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1. Introduction

Toeplitz extensions are fundamental objects in noncommutative geometry. They are
natural examples of finite summable Fredholm modules and define elements in the cor-
responding K-homology group. Trace on Toeplitz operators has been well studied with
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many interesting results, cf. [53]. Since the 70s, trace has been employed to extract ge-
ometric information of Toeplitz extension. In particular, Connes [14, Sec. 2., Theorem
5] used trace on products of semi-commutators to define the Connes-Chern character of
finite summable extensions.

For the unit disk D in C, let L2(D) be the Bergman space of L? analytic functions
on D. Given f € €=(D), let T;O) be the Toeplitz operator on LZ(D) associated to
the symbol f. The commutator [T}O),Tg(o)] = T}O)T;O) — TéO)TJEO) for f,g € €>(D) is
a trace class operator. Helton and Howe [30] discovered an interesting formula for the
commutator

1
Te ([T, 7)) = /d Adg.
D
The above result is deeply connected to the Pincus function for a pair of noncommuting
selfadjoint operators, cf. [10,11,42].

Let B,, be the open unit ball of C™ and S,, = 0B, the unit sphere. For B,,, the
commutator [Tf(o), Téo)] for two Toeplitz operators with smooth S}Elbols f,g on L2(B,)
is a Schatten-p class operator for p > n. Suppose fi, ..., fon, € €°°(B,,). Then the product
of the commutators

[T(O)

O © )
oLl Ty o T,

fon—1"" fan
may not be a trace class operator. Helton and Howe [31,33] made a breakthrough by
considering the antisymmetric sum of T}?), vy T ;SZ defined by

(0) (0)y._ (0) (0 (0)
[Tfl L] Tfm] T Z Sgn(T)Tfﬂ'(l)Tf‘r(Z) "'Tfr<2n)’
TES2n
where S, is the permutations group of 2n elements and sgn is the sign of the permutation
7. The following is a remarkable generalization of the Helton-Howe trace formula for the

commutator of two Toeplitz operators on L2(D).

Theorem 1.1 (Helton-Howe). On the Bergman space L2(B,) (and the Hardy space
H2(S,)), the antisymmetric sum [T}?), ...,TJEST)L] is a trace class operator, and

Tr ([TJE?)7 ,T}Sj]) = ﬁ /df1 Adfa A Adfon. (1.1)

B,

We observe that by Stoke’s theorem, the above integral only depends on the value of
fi, .., fo, on the unit sphere S,, = 9B,,, i.e.

n! n!
m/df1/\df2/\~-~/\df2n=ms/fldfz/\.../\dfzn-

B,
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The above idea of Schatten-p commutators was revolutionized by Connes [14] into a
fundamental concept in noncommutative geometry as p-summable Fredholm modules.
And the Helton-Howe trace formula in Theorem 1.1 inspired Connes to his ingenious dis-
covery of cyclic cohomology and the Chern character for p-summable Fredholm modules.
The building block of the Connes-Chern character is the semi-commutator

ou(f.g) = TOTO 710,

Modulo constants, the Connes-Chern character for the Toeplitz extension is defined to
be

T (f1se s fap) = Tr (00 (f1, f2) .00 (fap—1, fop)) — Tx (ou(fo, f3) .00 (fop, f1)), (1.2)

for p > n. And the Helton-Howe trace, Equation (1.1), is the top degree component
of the above Connes-Chern character. Through out this paper, for the formula of 7,
we have used {f1,---, fop} instead of {fo, -, fop—1}, a different one from the classical
convention, cf. [14], to make its appearance compatible with the Helton-Howe trace
formula.

Connes observed that the above cocycle in general is not local, i.e. the value of
Ti(f1,-- -, f2p) can not be expressed by the germ of fi ® - -+ ® fa, on the diagonal in

B, x---xB,.
—_———
2p
Connes [15,16] improved the Chern character, Equation (1.2), by employing the Dixmier
trace on the operator ideal L1'*°. In a series of works, Engli§ and his coauthors, e.g.
[22,23,25,26], studied a generalization of the Helton-Howe trace formula by considering
the Dixmier trace on the product
(0) (0) (0) (0)
[Tfl ’Tf2 } o [TfQ'nfl’TfZ'n].

They expressed the Dixmier trace of the above product as an integral of the product of
Poisson brackets between fop,_1 and for,, k=1,---  n.

In this article, we take a different approach to study the Connes-Chern character (1.2)
and the Helton-Howe trace, Theorem 1.1. Our main idea is to put the Bergman space
and Hardy space into the family of weighted Bergman spaces L2 (B, A¢) := L2 ;(By,) for
the measure

(n—1)!

dhi(z) = ™ B(n,t+ 1)

(1= [21) dm(=),

where B(n,t+ 1) is the Beta function. Let T}t) be the associated Toeplitz operator on
L2 ;(By) with symbol f. We study the large ¢ behavior of the Connes-Chern character
and the Helton-Howe trace.
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Our first result is about the Helton-Howe trace for T() .. T(t)’ for functions

fis--+, fon € €3(B,,), which generalizes Theorem 1.1 to all welghted Bergman spaces.
Theorem 1.2. (Theorem 8.1) Suppose fi, fa, ..., fon € €*(B,) and t > —1.

1. [Tf(f),Tg), e ,Tg)] is in the trace class S*.
2.

T[Ty, T, T ] = /dfl Adfa A ... Adfan, (1.3)

Bn,

n!
(2m)™
which is independent of t.

Thanks to the use of pseudodifferential calculus and its generalization in the proof,
Helton-Howe’s original theorem needs to assume that the pseudodifferential operators
have smooth symbols. For smooth symbols, Theorem 8.1 might be known to some experts
(cf. [22,32]). In this paper, we develop a new approach to study the trace formula using
harmonic analysis. As a result, we obtain an improvement of the Helton-Howe trace
formula for Toeplitz operators with €2 symbols.

Our second result is about the Connes-Chern character 7 (f1, ..., fop) for fi,..., fop €
¢2(B,,). Different from the Helton-Howe trace, 7; vanishes as ¢ goes to co. In the following
theorem, we identify the leading term of 7 as t — oo.

Theorem 1.3. (Theorem 8.6) Suppose p > n+1 is an integer and fi, fa, ..., fop € €*(Bn).
Set fops1 := f1. Then

lim P71, (f1, fo,- -, fop)

t—o0

P

:_/(H01 f2i-1, f25) (2 H (fo5s f2j41)(2 ))%7

where C1(f, g) is defined as follows,
CLf0)(0) =~ (1~ )| S0 (2)ia(z) — R Ralo)|

%0z, Z (1.4)

Our approach to the above two main theorems is heavily influenced by the idea of
quantization, [6,8,9,12,17-20]. Geometrically the defining function » = 1 — |z|> on B,
defines the Bergman metric in the following way.



X. Tang et al. / Advances in Mathematics 433 (2023) 109324 5

=1 + O A O
w =1 1/)2
(1= 12?) X202, 025 A 0z + (32, 25025) A (X 250 0750)
(1—12?)2

defines a symplectic form on B,,, cf. [37, Prop. 2.6]. The Toeplitz operator T}t) gives a
quantization of the symplectic form iw, e.g. [20, Theorem 3], satisfying

k
HTJEt)Tét) - Ztﬂng)(f,g)H =0t ), t = o, (1.5)
=0

and the C; are bilinear operators discussed later in Section 6, and C, is defined in
Equation (1.4). The asymptotic expansion formula (1.5) provides the key tool to study
the semi-commutator

o(f.9) =TT ~Tj),

and therefore also the commutator [T}t), Tét)], since

7). 7 = VT~ TOT) = 04(f.9) — 09, f).

The asymptotic expansion formula (1.5) in the literature, e.g. [20], was well studied for
estimates on the operator norm. Estimates about the Schatten-p norm in the expansion
(1.5) are needed in our applications to the tracial property in Theorem 1.2 and 1.3. We
prove these estimates in Theorem 6.3. As we need to study Toeplitz operators with €
symbols in Theorem 1.2 and 1.3 and an estimate on Schatten-p norm in Theorem 6.3,
we need a new method to develop the asymptotic estimate in Theorem 6.3 different
from the classical method via pseudodifferential/Toeplitz operator calculus [7,8,18,20,
22,23,25,26,35], which requires to work with smooth symbols. Our main tool comes from
integration formulas in Lemma 2.10 and Lemma 2.15 developed in Section 4 of [47].
Theorem 1.3 follows from the Schatten-p estimate of the semi-commutator o¢(f, g). As
a byproduct, our method also provides an explicit algorithm to compute the bilinear
differential operator C; in the asymptotic expansion (1.5), which is in general hard to
compute.

A crucial fact used in our estimate is the different behavior of the quantization in
complex normal and complex tangential directions (see Remark 6.4 and Corollaries 6.7
and 6.8). Roughly speaking, in the term I°1-+1°%1-ik+1 (2 — w) that appears in the
quantization formula (6.6) (especially in (6.7)), the Schatten-p membership improves by
% for each e;,e; in the complex tangential direction, whereas improves by 1 for each
e;,e; in the complex normal direction. Essentially, this allows us to reduce our estimates
to the complex tangential direction (see Lemma 2.2 (6) and the proof of Lemma 6.1).
In contrast, in pseudodifferential calculous, Helton and Howe [31] considered symbol
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functions that are homogeneous of order 0 in the £ variable far away from the zero section
of the cotangent bundle, which simplifies the corresponding estimates. The difference
between tangential and radial estimates suggests a deep link of our study with the
Heisenberg calculus for contact manifolds, e.g. [5,32,43,48].
Instead of a direct computation as in [31], we prove Theorem 1.2 in two steps. Take
the t > —1 case for example. Suppose fi, fa, ..., fan € €*(B,). We prove the following.
1.

(t) p(t) (t)g _ (t+1) An(t+1) (t+1)
T, 70, T = T T ), (1.6)
2. - (s) (s) n!
slggoTr[Tfl 7""Tf2n] - (27”')7; dfy Ao Adfan. (1-7)

Again, the proof of Equation (1.6) takes two steps.

(a)

{0, 740, T — [T ) ) =0, (1)
(b) 1 1 | |
Te[Tp T = gt ), (1.9)

Here the operator T;f“’t) is the restriction of T}fﬂ) on L2 ,(B,). It serves as a bridge
between the weighted spaces L7 ;(B,) and L? ;. (By). The proof of (1.8) is quite com-
plicated and lengthy. We give it in Section 5. Let us briefly sketch the proof. First,
we apply the integration formula in Lemma 2.14 and get the decomposition formula
T}f) = T}f“’t) + B; in Lemmas 5.5 and 5.7. We observe that Tf(iH_l’t) is the “principal
part” of T;:) for f; € €%(B,). We point out that the “minor part” B; does not live in
Schatten class SP for p small enough. This fact prevents us from proving (1.8) only using
operator-theoretic tools. Then we develop Hypotheses A which handles the operator-
theoretic part of the proof of (1.8), and Hypotheses B, where the rest is handled. The
proof of (1.9) is an application of Lemma 2.4. Note that [T;f“’t), e ,Tg:l’t)] is the
restriction of [T;fﬂ),TgH), . ,Tg:l)] on L2 ,(B,). This is done in Section 8, in the
proof of Theorem 8.1, after we obtain the trace class membership of [T;-f), Tg), e ,Tgl]
and prove (1.7) in Corollary 7.7.

Equation (1.7) is proved in Section 7. The proof relies heavily on the Toeplitz
quantization formula and their asymptotic Schatten-norm estimates developed in Sec-
tion 6. To see the cancellations more clearly (and potentially give new geometric in-
variants) we introduce first and second partial antisymmetrizations in Section 7. For
sy fns 915 ooy gn € L (By,), define

[F1, 915 fry gn) B = Z sen(7)ot(fr(1), 91) - - - Tt fr(n)> Gn ),

TESH
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and
[f1,91,---, f'ergn]iCd = Z sgn (7)o (f1, 97—(1)) - Gt(fmgr(n))'
TES,
After a full antisymmetrization they become a constant multiple of [T}f), Tg), e ,Tgl]

We observe that in general the product

oi(f1, f2) - 0t(fon—1, fon)

is not a trace class operator (cf. Remark 7.6). Thus the fact that each [T}f), T};), e ,Tgl],
or the partial antisymmetric sums belong to the trace class is already nontrivial. Besides
the quantization this fact also relies on a further antisymmetrization over the complex
tangential direction (see Equation (7.9)). This leads to the following.

Theorem 1.4. (Theorem 7.3) Suppose t > —1 and fi,g1,-- -, fn,gn € €*(B,,). Then the
partial antisymmetrizations [f1, g1, - - -, fu, Gl and [f1, 91, - -, fn, gu]id are in the trace
class. Moreover,

tllzgo Tr[flagh .- '7fnagn}£8t :tlig.loTr[flagla ceey fnagn]i(:d

1 - _
B,

As a corollary of Theorem 1.4, we obtain Equation (1.7) by further antisymmetrization
of the first (second) antisymmetric sums. Altogether, Equations (1.6) and (1.7) imply
Theorem 1.2.

The proofs of Theorem 1.3 and 1.4 both involve quantization with asymptotic
Schatten-norm estimates. In Theorem 1.3, we need to assume that p is greater than
or equal to n + 1 in order for the Connes-Chern character to be well defined. This as-
sumption simplifies the estimates in its proof. In Theorem 1.4, there are only 2n functions
in [f1,91,- - frr 90 and [f1, 91, -, fr, 9n)i4. The finiteness of these traces requires
a careful proof. To prove Theorem 1.4, we need to consider antisymmetrization over all
the complex tangential directions (i.e. Equation (7.9)).

Our proof of the generalized Helton-Howe trace formula through quantization is closely
related to the method developed in [9] for a solution to the Atiyah-Weinstein conjecture
for quantized contact transform. Such a similarity suggests that our developments can
be generalized to strongly pseudoconvex domains, egg domains, Fock spaces, submodules
and their quotient modules of L2 ;(B,), e.g. [27], and the Dury-Arveson spaces. More
generally, we hope that our study will shed a light on constructing new cyclic cocy-
cles beyond the Helton-Howe traces, which could have applications in noncommutative
geometry.
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The paper is organized as follows. In Section 2, we recall the definitions of weighted
Bergman spaces and Hardy spaces together with their basic properties and properties of
Schatten p-class operators. Some tools developed in [47] are also reviewed. In Section 3,
we develop criteria for integral operators to be bounded between different weighted spaces
Lﬁﬁt(Bn). We develop some useful estimate for integral operators to belong to Schatten-p
class in Section 4. In Section 5, we prove Equation (1.8). We develop the asymptotic
expansion formula and its Schatten norm estimates in Section 6. We introduce the first
and second antisymmetrization and prove Theorem 7.3 and Equation (1.7) in Section 7.
The two main theorems, Theorems 1.2 and 1.3, are proved in Section 8.
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Wang for inspiring discussions. We would also like to thank the referee who made many
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2. Preliminaries

In this section, we recall some basic definitions and properties about weighted
Bergman spaces and Schatten-p class operators.

2.1. Spaces on B,

Recall that B,, is the open unit ball of C™ and S,, = 0B,, is the unit sphere. Let m

be the Lebesgue measure and o be the surface measure on S,,. Denote 02,1 = 0(S,,) =

27(_",
(n—1)!"

Hardy Space: The Hardy space H?(S,,) is the Hilbert space of holomorphic functions on
B,, with the norm

a(2)

d
O2n—1

1326, = sup / Fr2)?
O<7"<1S

do
) oon—1 )
The Hardy space is a reproducing kernel Hilbert space on B,, and the reproducing kernel

Equivalently, H2(S,,) is the closure of analytic polynomials in L?(S,,) := L%(S

is
1

KV (2) = R Yw € B,,.

For any f € L°(S,,), the Toeplitz operator on H?(S,,) with symbol f is defined to be
the compression
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T4 = POY My ppas, ),

where M} is the pointwise multiplication on L2(S,), and P1 s the orthogonal pro-

jection from L2(S,,) onto H?(S,,). Using the reproducing kernel, we can write T;fl) as

an integral operator. For h € H%(S,,),

T4 Vn(z) = / Fw)h(w)KS ™ (2) d“(z), Vz €B,.
Sn

O2n—1

Our discussion will also involve Hankel operators. The Hankel operator with symbol f
is

Hp = (I — PV )M, P
from H2(S,) to L2(S,).

Weighted Bergman Spaces: For ¢t > —1, define the probability measure on B,,:

(n—1)!

dre(2) = 7 B(n,t+ 1)

(1= [2[*) dm(2).
Here B(n,t + 1) is the Beta function. The weighted Bergman space Lzyt(]Bn) is the

subspace of L?(B,,, \) consisting of holomorphic functions on B,,. The reproducing kernel
of L2 ,(B,) is

: 1
K6 = Ty

Yw € B,,.

For any f € L*°(B,,), the Toeplitz operator T ;t) is the compression
T = POM 1 @),

where P() is the orthogonal projection from L?(B,, \;) onto L2 ,(B,), and M}t) is the
multiplication operator on L?(B,, \;). The Hankel operator with symbol f is

HY = (1-POYMP PO,

Using the reproducing kernels, we can write T}t),H](f) as integral operators. For h €
L2 ;(By), we have the following expressions,

T;t)h(z):/f(w)h(w)Kg)(z)d)\t(w), Vz € B,
B,
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HOh(z) = / (£(2) = F)) h(w) KD (2)dN(w), Yz € By,
B,

For various reasons including the forms of the reproducing kernels, the Hardy space is
often regarded as the t = —1 Bergman space. The two spaces can have distinct properties
in many ways. But most of the results we prove in this paper will hold for both ¢t = —1
and t > —1. However in spite of the similarities in these results, the two cases generally
require separate (although similar) formulations and proofs. We will generally present
them one after the other and note that when we do it.

An important tool on B,, is the Mdbius transform.

Definition 2.1. For z € B,,, z # 0, the Md&bius transform ¢, is the biholomorphic mapping
on B,, defined as follows.

2= Po(w) — (1= [2[*)*Q. (w)
1—(w,z) ’

. (w) = Yw € B,,.

Here P, and Q. denote the orthogonal projection from C™ onto Cz and 2, respectively.
Define

vo(w) = —w, Yw€B,.

It is well-known that ¢, is an automorphism of B,, satisfying ¢, o ¢, = Id. Also, the
two variable function p(z,w) := |, (w)| = |pw(2)| defines a metric on B,,. Moreover,
B(z,w) := tanh™! p(z,w) coincides with the Bergman metric on B,,.

We list some lemmas that serve as basic tools on B,,. Most of the following can be
found in [44,52]. Some are proved in our paper [47].

For non-negative values A, B, by A < B we mean that there is a constant C' such that
A < CB. Sometimes, to emphasize that the constant C' depends on some parameter a,
we write A <, B. The notations 2, 2, ~, ~, are defined similarly.

~) ~as

Lemma 2.2. ([/7, Lemma 2.2]) Suppose z,w,( € B,,.

(1) 1 _ (0=(0)-(Cw)
T=(pc@wc@) — (-[KP)(I—(zu) -

_ 2 _ 2
(2) 1- |Lpz(w)‘2 = a ‘|12l<)z(’2,>|‘120‘ )
(3) For any R > 0 we have

L[z
~prl

1= (=0
|1 - <w’<>|

Q

rl

whenever B(z,w) < R and ¢ € B,,.

(4) The real Jacobian of ¢, is % on B, and % on'S,,.
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(5) For z € B,,

o) = AP (0) + (- [2)2Q(w) _ Asw
2= pw) = 1—{(w,z2) Tl —(w,z)’

where A, = [a¥] is an n X n matriz depending on z, and w is viewed as a column
vector.
(6) For any z € B, z#0,

|2 = Po(w)] < |z ()|l = (z,w)],  [Q:(w)] S lez(w)ll1 = (z,w)[V/2, (2.1)
and
|2 = w| S |z (w)[]1 = (z,w)|'/2. (2.2)
If n = 1, then Q. is identically zero, and the definition of p.(w) directly gives
|z = w| = [p(w)[[1 — zw].
(7) 1— 2> < 2|1 — (z,w)| for all z,w € B,,.

Lemma 2.3. ([}7, Lemma 2.4])

(1) Supposet > —1, c € R. Then

— [wl?)’

|1 — {z,w) \”+1+t+cdm(w) Ste | In 1—\1,3\2’ c=0, (2.3)
1a c < 0,
and
) (I=1]z*)7¢ ¢>0
[Tt e k=0 24
Sn 17 c < 0,

for any z € B,,.
(2) Supposet > —1, a,b,c >0, a>¢,b>c, anda+b<n+1+1t+c. Then for any
Z7£€Bn7

(1= o) i
/|1_ Z w ‘ |1_<w €>| dm(w) Sa,b,c,t ‘1_ <Z7§>|C (2.5)

(3) Suppose ¢ : (0,1) — [0,00) is measurable. Suppose a > —n, b € R, and

P(s) <51 —s)°, s€(0,1).
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Then for anyt > —1 — b, ¢ > —b there exists C > 0 such that for any z € B,

Joto-py = anw sca- B 2o
B,

Lemma 2.4. Suppose s > t > —1 and T is a bounded operator on LZ’S([B,L). Sup-
pose L7 (By) is invariant under T. Denote T its restriction to L2 ,(Bn). By the
closed graph theorem, T is bounded on L2 ,(B,). Assume that T € S'(L2 ,(B,)) and
T € SY(L2,(B,)). Then

TT = TrT.

Proof. The set {z*},eng forms an orthogonal basis of both L2 ((B,,) and L? ;(B,,). For
a € Nj, we write

Compute the traces of T' and T as follows.

Tz, z¢
T — Z < >L§,‘S(]Bn)

2
oerg 12702z @)

_ Z a0z, 2%) 12 (B.)
aeNZ ”Za”ZLZ,s(Bn)

= E Ao,

aeNy

Tza,za 2 .
-y < J8B) _

2
aeNE Hza||Lr2m(Bn)

This completes the proof of Lemma 2.4. O
2.2. Schatten class operators

For p > 0, a bounded operator T on a Hilbert space H is said to be in the Schatten-p
class S? if | T'|P belongs to the trace class. The Schatten-p class operators SP are analogues
of [P spaces in the operator-theoretic setting. Conventionally, S denotes the space of
compact operators. The following two lemmas will be used constantly.

Lemma 2.5. ([}6, Theorem 2.8]) Suppose A, B are bounded operators on a Hilbert space,
and 1 <p,q,r < o0, %—I—%: % If A€ SP and B € 89, then
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AB€S",  and |[|AB|lsr <||Allsr|Bllsa-

Lemma 2.6. ([46, Corollary 3.8]) Suppose A, B are bounded operators on a Hilbert space.
If both AB and BA are in the trace class then TrAB = TrBA or equivalently,

Tr[A, B] = 0.

Remark 2.7. Suppose n > 1 and X, Xo,...,X,, are bounded operators on a Hilbert
space such that

X, €SP, Vp>n,

and there exists j € {1,...,n} such that X is in SP for some p < n. Then we can choose
Dis---3Pj—1,Pj+1s---,Pn >nand 1 < p; < n such that

1 1 1
X, eSPii=1,...,n, and —+—+4...+—=1.
P11 P2 Pn

By an inductive application of Lemma 2.5 we have
X1 X,...X, €St
Moreover, by Lemma 2.6, for any k= 1,...,n,
TrXiXo. .. X0 = Te X Xpar .- Xn X1 X1
This will be used repeatedly in this paper.
2.8. Integration by parts

Some integral formulas developed in [47] will be used in our proofs. These formulas
come from a generalized version of the Bochner-Martinelli formula in several complex
variables and are essential to the proof of Equation (1.8) in Section 5 and the Toeplitz
quantization formulas in Lemma 6.1. We give a brief review here. Some further remarks
about these formulas are given in Remarks 2.11, 2.12 and 2.13. Let us start with intro-
ducing some auxiliary functions and operations.

Recall that by Lemma 2.2 (5), for z € B,

(1= |2 P (w) + (1 [2)/2Qu (w) = (1 (w, 2))(z — s (w)) = Aow,

where A, is an n x n matrix depending on z, and w is treated as a column vector. In
particular, if z = (21,0,...,0) and w = (wy,...,w,) then

Ao = (L= 21 Phun, (L= 1) 2, (1 ) 2, )
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Definition 2.8. For multi-indices o, 8 € N} and ¢ € C", denote
r9(Q) = ¢
Suppose z € B,,, define

do(¢)

O02n—1

dop(2) = / 198 (A.¢)

Sn

In particular, dpo = 1, and

(n—1)la!

da,ﬁ(z) = 5&,[5(1 - ‘Z|2)a1+\o¢| (Tl 1+ |Oé|)'7

Definition 2.9. For ¢t € R, denote

Pe(s) = (1—s)".

it z=(#,0,...,0).

(2.7)

Suppose ¢ : (0,1) — [0,00) is a measurable function. For a positive integer m and any

t > —1, define the operations on ¢

1
f,(,f)qﬁ(s) = /rm_qu(T)(l —7r)tdr € [0, o0l

and

fsl rm=Llo(r)(1 —r)tdr

sm(1 — s)ttl

1

R ()} -
Sm¢t+1 (8) Fm ¢(S)

G\p(s) =

For any t > —1, inductively define the functions

t) _ (t) () \25()
(I)gL,O = 17 (I)n,k:+1 = M¢1 (gnik:) (bn,k:'

Equivalently,

% = Mo, (G4 1) - Mo, (61) @

€ [0, 00].

(2.8)

(2.10)

Lemma 2.10. (/}7, Lemma 4.2]) Suppose t > —1, o, 8 € NI'. Suppose ¢ : (0,1) — [0, c0)

is measurable and v € €1 (B,,). Then the following hold.

1. If |a| > |B| and all integrals converge absolutely, then

/ (1= ())T™ (2 — w)o(w) KD (2)dA ()
B,

(2.11)
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BEEHy nﬂmqs( o)
S0 S, Gl @iz (w) )T (2 — w) S (w) K4 (2)dA (w),
v(2) # 0, Farl 5 6(0) <

S S, G (i () )T (2 — w) Sy (w) KL (2)dM (w),
0(2) = 0, F\) 15, 6(0) < o0

where

(1= Jw]?)du, [(1 = (z,w)) "lo(w)]
(1= (w,2) (L — (2, w))P

2. If || < |8] and all integrals converge absolutely, then

Si(w,z) =

/ 610 () )T (2 — w)o(2) KD (2)di(2) (2.12)

prele). im Jo(w) i
+ 300 g, Gz (w) )T (2 — w) S;(2) KL (2)dN (2),
v(w) # 0, F ,6(0) < o

S Jg, Gl (w) P I8 (2 — w) Si(2) KA (2)d (2),
v(w) =0, F1)16(0) <

where

S (00 u)) (o)
Sila ) = T e A= el

Remark 2.11. For readers who are familiar with the computation of currents, when z = 0,
Formula (2.11) can be abstracted into an equation of the following form

& [17 (w)W(wf?) A Sl A (081w]?)" ™| = cdo + 17 (w)(wf?) (90]w]?)"

And the operations F®),G® come from solving ¥ and ¢ from the equation above. Here
do is the point mass at the origin. From this point of view we see Formula (2.11) can be
used the same way as Cauchy’s formula or the Bochner-Martinelli formula — to solve
5—equation of some sort.

Remark 2.12. We observe that on the right hand side of Formula (2.11), the function v
is differentiated, while the weight is improved by 1 (the term “(1 — |w|?)” in Sj(w, 2)
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adds to the weight). For this reason we consider it as integration by parts. Also observe
the resemblance of the integrals on both sides of (2.11) and (2.12). This resemblance
allows us to iterate them. In fact, this is exactly how we get the quantization formulas
in Lemma 6.1 — by iterating the formulas above.

Remark 2.13. There is one more benefit of the formulas. Technically, it is easier to
work with integral operators with higher weights to study their boundedness, Schatten-
class membership, etc.. Applying the integral formula on a Toeplitz operator increases
the weight by 1. This improvement offers more flexibility in analyzing these operators.
Moreover, since the weight goes up by 1, the integral formula builds a bridge between
Toeplitz operators on different weighted Bergman spaces. This idea plays a crucial role
in Section 5, where we give the proof of Equation (1.8).

A particular case is to take a« = 8 = 0, 2 = 0, ¢ = 1 in (2.11), which gives the
following. The estimates (2) and (3) are straightforward to verify.

Lemma 2.14. For any t > —1 the following hold.

(1) For any v € €' (B,),

t+1

/ v(z)dA(2) = v(0) + I |

B,

/ GO1(|2[2) Ro(2)desa (2). (2.13)
B,

(2) gff)l(s) ~ s~ ™ in a neighborhood of 0, and lim,_, - gﬁfh(g) = H—%

(3) |gr(f)1(8) - t%| < 1—s for s in a neighborhood of 1.

Lemma 2.15. ([}7, Lemma 4.6]) Suppose o, 3 € N, and v € €*(B,,). Then the following
hold.

1. If la| > |B|, then

/Ia’ﬁ(z - w)v(w)Kfv_l)(z)M (2.14)
g O2n—1
=da,p(2)v(2)

L& 218|=2m e e, 0;[(1—(z,w)Plo(w)]
R;B/Iwz(w)l 2/6|—2n fa.B+ (z—w)(1_<z,w>)w\(1_<w72>)K& D (z)dNo(w).

2. If o] < |B|, then

/IQ’B(Z - w)v(z)Kfu—U(z)d”—(Z) (2.15)
O02n—1
Sn
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=dg,a(w)v(w)
dlal-2n patend, oy OlA= ()G gy
+ = ;B/Itpz w)|” ectens( e LSRR CLATOF

Lemma 2.16. ([47, Lemma 4.3]) Suppose k is a non-negative integer and I' C N§ x N§
is a finite set of multi-indices with |a| = |B| = k for every (o, 8) € T. Suppose for some
e>—1—1t, {Fa,ﬁ}(a,ﬁ)er‘ C %Q(Bn X Bn) and

S (- w>Fa,ﬁ<z,w>\ < lou(w)PH1 — (2w P4, (2.16)
(a,B)€T

n

Z > I“’f”ef‘(zw)aija,w,w)\swz(w)%“u<z,w>|2k+6- (2.17)

Jj=1(a,p)er

Then

By —w 2, W
/ 8, (jps () ) e T = D Fb ) ey g

* [RPRmIE:
]BZ
B (0)
n+k nk:
= d dA 2.18
s [a-pp) 3 duale) sl N (215)
B, )
- [ @ e-)P)
B2

n

x ot apyer [T (2 = w) Dy jF 5 (2, w)
1 = (2, w)[2+D)

KW (2)dAe(2)dAe (w).

Here D; ; denotes the operation

Di,j = (1 — (z,w>)28zi8w

J*

Lemma 2.17. Suppose k is a nonnegative integer. Then there exist C > ¢ > 0 such that
for t large enough,

etk < FU) oW (0) < ot (2.19)

and

1
/ ) (5)s"TE (1 — 5) s < Ok, (2.20)
0
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Proof. The case when k = 0 is simply a consequence of [47, Equation (8.9)]. We assume
k> 0.
From the Sterling’s asymptotic formula (cf. [2, Theorem 1.4.1]) and the well-known

identity B(z,y) = F(( )_1;(7;)) it follows that for fixed x > —1,

—T

B(z,y) =z y

for large y. By [47, Lemma 8.4], we compute F, t) <I’(t) . (0) as follows,

FO el (0)

n—+k
fffflka (G 1) My, (69)1(0)
_ i Bn+k+ji+...+jit+1)

L 1-(T+0)2+40)2+5+72) - (k+a+.. . +g—1)(k+j1+...+ i)
B 3 B(n+k+ s, t+1)

(L+51)2+51) . (k—1+s5_1)(k+sp_1)(k + 5x)

0<s51<...<sp<o0

> > B(n+k+sp,t+1)
= Z Z (1+s1)2+s1)...(k—14sp_1)(k+ sk—1)(k+ si)

8, =0381,...,8,—1=0

_Z n+k+8k,t+1)
Nk + sk)

sp=0
e 14+ (k+sk)

k + s

<1n11z>(1—x)tdw

I )1 -2)'dz

S
o

=B(n,t)
St

when ¢ is large. The other inequality ffla)rk@S’)k(O) > t~"7F is also obvious from the
equation above. This proves (2.19).
By the expansion

H T
Mw +

4

(1—83* Z::O
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we directly compute the following integral,

Similarly as the proof of (2.19), assuming ¢ is large enough, we estimate the above term
as follows,

L(3t + 50)B(n+k + sp, t +1)
so+ 1)IT () (k — 1)!(k + sk)

0<s59<s <00 (

[o elENNe o]

I3t +a)B(n+k+a+b,t+1)
ZZ (a+1)IT(E) (k- 1)k +a+b)

a=0 b=0
1
> (3t +a) = ghtt
< 4 / 75n+k+a—2(1 —S)tds
;(a+1)!r(%)(1f—1)'0 §k+a+b
1
> (3t +a) =, bt
S 4( / n+k+a 2(1 S)tdS
; (a+1)TEH (k- 1) J bz:%b+1
= I(#4a
:Z 43t a / n+k+a 2(1 ) In ds
= (a+ 1)) (k—1)! ) —
> | NE )
<Y (43t ) B(n+k+a,t)

This completes the proof of Lemma 2.17. 0O
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3. Operators between weighted spaces

For our proofs in this paper it is important to obtain criteria for integral operators
to be bounded between different weighted spaces. In this section, we introduce some
useful criteria to be used in our study. Most of the lemmas established in this section
follow from standard techniques from, for example, [44,52]. One thing less standard is
that our integral kernels may involve functions of |, (w)|?. These functions come from
applying the integration by parts formulas in Subsection 2.3 on integral formulas of

Toeplitz operators.

Lemma 3.1. Supposet > —1,s > -1, a>—-n,b>0,andc<t+1+b— 531. Suppose
F(z,w) is measurable on B, x B,,, and

|02 (w)[2* (1 — |z (w)[*)°
|1 _ <Z’w>|n+1+t—c ’

‘F(va)‘ < Vz,w € B,.

Then the integral operator

Th(z) = / h(w) F (2, w)d A (w)
B,

is bounded from L*(Asi2c) to L2(\s).
Proof. By assumption, we can take z € R so that
max{—1—¢t—b,—c—s—1-b} <z <min{b—c,t +b—2c— s}.
Then we have the following inequalities,
t+z>-1-b, —x—c>-b, xz+c+s>-1—-b, t—x—2c—s>—b.

Take p(w) = (1—|w|?)® and q(z) = (1 —|2]|?)*T¢. The integral kernel of T as an operator
from L2(Asiac) to L2(Ns) is

B(n,s+2c+1)

B(n,t+1) F(z,w)(1 — |wf*) 772

Then by the inequalities above and Lemma 2.3 (3), we have the following estimates of
integrals,

/ F(zw)|(1 = [w]?) 2 p(t) AN 20 (w)
B,
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1— |w|2)t+a¢

2a (1 _ w 2\b ( m(w
sB/ - (W) (1 = o)) T ()

S =217 = q(2),

and
/ F(zw)|(1— Jw?)'~*2g(z)dAs(2)
B,

(1 _ |w|2)t—s—2c(1 _ |Z|2)z+c+s

S [ le-twP(1 = ot P e T —am(:)
B

S = [w?)® = p(w).

The conclusion follows from Schur’s test (cf. [53, Theorem 3.6]). This completes the
proof of Lemma 3.1. O

Lemma 3.2. Suppose t > —1 and 0 < d < ¢ < t + 1. Suppose F(z,w) is measurable on
B, x B,,, and

1
|F(z,w)] < T (2 w)[rriie Vz,w € B,,.

For any 0 < r < 1, define the integral operator

/h F(rz,w)dM(w), z€S,.

Then each T, defines a bounded operator from L*(A_1124) to L*(S,). Moreover,

Osup ||T ||L2(/\ 1+24)—L2(Sy) < 0.
<r<

Proof. Take p(w) = (1 — |w|?)~¢, q(2) = 1. The integral kernel of T} is

B(n,2d)

T (z,w) == Bint+1)

F(rz,w)(l — |w|2)t+1_2d.

Ast—d> —1and d < ¢, by Lemma 2.3, we have the following estimates of integrals,

)y
/ 17, (2 ) (a2} g / T ant) £ 1= )

and
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do(z) _ [ (1 fuf?)+1-
[ Gl 2 < [ o)
Sn S
< (= Py S (1~ )~ = plu).

The estimates are independent of r. Thus the conclusion follows from Schur’s test. This
completes the proof of Lemma 3.2. O

Lemma 3.3. Suppose t > —1 and 0 < d < ¢ < t + 1. Suppose F(z,w) is piecewise
continuous on B, x B,,, and

[F(z,w)| <

1= (2w e’ Vz,w € B,.

Assume further that F(z,w) is holomorphic in z for each fized w. Define the operator

Th(z) = /h(w)F(z,w)d/\t(w), z €B,.
B,

Then T defines a bounded operator from L*(A_1124) to H%(S,).

Proof. Since F(z,w) is holomorphic in z, for every h, the function T'h is holomorphic in
B,,. Denote

M = sup ||TT||L2()\—1+2d)_>L2(Sn) < 0.
0<r<1

Then for any h € L?(\_1424), we verify the following estimate

sup /ITh(v"Z)Pda(Z): sup || TohZas,) < M2(AlF200 00
O<7"<1S o<r<1

Therefore T' is bounded. This completes the proof of Lemma 3.3. O

The following fact about embedding operators between different weighted spaces is
well-known to experts. In our proof, estimates of the operator norms and Schatten norms
of these embeddings are needed. We give the calculation for completeness.

Lemma 3.4. Suppose t > —1 and ¢ > 0. Then for any p > 27" the following hold.

(1) The embedding map Ey . from L7 (By,) to L2 ,,.(By) (identifying La,—1(By) with
H?2(S,)) is in the Schatten p class SP.
(2) There exists C > 0, independent of t, such that

|Eecll =1, [Brellpy < Ot +n+1)7.
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Proof. For any multi-index o € N, we have the norm

292 I'n+t+1)a!
z = .
Lie®n) ™ D(n+ |+t + 1)

Thus E, . is unitarily equivalent to a diagonal operator with entry

2%l 2 ., .B.) \/I‘(n+t+c+1)F(n+|a+t+l) \/B(n+|a|+t+1,c)

1222, B, Tntla|+t+tc+r)ln+t+1) \  Bn+t+1,o

at o € N§. It follows immediately that ||E; .|| = 1. Thus it suffices to show

Z( (n—|—|a—|—t—|—lc>p > (d+n—1) '<B(n—|—d—|—t—|—l,c)>g

Bn+t+1,c¢) - dl(n—1)! Bn+t+1,c¢)

aeNF d=0

St+n+1)"

Since B(n+ d+t+ 1,c¢) is decreasing in d, and d+”71 ~ d" ! for d > 1, we have the
following inequalities,

d+n—1 Bn+d+t+1,c)\2
B(n+t+1,c¢)

e p/2
<1+/xn1(B(n+:c+t+1,c)) de

Bn+t+1,c)
0

[ee] pc
2
<14 / gn-t(_nAtHL N
n+r+t+1
0

If we take the change of variable y = then the integral above has the following

AT
bounds,

[e%s) pec
1 2
<1+ n+t+1"/ ) dy < (n+t+ 1"
ST4( ) [y Tty y S ( )
0

when n < 25 ie., p> 2” . This completes the proof of Lemma 3.4. 0O
4. Schatten class criteria
In this section, we obtain criteria for integral operators to belong to Schatten class.

As explained in the beginning of Section 3, the integral kernels may involve functions of
|- (w)]?. Thus we need to modify some of the well-known results to fit our case.
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A standard way of proving Schatten class membership of integral operators is to use
the following lemma. See [53, Lemma 8.26] for a proof when n = 1, using interpolation.
The exact same proof works for general n.

Lemma 4.1. Suppose t > —1 and G(z,w) is measurable on B, x B,. Suppose p > 2 and
/ Gz w) [P LK D (2) P (w)de (2) < oo.
B3
Define the operator
Th(z) = / h(w)G(z, w) K (2)dX (w).
B,

Then T defines a bounded operator on L?()\;) that belongs to SP.

Corollary 4.2. Suppose t > —1 and F(z,w) is measurable on B,, x B,,. Suppose ¢ > 0
and

1
|F(z,w)] < 1= (o, w)[rrivie’ z,w € B,.

Define the integral operator
Th(z) = /h(w)F(z,w)d)\t(w), h e L*(\).
B”L
Then T is bounded on L*(\;), and for any p > Zandp>2,TeSP.
Proof. Let

F
G(z,w) = w, z,w € B,.
K’ (z)

Then by assumption, we have the following bound,
|Gz, w)| = [F(z,w)] - 1 = (z,w)[" T < 1= (z,0) "

Choose p so that = < p < %H't Then by Lemma 2.3, we compute the following integral.

/ / Gz w)PIED (2)2d (w)dA (2)

B, B,
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/ / 11— (z M njrlljﬂf)t dm(w)dm(2)

/u+4>MHHMM@

BW,

:/(1 C22) P dm (2) < oo

IB’!‘L

Since G(z,w) is bounded, for p > "+ the integral is also finite. Therefore we have the
following bound,

[ [icewpiEerwan e <o, w2

B, B,

Finally, by Lemma 4.1, T' € SP for any p > % and p > 2. This completes the proof of
Corollary 4.2. O
Corollary 4.3. Let t,c, F,T be as in Corollary 4.2. Then for any Lipschitz function u on
B, and any p > c—fl and p > 2, the commutator

2

[T, M,] € SP.

Proof. By definition, for h € L?()\;), we have the following expression,

[T, M,]h(z) = / (u(w) - u(z))F(z,w)h(w)d/\t(w).

BTI,

Since u is Lipschitz, by Lemma 2.2 (6), we get the following bounds,

‘(u(w) — u(z))F(z,w)’ Sz —wl|F(zw)| S = <va>|rlt+1+tc1/2'

The corollary then follows from Corollary 4.2. This completes the proof of Corol-
lary 4.3. O

It is well-known that Hankel operators with Lipschitz symbols belong to SP for any
p > 2n. In fact, the Schatten-class membership for Hankel operators is completely char-
acterized (see [38], [53, Theorem 8.36)).

Corollary 4.4. Suppose t > —1 and u is a Lipschitz function on B,,. Then the Hankel
operator HY = (I — POYM,P® belongs to SP for any p > 2n.
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Proof. The corollary follows from Corollary 4.3 and the equation
HY = (I - POYM,PY = [M,, PY) PO,
This completes the proof of Corollary 4.4. 0O

Lemma 4.1 provides convenient criteria for an integral operator to be in SP, when
p > 2. However, in this paper we will also need to deal with the case when 1 < p < 2.
Moreover, we will need to consider integral operators of the form

Th(z) = / &1 ()2 F (2, w)h(w)d A, (w),
B,

where ¢ is an unbounded function. For such T, if we take the double integral as in
Lemma 4.1, its integral is very likely to be infinite. In application, it is enough for us to
obtain Schatten-class membership of the operators TP®) or PT. An alternative way
to obtain such Schatten-class membership result is to take advantage of Lemma 3.4. In
particular, the following lemma holds.

Lemma 4.5. Suppose t > —1, a > —n, b > 0 and ¢ > 0. Suppose F(z,w) is measurable
on By, x By, ¢:(0,1) = [0,00) is measurable, and

p(s) < s"(1—s)", s€(0,1),
1
11— (2, w)|rt1ti=c’

|[F'(z,w)| < Yz, w € B,,.

Define the integral operator on L*(\;).

Th(z) = /¢(|wz(w)|2)F(Z,w)h(w)d&(w)-
B.,

Then both POT and TP® belong to SP for any p > max{?, b++i}
2

Proof. Notice that PWT € SP if and only if T*P®) € SP, and that T* is an integral
operator with integral kernel satisfying the same estimate as T'. Thus it suffices to prove
the statement for TP®). For any ¢ > max {2, @}, let ¢ = 7- Then d < b+ Lt

C

Split the map TP as follows.

) E, 5 P
TPY : L2(\) T L2,(B,) —2% L2, 00 (B) =5 L2 ().

Here T : L2

a,t+2c’
Lemma 3.4, Ey 5 € SP for any p > 7 = ¢. Also by Lemma 3.1, T" is bounded. Since ¢

(B,) — L%(\;) is defined by the same integral formula as 7. By
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}, we have TP®) € SP, Vp > max{2

is any number with ¢ > max{Z2 o —b_ﬂﬂ
=

completes the proof of Lemma 4.5. O

}. This

In the case when ¢ = sk(b(t) , the following Schatten-norm estimate holds.

Theorem 4.6. Suppose t > —1, ¢ > 0 and k is a non-negative integer. Suppose F(z,w)
is measurable on B, x B, , and

o)
=z w)] ¥

|F(z,w)] < Vz,w e B,,.

Define the integral operator on L*(B,,, \¢).

Th) = [ (o)) F(zyw)h(wdn(w),

B’!‘L

Then both POT and TP® belong to SP for any p > max{2 n, k+1+, }, p > 1. Moreover,
forp> %, and p > 1, and t large enough, we have

IPOT), St %, ITPO, St 5.
As in the proof of Corollary 4.3, Lemma 4.5 and Theorem 4.6 imply the following.

Corollary 4.7. Suppose t > —1, ¢ > 0, F(z,w) is measurable on B,, x B, and

1
|F(z,w)] < T (2, wy[rrisi—e’ z,w € B,.

Suppose ¢ : (0,1) — [0,00) is measurable. Define the integral operator on L*(\;),
2 = [ 0PI w)h(w)d(w).

Assume that u is a Lipschitz function on B,,.

1. Suppose a > —n, b >0 and ¢(s) < s*(1 — s)b. Then

[T, M"]P(t)’ pt [T, M,) € S?, Vp> max{ 1 b+ 1+t }-
2. If ¢(s) = Skq)g)w then for t large enough and p > 1,
; T
”[T7 Mu]P(t)Hsp < tikJr%’ Hp(t) T, Mu]HSP < s
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A trivial application of Theorem 4.6 gives the following.
Lemma 4.8. Suppose ¢ > 0, t > —1 and f € L*>°(B,,) satisfies
[f() < (1= |2[)%, VzeB,.
Then for any p > max{Z%, f—]:t},p >1,
TV € s,
For anyp> =, p>1 andt large enough,
1T llse < 5.

Proof. By definition, we have the following expression of T](ct),
100h(2) = [ Fw)h(wEL Hdw).
B,

By the assumption, we have the following inequalities

K 1—|z%)° 1
(t) < ( < .
| (w) K, (Z)|—"1__<z7UO|n+l+t’V|1__<Z)u»‘n+1+t—c

Since @S’)O = 1, the conclusion follows directly from Theorem 4.6. This completes the
proof of Lemma 4.8. 0O

To prove Theorem 4.6, we need the following estimate.

Lemma 4.9. Suppose ¢ : (0,1) — [0, 00) is measurable. Then for any c,d € R there exist
C > 0 and tg > 0 such that whenever t > tg,

(1~ Jwf?)ste

[ elle- ) e e dmw)
B,

IN

1
€ [ o5 (1= s)ids - (1 sy e
0
Vz € B,.

(4.1)

Proof. Make the change of variable w = ¢,(&). Using Lemma 2.2 we have the following
equation,

1-— 2)t w=p, 1-— 2yt
(1 —wl )1 dm(w) 2= ©) LU”
11— (z, w)[*+1+ g=pa(w) |1 — (2"

dm(©).
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Then we have the following estimate of the left side of Equation (4.1),

oo (1= |wp?)s
[ etestonpy L )
B,
/m e ><1—|§2>>C§<|1—<z,5>|)d (R 4
— (9P 1— |22 11— (z,€)|nt1+t

. _ 2 c+%
:(1 - ‘Z|2)67§7d / ¢(‘§|2) |1 _(1<Z7§>€||n3-1+20—d dm(ﬁ)

n

1
. t . t 1
:(1 _ ‘Z|2)C_§_d/¢(r2)(l _ T2)c+§r2n—1 |:/ ‘1 — <7«Z <>|n+1+26_ddU(C) dr
0

n

1
R R e (R PO
0

1
s=r2 1 ot gt o
e E IO R Y
0

Here a = 2c—dif 2c—d > 0; a = % if 2c—d=0; a=0if 2c—d < 0. For t large enough,
c—a+ %> % So we have the following inequality,

1
/¢ — 5)cTota g 1d$</¢ (1—5)1s" tds.
0

This completes the proof of Lemma 4.9. O

Proof of Theorem 4.6. The Schatten class memberships of TP®) and P(T are implied

by Lemma 4.5 and [47, Lemma 8.3]. It remains to prove the Schatten norm estimates.

We may assume that ¢ is large enough so that 0 < ¢ < k + Ht

. Also, as in the proof of
Lemma 4.5, it suffices to prove the statement for TP®).

Split the operator TP® as

pW® Et 2c

T
L (Bna)‘t) — Li,t(Bn) E— L<217t+2c(Bn) — LQ(Bm/\t)a
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where 7 is the same integral operator as T'. By Lemma 3.4, it suffices to show that T de-
fines a bounded operator from L2 ,,5.(By) to L*(B,, ;) with ||THL§,,,+26(Bn)—>L§,t(Bn) <
t=F for large t.

This is done by Schur’s test. Since ¢ < k+ %, if we take r = c+ %, thent+1+k >
x > 2c — k. Take p(w) = (1 — |w|?)™* and ¢q(z) = (1 — |2]*)*"®. The integral kernel of
T : L2(B,,, Mgoc) = L2(By, \y) is

B(’mt + 2¢ + 1) ()

T =
(Zaw) B(n,t—l— 1) n,k

(lz(w)[*)F (2, w)(1 — |w]?) 2.
Then by (2.6), (4.1), (2.19) and (2.20), we have the following estimates,

/ T2, w)]p(10) AN 20 ()
B,

IS S (t) 2 op (L= Jw[?)=®
~ gty | Bkl e e dm(w)
]Bn

fol (I)v(zt,)k(s)sn+k_1(1 - s)ids

~ B(n,t+1)

a(z) St *q(2).

Similarly, we have the following inequality,

/ IT(z, w)la(2)d(2) S t*p(w).

Bn,

From this we have the following bound for p > n/c and large ¢,
ITllsr < || EeellsolI Tl < 77/,

This completes the proof of Theorem 4.6. O

5. Traces on different weighted Bergman spaces

As explained in the introduction, the goal of this section is to prove Equation (1.8).
More precisely, we will prove Lemmas 5.2 and 5.3 stated below.

Suppose t > s > —1. It is well-known that L2 ((B,) C L2 ,(B,), and L2 ,(B,) is
dense in L7 ;(By). For a Toeplitz operator T;t) on L7 ;(By,), if the restriction of T;t)

L2 (B,) defines a bounded operator on L2 (B,,), then we denote this restriction to be
T}t’s). It follows from Lemma 3.1 that if f € L>°(B,,) and ¢ > s > —1, then the restricted

operator T;t’s) is well-defined. On the other hand, if a Toeplitz operator TJES) on L2 (B,)
extends (uniquely) into a bounded operator on Li’t(Bn), then we denote this operator

(s,t)
to be Tf .

on
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Notation 5.1. For operators S, T, write S ~ T when S — T is a trace class operator with
zero trace. We emphasize that it is not required that S or T is in the trace class. In
particular S ~ 0 means that S is in the trace class with zero trace.

Lemma 5.2. Suppose f1, fa, ..., fon € €*(B,) and t > —1. Then

(&) (t) (t) (t+1,8) p(t+1,t) (t+1,1)
[Tfl,TfQ,...,Ton]—[Tf1 Ty, oo Ty, ] ~ 0.

In the case of the Hardy space we show the following. Note that the index goes up by
2 this time. The reason for doing this is explained in Subsection 5.4, after the proof of
Lemma 5.2.

Lemma 5.3. Suppose f1, fa, ..., fon € €*(B,). Then the operator on H*(S,)

7(1,=1)

T 0,

(1) 4(-1) (-1) (1,-1) p(1,-1)
[Tfl ’Tf2 ""’szn ]_[Tfl ’Tf2
The fact that each T;il’_l) is well-defined is explained in Remark 5.26.
5.1. Decomposition of T}t)

The proof of Lemma 5.2 (and Lemma 5.3) involves writing T' ;t) (resp. T]E_l)) as a

sum of T}HM) (resp. T;l’_l)) and some perturbation operator. In this subsection we
introduce these decompositions. The main results of this subsection are Lemma 5.5 (for
t > —1) and Lemma 5.7 (for t = —1).

Definition 5.4. For ¢t > —1, define

t+1

(O e g1 ()] R OK® () _ g+1)
and
t+1
Y (z) = ————gW1 HKWD (). 2
D) = g 0w P K (2) (52)

For a symbol function g, formally define the integral operators

XP0() = [ g@h(@)XP @ dhw) YO = [ gwh)Y0 @)k (w),
B, B,

It will be clear in subsequent proof that for f € €2(B,,), Xj(ct) and Ygf) define bounded
operators on L7 ;(By,) (see Lemmas 5.14 and 5.21).
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Lemma 5.5. Suppose f € €%(B,). Then for any t > —1,
T =1 4 X v+ F(0) By, (5.3)
where Egh = h(0) is a rank one operator.

(t)

Proof. For any h € Hol(B,,), by Lemma 2.14, we compute T } as follows,

T h(2) / F)h(w) KD (2)dA (w)

t+1
n+t+1

—F(0)h(0) + / GO1(jwf®) Rf (w)h(w) KD (2)dA 41 ()

t+1 , .
n+t+1/g()1 [w]?) f(w)h(w) RE D (2)dA 11 (1)

(t ( t+1,t
=£(0)(Eof)(2) + YR;h(z) + X Ph(z) + T3 h(2).
This completes the proof of Lemma 5.5. O
In the case of the Hardy space, to make our treatment parallel to the (weighted)
Bergman space, we apply integration by parts twice and lift the weight by 2 to achieve

the appropriate estimate in Lemma 5.24.

Definition 5.6. Let ¢(s) = s~". Define

xX5Y(z) = ﬁg(0)¢(|w| VRZKY(2) — K (2),
D) — 2 a0 2V B (=D
and
(—1) () — () (o [2) K~
Z50) = e (el ).

Formally define the symboled integral operators

X[0h(:) = [ hw)f )X (N (w),

Vi) = [ s )Y v ),
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and

257h(:) = [ hw)f(w) 26 Ve w)

BTL

Again, it will be clear later that for f € €2(B,,), X( 2 YI(%fl) and Z ) define bounded

operators on H%(S,,) (see Lemma 5.25).
Now we give the t = —1 analogue of Lemma 5.5.
Lemma 5.7. Suppose f € €2(B,,). Then
TV =Y XY 1 vE Y 1 20+ F0)E
Taking o = =0 and z = 0 in Lemma 2.15, we get the following.

Lemma 5.8. Suppose v € €*(B,,). Then

/ v(w) d"(i”) = 0(0) + % / w| =2 Ro(w)d Ao (w). (5.4)

Sn B,

Also, taking « = 8 =0,t =0,z = 0 in Lemma 2.10 gives the following.

Lemma 5.9. Suppose ¢ : (0,1) — [0,00) is measurable and v € €*(B,,). Then whenever
all integrals converge absolutely, we have

/ &[] (w)dAo(w) (5.5)

{fz;fi& 0(0) + 725 fp. G (w2 Ro(w)dAs (w),  Fie(0) < oo |
L, 96 ((wl?) Ro(w)d s (w), 26(0) < o0, v(0) =0

Proof of Lemma 5.7. By Lemmas 5.8 and 5.9, for h € Hol(B,,), we compute T}fl) as
follows,

T Vn(z) = / h(w) f (w)KS (2)

Sn

L1 0n0)+ & [ othul?) B[ ) K@) aro(a)

(5.5)

B,
1 2\ D2 —1
F(O)(0) + WB/ GO(uw) R [h(w)f(W)Kfu ><z>]dA1<w>
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—FORO) + s [ 06wl hw)dh (w)
n(n+1) "
IB7L
{RQf(w)Kf,fl)(Z) +2Rf(w) Ry K§ (2) + f(w)RE, KV (2)
=1(0)(Bof)(2) + T{Vh(2) + X5 Vh(2) + Y Vh(z) + 25, h(z).
This completes the proof of Lemma 5.7. O

In view of (5.3), Lemma 5.2 essentially says that the trace

(t+1,8) (t+1,8) (t+1,1)
T[r Y Tttt )

if it exists, is invariant under the perturbations of X}f_) , Igf) and f;(0)FEy. Similarly,
Lemma 5.3 can also be interpreted as the stability of trace under certain perturbations.

5.2. Hypotheses A

As explained in the introduction, after establishing the decomposition T}f) = T}:H’t) +
B, the proof of Equation (1.8) amounts to removing the “minor parts” B; from the
antisymmetric sum [T}?,Tg)7 . 7Tgl] We accomplish this in two steps. In the first
step, in Section 5.2 we dealt with those parts that can be handled at the level of operator
theory. In the second step, in Section 5.3 we use the integral formulas of these operators
to handle the rest terms. To treat the ¢ > —1 case and t = —1 case uniformly, we abstract
our conditions into Hypotheses A below and Hypotheses B in the next subsection.

Hypotheses A: Suppose Ai, As, ..., Aoy, B1, Ba, ..., B, are bounded linear operators
on a Hilbert space H. Denote C; = A; + B;,i = 1,...,2n. The operators satisfy the
following properties.
(1) Forany i = 1,...,2n,
B; €SP, Vp>n.

(2) For any i,5 =1,...,2n,

[A;, Aj] €SP, Vp>n.
(3) For any i,5 =1,...,2n,

[4;,B,] € S,  for some p < n.

The goal of this subsection is to prove the following.
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Proposition 5.10. Assume Hypotheses A. Then the operator
[Ch CZ? LR CQn] - [A17A27 R AQn}

is in the trace class. Moreover, the operator

2n
[017027‘ . '70277,] - [A17A27 .- '7A2n} - Z[Ala .- '7Ak717Bk7Ak+17 .- '7A2n} ~ O
k=1

Lemma 5.11. Suppose {X1, Xa,..., Xo,} is a subset of {A1,..., Ao, B1,...,Bay}, and
at least two of X1, Xs,...,Xop are in {B1, Ba,...,Ba,}. Then
[X1, X2,...,Xan] ~ 0.

Proof. The lemma can be restated as follows:
“if B € {Bl, By, ..., Bgn}, {Xl, . 7X2n—1} C {Al, Ceey Agn, By,..., Bgn}, and at
least one of Xi,..., Xo,_1 is in {B1,..., Ba,}, then

[B,X1,..., Xon_1] ~ 0"

Under the above assumption on B and Xi,---, Xs,_1, we compute the antisym-
metrization [B, X1, ..., X2,-1] as follows.

= ( Z Sgn(T)XT1 ""X7'2k:—QBX7'2k—1 ""XT2n—1
k=1

- Z Sgn(T)XTl "'XTzkleXTzk "'XTanl)

TESan_1

1 n
:i Z ( Z Sgn(T)[X717XTZ]"'XTZk—ZBXTQk—I ."XTQH,—]
k=1 “7€S2,1

- Z sgn(T)[X‘rl?XTZ]"‘X7'2k—lBX7'2k:"‘XT2n—l)
TES2p-1

:27n+1 Z ( Z Sgn(T)[X7—17X7—2] tt [XTQk—S?XTZk—Z}BXTQk—l [X72k7X7'2k+1] M [X7'2n—27XT2n—1]
k

=1 “7€Sa_1

- Z Sgn(T)[XTHXTJ "'[XTzk—:uXTZk—z]XTQk—lB[XTzkvX72k+l]"' [XT21L—27XT271—|})
TES2p-1

n
- 1 j : 2 :
:2 e SgH(T) ([XTI I XTZ] e [XTzk—:w X72k—2}BX72k—1 [XTzk ’ XTzk-H] M [XTZV.,—27X721L—1]
k=1T7TES2,_1

- [XTl ) XTA s [XTzkfzxvX‘szfz]X‘szle[XT% ) X7'2k,+1] s [X"'zn,fzvXTzn,fJ) .
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For each k=1,...,n and 7 € Ss,,_1, we claim that
[X‘fl ) XT2} e [XTzk—av XTQk—2]BXT2k—1 [X7'2k ) X7'2k+1] c [XTzn—g ) XTzn—l]
NBXT2k71 [XT2k ) XT2k+l] te [XT2’7L72 ? XT2’!L71] [XTI Y XTZ} M [XT2I€73’ XTZk*Z]’
and
[XTl Y X7—2} tt [XTQk,fS’ XT2k72]XTZk71B[XT2k ) XT2k'+1] M [XT27L72 ? X7—2n71]
NB[XTQk ) X7—2k+1] A [X72n72 ? XTZTL*I] [XTI ) XTQ] M [XT2k—37 XTQk—2]X7—2k—1 M
If X7—2k71 € {Bl, By, ..., Bgn}, then we have

B, X5, €S'Vp>n, [X,;, X, ]eS Vp>nVij=1,...,2n~—1

By Remark 2.7 it is easy to see that the claim holds. If X,,, _, € {41,..., Aa,}, then at
least one of X;y, ..., Xrpo s Xrors v s Xro,_y 18 in {B1, Ba, ..., Ba, }. Thus at least one
of the commutators

(X, Xn]oo ) [X

7'2k—37X7'2k,2]7[X X L,[X

T2k T2k+1 T2n—27 XT2n71]

is in SP for some p < n. Again, by Remark 2.7, the claim also follows. Thus in both cases
the claim holds. By the claim, we compute [B, X1,..., Xon_1]-

(B, X1,..., Xon—1]

:2_n+1 Z Z SgH(T) ([XTI bl X‘f'z] M [XT‘ZA:—.'j I X72k—2]BX7'2k—1 [XTQk- 9 X7'2k+1} e [XTzn—27 X""z",—l]
k=17T€S2,_1

- [XTI ’ XT?] st [XTZI\:—S ? XTQk—2}XT2k—1 B[XTQk K X7-2k+1:| st [X7-271—2 ? XTZM,—I])

—n+1
N2 + Z Z Sgn(T)BXTQk—I[XTWc?X7'2lc+1] [X‘f'znfzvX"’21171][X7'17X"'2] e [XT2k—37X7'2k—2]
k=17T€S5,_1

—n+1 2 : 2 :
-2 + Sgn(T)B[XTzerTszrl] [XTZn—27XT2n—1][XTl7XT2} et [XTZk—:s"XTQk—Z]XTQk—I
k=17€S2,_1

—n+1
=2 * Z Z Sgn(T)BXn [X'rzvXTs} [XTznwa"'%fl]
k=17€Ssn_1

_27n+1 Z Z Sgn(T)B[XTl7XT2} "'[XTZn—37X7—2n—2}XT2n—1

k=17T€S2,_1

n n
= Z Z sgn(7)BX, ... X5, | — Z Z sen(7)BX~, ... Xy,

k=17€S2, 1 k=17€S2, 1

=0.
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Here the third-to-last equality is because the antisymmetric sums > _ g~ sgn(r)---
are invariant under any even permutation. This completes the proof of Lemma 5.11. O

A verbatim repetition of the proof of Lemma 5.11 also proves the following.
Corollary 5.12. Assume in addition to Hypotheses A that
B, € 8P, for some p < n.

Suppose { X1, Xo, ..., Xon} C{A1,..., Aoy, B1,...,Bayn}, and at least one of X1, Xo, ...,
Xo, € {Bl, e ,Bgn}. Then

[X1, X2,...,Xa2n] ~ 0.
Consequently,
[C1,Ca,...,Con] — [A1, Aa, ..., Agy] ~ 0.
Remark 5.13. Notice that the assumption of Corollary 5.12 is equivalent to the following.
1. Fori,5=1,...,2n,
[A4;, A;] € S, Vp>n.
2. Fori=1,...,2n,
B; € S,  for some p < n.
Thus Corollary 5.12 essentially says that the trace
Tr[A1, Aa, ..., Agy]
is stable under any perturbation that belongs to SP for some p < n.
Proof of Proposition 5.10. By definition, we have the following equation
[Cy, Ca,.., Con] = [A1, Ag, .o, Ag] = > [X1, Xa, .., Xan),
where the sum is taken over all tuples (X7i,...,Xs,) such that each X, belongs to

{A;, B;}, and at least one of Xi,..., Xo, belongs to {By, Bs, ..., Ba,}. For this tuple
(X1, Xa,...,X5,), we have the following expansion
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[X17X2, ey X2n]
= Z sgn(7)Xr, Xory o Xy,
TES2n
=2"" Z Sgn(T)[XTUXTQ][XTwX‘M] cee [X7'2n*1’XT2"]'
TES2n

By Hypotheses A, each commutator [X;, X;] is at least in SP for any p > n, and
when X; € {By,Bs,..., B}, [X;, X;] € SP for some p < n, Vj = 1,...,2n. Thus
by Lemma 2.5, each product

[X'rl Y XT2] [XT?)’ XT4] te [XTQn—l ) XTQn}
is in the trace class. So we obtain the following estimate
[01702, ... ,an] — [Al,AQ, . ,Agn] S St

On the other hand, we have the following equation

2n

[017027 .. '7C2n] - [A17A27 .. 'aAQn} - Z[Alv .. 'aAk—lvBlﬂAk-l—la .. 'aAQn}
k=1

:Z[Xl,XQ, cee ,X2n]7

where each X; € {A;, B;}, and at least two of X1, Xs,..., Xs, arein {B;, Ba,..., Ba,}.
By Lemma 5.11, each [X7, X3,. .., Xa,] ~ 0. Thus we conclude that

2n
[C1,Ca, .o, Con] — [A1, Az, Agy] = > [Av, .., Ag_1, Br, A, -, Agy] ~ 0.
k=1

This completes the proof of Proposition 5.10. 0O
5.8. Hypotheses B
As explained in the beginning of Subsection 5.2. The goal of this subsection is to

handle the rest of the perturbations from the level of their integral formulas.
Temporarily fix the notations

A {T}-HM)’ iftt> -1 B X](ff) + Y,%?. + fi(0)Eo, ift > —1
e 11’71 i ’ i -1 (—1 -1 . )
T}l )7 ift=-—1 X}Z )+Y1%fl)+Z%2f3+f7‘(0)EO’ ift=-—1

and C; = A; + B;. Then by Lemmas 5.5 and 5.7,
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o [T >
oY, ift= -1

Thus the results of Lemmas 5.2 and 5.3 are equivalent to the property that
[C1,Ca,...,Con] — [A1, As, ..., Agy] ~ 0.

Suppose X, (z), Yy, (2) are measurable functions on B,, x B,,. We introduce the follow-
ing hypotheses.

Hypotheses B: For ¢t > —1, we say that X, (2), Y, (2) satisfy Hypotheses B at ¢, if there
are € > 0 and C' > 0 such that the following hold.

1. For each w € B,,, X (2), Yy (2) is holomorphic in z,
2. | X, (2)] < Clw|~2"+| K (2)],
3. |Yu(2)| < Clu| 21| K (2)].

For a function f on B,,, formally define the symboled integral operators

Xhe) = [ hw) f)Xu()da(w), Vi) = [ B)f )Y@ w). 6.0)

Bn BTL

Lemma 5.14. Assume Hypotheses B. Then for any f € €*(B,), the integral operators
Xy and Yy define bounded operators on Lz’t([B%n) that belong to SP for any p > n.

Proof. For f € €%(B,,), we have

f)l 1 [Rf(w)] < lw].

~

Thus by Hypotheses B, we obtain the following estimates,

@) Xu(2)] S ol KO ()], R (w)Ya(2)] S w27 KD (2)].
Thus for any h € Hol(B,,), Xsh(z),Yzsh(z) are defined pointwise. If f has compact
support contained in B,,, then it is easy to see that Xy, Yz, belong to SP for any p. In
general, we can always write f = f; + fo, where f; has compact support in B,,, and the
support of f5 is away from the origin. We might as well assume that f itself has support
away from zero. In this case, we have the following estimates
[f(0)Xu(2)| S IKP ()], [Rf(w)Yu(2)] S KD (2)].

Denote G, (2) to be either f(w)X,(2) or Rf(w)Yy(2). Then G,,(2) is holomorphic in z,
and
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|Gu(2)] S 1K (2)].

Define

Tah(z) = /h(w)Gw(z)d)\t+1(w).
B,

Then T¢ equals either X or Yj,. Split the map as follows.

By, T
TG : Li,t(Bn) —2> Li’t+2(Bn) —G> Lz,t (Bn)7

where T is defined by the same integral formula as Te. By Lemma 3.1, T is bounded.
By Lemma 3.4, E; 2 € SP for all p > n. Therefore Tz € S? for all p > n. This completes
the proof of Lemma 5.14. O

The main result of this subsection is the following.

Proposition 5.15. Suppose t > —1 and X,,(z), Yy (2) satisfy Hypotheses B atl t. Suppose
that f1, fa,..., fon € €*(B,), and K1, K, ..., Ko, are bounded operators on Li,t(Bn)
that belong to SP for some p < n. Denote

A =T8T Bi= Xy 4 Y, 4K Gi= A4 B i=1...m
Then the operator on L7, ,(By,)
[C1,Co, ..., Cop] — [AL, Ag, ..., Agy] ~ 0.
Some preparations are needed before proving Proposition 5.15.
Lemma 5.16. Suppose t > —1 and f, g are Lipschitz functions on B,,. Then
[T}t“’“,Tg(t“’”] eSP, Yp>n.

Proof. Denote P(*+1:%) to be the restriction of P+ to L?();). By Lemma 3.1 it is easy
to see that P*+1:%) is bounded. Obviously, P¢t1:?) satisfies the following identities.

P(t)P(t+1,t) _ P(H-l,t)7 P(t+1,t)P(t) _ P(t)7 (Pt+1,t)2 _ P(t—i—l,t).

So we compute the commutator as follows.
1
[T]Et+ 7t)’ Tg(t-i—l,t)}

:[p(t+1,t)]\4fp(t)7 p(t+17t)Mgp(t)]
:P(t—‘rl,t)MfP(t—‘rl,t)MgP(t) _ P(t—‘rl,t)MgP(t—‘rl,t) pr(t)
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:P(t“’”Mg (1- P(t-}-l,t))MfP(t) _ P(t—i—l,t)Mf (- p(t+1,t))Mgp(t)
:P(t+1,t) [Mg) P(t+1,t)] []\4}(_7 Pt+l,t]P(t) _ P(t—l—l,t) [Mfa P(t+l,t)] [ng Pt—‘rl,t]P(t).
By Corollary 4.3, we arrive at the following property,
[M,, PEFLO] My, PUHED] € 8P Vp > 2n.

(t+1,1)

The Schatten-p membership of the commutator [T}Hl’t), T, | follows from the above

property easily. This completes the proof of Lemma 5.16. O

Lemma 5.17. Assume Hypotheses B. Then for any f,g € €*(B,,), the commutators
[Xf,TéHl’t)] and [Yﬁf,TESHLt)]

belong to SP for some p < n.

Proof. As in the proof of Lemma 5.14, we may assume the support of f does not contain

the origin. For any h € L2 ;(B,,), since Xy (2), Y, (z) are holomorphic in z, it is easy to
verify the following integral expression,

(T8 = X0 )16 = [ ) = 9(0)) FI() KD Ko )i (w2,

B
(Xng““” - ng)hcs) = [ F@5w) - g XO KL ) () (2),
]BQ

and similarly,

<T§t+1’t)YRf—Yng>h(§) = [ 9= R KD (a1 ()N (),

B2
(YRfTéHLt)—Yg Rf) h(€) = / Rf(2)[g(w)—g(2)|M(w) Yz (&) KTV (2)dN g1 (w)d g1 (2).
B2

n

As in the proof of Lemma 5.14, let G, (2) be either f(w)X,(z) or Rf(w)Y,(2). Write
Th) = [19(2) = ow)h(w)Gu:)dis (w),
B,

Sh(z) = / [9(w) — 9(2)] Aw) K& (2)dA 41 (w),
B,

and
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/ h)C(€)dAri (2).

Then by the above, we have

Ty Xy = Xop, or TV, =V e = PUADT,

XpT{HD — Xgp, or Y, IS — Y 5o = WS

Take € > 0 small enough. Split P¢+DT and WS as the composition of the following
operators.

E ; P(f+1)
purIT Li,t(B ) —— - Li A424e 4 LP(\) —— Lit(]B%n),

WSt L2, (By) = L2, o S5 L2 (Aga) 2 L2(N0).
By Lemma 2.2, we have the following inequalities,
19(2) = g(w)| S |z = w| S [1 = {z,w)[/2.

By Lemma 3.1, T, P**+1) S W define bounded operators between the spaces indicated
above. Again, by Lemma 3.4, E; . € SP for some p < n. Thus altogether, the operators

v (v ) () )
are in SP for some p < n. So are the commutators

[Tét+1,t)7Xf] _ <T£§t+1’t)Xf o ng) o <XfT£§t+1,t) o ng>7
and

[Tg(t+1,t)7YRf] _ (T(t+1 t)YRf Yng> - <YRng(t+1,t) _ Yng)
This completes the proof of Lemma 5.17. O
From Lemmas 5.14, 5.16 and 5.17 it follows that if we set
Ai=T{Y Bi= Xy + Yy + Kiy i=1,2,...,2n,

then the operators { A;, B;} satisfy Hypotheses A defined Subsection 5.2. Thus by Propo-
sition 5.10, the proof of Proposition 5.15 reduces to the proof of
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2n
TI“(Z[Al, N 7Ak717 Bk, Ak+1, e ,Agn]) =0.
k=1
Each By splits into the sum of Xy, , Yz, and Kj. The part with K} can be handled
by Corollary 5.12 as K}, is assumed to belong to SP for some p < n. Thus it remains to
prove

2n
Tr<Z[A1, Ao, X+ Y A, - ,AM]) =0. (5.7)
k=1

The operators Xy, +Y}, generally do not belong to S? for p < n. Thus Corollary 5.12
do not apply and it is hard to handle this trace at operator-theoretic level. Instead, we
need to treat them as integral operators. Let us explain the idea of the proof. The
operator in (5.7) is a sum of compositions of 2n integral operators. By [47, Lemma 2.5]
and the definitions of A;, Xy, , Yz, , we can write the trace in (5.7) into a (2n + 1)-fold
integral of the form

/UK§t>(z1)G(z1,Z2,...,z%,g)dxm(zl)...dxm(z?n) A (9),
B, B2

where G(z1, 29, ..., 22,,&) is holomorphic in &. If the (2n + 1)-fold integral converges
absolutely, then we can apply Fubini’s Theorem and get that the above integral is equal
to

/ G(Zl, 22y .. 7Z?n?§)|§:zld)‘t+1(zl) .. .d)\t+1 (Zgn)
B2~

The anti-symmetrization will then tell us that the above equals zero as & = z;. Thus
the proof of Proposition 5.15 reduces to reorganize the parts in (5.7) so that each part
converges absolutely.

The following lemma helps us recognizing absolutely integrable terms in a multi-fold
integral.

Lemma 5.18. Suppose k is a positive integer and t > —1. Then

/ ‘Kg)(zg) . Kgill(zk) dAi(z1) ... dXe(zk) < o005 (5.8)

B}

and for any € > 0,

(Tn- <zi7zj>|)n+€

. i,
]Blfrl 5J

< 0. (5~9)

KO ()KD (20) ... K (21) KD (20)|dNe(20) - - - e (22)
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Proof. First, we notice that (5.8) is a special case of (5.9): take e =t 4+ 1, then

/

O(za) .. K (z1)|dNe(21) - .- de(21)

Zk—1
By
=/|1—<z1,zzc>\"““ KO (z2) . K () K (20)|dMe(z1) - dAe(z)
B

KM (29) ... KO (21) K (21)|dNe(21) - .- d e (2).

ntt+l
/(ZH (i, 25) )

Thus it suffices to prove (5.9). It is well-known that all {? norms on a finite set are
equivalent. So by [44, Proposition 5.1.2] and Lemma 2.2 (7), we obtain the following

estimates,
2 k-1
1= Gl = (1= a2 |1/2) (Zl— N IE=D S SN ATH
s=0
and

n-te k—1 n-+te k—1
(Zu i) S (- onenl) ST I Gzl
s=0

s=0
Also, for any s > 1, take the rotation in variables z5 +— 29,2541 — 21,...,2K >
Zh—s,20 M Zk—st1s 21 F> Zk—s42, -+, 2s5—1 — 2k, then we have the following equation,

11— (25, 24 1) " T | KD (20) KD (2) ... KD (21) KD (20)|d e (20) - - - e (21)
B+
= / 11— (20, 22) " KD (21) KD (22) ... KD (1) KD (20)|d N (20) - - dAe(zk).-
B+

Notice that the part of the reproducing kernels is invariant under the above rotation of
variables. Thus it suffices to prove the integral above is finite. Without loss of generality,
assume 0 < € < 1+ t. We prove it by induction. For ¥ = 1, by Lemma 2.3 (1), we
compute the integral as follows.

/|1—<zo,zl>|"+€

2
Bn

KO (1)K (20)|de (20)dNe (21)

1
= |1 — <ZOa Zl>|2(n+1+t)7nfe
B2

d)\t(Z())d)\t (21)
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5/(1 =)0 dA (1)

B,

S [ ) tdma)
B
<o0.

Thus (5.9) holds for k¥ = 1. Suppose (5.9) holds for k£ — 1. Then by Lemma 2.3 (2), we
have the following estimates by the induction step.
KD () KD (z2) .. K (2) K (20)

|1 - <207 Zl>|n+e d)\t(Zo) - d)\t(zk)

Zk—1
Brt!
*/ ! dA¢(z0)
~ S\ = Go L= oo, e e
B: B,

’K(t z) . KW (z)[dA(z1) .. dhe(zk)

Zk—1
/|1_ (21, 21 )| I Ht—€/2

:/ 11— (21, 20) "/
By

KM (z) ... K (z)|dNe(21) - dAe(2k)

KM (z9) ... KO (21) KD (21)|dNe(21) ... AN (21)

<00.
This completes the proof of Lemma 5.18. O

Proof of Proposition 5.15. For simplicity of notation, in this proof let us write A; for Al,
B; for B;, and C; for C;. The fact that {A;, B;}?", satisfy Hypotheses A follows from
Lemmas 5.14 and 5.17. Thus by Proposition 5.10, we have the following property, i.e.

[017027"'a02n] - [A17A2a"'7A2n] € 817

and
2n
[017025 .. '70271] - [A17A27 cee 7A2n] - Z[Ah e 7Al—lvBl7Al+1a e aAQn] ~ 0
=1
Recall that
Bi:Xfi"i'YRf,i"i'Ki’ 1=1,2,...,2n.

By Corollary 5.12, each operator



46 X. Tang et al. / Advances in Mathematics 433 (2023) 109324

[Al,...7Al,1,Kl,Al+1,...,Agn] ~ 0.

Denote
2n
X = Z[Ah ey Al*laXf”Al+17 e 7A2n];
=1
and
2n

Y = Z[Alw~~7Al717YRfl7Al+17"'7A2n}~
=1

Then it follows from Proposition 5.10 that X and Y are trace class operators on L2 ,(B,,).
It remains to show that

X~0, Y~O

Notation 5.19. For two functions H(£),G(¢) on B,, write H ~ G if fB"(H(f) —
G(£))dA:(8) = 0.

By [47, Lemma 2.5], it suffices to show
(XK KP)~0, and (YK, K)=~o0. (5.10)
A moment of reflection shows that
2n
X=> > sen(m)Ar ... Ay Xp Ar, .. A,
k=171€S2o,
and
2n
Y=Y > sen(nAn .. An  Yap Any oA,
k=171€S3,

For k=1,...,2n, denote

Xp= Y sen(r)Ar, .. Ar Xy A A,

TESan

and

Yi= > seu(m)An .. An  Yip Ao An,.

TES2n,

Then we have the following expressions for X and Y,



X. Tang et al. / Advances in Mathematics 433 (2023) 109324 47

2n 2n
X=X, V=) Y
k=1 k=1
Define

CAg rogr Ay k=1,0..,2n -1,

X],c = Z Sgn(T)AT2nA7'1 A XfrkA

TESan

X5, = Z sen(1) Xy, Ar AL,

TESon

and

Y, = Z sgn(T)Ar,, Ar .. .ArkleRka Apr - Ary s k=1,....2n—1,

TESan

Y, = Z sgn(T)YRfT% A AL

TES2,

In other words, X, Y, are obtained from Xj,Y) by moving each rightmost operator to
the leftmost. Define

2n 2n
X'=Y"X;, V=)V
k=1 k=1
The anti-symmetrization leads to

X' =-X, Y =-VY (5.11)

Below we show the following.
Lemma 5.20.

t t t t t t t t
(XK KDYy~ (XKD KDY, (vKP KD) ~ (v KLY KD).
Proof. Each f; has a decomposition f; = g; + h;, where g; has compact support, and
h; has support away from 0. Since Xg,, Yy, are perturbations that belong to the trace
class, we might as well assume that each f; have support away from the origin.
For k,i=1,...,2n, write

Xuw(2), ifi =k,

KgH)(z), otherwise.

Xpi(w,2) = {

By definition, for any k = 1,...,2n, we compute (Xng(t), Kg(t)> as follows.
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t t
(XK K

{ Z Sgn(T)T;tH,t) . (t+1 t)X T(t+1 o T;t+1,t)K§(t):|(£)

TESZ'L T1 k "k+1 T2n
= > sen(r) / Fri(z1) - fra (z2n) K (220) (5.12)
TES2n, B2n :

- Xpon(22n, 22n—1) Xk, 2n—1(22n-1, 22n—2) . .. X&,2(22, 21) X1 (21, §)dAe 1 (22n) . . . dAe11(21)

/ det {fz(Z])] Két) (ZQn) ( H ng-(zi, 21;1)) )('1“1(217 f)d)\t-o-l(ZQn) ‘e d)\t+1 (Z1)

=2
B2

Denote F' the column vector of 2n functions,

F(2) = [f1(2) f2(2) ... fn(2)]".

Then by Lemma 2.2, we estimate the determinant function,

] det [fi(z;)] ’ =

det [F(Zl) ... F(Z2n)] ‘

det [F(z1) F(z2) — F(21) ... F(z2) — F(21)]

2n—1
S(Z |2i — Zj|>
1,3
n—1/2
(ZH (2, 25) ) .

Also, we obtain the following estimate

X, 2)| £ {'w-2“+e|KfP<z>|, i=Fk
’ SRSV ) = ey KS G i Ak

Since we assume that each f; is supported away from the origin, we continue computing
the inner product (XkKé(t), Kg(t)> using Lemma 2.2 and the above estimate.

det[fi(zj)]Kg(t) (22n (HX]CZ Zi, Zi— 1)>Xk 1 Zlyg)ld)\ﬂ»l(?«?n)~--d>\t+1(zl)d>\t(€)
=2

2 1
B n" —+

‘ZZ| oy 1 —z1)?
< | |detlntnx zzn(Hu m)“"z’“' Tl

B2n+1 i#k,1

( H KM (2 )K(t) ©) ’dxt(z%) odAe(z1)dAe (€)
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2n

(Zu (21, 2)] )Hé‘Két)(zgn)(HKgf)(zi_1)>Kif)(f)’d)\t(zgn)...d)\t(zl)d)\t(g)

B2n+1 1,J =2
n

<00.
Here the last inequality follows from Lemma 5.18. Thus the (2n + 1)-fold integral ob-
tained by plugging (5.12) into an <X;€K(t), Kg(t)>d)\t (&) converges absolutely. By Fubini’s

Theorem, the variable € can be integrated first, and, since each Xy, ;(w, z) is holomorphic

in z, we compute the following integral

/ (XK, KDY (€)

B,
B, B2n

2n

(HXk,i(Zi7 Zi—1)>ch,l(Zla &)dAit1(z2n) - - - d/\t+1(21)}d/\t(€)
i=2
2n

/det [fi(z5) (HX]CZ Ziy Zie 1)>Xk 1(21, z2n)dA g1 (22n) - - - dXg1(21).
B%ﬂ =2

By a similar proof, we have a similar expression for the integral of (X K. ét), K ét)).

/ (XKD, KO)ax(€)

B?’I,
:/{ / det[£; ()K" (22n-1)
B, B2»
2n—1
. < H Xk}i(zi,zi1))Xk,1(2'1;Z2n)Xk,2n(22n7f)d)‘tJrl(ZQn) o 'd)‘tJrl(Zl)}d)\t(f)
=2
2n
/det[fl %) (HX,“ (2, 2 1)>Xk 1(215 22n)d A1 (22n) - - - dArga (21)
B2» =2
— [ o K O)ano).
Bn

In other words, we have shown the following equation

(XK KDY ~ (X KD KD). (5.13)
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The situation for Y is more complicated. As in the case of X, for k,i = 1,...,2n,
define

Y (z), i=k,

K{ (z), otherwise.

Yii(w,z) = {

Then each Yy, ;(w, z) is holomorphic in z, and

Yoo < [TTTIES L ik,
il 2)| 5 —L KW (2) otherwi
Ty 1 Ew (2)]; wise.

By definition, we compute

(Vi KY) = / det [F(z1) ... F(zp—1) RF(2) F(2541) ... F(z20)]  (5.14)
B2n

2n
H Yi,i(zi Zi—l)) Yi1(21,§)dNer1(22n) - - - dAe1(21).

=2

KOG

Here RF(z) is the column vector
RF(2) = [Rfi(2) ... Rfan(2)]".
Direct computation shows that
det [F(z1) ... F(2k—1)RE (2)F (2k41) - . . F(22,)]
=det [F(21) — F(z1) ... F(z1-1) — F(2) RF (21) F (zi41) — F(2x) . .. F(220) — F(21)]

+ ) det Fj,
itk

where Fjj, is the matrix function obtained by replacing the j-th column of

[F(z1) ... F(zu-1) RF(2) F(zp41) -.. F(221)]
into F'(zy). Therefore we can compute its determinant as follows.

det [F(z1) ... F(zk—1)RF (2)F (2k41) - - . F(220)] (5.15)
=det [F(z1) — F(zk) ... F(z-1) — F(21)RF(23)F(2511) — F(21) ... F(22,) — F(z)]
+Z Z Sgn(T)ij(Zk)Rka(zk) H fﬂ(zl)
j#k TES2n i#4,k

::Dk(zl, - ,Zzn) + ZEk,j(Zl, ey Zgn),
J#k
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where
Dk(zl, ey Zgn) =
det [F(21) — F(zy) ... F(zk—1) — F(2k)RF (21) F(2k41) — Fz1) ... F220) — F ()],

Eij(z1,. . 2m) = Y sen(r) fr (2) R (20) [] f.(20)-

TES2n i#j,k

Correspondingly, we write

where

Ii(€)

~ [ Dutarreos

B2n

n

and

I} 5(€)

= / Ey (=1

2n
B n

Wk KY) = 1u(€) + 3 I
J#k
2n
aZ2n)KE(t) Z2n (H Yk % Zl’ Zij— 1)>Yk 1(Z17 g)dAt-l-l (ZQn) .. d)\t—i-l(zl)a
=2

DI ZQn)Kg(f ZQn (H Yk S Zza Zi— 1)>Yk 1(21, g)d)‘t+1(z2n) .. d)\t+1(zl)-

1=2

Similarly, we have the following expression for (Y} K, ét), K é”),

where
I;.(6)

= / Dy (z1,. ..
B2n

(VE® KY) )+ > 11
J#k

2n—1

s Z2n)K£(t) (Z2n—l) < H Yk,i(zi, zi_1)> kal(zl, ZQn)Yk72n(ZQn, {)d)\H_l (Z2n) . d>\t+1(zl),

=2

2n—1

. 722n)Két)(22n71)< H Yi,i(zi, Zi—l))Yk,l(Zh 2on) Yk 2n (220, §)dAe41(220) - . . dAe41(21).

=2
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Since

| Dk |

:’ det [F(z1) — F(z) ... F(zr-1) — F(zi) RF (21) F(2141) — F(z1) ... F(220) — F(21)]

n+1/2
sw-(le ) ,

we can repeat the proof for (5.13) and get the identity

I:(§) =~ IL,(6). (5.16)
Define
(t+1,0) 4D Ly L) Ly
P Y reSan sgn(T)Tle . .TfT . .Tkai1 Yff Rfs, Tﬁi Ty < k
’ (t+1,t) (t+1,t) (t+1,t) (t+1,t) (t+1,t) .
Dresy, sen(m) Ty T Ty Yy gy Ty Ty T T G >k,

and Z,’w- the operator obtained from Zj ; by moving each rightmost operator to the
leftmost. Here A means that A is removed. Checking by definition we get

t t t t
I (§) = (ZuK KO, 15,9 = (2,5 KD).
Using antisymmetrization we see that
P (—1)" 912 kr, <k,
kg — ; .
’ (=) Zg jgr, G > k.
Therefore we have the following calculation.

n

ZZZk,g = Z Z k1 + Z k-1 = Z <Z2m—172m + Z2m,2m—1)

k=1 j#k k odd k even m=1
n
_ (t+1,t) (t+1,t) i (t+1,t) (t+1,1)
— Z { Z sgu(r) Ty Ty EYSN Y
m=1 ~ 7€Ss,
(t+1,t) (t+1,t) B (t+1,t) (t+1,t)
+ 2 eI T, T T, }
TESo2n
- (L8 (L) IR
N . t+1,t t+1,t ~ t+1,t t+1,t
o Z Z bgn(T)Tfﬁ o Tffszz YszmeTQWHI Tfrom1 Bfrap, Tfﬂ'zm+1 o Tffzn
m=1r1€Ss3,
n
o (t+1,t) (t+1,) (t+1,t) (t+1,t)
— Z Z sgu(r) Ty T Y, BEEARETIY i

m=171€Ss,
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=0.

Similarly, Zi’;l > ik Zy,j = 0. Thus we can verify the following equations.

2n
IO 9 DEREIREURRI0 9 LM IR L)

k=1 j#k k=1j#k k=1 j#k
2n
S = 3 S K = (32, ) <o
k=1 j#k k=1j#k k=1 j#k
This leads to the following identities
2n 2n 2n
wEd 1) =Y K KY) Z T(€) + 33 I (6) = D In(€)
k=1 k=1 j#k k=1

and
2n 2n 2n 2n
(VED KD =Y (WK KD =3 © Y3 6 = D> (9
k=1 k=1 k=1 j#k k=1
Combining with (5.16), we arrive at the following equation

(VES KY) ~ (vES K)o (5.17)

Equation (5.11) and Lemma 5.20 implies (5.10), which completes the proof of Propo-
sition 5.15. O

5.4. Proof of Lemmas 5.2 and 5.3

In this subsection we give the proof of Lemmas 5.2 and 5.3.

Lemma 5.21. For t > —1, the integral kernels qu,t)(z) and Yu(}t)(z) satisfy Hypotheses B
at t.

Proof. The fact that X{ (z) and vt ( ) are holomorphic in z is obvious from Defini-
tion 5.4. By direct computation, we obtain the following equation

(z.w)
(= e w))

RyK((2) = (n+1+1) — A1+ )K= (4 14+ DED(2).

So we obtain the following estimates,

|RuEY (2)] S Tl KETV )] [RKD (2) = (n 4+ 1+ OKST (2)] S 1K (2)]. (5.18)
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Also by Lemma 5.9, we get the following inequalities

1
O1(s)] < s, [GD1(s) — ——| <s77(1 — s). 1
GO S 57 [6016) — | S50 —s) (5.19)
Using (5.18) and (5.19), we find
Y59 (2)| Slol ™" K (2)],

and

500 = (¢4 0010wt 1) B | (RKEE) eon)|

n+t+1 n+t+1
(t) 2 RwKz(ut)(Z) RwKz(ut)(2> (t+1)
S|+ DG (wl) = 1) n+t+1 nttr1 N (2)

Sl 7 (1 = Jw]?) - wl| KV (2)] + [K (2)]

Sl KD (2)].
This completes the proof of Lemma 5.21. 0O

Proof of Lemma 5.2. Take K; = f;(0)Ey. Then each K; is a rank one operator. Take
Xu(z) = x4 )( )and Y, (2) = Y(t)( ) and define A;, B;, C; as in Proposition 5.15. Then
clearly they satisfy

By Lemma 5.21, X,,(2) and Yy, (z) satisfy Hypotheses B at ¢. Thus by Proposition 5.15,
we verify

() (o) (1)
Tf1 ’sz L ’Tf2n

(t+1,8) (t+1, t) (t+1,t)
[ = [Ty Ty, T ]

:[Cla 027 ) CQn] - [Alv AQ» o ,AQn]
[

fan

~

= CA'176'27 .. ';GQH] - [A13A27' .. 714277,]
~0.

This completes the proof of Lemma 5.2. O

We take a roundabout approach in handling the Hardy space case. In Lemma 5.7 we
lift the weight of Ty by 2. Then in Lemma 5.24 we show that the operator on L2 ((B,,)

(-1,0) (71,0) (=1,0) (1,0) (1,0) (1,0)
[Tf1 ’Tf2 Tf2n ] [Tfl ’Tf2 ""’Tf2n ] ~ 0.

Finally, using Lemma 2.4, we show that the operator
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1,—1 1,—1
[Tfl,...7Tf2n]—[T;1 ),...,T]EM )]7

which is the restriction of the previous operator on H?(S,,), also has zero trace. The
main reason for taking this approach is to avoid rebuilding results related to Hypotheses
B over the Hardy space.

Lemma 5.22. The integral kernels Xq(l,_l)(z),Yu(,_l)(z) and Zq(l,_l)(z) satisfy the following
estimates.

L 1X5 V()] S |72 2 D ()]
2. V5 V()] S Jw| 22 K (2));
3. 125V ()] S w21 21K GV ().

In particular, Xl(u_l)(z), Yu(,_l)(z) satisfy Hypotheses B at t = 0.
Proof. We compute the following limit by L’Hospital’s rule,

(0) _ 1 “1dp — (1 — o1
lim —gn (s) —1 = lim fs ! il 5) lim - T t1 = 1

so1-  1—s s—1- (1—s)2 T aoi- —2(1—s) 2

Also by [47, Lemma 8.2] with a = n + 1, QT(LO)QS(S) < 57"~ 1. Therefore we obtain the
estimates

1

GV ¢(s) — 1‘ SsTTA(1—s),  [6We(s)| S s (5.20)

Also, direct computation gives the following identities

RuK () = s =nK () = k()
R2K(CD(z) = n(n+1)(zw) n?(z,w)

(1= (zw))"t2 (1 - (z,w))
=n(n+ 1)K1(U1)(z) —n(2n + l)Kq(UO)(z) + nQKi(;l)(z).

So we have the following estimates,

REKGV(2) —n(n+ DKL (2)] S K (2)], (5.21)
and
IRLES D (2)] S Wwl|K(2)],  [RWKS™M (2)] S Jw]| KD (2)]- (5.22)

By (5.20), (5.21) and (5.22), we estimate | X% 2 (2)], [V 2 (2)], 125V (2)| as follows,
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1

1
(=1) < -
XE0 ) —

“n(n+1) (
op—1

Sl 7272 (1 = Jw?) || K5 (2)] + KD (2)]
Contl

Sl 72 KD (2)],

_ —2n—1 —2n+3
VS0 ()] Shol > 2wl K (2)] = fol 24K (=),

G o(lwl*) — 1) Ry K (2) RLESD(2) = K{P(2)

w

+

and
125D @) Sl =202 KD (=)
This completes the proof of Lemma 5.22. O

By Lemmas 5.14 and 5.22, for f € €?(B,,), the integral formulas of X 1 and Ylg;l)

define bounded operators on L? ((B,,). Denote these operators X} 19 and Yé;l’o).

Lemma 5.23. Suppose f,g € €*(B,). Then the integral formula of Z}({z}) defines a
bounded operator on L7 o(By,) that belongs to SP for any p > 2?" Denote this opera-

tor to be Z( 10)

Proof. Split the map as follows.

5(=1,0)
ZG" L2y (B) T2 12 o (B) 20 L2(B,).
Here 21(32 f is defined by the same integral formula as Zl(%zjlc ), and € > 0 is any suf-

ficiently small number. The boundedness of Z (_}’0) follovvb from Lemmas 3.1 and 5.
we have

Flnadly7 by Lemma 3.4, Eo 3_92¢
Z}(;z2 ;€ SP for any p > 22. This completes the proof of Lemma 5.23. O
By Lemma 5.5, for f € €%(B,,), the operator
Tf T(10)+X(10)+Y(10)+Z(10)+f()

is a well-defined bounded operator on L7 ;(By). It follows from Lemmas 5.22, 5.23 and
Proposition 5.15 that the following holds.

Lemma 5.24. Suppose f1, f2, ..., fan € €*(B,). Then the operator on L? o(Bn),

(-1,0) 7(-10)  p(-10) (1,0) (1,0) (1,0
[Ty, Ty, Ty, = [T, T, Ty,

is a trace class operator of zero trace.
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Lemma 5.25. Suppose f,g € €%(B,).

1. The operators X(fl), YI%;I) on H?(S,) belong to SP for any p > n.
2. The operator Z;Qf) on H?(S,) belongs to SP for any p > 5-

(=1) Y( D Z( 1) belong to the trace

Proof. If f has compact support in B, then X
class. Since we have the decomposition f = f; + fg, Where f1 has compact support in
B,, and fo has support away from the origin, we might as well assume that the support
of f does not contain the origin. Then by Lemma 5.22, we obtain the following bounds
F@)XSVEISIKD () R ()Y SVEISIKD (), [RPZGD(2)| SIKS V()]

w w
Split the maps as follows.

¢ (=1

1 X
22 12 (B) ——s H2(S,),

XV HYS,)
vy
YU H2(S,) 225 12 (B,) —2— H(S,),

Rf
(=1) . 772 E_1,4-2¢ Z;%;;) 2
Zpoy o H (Sn) ——— Laz—2. —— H*(S,).

Here the operators with hats are defined by the same integral formulas as the correspond-
ing operators without hats, and € > 0 is any sufficiently small number. The boundedness
of the operators with hats follows from the estimates in Lemmas 3.3 and 5.22. Finally,
by Lemma 3.4, the Schatten-class memberships of X(fl), YI(?/;I) and Z(fl) follow from
those of the embedding operators. This completes the proof of Lemma 5 20 ]

Remark 5.26. It follows from Lemmas 5.7 and 5.25 that for any f € €2(B,,), the operator
T = XY YFE;) - ZI;}) — f(0)E, is a well-defined bounded operator
on H%(S,).

Lemma 5.27. Suppose f,g € €%(B,). Then the commutators

(=1) (1,-1 (=1) p(1,—1)

2
belong to 8P for any p > =*

Proof. As in the proof of Lemma 5.25, we may assume the support of f is away from
the origin. For any h € H%(S,,), since Xq(,, 1)( ), Yu(;il)(z) are holomorphic in z, it is easy
to verify the following formulas,

(2= X Y6 = [ [06) - aw)] Fh ) KOO XL G 0)in ),

B2

n
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(X}‘”T;L“ X;;”)h@) = / F(2) [g(w) = g(2)] h(w) X DO KD (2)dA (w)d (2),
B2

and similarly,

(2w v 5 ) = [ lote) =gt R KD ©YE v (wan ()

B
(" TGP Yo = [ RIGfaw) =g OKD (an w)in ).
B2

If we denote G, (2) to be either f(w)Xf,J_l)(z) or Rf(w)Ylg_l)(z), then set

1,-1) y (1) (-1 1L,-1)y (-1 _ (-1 _
<Tg( X7V - X, ),or(Tg( )YRf —Yng>_H,

(=) p(1,—-1) _ 3 (=1) (=Dmp(1,-1) _ (=1} _
(Xf Tg ng ), or (YRf Tg Yng)_WS.

Here

and

Hh(E) = / [9(2) — gw)]h(w) G (2) KD (€)dh (w)dh (=) = / () Hoy (2)d0 (),

B2 B,

n

where

H,.(€) = / 9(2) — 9w)]Gu () KD (€)dN (2).

B,

By Lemma 5.22 and since we assume the support of f does not contain the origin, we
obtain the following bound

1Gu(2)| S 1KY (2.
By Lemma 2.3, we have the estimate

1 1
€)% [ e g O g
B,

For any € > 0 sufficiently small, split the map as follows.
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H:H2(S,) 2252 Loy o 2 HY(S,),

WS H2(S,) 2212 12, (B) S L2 (a0 L H2(S,).

By the estimates above, Lemmas 3.1 and 3.3, the operators above with hats are bounded.
Thus by Lemma 3.4, H and W S belong to SP for any p > %" Therefore the commutators
have the same Schatten-class membership. This completes the proof of Lemma 5.27. O

Proof of Lemma 5.3. By Lemma 5.24, the operator on L2 ,(B,,)

T(_l)o) T(l’o) T(l’o)] ~ 0

(_1)0)
[Ty, s Ty = [T T

On the other hand, by Lemmas 5.25, 5.27 and Proposition 5.10, the operator

(1) (-1 _ p-1) (1,-1)
[Tfl ,...,Tan ]_[Tfl ".'7Tf2"l ]

is a trace class operator on H?(S,,). Clearly, we check the following equation

(=1,0) (=1,0) (1,0) (1,0)
([Tf1 oo Ty, O =TT ])

H2(Sn)
_ (=1 (-1) (1,-1) (1,-1)
= [Tf1 oo Ty, ]—[Tf1 I ].
Thus by Lemma 2.4, we obtain the following equation
(1) p(-1) (-1 (1,-1) 4(1,-1) (1,-1)
T1r<[Tf1 Ty LTy |- [Tfl Ty, ])

— (71,0) (71’0) (71,0) (170) (170) (170)
_Tr<[Tf1 T o o 1 S o S IO o ])

=0.
This completes the proof of Lemma 5.3. O
6. A quantization formula

Toeplitz quantization, or Berezin-Toeplitz quantization [4], has been studied by many
researchers on various types of domains. As an incomplete list, it was studied in [4,12,13]
on the Fock space on C™; in [17,36] for planar domains; in [20] for pseudoconvex domains;
in [24,49] on symmetric domains; in [18,39,40,45] for Kéhler manifolds. See [1,21,45]
for some very well-written surveys on this topic. Also see [21, Section 4.6] for some
examples, including the unit ball. Quantization provides some of the basic motivation
for the questions considered in this paper. However, the results in this paper are self-
contained.
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In this section we introduce an explicit algorithm for computing the bilinear operators
C;(f, g) in the quantization formula (1.5), and prove Schatten-class norm estimates of the
remainder terms. The proof mainly relies on the integration formulas given in Subsection
2.3 and the tools developed in Section 4. We begin this section with stating the main
results, Theorem 6.3 and Corollaries 6.7, 6.8. The final half of the section contains the
proofs of these results as well as various auxiliary lemmas. We start with explaining the
following quantization formula, which is perhaps known to experts.

Recall that we defined the functions d, g and 1 8 in Definition 2.8.

For : = 1,...,n, denote e; the multi-index that equals 1 at the i-th entry and 0
elsewhere. For i1,19,...,17%, denote

€iyin,yiy = Cip T €ig o €4y

Lemma 6.1. Suppose t > —1, k is a non-negative integer and f,g € €*+*(B,,). Then we
have the decomposition

k
t t
TJE )Tg(t) - Z Cl»tTé'z) + Rf g,k+1> (6.1)
1=0

where
Co,t = 17 Cit = nt_l +O(t_2)7 CO(f7g) = fga Cl(f).g) _Cl(ga f) = %Z{fvg} (62)

Here {f,g} is the Poisson bracket of f and g.
Moreover, the explicit formulas for ¢+, Ci(f,g) and Rf)q k41 are given as follows. For
any | >0,

FO 2 (0)
n+l —1
= — 2 _ ~t .
L B(n,t+1) ’ (6.3)

n

Cilf,9)(2) = (D' = [z~ S e enn (2) Dm-v-Dil,jl(f(Z)g(w))}

(6.4)
where
Doy = (1= (2, 0)*0-.00,. (65)
For any h € L2 ;(By) and £ € B,
R, (e / / B2 (= ()PS5 (2 () KO KL ()N () (),
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where

( 1)k+1
[T {uw, )P0

>1 It (z = w)Diy g - Di g [ (Dg(w))

21,0155 bk+1,Jk+1=1

Stgrr1(z,w) =

Formula (6.7) leads to the following norm estimate, which is well studied in the theory
of Toeplitz quantization. For example, in [20], Engli§ gave such estimates under a more
general setting.

Corollary 6.2. Under the same assumption of Lemma 0.1,

t —k—
IRY) ool et (6.8)

The novelty of this section is to consider Schatten membership and Schatten norm es-
timates of remainder terms. The following theorem is crucial to the proof of Theorem 7.3,
which is key to our main theorems.

Theorem 6.3. We have the following Schatten class membership and Schatten norm es-
timates for the remainder terms.

(1) On the disk, if k > 0 and f,g € €*TY(D), then for anyp > 1 and t > —1, R}t)g kel €
S'. Moreover, for such p,

H (t) (kD) +3

Rf,g,k+1HSP Skop

(2) On the ball in higher dimensions, if k > 0 and f,g € €*T1(B,), then for any p > n
and t > —1, R}t)g k1 € SP. Moreover, for such p,

|‘R§”t,)g,k+1|\3p Sk.p (D42

Recall that

v (2) = [ (4:0),(2:0), 22,
Sn
Therefore, we have the following formula for Cy(f, g).
CUEAE) == 3 do (ISl
&
/ (2; 4.0)0:8(2)) (Zl (A0, 019(2) ) 57
= =
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As in the proof of [47, Equation (4.8)], the functions

> (4:0,0:f(2) and Y (4:(0),0i9(2) = 3 (4:(0)),955(2)

Jj=1

are independent of the choice of basis. Thus C;(f,g) is independent of the choice of
basis. A similar computation shows that C;(f,g) (I =1,2,---) are all independent of the
choice of basis for general [.

Remark 6.4. At z € B,,, z # 0, choose an orthonormal basis e, = {e,1,€,,2,...,€5,} of
C™ under which z has coordinates (z1,0,...,0). Then under e,, by (2.7),

Cl(f7 g)(Z) = CN(fa g)(Z) + CT(f7 g)(2)7

where

n

On(f,0)(2) = — (=20 ()Dig(2), OrlFa)() = — (1-|2P) 3 (2)dg(2).

=2

The functions Cn(f, g) and Cr(f, g) represent parts of Cy(f, g) involving derivatives of
f,g in the complex normal and tangential directions, respectively. It is easy to see that
the definitions of Cn(f,¢) and Cr(f,g) do not depend on the choice of e, (as long as
e.,1 is in z-direction). Locally, we can choose e, so that the vectors vary smoothly with
respect to z. If f, g € €1(B,,) then Cn(f,g), Cr(f,g) € €(B,\{0}). Also, it is easy to see
from their definitions and the explicit formulas (6.9) and (6.10) that Cn(f, g), Cr(f,9)
are bounded. This implies

ICn(£,9) () S A= [21%)? [Cr(f,9) () S 12

By Lemma 4.8, for ¢ large enough, we obtain

) (t) n n
Tonire €57 WToygglsr Sptrs Vo> 5.0 =1,
and
t 1)
TéT)(f,g) S HT( fg)”SP <ptr, Vp>mn,p>1.
Remark 6.5. Continuing with Remark 6.4, we can take e, ; = ﬁ Denotee = {ey,...,e,}

the canonical basis. Denote ¢; = (;(£) to be the i-th coordinate of £ under the basis e..
Then compute

%3
G

= <eiaez,1> = (ez,l)i = |Z?Z|
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Thus, we compute the following expressions,

]2 R L

{2 52e5e @)

=|2|*Rf(2)Ry(2),

and

{Z 0f(§) (5_)”  =(07(2).89(:)) — |12 Rf () Ry(2)
Z i TT; i £(2)059(2).

In other words, we arrive at the following expression

Cn(f.9)(z) = —%(1 — |2*)?|2I*Rf (2) Ry(2), (6.9)
and
Crth @) =~ (= ) 3 (30— )0 (ID19(2) (6.10)

Adding up the two equations gives the following formula,
Cu(1,0)(2) = (1~ [2P) [Zaf - Rf(2)Rg(2)|.

Motivated by Remark 6.4, we further decompose R;ti] 41 according to the normal
and tangential derivatives.

Definition 6.6. For z € B,,,z # 0, let e, = {e,1,€52,...,€,,} be as in Remark 6.4.
Then e, ; represents the complex normal direction at z, and e »,..., e, , represents the
complex tangential directions at z.

Under the basis e, by (6.7), St g x+1 decomposes into

Stgrr(zw)= Y ViEi(zw)0" f(2)0"g(w).

1<]al,|Bl<k+1

For integers 0 < a,b < k + 1, define
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SEhnzw) = > V(2 w)o% f(2)0g(w).
15|Cﬂ»\ﬁé§i};1

A moment of reflection shows that the function S’;’S x+1 does not depend on the choice
of e,. Define the corresponding operator on Lgyt(Bn),

R (e / / 30, (oa (0)P)S20 (22 w)h(w) KO (€K (2)d (w)dhe(2).

Then we write

(t) (t)a,b
Rf g.k+1 = Z Rf,g,k+1'
a,b=0,...,k+1

Corollary 6.7. Suppose f,g € €*t1(B,). Then for any 0 < a,b < k+ 1 any p > 1,

p > max{ RSR;;H € SP. Moreover, for such p, and t large enough,

1427 k1=

[ (t)a,b —k=1+%

f,g,k+1HS” Sk t

In particular,

(1) if one of f,g has the form ¢(|z|?), where ¢ € €*+1([0,1]), then

n

® 2n :
ngk+168p’ Vp>max{?,m},

(2) if both f,g are of the form ¢(|z|?), ¢ € €*T1([0,1]), then

(t) n
Rf,g,k:+1 €8p7 Vp>max{2 W}

2 n

Forp > in case (1) and p > 5 in case (2) and t large enough,

IRY) jirllse Skp t 775

Corollary 6.8. Suppose x,y are positive integers, and f € €*(B,). Then the following
hold.

n (6 (t) (B (1) )
(1) FO”p>maX{ﬁg’1 b TG e T =T oy and TOTEY e =T Loy

are in SP. For p > m and t large enough,
2

t t n
T() T() T((1)||)fH$p<t +.

—142 t) (t
[kpe oy pllsr Spt7 05, ITITY

(1=[z?)® (A=1z?)"
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7® (t) (t)
(2) FO?“p>maX{$+y,1+t+1} (1- II)wT(l H)y_T(l |z|2)e+y SR FOTp>m and

t large enough,

® ® ® ign
TG ey Loy — Tazjappyerollse Sp t7 77

In general, we would expect that T} (t)T(t) T(t)

compared to T} t)T(t) for arbitrary f, g€ E (B, ) T(t) T(t) is only bounded, whereas the

have better Schatten class membership

semi-commutator Tf(t)Tét) — ftg) € SP for any p > n. Also in case (1) of the corollary
above, for a general function f € €*(B,), (f)‘ ‘2)L ) is in SP,Vp > %, while the

semi-commutator 7 IT(t) -7 is in &P Vp > —”1—. This is no longer true
(1-1212) (1—[z[2)= f +1

in case (2): both T(1)| 2 )IT((1)| |2y, and T 12]2)e ((1) 2y T((lt)_|z|2)z+y are in SP for
p > - Intuitively, this has to do with the fact that functions of the form (1 — |z|?)*
already vanish along the radial direction to some order.

In the rest of this section, we prove the results above.

Functions of the form

ST et (z = w) Dy Diy iy - - Doy F(2)9(w)]

appear in the formula of S¢ 4 x41(2,w) in Lemma 6.1. We need to estimate its absolute
value. To start with, we write the above sum in terms of the standard derivation. Recall
that

Di,j = (]. — (z,w>)232i8w

7

Definition 6.9. Denote

Apy(zw) = > Z [6ie i iy (2 — w)d;, ... O;, f(2)0;, ... 0, 9(w);

j=1
n —
C(z,w) = Z I90% (2 = )0y, 0, (1 — (z,w)) = —|z — w|?.
ij=1
In D, j,Diy 4y - Di, j,, the partial derivations 9., , 510“ RN 5% fall either on

f(2)g(w) or a copy of (1 — (z,w)). Thus the summation
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ST It (e w)Diyg Dy - Dy [ ()g(w)]

U1 yeeeyBl5J1 50 J1=1

can be reorganized into sums of functions of the form
(1= (z,w))* [C(z, w)]‘92 [B1(z,w)] % [Ba(z,w)] ALy (2,w).

In total, there are 21 steps of taking partial derivatives, and there are 2[ copies of (1 —
(z,w)) in the above. So

289+ 83+ s4+x+y =351+ 2+ s3+ 54 = 2L.
Also, the partial derivatives of the first operator, D;, ;,, always apply on f(z)g(w). So
z,y > 1.
From definition and Lemma 2.2, the following estimates are obvious.

Lemma 6.10. Suppose f,g € €'(B,,). Then

(1) [Aay (2:0)] S o= (w)"*¥[1 = (2,w)| 3
(2) |Bi(z,w)| S l@=(w)|[1 = (z,w)], Ba(z, )I S lpz(w)|[1 = (z,w);
(3) 1C(z w)] S lez(w)[?[1 = (z,w)|.

Lemma 6.11. Suppose k is a non-negative integer and f,g € €*+1(B,). For any | =
k41, set

Ji (Z’ w) = Dil»leil—lajl—l s Dihjl [f(z)g(w)]

.....

> It (z = w)Giy, gy, (2,0)| S L2 ()1 = (2, w) P,

Tyeey 80501500 01=1

(6.11)

n

2: €iqpeinyig €1 e, _ 3 ) o .
JCi1siga€in Jrsdi41 (z w)aij_lG“’m,“;jl,m’ﬂ (Z,’LU)

U1yl 0150 s J1sJ141=1

Sloz (W) PHHL = (2, w) . (6.12)

Proof. As explained in Definition 6.9, the following sum

n

Z Tt (Z - w)Gil,-wil;jl,m,jz (2, w)

U1 yeens 1,015 J1=1
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splits into sums of functions of the form

(1= (z,w))* [C’(z, w)] ° [Bl (z, w)] ° [Bg(z, w)} S4Am7y(z, w),
with

r,y>1, 259+ S3+s4+x+y=s51+52+ 83+ 54 =2l

Similarly, the sum

n

§ : €41 yeyig1€h1 s _ 3 . L .
I i1 i10%51 JJdi41 (Z w)@wmlGll,m,l,,;]h“m(z,w)

ByeeesisJ 1ot s i1 =1
splits into sums of functions of above form, with
z,y>1, 280+ s3+sat+x+y=20+1, s1+ 52+ 83+ s4=2L
By Lemma 6.10, we have the following estimate

(1 —(z,w))* [C’(z, w)] 2 [Bl (z, w)] 8 [Bz(z, w)} S4/13;71/(2'7 w)

<|ip. (w) |2Sz+83+84+x+y|1 — (2, w)|Fr T2 tssteat 2ty

~

Plugging in the equations for s;,z,y gives the inequalities (6.11) and (6.12). This com-
pletes the proof of Lemma 6.11. O

Proof of Lemma 6.1 and Corollary 6.2. Let G;, .. j,.j,,....;, be defined as in Lemma 6.11.
Suppose h € Hol(B,,) and £ € B,,. Write F = f(z)g(w)h(w)K” (£) and

Fisivsinri = Dy - - Diy 1 [ (2)g(w)h(w) KD (€)] = Gy i R(w) KD (€).

QY0

Then we compute Tf as follows.

TTOh(¢)

- / F(2)g(w)h(w) KD (€) KD (2)d, (w)dA(2)
B2

n

_ / O P (2, w) K (2)d, (w)d) (2)
B

.15) F@U(0)

Te 220l [ (o) e, )

n
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Yo 1% (z —w)D; jF(z,w .
_/(I)S,)l(|%(w)|2>zwl ( 1D F )Kfu)(Z)d)\t(z)d)\t(w)

1= (= w)?
B2
Sy 100 (2 = w)F (2, w)

i,j=1
11— (zw)?

=106 - [ o)) KON (2)dN ()

BQ

:T(t) h(§) + Rf g,1°

The condition for applying Lemma 2.16 is verified by Lemma 6.11. In general, we have

the following computation for R}f)g, .

Ry h(E)
Z? vzt LT3 (2 — w) F i g
=(-1) / k(s (w)]?) St =y PR KD () (w)de(2)

f“iz ®,1(0) LC
n n —2
(1) s /<1f\|> Y e e i (22N (E)
Ulsees @5 J1yee s J1=1

HED™ [ anE@anwel, (- )KL ()
B

€ig,i e
ZZ 77777 L1571 J141=1 I (Z - w)Diz+17jt+1Fit ,,,,, 13005001 (Z7 U))
+ +
1= (2, w)|2(+D)

= tTé«l)(f g)h(f) + R(ft,)g,l+1h(£)-

This proves the formulas in Lemma 6.1 for h € Hol(B,,). By [47, Lemma 8.4], we have
the following identity,

91(0)
Coq= 2 =1,
" B(n,t+1)

The estimate (a) for ¢; ; follows from Lemma 2.17. The formulas for Cy(f, g) follow from
direct computation. We can also see from the formula that Cj(f,g) does not depend

on the choice of an orthonormal basis. Using (2.7) we directly verify that Ci(f,g) —
Ci(g, f) = %’{f, g}. By Lemma 6.11, we have the following estimates,

1Sf.g.64+1(2,w)|

=1~ {u, 2] 2+

x § : T ina Stk (Z - w)Gil,-u,ikH;h,quk+1 (Z, w)

il7“"ik+lajk+1w~ajl:1

Slps(w)PEFVIL — (z,w)].

~

(6.13)
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Thus it follows from Theorem 4.6 that HR Forirll Sk t=*=1 which proves Corollary 6.2.
By [47, Lemma 5.3],

F ol (0) = nlt L 4 o(t™"2)

n

as t tends to infinity. Therefore, we arrive at the following estimate

. F el 1(0) _ B+ Li+1) (
YT Bm,t+1)  B(nt+1)

Bn+2,t+1)
B(n,t+1)

Y=nt P+ O(t?).
This completes the proof of Lemma 6.1. O

Proof of Theorem 6.3. In the case when n = 1, the estimates in the proof of Lemma 6.10
are improved into

(1) [Azy(z,w)] Sl (w)["FY[L = (z,w)|"FY;

(2) [Bi(z,0)| S lp=(w)[[1 = (z,w)|, Ba(z,w)| S lpz(w)[[1 = (z,w)];
(3) C(z,w)| < |z (w)P[1 = {2, w) .

This leads to

Yo I (2 = w) Gy g (2, 0)] S s ()L = (2, w) [

B15eees 80501505 J1=1
(6.14)
and then

157,941 (2,w)] S @z (W) PETVL = (2, w) .

Then statement (1) follows from Theorem 4.6. With the same argument, statement (2)
follows from (6.13) and Theorem 4.6. This completes the proof. O

Proof of Corollary 6.7. As in Definition 6.6, for z € B,,, z # 0, let e, be an orthonormal
basis of C" so that e.; = 5. Under the basis e., for 0 < a,b < k +1, ngkﬂ(z w)
consists of the part of Sf , 11 that contains 9% f(2)9°g(w) with a; = a, 31 = b.

Since R;t’;,’cbﬂ = P(t)T;tzakljrl, where

T h(z) = / O 1 (= (W) P)STL iy (2 w)h(w) KL (2)dN (w).
]Bn

To prove the Schatten class membership of the Rgf)ga,’ch operators, it amounts to prove

the corresponding estimates for the kernel 5;7’27 & +1(z, w), and apply Theorem 4.6.
Locally choose the basis e, so that it varies smooth with respect to z. Under the basis
e,, define
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A (z,w) = TP (2 — )9 f(2)0P g w).

Then by Lemma 2.2, we have the following bound,

lol+1Bl+og +81
2

|4a,5(z,w)| S oz (w11 — (2, w))|

Then S}t;a,;il(z, w) is a finite linear combination of terms like:

1
11— (w, 2)[20+D)

(1~ {2 0)) [0z w)] ™ [Ba(z.w)] ™ [Ba(zw)] ™ Aa (2, w),

where |al,|8] > 1,280+ 83+ s4+]|a|+|8| = s1+s2+83+54 =2(k+1),and oy = a, 31 = b.
Therefore we obtain the following estimate

S8 1 (2, 0)] Slips (w)[2ortsstoatlalbIBI] (5 qp)| =20 D bsrtoatoatoat [SHETELER

|2(k+1) |1 _ <Z, w>| 2+g+b .

=[x (w)

Thus by Theorem 4.6, RW®b = P(t)TJEZ?k’b € SP,Vp > max{ %

f.9,k+1 +1 221 }, and

_n__n
148327 k14
for such p, we have

HR(t)a’b k=147

f,g.,k+1HSP 51@,17 t

If f = ¢(|2]?) for some ¢, then RY)Y, | =

R;f)g‘f,ﬂl, R}f)g(?}cbﬂ = 0 for any a,b. This gives the improved Schatten-class membership

in (1) and (2), and proves Corollary 6.7. O

0 for any b. If both f, g are of such form then

Proof of Corollary 6.8. By Lemma 6.1, for f,g € €1(B,), T;t)T;t) —T}E’;) =R where

f.g,1

R 1) = [ @0 (e (@)P)S 0 wdh(w) KOO KD () () (),
B3

with

—(1—(z,w))’

[1— (z,w)|? (0f(2),z = w)(dg(w), z — w).

S.f,g71(zﬁ w) =
If f(z) = (1 —|z|?)® then we have the following estimate

[(0f(2), 7= w)| = [(x=1) (1~ [[*)*" 1z, 2= w)|  A=[/)" 1= (z,0)| S 1 (z,w)|".

Thus we arrive at the estimate,
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|<8f(z),m>(5g(w),z - w>|

{1 — (z,w)|**1/2, if one of f or g equals (1 — |z|?)®
1= (zw)[*v, i f=(1—|2*)7,g(2) = (1= |2*)".

<

~

Corollary 6.8 follows from the above inequality and Theorem 4.6. This completes the
proof of Corollary 6.8. O

7. First and second antisymmetrizations

As explained in the introduction, the goal of this section is to prove the trace class
membership of the antisymmetric sum [T ;f),Tg), T gl] as well as the asymptotic
trace formula (1.7). To begin with, we define first and second partial antisymmetrizations,
which are generalizations of semi-commutators.

Definition 7.1. For f,g € C(B,) and ¢ > —1, denote the semi-commutator on L2 ,(B,),

oi(f.g) =TT — T4 (7.1)

For fi,..; fnsG1s--+,9n € C(B,,) and t > —1, define the following partial anti-symmetric

sums.
[frog1: - frgnl = ZS sgn(7)0¢(fri,91) - - 0t(fr, Gn); (7.2)
and
(1,90, Fur g5 = 253 sen(r)oe(f1,97,) - - 01(fus gr,)- (7.3)

In the case when n = 1, the operators above both agree with the semi-commutator
o(f,g). In higher dimensions, the partial anti-symmetric sum (7.2) and (7.3) generalize
the semi-commutator (7.1).

Remark 7.2. Here is another way to describe commutators, semicommutators, and their

products. Fix ¢ > —1. Under the decomposition L?(\;) = L2 ,(B,,) ® L2 ,(B,)*, we can
write a multiplication operator My as a block matrix

My =

T;t) H](?t)*
H‘ff) * ’

where T;t) and H ](f) are Toeplitz operator and Hankel operator, respectively, associated
to f. From the equations
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Ut(f7 g) = _H}t)*H‘ét)v

and
0, 10) = 0u(f,9) — oulg. ) = HY" B — BO"HO,

we can see that both operators come from products of off-diagonal terms under the
above block matrix representation. Under this point of view, the first and second antisym-
metrizations defined above are linear combinations of alternating products of off-diagonal
terms, with f; appearing in the top right, and g; appearing in the bottom left.

Theorem 7.3. Suppose t > —1 and f1,91,--, fn,gn € €*(B,). Then the partial an-
tisymmetrizations [f1, g1, - fn, gn)St and [f1,91,- -, fn, gn)i° are in the trace class.
Moreover,

] fst

tl_i,rgoTr[flaglv"'7fn7gn hm T‘r[flmglw' 'afnvgn]ng

= /6f1 A 891 VAN 6fn A\ 8gn (74)
2m
B"L

As an application of the above theorem, we obtain the following asymptotic estimate
for the Schatten-4 norm of Hankel operators at dimension 2, which seems to be new to
us.

Corollary 7.4. Suppose f1, fo € €*(Bs) are supported inside By. Then the infimum limit
. (t))2 ()2
i 112
satisfies

i 2 B HE 30> 15 / Ofy A Of2 N A DTy

Remark 7.5. We list the n = 1 case for comparison and contrast. The equation
Ot _ &) pp@)x pyp(8)
Ty Ty = Tiyfe = —Hp Hy

and [47, Theorem 1.1] implies that for t > —1 and f € €%(D),

11O = 5 [ 05 ATF = [ 1 (lo:w)P) M)A F(w)dmz,w).
D D2

where p; is a positive-valued function on (0,1) with explicit expressions. As a conse-
quence,
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lim |HO |2 = - [ af ATF.
tooo ! 18 2mri
D
Proof of Corollary 7.4. Take g1 = f1, go = f2. By definition, we compute the expression
of [f1, f1, fa, f2]*4,
[f15 f1, fa, oY =au(f1, F)ou(fas f2) — ou(fr, fa)ou(fa, 1)

@) g7 (@) gy @)= () _ (O g7 (@) gr(t)* g7 (8)
H Hfl Hfz Hfz Hfl H Hfz Hf1

_1g®) )2 (#)* 7 (t) )% 7y (t)
_|H ‘ |H | <Hf2 Hfl) Hf2 Hf1'

Then by Theorem 7.3, we have the following limit,

c o Fsed (D2 D W% 170 gy 0% (¢
Trlfr, fr, fo, fo?°0 =Tx[H '[P H | 'IT(Hfz Hﬁ) Hy "Hp

ﬁWIB/afl NOfL NOfa N OS2

:%/5‘f1/\8f2/\8f1 ANOfs, t— oo.
47

Notice that (H}—Z)*H}?> H}z)*H}? > 0. The Cauchy-Schwartz inequality gives the fol-

lowing bound,

<(HDP | HY PG (HD P, HY )

f1

()2 g (t) |2
’Terl | |Hf2 f1

= (4R 1P

¢ t
= |1 H 12 H D s
We have the following bound from the above computation

i (10 B B > /%A%A%A%

Z 12
This completes the proof of Corollary 7.4. 0O

Remark 7.6. Both [f1, 91, ..., fn, 9]t and [f1, 91, - -, fn, 9n];d are sums of compositions
of n semi-commutators, each belonging to SP,Vp > n. This proves that they belong to S?,
Vp > 1. However, the trace class membership of these operators relies on some higher
order cancellation and is therefore nontrivial. As an example, we can show by direct
computation that each o4 (z;, Z;) is the diagonal operator under the basis {2%/||2%(|}aeng ,
with entry —(la] —a; + n+t)/[(n + |a| + t)(n + |a] +t + 1)] at a € N. Therefore
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o¢(zi,z;) ¢ S™. (In fact, in [51] it was proved that for f € H*(B,,), oo(f, f) € 8" if and
only if f is constant.) However, the theorem states that

(21, 21, - - s Zn, Zn]t = Z sen (7)o (27, ,21) - 0(2r,, Zn) € ST
TESR

The partial anti-symmetrization needs to be carefully chosen so that the higher cancel-
lation works. For example,

O't(Zl, 51) e O't(Zn, in) — Ut(,El,ZQ)O't(EQ, 23) e Ut(2n7 Zl) = O't(Zl, 21) N O't(Zn, ,in) ¢ Sl.

Therefore simply taking anti-symmetrization over a rotation generally does not give a
trace class operator. The above example also shows that the Connes-Chern character
(1.2) for the Toeplitz extension is in general not well-defined at p =n. At p=n+1, by
Theorem 6.3, for f,g € €%(B,),

— _n_ 1
oo (f,9)|lgns1 = ||R§f7)g71||$n+1 <R = e
Therefore for f1,..., fonio € €?(B,), the Connes-Chern character at p = n + 1 satisfies
ITt(fla'~'af2n+2)|§t71_>O7 t — oo.

In particular, its value depends on ¢. In Subsection 8.2, we consider the Connes-Chern
character at p > n after multiplying a suitable power of .

Theorem 7.3 immediately leads to the trace class membership and asymptotic trace
formula for the full anti-symmetric sum, which consist an important part of the proof of
our main result, Theorem 8.1.

Corollary 7.7. Suppose f1, fa, ..., fon € €*(B,) and t > —1. Then [T;?,T;?, e ,T}Z]

is in the trace class S*. Moreover,

. n!
tli)rgoTr[T;f),T}t) L TO) = T /df1 Adfa A ... Adfan. (7.5)
B,

277 T fap (27-”
Proof. By Remark 7.2, it is easy to see the following identity

1 S
), T, T ] = - G| AN R A L

TES2p

Therefore it follows from Theorem 7.3 that [T}?,T g), . 7Tg)] € S!. This proves the
trace class membership.
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Let H be the collection of subsets of {1,...,2n} consisting of n elements. For each
a € H, let [a] be the subset of Sy, that sends {1,3,...,2n — 1} to a. Then #[a] = (n!)?
for any a € H. In each [a] there is a unique permutation 7, that satisfies

Ta(1) <7a(3) < ... <71.(2n—1), 74(2) <7.(4) <...<T4(2n).
Then we compute the limit of the trace of full antisymmetrization as follows,

lim Te[7}, T(t), LT
t—o00 f1 J2

fan
1
=1 2 el

TESon

/\ afT‘Z ° /\ afTQn—l /\ ngQn

27T'L ’ﬂn[ Z Z bgn /ale A afTQ A af7—2n71 A 5f'f'2n

a€H T€]a]

:@T)nn' Z (n!)ngn(Ta) /afTa(l) A nga(Q) VAN 8f7a(2n_1) A nga(Qn)
" a€H B,

n /dflAdfg/\.../\dfgn.

~(2mi)n
This proves (7.5). O

7.1. Proof of Theorem 7.5 (t > —1)

Since o4(f,g) = [at(g, f)] , we can verify that

[‘f17gl""’fn’gn]£5t = ([gnafna--.’glafIECd) .

Thus it suffices to prove the results for the odd partial anti-symmetric sums.

Notation 7.8. For two operators A and B, temporarily denote A ~,, Bif A— B is a
trace class operator. If A; and B; are parameterized families of operators on Lit(Bn),
temporarily denote A; ~, B; if A; — B; are trace class operators on Lit(Bn) with trace
norm tending to zero as ¢ — oo. Again, we do not require A or B (A; or B;) to be in
the trace class.

The proof is split into two steps. In Step 1, we prove that [f1, 91, - -, fn, gn]® belongs
to the trace class, i.e.,

[flaglv"'vfnagn]fSt wO-
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The proof starts with repeatedly applying Theorem 6.3 until we get

ot (f1,90)0t(f2,92) - 0t (fs gn) ~w OV, 4

where the operator o

J1,915-fn gn
we show that ©1) P vanishes after antisymmetrization. In Part 2, we show the
asymptotic trace formula (7.4). The proof follows the same idea but requires a careful

involves only complex tangential derivatives. Then

track of the leading term.
Part 1: We prove

[frog1: - frgnlf ~0 0, VE> —1.

By Lemma 6.1 and Corollary 6.7, for f,g € €%(B,,), recall

t
(f7 )* ()L,]j
and
() (t)a
ngl Z R 91’
a,b=0,1
where
R(t ;€SP Vp>max{ n , n 1}.
o e T

(t)a b

In particular, if one of a,b is non-zero, then R} € SP for some p < n. It follows

immediately that for fi,g1,..., fn,gn € €*(B,), 7' 6 Sn,s

t)0,0 t)0,0 t)0,0
01 (fr201)0t(Frys92) 1o gn) ~w BE ROV ROV

Thus in order to prove [fi, g1, - -, fn, gnlt ~u 0, it remains to prove
£)0,0 £)0,0 £)0,0
Z Sgn(T)RE‘T)l 791,1R§‘T)2,g271 RS”T)W JGn,1 W 0. (7‘6)
TESH

Recall that by definition the integral kernel of Rgct)go,lo consists of the part that involves

only complex tangential derivatives of f and g. Tracing back in Lemma 6.1 we have the
following formula

REVIh(E) =~ / 1) (li- (w) ) Va (2, 0)(Q:0f (), 7= ) (Q. g (w), = — w)

BQ

n

h(w) KO K P (2)dA (w)dAe (),
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where Vi (z,w) =

17&12 is bounded. For any j =1,...,n and f,g € €*(B,,), define

FAq17<Z7w):_Vl('Z>w)(2 _wj)<Qzag< ) w>Kz(ut)(Z)7 z,w € B,.
Define the operator
Agajh(z) = / 0 (|2 ()P En, , , (2, w)h(w)d X (w). (7.7)
B,

Let [Qz0f(2)]; be the j-th entry of the vector Q:0f(z). Then by the above expressions,
we have the following expression

()0,0 (t (t)
ngl*ZP "Mig) o1, 8915

By Lemma 2.2 we have the bound

9 1
1 — (z,w)[nF1H-1

’FAg,l,i(Z’w” S |z (w)] z,w € B,.

Thus by Theorem 4.6 and Corollary 4.7, for any Lipschitz function uonB,, j =1,...,n
the following hold.

e Both PWA,; ;i and A, ;P are in SP for any p > n, with Schatten-p norm <,
e

« For any Lipschitz function u, both PM[A, ;1 ;, Mi"] and [Ag L ],Mff)]P(t) are in S?
for any p > max{22 s 1+‘+1 }, with Schatten-p norm <, ¢~ . In particular, these
operators belong to SP for some p < n.

Also, by Corollary 4.3, we have
« For any Lipschitz function u, [P®), Mq(f)] € 8P for any p > 2n.
Denote

uij(2) = [Q:0f:(2));, i,5=1,...,n.

Then by the above discussion, we compute the product of semi-commutators as follows.

ot(f1,91)0¢(f2,92) - - 0t (frr gn)

oy RDO0 (0.0 (£)0,0
f1,91,17 " f2,92,1 """ "V fn,gn,1
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n
= > P(”Mg{jlAghl)ij(f)M,SszAg%l,jz. POMY Ay 1, PY
J1seedn=1
= Y PUA 1 POME MO Ay, g, POME Ay, PO
J1seedn=1

+ Z P® M(t 7Ag1,1711]P(t) () Agz, 1,2 -+ POMY Agn,l,inP(t)

Un,,jp
J1seedn=1

+ Z p(t)Agl,le[Mz(Ltl),jlvp(t)]M(t) Agy 1y -- PO® Agn,l,z‘np(t)

Umn, gy,
Jiseesin=1

~w Z P t)Ag1 L) POMB  pp® Agy 1o “.p(t)M(t) Ag i J2108

u1 i1 ugj
Jis--in=1

Continuing like this, we obtain the following expression

oi(f1,91)0¢(f2,92) - - - 0¢(fr, 9n)

~w Z P(t)Agl,leP(t)AgQ,LJé s P(t)AgTHlv]nM’lStl) 1M7£t2)‘_7'2 o Méi)h, P(t) (7'8)
Jis--dn=1
(t)
f1.91,--, frnsgn”

Writing the operator above in integral form, for any h € L7 ;(By,),

(t)
®f1 G1yeees fn, gnh’(f)

/[H(b (o=, (w;)] ] Lﬁl Q.,09;(w;), l—wi>] . Lﬁlvl(zi’wi)]

B

' [ﬁ<an8f¢(wn)7m>]h(wn)

=1
CKOOKD (1) o KO (wn- 1) KD (20)dNe (w0) AN (20) - - A (w1)dAg (21).

(t)
We claim that @ﬁ g1y fnrgn

show this property, it suffices to show that

vanishes after antisymmetrization over the f-symbols. To

> sen(r ﬁ (Qu, Of v (wy), 2z —wi) = 0. (7.9)
i=1

TESH

Each (Qg, Ofr, (wy), z; — w;) is independent of the choice of coordinates. Thus we may
assume without loss of generality that w, = (r,0,...,0). In this case, we have the
expression
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n

(Qu, Ofr,(wn), 2 —wi) =Y (255 — wi ;)0; fr, (wn).

j=2
Then the above equals
S g —wig) e Gge = wng,) Y sen(1)05, o (Wn)dj, fry (wn) ... 0j, fr,, (wn).
J1yJn=2 TESH

Since j1, ..., jn takes value in {2,...,n}, at least two indices are equal. This implies that

Z sgn(7)0j, fr, (Wn)0j, fro(Wn) - .. 0, fr, (wn) = 0.

TESH

Therefore (7.9) holds. We conclude from this fact that the anti-symmetric sum

t
> (MO s

TESH

equals zero which completes the proof of Part 1. Namely we have

[fl?gl?~-~7fn7gn]f§t wO-

Part 2: We prove

tli\rgloTr[fl,gl,...,fn,gn]fSt ANOgL A ... NOfn A Dgy.

For this part, we assume that ¢ is large enough. We use the quantization formula (6.1)
at k = 1. By Lemma 6.1, Remark 6.4 and Corollary 6.7, for f,g € €?(B,,), we have the
following decomposition

ou(f,9) = R, = et T8 o + RY) 5. (7.10)
The following hold.
1.
cre=nt" 4+ 0(t™?),
2.

Cl(fvg) = CN(f7g) +CT(fag)7

where Cn(f,g) (Cr(f,g)) denotes the part involving complex normal (tangential)
derivatives of f, g, and

(t)

TCN(fg) e SP Vp > 5, with H (fg)HSp P tp7
¢ ¢

T()(fg)eS ,Vp > n, with HT()fg)Hsp <ptr.
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3. (1) (Hab  pD) (t)ab
Rf,g>1 - Z Rf,g,1 ’ Rf7g72 - Z Rf,g,2 ’

a,b=0,1 a,b=0,1,2

where a, b denote the order of derivatives on f, g in the complex normal directions,
and for large t,

(t)avb n ) —
Rf,g,i ESp,Vp>1+7aib, 1=1,2,
2
IR llsr Sp #7755

The above will be the main tool for Part 2 and will be repeatedly used without reference.
We will prove Part 2 by establishing the following properties.

[.flagla ey fn7gn]£5t
n ®) (®) )
~acty Y sen(MTe) o0 Te o 1601 0 (7.11)
TES,
n (®) (t) (t)
Cl7t Z Sgn(T)TCl (frl 791)Tcl (f7'2 g92) T Tcl(frn 2gn)
TES,
n (®)
~aCle Z SEU(T) TG, (4, 100001 (Frg92)Ci (Frn 90)" (7.12)
TESRH

n (t)
Tr|:01¢ Z Sgn(T)TCl(fq—l ,91)C1(frg,92)C1(fry, s9n)
TESH

%;,/8111/\591/\.../\3fn/\59n,t—>oo. (7.13)
(2mi)™
B,

Proof of (7.11). By (7.10), we compute the product of semi-commutators

n t t t
ot(f1,91)0¢(f2,92) - - 0t(fn, gn) = ClvtTél)(ﬁ’{h)Tél)(fz,gz) T Tél)(fnign)

_p(t) (t) (t) (1) (t) (1) (t) (1) (t)
7Rf1,9171Rf27§2,1 T Rfmgml - (Rf],gul - Rf17g1:2) (Rf2a9271 - Rf27g2,2) T (anagnal - Rfmng)

_ (t) (t) (t)
- Z j:RflvglvilRf2vg2v7:2 T Rfmgmin’

(i1,12,...,0n ) EX

where
X ={(i1,42,...,4n) 1 1; = 1,2, and at least one i; = 2}.

Therefore

fs n t t t
[fl’gl’ s fos g”]t - €1t Z Sgn(T)Tél)(fn 791)Té1)(fr2,92) o 'Tél)(f«,wgn)
TESH
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is a linear combination of operators of the form

(t) (t) (t)
Z sgn(T)Rle yglyilRfrz 192,82 " Rf‘rnvgnyin’
TES,

where (i1, 12,...,1,) € X. For (7.11), it suffices to prove

Z Sgn(T)R(t) : R(t) P R(t) i ~a 07 V(ilu oo ;Zn) € X.

le 591,51 fTQaQZv'LQ an7gnvz7L
TESH

We show the case when (i1,1i2,...,i,) = (2,1,...,1), i.e.,

t t t
Z Sgn(T)Rgh)l,g1,2R§“T)2,g2,1 ... R;T)mgml ~q 0.

81

(7.14)

TESH
First, each R;t)g , decomposes into the sum of R}tz]a;b. The operator Rgf)gof € SP . Vp > n,
and
(£)0,0 -4z t)O 0 2ty
Ry gillse St77, Ry, 5 lse .

f (a,b) # (0,0) then the operator belongs to SP for some p < n, with asymptotic

Schatten-norm estimates

R RO s ST

a,b
IRV 0

Therefore for each 7 € S,,, we have the following equation

RO p® (1)

(t)an,bn

— z : (t)al,bl (t)ag,bz
f7-17g112 fT219271... fﬂ'n7gn71 fﬂ'119172 f7-279271... fﬂ'nvgnal.

al,b1:0,1,2
az2,b2,...,an,b,=0,1

Suppose that there is some (ag,br) # (0,0). Then we can choose 1 < py,...

such that ij =1, an dR(ta]’l €SP i=1,...,n. S0

'r 595505

(t)al,bl (t)a2,b2 (t)an,bn ~ 0
f7-179172 f7'279211... an7g7L71 w

with trace norm

<t Fer oM e =

It follows that R t)at]’lbIZR;?:gﬁi o Rgc?a“q:”l ~q 0. And we conclude

() (t) (t) (£)0,0  H(£)0,0 (£)0,0
an 7g1,2Rf72792,1 T Rfm gnl ™ qu ,g172Rf72792,1 Rfm,gml'

Next, we show

apn<oo

(7.15)
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)0,0 0,0 0,0
Z Sgn( )RSle 291, 2R5‘?2 g2,1° Rg‘trl,gn,l ~a 0. (7'16)
TESn

The proof is an almost verbatim repetition of the proof of (7.6). Tracing back the

definition, for f,g € €%(B,,) and h € L2 +(B), we compute R;tgogo,

RYOPh(e) = / 0, (|- (w)[2)Va(z,w) Q01 (2), 7 — w)(Q.Dg(w), z — w) (7.17)

B2
(w) KD (K (2)dA (w)d A (2),
with
e 1202 (2 = w)0s,, 0wy, (1 — (2, w))?
Va(z,w) = 0= (w.2) 2 (7.18)
o 1= (zw) Clow Bi(z,w)Ba(z,w)
Pafwayr YT T (719

where C(z,w), B1(z,w), Ba(z,w) are as in the proof of Lemma 6.11. By the estimates in
the proof, we get

Va(z,w)| S les(w)[*. (7.20)

Similarly to the proof of (7.6), we write

R0 _ &) 1(0)
Ry g ZP)MQaf 9.2.5

where
Ag2,h(2) / 0 (|- (w)[2) En, ., (2, w)h(w)d A (w)
B,
with
Fa, ., (zw) = Va(z,w)(z — 0)){Q:0g(w), z — w) K (2).

By (7.20) and Lemma 2.2, we have the following estimate

1
2
|FA9,2J (va)| S lez(w)] 11— (z,w)[rrivi—1

Again, by Theorem 4.6 and Corollary 4.7, for any Lipschitz function v on B,,, we have
the following properties.
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o Both PWA,,; and Ay ;P are in SP for any p > n, with Schatten-p norm <,
.

« Both P® [Ag2js Mét)] and [Ag 2 j, Ml(f)]P(t) are in SP for any p > %", with Schatten-p
norm <, .
« For any Lipschitz function u, [P®, M{"] = [P®, M{P1P® — pO[P® MM € sP
for any p > 2n, with [|[P®, MP]||s» <p 7.
Then as in the proof of (7.8), we compute the product of R}?ﬁ’})ﬂ and R;t,)f’g% (1 =
2, ,n)

(£)0,0  5(£)0,0 (£)0,0
fr1:91,27 " fry,92,1 " "V fr 1 G0, 1

= > POM® Ao POME  Ag,qj, ... POMD Ay o5 PO

Ury,j1 Urgy,j2 gn 9
Jiyeesdn=1

~a Yy PON 5 PONG, g, PO M MO M PO
1y dn=1
._@’(t)

T frlvgla--wfrnvgn.

Again, by (7.9), we conclude with the following equation

/(t
Z Sgn(T)@ff'l)yglv---afrn ygn = 0
TGSn

This proves (7.16). And together with (7.15), it proves (7.14) for (i1,...,i,) =
(2,1,...,1). The proof for general (i1,...,%,) € X is an almost verbatim repetition
of the above. This finishes the proof of (7.11).

Proof of (7.12). Denote
bi(2) = (1= o), i=1,2,....
Suppose f,g € €*(B,,). For 2 # 0, let e, = {€,.1,€..2,...,€.,} be an orthonormal basis

of C™ such that e, ; = ‘%‘ Let ¢ : C™ — [0, 1] be a smooth function that equals 1 inside

%Bn and vanishes outside %Bn. Under the basis e,, let

Dyoa(s) = 1 | S 0(:)di9(2)] 1 - (), (7.21)
1=2
and
Dpgal2) = —2019(2)Brg(:)(1 — p(z)) + D)) (7.22)
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Then by Remark 6.4 and direct computation, we have the following decomposition

Ci(f,9) = ¢1Dg g1 + $2Dy g2

By Remark 6.5, Dy g1,Df g9 € €' (B,,). With the decomposition we have the following
formula

) ) ) ()

T, (100 L0 (far92) L0 (g ~ Lot 01 (1100 C1 (f2,02). -1 (Frngn) (7.23)
n (t) (t) (t) (t)

:Cl’t . Z l:T¢ Df1 91,11 T¢12 Df2192112 e ¢Zn Dfnwgn-in, - Td)il Df1w91-11 4’1'2 szwgzﬂz "'¢1n Dfn-gnym :

By Theorem 6.3, Corollary 6.8 and Lemma 4.8 for ¢ large enough, 4,5 = 1,2,..., and
u,v € €*(B,,), we obtain the following estimates.

TOTY 1) € 87, ¥p >n,  and [TOTH — T ||lsr p ¢,
TOTH — T € 8, Wp > - and |T9T0 — T [|so <p t71F7,

%,
TOTS) T € 8% > oy and |TOT) ~Tler <71,
and
T T, € 8 > T and [T0TS) T, [l 5,17
T €87, Vp > % and |75 [|s» <, 05,
and

Cle =~ t_l.

Therefore by the above estimates, we compute the product of T(t)

fJ 2950 J
(t) 7 7(t)
“ tT¢11Df1 91,41 ¢12Df2 92,12 ¢1n D .gn in
—cn @ ) 7® 7
_ClvtT Df1 91,1 ¢12Df2 g2.ia ¢1ann Insin
_on (&) (1) _ () (t) (t)
Cl’t (T¢il TDf1 191,41 T¢i1 Dy .g1.41 )T¢i2 Dyygaiin 7 T¢i7LDfn¢gn,in
(t) (1) (t) (t)
~aCl tT TD.f1‘91-,7?1 T¢i2 Dfy.gp,in 7" Td’m Dfrgn in
() p(t) (t) (1) (t) (1)
acl tT TDfl g1 11T¢i2 TDf2=92w’i2 T T¢7fn TDfn gnin
) p() (1) (t) 7 p(®)
_Cl tT T¢12 D1 .01.01 Tsz»gzﬂz d’tn TDfn gnyin
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+ c’lﬁthi [Tg;Tngg; LTy
~oct IOTO TS Ty )
~alt TS0 LT TE) T T
= tT(t) éliTgﬁl,gl,anz,gZ,iQ' gzn gnsin
T T (1) T8, =TS )T T
ol Ty T TE) D Ton - TD)

(t) (&) (1)
ct T LT T .
~aClt Gin = Disi.g1.01 Dfa.92.i2-Dingn in

If some i, = 2 in the above, we continue the above computation as follows,

(t) (t) 7O )
acl tT¢11 biy T¢'L3 ¢1n TDngl vi1 Dfa,gain - Din gn in

o ® ®
TaCLt Fiy Pig-Pin~ Diyg1,01 Drarg2.in - Din,gnin

t)

~oaC T

& .
arlt @iy Pig - Pin D1.01.01 Dsagn.in - Din.gn.in

This proves that if there is some i = 2, then we have the following equation

o ® 70 7® o ®
1t Fi1 Dy g1, c1512Df2 92,12 ¢1ann Insin a C1t Giy i Pin Dry,g1.i1 DfagasioDin.gn.in
(7.24)

If all ¢, = 1, in the steps right above (7.24), the difference operator may not belong to
the trace class. We need to take the anti-symmetrization into consideration. Similarly to
the proof of (7.9), the odd anti-symmetrization is over n symbols, but Q.Jf has only
n — 1 entries under the basis e,. Thus we have the identities

> sen(r)Dy., g1 Dfy g0t - Dy, gun =0, (7.25)
TES,

and

(t) (t) (t)
D sen(n)el Ty0p, Top, o Tylp,
TESH

n [e] " e
Tally [T¢1 ] Tzfes” sen(7)Dyr 61,1 Dfry 92,1 Dprpy sgm 1 (7.26)

=0.
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Also by (7.25), we have the following equation

n m(t)
Z SgD(T)Cl,tTd)thl 01,101 Dfry 9,101 Dpr g1
TESH

=7 = 0. (7.27)

T Y res, sen(T)Dsr 911D fry 92,1 Diry g 1
Altogether, (7.23), (7.24), (7.26) and (7.27) imply (7.12).

Proof of (7.13).
Denote

F(z)= > sen(r)Ci(fr,91) - Ci(fr,r 9n)-

TESH

Under the basis e,, we compute the following volume form

(=D)™"n"(1 = |2|*) ™" Fdz1 A ... Adzn AdZ1 A ... AdZn

= Z sgn(T)Oc(l)fﬁ 5<(1)g1 . Gg(n)f.rn 5§(n)gnd21 A...ANdzp AdZ1 A ... ANdZp
T,6ESn

= Z sgn(T) (ag(l)fndzq(m) VANAN (8§(n)f7ndz§(n)) A (5§(1)91d2<(1)) VANAN (5§(n)gnd2§(n))
T,6ESn

= Z (6§T71(1)f1dz§771<1)) VAN (ag.,.fl(n>fnd2§.,.71(n>) AN (5<(1)g1d5<(1)) VANAN (5<(n)gnd2§(n))
T,6€ESn

= Y @ fidzm) A A Ouny fadzin) A (Beay91dze)) Ao A (D (nygndZo(n))

L,sES,

=0fi AN...NOfa ANOgL A ... A Dgn.

Therefore, we obtain the following formula of the trace
()
TrTzfesn sgn(7)ct ;C1(fry,91)C1(fry,92)C1(fry, 59n)
=, TeTy)
n—1)lc} F
( ) 1,t / ( (Z) dm(z)

TmBm,t+1) ) (11— 22
B,

_ (n—="1lt, (=) 1 _ _
B,

Since
cLi=nt" +O(t™%), Blnt+1)=(n-1"+0{ "),

we have
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C?,t N n
B(n,t+1) (n—1)V

Simplifying the above gives (7.13).
In summary, we have proved (7.11), (7.12) and (7.13). Altogether they finish Part 2.
We have completed the proof of Theorem 7.3 for ¢t > —1.

7.2. Proof of Theorem 7.3:t = —1

In this subsection, we prove that [fi, g1, .., fn, 9n]™ and [f1, 91, ..., fn, gn]*d belong
to the trace class of the Hardy space. The proof follows the same idea as the case of
t > —1 but requires more careful treatment because the Hardy space norm is defined
in a more subtle way. Our approach is to move most of our arguments to the Bergman
space L2 ((By,) via the maps described in Diagram (7.35).

To simplify notations, we write

o(f,9) = o-1(f.9),

and

[f17g1a"'afn7.gn]f5t = [flagl7"'7fnagn]f5t

[f17gl7"'afn7gn]SCd = [f17g17"‘>fn7gn}50d

Lemma 7.9. Suppose g € €*(B,,). Then for h € H*(S,),

T Vh(z) = / . ()]~ —on § (w)<j Z>z)u>h(w)K§;1>(z)dA0(w), Vz € B,,.
(7.28)
Moreover, for z € S,, almost everywhere,
T~ Vh(2) = g(2)h(2) — % / %h(wm&”(wdxo(w» (7.29)
B,

Proof. Suppose h € Hol(B,,). For z € B,,, apply Lemma 2.15 with a = 8 = 0, v(w) =

_]_)

g(w)h(w). Then we compute Tg( as follows,

—1
T Vh(z)

- / g(w)h(w)K§ (2)

Sn

j h(w)|(z; —w 1
—do0(2)g( ——/|<pz J-2n 2= [1(_)<( );( D 1D (2o (w)

do(w)

O2n—1
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1 on dg(w),z —w _
—o(:In2) — 1 [ s 2 I ) KD () (w),
B,
This proves (7.28) for h € Hol(B,,). The equation for general h € H%(S,) follows from
approximation.
For h € Hol(B,,), z € S,, and < r < 1, we compute TSV h(rz)

(9g(w), rz — w)

- h(w) KV (rz)dA o (w).

w

TE2) = gr)0r2) — = [ lorsw) =
B,

The first term on the right hand side tends to g(z)h(z). In order to prove (7.29), it
suffices to prove the following identity

1m an ( () Z—w) WV KD (12 w
i / fore) )R ) ddo(w)  (730)

[ (Og(w), z — w) VKD (5 w
_/1_<w’2> R(w) KD (2) o (w).

Bn

By Lemma 2.2, we have the following estimate

-1 |orz (w)]
h(w)Kq(u )(7’3) S = (rz,w>|"+1/2.

‘@g(w),m — w)

1 —{w,rz)

Therefore we have the following estimate of the integrals

‘/ fore()] 2 2I0TE 0 e ) )

—(w, rz}

_B/ O =) K2 r )

<t

Bn

= [ o (1= o) s dha ()

<1 - \rz|2)1/2 -0, r—1".

Here the last inequality follows from Lemma 2.3 (3). Therefore, we have the following
limit computation,
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dim [ o) 2 S ) kD () (730
B,

~ lim (0g(w),rz — w)
r—1- 1—(w,rz)
B,

h(w) K (rz)dAo(w).

For 1 <r <1and |a| <1, it is easy to verify that

1 2

1—ral = |1 —al

So we have the following bounds

‘(890vhrzw>

. [ors(w)] 1
T (e OESI02)| S S

R e R It eA™ e

Thus by the Dominated Convergence Theorem, we arrive at the following equation

b [ O9(w), 7z~ w) Dg(w), 2~ w)

w)K(Y (rz w) = {
r—1- 1 —(w,rz) hw)Ky ™ (rz)dro(w) / 1—(w,2z)
]Bn ]Bn

h(w) KD (2)d o (w).
(7.32)

Combining (7.31) and (7.32) gives (7.30). Thus (7.29) holds pointwise for h € Hol(B,,).
The general case follows from approximation. This completes the proof of Lemma 7.9. 0O

Lemma 7.10. Suppose f,g € €*(B,). Then

U(fa g) = Rf,g,la

where the operator Ry 41 is defined as follows.

Ry g10(6)
-~ / / o= (w)] =" <af(2)’z<1_ _wfw,iiﬁ)’z KD () KD (€)dda(w)dho )
B, B,

Proof. Suppose h € Hol(B,,). By Lemma 7.9, for z € S,,, we compute Tg(_l)h

T4 0h(:) = g(2)hz) o [

n
B,

(9g(w), z — w)

= (w2 h(w)K SV (2)dX o (w).

)

Therefore for £ € B,,, we have the following computation of Tf(fl)Tg(fl)
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T TSV h(E)

S ACCLCETY | <a91(7”_”){7“})h(wﬂfﬁr”(z)ouo(w)}f(z)fré—”<s>d"—(z)

> O2n—1
~ [ s s@mE e 97 / / {0002 =) ) e (21 ()R () S
Sn
=7(;Vh() - / / eler )Kﬁfl)(Z)f(Z)Ki_l)(f)dAo(w)jj:f)l-

Since f, g, h are bounded, using Lemma 2.3 we see that the double integral on the right
converges absolutely. By Fubini’s Theorem, we have

o(f,9)h( / { / Iz SO i)

For fixed w,£ € B, applying (2.15) with a = 8 = 0, v(z) = MK( 1)(5)

—(w,2)

gives

/ N0 o ) g 21

O2n—1

/‘ oty QLT Do)z )

(w, 2))? w (Z)Kifl)(ﬁ)dAO(z),

Therefore we get the following formula for o(f, g)

o(f, )h(e)
_ / {% / o= )| 2 EELER I gfigg‘;) - >K&—%)Kﬁ—“<£)dxo<z>}h<w>dxo<w>
-1 / ooty 2 LR 0O 2 20 1)) D () dro(2)

This completes the proof of Lemma 7.10. O
Definition 7.11. Suppose f,g € ¢2(B,,) and h € L?()\).

1. Define

Ph(¢) = / h(2) KD (€)dMo(2),

B,
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and

Ly gh(z) = —i/lsoz(w)l‘Q” <6f(z)’z(1_—_w> 900):2 = ) 11 (2 h(uw)do ().

n? (w, 2))?
B,
Then
Rfg1=Plygq
. Define
=(Q:0f(2),(z —w)), A" = (P:0f(2),(z — w)),
= <Q259(w)"z—w>’ B! :<Pzég(w)72_w>a
and
C(z,w) = AB®, a,b=0,1.
Then
CP(z,w)| S 1= (2w, (7.33)
and
> C¥(zw) = (0f(2), 7 = w)(0g(w), z — w).
a,b=0,1
. Define
a 1 —on C%b(z, w _
P5o) = = [ len(w)l o KD ) o)
Then

Trg= Y Tfy

a,b=0,1
. Define for j =1,.
Agsh / o)y (L) e Cynanog,

Then

0, 0
Ty ZM[Qzaﬁqug

j=1
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Lemma 7.12. Suppose n > 2, f,g € €*(B,), u € €*(B,), and a,b = 0,1. Consider

P, F‘}:;Ag,j as operators on L?(\g). Then the following hold.

p<n.
(5) For each j, Ay ; is bounded.
(6) For each j, [Ay;, M, )P € SP for any p > 2n.
(7) For each j, [Ag j, M,|P € SP for any p > 2?”

Proof. By comparing the integral formula of P and the Bergman projection P(¥), it is
easy to see that (2) follows from Corollary 4.2, and (1) follows from Corollary 4.3. If
n > 3 then (3) also follows from Corollary 4.3. At n = 2, notice that P is self-adjoint
and has range in L2 ((B,,). Thus we compute the commutator [P, M,]

[P, M,]) = PO[P,M,]+ (1 - PO)P,M,] = ([Mﬁ, P]P“”) —HO'P.

By (2) and Corollary 4.4, the second term on the right belongs to SP for any p > 27”

For any h € Hol(B,,), apply (2.11) with t =0, « = 8 =0, ¢ = 1, and v(w) = (u(z) —
@(w))h(w)(1 = (z,w)). Then we get the following expression

(M, Plhz)
- / (a(2) — a(w)) h(w) KV (2)dho(w)

(1= [w*){v(w), z — w)

T— (w.2) K (2)dh0(w) (7.34)

B,
—— [ 601p-tw)P)
B

= / G 1(|ps(w)]?) ((1 = (2, w))(@u(w), z — w) + (a(2) — u(w))(z, 2 — w>>
B,

1 fuf
: mh(w)K&O)(z)dAo(w)-
Take
Plew) = 2 (= o) @), )+ (06:) - a(w) (oo 0) ) = KOG

Substituting F' into the integral on the right hand side of Equation (7.34) gives the
following formula
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Mz, Plh / G0 (ip- ) P) P (2, w)hw) A ().

By Lemma 5.9, we have the following estimate
GI1(s)| S 57"

By Lemma 2.2 and the fact that @ € ¢*(B,,), we obtain the following bound

1
|F(z,w)| S |%(W|W'

For any € > 0, split the map as follows.

Eo,3—¢

Li 3— E(Bn) L LQ(/\O)v

[Maap]P(O) :LZ,O(B ) ——

where T'h(z) is defined as in the last line of Equation (7.34). Then by the estimates above
and Lemma 3.1, T is bounded. Thus by Lemma 3.4, [My, P]P(®) is in S? for any p > %
This proves (3).

Let
1 OC%(z,w) _
Fl‘*a,b(z,w) = _Em[(& 1)(2), Z, W S B,r“
and
1 <Qzég(w)7 Z— w> — .
Fp, (zw) = _ﬁ(zj — w;) (1 — (w,2))2 Kfu 1)(z), z,w€By,j=1,...,n.
Then write
D500 = [ lea() 2 Frea (2 w)h(w)do(w)
B,
and

Ay hz) = [ a2 Ey,, (2 w)h(w)dho(w).
B,

By (7.33) and Lemma 2.2, we have the following bound

1
L= (zw) =t

| Fra (2, w)| S lz(w)|?

and
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1

2
|Fa, ;(z,w)] S l@z(w)] RGeS

Thus by Lemma 3.1, Ay ; is bounded. This proves (5). By Lemma 4.5, I‘;:ZP(O) e SP
for p large enough. Since P € S? for any p > n, and F'}ZZP = F;:ZP(O)P, we have
F;:ZP € 8P for some p < n. This proves (4). Also, (6) follows from the above estimates
and Corollary 4.7, and (7) follows again from (6) and the equation P = P P. This
completes the proof. O

Lemma 7.13. Denote P the operator from L2(Xo) to H2(S,) defined by the same integral
formula as P. Then P = E*y .

Proof. For any f € L?(\y), g € H%(S,), we compute (Pf, 9)H2(S,)

Pramsy = [ [ R @@

O02n—1

S, B,
- / / @Kﬁ‘”(&)da—@ﬂz)dm@)
B, S,

O2n—1

- / T f (2)dN(2)

B,

=(f, E_119)12()o)-

This completes the proof. 0O
Proof of Theorem 7.3 (¢t = —1). For any 7 € S,,, split the map

O.(f7'17g1) T O-(an,gn) = PFfrl 7glprf7'27g2 e PFf‘rn ygn

as follows.

(0)
E_11 2 Pir 01 Pliry 90 Plir g0 P
La,O (B”)

H2(S,) () D H2(S,).  (7.35)

By Lemmas 3.4 and 7.13, the operators on the two ends of (7.35) are in SP for any
p > 2n. Thus it suffices to show that

Z Sgn(T)Fle »g1 PFfTQ g2ttt Prfrn 79%P(0)
TESR

defines an operator in SP(L?()\g)) for some p < T

Notation 7.14. For operators A, B, temporarily write A ~, B when A—B is in SP(L?(\o))
for some p < 7. Again, we do not assume A or B to be in any Schatten-class.
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Denote
uij(2) = [Qz0fi(2)];-
Then by Lemma 7.12; we compute an element in the above sum

Fle »g1 PFsz g2t PFf‘rn sgn P(O)

_ a,b a,b a,b (0)
(X ) X or)r( X )

a,b=0,1 a,b=0,1 a,b=0,1
~ 100 0,0 0,0 (0)
prq ,91PFf72 g2 PFmegnP
n
_ E : . ) . p(0)
- MuTl,jl Agli.jl‘PMuTz,jQ Agz,hP e Mum,jn Agn ,JnP
Ji,--dn=1

n
- E ) . . p(0)
- Athl Muﬂ'l ,J1 PMUTQ,]'Q Ag2»J2P e Murn,jn Agn ;.7nP
Jiseesdn=1

+ > M, Mg JPMy,  Ag, 5, P My, Ay, 5, PO

Ji,--in=1

Each operator in the second term contains n — 2 copies of P and one [M,, ., , Ay, j,]P.
By Lemma 7.12 (2) and (7), it belongs to S” for some p < 5. Thus we compute the

following sum,

n

Z Mu-rl,jl Agl,jl PMUTQ,]‘Q AngZP s Mu-rn,jn AgnyjnP(O)

J1seesgn=1

) ) . p()
91;]1Mufl,j1 PMuTz,jz AQZJZP' te MuTTL,j7L Agm]nP

ﬁ2
M:
=

- Z Agl,jl PMuﬂ'l,jl MuTQ,jQ Agmjzp cee Mum,jn AgmjnP(O)

J1se-dn=1
n
) ) . p(0)
+ E Ay [Mufw.1 , P]Mu%j2 NgpjoP oo o My, Ay 5 PV
J1yesgn=1

By Lemma 7.12 (2) and (3), the last term belongs to S? for some p < 5. Therefore
we have the following equation
n
Z M"T1,J'1 Agl’jl PM“TQJ‘Q AQZJZP t Mu"'nvjn Agn’jnP(O)
Jiyeesdn=1
n
~p Z A.(]l 2J1 PMufl.jl MuTg,jz A927j2P o Mufn,jn Ag77,7jnP

Jiseenjn=1

0
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Continuing like this, we obtain the following equation

Z M“n,jl Aglﬁjl PMuTQ,JQ Agg,jgp oM

Urp,jn

J1seesfn=1

n
§ ) ) ) (0)
~p AthlPAngzP s Agmjnjwuf1 91 Mu72,j2 e MuTn,jnP
J1se-5dn=1
::@ff1 2G1sees frm G

As in the proof of Theorem 7.3, by writing Oy, 4,
by (7.9), we can show that

frn g @S an integral operator, and

.....

Z Sgn(T)@le agl7"'7f7'n7gn = 0
TES,

Therefore we conclude

Z sgn(T) s, 0 PT g0 - PFmegnP(O) €SP
TESH

for some p < 5. Thus by (7.35), we obtain

[f17gl> . ’7fnag’ﬂ]f5t = P< Z Sgn(T)Pfrl,glprfTQ,gz e 'Prffn,gnP(O)>E1,1
TESH

is in the trace class. Since

[flvgh" '7,fnagn]fSt = ([g_naf_Tw '7g_17f_1]SCd> )

the second anti-symmetric sum is also in the trace class. Finally, as in the proof of
Corollary 7.7, we obtain

-1 -1 -1 1
T T = Y sen() s s fr ) € ST
TES2n

This completes the proof of Theorem 7.3 for t = —1. O
8. Main theorems

In this section, we prove the main results of this article.
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8.1. Helton-Howe cocycle

We are ready to prove the following main theorem.

Theorem 8.1. Suppose fi1, fa, ..., fon € €*(B,) and t > —1. Then the following hold.

1. The antisymmetric sum [T;t),T}t), e ,T;t)] is in the trace class S*.
1 2 2n
2.
t t t n!
ST T TR = /df1 Adfa Ao Adfon, (8.1)

n

which is independent of t.

Proof. First, we reduce the Hardy space case to that of a weighted Bergman space. By
Lemma 5.3, the operator on H?(S,,),

(=1) m(=1) (=1 (1,-1) p(1,-1) (1,-1)
[Tfl Ty, s Ty ]—[Tf1 T, oo Iy ]

is a trace class operator of zero trace. By Corollary 7.7, the operator

(1) m(=1) (—1)
[Tfl ,Tf2 7...’71]('271 ]

is itself in the trace class. Thus we have the following of traces

—1 —1
T[Ty Y, 7)Y

(=17 _ pp(h=1) p(1,—1) (1,-1)
3 Sl v S Sl IO S

] f2'n, f2'n.

On the other hand, by Corollary 7.7, the operator

(1) (1)
[Tf1 e ,szn]

is a trace class operator on L2 | (B,,). Since

[T(l)

(1) _ (L= (1,-1) (1,-1)
f1v”-’sz,,LHm(s,L)—[Tﬁ Ty, T J

71T fon

by Lemma 2.4, we get the following equation of traces

(1,=1) p(1,-1) (1,=1)y _ (1) (1)
Tr[Tf1 Ty, RRRRY ]—Tr[Tf1 ""’szn]'

Therefore we arrive at the following equation

(=) p(=1) (=1 _ (D) (1)
nry VoY, T Y =TTy, T

Thus the case of the Hardy space reduces to that of the weighted Bergman space.
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Suppose t > —1, by Lemma 5.2, the operator on L7 ;(B,,)

(t) (t) (t) (t+1,t) (t+1,t) (t+1,t)
[Tfl ’sz 7""Tf2n]7[T’f1 ’sz ""’szn ]

is a trace class operator of zero trace. By Corollary 7.7, we know that the antisymmetriza-

tion [T}?,T}z), e ,TJEZ] is itself in the trace class. Thus so does [T}f+1’t)7TgH’t)

ngl’t)]. Also by Corollary 7.7,

geeey

[T]Etﬁ-l) T}t-H) T(t-i—l)]
1 ? 2

ERRRELY

is a trace class operator on Li’tH(Bn). As explained in the beginning of Section 5, the

space Lz)t(Bn) is invariant under the operations of each T}fﬂ). And by direct verification
we have
(t+1) (t+1) (t+1) (1) (1) (t+1,t)
D T T gy = (O T ),

Thus by Lemma 2.4, we have the following equation

(t+1) p(t+1) (t+1)7 _ (t+1,8) p(t+1,) (t+1,t)
T[Ty T T T = Ty Y T T ].

T fon ceesdg,

Therefore we conclude with the following identity

() (1) (t)
T[Ty Ty, T,

_qy(r, T, o)
_ (t+1) p(t+1) (t+1)
—Tr[Tf1 T, ,szn ].

This holds for any ¢t > —1. Thus by Corollary 7.7, we have shown
T‘r[T}f),Tg),...,TJSZ] = lim T‘Y[T;f+k)7T};+k)7 T(”k)]

k—s00 T fon

|
— n—i/dfl/\dfg/\.../\dfgn.
(2mi)™
B,
This completes the proof of Theorem 8.1. O

8.2. The Connes-Chern character

As mentioned in Remark 7.6, in this subsection, we consider the Connes-Chern char-
acter at p > n.
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Proposition 8.2. Suppose p > n + 1 is an integer and f1,q1,..., [p,gp € €> (B,). Then
for any t > —1, the product o¢(f1,91)0¢(f2,92) ... 0c(fp, gp) is in the trace class, and

tlgglo tp—"Tr(Ut(f17g1)0t(f27gz) —o(fp, gp)>
::_:,/Hcl(fj,gj)(Z)%
SO T[S0 (2) - R Ry 0 4 e,
j=1Li=1

Proof. The proof is similar to Part 2 of Section 7.1. Recall that the following facts
were used in Part 2 and follow from Lemma 6.1, Theorem 6.3 and their corollaries. For
f,g € €%(B,,), we decompose a(f, g) as follows

0i(f.9) = RY) | =1 TS ;o + RY) . (8.2)
and the following hold.

(1) i =nt™t +0(2).
(2) Ci(f,9) = $1Dy g1+ ¢2Dy g2, where

gi(z) = (1= [2)", i=1,2,...,

and Dy 41, D 42 € €1(B,,) is defined as in (7.21) and (7.22).
(3) R;’L’i €SP, i=1,2, and for large t, Hng lse St i=1,2.
(4) For t large enough, i,j = 1,2,..., and u,v € €1(B,),

(a) TOTH — 1) e 8P, ¥p>n,  and ||T1(Lt T — t)|| < t71+%,

(b) TV — T}, € 87, ¥p > % and [TOTY — T 50 S t7175,
© T 10 e 7, tr and 10T - 1o &0 17,
(d) T, t)T“ T“f,) €S”, Vp> 2, and TS “T g — T, Nlsw Sp 715
(e) T(t € sp Vp>12  and \\T<iu||$p <ptr.

Iterating Lemma 2.5 as in Remark 2.7, we have that the property

oi(fi,91)0¢(f2,92) - 0e(fp,9p) € St

As in the proof of Theorem 7.3, we write S ~, T when S — T is in trace class with
trace norm converging to 0. Then by (8.2), we compute

t t
Ut(f17gl)at(f2792)-~-Ut(fp>gp) cpTél)(fhgl)Té’l)(fz,gQ) Tél)(fp,gp)
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_p(t) (t) (t)
Rflvglv f2,92,1 " "V fp,9p,1
(®) (t) (t) (t) (t) (t)
(Rf17917 Rf17917 )(sz,g% o Rf27927 ) (Rfmgm prvgp72)

(t) (t)
- Z inl»glmez g2,i2 """ priQpﬂ‘p’

where 41,142,...,4, € {1,2} and at least one i, = 2. Again, applying Lemma 2.5 induc-
tively as in Remark 2.7 gives the following bounds
(t) —7 +ﬁ —q +ﬁ
Hthngl f27927i2 o pr’gpﬂp” - HRflagly'Ll ||Sp : HpragpﬂpHSp ’S t . AR .t N ’
< ¢7PTHn,

We reach the following equation

tpinat(flvgl)at(an.‘]Z) s Ut(fpagp) ~at 7ncp Tgl)(fl gl)Tgl)(f%gZ) Tgl)(fmgp)- (8-3)

Also, by (1) and (4)-(e), we have the following equation

p—n (t) (t) (t) py—nm(t) (t) (t)
P TE o0 T - Tontman ~a P10 (1100 T o) - TO1 ()
(8.4)
Write u;; = Dy, g,.5, 1 =1,...,p, j = 1,2. Then we arrive at the following equation,
nn(t) (t) (t) _ —np(t) 7 7
t TCl(flv!h)Tcl(f%g’z) Tcl(fp7gp) - Z t T¢11“1J1 Pjou2jy " ¢qump
J1s--0p=1,2
By (4), we have the following estimate
(t) (t) 7®
T¢'J1u1J1 T¢J2“212 o ¢Jp“mp
_—n ((t) 7O \p®) 7 —n (t) (t) 7 7
=t (T¢J‘1“111 ol Tuln) PigU2jy " ¢qumy +i T Tuln Pjo U2y ¢J;;“p]p
4T (t) ) (1) (t)
ot T Tu1]1T¢,~2u2j2 ...T¢jpupjp

~al” "T(t) T TVl T T

Uljy ~ Pj, ¢'p ump

t—nT(t) [T(t) T(t) T(t) T(t) T(t) + t—nT(t) T(t) T(t) T(t) T(t) T(t)

Uiy’ ¢;2} U2y " Upjp Uljp ~ U255 "7 ¢jp Upjp

“131 U2jg Pip “mp

Nat_nT(z(,t) T(é ) T(t) T(t) T(t) . T(t)
i1 Pi

U5y~ U255 Upjp
—n (p(t) (t) _ n(t) (t) 7O ) P(t) 7(t)
¢ (T¢j1 T¢j2 T¢j1+j2)T¢j3 : ¢jr “1a1 T“212 o “pJ
w70 1O 1O 10 70 LT

Di1+ia” Piz Uijy ~ U2y T uPJ
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Nat_nT(t) T(t) T(t) T(t) T(t) T(t)

Pjr1+iz” Pig T Uljy ~ U2 ° Upjip
~ t_nT(t) T(t) T(t) T(t)
a Gjr+igt..+ip  Wljp T U2y Upjp
() ) () () () (t)
T¢gl+gg+...+j (TulnTuZJz T“111“2J2)T“31 : TuT—’]p
np(t) 7(t) () (t)
+i ¢J1+32+ Aip u131u2J2 u3J3' Tum
- 7 O aC
at T¢jl+j2+...+j “1:1“2J2T"3]3"'Tupjp
Nat*"T(t) 7

Di1+iot-..+ip Ul U2jz--Upjp

T

i1+t +ipUljy U2jn - Upjp

Adding up over ji,j2,...,7p = 1,2, we get the following equation

nep(t) (t) (t) nep(t)
T g0 Teiagn) T o b 0 (00O (fa12)--C ) (8.5)
Combining (8.3) (8.4) and (8.5), we arrive at the following equation
oi(f1,91)01(f2,92) - - - 0t (fp, Gp) ~a NPT nTgl)(flygl)cl(f%gQ) C1(fprgp) (8.6)

Denote

F=Ci(f1,01)C1(f2,92) - - - C1(fpr 9p)-
Then |F(2)] < (1 —|z/?)P. By [47, Lemma 2.5] and 2.3, we compute Tr(npt_"Tg))
Tr(nptfnTlgt))

:npt—n/<T(t)K(t) K(t)>d)\t(f)

=nPt~ (t K® t(2)dA
¢ //F JED (2) KD (€)dN(2)dM (€)

n, n

—nPt— (t) (t) . Az
; / / 2K (©)dM ()N (2)

=nPt™" [ F(2) KM (2)d)\(2)
/

Pt n (’I’Z — 1)‘ F(’Z)
= B+ 1)3/ A e am

n
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n? F(z
ﬁwn/(l_|z(|2))n+1dm(z), t — oo.

n

This gives the first equation. The second equation follows from plugging in the formula
of C1(f,g) in Remark 6.5. This completes the proof of Proposition 8.2. O

Recall that Cy(f,9)—Ci(g, f) = %{f, g}. Thus Proposition 8.2 implies the following.

Corollary 8.3. Suppose p > n+ 1 is an integer and fi,91,- ., fp,gp € €*(B,). Then for
any t > —1, [T}f), T;?][T}?,Té?] . [T};),Téf))] is in the trace class, and

. _ (—i)P u dm(z
i o3 () ) 70 10 10) = S8 [ T s
B, /=1

t—o0

If p = n then the classical trace of such a product of commutators is infinite but the
product does have a finite Dixmier trace. In fact, Engli§, Guo and Zhang showed in [22]
that the following holds.
do(z)

O2n—1

1 n
T 1) 70 (20 10) = o [ T 00)(2)
1

Also recall the identity
ou(f,g) = —H;"H".

Thus taking f; = g,9; = g,%=1,...,p in Proposition 8.2 gives the following asymptotic
formula for Schatten-norm of Hankel operators.

Corollary 8.4. Suppose p > n + 1 is an integer, and g € €*(B,,). Then

. n 1 = = b e
tim P, = 2 [ [P - RG] (- P am)
B7l

Remark 8.5. There are profound study of Schatten-class membership and Schatten norm
formulas for Hankel operators. See [3,28,29,41,51] for Schatten-class membership criteria
of Hankel operators. For ¢ = 2,4, 6, Janson, Upmeier and Wallstén [34] gave the following
identity on the Hardy space of the unit disk.

|mma=%//ﬂ%%%?ﬁw@wv»
T T

where ¢, are constants, and ¢ = (I — P)¢. In fact, it was shown that such identities hold
only for ¢ = 2,4, 6. Recently, Xia [50] extended this formula to the open unit ball B,,.
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Proposition 8.2 gives an explicit asymptotic formula for each of the two terms in the
Connes-Chern character introduced in Equation (1.2). This observation leads us to the
following asymptotic formula for the Connes-Chern character at p > n.

Theorem 8.6. Suppose p > n+1 is an integer and fi, f2, ..., fop € €*(B,). Set fopi1 :=
fi- Then

lim tp_n'rt<fla f?a ey f2p)

t—o0

::—i/ (HC1(f2j1,f2j)(Z) - HCl(f2jvf2j+1)(Z))%'
B, Jj=1 j=1
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