
u(w) − u(z)

)
F (z, w)h(w)dλt(w).

Since u is Lipschitz, by Lemma 2.2 (6), we get the following bounds,

∣∣(u(w) − u(z)
)
F (z, w)

∣∣ � |z − w||F (z, w)| � 1

|1 − 〈z, w〉|n+1+t−c−1/2
.

The corollary then follows from Corollary 4.2. This completes the proof of Corol-

lary 4.3. �

It is well-known that Hankel operators with Lipschitz symbols belong to Sp for any 

p > 2n. In fact, the Schatten-class membership for Hankel operators is completely char-

acterized (see [38], [53, Theorem 8.36]).

Corollary 4.4. Suppose t > −1 and u is a Lipschitz function on Bn. Then the Hankel 

operator H
(t)
u = (I − P (t))MuP (t) belongs to Sp for any p > 2n.
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Proof. The corollary follows from Corollary 4.3 and the equation

H(t)
u = (I − P (t))MuP (t) = [Mu, P (t)]P (t).

This completes the proof of Corollary 4.4. �

Lemma 4.1 provides convenient criteria for an integral operator to be in Sp, when 

p ≥ 2. However, in this paper we will also need to deal with the case when 1 ≤ p < 2. 

Moreover, we will need to consider integral operators of the form

Th(z) =

∫

Bn

φ(|ϕz(w)|2)F (z, w)h(w)dλt(w),

where φ is an unbounded function. For such T , if we take the double integral as in 

Lemma 4.1, its integral is very likely to be infinite. In application, it is enough for us to 

obtain Schatten-class membership of the operators TP (t) or P (t)T . An alternative way 

to obtain such Schatten-class membership result is to take advantage of Lemma 3.4. In 

particular, the following lemma holds.

Lemma 4.5. Suppose t > −1, a > −n, b ≥ 0 and c > 0. Suppose F (z, w) is measurable 

on Bn × Bn, φ : (0, 1) → [0, ∞) is measurable, and

φ(s) ≤ sa(1 − s)b, s ∈ (0, 1),

|F (z, w)| ≤ 1

|1 − 〈z, w〉|n+1+t−c
, ∀z, w ∈ Bn.

Define the integral operator on L2(λt).

Th(z) =

∫

Bn

φ(|ϕz(w)|2)F (z, w)h(w)dλt(w).

Then both P (t)T and TP (t) belong to Sp for any p > max{n
c , n

b+ 1+t
2

}.

Proof. Notice that P (t)T ∈ Sp if and only if T ∗P (t) ∈ Sp, and that T ∗ is an integral 

operator with integral kernel satisfying the same estimate as T . Thus it suffices to prove 

the statement for TP (t). For any q > max{n
c , n

b+ 1+t
2

}, let c′ = n
q . Then c′ < b + 1+t

2 . 

Split the map TP (t) as follows.

TP (t) : L2(λt)
P (t)

−−−→ L2
a,t(Bn)

Et,2c′−−−−→ L2
a,t+2c′(Bn)

T̂−→ L2(λt).

Here T̂ : L2
a,t+2c′(Bn) → L2(λt) is defined by the same integral formula as T . By 

Lemma 3.4, Et,2c′ ∈ Sp for any p > n
c′ = q. Also by Lemma 3.1, T̂ is bounded. Since q
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is any number with q > max{n
c , n

b+ 1+t
2

}, we have TP (t) ∈ Sp, ∀p > max{ n
c , n

b+ 1+t
2

}. This 

completes the proof of Lemma 4.5. �

In the case when φ = skΦ
(t)
n,k, the following Schatten-norm estimate holds.

Theorem 4.6. Suppose t > −1, c > 0 and k is a non-negative integer. Suppose F (z, w)

is measurable on Bn × Bn, and

|F (z, w)| ≤ |ϕz(w)|2k

|1 − 〈z, w〉|n+1+t−c
, ∀z, w ∈ Bn.

Define the integral operator on L2(Bn, λt).

Th(z) =

∫

Bn

Φ
(t)
n,k(|ϕz(w)|2)F (z, w)h(w)dλt(w).

Then both P (t)T and TP (t) belong to Sp for any p > max{n
c , n

k+ 1+t
2

}, p ≥ 1. Moreover, 

for p > n
c , and p ≥ 1, and t large enough, we have

‖P (t)T‖p � t−k+ n
p , ‖TP (t)‖p � t−k+ n

p .

As in the proof of Corollary 4.3, Lemma 4.5 and Theorem 4.6 imply the following.

Corollary 4.7. Suppose t > −1, c > 0, F (z, w) is measurable on Bn × Bn, and

|F (z, w)| ≤ 1

|1 − 〈z, w〉|n+1+t−c
, z, w ∈ Bn.

Suppose φ : (0, 1) → [0, ∞) is measurable. Define the integral operator on L2(λt),

Th(z) =

∫

Bn

φ(|ϕz(w)|2)F (z, w)h(w)dλt(w).

Assume that u is a Lipschitz function on Bn.

1. Suppose a > −n, b ≥ 0 and φ(s) ≤ sa(1 − s)b. Then

[T, Mu]P (t), P (t)[T, Mu] ∈ Sp, ∀p > max{ n

c + 1
2

,
n

b + 1+t
2

}.

2. If φ(s) = skΦ
(t)
n,k, then for t large enough and p > n

c+ 1
2

,

∥∥[T, Mu]P (t)
∥∥

Sp � t−k+ n
p ,

∥∥P (t)[T, Mu]
∥∥

Sp � t−k+ n
p .



28 X. Tang et al. / Advances in Mathematics 433 (2023) 109324

A trivial application of Theorem 4.6 gives the following.

Lemma 4.8. Suppose c > 0, t > −1 and f ∈ L∞(Bn) satisfies

|f(z)| ≤ (1 − |z|2)c, ∀z ∈ Bn.

Then for any p > max{n
c , 2n

1+t }, p ≥ 1,

T
(t)
f ∈ Sp.

For any p > n
c , p ≥ 1 and t large enough,

‖T
(t)
f ‖Sp �p t

n
p .

Proof. By definition, we have the following expression of T
(t)
f ,

T
(t)
f h(z) =

∫

Bn

f(w)h(w)K(t)
w (z)dλt(w).

By the assumption, we have the following inequalities

|f(w)K(t)
w (z)| ≤ (1 − |z|2)c

|1 − 〈z, w〉|n+1+t
�

1

|1 − 〈z, w〉|n+1+t−c
.

Since Φ
(t)
n,0 = 1, the conclusion follows directly from Theorem 4.6. This completes the 

proof of Lemma 4.8. �

To prove Theorem 4.6, we need the following estimate.

Lemma 4.9. Suppose φ : (0, 1) → [0, ∞) is measurable. Then for any c, d ∈ R there exist 

C > 0 and t0 > 0 such that whenever t > t0,

∫

Bn

φ(|ϕz(w)|2)
(1 − |w|2)

t
2 +c

|1 − 〈z, w〉|n+1+t+d
dm(w) ≤ C

1∫

0

φ(s)sn−1(1 − s)
t
4 ds · (1 − |z|2)− t

2 −d+c,

∀z ∈ Bn.

(4.1)

Proof. Make the change of variable w = ϕz(ξ). Using Lemma 2.2 we have the following 

equation,

(1 − |w|2)t

|1 − 〈z, w〉|n+1+t
dm(w)

w=ϕz(ξ)
=======

ξ=ϕz(w)

(1 − |ξ|2)t

|1 − 〈z, ξ〉|n+1+t
dm(ξ).
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Then we have the following estimate of the left side of Equation (4.1),

∫

Bn

φ(|ϕz(w)|2)
(1 − |w|2)

t
2 +c

|1 − 〈z, w〉|n+1+t+d
dm(w)

=

∫

Bn

φ(|ξ|2)

(
(1 − |z|2)(1 − |ξ|2)

|1 − 〈z, ξ〉|2
)c− t

2
( |1 − 〈z, ξ〉|

1 − |z|2
)d

(1 − |ξ|2)t

|1 − 〈z, ξ〉|n+1+t
dm(ξ)

=(1 − |z|2)c− t
2 −d

∫

Bn

φ(|ξ|2)
(1 − |ξ|2)c+ t

2

|1 − 〈z, ξ〉|n+1+2c−d
dm(ξ)

=(1 − |z|2)c− t
2 −d

1∫

0

φ(r2)(1 − r2)c+ t
2 r2n−1

[ ∫

Sn

1

|1 − 〈rz, ζ〉|n+1+2c−d
dσ(ζ)

]
dr

�(1 − |z|2)c− t
2 −d

1∫

0

φ(r2)(1 − r2)c+ t
2 r2n−1(1 − |rz|2)−adr

≤(1 − |z|2)c− t
2 −d

1∫

0

φ(r2)(1 − r2)c−a+ t
2 r2n−1dr

s=r2

=====
1

2
(1 − |z|2)c− t

2 −d

1∫

0

φ(s)(1 − s)c−a+ t
2 sn−1ds.

Here a = 2c − d if 2c − d > 0; a = 1
2 if 2c − d = 0; a = 0 if 2c − d < 0. For t large enough, 

c − a + t
2 > t

4 . So we have the following inequality,

1∫

0

φ(s)(1 − s)c−a+ t
2 sn−1ds ≤

1∫

0

φ(s)(1 − s)
t
4 sn−1ds.

This completes the proof of Lemma 4.9. �

Proof of Theorem 4.6. The Schatten class memberships of TP (t) and P (t)T are implied 

by Lemma 4.5 and [47, Lemma 8.3]. It remains to prove the Schatten norm estimates. 

We may assume that t is large enough so that 0 < c < k + 1+t
2 . Also, as in the proof of 

Lemma 4.5, it suffices to prove the statement for TP (t).

Split the operator TP (t) as

L2(Bn, λt)
P (t)

−−−→ L2
a,t(Bn)

Et,2c−−−→ L2
a,t+2c(Bn)

T̂−→ L2(Bn, λt),
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where T̂ is the same integral operator as T . By Lemma 3.4, it suffices to show that T̂ de-

fines a bounded operator from L2
a,t+2c(Bn) to L2(Bn, λt) with ‖T̂‖L2

a,t+2c(Bn)→L2
a,t(Bn) �

t−k for large t.

This is done by Schur’s test. Since c < k + t+1
2 , if we take x = c + t+1

2 , then t +1 +k >

x > 2c − k. Take p(w) = (1 − |w|2)−x and q(z) = (1 − |z|2)c−x. The integral kernel of 

T̂ : L2(Bn, λt+2c) → L2(Bn, λt) is

T (z, w) :=
B(n, t + 2c + 1)

B(n, t + 1)
Φ

(t)
n,k(|ϕz(w)|2)F (z, w)(1 − |w|2)−2c.

Then by (2.6), (4.1), (2.19) and (2.20), we have the following estimates,

∫

Bn

|T (z, w)|p(w)dλt+2c(w)

≈ 1

B(n, t + 1)

∫

Bn

Φ
(t)
n,k(|ϕz(w)|2)|ϕz(w)|2k (1 − |w|2)t−x

|1 − 〈z, w〉|n+1+t−c
dm(w)

�

∫ 1

0
Φ

(t)
n,k(s)sn+k−1(1 − s)

t
4 ds

B(n, t + 1)
q(z) � t−kq(z).

Similarly, we have the following inequality,

∫

Bn

|T (z, w)|q(z)dλt(z) � t−kp(w).

From this we have the following bound for p > n/c and large t,

‖T‖Sp ≤ ‖Et,2c‖Sp‖T̂‖ � t−k+n/p.

This completes the proof of Theorem 4.6. �

5. Traces on different weighted Bergman spaces

As explained in the introduction, the goal of this section is to prove Equation (1.8). 

More precisely, we will prove Lemmas 5.2 and 5.3 stated below.

Suppose t > s ≥ −1. It is well-known that L2
a,s(Bn) ⊂ L2

a,t(Bn), and L2
a,s(Bn) is 

dense in L2
a,t(Bn). For a Toeplitz operator T

(t)
f on L2

a,t(Bn), if the restriction of T
(t)
f on 

L2
a,s(Bn) defines a bounded operator on L2

a,s(Bn), then we denote this restriction to be 

T
(t,s)
f . It follows from Lemma 3.1 that if f ∈ L∞(Bn) and t > s > −1, then the restricted 

operator T
(t,s)
f is well-defined. On the other hand, if a Toeplitz operator T

(s)
f on L2

a,s(Bn)

extends (uniquely) into a bounded operator on L2
a,t(Bn), then we denote this operator 

to be T
(s,t)
f .
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Notation 5.1. For operators S, T , write S ∼ T when S − T is a trace class operator with 

zero trace. We emphasize that it is not required that S or T is in the trace class. In 

particular S ∼ 0 means that S is in the trace class with zero trace.

Lemma 5.2. Suppose f1, f2, . . . , f2n ∈ C 2(Bn) and t > −1. Then

[T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] − [T
(t+1,t)
f1

, T
(t+1,t)
f2

, . . . , T
(t+1,t)
f2n

] ∼ 0.

In the case of the Hardy space we show the following. Note that the index goes up by 

2 this time. The reason for doing this is explained in Subsection 5.4, after the proof of 

Lemma 5.2.

Lemma 5.3. Suppose f1, f2, . . . , f2n ∈ C 2(Bn). Then the operator on H2(Sn)

[T
(−1)
f1

, T
(−1)
f2

, . . . , T
(−1)
f2n

] − [T
(1,−1)
f1

, T
(1,−1)
f2

, . . . , T
(1,−1)
f2n

] ∼ 0.

The fact that each T
(1,−1)
fi

is well-defined is explained in Remark 5.26.

5.1. Decomposition of T
(t)
f

The proof of Lemma 5.2 (and Lemma 5.3) involves writing T
(t)
f (resp. T

(−1)
f ) as a 

sum of T
(t+1,t)
f (resp. T

(1,−1)
f ) and some perturbation operator. In this subsection we 

introduce these decompositions. The main results of this subsection are Lemma 5.5 (for 

t > −1) and Lemma 5.7 (for t = −1).

Definition 5.4. For t > −1, define

X(t)
w (z) =

t + 1

n + t + 1
G(t)

n 1(|w|2)R̄wK(t)
w (z) − K(t+1)

w (z), (5.1)

and

Y (t)
w (z) =

t + 1

n + t + 1
G(t)

n 1(|w|2)K(t)
w (z). (5.2)

For a symbol function g, formally define the integral operators

X(t)
g h(z) =

∫

Bn

g(w)h(w)X(t)
w (z)dλt+1(w); Y (t)

g h(z) =

∫

Bn

g(w)h(w)Y (t)
w (z)dλt+1(w).

It will be clear in subsequent proof that for f ∈ C 2(Bn), X
(t)
f and Y

(t)

R̄f
define bounded 

operators on L2
a,t(Bn) (see Lemmas 5.14 and 5.21).
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Lemma 5.5. Suppose f ∈ C 2(Bn). Then for any t > −1,

T
(t)
f = T

(t+1,t)
f + X

(t)
f + Y

(t)

R̄f
+ f(0)E0, (5.3)

where E0h = h(0) is a rank one operator.

Proof. For any h ∈ Hol(Bn), by Lemma 2.14, we compute T
(t)
f as follows,

T
(t)
f h(z) =

∫

Bn

f(w)h(w)K(t)
w (z)dλt(w)

=f(0)h(0) +
t + 1

n + t + 1

∫

Bn

G(t)
n 1(|w|2)R̄f(w)h(w)K(t)

w (z)dλt+1(w)

+
t + 1

n + t + 1

∫

Bn

G(t)
n 1(|w|2)f(w)h(w)R̄K(t)

w (z)dλt+1(w)

=f(0)
(
E0f

)
(z) + Y

(t)

R̄f
h(z) + X

(t)
f h(z) + T

(t+1,t)
f h(z).

This completes the proof of Lemma 5.5. �

In the case of the Hardy space, to make our treatment parallel to the (weighted) 

Bergman space, we apply integration by parts twice and lift the weight by 2 to achieve 

the appropriate estimate in Lemma 5.24.

Definition 5.6. Let φ(s) = s−n. Define

X(−1)
w (z) =

1

n(n + 1)
G(0)

n φ(|w|2)R̄2
wK(−1)

w (z) − K(1)
w (z),

Y (−1)
w (z) =

2

n(n + 1)
G(0)

n φ(|w|2)R̄wK(−1)
w (z),

and

Z(−1)
w (z) =

1

n(n + 1)
G(0)

n φ(|w|2)K(−1)
w (z).

Formally define the symboled integral operators

X
(−1)
f h(z) =

∫

Bn

h(w)f(w)X(−1)
w (z)dλ1(w),

Y
(−1)

f h(z) =

∫

Bn

h(w)f(w)Y (−1)
w (z)dλ1(w),
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and

Z
(−1)
f h(z) =

∫

Bn

h(w)f(w)Z(−1)
w (z)dλ1(w).

Again, it will be clear later that for f ∈ C 2(Bn), X
(−1)
f , Y

(−1)

R̄f
and Z

(−1)

R̄2f
define bounded 

operators on H2(Sn) (see Lemma 5.25).

Now we give the t = −1 analogue of Lemma 5.5.

Lemma 5.7. Suppose f ∈ C 2(Bn). Then

T
(−1)
f = T

(1,−1)
f + X

(−1)
f + Y

(−1)

R̄f
+ Z

(−1)

R̄2f
+ f(0)E0.

Taking α = β = 0 and z = 0 in Lemma 2.15, we get the following.

Lemma 5.8. Suppose v ∈ C 1(Bn). Then

∫

Sn

v(w)
dσ(w)

σ2n−1
= v(0) +

1

n

∫

Bn

|w|−2nR̄v(w)dλ0(w). (5.4)

Also, taking α = β = 0, t = 0, z = 0 in Lemma 2.10 gives the following.

Lemma 5.9. Suppose φ : (0, 1) → [0, ∞) is measurable and v ∈ C 1(Bn). Then whenever 

all integrals converge absolutely, we have

∫

Bn

φ(|w|2)v(w)dλ0(w) (5.5)

=

{
F(0)

n φ(0)
B(n,t+1)v(0) + 1

n+1

∫
Bn

G(0)
n φ(|w|2)R̄v(w)dλ1(w), F (0)

n φ(0) < ∞
1

n+1

∫
Bn

G(0)
n φ(|w|2)R̄v(w)dλ1(w), F (0)

n φ(0) ≤ ∞, v(0) = 0
.

Proof of Lemma 5.7. By Lemmas 5.8 and 5.9, for h ∈ Hol(Bn), we compute T
(−1)
f as 

follows,

T
(−1)
f h(z) =

∫

Sn

h(w)f(w)K(−1)
w (z)

dσ(w)

σ2n−1

(5.4)
=====f(0)h(0) +

1

n

∫

Bn

φ(|w|2)R̄

[
h(w)f(w)K(−1)

w (z)

]
dλ0(w)

(5.5)
=====f(0)h(0) +

1

n(n + 1)

∫

Bn

G(0)
n φ(|w|2)R̄2

[
h(w)f(w)K(−1)

w (z)

]
dλ1(w)
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=f(0)h(0) +
1

n(n + 1)

∫

Bn

G(0)
n φ(|w|2)h(w)dλ1(w)

[
R̄2f(w)K(−1)

w (z) + 2R̄f(w)R̄wK(−1)
w (z) + f(w)R̄2

wK(−1)
w (z)

]

=f(0)
(
E0f

)
(z) + T

(1,−1)
f h(z) + X

(−1)
f h(z) + Y

(−1)

R̄f
h(z) + Z

(−1)

R̄2f
h(z).

This completes the proof of Lemma 5.7. �

In view of (5.3), Lemma 5.2 essentially says that the trace

Tr[T
(t+1,t)
f1

, T
(t+1,t)
f2

, . . . , T
(t+1,t)
f2n

]

if it exists, is invariant under the perturbations of X
(t)
fi

, Y
(t)

R̄fi
and fi(0)E0. Similarly, 

Lemma 5.3 can also be interpreted as the stability of trace under certain perturbations.

5.2. Hypotheses A

As explained in the introduction, after establishing the decomposition T
(t)
fi

= T
(t+1,t)
fi

+

Bi, the proof of Equation (1.8) amounts to removing the “minor parts” Bi from the 

antisymmetric sum [T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

]. We accomplish this in two steps. In the first 

step, in Section 5.2 we dealt with those parts that can be handled at the level of operator 

theory. In the second step, in Section 5.3 we use the integral formulas of these operators 

to handle the rest terms. To treat the t > −1 case and t = −1 case uniformly, we abstract 

our conditions into Hypotheses A below and Hypotheses B in the next subsection.

Hypotheses A: Suppose A1, A2, . . . , A2n, B1, B2, . . . , B2n are bounded linear operators 

on a Hilbert space H. Denote Ci = Ai + Bi, i = 1, . . . , 2n. The operators satisfy the 

following properties.

(1) For any i = 1, . . . , 2n,

Bi ∈ Sp, ∀p > n.

(2) For any i, j = 1, . . . , 2n,

[Ai, Aj ] ∈ Sp, ∀p > n.

(3) For any i, j = 1, . . . , 2n,

[Ai, Bj ] ∈ Sp, for some p < n.

The goal of this subsection is to prove the following.
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Proposition 5.10. Assume Hypotheses A. Then the operator

[C1, C2, . . . , C2n] − [A1, A2, . . . , A2n]

is in the trace class. Moreover, the operator

[C1, C2, . . . , C2n] − [A1, A2, . . . , A2n] −
2n∑

k=1

[A1, . . . , Ak−1, Bk, Ak+1, . . . , A2n] ∼ 0.

Lemma 5.11. Suppose {X1, X2, . . . , X2n} is a subset of {A1, . . . , A2n, B1, . . . , B2n}, and 

at least two of X1, X2, . . . , X2n are in {B1, B2, . . . , B2n}. Then

[X1, X2, . . . , X2n] ∼ 0.

Proof. The lemma can be restated as follows:

“if B ∈ {B1, B2, . . . , B2n}, {X1, . . . , X2n−1} ⊂ {A1, . . . , A2n, B1, . . . , B2n}, and at 

least one of X1, . . . , X2n−1 is in {B1, . . . , B2n}, then

[B, X1, . . . , X2n−1] ∼ 0′′.

Under the above assumption on B and X1, · · · , X2n−1, we compute the antisym-

metrization [B, X1, . . . , X2n−1] as follows.

[B, X1, . . . , X2n−1]

=
n∑

k=1

( ∑

τ∈S2n−1

sgn(τ)Xτ1 . . . Xτ2k−2 BXτ2k−1 . . . Xτ2n−1

−
∑

τ∈S2n−1

sgn(τ)Xτ1 . . . Xτ2k−1 BXτ2k . . . Xτ2n−1

)

=
1

2

n∑

k=1

( ∑

τ∈S2n−1

sgn(τ)[Xτ1 , Xτ2 ] . . . Xτ2k−2 BXτ2k−1 . . . Xτ2n−1

−
∑

τ∈S2n−1

sgn(τ)[Xτ1 , Xτ2 ] . . . Xτ2k−1 BXτ2k . . . Xτ2n−1

)

. . .

=2−n+1
n∑

k=1

( ∑

τ∈S2n−1

sgn(τ)[Xτ1 , Xτ2 ] . . . [Xτ2k−3 , Xτ2k−2 ]BXτ2k−1 [Xτ2k , Xτ2k+1 ] . . . [Xτ2n−2 , Xτ2n−1 ]

−
∑

τ∈S2n−1

sgn(τ)[Xτ1 , Xτ2 ] . . . [Xτ2k−3 , Xτ2k−2 ]Xτ2k−1 B[Xτ2k , Xτ2k+1 ] . . . [Xτ2n−2 , Xτ2n−1 ]

)

=2−n+1
n∑

k=1

∑

τ∈S2n−1

sgn(τ)

(
[Xτ1 , Xτ2 ] . . . [Xτ2k−3 , Xτ2k−2 ]BXτ2k−1 [Xτ2k , Xτ2k+1 ] . . . [Xτ2n−2 , Xτ2n−1 ]

− [Xτ1 , Xτ2 ] . . . [Xτ2k−3 , Xτ2k−2 ]Xτ2k−1 B[Xτ2k , Xτ2k+1 ] . . . [Xτ2n−2 , Xτ2n−1 ]

)
.
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For each k = 1, . . . , n and τ ∈ S2n−1, we claim that

[Xτ1
, Xτ2

] . . . [Xτ2k−3
, Xτ2k−2

]BXτ2k−1
[Xτ2k

, Xτ2k+1
] . . . [Xτ2n−2

, Xτ2n−1
]

∼BXτ2k−1
[Xτ2k

, Xτ2k+1
] . . . [Xτ2n−2

, Xτ2n−1
][Xτ1

, Xτ2
] . . . [Xτ2k−3

, Xτ2k−2
],

and

[Xτ1
, Xτ2

] . . . [Xτ2k−3
, Xτ2k−2

]Xτ2k−1
B[Xτ2k

, Xτ2k+1
] . . . [Xτ2n−2

, Xτ2n−1
]

∼B[Xτ2k
, Xτ2k+1

] . . . [Xτ2n−2
, Xτ2n−1

][Xτ1
, Xτ2

] . . . [Xτ2k−3
, Xτ2k−2

]Xτ2k−1
.

If Xτ2k−1
∈ {B1, B2, . . . , B2n}, then we have

B, Xτ2k−1
∈ Sp, ∀p > n, [Xτi

, Xτj
] ∈ Sp, ∀p > n, ∀i, j = 1, . . . , 2n − 1.

By Remark 2.7 it is easy to see that the claim holds. If Xτ2k−1
∈ {A1, . . . , A2n}, then at 

least one of Xτ1
, . . . , Xτ2k−2

, Xτ2k
, . . . , Xτ2n−1

is in {B1, B2, . . . , B2n}. Thus at least one 

of the commutators

[Xτ1
, Xτ2

], . . . , [Xτ2k−3
, Xτ2k−2

], [Xτ2k
, Xτ2k+1

], . . . , [Xτ2n−2
, Xτ2n−1

]

is in Sp for some p < n. Again, by Remark 2.7, the claim also follows. Thus in both cases 

the claim holds. By the claim, we compute [B, X1, . . . , X2n−1].

[B, X1, . . . , X2n−1]

=2−n+1
n∑

k=1

∑

τ∈S2n−1

sgn(τ)

(
[Xτ1 , Xτ2 ] . . . [Xτ2k−3 , Xτ2k−2 ]BXτ2k−1 [Xτ2k , Xτ2k+1 ] . . . [Xτ2n−2 , Xτ2n−1 ]

− [Xτ1 , Xτ2 ] . . . [Xτ2k−3 , Xτ2k−2 ]Xτ2k−1 B[Xτ2k , Xτ2k+1 ] . . . [Xτ2n−2 , Xτ2n−1 ]

)

∼2−n+1
n∑

k=1

∑

τ∈S2n−1

sgn(τ)BXτ2k−1 [Xτ2k , Xτ2k+1 ] . . . [Xτ2n−2 , Xτ2n−1 ][Xτ1 , Xτ2 ] . . . [Xτ2k−3 , Xτ2k−2 ]

− 2−n+1
n∑

k=1

∑

τ∈S2n−1

sgn(τ)B[Xτ2k , Xτ2k+1 ] . . . [Xτ2n−2 , Xτ2n−1 ][Xτ1 , Xτ2 ] . . . [Xτ2k−3 , Xτ2k−2 ]Xτ2k−1

=2−n+1
n∑

k=1

∑

τ∈S2n−1

sgn(τ)BXτ1 [Xτ2 , Xτ3 ] . . . [Xτ2n−2 , Xτ2n−1 ]

− 2−n+1
n∑

k=1

∑

τ∈S2n−1

sgn(τ)B[Xτ1 , Xτ2 ] . . . [Xτ2n−3 , Xτ2n−2 ]Xτ2n−1

=
n∑

k=1

∑

τ∈S2n−1

sgn(τ)BXτ1 . . . Xτ2n−1 −
n∑

k=1

∑

τ∈S2n−1

sgn(τ)BXτ1 . . . Xτ2n−1

=0.
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Here the third-to-last equality is because the antisymmetric sums 
∑

τ∈S2n−1
sgn(τ) · · ·

are invariant under any even permutation. This completes the proof of Lemma 5.11. �

A verbatim repetition of the proof of Lemma 5.11 also proves the following.

Corollary 5.12. Assume in addition to Hypotheses A that

Bi ∈ Sp, for some p < n.

Suppose {X1, X2, . . . , X2n} ⊂ {A1, . . . , A2n, B1, . . . , B2n}, and at least one of X1, X2, . . . ,

X2n ∈ {B1, . . . , B2n}. Then

[X1, X2, . . . , X2n] ∼ 0.

Consequently,

[C1, C2, . . . , C2n] − [A1, A2, . . . , A2n] ∼ 0.

Remark 5.13. Notice that the assumption of Corollary 5.12 is equivalent to the following.

1. For i, j = 1, . . . , 2n,

[Ai, Aj ] ∈ Sp, ∀p > n.

2. For i = 1, . . . , 2n,

Bi ∈ Sp, for some p < n.

Thus Corollary 5.12 essentially says that the trace

Tr[A1, A2, . . . , A2n]

is stable under any perturbation that belongs to Sp for some p < n.

Proof of Proposition 5.10. By definition, we have the following equation

[C1, C2, . . . , C2n] − [A1, A2, . . . , A2n] =
∑

[X1, X2, . . . , X2n],

where the sum is taken over all tuples (X1, . . . , X2n) such that each Xi belongs to 

{Ai, Bi}, and at least one of X1, . . . , X2n belongs to {B1, B2, . . . , B2n}. For this tuple 

(X1, X2, . . . , X2n), we have the following expansion
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[X1, X2, . . . , X2n]

=
∑

τ∈S2n

sgn(τ)Xτ1
Xτ2

. . . Xτ2n

=2−n
∑

τ∈S2n

sgn(τ)[Xτ1
, Xτ2

][Xτ3
, Xτ4

] . . . [Xτ2n−1
, Xτ2n

].

By Hypotheses A, each commutator [Xi, Xj ] is at least in Sp for any p > n, and 

when Xi ∈ {B1, B2, . . . , B2n}, [Xi, Xj ] ∈ Sp for some p < n, ∀j = 1, . . . , 2n. Thus 

by Lemma 2.5, each product

[Xτ1
, Xτ2

][Xτ3
, Xτ4

] . . . [Xτ2n−1
, Xτ2n

]

is in the trace class. So we obtain the following estimate

[C1, C2, . . . , C2n] − [A1, A2, . . . , A2n] ∈ S1.

On the other hand, we have the following equation

[C1, C2, . . . , C2n] − [A1, A2, . . . , A2n] −
2n∑

k=1

[A1, . . . , Ak−1, Bk, Ak+1, . . . , A2n]

=
∑

[X1, X2, . . . , X2n],

where each Xi ∈ {Ai, Bi}, and at least two of X1, X2, . . . , X2n are in {B1, B2, . . . , B2n}. 

By Lemma 5.11, each [X1, X2, . . . , X2n] ∼ 0. Thus we conclude that

[C1, C2, . . . , C2n] − [A1, A2, . . . , A2n] −
2n∑

k=1

[A1, . . . , Ak−1, Bk, Ak+1, . . . , A2n] ∼ 0.

This completes the proof of Proposition 5.10. �

5.3. Hypotheses B

As explained in the beginning of Subsection 5.2. The goal of this subsection is to 

handle the rest of the perturbations from the level of their integral formulas.

Temporarily fix the notations

Ai =

{
T

(t+1,t)
fi

, if t > −1

T
(1,−1)
fi

, if t = −1
, Bi =

⎧
⎨
⎩

X
(t)
fi

+ Y
(t)

R̄fi
+ fi(0)E0, if t > −1

X
(−1)
fi

+ Y
(−1)

R̄fi
+ Z

(−1)

R̄2fi
+ fi(0)E0, if t = −1

,

and Ci = Ai + Bi. Then by Lemmas 5.5 and 5.7,



X. Tang et al. / Advances in Mathematics 433 (2023) 109324 39

Ci =

{
T

(t)
fi

, if t > −1,

T
(−1)
fi

, if t = −1.

Thus the results of Lemmas 5.2 and 5.3 are equivalent to the property that

[C1, C2, . . . , C2n] − [A1, A2, . . . , A2n] ∼ 0.

Suppose Xw(z), Yw(z) are measurable functions on Bn × Bn. We introduce the follow-

ing hypotheses.

Hypotheses B: For t > −1, we say that Xw(z), Yw(z) satisfy Hypotheses B at t, if there 

are ε > 0 and C > 0 such that the following hold.

1. For each w ∈ Bn, Xw(z), Yw(z) is holomorphic in z,

2. |Xw(z)| ≤ C|w|−2n+ε|K(t)
w (z)|,

3. |Yw(z)| ≤ C|w|−2n−1+ε|K(t)
w (z)|.

For a function f on Bn, formally define the symboled integral operators

Xf h(z) =

∫

Bn

h(w)f(w)Xw(z)dλt+1(w), Yf h(z) =

∫

Bn

h(w)f(w)Yw(z)dλt+1(w). (5.6)

Lemma 5.14. Assume Hypotheses B. Then for any f ∈ C 2(Bn), the integral operators 

Xf and YR̄f define bounded operators on L2
a,t(Bn) that belong to Sp for any p > n.

Proof. For f ∈ C 2(Bn), we have

|f(w)| � 1, |R̄f(w)| � |w|.

Thus by Hypotheses B, we obtain the following estimates,

|f(w)Xw(z)| � |w|−2n+ε|K(t)
w (z)|, |R̄f(w)Yw(z)| � |w|−2n+ε|K(t)

w (z)|.

Thus for any h ∈ Hol(Bn), Xf h(z), YR̄f h(z) are defined pointwise. If f has compact 

support contained in Bn, then it is easy to see that Xf , YR̄f belong to Sp for any p. In 

general, we can always write f = f1 + f2, where f1 has compact support in Bn, and the 

support of f2 is away from the origin. We might as well assume that f itself has support 

away from zero. In this case, we have the following estimates

|f(w)Xw(z)| � |K(t)
w (z)|, |R̄f(w)Yw(z)| � |K(t)

w (z)|.

Denote Gw(z) to be either f(w)Xw(z) or R̄f(w)Yw(z). Then Gw(z) is holomorphic in z, 

and
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|Gw(z)| � |K(t)
w (z)|.

Define

TGh(z) =

∫

Bn

h(w)Gw(z)dλt+1(w).

Then TG equals either Xf or YR̄f . Split the map as follows.

TG : L2
a,t(Bn)

Et,2−−−→ L2
a,t+2(Bn)

T̂G−−→ L2
a,t(Bn),

where T̂G is defined by the same integral formula as TG. By Lemma 3.1, T̂G is bounded. 

By Lemma 3.4, Et,2 ∈ Sp for all p > n. Therefore TG ∈ Sp for all p > n. This completes 

the proof of Lemma 5.14. �

The main result of this subsection is the following.

Proposition 5.15. Suppose t > −1 and Xw(z), Yw(z) satisfy Hypotheses B at t. Suppose 

that f1, f2, . . . , f2n ∈ C 2(Bn), and K1, K2, . . . , K2n are bounded operators on L2
a,t(Bn)

that belong to Sp for some p < n. Denote

Âi = T
(t+1,t)
fi

, B̂i = Xfi
+ YR̄fi

+ Ki, Ĉi = Âi + B̂i, i = 1, . . . , 2n.

Then the operator on L2
a,t(Bn)

[Ĉ1, Ĉ2, . . . , Ĉ2n] − [Â1, Â2, . . . , Â2n] ∼ 0.

Some preparations are needed before proving Proposition 5.15.

Lemma 5.16. Suppose t > −1 and f , g are Lipschitz functions on Bn. Then

[T
(t+1,t)
f , T (t+1,t)

g ] ∈ Sp, ∀p > n.

Proof. Denote P (t+1,t) to be the restriction of P (t+1) to L2(λt). By Lemma 3.1 it is easy 

to see that P (t+1,t) is bounded. Obviously, P (t+1,t) satisfies the following identities.

P (t)P (t+1,t) = P (t+1,t), P (t+1,t)P (t) = P (t),
(
P t+1,t

)2
= P (t+1,t).

So we compute the commutator as follows.

[T
(t+1,t)
f , T (t+1,t)

g ]

=[P (t+1,t)Mf P (t), P (t+1,t)MgP (t)]

=P (t+1,t)Mf P (t+1,t)MgP (t) − P (t+1,t)MgP (t+1,t)Mf P (t)
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=P (t+1,t)Mg

(
I − P (t+1,t)

)
Mf P (t) − P (t+1,t)Mf

(
I − P (t+1,t)

)
MgP (t)

=P (t+1,t)[Mg, P (t+1,t)][Mf , P t+1,t]P (t) − P (t+1,t)[Mf , P (t+1,t)][Mg, P t+1,t]P (t).

By Corollary 4.3, we arrive at the following property,

[Mg, P (t+1,t)], [Mf , P (t+1,t)] ∈ Sp, ∀p > 2n.

The Schatten-p membership of the commutator [T
(t+1,t)
f , T

(t+1,t)
g ] follows from the above 

property easily. This completes the proof of Lemma 5.16. �

Lemma 5.17. Assume Hypotheses B. Then for any f, g ∈ C 2(Bn), the commutators

[Xf , T (t+1,t)
g ] and [YR̄f , T (t+1,t)

g ]

belong to Sp for some p < n.

Proof. As in the proof of Lemma 5.14, we may assume the support of f does not contain 

the origin. For any h ∈ L2
a,t(Bn), since Xw(z), Yw(z) are holomorphic in z, it is easy to 

verify the following integral expression,

(
T (t+1,t)

g Xf − Xgf

)
h(ξ) =

∫

B2
n

[
g(z) − g(w)

]
f(w)h(w)K(t+1)

z (ξ)Xw(z)dλt+1(w)dλt+1(z),

(
Xf T (t+1,t)

g − Xgf

)
h(ξ) =

∫

B2
n

f(z)
[
g(w) − g(z)

]
h(w)Xz(ξ)K(t+1)

w (z)dλt+1(w)dλt+1(z),

and similarly,

(
T (t+1,t)

g YR̄f −YgR̄f

)
h(ξ) =

∫

B2
n

[
g(z)−g(w)

]
R̄f(w)h(w)K(t+1)

z (ξ)Yw(z)dλt+1(w)dλt+1(z),

(
YR̄f T (t+1,t)

g −YgR̄f

)
h(ξ) =

∫

B2
n

R̄f(z)
[
g(w)−g(z)

]
h(w)Yz(ξ)K(t+1)

w (z)dλt+1(w)dλt+1(z).

As in the proof of Lemma 5.14, let Gw(z) be either f(w)Xw(z) or R̄f(w)Yw(z). Write

Th(z) =

∫

Bn

[g(z) − g(w)]h(w)Gw(z)dλt+1(w),

Sh(z) =

∫

Bn

[
g(w) − g(z)

]
h(w)K(t+1)

w (z)dλt+1(w),

and
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Wh(ξ) =

∫

Bn

h(z)Gz(ξ)dλt+1(z).

Then by the above, we have

T (t+1,t)
g Xf − Xgf , or T (t+1,t)

g YR̄f − YgR̄f = P (t+1)T,

Xf T (t+1,t)
g − Xgf , or YR̄f T (t+1,t)

g − YgR̄f = WS.

Take ε > 0 small enough. Split P (t+1)T and WS as the composition of the following 

operators.

P (t+1)T : L2
a,t(Bn)

Et,2+ε−−−−→ L2
a,t+2+ε

T−→ L2(λt)
P (t+1)

−−−−→ L2
a,t(Bn),

WS : L2
a,t(Bn)

Et,2+ε−−−−→ L2
a,t+2+ε

S−→ L2(λt+2)
W−→ L2(λt).

By Lemma 2.2, we have the following inequalities,

|g(z) − g(w)| � |z − w| � |1 − 〈z, w〉|1/2.

By Lemma 3.1, T, P (t+1), S, W define bounded operators between the spaces indicated 

above. Again, by Lemma 3.4, Et,2+ε ∈ Sp for some p < n. Thus altogether, the operators

(
T (t+1,t)

g Xf −Xgf

)
,

(
T (t+1,t)

g YR̄f −YgR̄f

)
,

(
Xf T (t+1,t)

g −Xgf

)
,

(
YR̄f T (t+1,t)

g −YgR̄f

)

are in Sp for some p < n. So are the commutators

[T (t+1,t)
g , Xf ] =

(
T (t+1,t)

g Xf − Xgf

)
−
(

Xf T (t+1,t)
g − Xgf

)
,

and

[T (t+1,t)
g , YR̄f ] =

(
T (t+1,t)

g YR̄f − YgR̄f

)
−
(

YR̄f T (t+1,t)
g − YgR̄f

)
.

This completes the proof of Lemma 5.17. �

From Lemmas 5.14, 5.16 and 5.17 it follows that if we set

Ai = T
(t+1,t)
fi

, Bi = Xfi
+ YR̄fi

+ Ki, i = 1, 2, . . . , 2n,

then the operators {Ai, Bi} satisfy Hypotheses A defined Subsection 5.2. Thus by Propo-

sition 5.10, the proof of Proposition 5.15 reduces to the proof of
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Tr

( 2n∑

k=1

[A1, . . . , Ak−1, Bk, Ak+1, . . . , A2n]

)
= 0.

Each Bk splits into the sum of Xfk
, YR̄fk

and Kk. The part with Kk can be handled 

by Corollary 5.12 as Kk is assumed to belong to Sp for some p < n. Thus it remains to 

prove

Tr

( 2n∑

k=1

[A1, . . . , Ak−1, Xfk
+ YR̄fk

, Ak+1, . . . , A2n]

)
= 0. (5.7)

The operators Xfk
+YR̄fk

generally do not belong to Sp for p < n. Thus Corollary 5.12

do not apply and it is hard to handle this trace at operator-theoretic level. Instead, we 

need to treat them as integral operators. Let us explain the idea of the proof. The 

operator in (5.7) is a sum of compositions of 2n integral operators. By [47, Lemma 2.5]

and the definitions of Ai, Xfk
, YR̄fk

, we can write the trace in (5.7) into a (2n + 1)-fold 

integral of the form

∫

Bn

[ ∫

B2n
n

K
(t)
ξ (z1)G(z1, z2, . . . , z2n, ξ)dλt+1(z1) . . . dλt+1(z2n)

]
dλt(ξ),

where G(z1, z2, . . . , z2n, ξ) is holomorphic in ξ. If the (2n + 1)-fold integral converges 

absolutely, then we can apply Fubini’s Theorem and get that the above integral is equal 

to
∫

B2n
n

G(z1, z2, . . . , z2n, ξ)
∣∣
ξ=z1

dλt+1(z1) . . . dλt+1(z2n).

The anti-symmetrization will then tell us that the above equals zero as ξ = z1. Thus 

the proof of Proposition 5.15 reduces to reorganize the parts in (5.7) so that each part 

converges absolutely.

The following lemma helps us recognizing absolutely integrable terms in a multi-fold 

integral.

Lemma 5.18. Suppose k is a positive integer and t > −1. Then

∫

Bk
n

∣∣∣∣K
(t)
z1

(z2) . . . K(t)
zk−1

(zk)

∣∣∣∣dλt(z1) . . . dλt(zk) < ∞; (5.8)

and for any ε > 0,

∫

B
k+1
n

(∑

i,j

|1 − 〈zi, zj〉|
)n+ε∣∣∣∣K

(t)
z0

(z1)K(t)
z1

(z2) . . . K(t)
zk−1

(zk)K(t)
zk

(z0)

∣∣∣∣dλt(z0) . . . dλt(zk)

< ∞. (5.9)
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Proof. First, we notice that (5.8) is a special case of (5.9): take ε = t + 1, then

∫

Bk
n

∣∣∣∣K
(t)
z1

(z2) . . . K(t)
zk−1

(zk)

∣∣∣∣dλt(z1) . . . dλt(zk)

=

∫

Bk
n

|1 − 〈z1, zk〉|n+t+1

∣∣∣∣K
(t)
z1

(z2) . . . K(t)
zk−1

(zk)K(t)
zk

(z1)

∣∣∣∣dλt(z1) . . . dλt(zk)

≤
∫

Bk
n

(∑

i,j

|1 − 〈zi, zj〉|
)n+t+1∣∣∣∣K

(t)
z1

(z2) . . . K(t)
zk−1

(zk)K(t)
zk

(z1)

∣∣∣∣dλt(z1) . . . dλt(zk).

Thus it suffices to prove (5.9). It is well-known that all lp norms on a finite set are 

equivalent. So by [44, Proposition 5.1.2] and Lemma 2.2 (7), we obtain the following 

estimates,

|1−〈zi, zj〉| =

(
|1−〈zi, zj〉|1/2

)2

�

( k−1∑

s=0

|1−〈zs, zs+1〉|1/2

)2

�

k−1∑

s=0

|1−〈zs, zs+1〉|, ∀i, j,

and

(∑

i,j

|1 − 〈zi, zj〉|
)n+ε

�

( k−1∑

s=0

|1 − 〈zs, zs+1〉|
)n+ε

�

k−1∑

s=0

|1 − 〈zs, zs+1〉|n+ε.

Also, for any s ≥ 1, take the rotation in variables zs �→ z0, zs+1 �→ z1, . . . , zk �→
zk−s, z0 �→ zk−s+1, z1 �→ zk−s+2, . . . , zs−1 �→ zk, then we have the following equation,

∫

B
k+1
n

|1 − 〈zs, zs+1〉|n+ε

∣∣∣∣K
(t)
z0

(z1)K(t)
z1

(z2) . . . K(t)
zk−1

(zk)K(t)
zk

(z0)

∣∣∣∣dλt(z0) . . . dλt(zk)

=

∫

B
k+1
n

|1 − 〈z0, z1〉|n+ε

∣∣∣∣K
(t)
z0

(z1)K(t)
z1

(z2) . . . K(t)
zk−1

(zk)K(t)
zk

(z0)

∣∣∣∣dλt(z0) . . . dλt(zk).

Notice that the part of the reproducing kernels is invariant under the above rotation of 

variables. Thus it suffices to prove the integral above is finite. Without loss of generality, 

assume 0 < ε < 1 + t. We prove it by induction. For k = 1, by Lemma 2.3 (1), we 

compute the integral as follows.

∫

B2
n

|1 − 〈z0, z1〉|n+ε

∣∣∣∣K
(t)
z0

(z1)K(t)
z1

(z0)

∣∣∣∣dλt(z0)dλt(z1)

=

∫

B2
n

1

|1 − 〈z0, z1〉|2(n+1+t)−n−ε
dλt(z0)dλt(z1)
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�

∫

Bn

(1 − |z1|2)ε−(1+t)dλt(z1)

�

∫

Bn

(1 − |z1|2)ε−1dm(z1)

<∞.

Thus (5.9) holds for k = 1. Suppose (5.9) holds for k − 1. Then by Lemma 2.3 (2), we 

have the following estimates by the induction step.

∫

B
k+1
n

|1 − 〈z0, z1〉|n+ε

∣∣∣∣K
(t)
z0

(z1)K(t)
z1

(z2) . . . K(t)
zk−1

(zk)K(t)
zk

(z0)

∣∣∣∣dλt(z0) . . . dλt(zk)

=

∫

Bk
n

(∫

Bn

1

|1 − 〈z0, z1〉|1+t−ε|1 − 〈z0, zk〉|n+1+t
dλt(z0)

)

·
∣∣∣∣K

(t)
z1

(z2) . . . K(t)
zk−1

(zk)

∣∣∣∣dλt(z1) . . . dλt(zk)

�

∫

Bk
n

1

|1 − 〈z1, zk〉|1+t−ε/2

∣∣∣∣K
(t)
z1

(z2) . . . K(t)
zk−1

(zk)

∣∣∣∣dλt(z1) . . . dλt(zk)

=

∫

Bk
n

|1 − 〈z1, zk〉|n+ε/2

∣∣∣∣K
(t)
z1

(z2) . . . K(t)
zk−1

(zk)K(t)
zk

(z1)

∣∣∣∣dλt(z1) . . . dλt(zk)

<∞.

This completes the proof of Lemma 5.18. �

Proof of Proposition 5.15. For simplicity of notation, in this proof let us write Ai for Âi, 

Bi for B̂i, and Ci for Ĉi. The fact that {Ai, Bi}2n
i=1 satisfy Hypotheses A follows from 

Lemmas 5.14 and 5.17. Thus by Proposition 5.10, we have the following property, i.e.

[C1, C2, . . . , C2n] − [A1, A2, . . . , A2n] ∈ S1,

and

[C1, C2, . . . , C2n] − [A1, A2, . . . , A2n] −
2n∑

l=1

[A1, . . . , Al−1, Bl, Al+1, . . . , A2n] ∼ 0.

Recall that

Bi = Xfi
+ YR̄fi

+ Ki, i = 1, 2, . . . , 2n.

By Corollary 5.12, each operator
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[A1, . . . , Al−1, Kl, Al+1, . . . , A2n] ∼ 0.

Denote

X =
2n∑

l=1

[A1, . . . , Al−1, Xfl
, Al+1, . . . , A2n],

and

Y =

2n∑

l=1

[A1, . . . , Al−1, YR̄fl
, Al+1, . . . , A2n].

Then it follows from Proposition 5.10 that X and Y are trace class operators on L2
a,t(Bn). 

It remains to show that

X ∼ 0, Y ∼ 0.

Notation 5.19. For two functions H(ξ), G(ξ) on Bn, write H � G if 
∫

Bn
(H(ξ) −

G(ξ))dλt(ξ) = 0.

By [47, Lemma 2.5], it suffices to show

〈XK
(t)
ξ , K

(t)
ξ 〉 � 0, and 〈Y K

(t)
ξ , K

(t)
ξ 〉 � 0. (5.10)

A moment of reflection shows that

X =
2n∑

k=1

∑

τ∈S2n

sgn(τ)Aτ1
. . . Aτk−1

Xfτk
Aτk+1

. . . Aτ2n
,

and

Y =

2n∑

k=1

∑

τ∈S2n

sgn(τ)Aτ1
. . . Aτk−1

YR̄fτk
Aτk+1

. . . Aτ2n
.

For k = 1, . . . , 2n, denote

Xk =
∑

τ∈S2n

sgn(τ)Aτ1
. . . Aτk−1

Xfτk
Aτk+1

. . . Aτ2n
,

and

Yk =
∑

τ∈S2n

sgn(τ)Aτ1
. . . Aτk−1

YR̄fτk
Aτk+1

. . . Aτ2n
.

Then we have the following expressions for X and Y ,
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X =
2n∑

k=1

Xk, Y =
2n∑

k=1

Yk.

Define

X ′
k =

∑

τ∈S2n

sgn(τ)Aτ2n
Aτ1

. . . Aτk−1
Xfτk

Aτk+1
. . . Aτ2n−1

, k = 1, . . . , 2n − 1,

X ′
2n =

∑

τ∈S2n

sgn(τ)Xfτ2n
Aτ1

. . . Aτ2n−1
,

and

Y ′
k =

∑

τ∈S2n

sgn(τ)Aτ2n
Aτ1

. . . Aτk−1
YR̄fτk

Aτk+1
. . . Aτ2n−1

, k = 1, . . . , 2n − 1,

Y ′
2n =

∑

τ∈S2n

sgn(τ)YR̄fτ2n
Aτ1

. . . Aτ2n−1
.

In other words, X ′
k, Y ′

k are obtained from Xk, Yk by moving each rightmost operator to 

the leftmost. Define

X ′ =

2n∑

k=1

X ′
k, Y ′ =

2n∑

k=1

Y ′
k.

The anti-symmetrization leads to

X ′ = −X, Y ′ = −Y. (5.11)

Below we show the following.

Lemma 5.20.

〈XK
(t)
ξ , K

(t)
ξ 〉 � 〈X ′K

(t)
ξ , K

(t)
ξ 〉, 〈Y K

(t)
ξ , K

(t)
ξ 〉 � 〈Y ′K

(t)
ξ , K

(t)
ξ 〉.

Proof. Each fi has a decomposition fi = gi + hi, where gi has compact support, and 

hi has support away from 0. Since Xgi
, YR̄gi

are perturbations that belong to the trace 

class, we might as well assume that each fi have support away from the origin.

For k, i = 1, . . . , 2n, write

Xk,i(w, z) =

{
Xw(z), if i = k,

K
(t+1)
w (z), otherwise.

By definition, for any k = 1, . . . , 2n, we compute 〈XkK
(t)
ξ , K

(t)
ξ 〉 as follows.
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〈XkK
(t)
ξ , K

(t)
ξ 〉

=

[ ∑

τ∈S2n

sgn(τ)T
(t+1,t)
fτ1

. . . T
(t+1,t)
fτk−1

Xfτk
T

(t+1,t)
fτk+1

. . . T
(t+1,t)
fτ2n

K
(t)
ξ

]
(ξ)

=
∑

τ∈S2n

sgn(τ)

∫

B2n
n

fτ1 (z1) . . . fτ2n (z2n)K
(t)
ξ (z2n)

· Xk,2n(z2n, z2n−1)Xk,2n−1(z2n−1, z2n−2) . . . Xk,2(z2, z1)Xk,1(z1, ξ)dλt+1(z2n) . . . dλt+1(z1)

=

∫

B2n
n

det
[
fi(zj)

]
K

(t)
ξ (z2n)

( 2n∏

i=2

Xk,i(zi, zi−1)

)
Xk,1(z1, ξ)dλt+1(z2n) . . . dλt+1(z1).

(5.12)

Denote F the column vector of 2n functions,

F (z) = [f1(z) f2(z) . . . f2n(z)]T .

Then by Lemma 2.2, we estimate the determinant function,

∣∣∣∣ det
[
fi(zj)

]∣∣∣∣ =

∣∣∣∣ det
[
F (z1) . . . F (z2n)

]∣∣∣∣

=

∣∣∣∣ det
[
F (z1) F (z2) − F (z1) . . . F (z2n) − F (z1)

]∣∣∣∣

�

(∑

i,j

|zi − zj |
)2n−1

�

(∑

i,j

|1 − 〈zi, zj〉|
)n−1/2

.

Also, we obtain the following estimate

|Xk,i(w, z)| �
{

|w|−2n+ε|K(t)
w (z)|, i = k,

|K(t+1)
w (z)| = 1

|1−〈z,w〉| · |K(t)
w (z)|, i 
= k.

Since we assume that each fi is supported away from the origin, we continue computing 

the inner product 〈XkK
(t)
ξ , K

(t)
ξ 〉 using Lemma 2.2 and the above estimate.

∫

B2n+1
n

∣∣∣∣ det[fi(zj)]K
(t)
ξ (z2n)

( 2n∏

i=2

Xk,i(zi, zi−1)

)
Xk,1(z1, ξ)

∣∣∣∣dλt+1(z2n) . . . dλt+1(z1)dλt(ξ)

�

∫

B2n+1
n

∣∣∣∣ det[fi(zj)]K
(t)
ξ (z2n)

( ∏

i �=k,1

1 − |zi|
2

|1 − 〈zi, zi−1〉|

)
(1 − |zk|2)

1 − |z1|2

|1 − 〈z1, ξ〉|

·

( 2n∏

i=2

K
(t)
zi

(zi−1)

)
K

(t)
z1

(ξ)

∣∣∣∣dλt(z2n) . . . dλt(z1)dλt(ξ)
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�

∫

B2n+1
n

(∑

i,j

|1 − 〈zi, zj〉|

)n+ 1
2
∣∣∣∣K

(t)
ξ (z2n)

( 2n∏

i=2

K
(t)
zi

(zi−1)

)
K

(t)
z1

(ξ)

∣∣∣∣dλt(z2n) . . . dλt(z1)dλt(ξ)

<∞.

Here the last inequality follows from Lemma 5.18. Thus the (2n + 1)-fold integral ob-

tained by plugging (5.12) into 
∫

Bn
〈XkK

(t)
ξ , K

(t)
ξ 〉dλt(ξ) converges absolutely. By Fubini’s 

Theorem, the variable ξ can be integrated first, and, since each Xk,i(w, z) is holomorphic 

in z, we compute the following integral

∫

Bn

〈XkK
(t)
ξ , K

(t)
ξ 〉dλt(ξ)

=

∫

Bn

{ ∫

B2n
n

det
[
fi(zj)

]
K

(t)
ξ (z2n)

( 2n∏

i=2

Xk,i(zi, zi−1)

)
Xk,1(z1, ξ)dλt+1(z2n) . . . dλt+1(z1)

}
dλt(ξ)

=

∫

B2n
n

det
[
fi(zj)

]( 2n∏

i=2

Xk,i(zi, zi−1)

)
Xk,1(z1, z2n)dλt+1(z2n) . . . dλt+1(z1).

By a similar proof, we have a similar expression for the integral of 〈X ′
kK

(t)
ξ , K

(t)
ξ 〉.

∫

Bn

〈X ′
kK

(t)
ξ , K

(t)
ξ 〉dλt(ξ)

=

∫

Bn

{ ∫

B2n
n

det[fi(zj)]K
(t)
ξ (z2n−1)

·
( 2n−1∏

i=2

Xk,i(zi, zi−1)

)
Xk,1(z1, z2n)Xk,2n(z2n, ξ)dλt+1(z2n) . . . dλt+1(z1)

}
dλt(ξ)

=

∫

B2n
n

det[fi(zj)]

( 2n∏

i=2

Xk,i(zi, zi−1)

)
Xk,1(z1, z2n)dλt+1(z2n) . . . dλt+1(z1)

=

∫

Bn

〈XkK
(t)
ξ , K

(t)
ξ 〉dλt(ξ).

In other words, we have shown the following equation

〈XkK
(t)
ξ , K

(t)
ξ 〉 � 〈X ′

kK
(t)
ξ , K

(t)
ξ 〉. (5.13)
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The situation for Y is more complicated. As in the case of X, for k, i = 1, . . . , 2n, 

define

Yk,i(w, z) =

{
Yw(z), i = k,

K
(t+1)
w (z), otherwise.

Then each Yk,i(w, z) is holomorphic in z, and

|Yk,i(w, z)| �
{

|w|−2n−1+ε|K(t)
w (z)|, i = k,

1
|1−〈w,z〉| · |K(t)

w (z)|, otherwise.

By definition, we compute

〈YkK
(t)
ξ , K

(t)
ξ 〉 =

∫

B2n
n

det
[
F (z1) . . . F (zk−1) R̄F (zk) F (zk+1) . . . F (z2n)

]
(5.14)

K
(t)
ξ (z2n)

( 2n∏

i=2

Yk,i(zi, zi−1)

)
Yk,1(z1, ξ)dλt+1(z2n) . . . dλt+1(z1).

Here R̄F (z) is the column vector

R̄F (z) = [R̄f1(z) . . . R̄f2n(z)]T .

Direct computation shows that

det
[
F (z1) . . . F (zk−1)R̄F (zk)F (zk+1) . . . F (z2n)

]

= det
[
F (z1) − F (zk) . . . F (zk−1) − F (zk)R̄F (zk)F (zk+1) − F (zk) . . . F (z2n) − F (zk)

]

+
∑

j �=k

det Fj,k,

where Fj,k is the matrix function obtained by replacing the j-th column of

[
F (z1) . . . F (zk−1) R̄F (zk) F (zk+1) . . . F (z2n)

]

into F (zk). Therefore we can compute its determinant as follows.

det
[
F (z1) . . . F (zk−1)R̄F (zk)F (zk+1) . . . F (z2n)

]
(5.15)

= det
[
F (z1) − F (zk) . . . F (zk−1) − F (zk)R̄F (zk)F (zk+1) − F (zk) . . . F (z2n) − F (zk)

]

+
∑

j �=k

∑

τ∈S2n

sgn(τ)fτj
(zk)R̄fτk

(zk)
∏

i�=j,k

fτi
(zi)

:=Dk(z1, . . . , z2n) +
∑

j �=k

Ek,j(z1, . . . , z2n),
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where

Dk(z1, . . . , z2n) =

det
[
F (z1) − F (zk) . . . F (zk−1) − F (zk)R̄F (zk)F (zk+1) − F (zk) . . . F (z2n) − F (zk)

]
,

Ek,j(z1, . . . , z2n) =
∑

τ∈S2n

sgn(τ)fτj
(zk)R̄fτk

(zk)
∏

i�=j,k

fτi
(zi).

Correspondingly, we write

〈YkK
(t)
ξ , K

(t)
ξ 〉 = Ik(ξ) +

∑

j �=k

IIk,j(ξ),

where

Ik(ξ)

=

∫

B2n
n

Dk(z1, . . . , z2n)K
(t)
ξ (z2n)

( 2n∏

i=2

Yk,i(zi, zi−1)

)
Yk,1(z1, ξ)dλt+1(z2n) . . . dλt+1(z1),

and

IIk,j(ξ)

=

∫

B2n
n

Ek,j(z1, . . . , z2n)K
(t)
ξ (z2n)

( 2n∏

i=2

Yk,i(zi, zi−1)

)
Yk,1(z1, ξ)dλt+1(z2n) . . . dλt+1(z1).

Similarly, we have the following expression for 〈Y ′
kK

(t)
ξ , K

(t)
ξ 〉,

〈Y ′
kK

(t)
ξ , K

(t)
ξ 〉 = I ′

k(ξ) +
∑

j �=k

II ′
k,j(ξ),

where

I ′
k(ξ)

=
∫

B2n
n

Dk(z1, . . . , z2n)K(t)
ξ (z2n−1)

( 2n−1∏

i=2

Yk,i(zi, zi−1)
)

Yk,1(z1, z2n)Yk,2n(z2n, ξ)dλt+1(z2n) . . . dλt+1(z1),

and

II′
k,j(ξ)

=
∫

B2n
n

Ek,j(z1, . . . , z2n)K(t)
ξ (z2n−1)

( 2n−1∏

i=2

Yk,i(zi, zi−1)
)

Yk,1(z1, z2n)Yk,2n(z2n, ξ)dλt+1(z2n) . . . dλt+1(z1).
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Since

|Dk|

=

∣∣∣∣ det
[
F (z1) − F (zk) . . . F (zk−1) − F (zk)R̄F (zk)F (zk+1) − F (zk) . . . F (z2n) − F (zk)

]∣∣∣∣

�|zk| ·
(∑

i,j

|1 − 〈zi, zj〉|
)n+1/2

,

we can repeat the proof for (5.13) and get the identity

Ik(ξ) � I ′
k(ξ). (5.16)

Define

Zk,j =

⎧
⎪⎨
⎪⎩

∑
τ∈S2n

sgn(τ)T
(t+1,t)
fτ1

. . .
̂

T
(t+1,t)
fτj

. . . T
(t+1,t)
fτk−1

Yfτj
R̄fτk

T
(t+1,t)
fτk+1

. . . T
(t+1,t)
fτ2n

, j < k

∑
τ∈S2n

sgn(τ)T
(t+1,t)
fτ1

. . . T
(t+1,t)
fτk−1

Yfτj
R̄fτk

T
(t+1,t)
fτk+1

. . .
̂

T
(t+1,t)
fτj

. . . T
(t+1,t)
fτ2n

, j > k,

and Z ′
k,j the operator obtained from Zk,j by moving each rightmost operator to the 

leftmost. Here Â means that A is removed. Checking by definition we get

IIk,j(ξ) = 〈Zk,jK
(t)
ξ , K

(t)
ξ 〉, II ′

k,j(ξ) = 〈Z ′
k,jK

(t)
ξ , K

(t)
ξ 〉.

Using antisymmetrization we see that

Zk,j =

{
(−1)k−j−1Zk,k−1, j < k,

(−1)k−j−1Zk,k+1, j > k.

Therefore we have the following calculation.

2n∑

k=1

∑

j �=k

Zk,j =
∑

k odd

Zk,k+1 +
∑

k even

Zk,k−1 =
n∑

m=1

(
Z2m−1,2m + Z2m,2m−1

)

=
n∑

m=1

{ ∑

τ∈S2n

sgn(τ)T
(t+1,t)
fτ1

. . . T
(t+1,t)
fτ2m−2

Yfτ2m
R̄fτ2m−1

T
(t+1,t)
fτ2m+1

. . . T
(t+1,t)
fτ2n

+
∑

τ∈S2n

sgn(τ)T
(t+1,t)
fτ1

. . . T
(t+1,t)
fτ2m−2

Yfτ2m−1
R̄fτ2m

T
(t+1,t)
fτ2m+1

. . . T
(t+1,t)
fτ2n

}

=
n∑

m=1

∑

τ∈S2n

sgn(τ)T
(t+1,t)
fτ1

. . . T
(t+1,t)
fτ2m−2

Yfτ2mR̄fτ2m−1
+fτ2m−1

R̄fτ2m
T

(t+1,t)
fτ2m+1

. . . T
(t+1,t)
fτ2n

=

n∑

m=1

∑

τ∈S2n

sgn(τ)T
(t+1,t)
fτ1

. . . T
(t+1,t)
fτ2m−2

YR̄[fτ2m
fτ2m−1

]T
(t+1,t)
fτ2m+1

. . . T
(t+1,t)
fτ2n
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=0.

Similarly, 
∑2n

k=1

∑
j �=k Z ′

k,j = 0. Thus we can verify the following equations.

2n∑

k=1

∑

j �=k

IIk,j(ξ) =

2n∑

k=1

∑

j �=k

〈Zk,jK
(t)
ξ , K

(t)
ξ 〉 = 〈

( 2n∑

k=1

∑

j �=k

Zk,j

)
K

(t)
ξ , K

(t)
ξ 〉 = 0,

2n∑

k=1

∑

j �=k

II ′
k,j(ξ) =

2n∑

k=1

∑

j �=k

〈Z ′
k,jK

(t)
ξ , K

(t)
ξ 〉 = 〈

( 2n∑

k=1

∑

j �=k

Z ′
k,j

)
K

(t)
ξ , K

(t)
ξ 〉 = 0.

This leads to the following identities

〈Y K
(t)
ξ , K

(t)
ξ 〉 =

2n∑

k=1

〈YkK
(t)
ξ , K

(t)
ξ 〉 =

2n∑

k=1

Ik(ξ) +
2n∑

k=1

∑

j �=k

IIk,j(ξ) =
2n∑

k=1

Ik(ξ),

and

〈Y ′K
(t)
ξ , K

(t)
ξ 〉 =

2n∑

k=1

〈Y ′
kK

(t)
ξ , K

(t)
ξ 〉 =

2n∑

k=1

I ′
k(ξ) +

2n∑

k=1

∑

j �=k

II ′
k,j(ξ) =

2n∑

k=1

I ′
k(ξ).

Combining with (5.16), we arrive at the following equation

〈Y K
(t)
ξ , K

(t)
ξ 〉 � 〈Y ′K

(t)
ξ , K

(t)
ξ 〉. � (5.17)

Equation (5.11) and Lemma 5.20 implies (5.10), which completes the proof of Propo-

sition 5.15. �

5.4. Proof of Lemmas 5.2 and 5.3

In this subsection we give the proof of Lemmas 5.2 and 5.3.

Lemma 5.21. For t > −1, the integral kernels X
(t)
w (z) and Y

(t)
w (z) satisfy Hypotheses B 

at t.

Proof. The fact that X
(t)
w (z) and Y

(t)
w (z) are holomorphic in z is obvious from Defini-

tion 5.4. By direct computation, we obtain the following equation

R̄wK(t)
w (z) = (n + 1 + t)

〈z, w〉
(1 − 〈z, w〉)n+2+t

= (n + 1 + t)K(t+1)
w (z) − (n + 1 + t)K(t)

w (z).

So we obtain the following estimates,

|R̄wK(t)
w (z)| � |w||K(t+1)

w (z)|,
∣∣R̄wK(t)

w (z) − (n + 1 + t)K(t+1)
w (z)

∣∣ � |K(t)
w (z)|. (5.18)



54 X. Tang et al. / Advances in Mathematics 433 (2023) 109324

Also by Lemma 5.9, we get the following inequalities

|G(t)
n 1(s)| � s−n,

∣∣G(t)
n 1(s) − 1

t + 1

∣∣ � s−n(1 − s). (5.19)

Using (5.18) and (5.19), we find

∣∣Y (t)
w (z)

∣∣ �|w|−2n|K(t)
w (z)|,

and

∣∣X(t)
w (z)

∣∣ =

∣∣∣∣
(

(t + 1)G(t)
n 1(|w|2) − 1

)
· R̄wK

(t)
w (z)

n + t + 1
+

(
R̄wK

(t)
w (z)

n + t + 1
− K(t+1)

w (z)

)∣∣∣∣

≤
∣∣∣∣(t + 1)G(t)

n 1(|w|2) − 1

∣∣∣∣ ·
∣∣∣∣
R̄wK

(t)
w (z)

n + t + 1

∣∣∣∣ +

∣∣∣∣
R̄wK

(t)
w (z)

n + t + 1
− K(t+1)

w (z)

∣∣∣∣

�|w|−2n(1 − |w|2) · |w|
∣∣K(t+1)

w (z)
∣∣ +

∣∣K(t)
w (z)

∣∣

�|w|−2n+1
∣∣K(t)

w (z)
∣∣.

This completes the proof of Lemma 5.21. �

Proof of Lemma 5.2. Take Ki = fi(0)E0. Then each Ki is a rank one operator. Take 

Xw(z) = X
(t)
w (z) and Yw(z) = Y

(t)
w (z) and define Âi, B̂i, Ĉi as in Proposition 5.15. Then 

clearly they satisfy

Ai = Âi, Bi = B̂i, Ci = Ĉi, i = 1, . . . , 2n.

By Lemma 5.21, Xw(z) and Yw(z) satisfy Hypotheses B at t. Thus by Proposition 5.15, 

we verify

[T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] − [T
(t+1,t)
f1

, T
(t+1,t)
f2

, . . . , T
(t+1,t)
f2n

]

=[C1, C2, . . . , C2n] − [A1, A2, . . . , A2n]

=[Ĉ1, Ĉ2, . . . , Ĉ2n] − [Â1, Â2, . . . , Â2n]

∼0.

This completes the proof of Lemma 5.2. �

We take a roundabout approach in handling the Hardy space case. In Lemma 5.7 we 

lift the weight of Tf by 2. Then in Lemma 5.24 we show that the operator on L2
a,0(Bn)

[T
(−1,0)
f1

, T
(−1,0)
f2

, . . . , T
(−1,0)
f2n

] − [T
(1,0)
f1

, T
(1,0)
f2

, . . . , T
(1,0)
f2n

] ∼ 0.

Finally, using Lemma 2.4, we show that the operator
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[Tf1
, . . . , Tf2n

] − [T
(1,−1)
f1

, . . . , T
(1,−1)
f2n

],

which is the restriction of the previous operator on H2(Sn), also has zero trace. The 

main reason for taking this approach is to avoid rebuilding results related to Hypotheses 

B over the Hardy space.

Lemma 5.22. The integral kernels X
(−1)
w (z), Y

(−1)
w (z) and Z

(−1)
w (z) satisfy the following 

estimates.

1. |X(−1)
w (z)| � |w|−2n+1/2|K(0)

w (z)|;
2. |Y (−1)

w (z)| � |w|−2n+1/2|K(0)
w (z)|;

3. |Z(−1)
w (z)| � |w|−2n−1/2|K(−1)

w (z)|.

In particular, X
(−1)
w (z), Y

(−1)
w (z) satisfy Hypotheses B at t = 0.

Proof. We compute the following limit by L’Hospital’s rule,

lim
s→1−

G(0)
n φ(s) − 1

1 − s
= lim

s→1−

∫ 1

s
r−1dr − (1 − s)

(1 − s)2
= lim

s→1−

−s−1 + 1

−2(1 − s)
=

1

2
.

Also by [47, Lemma 8.2] with a = n + 1
4 , G(0)

n φ(s) � s−n− 1
4 . Therefore we obtain the 

estimates

∣∣∣∣G
(0)
n φ(s) − 1

∣∣∣∣ � s−n− 1
4 (1 − s),

∣∣G(0)
n φ(s)

∣∣ � s−n− 1
4 . (5.20)

Also, direct computation gives the following identities

R̄wK(−1)
w (z) =

n〈z, w〉
(1 − 〈z, w〉)n+1

= nK(0)
w (z) − nK(−1)

w (z),

R̄2
wK(−1)

w (z) =
n(n + 1)〈z, w〉
(1 − 〈z, w〉)n+2

− n2〈z, w〉
(1 − 〈z, w〉)

= n(n + 1)K(1)
w (z) − n(2n + 1)K(0)

w (z) + n2K(−1)
w (z).

So we have the following estimates,

∣∣∣∣R̄
2
wK(−1)

w (z) − n(n + 1)K(1)
w (z)

∣∣∣∣ � |K(0)
w (z)|, (5.21)

and

|R̄2
wK(−1)

w (z)| � |w||K(1)
w (z)|, |R̄wK(−1)

w (z)| � |w||K(0)
w (z)|. (5.22)

By (5.20), (5.21) and (5.22), we estimate |X(−1)
w (z)|, |Y (−1)

w (z)|, |Z(−1)
w (z)| as follows,
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|X(−1)
w (z)| ≤ 1

n(n + 1)

∣∣∣∣
(
G(0)

n φ(|w|2) − 1
)
R̄2

wK(−1)
w (z)

∣∣∣∣ +

∣∣∣∣
1

n(n + 1)
R̄2

wK(−1)
w (z) − K(1)

w (z)

∣∣∣∣

�|w|−2n− 1
2 (1 − |w|2)|w||K(1)

w (z)| + |K(0)
w (z)|

�|w|−2n+ 1
2 |K(0)

w (z)|,
|Y (−1)

w (z)| �|w|−2n− 1
2 |w||K(0)

w (z)| = |w|−2n+ 1
2 |K(0)

w (z)|,

and

|Z(−1)
w (z)| �|w|−2n− 1

2 |K(−1)
w (z)|.

This completes the proof of Lemma 5.22. �

By Lemmas 5.14 and 5.22, for f ∈ C 2(Bn), the integral formulas of X
(−1)
f and Y

(−1)

R̄f

define bounded operators on L2
a,0(Bn). Denote these operators X

(−1,0)
f and Y

(−1,0)

R̄f
.

Lemma 5.23. Suppose f, g ∈ C 2(Bn). Then the integral formula of Z
(−1)

R̄2f
defines a 

bounded operator on L2
a,0(Bn) that belongs to Sp for any p > 2n

3 . Denote this opera-

tor to be Z
(−1,0)

R̄2f
.

Proof. Split the map as follows.

Z
(−1,0)

R̄2f
: L2

a,0(Bn)
E0,3−2ε−−−−−→ L2

a,3−2ε(Bn)
Ẑ

(−1,0)

R̄2f−−−−−→ L2
a(Bn).

Here Ẑ
(−1,0)

R̄2f
is defined by the same integral formula as Z

(−1,0)

R̄2f
, and ε > 0 is any suf-

ficiently small number. The boundedness of Ẑ
(−1,0)

R̄2f
follows from Lemmas 3.1 and 5.22. 

Finally, by Lemma 3.4, E0,3−2ε ∈ Sp for any p > n
3
2 −ε

. Since ε > 0 is arbitrary, we have 

Z
(−1,0)

R̄2f
∈ Sp for any p > 2n

3 . This completes the proof of Lemma 5.23. �

By Lemma 5.5, for f ∈ C 2(Bn), the operator

T −1,0
f = T

(1,0)
f + X

(−1,0)
f + Y

(−1,0)

R̄f
+ Z

(−1,0)

R̄2f
+ f(0)E0

is a well-defined bounded operator on L2
a,0(Bn). It follows from Lemmas 5.22, 5.23 and 

Proposition 5.15 that the following holds.

Lemma 5.24. Suppose f1, f2, . . . , f2n ∈ C 2(Bn). Then the operator on L2
a,0(Bn),

[T
(−1,0)
f1

, T
(−1,0)
f2

, . . . , T
(−1,0)
f2n

] − [T
(1,0)
f1

, T
(1,0)
f2

, . . . , T
(1,0)
f2n

]

is a trace class operator of zero trace.
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Lemma 5.25. Suppose f, g ∈ C 2(Bn).

1. The operators X
(−1)
f , Y

(−1)

R̄f
on H2(Sn) belong to Sp for any p > n.

2. The operator Z
(−1)

R̄2f
on H2(Sn) belongs to Sp for any p > n

2 .

Proof. If f has compact support in Bn, then X
(−1)
f , Y

(−1)

R̄f
, Z

(−1)

R̄2f
belong to the trace 

class. Since we have the decomposition f = f1 + f2, where f1 has compact support in 

Bn, and f2 has support away from the origin, we might as well assume that the support 

of f does not contain the origin. Then by Lemma 5.22, we obtain the following bounds

|f(w)X(−1)
w (z)|� |K(0)

w (z)|, |R̄f(w)Y (−1)
w (z)|� |K(0)

w (z)|, |R̄2Z(−1)
w (z)|� |K(−1)

w (z)|.

Split the maps as follows.

X
(−1)
f : H2(Sn)

E−1,2−−−−→ L2
a,1(Bn)

X̂
(−1)
f−−−−→ H2(Sn),

Y
(−1)

R̄f
: H2(Sn)

E−1,2−−−−→ L2
a,1(Bn)

Ŷ
(−1)

R̄f−−−−→ H2(Sn),

Z
(−1)

R̄2f
: H2(Sn)

E−1,4−2ε−−−−−−→ La,3−2ε

Ẑ
(−1)

R̄2f−−−−→ H2(Sn).

Here the operators with hats are defined by the same integral formulas as the correspond-

ing operators without hats, and ε > 0 is any sufficiently small number. The boundedness 

of the operators with hats follows from the estimates in Lemmas 3.3 and 5.22. Finally, 

by Lemma 3.4, the Schatten-class memberships of X
(−1)
f , Y

(−1)

R̄f
and Z

(−1)

R̄2f
follow from 

those of the embedding operators. This completes the proof of Lemma 5.25. �

Remark 5.26. It follows from Lemmas 5.7 and 5.25 that for any f ∈ C 2(Bn), the operator 

T
(1,−1)
f = T

(−1)
f − X

(−1)
f − Y

(−1)

R̄f
− Z

(−1)

R̄2f
− f(0)E0 is a well-defined bounded operator 

on H2(Sn).

Lemma 5.27. Suppose f, g ∈ C 2(Bn). Then the commutators

[X
(−1)
f , T (1,−1)

g ], [Y
(−1)

R̄f
, T

(1,−1)
f ]

belong to Sp for any p > 2n
3 .

Proof. As in the proof of Lemma 5.25, we may assume the support of f is away from 

the origin. For any h ∈ H2(Sn), since X
(−1)
w (z), Y

(−1)
w (z) are holomorphic in z, it is easy 

to verify the following formulas,

(
T (1,−1)

g X
(−1)
f −X

(−1)
gf

)
h(ξ) =

∫

B2
n

[
g(z)−g(w)

]
f(w)h(w)K(1)

z (ξ)X(−1)
w (z)dλ1(w)dλ1(z),
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(
X

(−1)
f T (1,−1)

g −X
(−1)
gf

)
h(ξ) =

∫

B2
n

f(z)
[
g(w)−g(z)

]
h(w)X(−1)

z (ξ)K(1)
w (z)dλ1(w)dλ1(z),

and similarly,

(
T (1,−1)

g Y
(−1)

R̄f
−Y

(−1)

gR̄f

)
h(ξ) =

∫

B2
n

[
g(z)−g(w)

]
R̄f(w)h(w)K(1)

z (ξ)Y (−1)
w (z)dλ1(w)dλ1(z),

(
Y

(−1)

R̄f
T (1,−1)

g −Y
(−1)

gR̄f

)
h(ξ) =

∫

B2
n

R̄f(z)
[
g(w)−g(z)

]
h(w)Y (−1)

z (ξ)K(1)
w (z)dλ1(w)dλ1(z).

If we denote Gw(z) to be either f(w)X
(−1)
w (z) or R̄f(w)Y

(−1)
w (z), then set

(
T (1,−1)

g X
(−1)
f − X

(−1)
gf

)
, or

(
T (1,−1)

g Y
(−1)

R̄f
− Y

(−1)

gR̄f

)
= H,

(
X

(−1)
f T (1,−1)

g − X
(−1)
gf

)
, or

(
Y

(−1)

R̄f
T (1,−1)

g − Y
(−1)

gR̄f

)
= WS.

Here

Sh(z) =

∫

Bn

[
g(w) − g(z)

]
h(w)K(1)

w (z)dλ1(w), Wh(ξ) =

∫

Bn

h(z)Gz(ξ)dλ1(z),

and

Hh(ξ) =

∫

B2
n

[g(z) − g(w)]h(w)Gw(z)K(1)
z (ξ)dλ1(w)dλ1(z) =

∫

Bn

h(w)Hw(z)dλ1(w),

where

Hw(ξ) =

∫

Bn

[g(z) − g(w)]Gw(z)K(1)
z (ξ)dλ1(z).

By Lemma 5.22 and since we assume the support of f does not contain the origin, we 

obtain the following bound

|Gw(z)| � |K(0)
w (z)|.

By Lemma 2.3, we have the estimate

|Hw(ξ)| �
∫

Bn

1

|1 − 〈z, w〉|n+1/2|1 − 〈z, ξ〉|n+2
dλ1(ξ) �

1

|1 − 〈w, ξ〉|n+1/2
.

For any ε > 0 sufficiently small, split the map as follows.
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H : H2(Sn)
E−1,3−2ε−−−−−−→ La,2−2ε

Ĥ−→ H2(Sn),

WS : H2(Sn)
E−1,3−2ε−−−−−−→ L2

a,2−2ε(Bn)
Ŝ−→ L2(λ1−2ε)

Ŵ−→ H2(Sn).

By the estimates above, Lemmas 3.1 and 3.3, the operators above with hats are bounded. 

Thus by Lemma 3.4, H and WS belong to Sp for any p > 2n
3 . Therefore the commutators 

have the same Schatten-class membership. This completes the proof of Lemma 5.27. �

Proof of Lemma 5.3. By Lemma 5.24, the operator on L2
a,0(Bn)

[T
(−1,0)
f1

, . . . , T
(−1,0)
f2n

] − [T
(1,0)
f1

, . . . , T
(1,0)
f2n

] ∼ 0.

On the other hand, by Lemmas 5.25, 5.27 and Proposition 5.10, the operator

[T
(−1)
f1

, . . . , T
(−1)
f2n

] − [T
(1,−1)
f1

, . . . , T
(1,−1)
f2n

]

is a trace class operator on H2(Sn). Clearly, we check the following equation

(
[T

(−1,0)
f1

, . . . , T
(−1,0)
f2n

] − [T
(1,0)
f1

, . . . , T
(1,0)
f2n

]

)∣∣∣∣
H2(Sn)

= [T
(−1)
f1

, . . . , T
(−1)
f2n

] − [T
(1,−1)
f1

, . . . , T
(1,−1)
f2n

].

Thus by Lemma 2.4, we obtain the following equation

Tr

(
[T

(−1)
f1

, T
(−1)
f2

, . . . , T
(−1)
f2n

] − [T
(1,−1)
f1

, T
(1,−1)
f2

, . . . , T
(1,−1)
f2n

]

)

=Tr

(
[T

(−1,0)
f1

, T
(−1,0)
f2

, . . . , T
(−1,0)
f2n

] − [T
(1,0)
f1

, T
(1,0)
f2

, . . . , T
(1,0)
f2n

]

)

=0.

This completes the proof of Lemma 5.3. �

6. A quantization formula

Toeplitz quantization, or Berezin-Toeplitz quantization [4], has been studied by many 

researchers on various types of domains. As an incomplete list, it was studied in [4,12,13]

on the Fock space on Cn; in [17,36] for planar domains; in [20] for pseudoconvex domains; 

in [24,49] on symmetric domains; in [18,39,40,45] for Kähler manifolds. See [1,21,45]

for some very well-written surveys on this topic. Also see [21, Section 4.6] for some 

examples, including the unit ball. Quantization provides some of the basic motivation 

for the questions considered in this paper. However, the results in this paper are self-

contained.
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In this section we introduce an explicit algorithm for computing the bilinear operators 

Cj(f, g) in the quantization formula (1.5), and prove Schatten-class norm estimates of the 

remainder terms. The proof mainly relies on the integration formulas given in Subsection 

2.3 and the tools developed in Section 4. We begin this section with stating the main 

results, Theorem 6.3 and Corollaries 6.7, 6.8. The final half of the section contains the 

proofs of these results as well as various auxiliary lemmas. We start with explaining the 

following quantization formula, which is perhaps known to experts.

Recall that we defined the functions dα,β and Iα,β in Definition 2.8.

For i = 1, . . . , n, denote ei the multi-index that equals 1 at the i-th entry and 0

elsewhere. For i1, i2, . . . , ik, denote

ei1,i2,...,ik
= ei1

+ ei2
+ . . . + eik

.

Lemma 6.1. Suppose t > −1, k is a non-negative integer and f, g ∈ C k+1(Bn). Then we 

have the decomposition

T
(t)
f T (t)

g =

k∑

l=0

cl,tT
(t)
Cl(f,g) + R

(t)
f,g,k+1, (6.1)

where

c0,t = 1, c1,t = nt−1 + O(t−2); C0(f, g) = fg, C1(f, g) − C1(g, f) =
−i

n
{f, g}. (6.2)

Here {f, g} is the Poisson bracket of f and g.

Moreover, the explicit formulas for cl,t, Cl(f, g) and R
(t)
f,g,k+1 are given as follows. For 

any l ≥ 0,

cl,t =
F (t)

n+lΦ
(t)
n,l(0)

B(n, t + 1)
≈ t−l, (6.3)

Cl(f, g)(z) = (−1)l(1 − |z|2)−2l
n∑

i1,j1,...,il,jl=1

dei1,...,il
,ej1,...,jl

(z)

[
Dil,jl

. . . Di1,j1 (f(z)g(w))

]∣∣∣∣
w=z

,

(6.4)

where

Di,j = (1 − 〈z, w〉)2∂zi
∂̄wj

. (6.5)

For any h ∈ L2
a,t(Bn) and ξ ∈ Bn,

R
(t)
f,g,k+1h(ξ) =

∫

Bn

∫

Bn

Φ
(t)
n,k+1(|ϕz(w)|2)Sf,g,k+1(z, w)h(w)K(t)

z (ξ)K(t)
w (z)dλt(w)dλt(z),

(6.6)
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where

Sf,g,k+1(z, w) =
(−1)k+1

|1 − 〈w, z〉|2(k+1)
(6.7)

·
n∑

i1,j1,...,ik+1,jk+1=1

Iei1,...,ik+1
,ej1,...,jk+1 (z − w)Dik+1,jk+1

. . . Di1,j1
[f(z)g(w)].

Formula (6.7) leads to the following norm estimate, which is well studied in the theory 

of Toeplitz quantization. For example, in [20], Engliš gave such estimates under a more 

general setting.

Corollary 6.2. Under the same assumption of Lemma 6.1,

‖R
(t)
f,g,k+1‖ �k t−k−1. (6.8)

The novelty of this section is to consider Schatten membership and Schatten norm es-

timates of remainder terms. The following theorem is crucial to the proof of Theorem 7.3, 

which is key to our main theorems.

Theorem 6.3. We have the following Schatten class membership and Schatten norm es-

timates for the remainder terms.

(1) On the disk, if k ≥ 0 and f, g ∈ C k+1(D), then for any p ≥ 1 and t > −1, R
(t)
f,g,k+1 ∈

S1. Moreover, for such p,

‖R
(t)
f,g,k+1‖Sp �k,p t−(k+1)+ n

p .

(2) On the ball in higher dimensions, if k ≥ 0 and f, g ∈ C k+1(Bn), then for any p > n

and t > −1, R
(t)
f,g,k+1 ∈ Sp. Moreover, for such p,

‖R
(t)
f,g,k+1‖Sp �k,p t−(k+1)+ n

p .

Recall that

dei,ej
(z) =

∫

Sn

(
Azζ

)
i

(
Azζ

)
j

dσ(ζ)

σ2n−1
.

Therefore, we have the following formula for C1(f, g).

C1(f, g)(z) = −
n∑

i,j=1

dei,ej
(z)∂if(z)∂̄jg(z)

= −
∫

Sn

( n∑

i=1

(
Azζ

)
i
∂if(z)

)( n∑

j=1

(
Az(ζ)

)
j
∂̄jg(z)

)
dσ(ζ)

σ2n−1
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As in the proof of [47, Equation (4.8)], the functions

n∑

i=1

(
Azζ

)
i
∂if(z) and

n∑

j=1

(
Az(ζ)

)
j
∂̄jg(z) =

n∑

j=1

(
Az(ζ)

)
j
∂j ḡ(z)

are independent of the choice of basis. Thus C1(f, g) is independent of the choice of 

basis. A similar computation shows that Cl(f, g) (l = 1, 2, · · · ) are all independent of the 

choice of basis for general l.

Remark 6.4. At z ∈ Bn, z 
= 0, choose an orthonormal basis ez = {ez,1, ez,2, . . . , ez,n} of 

C
n under which z has coordinates (z1, 0, . . . , 0). Then under ez, by (2.7),

C1(f, g)(z) = CN (f, g)(z) + CT (f, g)(z),

where

CN (f, g)(z) = − 1

n
(1−|z|2)2∂1f(z)∂̄1g(z), CT (f, g)(z) = − 1

n
(1−|z|2)

n∑

i=2

∂if(z)∂̄ig(z).

The functions CN (f, g) and CT (f, g) represent parts of C1(f, g) involving derivatives of 

f, g in the complex normal and tangential directions, respectively. It is easy to see that 

the definitions of CN (f, g) and CT (f, g) do not depend on the choice of ez (as long as 

ez,1 is in z-direction). Locally, we can choose ez so that the vectors vary smoothly with 

respect to z. If f, g ∈ C 1(Bn) then CN (f, g), CT (f, g) ∈ C (Bn\{0}). Also, it is easy to see 

from their definitions and the explicit formulas (6.9) and (6.10) that CN (f, g), CT (f, g)

are bounded. This implies

|CN (f, g)(z)| � (1 − |z|2)2, |CT (f, g)(z)| � 1 − |z|2.

By Lemma 4.8, for t large enough, we obtain

T
(t)
CN (f,g) ∈ Sp, ‖T

(t)
CN (f,g)‖Sp �p t

n
p , ∀p >

n

2
, p ≥ 1,

and

T
(t)
CT (f,g) ∈ Sp, ‖T

(t)
CT (f,g)‖Sp �p t

n
p , ∀p > n, p ≥ 1.

Remark 6.5. Continuing with Remark 6.4, we can take ez,1 = z
|z| . Denote e = {e1, . . . , en}

the canonical basis. Denote ζi = ζi(ξ) to be the i-th coordinate of ξ under the basis ez. 

Then compute

∂ξi

∂ζ1
= 〈ei, ez,1〉 =

(
ez,1

)
i

=
zi

|z| .
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Thus, we compute the following expressions,

[
∂f(ξ)

∂ζ1

∂g(ξ)

∂ζ̄1

]∣∣∣∣
ξ=z

=

[ n∑

i,j=1

∂f(ξ)

∂ξi

∂ξi

∂ζ1

∂g(ξ)

∂ξ̄j

(
∂ξj

∂ζ1

)]∣∣∣∣
ξ=z

=

[ n∑

i,j=1

∂f(ξ)

∂ξi

zi

|z|
∂g(ξ)

∂ξ̄j

(
zj

|z|

)]∣∣∣∣
ξ=z

=|z|−2Rf(z)R̄g(z),

and

[ n∑

i=2

∂f(ξ)

∂ζi

∂g(ξ)

∂ζ̄j

]∣∣∣∣
ξ=z

=〈∂f(z), ∂̄g(z)〉 − |z|−2Rf(z)R̄g(z)

=

n∑

i,j=1

(
δi,j − ziz̄j

|z|2
)
∂if(z)∂̄jg(z).

In other words, we arrive at the following expression

CN (f, g)(z) = − 1

n
(1 − |z|2)2|z|−2Rf(z)R̄g(z), (6.9)

and

CT (f, g)(z) = − 1

n
(1 − |z|2)

n∑

i,j=1

(
δi,j − ziz̄j

|z|2
)
∂if(z)∂̄jg(z). (6.10)

Adding up the two equations gives the following formula,

C1(f, g)(z) = − 1

n
(1 − |z|2)

[ n∑

i=1

∂if(z)∂̄ig(z) − Rf(z)R̄g(z)

]
.

Motivated by Remark 6.4, we further decompose R
(t)
f,g,k+1 according to the normal 

and tangential derivatives.

Definition 6.6. For z ∈ Bn, z 
= 0, let ez = {ez,1, ez,2, . . . , ez,n} be as in Remark 6.4. 

Then ez,1 represents the complex normal direction at z, and ez,2, . . . , ez,n represents the 

complex tangential directions at z.

Under the basis ez, by (6.7), Sf,g,k+1 decomposes into

Sf,g,k+1(z, w) =
∑

1≤|α|,|β|≤k+1

V α,β
k+1(z, w)∂αf(z)∂̄βg(w).

For integers 0 ≤ a, b ≤ k + 1, define
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Sa,b
f,g,k+1(z, w) =

∑

1≤|α|,|β|≤k+1

α1=a,β1=b

V α,β
k+1(z, w)∂αf(z)∂̄βg(w).

A moment of reflection shows that the function Sa,b
f,g,k+1 does not depend on the choice 

of ez. Define the corresponding operator on L2
a,t(Bn),

R
(t)a,b
f,g,k+1h(ξ) =

∫

Bn

∫

Bn

Φ
(t)
n,k+1(|ϕz(w)|2)Sa,b

f,g,k+1(z, w)h(w)K(t)
z (ξ)K(t)

w (z)dλt(w)dλt(z).

Then we write

R
(t)
f,g,k+1 =

∑

a,b=0,...,k+1

R
(t)a,b
f,g,k+1.

Corollary 6.7. Suppose f, g ∈ C k+1(Bn). Then for any 0 ≤ a, b ≤ k + 1 any p ≥ 1, 

p > max{ n
1+ a+b

2

, n
k+1+ t+1

2

}, R
(t)a,b
f,g,k+1 ∈ Sp. Moreover, for such p, and t large enough,

‖R
(t)a,b
f,g,k+1‖Sp �k,p t−k−1+ n

p .

In particular,

(1) if one of f, g has the form φ(|z|2), where φ ∈ C k+1([0, 1]), then

R
(t)
f,g,k+1 ∈ Sp, ∀p > max{2n

3
,

n

k + 1 + t+1
2

};

(2) if both f, g are of the form φ(|z|2), φ ∈ C k+1([0, 1]), then

R
(t)
f,g,k+1 ∈ Sp, ∀p > max{n

2
,

n

k + 1 + t+1
2

}.

For p > 2n
3 in case (1) and p > n

2 in case (2) and t large enough,

‖R
(t)
f,g,k+1‖Sp �k,p t−k−1+ n

p .

Corollary 6.8. Suppose x, y are positive integers, and f ∈ C 1(Bn). Then the following 

hold.

(1) For p > max{ n
x+ 1

2

, n
1+ t+1

2

}, T
(t)
(1−|z|2)xT

(t)
f −T

(t)
(1−|z|2)xf and T

(t)
f T

(t)
(1−|z|2)x −T

(t)
(1−|z|2)xf

are in Sp. For p > n
x+ 1

2

and t large enough,

‖T
(t)
(1−|z|2)xT

(t)
f −T

(t)
(1−|z|2)xf ‖Sp �p t−1+ n

p , ‖T
(t)
f T

(t)
(1−|z|2)x−T

(t)
(1−|z|2)xf ‖Sp �p t−1+ n

p .
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(2) For p > max{ n
x+y , n

1+ t+1
2

}, T
(t)
(1−|z|2)xT

(t)
(1−|z|2)y − T

(t)
(1−|z|2)x+y ∈ Sp. For p > n

x+y and 

t large enough,

‖T
(t)
(1−|z|2)xT

(t)
(1−|z|2)y − T

(t)
(1−|z|2)x+y ‖Sp �p t−1+ n

p .

In general, we would expect that T
(t)
f T

(t)
g −T

(t)
fg have better Schatten class membership 

compared to T
(t)
f T

(t)
g : for arbitrary f, g ∈ C 1(Bn), T

(t)
f T

(t)
g is only bounded, whereas the 

semi-commutator T
(t)
f T

(t)
g − T

(t)
fg ∈ Sp for any p > n. Also in case (1) of the corollary 

above, for a general function f ∈ C 1(Bn), T
(t)
(1−|z|2)xT

(t)
f is in Sp, ∀p > n

x , while the 

semi-commutator T
(t)
(1−|z|2)xT

(t)
f − T

(t)
(1−|z|2)xf is in Sp, ∀p > n

x+ 1
2

. This is no longer true 

in case (2): both T
(t)
(1−|z|2)xT

(t)
(1−|z|2)y and T

(t)
(1−|z|2)xT

(t)
(1−|z|2)y − T

(t)
(1−|z|2)x+y are in Sp for 

p > n
x+y . Intuitively, this has to do with the fact that functions of the form (1 − |z|2)x

already vanish along the radial direction to some order.

In the rest of this section, we prove the results above.

Functions of the form

n∑

i1,...,il,j1,...,jl=1

Iei1,...,il
,ej1,...,jl (z − w)Dil,jl

Dil−1,jl−1
. . . Di1,j1

[f(z)g(w)]

appear in the formula of Sf,g,k+1(z, w) in Lemma 6.1. We need to estimate its absolute 

value. To start with, we write the above sum in terms of the standard derivation. Recall 

that

Di,j = (1 − 〈z, w〉)2∂zi
∂̄wj

.

Definition 6.9. Denote

Ax,y(z, w) =

n∑

i1,...,ix=1

n∑

j1,...,jy=1

Iei1,...,ix ,ej1,...,jy (z − w)∂i1
. . . ∂ix

f(z)∂̄j1
. . . ∂̄jy

g(w);

B1(z, w) =

n∑

i=1

(zi − wi)∂zi
(1 − 〈z, w〉) = −

n∑

i=1

(zi − wi)w̄i = 〈w − z, w〉;

B2(z, w) =
n∑

j=1

(zj − wj)∂̄wj
(1 − 〈z, w〉) = 〈z, w − z〉;

C(z, w) =
n∑

i,j=1

Iei,ej (z − w)∂zi
∂̄wj

(1 − 〈z, w〉) = −|z − w|2.

In Dil,jl
Dil−1,jl−1

. . . Di2,j2
, the partial derivations ∂zil

, ∂̄wjl
, . . . , ∂zi2

, ∂̄wj2
fall either on 

f(z)g(w) or a copy of (1 − 〈z, w〉). Thus the summation
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n∑

i1,...,il,j1,...,jl=1

Iei1,...,il
,ej1,...,jl (z − w)Dil,jl

Dil−1,jl−1
. . . Di1,j1

[f(z)g(w)]

can be reorganized into sums of functions of the form

(1 − 〈z, w〉)s1
[
C(z, w)

]s2
[
B1(z, w)

]s3
[
B2(z, w)

]s4
Ax,y(z, w).

In total, there are 2l steps of taking partial derivatives, and there are 2l copies of (1 −
〈z, w〉) in the above. So

2s2 + s3 + s4 + x + y = s1 + s2 + s3 + s4 = 2l.

Also, the partial derivatives of the first operator, Di1,j1
, always apply on f(z)g(w). So

x, y ≥ 1.

From definition and Lemma 2.2, the following estimates are obvious.

Lemma 6.10. Suppose f, g ∈ C l(Bn). Then

(1) |Ax,y(z, w)| � |ϕz(w)|x+y|1 − 〈z, w〉| x+y
2 ;

(2) |B1(z, w)| � |ϕz(w)||1 − 〈z, w〉|, B2(z, w)| � |ϕz(w)||1 − 〈z, w〉|;
(3) |C(z, w)| � |ϕz(w)|2|1 − 〈z, w〉|.

Lemma 6.11. Suppose k is a non-negative integer and f, g ∈ C k+1(Bn). For any l =

1, . . . , k + 1, set

Gi1,...,il;j1,...,jl
(z, w) = Dil,jl

Dil−1,jl−1
. . . Di1,j1

[f(z)g(w)].

Then the following estimates hold.

∣∣∣∣
n∑

i1,...,il,j1,...,jl=1

Iei1,...,il
,ej1,...,jl (z − w)Gi1,...,il;j1,...,jl

(z, w)

∣∣∣∣ � |ϕz(w)|2l|1 − 〈z, w〉|2l+1,

(6.11)

∣∣∣∣
n∑

i1,...,il,j1,...,jl,jl+1=1

Iei1,...,il
,ej1,...,jl,jl+1 (z − w)∂̄wjl+1

Gi1,...,il;j1,...,jl
(z, w)

∣∣∣∣

�|ϕz(w)|2l+1|1 − 〈z, w〉|2l+1. (6.12)

Proof. As explained in Definition 6.9, the following sum

n∑

i1,...,il,j1,...,jl=1

Iei1,...,il
,ej1,...,jl (z − w)Gi1,...,il;j1,...,jl

(z, w)
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splits into sums of functions of the form

(1 − 〈z, w〉)s1
[
C(z, w)

]s2
[
B1(z, w)

]s3
[
B2(z, w)

]s4
Ax,y(z, w),

with

x, y ≥ 1, 2s2 + s3 + s4 + x + y = s1 + s2 + s3 + s4 = 2l.

Similarly, the sum

n∑

i1,...,il,j1,...,jl,jl+1=1

Iei1,...,il
,ej1,...,jl,jl+1 (z − w)∂̄wjl+1

Gi1,...,il;j1,...,jl
(z, w)

splits into sums of functions of above form, with

x, y ≥ 1, 2s2 + s3 + s4 + x + y = 2l + 1, s1 + s2 + s3 + s4 = 2l.

By Lemma 6.10, we have the following estimate

∣∣∣∣(1 − 〈z, w〉)s1
[
C(z, w)

]s2
[
B1(z, w)

]s3
[
B2(z, w)

]s4
Ax,y(z, w)

∣∣∣∣

�|ϕz(w)|2s2+s3+s4+x+y|1 − 〈z, w〉|s1+s2+s3+s4+ x+y
2 .

Plugging in the equations for si, x, y gives the inequalities (6.11) and (6.12). This com-

pletes the proof of Lemma 6.11. �

Proof of Lemma 6.1 and Corollary 6.2. Let Gi1,...,il;j1,...,jl
be defined as in Lemma 6.11. 

Suppose h ∈ Hol(Bn) and ξ ∈ Bn. Write F = f(z)g(w)h(w)K
(t)
z (ξ) and

Fi1,...,il;j1,...,jl
= Dil,jl

. . . Di1,j1
[f(z)g(w)h(w)K(t)

z (ξ)] = Gi1,...,il;j1,...,jl
h(w)K(t)

z (ξ).

Then we compute T
(t)
f T

(t)
g as follows.

T
(t)
f T (t)

g h(ξ)

=

∫

B2
n

f(z)g(w)h(w)K(t)
z (ξ)K(t)

w (z)dλt(w)dλt(z)

=

∫

B2
n

Φ
(t)
n,0F (z, w)K(t)

w (z)dλt(w)dλt(z)

(2.18)
=====

F (t)
n Φ

(t)
n,0(0)

B(n, t + 1)

∫

Bn

d0,0(z)F (z, z)dλt(z)
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−
∫

B2
n

Φ
(t)
n,1(|ϕz(w)|2)

∑n
i,j=1 Iei,ej (z − w)Di,jF (z, w)

|1 − 〈z, w〉|2 K(t)
w (z)dλt(z)dλt(w)

=T
(t)
fg h(ξ) −

∫

B2
n

Φ
(t)
n,1(|ϕz(w)|2)

∑n
i,j=1 Iei,ej (z − w)Fi,j(z, w)

|1 − 〈z, w〉|2 K(t)
w (z)dλt(z)dλt(w)

=T
(t)
fg h(ξ) + R

(t)
f,g,1.

The condition for applying Lemma 2.16 is verified by Lemma 6.11. In general, we have 

the following computation for R
(t)
f,g,l.

R
(t)
f,g,lh(ξ)

=(−1)l

∫

B2
n

Φ
(t)
n,l(|ϕz(w)|2)

∑n
i1,...,il,j1,...,jl=1 Iei1,...,il

,ej1,...,jl (z − w)Fil,...,i1;jl,...,j1

|1 − 〈z, w〉|2l
K

(t)
w (z)dλt(w)dλt(z)

=(−1)l
F

(t)
n+lΦ

(t)
n,l(0)

B(n, t + 1)

∫

Bn

(1 − |z|2)−2l
n∑

i1,...,il,j1,...,jl=1

dei1,...,il
,ej1,...,jl

(z)Fil,...,i1;jl,...,j1 (z, z)dλt(z)

+ (−1)l+1

∫

B2
n

dλt(z)dλt(w)Φ
(t)
n,l+1(|ϕz(w)|2)K(t)

w (z)

·

∑n
i1,...,il+1,j1,...,jl+1=1 I

ei1,...,il+1,ej1,...,jl+1 (z − w)Dil+1,jl+1 Fil,...,i1;jl,...,j1 (z, w)

|1 − 〈z, w〉|2(l+1)

=cl,tT
(t)
Cl(f,g)h(ξ) + R

(t)
f,g,l+1h(ξ).

This proves the formulas in Lemma 6.1 for h ∈ Hol(Bn). By [47, Lemma 8.4], we have 

the following identity,

c0,t =
F (t)

n 1(0)

B(n, t + 1)
= 1.

The estimate (a) for cl,t follows from Lemma 2.17. The formulas for C0(f, g) follow from 

direct computation. We can also see from the formula that Cl(f, g) does not depend 

on the choice of an orthonormal basis. Using (2.7) we directly verify that C1(f, g) −
C1(g, f) = −i

n {f, g}. By Lemma 6.11, we have the following estimates,

|Sf,g,k+1(z, w)|
=|1 − 〈w, z〉|−2(k+1)

×
∣∣∣∣

n∑

i1,...,ik+1,jk+1,...,jl=1

Iei1,...,ik+1
,ej1,...,jk+1 (z − w)Gi1,...,ik+1;j1,...,jk+1

(z, w)

∣∣∣∣

�|ϕz(w)|2(k+1)|1 − 〈z, w〉|.

(6.13)
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Thus it follows from Theorem 4.6 that ‖R
(t)
f,g,k+1‖ �k t−k−1, which proves Corollary 6.2.

By [47, Lemma 5.3],

F (t)
n+1Φ

(t)
n,1(0) = n!t−n−1 + o(t−n−2)

as t tends to infinity. Therefore, we arrive at the following estimate

c1,t =
F (t)

n+1Φ
(t)
n,1(0)

B(n, t + 1)
=

B(n + 1, t + 1)

B(n, t + 1)
+ O(

B(n + 2, t + 1)

B(n, t + 1)
) = nt−1 + O(t−2).

This completes the proof of Lemma 6.1. �

Proof of Theorem 6.3. In the case when n = 1, the estimates in the proof of Lemma 6.10

are improved into

(1) |Ax,y(z, w)| � |ϕz(w)|x+y|1 − 〈z, w〉|x+y;

(2) |B1(z, w)| � |ϕz(w)||1 − 〈z, w〉|, B2(z, w)| � |ϕz(w)||1 − 〈z, w〉|;
(3) |C(z, w)| � |ϕz(w)|2|1 − 〈z, w〉|2.

This leads to

∣∣∣∣
n∑

i1,...,il,j1,...,jl=1

Iei1,...,il
,ej1,...,jl (z − w)Gi1,...,il;j1,...,jl

(z, w)

∣∣∣∣ � |ϕz(w)|2l|1 − 〈z, w〉|2l+2

(6.14)

and then

|Sf,g,k+1(z, w)| � |ϕz(w)|2(k+1)|1 − 〈z, w〉|2.

Then statement (1) follows from Theorem 4.6. With the same argument, statement (2) 

follows from (6.13) and Theorem 4.6. This completes the proof. �

Proof of Corollary 6.7. As in Definition 6.6, for z ∈ Bn, z 
= 0, let ez be an orthonormal 

basis of Cn so that ez,1 = z
|z| . Under the basis ez, for 0 ≤ a, b ≤ k + 1, Sa,b

f,g,k+1(z, w)

consists of the part of Sf,g,k+1 that contains ∂αf(z)∂̄βg(w) with α1 = a, β1 = b.

Since R
(t)a,b
f,g,k+1 = P (t)T

(t)a,b
f,g,k+1, where

T
(t)a,b
f,g,k+1h(z) =

∫

Bn

Φ
(t)
n,k+1(|ϕz(w)|2)Sa,b

f,g,k+1(z, w)h(w)K(t)
w (z)dλt(w).

To prove the Schatten class membership of the R
(t)a,b
f,g,k+1 operators, it amounts to prove 

the corresponding estimates for the kernel Sa,b
f,g,k+1(z, w), and apply Theorem 4.6.

Locally choose the basis ez so that it varies smooth with respect to z. Under the basis 

ez, define
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Aα,β(z, w) = Iα,β(z − w)∂αf(z)∂̄βg(w).

Then by Lemma 2.2, we have the following bound,

|Aα,β(z, w)| � |ϕz(w)||α|+|β||1 − 〈z, w〉|
|α|+|β|+α1+β1

2 .

Then S
(t)a,b
f,g,k+1(z, w) is a finite linear combination of terms like:

1

|1 − 〈w, z〉|2(k+1)
· (1 − 〈z, w〉)s1

[
C(z, w)

]s2
[
B1(z, w)

]s3
[
B2(z, w)

]s4
Aα,β(z, w),

where |α|, |β| ≥ 1, 2s2+s3+s4+|α| +|β| = s1+s2+s3+s4 = 2(k+1), and α1 = a, β1 = b. 

Therefore we obtain the following estimate

|Sa,b
f,g,k+1(z, w)| �|ϕz(w)|2s2+s3+s4+|α|+|β||1 − 〈z, w〉|−2(k+1)+s1+s2+s3+s4+

|α|+|β|+α1+β1
2

=|ϕz(w)|2(k+1)|1 − 〈z, w〉| 2+a+b
2 .

Thus by Theorem 4.6, R
(t)a,b
f,g,k+1 = P (t)T

(t)a,b
f,g,k+1 ∈ Sp, ∀p > max{ n

1+ a+b
2

, n
k+1+ t+1

2

}, and 

for such p, we have

‖R
(t)a,b
f,g,k+1‖Sp �k,p t−k−1+ n

p .

If f = φ(|z|2) for some φ, then R
(t)0,b
f,g,k+1 = 0 for any b. If both f, g are of such form then 

R
(t)a,0
f,g,k+1, R

(t)0,b
f,g,k+1 = 0 for any a, b. This gives the improved Schatten-class membership 

in (1) and (2), and proves Corollary 6.7. �

Proof of Corollary 6.8. By Lemma 6.1, for f, g ∈ C 1(Bn), T
(t)
f T

(t)
g −T

(t)
fg = R

(t)
f,g,1, where

R
(t)
f,g,1h(z) =

∫

B2
n

Φ
(t)
n,1(|ϕz(w)|2)Sf,g,1(z, w)h(w)K(t)

z (ξ)K(t)
w (z)dλt(w)dλt(z),

with

Sf,g,1(z, w) =
−(1 − 〈z, w〉)2

|1 − 〈z, w〉|2 〈∂f(z), z − w〉〈∂̄g(w), z − w〉.

If f(z) = (1 − |z|2)x then we have the following estimate

∣∣〈∂f(z), z − w〉
∣∣ =

∣∣(x−1)(1−|z|2)x−1〈z̄, z − w〉
∣∣ � (1−|z|2)x−1|1−〈z, w〉| � |1−〈z, w〉|x.

Thus we arrive at the estimate,
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∣∣〈∂f(z), z − w〉〈∂̄g(w), z − w〉
∣∣

�

{
|1 − 〈z, w〉|x+1/2, if one of f or g equals (1 − |z|2)x

|1 − 〈z, w〉|x+y, if f = (1 − |z|2)x, g(z) = (1 − |z|2)y.

Corollary 6.8 follows from the above inequality and Theorem 4.6. This completes the 

proof of Corollary 6.8. �

7. First and second antisymmetrizations

As explained in the introduction, the goal of this section is to prove the trace class 

membership of the antisymmetric sum [T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] as well as the asymptotic 

trace formula (1.7). To begin with, we define first and second partial antisymmetrizations, 

which are generalizations of semi-commutators.

Definition 7.1. For f, g ∈ C(Bn) and t ≥ −1, denote the semi-commutator on L2
a,t(Bn),

σt(f, g) = T
(t)
f T (t)

g − T
(t)
fg . (7.1)

For f1, . . . , fn, g1, . . . , gn ∈ C(Bn) and t ≥ −1, define the following partial anti-symmetric 

sums.

[f1, g1, . . . , fn, gn]fst
t =

∑

τ∈Sn

sgn(τ)σt(fτ1
, g1) . . . σt(fτn

, gn), (7.2)

and

[f1, g1, . . . , fn, gn]scd
t =

∑

τ∈Sn

sgn(τ)σt(f1, gτ1
) . . . σt(fn, gτn

). (7.3)

In the case when n = 1, the operators above both agree with the semi-commutator 

σt(f, g). In higher dimensions, the partial anti-symmetric sum (7.2) and (7.3) generalize 

the semi-commutator (7.1).

Remark 7.2. Here is another way to describe commutators, semicommutators, and their 

products. Fix t > −1. Under the decomposition L2(λt) = L2
a,t(Bn) ⊕ L2

a,t(Bn)⊥, we can 

write a multiplication operator Mf as a block matrix

Mf =

[
T

(t)
f H

(t)∗

f̄

H
(t)
f ∗

]
,

where T
(t)
f and H

(t)
f are Toeplitz operator and Hankel operator, respectively, associated 

to f . From the equations
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σt(f, g) = −H
(t)∗

f̄
H(t)

g ,

and

[T
(t)
f , T (t)

g ] = σt(f, g) − σt(g, f) = H
(t)∗
ḡ H

(t)
f − H

(t)∗

f̄
H(t)

g ,

we can see that both operators come from products of off-diagonal terms under the 

above block matrix representation. Under this point of view, the first and second antisym-

metrizations defined above are linear combinations of alternating products of off-diagonal 

terms, with fi appearing in the top right, and gj appearing in the bottom left.

Theorem 7.3. Suppose t ≥ −1 and f1, g1, . . . , fn, gn ∈ C 2(Bn). Then the partial an-

tisymmetrizations [f1, g1, . . . , fn, gn]fst
t and [f1, g1, . . . , fn, gn]scd

t are in the trace class. 

Moreover,

lim
t→∞

Tr[f1, g1, . . . , fn, gn]fst
t = lim

t→∞
Tr[f1, g1, . . . , fn, gn]scd

t

=
1

(2πi)n

∫

Bn

∂f1 ∧ ∂̄g1 ∧ . . . ∧ ∂fn ∧ ∂̄gn. (7.4)

As an application of the above theorem, we obtain the following asymptotic estimate 

for the Schatten-4 norm of Hankel operators at dimension 2, which seems to be new to 

us.

Corollary 7.4. Suppose f1, f2 ∈ C 2(B2) are supported inside B2. Then the infimum limit

lim
t→∞

‖H
(t)

f̄1
‖2

S4‖H
(t)

f̄2
‖2

S4

satisfies

lim
t→∞

‖H
(t)

f̄1
‖2

S4‖H
(t)

f̄2
‖2

S4 ≥ 1

4π2

∫

B2

∂f1 ∧ ∂f2 ∧ ∂f1 ∧ ∂f2.

Remark 7.5. We list the n = 1 case for comparison and contrast. The equation

T
(t)
f T

(t)

f̄
− T

(t)
|f |2 = −H

(t)∗

f̄
H

(t)

f̄

and [47, Theorem 1.1] implies that for t > −1 and f ∈ C 2(D),

‖H
(t)

f̄
‖2

S2 = − 1

2πi

∫

D

∂f ∧ ∂f −
∫

D2

ρt

(
|ϕz(w)|2

)
Δf(z)Δf̄(w)dm(z, w).

where ρt is a positive-valued function on (0, 1) with explicit expressions. As a conse-

quence,
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lim
t→∞

‖H
(t)

f̄
‖2

S2 = − 1

2πi

∫

D

∂f ∧ ∂f.

Proof of Corollary 7.4. Take g1 = f̄1, g2 = f̄2. By definition, we compute the expression 

of [f1, f̄1, f2, f̄2]scd,

[f1, f̄1, f2, f̄2]scd =σt(f1, f̄1)σt(f2, f̄2) − σt(f1, f̄2)σt(f2, f̄1)

=H
(t)∗

f̄1
H

(t)

f̄1
H

(t)∗

f̄2
H

(t)

f̄2
− H

(t)∗

f̄1
H

(t)

f̄2
H

(t)∗

f̄2
H

(t)

f̄1

=|H(t)

f̄1
|2|H(t)

f̄2
|2 −

(
H

(t)∗

f̄2
H

(t)

f̄1

)∗

H
(t)∗

f̄2
H

(t)

f̄1
.

Then by Theorem 7.3, we have the following limit,

Tr[f1, f̄1, f2, f̄2]scd =Tr|H(t)

f̄1
|2|H(t)

f̄2
|2 − Tr

(
H

(t)∗

f̄2
H

(t)

f̄1

)∗

H
(t)∗

f̄2
H

(t)

f̄1

→ 1

(2πi)2

∫

B2

∂f1 ∧ ∂̄f̄1 ∧ ∂f2 ∧ ∂̄f̄2

=
1

4π2

∫

B2

∂f1 ∧ ∂f2 ∧ ∂f1 ∧ ∂f2, t → ∞.

Notice that 

(
H

(t)∗

f̄2
H

(t)

f̄1

)∗

H
(t)∗

f̄2
H

(t)

f̄1
≥ 0. The Cauchy-Schwartz inequality gives the fol-

lowing bound,

∣∣∣∣Tr|H(t)

f̄1
|2|H(t)

f̄2
|2
∣∣∣∣ =

∣∣∣∣〈|H
(t)

f̄2
|2, |H(t)

f̄1
|2〉S2

∣∣∣∣ ≤ 〈|H(t)

f̄2
|2, |H(t)

f̄2
|2〉1/2

S2 〈|H(t)

f̄1
|2, |H(t)

f̄1
|2〉1/2

S2

= ‖H
(t)

f̄2
‖2

S4‖H
(t)

f̄1
‖2

S4 .

We have the following bound from the above computation

lim
t→∞

‖H
(t)

f̄2
‖2

S4‖H
(t)

f̄1
‖2

S4 ≥ 1

4π2

∫

B2

∂f1 ∧ ∂f2 ∧ ∂f1 ∧ ∂f2.

This completes the proof of Corollary 7.4. �

Remark 7.6. Both [f1, g1, . . . , fn, gn]fst
t and [f1, g1, . . . , fn, gn]scd

t are sums of compositions 

of n semi-commutators, each belonging to Sp, ∀p > n. This proves that they belong to Sp, 

∀p > 1. However, the trace class membership of these operators relies on some higher 

order cancellation and is therefore nontrivial. As an example, we can show by direct 

computation that each σt(zi, ̄zi) is the diagonal operator under the basis {zα/‖zα‖}α∈Nn
0

, 

with entry −(|α| − αi + n + t)/[(n + |α| + t)(n + |α| + t + 1)] at α ∈ N
n
0 . Therefore 
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σt(zi, ̄zi) /∈ Sn. (In fact, in [51] it was proved that for f ∈ H∞(Bn), σ0(f, f̄) ∈ Sn if and 

only if f is constant.) However, the theorem states that

[z1, z̄1, . . . , zn, z̄n]fst
t =

∑

τ∈Sn

sgn(τ)σt(zτ1
, z̄1) . . . σt(zτn

, z̄n) ∈ S1.

The partial anti-symmetrization needs to be carefully chosen so that the higher cancel-

lation works. For example,

σt(z1, z̄1) . . . σt(zn, z̄n) − σt(z̄1, z2)σt(z̄2, z3) . . . σt(z̄n, z1) = σt(z1, z̄1) . . . σt(zn, z̄n) /∈ S1.

Therefore simply taking anti-symmetrization over a rotation generally does not give a 

trace class operator. The above example also shows that the Connes-Chern character 

(1.2) for the Toeplitz extension is in general not well-defined at p = n. At p = n + 1, by 

Theorem 6.3, for f, g ∈ C 2(Bn),

‖σt(f, g)‖Sn+1 = ‖R
(t)
f,g,1‖Sn+1 � t−1+ n

n+1 = t− 1
n+1 .

Therefore for f1, . . . , f2n+2 ∈ C 2(Bn), the Connes-Chern character at p = n + 1 satisfies

|τt(f1, . . . , f2n+2)| � t−1 → 0, t → ∞.

In particular, its value depends on t. In Subsection 8.2, we consider the Connes-Chern 

character at p > n after multiplying a suitable power of t.

Theorem 7.3 immediately leads to the trace class membership and asymptotic trace 

formula for the full anti-symmetric sum, which consist an important part of the proof of 

our main result, Theorem 8.1.

Corollary 7.7. Suppose f1, f2, . . . , f2n ∈ C 2(Bn) and t ≥ −1. Then [T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

]

is in the trace class S1. Moreover,

lim
t→∞

Tr[T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] =
n!

(2πi)n

∫

Bn

df1 ∧ df2 ∧ . . . ∧ df2n. (7.5)

Proof. By Remark 7.2, it is easy to see the following identity

[T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] =
1

n!

∑

τ∈S2n

sgn(τ)[fτ1
, fτ2

, . . . , fτ2n
]fst.

Therefore it follows from Theorem 7.3 that [T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] ∈ S1. This proves the 

trace class membership.
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Let H be the collection of subsets of {1, . . . , 2n} consisting of n elements. For each 

a ∈ H, let [a] be the subset of S2n that sends {1, 3, . . . , 2n − 1} to a. Then #[a] = (n!)2

for any a ∈ H. In each [a] there is a unique permutation τa that satisfies

τa(1) < τa(3) < . . . < τa(2n − 1), τa(2) < τa(4) < . . . < τa(2n).

Then we compute the limit of the trace of full antisymmetrization as follows,

lim
t→∞

Tr[T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

]

=
1

n!

∑

τ∈S2n

sgn(τ)
1

(2πi)n

∫

Bn

∂fτ1
∧ ∂̄fτ2

∧ . . . ∧ ∂fτ2n−1
∧ ∂̄fτ2n

=
1

(2πi)nn!

∑

a∈H

∑

τ∈[a]

sgn(τ)

∫

Bn

∂fτ1
∧ ∂̄fτ2

∧ . . . ∧ ∂fτ2n−1
∧ ∂̄fτ2n

=
1

(2πi)nn!

∑

a∈H

(n!)2sgn(τa)

∫

Bn

∂fτa(1) ∧ ∂̄fτa(2) ∧ . . . ∧ ∂fτa(2n−1) ∧ ∂̄fτa(2n)

=
n!

(2πi)n

∫

Bn

df1 ∧ df2 ∧ . . . ∧ df2n.

This proves (7.5). �

7.1. Proof of Theorem 7.3 (t > −1)

Since σt(f, g) =

[
σt(ḡ, f̄)

]∗

, we can verify that

[f1, g1, . . . , fn, gn]fst
t =

(
[ḡn, f̄n, . . . , ḡ1, f̄1]scd

t

)∗

.

Thus it suffices to prove the results for the odd partial anti-symmetric sums.

Notation 7.8. For two operators A and B, temporarily denote A ∼w B if A − B is a 

trace class operator. If At and Bt are parameterized families of operators on L2
a,t(Bn), 

temporarily denote At ∼a Bt if At − Bt are trace class operators on L2
a,t(Bn) with trace 

norm tending to zero as t → ∞. Again, we do not require A or B (At or Bt) to be in 

the trace class.

The proof is split into two steps. In Step 1, we prove that [f1, g1, . . . , fn, gn]fst
t belongs 

to the trace class, i.e.,

[f1, g1, . . . , fn, gn]fst
t ∼w 0.
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The proof starts with repeatedly applying Theorem 6.3 until we get

σt(f1, g1)σt(f2, g2) . . . σt(fn, gn) ∼w Θ
(t)
f1,g1,...,fn,gn

,

where the operator Θ
(t)
f1,g1,...,fn,gn

involves only complex tangential derivatives. Then 

we show that Θ
(t)
f1,g1,...,fn,gn

vanishes after antisymmetrization. In Part 2, we show the 

asymptotic trace formula (7.4). The proof follows the same idea but requires a careful 

track of the leading term.

Part 1: We prove

[f1, g1, . . . , fn, gn]fst
t ∼w 0, ∀t > −1.

By Lemma 6.1 and Corollary 6.7, for f, g ∈ C 2(Bn), recall

σt(f, g) = R
(t)
f,g,1,

and

R
(t)
f,g,1 =

∑

a,b=0,1

R
(t)a,b
f,g,1 ,

where

R
(t)a,b
f,g,1 ∈ Sp, ∀p > max

{
n

1 + a+b
2

,
n

1 + t+1
2

}
.

In particular, if one of a, b is non-zero, then R
(t)a,b
f,g,1 ∈ Sp for some p < n. It follows 

immediately that for f1, g1, . . . , fn, gn ∈ C 2(Bn), τ ∈ Sn,

σt(fτ1
, g1)σt(fτ2

, g2) . . . σt(fτn
, gn) ∼w R

(t)0,0
fτ1 ,g1,1R

(t)0,0
fτ2 ,g2,1 . . . R

(t)0,0
fτn ,gn,1.

Thus in order to prove [f1, g1, . . . , fn, gn]fst
t ∼w 0, it remains to prove

∑

τ∈Sn

sgn(τ)R
(t)0,0
fτ1 ,g1,1R

(t)0,0
fτ2 ,g2,1 . . . R

(t)0,0
fτn ,gn,1 ∼w 0. (7.6)

Recall that by definition the integral kernel of R
(t)0,0
f,g,1 consists of the part that involves 

only complex tangential derivatives of f and g. Tracing back in Lemma 6.1 we have the 

following formula

R
(t)0,0
f,g,1 h(ξ) = −

∫

B2
n

Φ
(t)
n,1(|ϕz(w)|2)V1(z, w)〈Qz̄∂f(z), z − w〉〈Qz∂̄g(w), z − w〉

· h(w)K(t)
z (ξ)K(t)

w (z)dλt(w)dλt(z),
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where V1(z, w) = 1−〈z,w〉
1−〈w,z〉 is bounded. For any j = 1, . . . , n and f, g ∈ C 2(Bn), define

FΛg,1,j
(z, w) = −V1(z, w)(zj − wj)〈Qz∂̄g(w), z − w〉K(t)

w (z), z, w ∈ Bn.

Define the operator

Λg,1,jh(z) =

∫

Bn

Φ
(t)
n,1(|ϕz(w)|2)FΛg,1,j

(z, w)h(w)dλt(w). (7.7)

Let [Qz̄∂f(z)]j be the j-th entry of the vector Qz̄∂f(z). Then by the above expressions, 

we have the following expression

R
(t)0,0
f,g,1 =

n∑

j=1

P (t)M
(t)
[Qz̄∂f ]j

Λg,1,j .

By Lemma 2.2 we have the bound

∣∣FΛg,1,i
(z, w)

∣∣ � |ϕz(w)|2 1

|1 − 〈z, w〉|n+1+t−1
, z, w ∈ Bn.

Thus by Theorem 4.6 and Corollary 4.7, for any Lipschitz function u on Bn, j = 1, . . . , n, 

the following hold.

• Both P (t)Λg,1,j and Λg,1,jP (t) are in Sp for any p > n, with Schatten-p norm �p

t−1+ n
p .

• For any Lipschitz function u, both P (t)[Λg,1,j , M
(t)
u ] and [Λg,1,j , M

(t)
u ]P (t) are in Sp

for any p > max{ 2n
3 , n

1+ t+1
2

}, with Schatten-p norm �p t−1+ n
p . In particular, these 

operators belong to Sp for some p < n.

Also, by Corollary 4.3, we have

• For any Lipschitz function u, [P (t), M
(t)
u ] ∈ Sp for any p > 2n.

Denote

ui,j(z) = [Qz̄∂fi(z)]j , i, j = 1, . . . , n.

Then by the above discussion, we compute the product of semi-commutators as follows.

σt(f1, g1)σt(f2, g2) . . . σt(fn, gn)

∼wR
(t)0,0
f1,g1,1R

(t)0,0
f2,g2,1 . . . R

(t)0,0
fn,gn,1
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=
n∑

j1,...,jn=1

P (t)M (t)
u1,j1

Λg1,1,j1
P (t)M (t)

u2,j2
Λg2,1,j2

. . . P (t)M (t)
un,jn

Λgn,1,in
P (t)

=

n∑

j1,...,jn=1

P (t)Λg1,1,j1
P (t)M (t)

u1,j1
M (t)

u2,j2
Λg2,1,j2

. . . P (t)M (t)
un,jn

Λgn,1,in
P (t)

+

n∑

j1,...,jn=1

P (t)[M (t)
u1,j1

, Λg1,1,j1
]P (t)M (t)

u2,j2
Λg2,1,j2

. . . P (t)M (t)
un,jn

Λgn,1,in
P (t)

+
n∑

j1,...,jn=1

P (t)Λg1,1,j1
[M (t)

u1,j1
, P (t)]M (t)

u2,j2
Λg2,1,j2

. . . P (t)M (t)
un,jn

Λgn,1,in
P (t)

∼w

n∑

j1,...,jn=1

P (t)Λg1,1,j1
P (t)M (t)

u1,j1
M (t)

u2,j2
Λg2,1,j2

. . . P (t)M (t)
un,jn

Λgn,1,in
P (t).

Continuing like this, we obtain the following expression

σt(f1, g1)σt(f2, g2) . . . σt(fn, gn)

∼w

n∑

j1,...,jn=1

P (t)Λg1,1,j1
P (t)Λg2,1,j2

. . . P (t)Λgn,1,jn
M (t)

u1,j1
M (t)

u2,j2
. . . M (t)

un,jn
P (t) (7.8)

:=Θ
(t)
f1,g1,...,fn,gn

.

Writing the operator above in integral form, for any h ∈ L2
a,t(Bn),

Θ
(t)
f1,g1,...,fn,gn

h(ξ)

=

∫

B2n
n

[ n∏

i=1

Φ
(t)
n,1(|ϕzi

(wi)|2)

]
·
[ n∏

i=1

〈Qzi
∂̄gi(wi), zi − wi〉

]
·
[ n∏

i=1

V1(zi, wi)

]

·
[ n∏

i=1

〈Qw̄n
∂fi(wn), zi − wi〉

]
h(wn)

· K(t)
z1

(ξ)K(t)
w1

(z1) . . . K(t)
zn

(wn−1)K(t)
wn

(zn)dλt(wn)dλt(zn) . . . dλt(w1)dλt(z1).

We claim that Θ
(t)
f1,g1,...,fn,gn

vanishes after antisymmetrization over the f -symbols. To 

show this property, it suffices to show that

∑

τ∈Sn

sgn(τ)
n∏

i=1

〈Qw̄n
∂fτi

(wn), zi − wi〉 = 0. (7.9)

Each 〈Qw̄n
∂fτi

(wn), zi − wi〉 is independent of the choice of coordinates. Thus we may 

assume without loss of generality that wn = (r, 0, . . . , 0). In this case, we have the 

expression
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〈Qw̄n
∂fτi

(wn), zi − wi〉 =
n∑

j=2

(zi,j − wi,j)∂jfτi
(wn).

Then the above equals

n∑

j1,...,jn=2

(z1,j1
− w1,j1

) . . . (zn,jn
− wn,jn

)
∑

τ∈Sn

sgn(τ)∂j1
fτ1

(wn)∂j2
fτ2

(wn) . . . ∂jn
fτn

(wn).

Since j1, . . . , jn takes value in {2, . . . , n}, at least two indices are equal. This implies that

∑

τ∈Sn

sgn(τ)∂j1
fτ1

(wn)∂j2
fτ2

(wn) . . . ∂jn
fτn

(wn) = 0.

Therefore (7.9) holds. We conclude from this fact that the anti-symmetric sum

∑

τ∈Sn

sgn(τ)Θ
(t)
fτ1 ,g1,...,fτn ,gn

equals zero which completes the proof of Part 1. Namely we have

[f1, g1, . . . , fn, gn]fst
t ∼w 0.

Part 2: We prove

lim
t→∞

Tr[f1, g1, . . . , fn, gn]fst
t =

1

(2πi)n

∫

Bn

∂f1 ∧ ∂̄g1 ∧ . . . ∧ ∂fn ∧ ∂̄gn.

For this part, we assume that t is large enough. We use the quantization formula (6.1)

at k = 1. By Lemma 6.1, Remark 6.4 and Corollary 6.7, for f, g ∈ C 2(Bn), we have the 

following decomposition

σt(f, g) = R
(t)
f,g,1 = c1,tT

(t)
C1(f,g) + R

(t)
f,g,2. (7.10)

The following hold.

1.

c1,t = nt−1 + O(t−2),

2.
C1(f, g) = CN (f, g) + CT (f, g),

where CN (f, g) (CT (f, g)) denotes the part involving complex normal (tangential) 

derivatives of f, g, and

T
(t)
CN (f,g) ∈ Sp, ∀p >

n

2
, with ‖T

(t)
CN (f,g)‖Sp �p t

n
p ,

T
(t)
CT (f,g) ∈ Sp, ∀p > n, with ‖T

(t)
CT (f,g)‖Sp �p t

n
p .
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3.
R

(t)
f,g,1 =

∑

a,b=0,1

R
(t)a,b
f,g,1 , R

(t)
f,g,2 =

∑

a,b=0,1,2

R
(t)a,b
f,g,2 ,

where a, b denote the order of derivatives on f, g in the complex normal directions, 

and for large t,

R
(t)a,b
f,g,i ∈ Sp, ∀p >

n

1 + a+b
2

, i = 1, 2,

‖R
(t)a,b
f,g,i ‖Sp �p t−i+ n

p .

The above will be the main tool for Part 2 and will be repeatedly used without reference. 

We will prove Part 2 by establishing the following properties.

[f1, g1, . . . , fn, gn]fst
t

∼acn
1,t

∑

τ∈Sn

sgn(τ)T
(t)
C1(fτ1 ,g1)T

(t)
C1(fτ2 ,g2) . . . T

(t)
C1(fτn ,gn), (7.11)

cn
1,t

∑

τ∈Sn

sgn(τ)T
(t)
C1(fτ1 ,g1)T

(t)
C1(fτ2 ,g2) . . . T

(t)
C1(fτn ,gn)

∼acn
1,t

∑

τ∈Sn

sgn(τ)T
(t)
C1(fτ1 ,g1)C1(fτ2 ,g2)C1(fτn ,gn), (7.12)

Tr

[
cn

1,t

∑

τ∈Sn

sgn(τ)T
(t)
C1(fτ1 ,g1)C1(fτ2 ,g2)C1(fτn ,gn)

]

→ 1

(2πi)n

∫

Bn

∂f1 ∧ ∂̄g1 ∧ . . . ∧ ∂fn ∧ ∂̄gn, t → ∞. (7.13)

Proof of (7.11). By (7.10), we compute the product of semi-commutators

σt(f1, g1)σt(f2, g2) . . . σt(fn, gn) − c
n
1,tT

(t)
C1(f1,g1)T

(t)
C1(f2,g2) . . . T

(t)
C1(fn,gn)

=R
(t)
f1,g1,1R

(t)
f2,g2,1 . . . R

(t)
fn,gn,1 −

(
R

(1)
f1,g1,1 − R

(t)
f1,g1,2

)(
R

(1)
f2,g2,1 − R

(t)
f2,g2,2

)
. . .

(
R

(1)
fn,gn,1 − R

(t)
fn,gn,2

)

=
∑

(i1,i2,...,in)∈X

±R
(t)
f1,g1,i1

R
(t)
f2,g2,i2

. . . R
(t)
fn,gn,in

,

where

X = {(i1, i2, . . . , in) : ij = 1, 2, and at least one ij = 2}.

Therefore

[f1, g1, . . . , fn, gn]fst
t − cn

1,t

∑

τ∈Sn

sgn(τ)T
(t)
C1(fτ1 ,g1)T

(t)
C1(fτ2 ,g2) . . . T

(t)
C1(fτn ,gn)
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is a linear combination of operators of the form

∑

τ∈Sn

sgn(τ)R
(t)
fτ1 ,g1,i1

R
(t)
fτ2 ,g2,i2

. . . R
(t)
fτn ,gn,in

,

where (i1, i2, . . . , in) ∈ X. For (7.11), it suffices to prove

∑

τ∈Sn

sgn(τ)R
(t)
fτ1 ,g1,i1

R
(t)
fτ2 ,g2,i2

. . . R
(t)
fτn ,gn,in

∼a 0, ∀(i1, . . . , in) ∈ X. (7.14)

We show the case when (i1, i2, . . . , in) = (2, 1, . . . , 1), i.e.,

∑

τ∈Sn

sgn(τ)R
(t)
fτ1 ,g1,2R

(t)
fτ2 ,g2,1 . . . R

(t)
fτn ,gn,1 ∼a 0.

First, each R
(t)
f,g,i decomposes into the sum of R

(t)a,b
f,g,i . The operator R

(t)0,0
f,g,i ∈ Sp, ∀p > n, 

and

‖R
(t)0,0
f,g,1 ‖Sp � t−1+ n

p , ‖R
(t)0,0
f,g,2 ‖Sp � t−2+ n

p .

If (a, b) 
= (0, 0) then the operator belongs to Sp for some p < n, with asymptotic 

Schatten-norm estimates

‖R
(t)a,b
f,g,1 ‖Sp � t−1+ n

p , ‖R
(t)a,b
f,g,2 ‖Sp � t−2+ n

p .

Therefore for each τ ∈ Sn, we have the following equation

R
(t)
fτ1 ,g1,2R

(t)
fτ2 ,g2,1 . . . R

(t)
fτn ,gn,1 =

∑

a1,b1=0,1,2
a2,b2,...,an,bn=0,1

R
(t)a1,b1

fτ1 ,g1,2R
(t)a2,b2

fτ2 ,g2,1 . . . R
(t)an,bn

fτn ,gn,1.

Suppose that there is some (ak, bk) 
= (0, 0). Then we can choose 1 ≤ p1, . . . , pn < ∞
such that 

∑
j

1
pj

= 1, and R
(t)aj ,bj

fτj
,gj ,ij

∈ Spi , i = 1, . . . , n. So

R
(t)a1,b1

fτ1 ,g1,2R
(t)a2,b2

fτ2 ,g2,1 . . . R
(t)an,bn

fτn ,gn,1 ∼w 0,

with trace norm

� t−2+ n
p1 · t−1+ n

p2 · . . . · t−1+ n
pn = t−1.

It follows that R
(t)a1,b1

fτ1 ,g1,2R
(t)a2,b2

fτ2 ,g2,1 . . . R
(t)an,bn

fτn ,gn,1 ∼a 0. And we conclude

R
(t)
fτ1 ,g1,2R

(t)
fτ2 ,g2,1 . . . R

(t)
fτn ,gn,1 ∼a R

(t)0,0
fτ1 ,g1,2R

(t)0,0
fτ2 ,g2,1 . . . R

(t)0,0
fτn ,gn,1. (7.15)

Next, we show
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∑

τ∈Sn

sgn(τ)R
(t)0,0
fτ1 ,g1,2R

(t)0,0
fτ2 ,g2,1 . . . R

(t)0,0
fτn ,gn,1 ∼a 0. (7.16)

The proof is an almost verbatim repetition of the proof of (7.6). Tracing back the 

definition, for f, g ∈ C 2(Bn) and h ∈ L2
a,t(Bn), we compute R

(t)0,0
f,g,2 ,

R
(t)0,0
f,g,2 h(ξ) =

∫

B2
n

Φ
(t)
n,2(|ϕz(w)|2)V2(z, w)〈Qz̄∂f(z), z − w〉〈Qz ∂̄g(w), z − w〉 (7.17)

· h(w)K(t)
z (ξ)K(t)

w (z)dλt(w)dλt(z),

with

V2(z, w) =

∑n
i2,j2=1 Iei2 ,ej2 (z − w)∂zi2

∂̄wj2
(1 − 〈z, w〉)2

(1 − 〈w, z〉)2
(7.18)

=2
1 − 〈z, w〉

(1 − 〈w, z〉)2
· C(z, w) +

B1(z, w)B2(z, w)

(1 − 〈w, z〉)2
, (7.19)

where C(z, w), B1(z, w), B2(z, w) are as in the proof of Lemma 6.11. By the estimates in 

the proof, we get

|V2(z, w)| � |ϕz(w)|2. (7.20)

Similarly to the proof of (7.6), we write

R
(t)0,0
f,g,2 =

n∑

j=1

P (t)M
(t)
[Qz∂f ]j

Λg,2,j ,

where

Λg,2,jh(z) =

∫

Bn

Φ
(t)
n,2(|ϕz(w)|2)FΛg,2,j

(z, w)h(w)dλt(w),

with

FΛg,2,j
(z, w) = V2(z, w)(zj − wj)〈Qz∂̄g(w), z − w〉K(t)

w (z).

By (7.20) and Lemma 2.2, we have the following estimate

∣∣FΛg,2,j
(z, w)

∣∣ � |ϕz(w)|2 1

|1 − 〈z, w〉|n+1+t−1
.

Again, by Theorem 4.6 and Corollary 4.7, for any Lipschitz function u on Bn, we have 

the following properties.
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• Both P (t)Λg,2,j and Λg,2,jP (t) are in Sp for any p > n, with Schatten-p norm �p

t−2+ n
p .

• Both P (t)[Λg,2,j , M
(t)
u ] and [Λg,2,j , M

(t)
u ]P (t) are in Sp for any p > 2n

3 , with Schatten-p

norm �p t−2+ n
p .

• For any Lipschitz function u, [P (t), M
(t)
u ] = [P (t), M

(t)
u ]P (t) − P (t)[P (t), M

(t)
u ] ∈ Sp

for any p > 2n, with ‖[P (t), M
(t)
u ]‖Sp �p t

n
p .

Then as in the proof of (7.8), we compute the product of R
(t)0,0
fτ1 ,f1,2 and R

(t)0,0
fτi

,gi,1 (i =

2, · · · , n)

R
(t)0,0
fτ1 ,g1,2R

(t)0,0
fτ2 ,g2,1 . . . R

(t)0,0
fτn ,gn,1

=
n∑

j1,...,jn=1

P (t)M (t)
uτ1,j1

Λg1,2,j1
P (t)M (t)

uτ2,j2
Λg2,1,j2

. . . P (t)M (t)
uτn,jn

Λgn,1,jn
P (t)

∼a

n∑

j1,...,jn=1

P (t)Λg1,2,j1
P (t)Λg2,1,j2

. . . P (t)Λgn,1,jn
M (t)

uτ1,j1
M (t)

uτ2,j2
. . . M (t)

uτn,jn
P (t)

:=Θ
′ (t)
fτ1 ,g1,...,fτn ,gn

.

Again, by (7.9), we conclude with the following equation

∑

τ∈Sn

sgn(τ)Θ
′ (t)
fτ1 ,g1,...,fτn ,gn

= 0.

This proves (7.16). And together with (7.15), it proves (7.14) for (i1, . . . , in) =

(2, 1, . . . , 1). The proof for general (i1, . . . , in) ∈ X is an almost verbatim repetition 

of the above. This finishes the proof of (7.11).

Proof of (7.12). Denote

φi(z) = (1 − |z|2)i, i = 1, 2, . . . .

Suppose f, g ∈ C 2(Bn). For z 
= 0, let ez = {ez,1, ez,2, . . . , ez,n} be an orthonormal basis 

of Cn such that ez,1 = z
|z| . Let ϕ : C

n → [0, 1] be a smooth function that equals 1 inside 
1
4Bn and vanishes outside 1

2Bn. Under the basis ez, let

Df,g,1(z) = − 1

n

[ n∑

i=2

∂if(z)∂̄ig(z)

]
(1 − ϕ(z)), (7.21)

and

Df,g,2(z) = − 1

n
∂1g(z)∂̄1g(z)(1 − ϕ(z)) +

C1(f, g)(z)ϕ(z)

(1 − |z|2)2
. (7.22)
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Then by Remark 6.4 and direct computation, we have the following decomposition

C1(f, g) = φ1Df,g,1 + φ2Df,g,2.

By Remark 6.5, Df,g,1, Df,g,2 ∈ C 1(Bn). With the decomposition we have the following 

formula

cn
1,tT

(t)
C1(f1,g1)T

(t)
C1(f2,g2) . . . T

(t)
C1(fn,gn) − T

(t)
cn

1,tC1(f1,g1)C1(f2,g2)...C1(fn,gn) (7.23)

=c
n
1,t

∑

i1,...,in=1,2

[
T

(t)
φi1

Df1,g1,i1
T

(t)
φi2

Df2,g2,i2
. . . T

(t)
φin Dfn,gn,in

− T
(t)
φi1

Df1,g1,i1
φi2

Df2,g2,i2
...φin Dfn,gn,in

]
.

By Theorem 6.3, Corollary 6.8 and Lemma 4.8 for t large enough, i, j = 1, 2, . . ., and 

u, v ∈ C 1(Bn), we obtain the following estimates.

T (t)
u T (t)

v − T (t)
uv ∈ Sp, ∀p > n, and ‖T (t)

u T (t)
v − T (t)

uv ‖Sp �p t−1+ n
p ,

T
(t)
φi

T (t)
u − T

(t)
φiu ∈ Sp, ∀p >

n

i + 1
2

, and ‖T
(t)
φi

T (t)
u − T

(t)
φiu‖Sp �p t−1+ n

p ,

T (t)
u T

(t)
φi

− T
(t)
φiu ∈ Sp, ∀p >

n

i + 1
2

, and ‖T (t)
u T

(t)
φi

− T
(t)
φiu‖Sp �p t−1+ n

p ,

and

T
(t)
φi

T
(t)
φj

− T
(t)
φiφj

∈ Sp, ∀p >
n

i + j
, and ‖T

(t)
φi

T
(t)
φj

− T
(t)
φiφj

‖Sp �p t−1+ n
p ,

T
(t)
φiu ∈ Sp, ∀p >

n

i
, and ‖T

(t)
φiu‖Sp �p t

n
p ,

and

c1,t ≈ t−1.

Therefore by the above estimates, we compute the product of T
(t)
φij

Dfj ,gj ,ij
.

cn
1,tT

(t)
φi1 Df1,g1,i1

T
(t)
φi2 Df2,g2,i2

. . . T
(t)
φin Dfn,gn,in

=cn
1,tT

(t)
φi1

T
(t)
Df1,g1,i1

T
(t)
φi2 Df2,g2,i2

. . . T
(t)
φin Dfn,gn,in

− cn
1,t

(
T

(t)
φi1

T
(t)
Df1,g1,i1

− T
(t)
φi1 Df1,g1,i1

)
T

(t)
φi2 Df2,g2,i2

. . . T
(t)
φin Dfn,gn,in

∼acn
1,tT

(t)
φi1

T
(t)
Df1,g1,i1

T
(t)
φi2 Df2,g2,i2

. . . T
(t)
φin Dfn,gn,in

. . .

∼acn
1,tT

(t)
φi1

T
(t)
Df1,g1,i1

T
(t)
φi2

T
(t)
Df2,g2,i2

. . . T
(t)
φin

T
(t)
Dfn,gn,in

=cn
1,tT

(t)
φi1

T
(t)
φi2

T
(t)
Df1,g1,i1

T
(t)
Df2,g2,i2

. . . T
(t)
φin

T
(t)
Dfn,gn,in
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+ cn
1,tT

(t)
φi1

[
T

(t)
Df1,g1,i1

, T
(t)
φi2

]
T

(t)
Df2,g2,i2

. . . T
(t)
φin

T
(t)
Dfn,gn,in

∼acn
1,tT

(t)
φi1

T
(t)
φi2

T
(t)
Df1,g1,i1

T
(t)
Df2,g2,i2

. . . T
(t)
φin

T
(t)
Dfn,gn,in

. . .

∼acn
1,tT

(t)
φi1

. . . T
(t)
φin

T
(t)
Df1,g1,i1

T
(t)
Df2,g2,i2

. . . T
(t)
Dfn,gn,in

=cn
1,tT

(t)
φi1

. . . T
(t)
φin

T
(t)
Df1,g1,i1 Df2,g2,i2

. . . T
(t)
Dfn,gn,in

+ cn
1,tT

(t)
φi1

. . . T
(t)
φin

(
T

(t)
Df1,g1,i1

T
(t)
Df2,g2,i2

− T
(t)
Df1,g1,i1 Df2,g2,i2

)
T

(t)
φi3

. . . T
(t)
Dfn,gn,in

∼acn
1,tT

(t)
φi1

. . . T
(t)
φin

T
(t)
Df1,g1,i1 Df2,g2,i2

T
(t)
φi3

. . . T
(t)
Dfn,gn,in

. . .

∼acn
1,tT

(t)
φi1

. . . T
(t)
φin

T
(t)
Df1,g1,i1 Df2,g2,i2 ...Dfn,gn,in

.

If some ik = 2 in the above, we continue the above computation as follows,

∼acn
1,tT

(t)
φi1 φi2

T
(t)
φi3

. . . T
(t)
φin

T
(t)
Df1,g1,i1 Df2,g2,i2 ...Dfn,gn,in

. . .

∼acn
1,tT

(t)
φi1 φi2 ...φin

T
(t)
Df1,g1,i1 Df2,g2,i2 ...Dfn,gn,in

∼acn
1,tT

(t)
φi1 φi2 ...φin Df1,g1,i1 Df2,g2,i2 ...Dfn,gn,in

.

This proves that if there is some ik = 2, then we have the following equation

cn
1,tT

(t)
φi1 Df1,g1,i1

T
(t)
φi2 Df2,g2,i2

. . . T
(t)
φin Dfn,gn,in

∼a cn
1,tT

(t)
φi1 φi2 ...φin Df1,g1,i1 Df2,g2,i2 ...Dfn,gn,in

.

(7.24)

If all ik = 1, in the steps right above (7.24), the difference operator may not belong to 

the trace class. We need to take the anti-symmetrization into consideration. Similarly to 

the proof of (7.9), the odd anti-symmetrization is over n symbols, but Qz∂f has only 

n − 1 entries under the basis ez. Thus we have the identities

∑

τ∈Sn

sgn(τ)Dfτ1 ,g1,1Dfτ2 ,g2,1 . . . Dfτn ,gn,1 = 0, (7.25)

and

∑

τ∈Sn

sgn(τ)cn
1,tT

(t)
φ1Dfτ1 ,g1,1

T
(t)
φ1Dfτ2 ,g2,1

. . . T
(t)
φ1Dfτn ,gn,1

∼acn
1,t

[
T

(t)
φ1

]n

T
(t)∑

τ∈Sn
sgn(τ)Dfτ1 ,g1,1Dfτ2 ,g2,1...Dfτn ,gn,1

(7.26)

=0.
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Also by (7.25), we have the following equation

∑

τ∈Sn

sgn(τ)cn
1,tT

(t)
φ1Dfτ1 ,g1,1φ1Dfτ2 ,g2,1...φ1Dfτn ,gn,1

= T
(t)
φn

1

∑
τ∈Sn

sgn(τ)Dfτ1 ,g1,1Dfτ2 ,g2,1...Dfτn ,gn,1
= 0. (7.27)

Altogether, (7.23), (7.24), (7.26) and (7.27) imply (7.12).

Proof of (7.13).

Denote

F (z) =
∑

τ∈Sn

sgn(τ)C1(fτ1
, g1) . . . C1(fτn

, gn).

Under the basis ez, we compute the following volume form

(−1)n
n

n(1 − |z|2)−n−1
F dz1 ∧ . . . ∧ dzn ∧ dz̄1 ∧ . . . ∧ dz̄n

=
∑

τ,ς∈Sn

sgn(τ)∂ς(1)fτ1 ∂̄ς(1)g1 . . . ∂ς(n)fτn ∂̄ς(n)gndz1 ∧ . . . ∧ dzn ∧ dz̄1 ∧ . . . ∧ dz̄n

=
∑

τ,ς∈Sn

sgn(τ)
(
∂ς(1)fτ1 dzς(1)

)
∧ . . . ∧

(
∂ς(n)fτn dzς(n)

)
∧
(
∂̄ς(1)g1dz̄ς(1)

)
∧ . . . ∧

(
∂̄ς(n)gndz̄ς(n)

)

=
∑

τ,ς∈Sn

(
∂ςτ−1(1)f1dzςτ−1(1)

)
∧ . . . ∧

(
∂ςτ−1(n)fndzςτ−1(n)

)
∧
(
∂̄ς(1)g1dz̄ς(1)

)
∧ . . . ∧

(
∂̄ς(n)gndz̄ς(n)

)

=
∑

ι,ς∈Sn

(
∂ι(1)f1dzι(1)

)
∧ . . . ∧

(
∂ι(n)fndzι(n)

)
∧
(
∂̄ς(1)g1dz̄ς(1)

)
∧ . . . ∧

(
∂̄ς(n)gndz̄ς(n)

)

=∂f1 ∧ . . . ∧ ∂fn ∧ ∂̄g1 ∧ . . . ∧ ∂̄gn.

Therefore, we obtain the following formula of the trace

TrT
(t)∑

τ∈Sn
sgn(τ)cn

1,tC1(fτ1 ,g1)C1(fτ2 ,g2)C1(fτn ,gn)

=cn
1,tTrT

(t)
F

=
(n − 1)!cn

1,t

πnB(n, t + 1)

∫

Bn

F (z)

(1 − |z|2)n+1
dm(z)

=
(n − 1)!cn

1,t

πnB(n, t + 1)

(−1)n

nn

1

(−2i)n

∫

Bn

∂f1 ∧ ∂̄g1 ∧ . . . ∧ ∂fn ∧ ∂̄gn.

Since

c1,t = nt−1 + O(t−2), B(n, t + 1) = (n − 1)!t−n + O(t−n−1),

we have
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cn
1,t

B(n, t + 1)
→ nn

(n − 1)!
, t → ∞.

Simplifying the above gives (7.13).

In summary, we have proved (7.11), (7.12) and (7.13). Altogether they finish Part 2. 

We have completed the proof of Theorem 7.3 for t > −1.

7.2. Proof of Theorem 7.3: t = −1

In this subsection, we prove that [f1, g1, . . . , fn, gn]fst
−1 and [f1, g1, . . . , fn, gn]scd

−1 belong 

to the trace class of the Hardy space. The proof follows the same idea as the case of 

t > −1 but requires more careful treatment because the Hardy space norm is defined 

in a more subtle way. Our approach is to move most of our arguments to the Bergman 

space L2
a,0(Bn) via the maps described in Diagram (7.35).

To simplify notations, we write

σ(f, g) = σ−1(f, g),

and

[f1, g1, . . . , fn, gn]fst = [f1, g1, . . . , fn, gn]fst
−1,

[f1, g1, . . . , fn, gn]scd = [f1, g1, . . . , fn, gn]scd
−1 .

Lemma 7.9. Suppose g ∈ C 1(Bn). Then for h ∈ H2(Sn),

T (−1)
g h(z) = g(z)h(z) − 1

n

∫

Bn

|ϕz(w)|−2n 〈∂̄g(w), z − w〉
(1 − 〈w, z〉) h(w)K(−1)

w (z)dλ0(w), ∀z ∈ Bn.

(7.28)

Moreover, for z ∈ Sn almost everywhere,

T (−1)
g h(z) = g(z)h(z) − 1

n

∫

Bn

〈∂̄g(w), z − w〉
1 − 〈w, z〉 h(w)K(−1)

w (z)dλ0(w). (7.29)

Proof. Suppose h ∈ Hol(Bn). For z ∈ Bn, apply Lemma 2.15 with α = β = 0, v(w) =

g(w)h(w). Then we compute T
(−1)
g as follows,

T (−1)
g h(z)

=

∫

Sn

g(w)h(w)K(−1)
w (z)

dσ(w)

σ2n−1

=d0,0(z)g(z)h(z) − 1

n

∫

Bn

|ϕz(w)|−2n

∑n
j=1 ∂̄j

[
g(w)h(w)

]
(zj − wj)

1 − 〈w, z〉 K(−1)
w (z)dλ0(w)
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=g(z)h(z) − 1

n

∫

Bn

|ϕz(w)|−2n 〈∂̄g(w), z − w〉
1 − 〈w, z〉 h(w)K(−1)

w (z)dλ0(w).

This proves (7.28) for h ∈ Hol(Bn). The equation for general h ∈ H2(Sn) follows from 

approximation.

For h ∈ Hol(Bn), z ∈ Sn and 1
2 < r < 1, we compute T

(−1)
g h(rz)

T (−1)
g h(rz) = g(rz)h(rz) − 1

n

∫

Bn

|ϕrz(w)|−2n 〈∂̄g(w), rz − w〉
1 − 〈w, rz〉 h(w)K(−1)

w (rz)dλ0(w).

The first term on the right hand side tends to g(z)h(z). In order to prove (7.29), it 

suffices to prove the following identity

lim
r→1−

∫

Bn

|ϕrz(w)|−2n 〈∂̄g(w), rz − w〉
1 − 〈w, rz〉 h(w)K(−1)

w (rz)dλ0(w) (7.30)

=

∫

Bn

〈∂̄g(w), z − w〉
1 − 〈w, z〉 h(w)K(−1)

w (z)dλ0(w).

By Lemma 2.2, we have the following estimate

∣∣∣∣
〈∂̄g(w), rz − w〉

1 − 〈w, rz〉 h(w)K(−1)
w (rz)

∣∣∣∣ �
|ϕrz(w)|

|1 − 〈rz, w〉|n+1/2
.

Therefore we have the following estimate of the integrals

∣∣∣∣
∫

Bn

|ϕrz(w)|−2n 〈∂̄g(w), rz − w〉
1 − 〈w, rz〉 h(w)K(−1)

w (rz)dλ0(w)

−
∫

Bn

〈∂̄g(w), rz − w〉
1 − 〈w, rz〉 h(w)K(−1)

w (rz)dλ0(w)

∣∣∣∣

�

∫

Bn

(
|ϕrz(w)|−2n − 1

)
· |ϕrz(w)|

|1 − 〈rz, w〉|n+1/2
dλ0(w)

≈
∫

Bn

|ϕrz(w)|−2n+1
(
1 − |ϕrz(w)|2

) 1

|1 − 〈rz, w〉|n+1/2
dλ0(w)

�(1 − |rz|2)1/2 → 0, r → 1−.

Here the last inequality follows from Lemma 2.3 (3). Therefore, we have the following 

limit computation,
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lim
r→1−

∫

Bn

|ϕrz(w)|−2n 〈∂̄g(w), rz − w〉
1 − 〈w, rz〉 h(w)K(−1)

w (rz)dλ0(w) (7.31)

= lim
r→1−

∫

Bn

〈∂̄g(w), rz − w〉
1 − 〈w, rz〉 h(w)K(−1)

w (rz)dλ0(w).

For 1
2 < r < 1 and |a| < 1, it is easy to verify that

1

|1 − ra| ≤ 2

|1 − a| .

So we have the following bounds

∣∣∣∣
〈∂̄g(w), rz − w〉

1 − 〈w, rz〉 h(w)K(−1)
w (rz)

∣∣∣∣ �
|ϕrz(w)|

|1 − 〈rz, w〉|n+1/2
�

1

|1 − 〈z, w〉|n+1/2
.

Thus by the Dominated Convergence Theorem, we arrive at the following equation

lim
r→1−

∫

Bn

〈∂̄g(w), rz − w〉
1 − 〈w, rz〉 h(w)K(−1)

w (rz)dλ0(w) =

∫

Bn

〈∂̄g(w), z − w〉
1 − 〈w, z〉 h(w)K(−1)

w (z)dλ0(w).

(7.32)

Combining (7.31) and (7.32) gives (7.30). Thus (7.29) holds pointwise for h ∈ Hol(Bn). 

The general case follows from approximation. This completes the proof of Lemma 7.9. �

Lemma 7.10. Suppose f, g ∈ C 2(Bn). Then

σ(f, g) = Rf,g,1,

where the operator Rf,g,1 is defined as follows.

Rf,g,1h(ξ)

= − 1

n2

∫

Bn

∫

Bn

|ϕz(w)|−2n 〈∂f(z), z − w〉〈∂̄g(w), z − w〉
(1 − 〈w, z〉)2

K(−1)
w (z)K(−1)

z (ξ)dλ0(w)dλ0(z).

Proof. Suppose h ∈ Hol(Bn). By Lemma 7.9, for z ∈ Sn, we compute T
(−1)
g h

T (−1)
g h(z) = g(z)h(z) − 1

n

∫

Bn

〈∂̄g(w), z − w〉
1 − 〈w, z〉 h(w)K(−1)

w (z)dλ0(w).

Therefore for ξ ∈ Bn, we have the following computation of T
(−1)
f T

(−1)
g ,



90 X. Tang et al. / Advances in Mathematics 433 (2023) 109324

T
(−1)
f T

(−1)
g h(ξ)

=

∫

Sn

{
g(z)h(z) −

1

n

∫

Bn

〈∂̄g(w), z − w〉

1 − 〈w, z〉
h(w)K(−1)

w (z)dλ0(w)

}
f(z)K(−1)

z (ξ)
dσ(z)

σ2n−1

=

∫

Sn

g(z)f(z)h(z)K(−1)
z (ξ)

dσ(z)

σ2n−1
−

1

n

∫

Sn

∫

Bn

〈∂̄g(w), z − w〉

1 − 〈w, z〉
h(w)K(−1)

w (z)f(z)K(−1)
z (ξ)dλ0(w)

dσ(z)

σ2n−1

=T
(−1)
fg h(ξ) −

1

n

∫

Sn

∫

Bn

〈∂̄g(w), z − w〉

1 − 〈w, z〉
h(w)K(−1)

w (z)f(z)K(−1)
z (ξ)dλ0(w)

dσ(z)

σ2n−1
.

Since f, g, h are bounded, using Lemma 2.3 we see that the double integral on the right 

converges absolutely. By Fubini’s Theorem, we have

σ(f, g)h(ξ) = − 1

n

∫

Bn

{∫

Sn

f(z)〈∂̄g(w), z − w〉
1 − 〈w, z〉 K(−1)

w (z)K(−1)
z (ξ)

dσ(z)

σ2n−1

}
h(w)dλ0(w).

For fixed w, ξ ∈ Bn, applying (2.15) with α = β = 0, v(z) = f(z)〈∂̄g(w),z−w〉
1−〈w,z〉 K

(−1)
z (ξ)

gives

∫

Sn

f(z)〈∂̄g(w), z − w〉
1 − 〈w, z〉 K(−1)

w (z)K(−1)
z (ξ)

dσ(z)

σ2n−1

=
1

n

∫

Bn

|ϕz(w)|−2n 〈∂f(z), z − w〉〈∂̄g(w), z − w〉
(1 − 〈w, z〉)2

K(−1)
w (z)K(−1)

z (ξ)dλ0(z).

Therefore we get the following formula for σ(f, g)

σ(f, g)h(ξ)

= −
1

n

∫

Bn

{
1

n

∫

Bn

|ϕz(w)|−2n 〈∂f(z), z − w〉〈∂̄g(w), z − w〉

(1 − 〈w, z〉)2
K

(−1)
w (z)K(−1)

z (ξ)dλ0(z)

}
h(w)dλ0(w)

= −
1

n2

∫

B2
n

|ϕz(w)|−2n 〈∂f(z), z − w〉〈∂̄g(w), z − w〉

(1 − 〈w, z〉)2
K

(−1)
w (z)K(−1)

z (ξ)h(w)dλ0(w)dλ0(z).

This completes the proof of Lemma 7.10. �

Definition 7.11. Suppose f, g ∈ C 2(Bn) and h ∈ L2(λ0).

1. Define

Ph(ξ) =

∫

Bn

h(z)K(−1)
z (ξ)dλ0(z),
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and

Γf,gh(z) = − 1

n2

∫

Bn

|ϕz(w)|−2n 〈∂f(z), z − w〉〈∂̄g(w), z − w〉
(1 − 〈w, z〉)2

K(−1)
w (z)h(w)dλ0(w).

Then

Rf,g,1 = PΓf,g.

2. Define

A0 = 〈Qz̄∂f(z), (z − w)〉, A1 = 〈Pz̄∂f(z), (z − w)〉,
B0 = 〈Qz∂̄g(w), z − w〉, B1 = 〈Pz∂̄g(w), z − w〉,

and

Ca,b(z, w) = AaBb, a, b = 0, 1.

Then

|Ca,b(z, w)| � |1 − 〈z, w〉|1+ a+b
2 , (7.33)

and

∑

a,b=0,1

Ca,b(z, w) = 〈∂f(z), z − w〉〈∂̄g(w), z − w〉.

3. Define

Γa,b
f,gh(z) = − 1

n2

∫

Bn

|ϕz(w)|−2n Ca,b(z, w)

(1 − 〈w, z〉)2
K(−1)

w (z)h(w)dλ0(w).

Then

Γf,g =
∑

a,b=0,1

Γa,b
f,g.

4. Define for j = 1, . . . , n,

Λg,jh(z) = − 1

n2

∫

Bn

|ϕz(w)|−2n(zj − wj)
〈Qz∂̄g(w), z − w〉

(1 − 〈w, z〉)2
K(−1)

w (z)h(w)dλ0(w).

Then

Γ0,0
f,g =

n∑

j=1

M[Qz̄∂f ]j
Λg,j .
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Lemma 7.12. Suppose n ≥ 2, f, g ∈ C 2(Bn), u ∈ C 1(Bn), and a, b = 0, 1. Consider 

P, Γa,b
f,g, Λg,j as operators on L2(λ0). Then the following hold.

(1) [P (0), Mu] ∈ Sp for any p > 2n.

(2) P ∈ Sp for any p > n.

(3) [P, Mu] ∈ Sp for any p > 2n
3 .

(4) If (a, b) 
= (0, 0), then Γa,b
f,gP (0) ∈ Sp for p large enough, and Γa,b

f,gP ∈ Sp for some 

p < n.

(5) For each j, Λg,j is bounded.

(6) For each j, [Λg,j , Mu]P (0) ∈ Sp for any p > 2n.

(7) For each j, [Λg,j , Mu]P ∈ Sp for any p > 2n
3 .

Proof. By comparing the integral formula of P and the Bergman projection P (0), it is 

easy to see that (2) follows from Corollary 4.2, and (1) follows from Corollary 4.3. If 

n ≥ 3 then (3) also follows from Corollary 4.3. At n = 2, notice that P is self-adjoint 

and has range in L2
a,0(Bn). Thus we compute the commutator [P, Mu]

[P, Mu] = P (0)[P, Mu] + (1 − P (0))[P, Mu] =

(
[Mū, P ]P (0)

)∗

− H(0)
u P.

By (2) and Corollary 4.4, the second term on the right belongs to Sp for any p > 2n
3 . 

For any h ∈ Hol(Bn), apply (2.11) with t = 0, α = β = 0, φ = 1, and v(w) =
(
ū(z) −

ū(w)
)
h(w)(1 − 〈z, w〉). Then we get the following expression

[Mū, P ]h(z)

=

∫

Bn

(
ū(z) − ū(w)

)
h(w)K(−1)

w (z)dλ0(w)

= −
∫

Bn

G(0)
n 1(|ϕz(w)|2)

(1 − |w|2)〈∂̄v(w), z − w〉
1 − 〈w, z〉 K(0)

w (z)dλ0(w) (7.34)

=

∫

Bn

G(0)
n 1(|ϕz(w)|2)

(
(1 − 〈z, w〉)〈∂̄ū(w), z − w〉 +

(
ū(z) − ū(w)

)
〈z, z − w〉

)

· 1 − |w|2
1 − 〈w, z〉h(w)K(0)

w (z)dλ0(w).

Take

F (z, w) =
2

n + 1

(
(1−〈z, w〉)〈∂̄ū(w), z −w〉+

(
ū(z)− ū(w)

)
〈z, z −w〉

)
1

1 − 〈w, z〉K(0)
w (z).

Substituting F into the integral on the right hand side of Equation (7.34) gives the 

following formula
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[Mū, P ]h(z) =

∫

Bn

G(0)
n 1(|ϕz(w)|2)F (z, w)h(w)dλ1(w).

By Lemma 5.9, we have the following estimate

|G(0)
n 1(s)| � s−n.

By Lemma 2.2 and the fact that ū ∈ C 1(Bn), we obtain the following bound

∣∣F (z, w)
∣∣ � |ϕz(w)| 1

|1 − 〈z, w〉|n+1/2
.

For any ε > 0, split the map as follows.

[Mū, P ]P (0) : L2
a,0(Bn)

E0,3−ε−−−−→ L2
a,3−ε(Bn)

T−→ L2(λ0),

where Th(z) is defined as in the last line of Equation (7.34). Then by the estimates above 

and Lemma 3.1, T is bounded. Thus by Lemma 3.4, [Mū, P ]P (0) is in Sp for any p > 2n
3 . 

This proves (3).

Let

FΓa,b(z, w) = − 1

n2

Ca,b(z, w)

(1 − 〈w, z〉)2
K(−1)

w (z), z, w ∈ Bn,

and

FΛg,j
(z, w) = − 1

n2
(zj − wj)

〈Qz ∂̄g(w), z − w〉
(1 − 〈w, z〉)2

K(−1)
w (z), z, w ∈ Bn, j = 1, . . . , n.

Then write

Γa,b
f,gh(z) =

∫

Bn

|ϕz(w)|−2nFΓa,b(z, w)h(w)dλ0(w),

and

Λg,jh(z) =

∫

Bn

|ϕz(w)|−2nFΛg,j
(z, w)h(w)dλ0(w).

By (7.33) and Lemma 2.2, we have the following bound

∣∣FΓa,b(z, w)
∣∣ � |ϕz(w)|2 1

|1 − 〈z, w〉|n+1− a+b
2

,

and
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∣∣FΛg,j
(z, w)

∣∣ � |ϕz(w)|2 1

|1 − 〈z, w〉|n+1
.

Thus by Lemma 3.1, Λg,j is bounded. This proves (5). By Lemma 4.5, Γa,b
f,gP (0) ∈ Sp

for p large enough. Since P ∈ Sp for any p > n, and Γa,b
f,gP = Γa,b

f,gP (0)P , we have 

Γa,b
f,gP ∈ Sp for some p < n. This proves (4). Also, (6) follows from the above estimates 

and Corollary 4.7, and (7) follows again from (6) and the equation P = P (0)P . This 

completes the proof. �

Lemma 7.13. Denote P̂ the operator from L2(λ0) to H2(Sn) defined by the same integral 

formula as P . Then P̂ = E∗
−1,1.

Proof. For any f ∈ L2(λ0), g ∈ H2(Sn), we compute 〈P̂ f, g〉H2(Sn)

〈P̂ f, g〉H2(Sn) =

∫

Sn

∫

Bn

f(z)K(−1)
z (ξ)dλ0(z)g(ξ)

dσ(ξ)

σ2n−1

=

∫

Bn

∫

Sn

g(ξ)K(−1)
z (ξ)

dσ(ξ)

σ2n−1
f(z)dλ0(z)

=

∫

Bn

g(z)f(z)dλ0(z)

=〈f, E−1,1g〉L2(λ0).

This completes the proof. �

Proof of Theorem 7.3 (t = −1). For any τ ∈ Sn, split the map

σ(fτ1
, g1) . . . σ(fτn

, gn) = PΓfτ1 ,g1
PΓfτ2 ,g2

. . . PΓfτn ,gn

as follows.

H2(Sn)
E−1,1−−−−→ L2

a,0(Bn)
Γfτ1 ,g1 P Γfτ2 ,g2 ...P Γfτn ,gn P (0)

−−−−−−−−−−−−−−−−−−−−−→ L2(λ0)
P̂−→ H2(Sn). (7.35)

By Lemmas 3.4 and 7.13, the operators on the two ends of (7.35) are in Sp for any 

p > 2n. Thus it suffices to show that

∑

τ∈Sn

sgn(τ)Γfτ1 ,g1
PΓfτ2 ,g2

. . . PΓfτn ,gn
P (0)

defines an operator in Sp(L2(λ0)) for some p < n
n−1 .

Notation 7.14. For operators A, B, temporarily write A ∼p B when A −B is in Sp(L2(λ0))

for some p < n
n−1 . Again, we do not assume A or B to be in any Schatten-class.
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Denote

ui,j(z) = [Qz̄∂fi(z)]j .

Then by Lemma 7.12, we compute an element in the above sum

Γfτ1 ,g1
PΓfτ2 ,g2

. . . PΓfτn ,gn
P (0)

=

( ∑

a,b=0,1

Γa,b
fτ1 ,g1

)
P

( ∑

a,b=0,1

Γa,b
fτ2 ,g2

)
. . . P

( ∑

a,b=0,1

Γa,b
fτn ,gn

)
P (0)

∼pΓ0,0
fτ1 ,g1

PΓ0,0
fτ2 ,g2

. . . PΓ0,0
fτn ,gn

P (0)

=
n∑

j1,...,jn=1

Muτ1,j1
Λg1,j1

PMuτ2,j2
Λg2,j2

P . . . Muτn,jn
Λgn,jn

P (0)

=
n∑

j1,...,jn=1

Λg1,j1
Muτ1,j1

PMuτ2,j2
Λg2,j2

P . . . Muτn,jn
Λgn,jn

P (0)

+
n∑

j1,...,jn=1

[Muτ1,j1
, Λg1,j1

]PMuτ2,j2
Λg2,j2

P . . . Muτn,jn
Λgn,jn

P (0).

Each operator in the second term contains n − 2 copies of P and one [Muτ1,j1
, Λg1,j1

]P . 

By Lemma 7.12 (2) and (7), it belongs to Sp for some p < n
n−1 . Thus we compute the 

following sum,

n∑

j1,...,jn=1

Muτ1,j1
Λg1,j1

PMuτ2,j2
Λg2,j2

P . . . Muτn,jn
Λgn,jn

P (0)

∼p

n∑

j1,...,jn=1

Λg1,j1
Muτ1,j1

PMuτ2,j2
Λg2,j2

P . . . Muτn,jn
Λgn,jn

P (0)

=
n∑

j1,...,jn=1

Λg1,j1
PMuτ1,j1

Muτ2,j2
Λg2,j2

P . . . Muτn,jn
Λgn,jn

P (0)

+
n∑

j1,...,jn=1

Λg1,j1
[Muτ1,j1

, P ]Muτ2,j2
Λg2,j2

P . . . Muτn,jn
Λgn,jn

P (0).

By Lemma 7.12 (2) and (3), the last term belongs to Sp for some p < n
n−1 . Therefore 

we have the following equation

n∑

j1,...,jn=1

Muτ1,j1
Λg1,j1

PMuτ2,j2
Λg2,j2

P . . . Muτn,jn
Λgn,jn

P (0)

∼p

n∑

j1,...,jn=1

Λg1,j1
PMuτ1,j1

Muτ2,j2
Λg2,j2

P . . . Muτn,jn
Λgn,jn

P (0).
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Continuing like this, we obtain the following equation

n∑

j1,...,jn=1

Muτ1,j1
Λg1,j1

PMuτ2,j2
Λg2,j2

P . . . Muτn,jn
Λgn,jn

P (0)

∼p

n∑

j1,...,jn=1

Λg1,j1
PΛg2,j2

P . . . Λgn,jn
Muτ1,j1

Muτ2,j2
. . . Muτn,jn

P (0)

=:Θfτ1 ,g1,...,fτn ,gn
.

As in the proof of Theorem 7.3, by writing Θfτ1 ,g1,...,fτn ,gn
as an integral operator, and 

by (7.9), we can show that

∑

τ∈Sn

sgn(τ)Θfτ1 ,g1,...,fτn ,gn
= 0.

Therefore we conclude

∑

τ∈Sn

sgn(τ)Γfτ1 ,g1
PΓfτ2 ,g2

. . . PΓfτn ,gn
P (0) ∈ Sp

for some p < n
n−1 . Thus by (7.35), we obtain

[f1, g1, . . . , fn, gn]fst = P

( ∑

τ∈Sn

sgn(τ)Γfτ1 ,g1
PΓfτ2 ,g2

. . . PΓfτn ,gn
P (0)

)
E−1,1

is in the trace class. Since

[f1, g1, . . . , fn, gn]fst =

(
[ḡn, f̄n, . . . , ḡ1, f̄1]scd

)∗

,

the second anti-symmetric sum is also in the trace class. Finally, as in the proof of 

Corollary 7.7, we obtain

[T
(−1)
f1

, T
(−1)
f2

, . . . , T
(−1)
f2n

] =
1

n!

∑

τ∈S2n

sgn(τ)[fτ1
, fτ2

, . . . , fτ2n
]fst ∈ S1.

This completes the proof of Theorem 7.3 for t = −1. �

8. Main theorems

In this section, we prove the main results of this article.
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8.1. Helton-Howe cocycle

We are ready to prove the following main theorem.

Theorem 8.1. Suppose f1, f2, . . . , f2n ∈ C 2(Bn) and t ≥ −1. Then the following hold.

1. The antisymmetric sum [T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] is in the trace class S1.

2.

Tr[T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] =
n!

(2πi)n

∫

Bn

df1 ∧ df2 ∧ . . . ∧ df2n, (8.1)

which is independent of t.

Proof. First, we reduce the Hardy space case to that of a weighted Bergman space. By 

Lemma 5.3, the operator on H2(Sn),

[T
(−1)
f1

, T
(−1)
f2

, . . . , T
(−1)
f2n

] − [T
(1,−1)
f1

, T
(1,−1)
f2

, . . . , T
(1,−1)
f2n

]

is a trace class operator of zero trace. By Corollary 7.7, the operator

[T
(−1)
f1

, T
(−1)
f2

, . . . , T
(−1)
f2n

]

is itself in the trace class. Thus we have the following of traces

Tr[T
(−1)
f1

, T
(−1)
f2

, . . . , T
(−1)
f2n

] = Tr[T
(1,−1)
f1

, T
(1,−1)
f2

, . . . , T
(1,−1)
f2n

].

On the other hand, by Corollary 7.7, the operator

[T
(1)
f1

, . . . , T
(1)
f2n

]

is a trace class operator on L2
a,1(Bn). Since

[T
(1)
f1

, . . . , T
(1)
f2n

]
∣∣
H2(Sn)

= [T
(1,−1)
f1

, T
(1,−1)
f2

, . . . , T
(1,−1)
f2n

],

by Lemma 2.4, we get the following equation of traces

Tr[T
(1,−1)
f1

, T
(1,−1)
f2

, . . . , T
(1,−1)
f2n

] = Tr[T
(1)
f1

, . . . , T
(1)
f2n

].

Therefore we arrive at the following equation

Tr[T
(−1)
f1

, T
(−1)
f2

, . . . , T
(−1)
f2n

] = Tr[T
(1)
f1

, . . . , T
(1)
f2n

].

Thus the case of the Hardy space reduces to that of the weighted Bergman space.
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Suppose t > −1, by Lemma 5.2, the operator on L2
a,t(Bn)

[T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] − [T
(t+1,t)
f1

, T
(t+1,t)
f2

, . . . , T
(t+1,t)
f2n

]

is a trace class operator of zero trace. By Corollary 7.7, we know that the antisymmetriza-

tion [T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] is itself in the trace class. Thus so does [T
(t+1,t)
f1

, T
(t+1,t)
f2

, . . . ,

T
(t+1,t)
f2n

]. Also by Corollary 7.7,

[T
(t+1)
f1

, T
(t+1)
f2

, . . . , T
(t+1)
f2n

]

is a trace class operator on L2
a,t+1(Bn). As explained in the beginning of Section 5, the 

space L2
a,t(Bn) is invariant under the operations of each T

(t+1)
fi

. And by direct verification 

we have

[T
(t+1)
f1

, T
(t+1)
f2

, . . . , T
(t+1)
f2n

]
∣∣
L2

a,t(Bn)
= [T

(t+1,t)
f1

, T
(t+1,t)
f2

, . . . , T
(t+1,t)
f2n

].

Thus by Lemma 2.4, we have the following equation

Tr[T
(t+1)
f1

, T
(t+1)
f2

, . . . , T
(t+1)
f2n

] = Tr[T
(t+1,t)
f1

, T
(t+1,t)
f2

, . . . , T
(t+1,t)
f2n

].

Therefore we conclude with the following identity

Tr[T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

]

=Tr[T
(t+1,t)
f1

, T
(t+1,t)
f2

, . . . , T
(t+1,t)
f2n

]

=Tr[T
(t+1)
f1

, T
(t+1)
f2

, . . . , T
(t+1)
f2n

].

This holds for any t > −1. Thus by Corollary 7.7, we have shown

Tr[T
(t)
f1

, T
(t)
f2

, . . . , T
(t)
f2n

] = lim
k→∞

Tr[T
(t+k)
f1

, T
(t+k)
f2

, . . . , T
(t+k)
f2n

]

=
n!

(2πi)n

∫

Bn

df1 ∧ df2 ∧ . . . ∧ df2n.

This completes the proof of Theorem 8.1. �

8.2. The Connes-Chern character

As mentioned in Remark 7.6, in this subsection, we consider the Connes-Chern char-

acter at p > n.
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Proposition 8.2. Suppose p ≥ n + 1 is an integer and f1, g1, . . . , fp, gp ∈ C 2(Bn). Then 

for any t > −1, the product σt(f1, g1)σt(f2, g2) . . . σt(fp, gp) is in the trace class, and

lim
t→∞

tp−nTr

(
σt(f1, g1)σt(f2, g2) . . . σt(fp, gp)

)

=
np

πn

∫

Bn

p∏

j=1

C1(fj , gj)(z)
dm(z)

(1 − |z|2)n+1

=
(−1)p

πn

∫

Bn

p∏

j=1

[ n∑

i=1

∂ifj(z)∂̄igj(z) − Rfj(z)R̄gj(z)

]
(1 − |z|2)p−n−1dm(z).

Proof. The proof is similar to Part 2 of Section 7.1. Recall that the following facts 

were used in Part 2 and follow from Lemma 6.1, Theorem 6.3 and their corollaries. For 

f, g ∈ C 2(Bn), we decompose σt(f, g) as follows

σt(f, g) = R
(t)
f,g,1 = c1,tT

(t)
C1(f,g) + R

(t)
f,g,2, (8.2)

and the following hold.

(1) c1,t = nt−1 + O(t−2).

(2) C1(f, g) = φ1Df,g,1 + φ2Df,g,2, where

φi(z) = (1 − |z|2)i, i = 1, 2, . . . ,

and Df,g,1, Df,g,2 ∈ C 1(Bn) is defined as in (7.21) and (7.22).

(3) R
(t)
f,g,i ∈ Sp, i = 1, 2, and for large t, ‖R

(t)
f,g,i‖Sp � t−i+ n

p , i = 1, 2.

(4) For t large enough, i, j = 1, 2, . . ., and u, v ∈ C 1(Bn),

(a) T
(t)
u T

(t)
v − T

(t)
uv ∈ Sp, ∀p > n, and ‖T

(t)
u T

(t)
v − T

(t)
uv ‖Sp �p t−1+ n

p ,

(b) T
(t)
φi

T
(t)
u − T

(t)
φiu ∈ Sp, ∀p > n

i+ 1
2

, and ‖T
(t)
φi

T
(t)
u − T

(t)
φiu‖Sp �p t−1+ n

p ,

(c) T
(t)
u T

(t)
φi

− T
(t)
φiu ∈ Sp, ∀p > n

i+ 1
2

, and ‖T
(t)
u T

(t)
φi

− T
(t)
φiu‖Sp �p t−1+ n

p ,

(d) T
(t)
φi

T
(t)
φj

− T
(t)
φiφj

∈ Sp, ∀p > n
i+j , and ‖T

(t)
φi

T
(t)
φj

− T
(t)
φiφj

‖Sp �p t−1+ n
p ,

(e) T
(t)
φiu ∈ Sp, ∀p > n

i , and ‖T
(t)
φiu‖Sp �p t

n
p .

Iterating Lemma 2.5 as in Remark 2.7, we have that the property

σt(f1, g1)σt(f2, g2) . . . σt(fp, gp) ∈ S1.

As in the proof of Theorem 7.3, we write S ∼a T when S − T is in trace class with 

trace norm converging to 0. Then by (8.2), we compute

σt(f1, g1)σt(f2, g2) . . . σt(fp, gp) − cp
1,tT

(t)
C1(f1,g1)T

(t)
C1(f2,g2) . . . T

(t)
C1(fp,gp)



100 X. Tang et al. / Advances in Mathematics 433 (2023) 109324

=R
(t)
f1,g1,1R

(t)
f2,g2,1 . . . R

(t)
fp,gp,1

−
(
R

(t)
f1,g1,1 − R

(t)
f1,g1,2

)(
R

(t)
f2,g2,1 − R

(t)
f2,g2,2

)
. . .

(
R

(t)
fp,gp,1 − R

(t)
fp,gp,2

)

=
∑

±R
(t)
f1,g1,i1

R
(t)
f2,g2,i2

. . . R
(t)
fp,gp,ip

,

where i1, i2, . . . , ip ∈ {1, 2} and at least one ik = 2. Again, applying Lemma 2.5 induc-

tively as in Remark 2.7 gives the following bounds

‖R
(t)
f1,g1,i1

R
(t)
f2,g2,i2

. . . R
(t)
fp,gp,ip

‖ ≤ ‖R
(t)
f1,g1,i1

‖Sp . . . ‖R
(t)
fp,gp,ip

‖Sp � t−i1+ n
p · . . . · t−ip+ n

p

≤ t−p−1+n.

We reach the following equation

tp−nσt(f1, g1)σt(f2, g2) . . . σt(fp, gp) ∼a tp−ncp
1,tT

(t)
C1(f1,g1)T

(t)
C1(f2,g2) . . . T

(t)
C1(fp,gp). (8.3)

Also, by (1) and (4)-(e), we have the following equation

tp−ncp
1,tT

(t)
C1(f1,g1)T

(t)
C1(f2,g2) . . . T

(t)
C1(fp,gp) ∼a npt−nT

(t)
C1(f1,g1)T

(t)
C1(f2,g2) . . . T

(t)
C1(fp,gp).

(8.4)

Write uij = Dfi,gi,j , i = 1, . . . , p, j = 1, 2. Then we arrive at the following equation,

t−nT
(t)
C1(f1,g1)T

(t)
C1(f2,g2) . . . T

(t)
C1(fp,gp) =

∑

j1,...,jp=1,2

t−nT
(t)
φj1 u1j1

T
(t)
φj2 u2j2

. . . T
(t)
φjp upjp

.

By (4), we have the following estimate

t−nT
(t)
φj1 u1j1

T
(t)
φj2 u2j2

. . . T
(t)
φjp upjp

=t−n
(
T

(t)
φj1 u1j1

− T
(t)
φi

T (t)
u1j1

)
T

(t)
φj2 u2j2

. . . T
(t)
φjp upjp

+ t−nT
(t)
φj1

T (t)
u1j1

T
(t)
φj2 u2j2

. . . T
(t)
φjp upjp

∼at−nT
(t)
φj1

T (t)
u1j1

T
(t)
φj2 u2j2

. . . T
(t)
φjp upjp

. . .

∼at−nT
(t)
φj1

T (t)
u1j1

T
(t)
φj2

T (t)
u2j2

. . . T
(t)
φjp

T (t)
upjp

=t−nT
(t)
φj1

[T (t)
u1j1

, T
(t)
φj2

]T (t)
u2j2

. . . T
(t)
φjp

T (t)
upjp

+ t−nT
(t)
φj1

T
(t)
φj2

T (t)
u1j1

T (t)
u2j2

. . . T
(t)
φjp

T (t)
upjp

∼at−nT
(t)
φj1

T
(t)
φj2

T (t)
u1j1

T (t)
u2j2

. . . T
(t)
φjp

T (t)
upjp

. . .

∼at−nT
(t)
φj1

T
(t)
φj2

. . . T
(t)
φjp

T (t)
u1j1

T (t)
u2j2

. . . T (t)
upjp

=t−n
(
T

(t)
φj1

T
(t)
φj2

− T
(t)
φj1+j2

)
T

(t)
φj3

. . . T
(t)
φjp

T (t)
u1j1

T (t)
u2j2

. . . T (t)
upjp

+ t−nT
(t)
φj1+j2

T
(t)
φj3

. . . T
(t)
φjp

T (t)
u1j1

T (t)
u2j2

. . . T (t)
upjp
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∼at−nT
(t)
φj1+j2

T
(t)
φj3

. . . T
(t)
φjp

T (t)
u1j1

T (t)
u2j2

. . . T (t)
upjp

. . .

∼at−nT
(t)
φj1+j2+...+jp

T (t)
u1j1

T (t)
u2j2

. . . T (t)
upjp

=t−nT
(t)
φj1+j2+...+jp

(
T (t)

u1j1
T (t)

u2j2
− T (t)

u1j1 u2j2

)
T (t)

u3j3
. . . T (t)

upjp

+ t−nT
(t)
φj1+j2+...+jp

T (t)
u1j1 u2j2

T (t)
u3j3

. . . T (t)
upjp

∼at−nT
(t)
φj1+j2+...+jp

T (t)
u1j1 u2j2

T (t)
u3j3

. . . T (t)
upjp

. . .

∼at−nT
(t)
φj1+j2+...+jp

T (t)
u1j1 u2j2 ...upjp

∼at−nT
(t)
φj1+j2+...+jp u1j1 u2j2 ...upjp

.

Adding up over j1, j2, . . . , jp = 1, 2, we get the following equation

t−nT
(t)
C1(f1,g1)T

(t)
C1(f2,g2) . . . T

(t)
C1(fp,gp) ∼a t−nT

(t)
C1(f1,g1)C1(f2,g2)...C1(fp,gp). (8.5)

Combining (8.3) (8.4) and (8.5), we arrive at the following equation

tp−nσt(f1, g1)σt(f2, g2) . . . σt(fp, gp) ∼a npt−nT
(t)
C1(f1,g1)C1(f2,g2)...C1(fp,gp). (8.6)

Denote

F = C1(f1, g1)C1(f2, g2) . . . C1(fp, gp).

Then |F (z)| � (1 − |z|2)p. By [47, Lemma 2.5] and 2.3, we compute Tr
(
npt−nT

(t)
F

)

Tr
(
npt−nT

(t)
F

)

=npt−n

∫

Bn

〈T (t)
F K

(t)
ξ , K

(t)
ξ 〉dλt(ξ)

=npt−n

∫

Bn

∫

Bn

F (z)K
(t)
ξ (z)K(t)

z (ξ)dλt(z)dλt(ξ)

=npt−n

∫

Bn

∫

Bn

F (z)K
(t)
ξ (z)K(t)

z (ξ)dλt(ξ)dλt(z)

=npt−n

∫

Bn

F (z)K(t)
z (z)dλt(z)

=npt−n (n − 1)!

πnB(n, t + 1)

∫

Bn

F (z)

(1 − |z|2)n+1
dm(z)
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→ np

πn

∫

Bn

F (z)

(1 − |z|2)n+1
dm(z), t → ∞.

This gives the first equation. The second equation follows from plugging in the formula 

of C1(f, g) in Remark 6.5. This completes the proof of Proposition 8.2. �

Recall that C1(f, g) −C1(g, f) = −i
n {f, g}. Thus Proposition 8.2 implies the following.

Corollary 8.3. Suppose p ≥ n + 1 is an integer and f1, g1, . . . , fp, gp ∈ C 2(Bn). Then for 

any t ≥ −1, [T
(t)
f1

, T
(t)
g1 ][T

(t)
f2

, T
(t)
g2 ] . . . [T

(t)
fp

, T
(t)
gp ] is in the trace class, and

lim
t→∞

tp−nTr

(
[T

(t)
f1

, T (t)
g1

][T
(t)
f2

, T (t)
g2

] . . . [T
(t)
fp

, T (t)
gp

]

)
=

(−i)p

πn

∫

Bn

p∏

j=1

{fj , gj}(z)
dm(z)

(1 − |z|2)n+1
.

If p = n then the classical trace of such a product of commutators is infinite but the 

product does have a finite Dixmier trace. In fact, Engliš, Guo and Zhang showed in [22]

that the following holds.

Trω[T
(t)
f1

, T (t)
g1

] . . . [T
(t)
fn

, T (t)
gn

] =
1

n!

∫

Sn

n∏

j=1

{fj , gj}(z)
dσ(z)

σ2n−1
.

Also recall the identity

σt(f, g) = −H
(t)∗

f̄
H(t)

g .

Thus taking fi = ḡ, gi = g, i = 1, . . . , p in Proposition 8.2 gives the following asymptotic 

formula for Schatten-norm of Hankel operators.

Corollary 8.4. Suppose p ≥ n + 1 is an integer, and g ∈ C 2(Bn). Then

lim
t→∞

tp−n‖H(t)
g ‖2p

S2p =
1

πn

∫

Bn

[
|∂̄g(z)|2 − |R̄g(z)|2

]p

(1 − |z|2)p−n−1dm(z).

Remark 8.5. There are profound study of Schatten-class membership and Schatten norm 

formulas for Hankel operators. See [3,28,29,41,51] for Schatten-class membership criteria 

of Hankel operators. For q = 2, 4, 6, Janson, Upmeier and Wallstén [34] gave the following 

identity on the Hardy space of the unit disk.

‖Hφ‖q
Sq = cq

∫

T

∫

T

|ψ(ζ) − ψ(τ)|q
|ζ − τ |2 dσ(ζ)dσ(τ),

where cq are constants, and ψ = (I −P )φ. In fact, it was shown that such identities hold 

only for q = 2, 4, 6. Recently, Xia [50] extended this formula to the open unit ball Bn.



X. Tang et al. / Advances in Mathematics 433 (2023) 109324 103

Proposition 8.2 gives an explicit asymptotic formula for each of the two terms in the 

Connes-Chern character introduced in Equation (1.2). This observation leads us to the 

following asymptotic formula for the Connes-Chern character at p > n.

Theorem 8.6. Suppose p ≥ n + 1 is an integer and f1, f2, . . . , f2p ∈ C 2(Bn). Set f2p+1 :=

f1. Then

lim
t→∞

tp−nτt(f1, f2, . . . , f2p)

=
np

πn

∫

Bn

( p∏

j=1

C1(f2j−1, f2j)(z) −
p∏

j=1

C1(f2j , f2j+1)(z)

)
dm(z)

(1 − |z|2)n+1
.
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