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trace formulas of semicommutators of Toeplitz operators 
with C 2(D) symbols. We generalize this formula to weighted 
Bergman spaces on the unit ball in higher dimensions. 
Applications and examples on the Hankel operators are also 
discussed.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

For t > −1, let L2
a,t(D) be the weighted Bergman space on the open unit disk D. For 

f ∈ L∞(D), denote T (t)
f the Toeplitz operator on L2

a,t(D) with symbol f . Commutators of 
Toeplitz operators have been objects of interest in the study of analytic function spaces 
for a long time. Various properties, such as compactness, Schatten class membership, 
trace formulas, were studied in a numerous amount of works (cf. [1,8,12,13,22,27,33,35,
40,41]). Among others, it is well-known (cf. [24,39]) that for relatively nice symbols f and 
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g on the unit disk D, the commutator [T (0)
f , T (0)

g ] = T
(0)
f T

(0)
g −T

(0)
g T

(0)
f on the Bergman 

space L2
a(D) = L2

a,0(D), is in the trace class, and

Tr[T (0)
f , T (0)

g ] = 1
2πi

ˆ

D

df ∧ dg. (1.1)

This elegant formula is deeply connected to the Pincus function for a pair of noncom-
muting selfadjoint operators, cf. [9,10,29].

Our study of trace of semi-commutator is inspired by our investigation [32] of 
the Connes-Chern character for the Toeplitz extension (cf. [15]). Semi-commutator of 
Toeplitz operators is the building block in Connes construction. On the other hand, the 
semi-commutator has its own importance. Let H(t)

f be the Hankel operator with symbol 
f . The following equation

T
(t)
f T (t)

g − T
(t)
fg = −H

(t)∗
f̄

H(t)
g , (1.2)

provides a natural link between the semi-commutators of Toeplitz operators and Hankel 
operators, which allows to study the Hilbert-Schmidt norm of a Hankel operator by the 
trace of the associated semi-commutator. We aim in article to establish a generalization of 
the Helton-Howe trace formula (1.1) to semi-commutators, which has not been explored 
in literature.

Suppose f and g are two Lipschitz functions on D. It is well-known that for any 
t > −1, the semi-commutator T (t)

f T
(t)
g − T

(t)
fg is in the trace class (cf. [40]). We will 

establish a trace formula for T (t)
f T

(t)
g − T

(t)
fg when f, g are nice function. We obtain the 

following trace formula.

Theorem 1.1. Suppose t > −1 and f, g ∈ C 2(D). Then

Tr
(
T

(t)
f T (t)

g − T
(t)
fg

)
= 1

2πi

ˆ

D

∂f ∧ ∂̄g +
ˆ

D2

�t(|ϕz(w)|2)Δf(z)Δg(w)dm(z, w). (1.3)

Here �t is defined as below and is strictly positive on (0, 1).

�t(s) = t + 1
16π2

1ˆ

s

(1 − x)tx−1F (s, x)dx,

where

F (s, x) = −
[
x ln s

x
+ (1 − x) ln 1 − s

1 − x

]
.

Moreover,
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lim
t→∞

Tr
(
T

(t)
f T (t)

g − T
(t)
fg

)
= 1

2πi

ˆ

D

∂f ∧ ∂̄g. (1.4)

Let H(t)
f be the Hankel operator with symbol f . By Equation (1.2), we apply the 

trace formula (1.3) to study the Hilbert-Schmidt norm of Hankel operators with C 2(D)
symbols (See Corollary 6.2 and Corollary 6.3). Also we would like to thank Richard 
Rochberg for pointing out the resemblance between Formula (1.3) and Equation (a) of 
[2, Proposition 2.5], or Equation (4) on Page 248 of [17].

Next we generalize Theorem 1.1 to higher dimensions. In general, for n ≥ 2, semicom-
mutators of Toeplitz operators on L2

a,t(Bn) with Lipschitz symbols only belong to Sp for 
p > n. In fact, it was shown in [37] that in the case when f = ḡ and g is anti-holomorphic, 
their semi-commutator is in the trace class only when g = 0. To make T (t)

f T
(t)
g − T

(t)
fg

belong to trace class, one generally requires some further assumptions. We do not aim to 
give a criterion of when semi-commutators belong to the trace class. Instead, we focus 
on giving a trace formula for relatively nice symbols.

Recall that the Levi form Lzf of a function f at a point z is the two form

Lzf(ξ) =
n∑

i,j=1
∂i∂̄jf(z)ξiξ̄j , ∀ξ ∈ Cn.

Define ∂zf and ∂̄zf as the n-vectors that has ∂if(z) and ∂̄if(z) in its i-th entry. Then

〈∂zf, z − w〉 =
n∑

i=1
∂if(z)(zi − wi), 〈∂̄wf, z − w〉 =

n∑
j=1

∂̄jf(w)(zj − wj).

We say that f, g satisfy Condition 1 if f, g ∈ C 1(Bn) and there exist C > 0, ε > 0, such 
that ∣∣〈∂zf, z − w〉〈∂̄wg, z − w〉

∣∣ ≤ C|ϕz(w)|2|1 − 〈z, w〉|n+ε, ∀z, w ∈ Bn. (1.5)

We say that f, g satisfy Condition 2 if f, g satisfy condition 1, and f, g ∈ C 2(Bn) satisfy 
the following inequalities. For any z, w ∈ Bn∣∣〈∂zf, z − w〉Lwg(z − w)

∣∣ ≤ C|ϕz(w)|3|1 − 〈z, w〉|n+ε, (1.6)∣∣Lzf(z − w)〈∂̄wg, z − w〉
∣∣ ≤ C|ϕz(w)|3|1 − 〈z, w〉|n+ε, (1.7)∣∣Lzf(z − w)Lwg(z − w)
∣∣ ≤ C|ϕz(w)|4|1 − 〈z, w〉|n+ε. (1.8)

Here |ϕz(w)| is the length of the Möbius transform ϕz(w), or the pseudo-hyperbolic 
distance of z and w. We obtain the following generalization of Theorem 1.1.

Theorem 1.2. If t > 2n − 3, and f, g satisfy Condition 1, then the semicommutator 
T

(t)
f T

(t)
g − T

(t)
fg is in the trace class. If furthermore f, g satisfy Condition 2, then
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Tr
(
T

(t)
f T (t)

g − T
(t)
fg

)
=an,t

ˆ

Bn

∂f ∧ ∂̄g ∧
[
∂∂̄ log(1 − |w|2)

]n−1

(1.9)

+
ˆ

Bn×Bn

ρn,t(|ϕz(w)|2)Lzf(z − w)Lwg(z − w) dm(z, w)
|1 − 〈z, w〉|2n+2 .

Here

an,t =
−
´ 1
0 (1 − s)n−1st ln sds(

B(n, t + 1)2
)
n(2πi)n

,

and

ρn,t(s) = s−n−1
n∑

k=1

(n− 1)!Γ2(n + t + 1)
(n− k)!Γ(t + 1 + k)Γ(t + 1)π2n

1ˆ

s

F (s, x)xn−k−1(1 − x)t+k−1dx.

(1.10)
In particular, ρn,t is strictly positive on (0, 1), and

lim
t→∞

t1−nTr
(
T

(t)
f T (t)

g −T
(t)
fg

)
= 1

(n− 1)!(2πi)n

ˆ

Bn

∂f∧∂̄g∧
[
∂∂̄ log(1−|w|2)

]n−1

. (1.11)

Remark 1.3. One can show that if the functions f and g are in C 2(D) then they satisfy 
Condition 1 and 2 with n = 1. Therefore Theorem 1.2 actually implies Theorem 1.1. 
Because trace formulas at dimension 1 are of independent interest, and because the 
proof gets significantly more complicated at higher dimensions, we first give a complete 
proof of Theorem 1.1 in Section 3.

Remark 1.4. In Lemma 5.5 we give an alternative expression of the first term in the right 
hand side of (1.9), in terms of radial derivatives R =

∑n
i=1 zi∂i. So (1.9) and (1.11) can 

be rewritten as

Tr
(
T

(t)
f T (t)

g − T
(t)
fg

)
= − (2i)n(n− 1)!an,t

ˆ

Bn

∑n
i=1 ∂if(w)∂̄ig(w) −Rf(w)R̄g(w)

(1 − |w|2)n dm(w)

+
ˆ

Bn×Bn

ρn,t(|ϕz(w)|2)Lzf(z − w)Lwg(z − w) dm(z, w)
|1 − 〈z, w〉|2n+2 ,

and

lim
t→∞

t1−nTr
(
T

(t)
f T (t)

g − T
(t)
fg

)
= −1

πn

ˆ ∑n
i=1 ∂if(w)∂̄ig(w) −Rf(w)R̄g(w)

(1 − |w|2)n dm(w).

Bn
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Remark 1.5. It is clear that if we have H(t)
f̄

∈ Sp and H(t)
g ∈ Sq for some 1

p + 1
q = 1 then 

the semi-commutator T (t)
f T

(t)
g −T

(t)
fg belongs to the trace class. However, the converse is 

not true. The point of Condition 1 and Condition 2 is to give combined conditions of f
and g, instead of separate conditions. The estimates

|1 − 〈z, w〉| ≈ (1 − |z|2) + (1 − |w|2) + |z − w|2 + |Im〈z, w〉|,

|ϕz(w)|2 = |z − Pz(w)|2 + (1 − |z|2)|Qz(w)|2
|1 − 〈z, w〉|2

give us some insight into the two conditions. In Lemmas 6.4-6.6 we give some special 
cases of Theorem 1.2 that are more intuitive and more convenient to work with.

Our proofs involve applying integration by parts formulas on the unit disk and unit 
ball (see Lemma 3.3 and Lemma 4.2). These formulas essentially come from the Cauchy 
formula and a Bochner-Martinelli type formula we develop in Appendix I. In Section 4, 
integration by parts formulas on Bn are developed. The formulas involve auxiliary func-
tions and operations, which we define and study in Appendix II. In Section 5, we prove 
Theorem 1.2. Some applications and examples are given in Section 6.

We end the introduction with some explanation on the relationships between this 
paper and our other paper [32]. Our study was motivated by the exploration of the 
Helton-Howe trace and Connes-Chern character in [32], which is an important invariant 
in noncommutative differential geometry. In [32], we study the Helton-Howe trace and 
the Connes-Chern character for Toeplitz operators on weighted Bergman spaces via the 
idea of quantization, [5–7,14,18–21]. As a remainder term in the Toeplitz quantization, 
semi-commutators naturally appears in the proofs. On the other hand, many of the tools 
developed here are also heavily used in [32]. The proofs in this paper are intended to be 
self-contained.

Acknowledgment: We would like to thank Mohammad Jabbari, Richard Rochberg, 
Jingbo Xia and Kai Wang for inspiring discussions. We would also like to thank the 
referee who made valuable suggestions to our paper. Tang is partially supported by NSF 
Grants DMS 1800666, 1952551.

2. Preliminaries

In this section, we recall some basic definitions and properties about weighted 
Bergman spaces and Schatten-p class operators.

Let Bn be the open unit ball of Cn and Sn = ∂Bn the unit sphere. Let m be the 
Lebesgue measure on Bn and σ be the surface measure on Sn. Denote σ2n−1 = σ(Sn) =

2πn

.
(n−1)!
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For t > −1, define the probability measure on Bn:

dλt(z) = (n− 1)!
πnB(n, t + 1)(1 − |z|2)tdm(z).

Here B(n, t + 1) is the Beta function. The weighted Bergman space L2
a,t(Bn) is the 

subspace of L2(Bn, λt) consisting of holomorphic functions on Bn. The reproducing kernel 
of L2

a,t(Bn) is

K(t)
w (z) = 1

(1 − 〈z, w〉)n+1+t
, ∀w ∈ Bn.

For any f ∈ L∞(Bn), the Toeplitz operator T (t)
f is the compression defined by

T
(t)
f = P (t)M

(t)
f |L2

a,t(Bn),

where P (t) is the orthogonal projection from L2(Bn, λt) onto L2
a,t(Bn), and M (t)

f is the 
multiplication operator on L2(Bn, λt). The Hankel operator with symbol f is

H
(t)
f = (I − P (t))M (t)

f P (t).

Using the reproducing kernels, we can write T (t)
f , H(t)

f as integral operators. For h ∈
L2
a,t(Bn), we have the following expressions,

T
(t)
f h(z) =

ˆ

Bn

f(w)h(w)K(t)
w (z)dλt(w), ∀z ∈ Bn.

H
(t)
f h(z) =

ˆ

Bn

(
f(z) − f(w)

)
h(w)K(t)

w (z)dλt(w), ∀z ∈ Bn.

An important tool on Bn is the Möbius transform.

Definition 2.1. For z ∈ Bn, z 
= 0, the Möbius transform ϕz is the biholomorphic mapping 
on Bn defined as follows.

ϕz(w) = z − Pz(w) − (1 − |z|2)1/2Qz(w)
1 − 〈w, z〉 , ∀w ∈ Bn.

Here Pz and Qz denote the orthogonal projection from Cn onto Cz and z⊥, respectively. 
Define

ϕ0(w) = −w, ∀w ∈ Bn.
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It is well-known that ϕz is an automorphism of Bn satisfying ϕz ◦ ϕz = Id. Also, the 
two variable function ρ(z, w) := |ϕz(w)| = |ϕw(z)| defines a metric on Bn. Moreover, 
β(z, w) := tanh−1 ρ(z, w) coincides with the Bergman metric on Bn.

We list some lemmas that serve as basic tools for our study of Toeplitz operators on 
Bn. Most of the following of this section can be found in [30,40]. A proof will be provided 
when necessary.

For non-negative values A, B, by A � B we mean that there is a constant C such that 
A ≤ CB. Sometimes, to emphasize that the constant C depends on some parameter a, 
we write A �a B. The notations �, �a, ≈, ≈a are defined similarly.

Lemma 2.2. Suppose z, w, ζ ∈ Bn.

(1) 1
1−〈ϕζ(z),ϕζ(w)〉 = (1−〈z,ζ〉)(1−〈ζ,w〉)

(1−|ζ|2)(1−〈z,w〉) .

(2) 1 − |ϕz(w)|2 = (1−|z|2)(1−|w|2)
|1−〈z,w〉|2 .

(3) For any R > 0 there exists C > 1 such that whenever β(z, w) < R,

1
C

≤ 1 − |z|2
1 − |w|2 ≤ C,

1
C

≤ |1 − 〈z, ζ〉|
|1 − 〈w, ζ〉| ≤ C.

(4) The real Jacobian of ϕz is (1−|z|2)n+1

|1−〈z,·〉|2n+2 on Bn and (1−|z|2)n
|1−〈z,·〉|2n on Sn.

(5) For z ∈ Bn,

z − ϕz(w) = (1 − |z|2)Pz(w) + (1 − |z|2)1/2Qz(w)
1 − 〈w, z〉 := Azw

1 − 〈w, z〉 ,

where Az = [aijz ] is an n × n matrix depending on z, and w is viewed as a column 
vector.

(6) There exists C > 0 such that for any z ∈ Bn, z 
= 0,

|z − Pz(w)| ≤ |ϕz(w)||1 − 〈z, w〉|, |Qz(w)| ≤ C|ϕz(w)||1 − 〈z, w〉|1/2, (2.1)

and

|z − w| ≤ C|ϕz(w)||1 − 〈z, w〉|1/2. (2.2)

In contrast, if n = 1, then |z − w| = |ϕz(w)||1 − zw̄|.
(7) 1 − |z|2 ≤ 2|1 − 〈z, w〉|.

Proof. Most of the above are either well-known (cf. [30,40]) or straightforward to verify. 
The only part that requires some clarification is the second estimate in (6), i.e.,

|Qz(w)| � |ϕz(w)||1 − 〈z, w〉|1/2. (2.3)
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On the one hand, from the definition of ϕz(w), we easily get the follow inequality,

|Qz(w)| ≤ |ϕz(w)| |1 − 〈z, w〉|
(1 − |z|2)1/2 .

If |ϕz(w)| ≤ 1
2 , then by (3), |1 − 〈z, w〉| ≈ 1 − |z|2. From this (2.3) follows.

On the other hand, since

2|1 − 〈z, w〉| ≥ 2 − 2Re〈z, w〉 ≥ |z|2 + |w|2 − 2Re〈z, w〉 = |z − w|2,

for |ϕz(w)| > 1
2 , we obtain the following estimates,

|Qz(w)| = |Qz(w − z)| ≤ |z − w| � |1 − 〈z, w〉| 12 < 2|ϕz(w)||1 − 〈z, w〉| 12 .

Thus we get (2.3) in both cases. This completes the proof of Lemma 2.2. �
Lemma 2.3. ([30, Proposition 5.1.2]) The two variable function d(z, w) = |1 − 〈z, w〉| 12
on Bn satisfies the triangle inequality, i.e.,

d(z, w) ≤ d(z, ξ) + d(ξ, w), ∀z, w, ξ ∈ Bn.

Lemma 2.4 (Rudin-Forelli type estimates).

(1) Suppose t > −1, c ∈ R. Then there exists C > 0 such that for any z ∈ Bn,

ˆ

Bn

(1 − |w|2)t
|1 − 〈z, w〉|n+1+t+c

dm(w) ≤

⎧⎪⎪⎨⎪⎪⎩
C(1 − |z|2)−c, c > 0,
C ln 1

1−|z|2 , c = 0,
C, c < 0,

(2.4)

ˆ

Sn

1
|1 − 〈z, w〉|n+c

dσ(w) ≤

⎧⎪⎪⎨⎪⎪⎩
C(1 − |z|2)−c, c > 0,
C ln 1

1−|z|2 , c = 0,
C, c < 0.

(2.5)

(2) Suppose t > −1, a, b, c > 0, a ≥ c, b ≥ c, and a + b < n + 1 + t + c. Then there exists 
C > 0 such that for any z, ξ ∈ Bn,

ˆ

Bn

(1 − |w|2)t
|1 − 〈z, w〉|a|1 − 〈w, ξ〉|b dm(w) ≤ C

1
|1 − 〈z, ξ〉|c . (2.6)

(3) Suppose φ : (0, 1) → [0, ∞) is measurable. Suppose a > −n, b ∈ R, and

φ(s) � sa(1 − s)b, s ∈ (0, 1).
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Then for any t > −1 − b, c > −b there exists C > 0 such that for any z ∈ Bn,

ˆ

Bn

φ(|ϕz(w)|2) (1 − |w|2)t
|1 − 〈z, w〉|n+1+t+c

dm(w) ≤ C(1 − |z|2)−c. (2.7)

Proof. The estimates in (1) are standard Rudin-Forelli estimates. See [30, Proposition 
1.4.10] for a proof. Let

A = {w ∈ Bn : |1 − 〈z, w〉| ≤ |1 − 〈w, ξ|}; B = {w ∈ Bn : |1 − 〈z, w〉| > |1 − 〈w, ξ〉|}.

By Lemma 2.3, we have the following equality,

|1 − 〈z, ξ〉|1/2 ≤ |1 − 〈z, w〉|1/2 + |1 − 〈w, ξ〉|1/2.

Then we obtain the following bounds,

|1 − 〈z, w〉| ≥ 1
4 |1 − 〈z, ξ〉|,∀w ∈ B; |1 − 〈w, ξ〉| ≥ 1

4 |1 − 〈z, ξ〉|,∀w ∈ A.

By assumption, a ≥ c, b ≥ c, a +b −c < n +1 +t, therefore by the standard Rudin-Forelli 
estimate, we compute the integral as follows,

ˆ

Bn

(1 − |w|2)t
|1 − 〈z, w〉|a|1 − 〈w, ξ〉|b dm(w)

=
ˆ

A

(1 − |w|2)t
|1 − 〈z, w〉|a|1 − 〈w, ξ〉|b dm(w) +

ˆ

B

(1 − |w|2)t
|1 − 〈z, w〉|a|1 − 〈w, ξ〉|b dm(w)

� 1
|1 − 〈z, ξ〉|c

ˆ

A

(1 − |w|2)t
|1 − 〈z, w〉|a+b−c

dm(w) + 1
|1 − 〈z, ξ〉|c

ˆ

B

(1 − |w|2)t
|1 − 〈w, ξ〉|b+a−c

dm(w)

� 1
|1 − 〈z, ξ〉|c .

This proves (2).
To prove (3), make the change of variable w = ϕz(ξ) in the left hand side of (2.7). 

We compute the integral as follows,

ˆ

Bn

φ(|ϕz(w)|2) (1 − |w|2)t
|1 − 〈z, w〉|n+1+t+c

dm(w)

= 1
(1 − |z|2)c

ˆ
φ(|ξ|2) (1 − |ξ|2)t

|1 − 〈z, ξ〉|n+1+t−c
dm(ξ)
Bn
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= 1
(1 − |z|2)c

1ˆ

0

φ(r2)r2n−1(1 − r2)t
ˆ

Sn

1
|1 − 〈z, rη〉|n+1+t−c

dσ(η)dr

� 1
(1 − |z|2)c

1ˆ

0

φ(r2)r2n−1(1 − r2)mdr,

where m = c −1 when 1 + t − c > 0, m = t when 1 + t − c < 0, and when 1 + t − c = 0, we 
take m = t − ε for a sufficiently small ε > 0. With our assumption it is easy to see that 
m > −b − 1 and therefore the integral above is finite. This proves (3) and completes the 
proof of Lemma 2.3. �

For p > 0, a bounded operator T on a Hilbert space H is said to be in the Schatten-p
class Sp if |T |p belongs to the trace class. The Schatten-p class operators Sp are analogues 
of lp spaces in the operator-theoretic setting and satisfy the Hölder’s inequality (see [31, 
Theorem 2.8]).

The following lemma is well-known. See [41, Theorem 6.4] for a proof at n = 1. The 
same proof works for general n.

Lemma 2.5. Suppose t > −1 and T is a trace class operator on L2
a,t(Bn). Then

TrT =
ˆ

Bn

〈TK(t)
z ,K(t)

z 〉dλt(z).

3. Trace formulas on the disk

In this section we give the proof of Theorem 1.1. The main ingredient of its proof is 
an integral formula coming from the Cauchy formula.

Definition 3.1. Suppose t > −1 and φ : (0, 1) → [0, ∞) is measurable. Define the opera-
tions on φ:

F (t)φ(s) =
1ˆ

s

φ(r)(1 − r)tdr, G(t)φ(s) = s−1(1 − s)−t−1F (t)φ(s).

Lemma 3.2. Suppose that t > −1, and φ : (0, 1) �→ [0, ∞) is a measurable function, and 
v ∈ C 1(D). Assume that the two integrals

ˆ

D

φ(|z|2)v(z)dλt(z),
ˆ

D

(1 − |z|2)G(t)φ(|z|2)z̄∂̄v(z)dλt(z)

both converge absolutely. Then
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ˆ

D

φ(|z|2)v(z)dλt(z) (3.1)

=
{

(t + 1)F(t)φ(0) · v(0) +
´
D(1 − |z|2)G(t)φ(|z|2)z̄∂̄v(z)dλt(z), if v(0) �= 0,F(t)φ(0) < ∞,´

D(1 − |z|2)G(t)φ(|z|2)z̄∂̄v(z)dλt(z), if v(0) = 0,F(t)φ(0) ≤ ∞.

Proof. Assume first that v(0) = 0. For any 0 < r < 1, denote σr the Euclidean surface 
measure on rT . If we apply the Cauchy Formula to Ω = rD ⊂ C and v ∈ C 1(D), then 
we have the following equation of integrals,

ˆ

rT

v(z)dσr(z) = 2r
ˆ

rD

∂̄v(z)
z

dm(z).

By assumption the left hand side of (3.1) is absolutely integrable, so we compute the 
integral as follows,

ˆ

D

φ(|z|2)v(z)dλt(z) =(t + 1)
π

1ˆ

0

φ(r2)(1 − r2)t
{ ˆ

rT

v(z)dσr(z)
}

dr

=(t + 1)
π

1ˆ

0

φ(r2)(1 − r2)t
{

2r
ˆ

rD

∂̄v(z)
z

dm(z)
}

dr

=(t + 1)
π

ˆ

D

1ˆ

|z|

2rφ(r2)(1 − r2)tdr · ∂̄v(z)
z

dm(z)

=(t + 1)
π

ˆ

D

[ 1ˆ

|z|2

φ(s)(1 − s)tds
]
∂̄v(z)
z

dm(z)

=
ˆ

D

(1 − |z|2)G(t)φ(|z|2)z̄∂̄v(z)dλt(z).

The absolute convergence of the integral in the right hand side of (3.1) ensures the third 
equality above. This proves the second case.

Now assume that v(0) 
= 0, and F (t)φ(0) < ∞. We notice that

ˆ

D

φ(|z|2)dλt(z) = 2π · t + 1
π

1ˆ

0

rφ(r2)(1 − r2)tdr = (t + 1)F (t)φ(0).

Then we get the following estimate
ˆ ∣∣∣∣φ(|z|2)

(
v(z) − v(0)

)∣∣∣∣dλt(z) ≤
ˆ ∣∣∣∣φ(|z|2)v(z)

∣∣∣∣dλt(z) + (t + 1)F (t)φ(0)|v(0)| < ∞.
D D
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Applying the second case to v(z) − v(0) and reorganizing the terms give the first case. 
This completes the proof of Lemma 3.2. �
Lemma 3.3. Suppose that t > −1, and φ : (0, 1) → [0, ∞) is a measurable function, and 
v ∈ C 1(D).

(1) Assuming that z ∈ D, and the integrals

´
D φ(|ϕz(w)|2)v(w)K(t)

w (z)dλt(w),
´
D G(t)φ(|ϕz(w)|2) (1−|w|2)(z−w)

1−wz̄ ∂̄v(w)K(t)
w (z)dλt(w)

converge absolutely, then
ˆ

D

φ(|ϕz(w)|2)v(w)K(t)
w (z)dλt(w) (3.2)

=

⎧⎪⎪⎨⎪⎪⎩
(t + 1)F(t)φ(0) · v(z) if v(z) �= 0,F(t)φ(0) < ∞,

−
´
D G(t)φ(|ϕz(w)|2) (1−|w|2)(z−w)

1−wz̄ ∂̄v(w)K(t)
w (z)dλt(w),

−
´
D G(t)φ(|ϕz(w)|2) (1−|w|2)(z−w)

1−wz̄ ∂̄v(w)K(t)
w (z)dλt(w), if v(z) = 0,F(t)φ(0) ≤ ∞.

(2) Assuming that w ∈ D, and the integrals
ˆ

D

φ(|ϕz(w)|2)v(z)K(t)
w (z)dλt(z),

ˆ

D

G(t)φ(|ϕz(w)|2) (1 − |z|2)(z − w)
1 − wz̄

∂v(z)K(t)
w (z)dλt(z)

converge absolutely, then
ˆ

D

φ(|ϕz(w)|2)v(z)K(t)
w (z)dλt(z) (3.3)

=

⎧⎪⎪⎨⎪⎪⎩
(t + 1)F(t)φ(0) · v(w) if v(w) �= 0,F(t)φ(0) < ∞,

+
´
D G(t)φ(|ϕz(w)|2) (1−|z|2)(z−w)

1−wz̄ ∂v(z)K(t)
w (z)dλt(z),

´
D G(t)φ(|ϕz(w)|2) (1−|z|2)(z−w)

1−wz̄ ∂v(z)K(t)
w (z)dλt(z), if v(w) = 0,F(t)φ(0) ≤ ∞.

Proof. First, we prove case (1). The formula is obtained from (3.1) by taking Möbius 
transforms. By Lemma 2.2 (4) it is easy to verify the following equation,

K(t)
w (z)dλt(w) w=ϕz(ξ)======= K(t)

z (ξ)dλt(ξ). (3.4)

ξ=ϕz(w)
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By Lemma 2.2 (1)(2), Lemma 3.2 and the above equality, if F (t)φ(0) < ∞, then we 
compute the integral as follows.

ˆ

D

φ(|ϕz(w)|2)v(w)K(t)
w (z)dλt(w)

w=ϕz(ξ)=======
ˆ

D

φ(|ξ|2)v ◦ ϕz(ξ)K(t)
z (ξ)dλt(ξ)

(3.1)=====(t + 1)F (t)φ(0) · v(z) +
ˆ

D

G(t)φ(|ξ|2)(1 − |ξ|2)ξ̄∂̄ξ
(
v ◦ ϕz(ξ)K(t)

z (ξ)
)

dλt(ξ)

=(t + 1)F (t)φ(0) · v(z) +
ˆ

D

G(t)φ(|ξ|2)(1 − |ξ|2)ξ̄∂̄v(ϕz(ξ))ϕ′
z(ξ)K(t)

z (ξ)dλt(ξ)

=(t + 1)F(t)φ(0) · v(z) −
ˆ

D

G(t)φ(|ξ|2)(1 − |ξ|2)ξ̄∂̄v(ϕz(ξ))
1 − |z|2

(1 − zξ̄)2
K(t)

z (ξ)dλt(ξ)

ξ=ϕz(w)=======(t + 1)F(t)φ(0) · v(z) −
ˆ

D

G(t)φ(|ϕz(w)|2) (1 − |w|2)(z − w)
1 − wz̄

∂̄v(w)K(t)
w (z)dλt(w).

The case when F (t)φ(0) = ∞, v(z) = 0 is proved by the same equations as above, but 
with the term “(t + 1)F (t)φ(0) · v(z)” removed. This proves (1). To prove (2), apply 
(3.2) to v(z), then swap z and w, then take conjugate over the equation. Note that the 

equations |ϕz(w)| = |ϕw(z)| and K(t)
z (w) = K

(t)
w (z) is used here. This completes the 

proof of Lemma 3.3. �
Recall that in Theorem 1.1 we defined

F (s, x) = −
[
x ln s

x
+ (1 − x) ln 1 − s

1 − x

]
.

Lemma 3.4. Suppose 0 < s < x < 1. Then
¨

s<s1<s2<x

s−1
1 (1 − s1)−1ds1ds2 = F (s, x)

Proof.
¨

s<s1<s2<x

s−1
1 (1 − s1)−1ds1ds2

=
xˆ

s

xˆ

s1

s−1
1 (1 − s1)−1ds2ds1

=
xˆ

x− s1

s1(1 − s1)
ds1
s
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=
xˆ

s

x

s1
− 1 − x

1 − s1
ds1

=x ln x

s
+ (1 − x) ln 1 − x

1 − s

=F (s, x).

This completes the proof. �
Lemma 3.5. For 0 < ε < 1 there exists C > 0 such that

xˆ

0

(1 − s)−εF (s, x)ds ≤ Cx2, 0 < x < 1.

Proof. By definition,

xˆ

0

(1 − s)−εF (s, x)ds

= − x

xˆ

0

(1 − s)−ε ln s

x
ds− (1 − x)

xˆ

0

(1 − s)−ε ln(1 − s)ds + (1 − x) ln(1 − x)

xˆ

0

(1 − s)−εds.

For 0 < x < 1, ln(1 − x) < 0. Thus the last term in the above is negative. Therefore

xˆ

0

(1 − s)−εF (s, x)ds < −x

xˆ

0

(1 − s)−ε ln s

x
ds− (1 − x)

xˆ

0

(1 − s)−ε ln(1 − s)ds. (3.5)

For the first term in the right hand side of (3.5), take the change of variable r = s
x . Then

−x

xˆ

0

(1 − s)−ε ln s

x
ds r=s/x====== −x2

1ˆ

0

(1 − rx)−ε ln rdr < −x2
1ˆ

0

(1 − r)−ε ln rdr ≤ x2.

(3.6)
For the second term in the right hand side of (3.5), notice that

− ln(1 − s) � s.

So
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−(1 − x)
xˆ

0

(1 − s)−εsds ≤ (1 − x)1−ε

xˆ

0

sds � x2. (3.7)

Combining (3.5), (3.6) and (3.7) gives the desired result. �
Proof of Theorem 1.1. By Lemma 2.5, we have the following expression of Tr

(
T

(t)
f T

(t)
g −

T
(t)
fg

)
:

Tr
(
T

(t)
f T (t)

g − T
(t)
fg

)
=
ˆ

D

〈
(
T

(t)
f T (t)

g − T
(t)
fg

)
K

(t)
ξ ,K

(t)
ξ 〉dλt(ξ)

=
ˆ

D

{ ˆ

D2

(f(z) − f(w))g(w)K(t)
ξ (w)K(t)

w (z)K(t)
z (ξ)dλt(w)dλt(z)

}
dλt(ξ).

The rest of the proof is simply iterating (3.2) and (3.3) on the integral above. For each 

fixed ξ ∈ D, we calculate the inner product 〈
(
T

(t)
f T

(t)
g − T

(t)
fg

)
K

(t)
ξ , K(t)

ξ 〉 as follows:

〈
(
T

(t)
f T (t)

g − T
(t)
fg

)
K

(t)
ξ ,K

(t)
ξ 〉

=
ˆ

D2

(f(z) − f(w))g(w)K(t)
ξ (w)K(t)

w (z)K(t)
z (ξ)dλt(w)dλt(z)

=
ˆ

D

{ ˆ

D

[
(f(z) − f(w))g(w)K(t)

ξ (w)K(t)
z (ξ)

]
K(t)

w (z)dλt(z)
}

dλt(w)

(3.3)=====
ˆ

D

{ ˆ

D

G(t)1(|ϕz(w)|2) (1 − |z|2)(z − w)
1 − wz̄

[
∂f(z)g(w)K(t)

ξ (w)K(t)
z (ξ)

]
K(t)

w (z)dλt(z)
}

dλt(w).

In the above, we apply (3.3) with φ = 1 and v(z) =
[
(f(z) − f(w))g(w)K(t)

ξ (w)K(t)
z (ξ)

]
. 

Here, by direct computation, we obtain

(
G(t)1

)
(s) = 1

(t + 1)s .

Since ξ ∈ D is fixed, and f, g are C 1 to the boundary, the term 
[
∂f(z)g(w)K(t)

ξ (w)K(t)
z (ξ)

]
is bounded. By (2.7), the two-fold integral in the above converges absolutely. Applying 
Fubini’s Theorem, and then (3.2) with

φ = G(t)1, v(w) = (1 − |z|2)(z − w)[
∂f(z)g(w)K(t)

ξ (w)K(t)
z (ξ)

]
,
1 − wz̄
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the above integral is computed as follows,

ˆ

D

{ ˆ

D

G(t)1(|ϕz(w)|2) (1 − |z|2)(z − w)
1 − wz̄

[
∂f(z)g(w)K(t)

ξ (w)K(t)
z (ξ)

]
K(t)

w (z)dλt(w)
}

dλt(z)

(3.2)===== −
ˆ

D

{ ˆ

D

(
G(t))21(|ϕz(w)|2) (1 − |w|2)(z − w)

1 − wz̄
· (1 − |z|2)(z − w)

1 − wz̄

·
[
∂f(z)∂̄g(w)K(t)

ξ (w)K(t)
z (ξ)

]
K(t)

w (z)dλt(w)
}

dλt(z)

= −
ˆ

D

{ ˆ

D

(
G(t))21(|ϕz(w)|2)(1 − |ϕz(w)|2)|ϕz(w)|2(1 − zw̄)2

·
[
∂f(z)∂̄g(w)K(t)

ξ (w)K(t)
z (ξ)

]
K(t)

w (z)dλt(w)
}

dλt(z)

= −
ˆ

D2

ψ1(|ϕz(w)|2)(1 − zw̄)2
[
∂f(z)∂̄g(w)K(t)

ξ (w)K(t)
z (ξ)

]
K(t)

w (z)dλt(w)dλt(z).

Here we have the following bound of ψ1,

ψ1(s) =
[(
G(t))21(s)

]
(1 − s)s =

´ 1
s
r−1(1 − r)tdr

(t + 1)(1 − s)t �t s
−1/2(1 − s). (3.8)

Using (2.6) and (2.7), we can show that the integrand above is absolutely integrable 
with the measure dλt(ξ)dλt(w)dλt(z). Therefore by Lemma 2.5 and Fubini’s Theorem, 

we compute Tr
(
T

(t)
f T

(t)
g − T

(t)
fg

)
as follows,

Tr
(
T

(t)
f T (t)

g − T
(t)
fg

)

=
ˆ

D

{
−
ˆ

D2

ψ1(|ϕz(w)|2)(1 − zw̄)2
[
∂f(z)∂̄g(w)K(t)

ξ (w)K(t)
z (ξ)

]
K(t)

w (z)dλt(w)dλt(z)
}

dλt(ξ)

= −
ˆ

D2

ψ1(|ϕz(w)|2)(1 − zw̄)2∂f(z)∂̄g(w)|K(t)
w (z)|2dλt(w)dλt(z).

To obtain (1.3), we apply (3.3) again, with z, w reversed,

φ = ψ1, v(w) =
[
(1 − zw̄)2∂f(z)∂̄g(w)K(t)

w (z)
]
.

We compute the above integral as follows.
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Tr
(
T

(t)
f T (t)

g − T
(t)
fg

)
= −

ˆ

D

{ˆ

D

ψ1(|ϕz(w)|2)
[
(1 − zw̄)2∂f(z)∂̄g(w)K(t)

w (z)
]
K(t)

z (w)dλt(w)
}

dλt(z)

(3.3)===== −
ˆ

D

{
(t + 1)F (t)ψ1(0) · (1 − |z|2)2∂f(z)∂̄g(z)K(t)

z (z)

+
ˆ

D

G(t)ψ1(|ϕz(w)|2) (1 − |w|2)(w − z)
1 − zw̄

[
(1 − zw̄)2∂f(z)∂∂̄g(w)K(t)

w (z)
]
K(t)

z (w)dλt(w)
}

dλt(z)

= 1
2πi

ˆ

D

∂f ∧ ∂̄g

−
ˆ

D2

ψ2(|ϕz(w)|2)
[
(1 − |w|2)(w − z)(1 − zw̄)∂f(z)∂∂̄g(w)K(t)

w (z)
]
K(t)

z (w)dλt(w)dλt(z).

Here we have the following expressions

F (t)ψ1(0)=
´ 1
0
´ 1
s
r−1(1 − r)tdrds

t + 1 =
´ 1
0
´ r

0 r−1(1 − r)tdsdr
t + 1 =

´ 1
0 (1 − r)tdr

t + 1 = (t+1)−2,

(3.9)
and

ψ2(s) = G(t)ψ1(s) =
´ 1
s
ψ1(r)(1 − r)tdr
s(1 − s)t+1 =

´ 1
s

´ 1
r
x−1(1 − x)tdxdr

(t + 1)s(1 − s)t+1 �t s
−1/2(1 − s).

(3.10)
Again, applying Fubini’s Theorem and (3.2), with z, w reversed, φ = ψ2, v(z) =

[
(1 −

|w|2)(w− z)(1 − zw̄)∂f(z)∂∂̄g(w)K(t)
w (z)

]
, we compute the second integral in the above 

Tr
(
T

(t)
f T

(t)
g − T

(t)
fg

)
as follows.

−
ˆ

D2

ψ2(|ϕz(w)|2)
[
(1 − |w|2)(w − z)(1 − zw̄)∂f(z)∂∂̄g(w)K(t)

w (z)
]
K(t)

z (w)dλt(w)dλt(z)

= −
ˆ

D

{ ˆ

D

ψ2(|ϕz(w)|2)
[
(1 − |w|2)(w − z)(1 − zw̄)∂f(z)∂∂̄g(w)K(t)

w (z)
]
K(t)

z (w)dλt(z)
}

dλt(w)

(3.2)=====
ˆ

D

{ˆ

D

G(t)ψ2(|ϕz(w)|2) (1 − |z|2)(w − z)
1 − zw̄

·
[
(1 − |w|2)(w − z)(1 − zw̄)∂̄∂f(z)∂∂̄g(w)K(t)

w (z)
]
K(t)

z (w)dλt(z)
}

dλt(w)
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= (t + 1)2

16π2

ˆ

D2

G(t)ψ2(|ϕz(w)|2) (1 − |z|2)t+1(1 − |w|2)t+1|w − z|2
|1 − zw̄|4+2t Δf(z)Δg(w)|dm(z, w)

=
ˆ

D2

�t(|ϕz(w)|2)Δf(z)Δg(w)dm(z, w).

Here, by Lemma 2.2, we have

�t(s) =(t + 1)2

16π2 G(t)ψ2(s)(1 − s)t+1s = (t + 1)2

16π2

1ˆ

s

ψ2(s1)(1 − s1)tds1

=(t + 1)
16π2

1ˆ

s

1ˆ

s1

1ˆ

s2

s−1
1 (1 − s1)−1s−1

3 (1 − s3)tds3ds2ds1. (3.11)

Therefore we have reached the following identity

Tr
(
T

(t)
f T (t)

g − T
(t)
fg

)
= 1

2πi

ˆ

D

∂f ∧ ∂̄g +
ˆ

D2

�t(|ϕz(w)|2)Δf(z)Δg(w)dm(z, w). (3.12)

Let us simplify the expression of �t.

1ˆ

s

1ˆ

s1

1ˆ

s2

s−1
1 (1 − s1)−1s−1

3 (1 − s3)tds3ds2ds1

=
˚

{(s1,s2,s3):s<s1<s2<s3<1}

s−1
1 (1 − s1)−1s−1

3 (1 − s3)tds1ds2ds3

=
1ˆ

s

{ ¨

{(s1,s2):s<s1<s2<s3}

s−1
1 (1 − s1)−1ds1ds2

}
s−1
3 (1 − s3)tds3

=
1ˆ

s

F (s, s3)s−1
3 (1 − s3)tds3.

Here the last equality is by Lemma 3.4. This proves the equation for �t. It also follows 
from Lemma 3.4 that F (s, x) is strictly positive on (0, 1). Therefore ρt is strictly positive 
on (0, 1).

It remains to prove (1.4). In other words, the second term of (3.12) tends to zero as t
tends to infinity. Clearly the absolute value of the second term has the following bound,

�
ˆ ˆ

�t(|ϕz(w)|2)dm(w)dm(z) =
ˆ ˆ

�t(|ζ|2)
(1 − |z|2)2
|1 − ζz̄|4 dm(ζ)dm(z)
D D D D
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�
ˆ

D

�t(|ζ|2) ln 1
1 − |ζ|2 dm(ζ) �

ˆ

D

�t(|ζ|)(1 − |ζ|2)−1/2dm(ζ)

≈
1ˆ

0

�t(s)(1 − s)−1/2ds.

Plugging in the formula of �t and applying the Fubini’s theorem gives

1ˆ

0

�t(s)(1 − s)−1/2ds

= t + 1
16π2

1ˆ

0

1ˆ

s

(1 − s)−1/2F (s, x)x−1(1 − x)tdxds

= t + 1
16π2

1ˆ

0

[ xˆ

0

(1 − s)−1/2F (s, x)ds
]
x−1(1 − x)tdx.

By Lemma 3.5,

0 <

xˆ

0

(1 − s)−1/2F (s, x)ds � x2.

So

1ˆ

0

�t(s)(1 − s)−1/2ds = t + 1
16π2

1ˆ

0

[ xˆ

0

(1 − s)−1/2F (s, x)ds
]
x−1(1 − x)tdx

�(t + 1)
1ˆ

0

x(1 − x)tdx

=(t + 1)B(2, t + 1)

≈t−1.

Therefore the second term in (3.12) vanishes as t → ∞. This completes the proof of 
Theorem 1.1. �
4. Integration by parts

In the remaining sections of the article, we aim to extend Theorem 1.1 to higher 
dimensions and prove Theorem 1.2. Reviewing the proof of Theorem 1.1, we notice that 
there are two key ingredients:
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(1) the integral formulas in Lemma 3.3;
(2) the auxiliary operations F (t), G(t) that record the change in φ after each application 

of the formulas.

With the above tools, we obtain the trace formula in Theorem 1.1 by applying iterations 
of Lemma 3.3.

The proof of Theorem 1.2 relies on generalizing (1) and (2). The goal of this section 
is to establish Lemma 4.2, which is an analogue of Lemma 3.3 in higher dimensions. 
Applying iteration of Lemma 4.2 two times, we get Lemma 4.3. In Appendix II, more 
general auxiliary operations F (t)

m , G(t)
m are defined and some basic properties are estab-

lished. In Section 5, we apply Lemma 4.3 to obtain a formula for the semi-commutator 
(see Lemma 5.1), and we apply Lemma 4.3 again with z, w reversed, to get the trace 
formula in Theorem 1.2.

The proof of Lemma 4.2 relies on a Bochner-Martinelli type formula that we establish 
in Appendix I. Similar integral formulas as in Lemma 4.2 were discovered by Charpentier 
in [11]. Such integral formulas were used in [28] to study Bergman-Besov spaces and in 
[16] to study the corona problem on the multiplier algebra of the Drury-Arveson space.

Let us start with a few definitions. Recall that by Lemma 2.2 (5), for z ∈ Bn,

(1 − |z|2)Pz(w) + (1 − |z|2)1/2Qz(w) = (1 − 〈w, z〉)(z − ϕz(w)) = Azw,

where Az is an n × n matrix depending on z, and w is treated as a column vector.

Definition 4.1. For multi-indices α, β ∈ Nn
0 and z ∈ Bn, define

dα,β(z) =
ˆ

Sn

(
Azζ

)α(
Azζ

)β dσ(ζ)
σ2n−1

.

In particular, d0,0 = 1, and

dα,β(z) = δα,β(1 − |z|2)α1+|α| (n− 1)!α!
(n− 1 + |α|)! , if z = (z1, 0, . . . , 0). (4.1)

For multi-indices α, β ∈ Nn
0 and ζ ∈ Cn, denote

Iα,β(ζ) = ζαζ̄β .

Lemma 4.2. Suppose t > −1, α, β ∈ Nn
0 . Suppose φ : (0, 1) → [0, ∞) is measurable and 

v ∈ C 1(Bn). Then the following hold.

1. If |α| ≥ |β| and all integrals converge absolutely, then
ˆ

φ(|ϕz(w)|2)Iα,β(z − w)v(w)K(t)
w (z)dλt(w) (4.2)
Bn
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=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dα,β(z)
B(n,t+1) · F (t)

n+|β|φ(0)v(z) −
∑n

j=1
´
Bn

G(t)
|β|+nφ(|ϕz(w)|2)Iα,β+ej (z − w)Sj(w)K(t)

w (z)dλt(w),
v(z) �= 0,F(t)

n+|β|φ(0) < ∞,

−
∑n

j=1
´
Bn

G(t)
|β|+nφ(|ϕz(w)|2)Iα,β+ej (z − w)Sj(w)K(t)

w (z)dλt(w),
v(z) = 0,F(t)

n+|β|φ(0) ≤ ∞,

where

Sj(w, z) =
(1 − |w|2)∂̄wj

[
(1 − 〈z, w〉)|β|v(w)

]
(1 − 〈w, z〉)(1 − 〈z, w〉)|β| .

2. If |α| ≤ |β| and all integrals converge absolutely, then

ˆ

Bn

φ(|ϕz(w)|2)Iα,β(z − w)v(z)K(t)
w (z)dλt(z) (4.3)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dα,β(w)
B(n,t+1) · F (t)

n+|α|φ(0)v(w) +
∑n

i=1
´
Bn

G(t)
|α|+nφ(|ϕz(w)|2)Iα+ei,β(z − w)S̃i(z)K(t)

w (z)dλt(z),
v(w) �= 0,F (t)

n+|α|φ(0) < ∞,

∑n
i=1

´
Bn

G(t)
|α|+nφ(|ϕz(w)|2)Iα+ei,β(z − w)S̃i(z)K(t)

w (z)dλt(z),
v(w) = 0,F (t)

n+|α|φ(0) ≤ ∞,

where

S̃i(z, w) =
(1 − |z|2)∂zi

[
(1 − 〈z, w〉)|α|v(z)

]
(1 − 〈w, z〉)(1 − 〈z, w〉)|α| .

With Lemma 4.2, we show the following.

Lemma 4.3. Suppose k is a non-negative integer and Γ ⊂ Nn
0 × Nn

0 is a finite set of 
multi-indices with |α| = |β| = k for every (α, β) ∈ Γ. Suppose for some ε > −1 − t, 
{Fα,β}(α,β)∈Γ ⊂ C 2(Bn × Bn) and

∣∣∣∣ ∑
(α,β)∈Γ

Iα,β(z − w)Fα,β(z, w)
∣∣∣∣ � |ϕz(w)|2k|1 − 〈z, w〉|2k+ε, (4.4)

∣∣∣∣ n∑
j=1

∑
(α,β)∈Γ

Iα,β+ej (z − w)∂̄wj
Fα,β(z, w)

∣∣∣∣ � |ϕz(w)|2k+1|1 − 〈z, w〉|2k+ε. (4.5)

Then

ˆ
2

Φ(t)
n,k(|ϕz(w)|2)

∑
(α,β)∈Γ Iα,β(z − w)Fα,β(z, w)

|1 − 〈z, w〉|2k K(t)
w (z)dλt(w)dλt(z)
Bn
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=
F (t)

n+kΦ
(t)
n,k(0)

B(n, t + 1)

ˆ

Bn

(1 − |z|2)−2k
∑

(α,β)∈Γ

dα,β(z)Fα,β(z, z)dλt(z) (4.6)

−
ˆ

B2
n

Φ(t)
n,k+1(|ϕz(w)|2)

∑n
i,j=1

∑
(α,β)∈Γ Iα+ei,β+ej (z − w)Di,jFα,β(z, w)

|1 − 〈z, w〉|2(k+1) K(t)
w (z)dλt(z)dλt(w).

Here Di,j denotes the operation

Di,j = (1 − 〈z, w〉)2∂zi ∂̄wj
.

Lemma 4.3 will be a key ingredient in the proof of Theorem 1.2. For the rest of this 
section, we prove the two lemmas. As in Section 3, we start by proving a version of 
Lemma 4.2 at the point 0.

Lemma 4.4. Suppose t > −1, k, l are non-negative integers with k ≥ l, and Γ ⊂ Nn
0 ×

Nn
0 is a finite set of multi-indices with |κ| = k, |γ| = l for every (κ, γ) ∈ Γ. Suppose 

{cκ,γ}(κ,γ)∈Γ ⊂ C, φ : (0, 1) → [0, ∞) is measurable and v ∈ C 1(Bn) satisfies that both

ˆ

Bn

φ(|ζ|2)
[ ∑

(κ,γ)∈Γ

cκ,γζ
κζ̄γ

]
v(ζ)dλt(ζ)

and
ˆ

Bn

G(t)
l+nφ(|ζ|2)(1 − |ζ|2)

[ ∑
(κ,γ)∈Γ

cκ,γζ
κζ̄γ

]
R̄v(ζ)dλt(ζ)

converge absolutely. Then

ˆ

Bn

φ(|ζ|2)
[ ∑

(κ,γ)∈Γ

cκ,γζ
κζ̄γ

]
v(ζ)dλt(ζ) (4.7)

=

⎧⎪⎨⎪⎩
cv(0) +

´
Bn

G(t)
l+nφ(|ζ|2)(1 − |ζ|2)

[∑
(κ,γ)∈Γ cκ,γζ

κζ̄γ
]
R̄v(ζ)dλt(ζ), v(0) �= 0,F (t)

n+lφ(0) < ∞.

´
Bn

G(t)
l+nφ(|ζ|2)(1 − |ζ|2)

[∑
(κ,γ)∈Γ cκ,γζ

κζ̄γ
]
R̄v(ζ)dλt(ζ), v(0) = 0,F (t)

n+lφ(0) ≤ ∞.

Here

c =
ˆ

Bn

φ(|ζ|2)
[ ∑

(κ,γ)∈Γ

cκ,γζ
κζ̄γ

]
dλt(ζ).

Proof. Assume first that v(0) = 0. As in Appendix II we use φt to stand for the function 
(1 − s)t. By assumption on v, the first line of (4.7) converges absolutely. Therefore



X. Tang et al. / Journal of Functional Analysis 285 (2023) 110141 23
ˆ

Bn

φ(|ζ|2)
[ ∑

(κ,γ)∈Γ

cκ,γζ
κζ̄γ

]
v(ζ)dλt(ζ)

= (n− 1)!
πnB(n, t + 1)

ˆ

Bn

φφt(|ζ|2)
[ ∑

(κ,γ)∈Γ

cκ,γζ
κζ̄γ

]
v(ζ)dm(ζ)

= (n− 1)!
πnB(n, t + 1)

1ˆ

0

φφt(r2)
[ ∑

(κ,γ)∈Γ

cκ,γ

ˆ

rSn

ζκζ̄γv(ζ)dσr(ζ)
]
dr.

Define R =
∑n

i=1 zi∂zi be the radial derivative operator, and R̄ =
∑n

i=1 z̄i∂̄zi . In 
Appendix I, Lemma 7.1, we show that

ˆ

rSn

ζκζ̄γv(ζ)dσr(ζ) = 2r2l+2n−1
ˆ

rBn

ζκζ̄γ

|ζ|2l+2n R̄v(ζ)dm(ζ).

Plugging it back gives

ˆ

Bn

φ(|ζ|2)
[ ∑

(κ,γ)∈Γ

cκ,γζ
κζ̄γ

]
v(ζ)dλt(ζ)

= (n− 1)!
πnB(n, t + 1)

1ˆ

0

φφt(r2)
[ ∑

(κ,γ)∈Γ

cκ,γ · 2r2l+2n−1
ˆ

rBn

ζκζ̄γ

|ζ|2|γ|+2n R̄v(ζ)dm(ζ)
]
dr

= (n− 1)!
πnB(n, t + 1)

1ˆ

0

ˆ

rBn

φφt(r2)2r2l+2n−1
[ ∑

(κ,γ)∈Γ

cκ,γ · ζκζ̄γ
]
|ζ|−2l−2nR̄v(ζ)dm(ζ)dr

= (n− 1)!
πnB(n, t + 1)

ˆ

Bn

[
|ζ|−2l−2n

1ˆ

|ζ|

φφt(r2)2r2l+2n−1dr
][ ∑

(κ,γ)∈Γ

cκ,γζ
κζ̄γ

]
R̄v(ζ)dm(ζ)

=
ˆ

Bn

G(t)
l+nφ(|ζ|2)(1 − |ζ|2)

[ ∑
(κ,γ)∈Γ

cκ,γζ
κζ̄γ

]
R̄v(ζ)dλt(ζ).

Here in the last equality we used that by Definition 8.1,

|ζ|−2l−2n
1ˆ

|ζ|

φφt(r2)2r2l+2n−1dr s=r2

===== |ζ|−2l−2n
1ˆ

|ζ|2

φφt(s)sl+n−1ds

= (1 − |ζ|2)t+1G(t)
l+nφ(|ζ|2).
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In the second to last equality, Fubini’s theorem is applied: since by assumption the last 
integral converges absolutely, the condition for Fubini’s theorem is satisfied. This proves 
the second case.

Assuming that v(0) 
= 0 and F (t)
l+nφ(0) < ∞, then we have

ˆ

Bn

∣∣∣∣φ(|ζ|2)
[ ∑

(κ,γ)∈Γ

cκ,γζ
κζ̄γ

](
v(ζ) − v(0)

)∣∣∣∣dλt(ζ)

≤
ˆ

Bn

∣∣∣∣φ(|ζ|2)
[ ∑

(κ,γ)∈Γ

cκ,γζ
κζ̄γ

]
v(ζ)

∣∣∣∣dλt(ζ) + |v(0)|
ˆ

Bn

∣∣∣∣φ(|ζ|2)
[ ∑

(κ,γ)∈Γ

cκ,γζ
κζ̄γ

]∣∣∣∣dλt(ζ).

By assumption, the first integral converges. Also since |κ| = k ≥ l = |γ|,

ˆ

Bn

∣∣∣∣φ(|ζ|2)
[ ∑

(κ,γ)∈Γ

cκ,γζ
κζ̄γ

]∣∣∣∣dλt(ζ)

�
ˆ

Bn

φ(|ζ|2)|ζ|2ldλt(ζ)

=(n− 1)!σ2n−1

πnB(n, t + 1)

1ˆ

0

φ(r2)r2n+2l−1(1 − r2)tdr

s=r2

===== (n− 1)!σ2n−1

2πnB(n, t + 1)

1ˆ

0

φ(s)sn+l−1(1 − s)tds

= (n− 1)!σ2n−1

2πnB(n, t + 1)F
(t)
n+lφ(0)

<∞.

Therefore we may apply the formula with v(ζ) − v(0) replacing v(ζ). This gives the first 
case. �

Suppose {e1, . . . , en} and {f1, . . . , fn} are two orthonormal basis of Cn. Suppose

n∑
i=1

ζiei =
n∑

i=1
ξifi;

n∑
i=1

λiei =
n∑

i=1
ωifi.

Then there is a unitary matrix U = [uij ] such that

ξ = Uζ, ω = Uλ.

Denote U∗ = [u∗
ij ]. Therefore
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n∑
i=1

∂v

∂ζ̄i
λ̄i =

n∑
i,j,k=1

(
∂v

∂ξj
ūjiζ̄i

)(
u∗
ikωk

)
=

n∑
j,k=1

∂v

∂ξ̄j
δjkw̄k =

n∑
j=1

∂v

∂ξ̄j
w̄j . (4.8)

In other words, the function

n∑
i=1

∂̄ivλ̄i = 〈∂̄v, λ〉

does not depend on the choice of a basis.

Lemma 4.5. Suppose v ∈ C 1(Bn) and z ∈ Bn. Then

〈∂̄ζv(ζ), ζ〉 = −
〈∂̄
(
v ◦ ϕz

)
(ϕz(ζ)), z − ϕz(ζ)〉
1 − 〈z, ζ〉 . (4.9)

Proof. By (4.8), both sides of (4.9) do not depend on the choice of basis. Thus we may 
assume z = (r, 0, . . . , 0). In this case, we have the following expression

ϕz(w) = 1
1 − w1r

(
r − w1, − (1 − r2)1/2w2, . . . , − (1 − r2)1/2wn

)
.

Consequently, we compute the Jacobian

[
∂(ϕz)i
∂wj

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1−r2

(1−w1r)2 0 0 0 . . . 0
− (1−r2)1/2w2r

(1−w1r)2 − (1−r2)1/2

1−w1r
0 0 . . . 0

− (1−r2)1/2w3r
(1−w1r)2 0 − (1−r2)1/2

1−w1r
0 . . . 0

...
...

...
...

. . .
...

− (1−r2)1/2wnr
(1−w1r)2 0 0 0 . . . − (1−r2)1/2

1−w1r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore we have the following expression,

〈∂̄
(
v ◦ ϕz

)
(w), z − w〉 =

n∑
i,j=1

∂̄iv
(
ϕz(w)

)(∂
(
ϕz

)
i

∂wj

)
(zj − wj) = 〈∂̄v

(
ϕz(w)

)
, ξ〉, (4.10)

where

ξi =
n∑

j=1

∂
(
ϕz

)
i

∂wj
(zj − wj) =

∂
(
ϕz

)
i

∂w1
(r − w1) −

n∑
j=2

∂
(
ϕz

)
i

∂wj
wj .

By the above, set

ξ1 = − (1 − r2)(r − w1)
2 ,
(1 − w1r)
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and for i = 2, . . . , n,

ξi = − (1 − r2)1/2wir(r − w1)
(1 − w1r)2

+(1 − r2)1/2wi

1 − w1r
= (1 − r2)1/2

(1 − w1r)2
(
wi−wir

2) = (1 − r2)3/2

(1 − w1r)2
wi.

Thus we have

ξ = − 1 − r2

1 − w1r
ϕz(w). (4.11)

If we plug in w = ϕz(ζ) then by (4.10), (4.11) and Lemma 2.2, we obtain the equalities

〈∂̄
(
v ◦ ϕz

)
(ϕz(ζ)), z − ϕz(ζ)〉 = 〈∂̄v(ζ),− 1 − |z|2

1 − 〈ϕz(ζ), z〉
ζ〉 = −(1 − 〈z, ζ〉)〈∂̄v(ζ), ζ〉.

Equivalently, (4.9) holds. This completes the proof of Lemma 4.5. �
Proof of Lemma 4.2. By Lemma 2.2 (4) (5),

K(t)
w (z)dλt(w) w=ϕz(ζ)=======

ζ=ϕz(w)
K(t)

z (ζ)dλt(ζ),

and

z − ϕz(ζ) = Azζ

1 − 〈ζ, z〉 , (4.12)

where Azw is the linear transformation

Azζ = (1 − |z|2)Pz(ζ) + (1 − |z|2)1/2Qz(ζ).

Write |α| = k, |β| = l. Assume that v(z) 
= 0 and F (t)
n+lφ(0) < ∞.

ˆ

Bn

φ(|ϕz(w)|2)Iα,β(z − w)v(w)K(t)
w (z)dλt(w)

w=ϕz(ζ)=======
ˆ

Bn

φ(|ζ|2)Iα,β(z − ϕz(ζ))v ◦ ϕz(ζ)K(t)
z (ζ)dλt(ζ).

By (4.12),

Iα,β(z − ϕz(ζ)) =
∑

|κ|=k,|γ|=l cα,β,κ,γ,zζ
κζ̄γ

(1 − 〈ζ, z〉)k(1 − 〈z, ζ〉)l . (4.13)

By the above and Lemma 4.4,
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ˆ

Bn

φ(|ϕz(w)|2)Iα,β(z − w)v(w)K(t)
w (z)dλt(w)

=
ˆ

Bn

φ(|ζ|2)
[ ∑
|κ|=k,|γ|=l

cα,β,κ,γ,zζ
κζ̄γ

]
v ◦ ϕz(ζ)

(1 − 〈ζ, z〉)k(1 − 〈z, ζ〉)lK
(t)
z (ζ)dλt(ζ)

=cv(z)

+
ˆ

Bn

G(t)
l+nφ(|ζ|2)(1 − |ζ|2)

[ ∑
|κ|=k,|γ|=l

cα,β,κ,γ,zζ
κζ̄γ

]
R̄

[
v ◦ ϕz(ζ)

(1 − 〈ζ, z〉)k(1 − 〈z, ζ〉)l
K(t)

z (ζ)
]
dλt(ζ)

=cv(z)

+
ˆ

Bn

G(t)
l+nφ(|ζ|2)(1 − |ζ|2)

[ ∑
|κ|=k,|γ|=l

cα,β,κ,γ,zζ
κζ̄γ

]
R̄

[
v ◦ ϕz(ζ)

(1 − 〈z, ζ〉)l

]
(1 − 〈ζ, z〉)−kK(t)

z (ζ)dλt(ζ)

=cv(z)

+
ˆ

Bn

G(t)
l+nφ(|ζ|2)(1 − |ζ|2)Iα,β(z − ϕz(ζ))(1 − 〈z, ζ〉)lR̄

[
v ◦ ϕz(ζ)

(1 − 〈z, ζ〉)l
]
K(t)

z (ζ)dλt(ζ).

Write h(ζ) = v◦ϕz(ζ)
(1−〈z,ζ〉)l . Then

h ◦ ϕz(w) = (1 − 〈z, w〉)lv(w)
(1 − |z|2)l .

By Lemma 4.5,

R̄

[
v ◦ ϕz(ζ)

(1 − 〈z, ζ〉)l
]

= R̄h(ζ) = 〈∂̄ζh(ζ), ζ〉 = −
〈∂̄
(
h ◦ ϕz

)
(ϕz(ζ)), z − ϕz(ζ)〉
1 − 〈z, ζ〉 .

Taking the change of variable ζ = ϕz(w) we get

ˆ

Bn

G(t)
l+nφ(|ζ|2)(1 − |ζ|2)Iα,β(z − ϕz(ζ))(1 − 〈z, ζ〉)lR̄

[
v ◦ ϕz(ζ)

(1 − 〈z, ζ〉)l
]
K(t)

z (ζ)dλt(ζ)

= −
ˆ

Bn

G(t)
l+nφ(|ζ|2)(1 − |ζ|2)

Iα,β(z − ϕz(ζ))(1 − 〈z, ζ〉)l−1〈∂̄
(
h ◦ ϕz

)
(ϕz(ζ)), z − ϕz(ζ)〉K(t)

z (ζ)dλt(ζ)

= −
ˆ

Bn

G(t)
l+nφ(|ϕz(w)|2)(1 − |ϕz(w)|2)

Iα,β(z − w)
[

1 − |z|2
]l−1

〈∂̄
[
(1 − 〈z, w〉)lv(w)

2 l

]
(w), z − w〉K(t)

w (z)dλt(w)
1 − 〈z, w〉 (1 − |z| )
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= −
n∑

j=1

ˆ

Bn

G(t)
l+nφ(|ϕz(w)|2)Iα,β+ej (z − w) 1 − |w|2

1 − 〈w, z〉
∂̄j
[
(1 − 〈z, w〉)lv(w)

]
(1 − 〈z, w〉)l K(t)

w (z)dλt(w)

= −
n∑

j=1

ˆ

Bn

G(t)
l+nφ(|ϕz(w)|2)Iα,β+ej (z − w)Sj(w)K(t)

w (z)dλt(w).

To find the constant c, recall that by Lemma 4.4,

c =
ˆ

Bn

φ(|ζ|2)
[ ∑
|κ|=l,|γ|=l

cα,β,κ,γ,zζ
κζ̄γ

]
dλt(ζ).

Clearly if k 
= l then c = 0. Assuming k = l, then by (4.13), we compute c as follows,

c =
ˆ

Bn

φ(|ζ|2)|1 − 〈z, ζ〉|2lIα,β(z − ϕz(ζ))dλt(ζ)

=
ˆ

Bn

φ(|ζ|2)Iα,β(Azζ)dλt(ζ)

= (n− 1)!
πnB(n, t + 1)

1ˆ

0

φ(r2)r2n++2l−1(1 − r2)t
[ˆ
Sn

Iα,β(Azζ)dσ(ζ)
]
dr

= (n− 1)!
πnB(n, t + 1) · 1

2F
(t)
n+lφ(0) · σ2n−1dα,β(z)

=
F (t)

n+lφ(0)
B(n, t + 1)dα,β(z).

This proves the first case of (4.2). The second case is proved in the same way.
In (4.2), reverse (z, w), (α, β), and replace v with v̄. Then
ˆ

Bn

φ(|ϕw(z)|2)Iβ,α(w − z)v̄(z)K(t)
z (w)dλt(z)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dβ,α(w)
B(n,t+1) · F (t)

n+|α|φ(0)v̄(w) −
∑n

j=1
´
Bn

G(t)
|α|+nφ(|ϕw(z)|2)Iβ,α+ej (w − z)Sj(z)K(t)

z (w)dλt(z),
v(w) �= 0,F (t)

n+|α|φ(0) < ∞,

−
∑n

j=1
´
Bn

G(t)
|α|+nφ(|ϕw(z)|2)Iβ,α+ej (w − z)Sj(z)K(t)

z (w)dλt(z),
v(w) = 0,F (t)

n+|α|φ(0) ≤ ∞,

where

Sj(z) =
(1 − |z|2)∂̄zj

[
(1 − 〈w, z〉)|α|v̄(z)

]
|α| .
(1 − 〈z, w〉)(1 − 〈w, z〉)
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Taking conjugate on both sides, we get Equation ((4.3)) from

dα,β(z) = dβ,α(z), |ϕz(w)| = |ϕw(z)|.

This completes the proof. �
Proof of Lemma 4.3. By Estimates (8.4), (2.7), and assumption (4.4), we conclude that 
the left hand side of Equation (4.6) is absolutely integrable. For each z ∈ Bn, (α, β) ∈ Γ, 
we compute the following integral,

ˆ

Bn

Φ(t)
n,k(|ϕz(w)|2)Iα,β(z − w) Fα,β(z, w)

|1 − 〈z, w〉|2kK
(t)
w (z)dλt(w)

(4.2)===== dα,β(z)
B(n, t + 1)F

(t)
n+kΦ

(t)
n,k(0) Fα,β(z, z)

(1 − |z|2)2k

−
n∑

j=1

ˆ

Bn

G(t)
n+kΦ(t)

n,k(|ϕz(w)|2)Iα,β+ej (z − w)
(1 − |w|2)∂̄wjFα,β(z, w)

(1 − 〈w, z〉)k+1(1 − 〈z, w〉)kK
(t)
w (z)dλt(w).

By (8.5), (2.7) and assumption (4.5), the integral

ˆ

B2
n

G(t)
n+kΦ

(t)
n,k(|ϕz(w)|2)

∑n
j=1

∑
(α,β)∈Γ Iα,β+ej (z − w)(1 − |w|2)∂̄wj

F (z, w)
(1 − 〈w, z〉)k+1(1 − 〈z, w〉)k K(t)

w (z)dλt(w)dλt(z)

converges absolutely. Therefore the first line of (4.6) equals

ˆ

Bn

∑
(α,β)∈Γ

dα,β(z)
B(n, t + 1)F

(t)
n+kΦ

(t)
n,k(0) Fα,β(z, z)

(1 − |z|2)2k dλt(z)

−
ˆ

B2
n

G(t)
n+kΦ

(t)
n,k(|ϕz(w)|2)

∑n
j=1

∑
(α,β)∈Γ Iα,β+ej (z − w)(1 − |w|2)∂̄wj

F (z, w)
(1 − 〈w, z〉)k+1(1 − 〈z, w〉)k K(t)

w (z)dλt(z)dλt(w).

Again, for any w ∈ Bn, j = 1, . . . , n and (α, β) ∈ Γ, we compute the following integral,

ˆ
G(t)
n+kΦ

(t)
n,k(|ϕz(w)|2)Iα,β+ej (z − w)

(1 − |w|2)∂̄wj
F (z, w)

(1 − 〈w, z〉)k+1(1 − 〈z, w〉)kK
(t)
w (z)dλt(z)
Bn
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(4.3)=====
n∑

i=1

ˆ

Bn

(
G(t)
n+k

)2Φ(t)
n,k(|ϕz(w)|2)

Iα+ei,β+ej (z − w)
(1 − |z|2)(1 − |w|2)∂zi ∂̄wj

F (z, w)
(1 − 〈w, z〉)k+2(1 − 〈z, w〉)k K(t)

w (z)dλt(z)

=
n∑

i=1

ˆ

Bn

Mφ1

(
G(t)
n+k

)2Φ(t)
n,k(|ϕz(w)|2)

Iα+ei,β+ej (z − w)
∂zi ∂̄wj

F (z, w)
(1 − 〈w, z〉)k+1(1 − 〈z, w〉)k−1K

(t)
w (z)dλt(z)

=
n∑

i=1

ˆ

Bn

Φ(t)
n,k+1(|ϕz(w)|2)Iα+ei,β+ej (z − w) Di,jF (z, w)

|1 − 〈w, z〉|2(k+1)K
(t)
w (z)dλt(z).

Altogether, the first line of (4.6) equals

ˆ

Bn

∑
(α,β)∈Γ

dα,β(z)
B(n, t + 1)F

(t)
n+kΦ

(t)
n,k(0) Fα,β(z, z)

(1 − |z|2)2k dλt(z)

+
ˆ

B2
n

Φ(t)
n,k+1(|ϕz(w)|2)

∑n
i=1,j

∑
(α,β)∈Γ Iα+ei,β+ej (z − w)Di,jF (z, w)

|1 − 〈w, z〉|2(k+1) K(t)
w (z)dλt(z)dλt(w).

This completes the proof of Lemma 4.3. �
Using the same proof of Lemma 4.2, one can show the following.

Lemma 4.6. Suppose α, β ∈ Nn
0 , and v ∈ C 1(Bn). Then the following hold.

1. If |α| ≥ |β|, then

ˆ

Sn

Iα,β(z − w)v(w)Kw(z)dσ(w)
σ2n−1

(4.14)

= dα,β(z)v(z) − 1
n

n∑
j=1

ˆ

Bn

|ϕz(w)|−2|β|−2nIα,β+ej (z−w)
∂̄j

[
(1 − 〈z, w〉)|β|v(w)

]
(1 − 〈z, w〉)|β|(1 − 〈w, z〉)

Kw(z)dλ0(w),

2. If |α| ≤ |β|, then

ˆ

Sn

Iα,β(z − w)v(z)Kw(z) dσ(z)
σ2n−1

(4.15)

= dβ,α(w)v(w) +
1
n

n∑
i=1

ˆ
|ϕz(w)|−2|α|−2nIα+ei,β(z−w)

∂i
[
(1 − 〈z, w〉)|α|v(z)

]
(1 − 〈z, w〉)|α|(1 − 〈w, z〉)

Kw(z)dλ0(z),

Bn
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5. The higher dimensions

The goal of this section is to prove Theorem 1.2. To start with, we apply Lemma 4.3
to get the following.

Lemma 5.1. Suppose t > −1 and f, g ∈ C 1(Bn). Suppose f, g, ∂f, ∂̄g are bounded on Bn. 
Then

T
(t)
f T (t)

g − T
(t)
fg = P (t)R,

where R : L2
a,t(Bn) → L2(λt) is defined by

Rh(z) = −
ˆ

Bn

Φ(t)
n,1(|ϕz(w)|2)1 − 〈z, w〉

1 − 〈w, z〉 〈∂zf, z − w〉〈∂̄wg, z − w〉h(w)K(t)
w (z)dλt(w).

Proof. By definition, for h ∈ H∞(Bn),(
T

(t)
f T (t)

g − T
(t)
fg

)
h(ξ) =

ˆ

Bn

ˆ

Bn

(
f(z)g(w) − f(w)g(w)

)
h(w)K(t)

w (z)K(t)
z (ξ)dλt(w)dλt(z).

Denote Fξ(z, w) =
(
f(z)g(w) − f(w)g(w)

)
h(w)K(t)

z (ξ). Then

F (z, z) = 0.

For fixed ξ ∈ Bn, Fξ(z, w) is bounded, and by Lemma 2.2,

∣∣∣∣ n∑
j=1

I0,ej (z − w)∂̄wj
F (z, w)

∣∣∣∣ � |z − w| � |ϕz(w)||1 − 〈z, w〉|1/2.

Then the assumption of Lemma 4.3 is satisfied when we take Γ = {(0, 0)}, k = 0, ε = 0
and F0,0 = Fξ. Applying the lemma, we obtain the following computation,(

T
(t)
f T (t)

g − T
(t)
fg

)
h(ξ)

=
ˆ

Bn×Bn

Φ(t)
n,0(|ϕz(w)|2)F (z, w)K(t)

w (z)dλt(w)dλt(z)

= −
ˆ

Bn×Bn

Φ(t)
n,1(|ϕz(w)|2)

∑n
i,j=1 I

ei,ej (z − w)Di,jF (z, w)
|1 − 〈z, w〉|2 K(t)

w (z)dλt(z)dλt(w)

= −
ˆ

Φ(t)
n,1(|ϕz(w)|2)1 − 〈z, w〉

1 − 〈w, z〉

Bn×Bn
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n∑
i,j=1

Iei,ej (z − w)∂if(z)∂̄jg(w)h(w)K(t)
z (ξ)K(t)

w (z)dλt(z)dλt(w)

=P (t)Rh(ξ).

This completes the proof. �
Lemma 5.2. Suppose t > 2n − 3 and f, g satisfy Condition 1. Then the semicommutator 
T

(t)
f T

(t)
g − T

(t)
fg belongs to the trace class.

Proof. Divide T (t)
f T

(t)
g −T

(t)
fg = P (t)R as in Lemma 5.1. Take ε > 0 so that t > 2n −3 +2ε. 

Let c = n + ε and denote R̂ : L2
a,t+2c(Bn) → L2(λt) the integral operator with the same 

integral formula as R, i.e.,

R̂h(z) = −
ˆ

Bn

Φ(t)
n,1(|ϕz(w)|2)1 − 〈z, w〉

1 − 〈w, z〉 〈∂zf, z − w〉〈∂̄wg, z − w〉h(w)K(t)
w (z)dλt(w).

Let E : L2
a,t(Bn) → L2

a,t+2c(Bn) be the embedding map. Split T (t)
f T

(t)
g − T

(t)
fg as

T
(t)
f T (t)

g − T
(t)
fg : L2

a,t(Bn) E−−→ L2
a,t+2c(Bn) R̂−−→ L2(λt)

P (t)

−−−→ L2
a,t(Bn).

It is well-known that E is in the trace class [32]. It remains to show that R̂ is bounded. 
By definition, the operator R̂ has integral kernel

F̂ (z, w) = CΦ(t)
n,1(|ϕz(w)|2)1 − 〈z, w〉

1 − 〈w, z〉 〈∂zf, z − w〉〈∂̄wg, z − w〉K(t)
w (z)(1 − |w|2)−2c,

where C is a constant. By assumption,

|F̂ (z, w)| �
Φ(t)

n,1(|ϕz(w)|2)|ϕz(w)|2

|1 − 〈z, w〉|1+t−ε(1 − |w|2)2c .

By Lemma 8.3,

Φ(t)
n,1(s) � s−n−1/2(1 − s).

Take x so that

−2(n + ε) + 1 > x > −2 − t.

Let y = n + ε + x, p(w) = (1 − |w|2)x and q(z) = (1 − |z|2)y. Then by Lemma 2.4 (3),
ˆ

|F̂ (z, w)|p(w)dλt+2c(w) �
ˆ

Φ(t)
n,1(|ϕz(w)|2)|ϕz(w)|2 (1 − |w|2)t+x

|1 − 〈z, w〉|1+t−ε
dm(w) � q(z),
Bn Bn
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ˆ

Bn

|F̂ (z, w)|q(z)dλt(z) � (1 − |w|2)−2c
ˆ

Bn

Φ(t)
n,1(|ϕz(w)|2)|ϕz(w)|2 (1 − |z|2)t+y

|1 − 〈z, w〉|1+t−ε
dm(z)

� p(w).

By Schur’s test, R̂ is bounded. Therefore the semicommutator is in the trace class. This 
completes the proof. �

Recall that the operations F (t)
m , G(t)

m and the functions Φ(t)
n,k are defined in Appendix 

II.

Lemma 5.3. We have

F (t)
n+1Φ

(t)
n,1(0) =

∞∑
j=0

B(n + 1 + j, t + 1)
1 + j

= −
1ˆ

0

(1 − s)n−1st ln sds.

Consequently, as t tends to infinity,

F (t)
n+1Φ

(t)
n,1(0) = n!t−n−1 + o(t−n−2).

Proof. First, by Lemma 8.4,

F (t)
n+1Φ

(t)
n,1(0) = F (t)

n+1Mφ1

(
G(t)
n

)21(0) = F (t)
n+1G(t)

n 1(0)

=
∞∑
j=0

1
1 + j

F (t)
n+1+j1(0) =

∞∑
j=0

1
1 + j

B(n + 1 + j, t + 1).

By definition, the above equals

∞∑
j=0

1
1 + j

1ˆ

0

(1 − s)n+jstds = −
1ˆ

0

(1 − s)n−1st ln sds.

This proves the first line of equations. The second line of equation follows from the 
estimate

| − ln s− 1 + s| � (1 − s)2s−1.

This completes the proof. �
Lemma 5.4. We have

Φ(t)
n,2(s) = (1 − s)−ts−n−1

n∑
k=1

(n− 1)!Γ(t + 1)
(n− k)!Γ(t + 1 + k)

1ˆ
F (s, x)xn−k−1(1 − x)t+k−1dx.
s
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Proof. By Definition 8.1, we compute Φ(t)
n,2(s) as follows,

Φ(t)
n,2(s)

=(1 − s)
(
G(t)
n+1

)2
Mφ1

(
G(t)
n

)21(s)

=(1 − s)−ts−n−1
1ˆ

s

sn1 (1 − s1)tG(t)
n+1Mφ1

(
G(t)
n

)21(s1)ds1

=(1 − s)−ts−n−1
1ˆ

s

s−1
1 (1 − s1)−1

1ˆ

s1

sn2 (1 − s2)t+1(G(t)
n

)21(s2)ds2ds1

=(1 − s)−ts−n−1
1ˆ

s

s−1
1 (1 − s1)−1

1ˆ

s1

1ˆ

s2

sn−1
3 (1 − s3)tG(t)

n 1(s3)ds3ds2ds1

=(1 − s)−ts−n−1
1ˆ

s

s−1
1 (1 − s1)−1

1ˆ

s1

1ˆ

s2

s−1
3 (1 − s3)−1

1ˆ

s3

sn−1
4 (1 − s4)tds4ds3ds2ds1

=(1 − s)−ts−n−1
˘

s<s1<s2<s3<s4<1

s−1
1 (1 − s1)−1s−1

3 (1 − s3)−1sn−1
4 (1 − s4)tds4ds3ds2ds1

=(1 − s)−ts−n−1
1ˆ

s

{ ¨

s<s1<s2<s3

s−1
1 (1 − s1)−1ds1ds2

}

·
{ 1ˆ

s3

sn−1
4 (1 − s4)tds4

}
s−1
3 (1 − s3)−1ds3.

By Lemma 3.4, we have the following integral,
¨

s<s1<s2<s3

s−1
1 (1 − s1)−1ds1ds2 = F (s, s3).

For a positive integer m, and x > −1, temporarily denote I(m, x) =
´ 1
s3
sm−1
4 (1 −s4)xds4. 

Then, we obtain the following relations,

I(1, x) = (1 − s3)x+1

x + 1 ,

and

I(m + 1, x) =
1ˆ
sm4 (1 − s4)xds4
s3
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= − (x + 1)−1
1ˆ

s3

sm4 d(1 − s4)x+1

= 1
x + 1s

m
3 (1 − s3)x+1 + m

x + 1

1ˆ

s3

sm−1
4 (1 − s4)x+1ds4

= 1
x + 1s

m
3 (1 − s3)x+1 + m

x + 1I(m,x + 1).

Thus by induction, we obtain the following formula for I(n, t),

1ˆ

s3

sn−1
4 (1 − s4)tds4 = I(n, t) =

n∑
k=1

(n− 1)!Γ(t + 1)
(n− k)!Γ(t + 1 + k)s

n−k
3 (1 − s3)t+k.

Therefore, we conclude with the following formula for Φ(t)
n,2,

Φ(t)
n,2(s) = (1 − s)−ts−n−1

n∑
k=1

(n− 1)!Γ(t + 1)
(n− k)!Γ(t + 1 + k)

1ˆ

s

F (s, s3)sn−k−1
3 (1 − s3)t+k−1ds3.

This completes the proof. �
The following lemma helps us study the first term of Tr

(
T

(t)
f T

(t)
g − T

(t)
fg

)
after itera-

tion.

Lemma 5.5. For f, g ∈ C 1(Bn), the following are equal whenever the integrals converge.

ˆ

Bn

∑n
i,j=1 dei,ej (w)∂if(w)∂̄jg(w)

(1 − |w|2)n+1 dm(w)

= −1
(2i)nn!

ˆ

Bn

∂f ∧ ∂̄g ∧
[
∂∂̄ log(1 − |w|2)

]n−1

(5.1)

= 1
n

ˆ

Bn

∑n
i=1 ∂if(w)∂̄ig(w) −Rf(w)R̄g(w)

(1 − |w|2)n dm(w).

Proof. By Definition 4.1, we consider

n∑
i,j=1

dei,ej (w)∂if(w)∂̄jg(w) =
ˆ [ n∑

i=1

(
Awζ

)
i
∂if(w)

][ n∑
j=1

(
Awζ

)
j
∂̄jg(w)

]
dσ(ζ)
σ2n−1

.

Sn
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By an argument similar as in the proof of (4.8), the sum in each big bracket is independent 
of the choice of an orthonormal basis of Cn. Thus the integrand in the left hand side of 
(5.1) does not depend on the choice of a basis. At each w ∈ Bn, w 
= 0, choose a basis 
under which w = (w1, 0, . . . , 0). By (4.1),

∑n
i,j=1 dei,ej (w)∂if(w)∂̄jg(w)

(1 − |w|2)n+1 = 1
n

[
∂1f(w)∂̄1g(w)
(1 − |w|2)n−1 +

∑n
i=2 ∂if(w)∂̄jg(w)

(1 − |w|2)n
]
. (5.2)

On the other hand, we compute

∂∂̄ log(1 − |w|2) = −∂

[∑n
j=1 wjdw̄j

1 − |w|2
]

= −
∑n

i,j=1 w̄iwjdwi ∧ dw̄j

(1 − |w|2)2 −
∑n

j=1 dwj ∧ dw̄j

1 − |w|2 .

At w = (w1, 0, . . . , 0) the above equals

−|w|2dw1 ∧ dw̄1

(1 − |w|2)2 −
n∑

j=1

dwj ∧ dw̄j

1 − |w|2 = − dw1 ∧ dw̄1

(1 − |w|2)2 −
n∑

j=2

dwj ∧ dw̄j

1 − |w|2 .

Thus, we have

[
∂∂̄ log(1 − |w|2)

]n−1∣∣∣∣
w=(w1,0,...,0)

= (−1)n−1(n− 1)!
[∧n

j=2
(
dwj ∧ dw̄j

)
(1 − |w|2)n−1 +

n∑
i=2

∧
j �=i

(
dwj ∧ dw̄j

)
(1 − |w|2)n

]
.

Therefore at w = (w1, 0, . . . , 0), we have

∂f ∧ ∂̄g ∧
[
∂∂̄ log(1 − |w|2)

]n−1

=(−1)n−1(n− 1)!
[
∂1f(w)∂̄1g(w)
(1 − |w|2)n−1 +

∑n
i=2 ∂if(w)∂̄ig(w)

(1 − |w|2)n
] n∧
j=1

(
dwj ∧ dw̄j

)
= − (2i)n(n− 1)!

[
∂1f(w)∂̄1g(w)
(1 − |w|2)n−1 +

∑n
i=2 ∂if(w)∂̄ig(w)

(1 − |w|2)n
]
dm(w). (5.3)

Comparing (5.2) and (5.3), we conclude that at w = (w1, 0, . . . , 0),

∂f ∧ ∂̄g ∧
[
∂∂̄ log(1 − |w|2)

]n−1

= −(2i)nn!
∑n

i,j=1 dei,ej (w)∂if(w)∂̄jg(w)
(1 − |w|2)n+1 dm(w).

Since both sides are independent of the choice of basis, the equation holds for general w. 
This proves the first equality.
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Also, it is easy to see that 
∑n

i=1 ∂if(w)∂̄ig(w) −Rf(w)R̄g(w) is invariant of the choice 
of a basis. Again, if one chooses a basis so that w = (w1, 0, . . . , 0), then

n∑
i=1

∂if(w)∂̄ig(w) −Rf(w)R̄g(w) = (1 − |w|2)∂1f(w)∂̄1g(w) +
n∑

i=2
∂if(w)∂̄ig(w).

Comparing the above and (5.2) gives

n∑
i=1

∂if(w)∂̄ig(w) −Rf(w)R̄g(w) = n

∑n
i,j=1 dei,ej (w)∂if(w)∂̄jg(w)

1 − |w|2 . (5.4)

Since both sides are independent of the choice of a basis the equation holds for general 
w. Plugging (5.4) into the first equality gives the second equality. This completes the 
proof. �
Proof of Theorem 1.2. The fact that T (t)

f T
(t)
g − T

(t)
fg belongs to the trace class is proved 

in Lemma 5.2. By Lemma 2.5 and Lemma 5.1, we compute the trace of the semi-
commutator as follows,

Tr
(
T

(t)
f T (t)

g − T
(t)
fg

)
=
ˆ

Bn

〈
(
T

(t)
f T (t)

g − T
(t)
fg

)
K

(t)
ξ ,K

(t)
ξ 〉

= −
ˆ

Bn

{ ˆ

Bn

ˆ

Bn

Φ(t)
n,1(|ϕz(w)|2)1 − 〈z, w〉

1 − 〈w, z〉 〈∂zf, z − w〉〈∂̄wg, z − w〉

K
(t)
ξ (w)K(t)

w (z)K(t)
z (ξ)dλt(w)dλt(z)

}
dλt(ξ).

It follows from our assumption that f, g satisfy condition 1 and Lemma 2.4 that the 
integral converges absolutely. Applying Fubini’s theorem, we continue the above compu-
tation,

−
ˆ

Bn

ˆ

Bn

Φ(t)
n,1(|ϕz(w)|2)1 − 〈z, w〉

1 − 〈w, z〉 〈∂zf, z − w〉〈∂̄wg, z − w〉

{ ˆ

Bn

K
(t)
ξ (w)K(t)

z (ξ)dλt(ξ)
}
K(t)

w (z)dλt(w)dλt(z)

= −
ˆ ˆ

Φ(t)
n,1(|ϕz(w)|2)1 − 〈z, w〉

1 − 〈w, z〉 〈∂zf, z − w〉〈∂̄wg, z − w〉|K(t)
w (z)|2dλt(w)dλt(z)
Bn Bn
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=−
ˆ

Bn

ˆ

Bn

Φ(t)
n,1(|ϕz(w)|2)

(1 − 〈w, z〉)2
∑n

i,j=1 I
ei,ej (w − z)∂iḡ(w)∂̄j f̄(z)

|1 − 〈z, w〉|2 |K(t)
w (z)|2dλt(w)dλt(z).

Applying Lemma 4.3 with Γ = {(ei, ej) : i, j = 1, . . . , n}, k = 1, we obtain

Fei,ej (z, w) = (1 − 〈w, z〉)2∂iḡ(w)∂̄j f̄(z)K(t)
z (w)

and also using Lemma 5.5 we get

ˆ

Bn

ˆ

Bn

Φ(t)
n,1(|ϕz(w)|2)

(1 − 〈w, z〉)2
∑n

i,j=1 I
ei,ej (w − z)∂iḡ(w)∂̄j f̄(z)

|1 − 〈z, w〉|2 |K(t)
w (z)|2dλt(w)dλt(z)

=
ˆ

Bn

ˆ

Bn

Φ(t)
n,1(|ϕz(w)|2)

∑n
i,j=1 Fei,ej (z, w)
|1 − 〈z, w〉|2 K(t)

w (z)dλt(w)dλt(z)

=
F (t)

n+1Φ
(t)
n,1(0)

B(n, t + 1)

ˆ

Bn

(1 − |z|2)−2
n∑

i,j=1
dei,ej (z)Fei,ej (z, z)dλt(z)

−
ˆ

Bn×Bn

Φ(t)
n,2(|ϕz(w)|2)

∑n
i,j,k,l=1 I

ei+ek,ej+el(z − w)(1 − 〈z, w〉)2∂zk ∂̄wl
Fei,ej (z, w)

|1 − 〈z, w〉|4

K(t)
w (z)dλt(z)dλt(w)

=
F (t)

n+1Φ
(t)
n,1(0)

B(n, t + 1)

ˆ

Bn

∑n
i,j=1 dei,ej (z)∂iḡ(z)∂̄j f̄(z)

(1 − |z|2)n+1+t
dλt(z)

−
ˆ

Bn×Bn

Φ(t)
n,2(|ϕz(w)|2)

n∑
i,j,k,l=1

Iei+ek,ej+el(z − w)∂̄l∂iḡ(w)∂k∂̄j f̄(z)|K(t)
w (z)|2dλt(z)dλt(w)

=
F (t)

n+1Φ
(t)
n,1(0)

B(n, t + 1) · (n− 1)!
B(n, t + 1)πn

· −1
(2i)nn!

ˆ

Bn

∂ḡ ∧ ∂̄f̄ ∧
[
∂∂̄ log(1 − |w|2)

]n−1

−
ˆ

Bn×Bn

Φ(t)
n,2(|ϕz(w)|2)Lz f̄(z − w)Lwḡ(z − w)|K(t)

w (z)|2dλt(z)dλt(w).

Therefore, we continue the computation of the semi-commutator using the above calcu-
lation,

Tr
(
T

(t)
f T (t)

g − T
(t)
fg

)
=−

ˆ ˆ
Φ(t)

n,1(|ϕz(w)|2)
(1 − 〈w, z〉)2

∑n
i,j=1 I

ei,ej (w − z)∂iḡ(w)∂̄j f̄(z)
|1 − 〈z, w〉|2 |K(t)

w (z)|2dλt(w)dλt(z)

Bn Bn



X. Tang et al. / Journal of Functional Analysis 285 (2023) 110141 39
= −
F (t)

n+1Φ
(t)
n,1(0)

B(n, t + 1) · (n− 1)!
B(n, t + 1)πn

· −1
(−2i)nn!

ˆ

Bn

∂̄g ∧ ∂f ∧
[
− ∂∂̄ log(1 − |w|2)

]n−1

+
ˆ

Bn×Bn

Φ(t)
n,2(|ϕz(w)|2)Lzf(z − w)Lwg(z − w)|K(t)

w (z)|2dλt(z)dλt(w)

=an,t

ˆ

Bn

∂f ∧ ∂̄g ∧
[
∂∂̄ log(1 − |w|2)

]n−1

+
ˆ

Bn×Bn

ρn,t(|ϕz(w)|2)Lzf(z − w)Lwg(z − w) dm(z, w)
|1 − 〈z, w〉|2n+2 ,

where

an,t =
F (t)

n+1Φ
(t)
n,1(0)(

B(n, t + 1)2
)
n(2πi)n

and ρn,t(s) =
(

(n− 1)!
πnB(n, t + 1)

)2

(1 − s)tΦ(t)
n,2(s).

By Lemma 5.3, we have the following estimate,

an,t =
−
´ 1
0 (1 − s)n−1st ln sds(

B(n, t + 1)2
)
n(2πi)n

= n!t−n−1 + o(t−n−2)(
B(n, t + 1)2

)
n(2πi)n

= tn−1

(n− 1)!(2πi)n + o(tn−2).

(5.5)
By Lemma 5.4, we have the following formula,

ρn,t(s) = s−n−1
n∑

k=1

(n− 1)!Γ2(n + t + 1)
(n− k)!Γ(t + 1 + k)Γ(t + 1)π2n

1ˆ

s

F (s, x)xn−k−1(1 − x)t+k−1dx.

(5.6)
This proves Equation (1.9). It remains to prove (1.11). By our assumption on Condition 
2, Lemmas 2.2, 2.4 and 3.5, we have the following estimates,

t1−n

∣∣∣∣ ˆ

Bn×Bn

ρn,t(|ϕz(w)|2)Lzf(z − w)Lwg(z − w) dm(z, w)
|1 − 〈z, w〉|2n+2

∣∣∣∣
�t1−n

ˆ

Bn

ˆ

Bn

ρn,t(|ϕz(w)|2)|ϕz(w)|4
|1 − 〈z, w〉|n+2−ε

dm(w)dm(z)

ζ=ϕz(w)=======t1−n

ˆ

Bn

ˆ

Bn

ρn,t(|ζ|2)|ζ|4
|1 − 〈z, ζ〉|n+2−ε

(1 − |z|2)n+2−ε
· (1 − |z|2)n+1

|1 − 〈z, ζ〉|2n+2 dm(ζ)dm(z)

=t1−n

ˆ
ρn,t(|ζ|2)|ζ|4

ˆ (1 − |z|2)−1+ε

|1 − 〈z, ζ〉|n+ε
dm(z)dm(ζ)
Bn Bn
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�t1−n

ˆ

Bn

ρn,t(|ζ|2)|ζ|4 ln 1
1 − |ζ|2 dm(ζ)

≈t1−n

1ˆ

0

sn+1ρn,t(s) ln 1
1 − s

ds

�t1−n

1ˆ

0

sn+1ρn,t(s)(1 − s)−1/2ds

=t1−n

1ˆ

0

sn+1
{
s−n−1

n∑
k=1

(n− 1)!Γ2(n + t + 1)
(n− k)!Γ(t + 1 + k)Γ(t + 1)π2n

1ˆ

s

F (s, x)xn−k−1(1 − x)t+k−1dx
}

(1 − s)−1/2ds

=t1−n
n∑

k=1

(n− 1)!Γ2(n + t + 1)
(n− k)!Γ(t + 1 + k)Γ(t + 1)π2n

1ˆ

0

1ˆ

s

F (s, x)xn−k−1(1 − x)t+k−1dx(1 − s)−1/2ds

=t1−n
n∑

k=1

(n− 1)!Γ2(n + t + 1)
(n− k)!Γ(t + 1 + k)Γ(t + 1)π2n

1ˆ

0

{ xˆ

0

F (s, x)(1 − s)−1/2ds
}
xn−k−1(1 − x)t+k−1dx

�t1−n
n∑

k=1

(n− 1)!Γ2(n + t + 1)
(n− k)!Γ(t + 1 + k)Γ(t + 1)π2n

1ˆ

0

xn−k+1(1 − x)t+k−1dx

=t1−n
n∑

k=1

(n− 1)!Γ2(n + t + 1)
(n− k)!Γ(t + 1 + k)Γ(t + 1)π2nB(n− k + 2, t + k)

=o(t−1)

→ 0,

as t tends to infinity. Combining the above, (5.5), and (1.9) we obtain (1.11). This 
completes the proof. �
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6. Applications and examples

We start this section with some applications of Theorem 1.1. Since |ϕz(w)| = |ϕw(z)|, 
it follows immediately that the second term in (1.3) is symmetric in the symbols f and 
g. As a consequence, the following trace formula for commutators of Toeplitz operators 
holds.

Corollary 6.1. Suppose t > −1 and f, g ∈ C 2(D). Then

Tr[T (t)
f , T (t)

g ] = 1
2πi

ˆ

D

df ∧ dg. (6.1)

For the case when t = 0, this result is well-known (cf. [23,39]).
We can apply Theorem 1.1 to study Hankel operators. Recall that the Hankel operator 

with symbol g is defined on L2(λt) by

H(t)
g = (I − P (t))MgP

(t),

where P (t) is the Bergman projection. By the identity

T
(t)
f T (t)

g − T
(t)
fg = −H

(t)∗
f̄

H(t)
g ,

we have

Tr(T (t)
f T (t)

g − T
(t)
fg ) = −Tr(H(t)∗

f̄
H(t)

g ) = −〈H(t)
g , H

(t)
f̄

〉S2 .

Thus (1.3) leads to a formula for the inner product of Hankel operators in the Hilbert-
Schmidt class. In particular, it leads to a formula for the Hilbert-Schmidt norm of Hankel 
operators.

Corollary 6.2. Suppose t > −1 and g ∈ C 2(D). Then

‖H(t)
g ‖2

S2 = 1
π

ˆ

D

|∂̄g|2dm−
ˆ

D2

�t(|ϕz(w)|2)Δḡ(z)Δg(w)dm(z, w).

where �t is defined as in Theorem 1.1. In particular,

lim
t→∞

‖H(t)
g ‖2

S2 = 1
π

ˆ

D

|∂̄g|2dm.

For Hankel operators with real subharmonic symbols, the second term is non-negative. 
So the following holds.
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Corollary 6.3. Suppose t > −1 and g ∈ C 2(D) is real-valued and subharmonic in D. 
Then

‖H(t)
g ‖2

S2 ≤ 1
π

ˆ

D

|∂̄g|2dm, (6.2)

with equality holds if and only if g is harmonic in D.

As explained in the introduction, in this paper we focus more on the trace formula (1.9)
and asymptotic trace formula (1.11) of semi-commutators with relatively nice symbols. 
Nonetheless, the following lemma and the examples that follow show that Condition 1 
is a natural condition to work with.

Lemma 6.4. Suppose n ≥ 2 and f, g satisfy Condition 1. Then there exists a constant 
C > 0 such that for any z ∈ Bn\{0},

∣∣〈∂zf, ζ̄〉〈∂̄zg, ζ〉∣∣ ≤ C

(
|Pz(ζ)|2 + (1 − |z|2)|Qz(ζ)|2

)
(1 − |z|2)n−2+ε, ∀ζ ∈ Cn. (6.3)

(1) In the special case when f = ḡ, (6.3) becomes

∣∣〈∂̄zg, ζ〉∣∣ ≤ C1

(
|Pz(ζ)| + (1 − |z|2)1/2|Qz(ζ)|

)
(1 − |z|2)n−2+ε

2 , (6.4)

which is equivalent to Condition 1. Here C1 is another constant.
(2) If there are a, b ≥ 0, a + b > n − 2 such that

∣∣〈∂zf, ζ̄〉∣∣ ≤ C2

(
|Pz(ζ)| + (1 − |z|2)1/2|Qz(ζ)|

)
(1 − |z|2)a, (6.5)

∣∣〈∂̄zg, ζ〉∣∣ ≤ C2

(
|Pz(ζ)| + (1 − |z|2)1/2|Qz(ζ)|

)
(1 − |z|2)b (6.6)

with some constant C2, then f, g satisfy Condition 1.

Proof. Note that

|1 − 〈z, w〉| ≈ (1 − |z|2) + (1 − |w|2) + |z − w|2 + |Im〈z, w〉|,

|ϕz(w)|2 = |z − Pz(w)|2 + (1 − |z|2)|Qz(w)|2
|1 − 〈z, w〉|2 . (6.7)

Take w = z + λζ where λ ∈ C is sufficiently small. Then by definition,

|ϕz(w)|2 = |λ|2 |Pz(ζ)|2 + (1 − |z|2)|Qz(ζ)|2
2 .
|1 − 〈z, w〉|
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Condition 1 implies

∣∣〈∂zf, ζ̄〉〈∂̄wg, ζ〉∣∣|λ|2 ≤ C|λ|2 |Pz(ζ)|2 + (1 − |z|2)|Qz(ζ)|2
|1 − 〈z, w〉|2 |1 − 〈z, w〉|n+ε.

Canceling out |λ|2 and letting λ → 0 we obtain the first inequality in (6.3). The second 
inequality is proved similarly.

On the other hand, suppose f = ḡ and (6.4) holds. Then

∣∣〈∂̄zg, z − w〉
∣∣2 �

(
|z − Pz(w)|2 + (1 − |z|2)|Qz(w)|2

)
(1 − |z|2)n−2+ε

�
(
|z − Pz(w)|2 + (1 − |z|2)|Qz(w)|2

)
|1 − 〈z, w〉|n−2+ε

=|ϕz(w)|2|1 − 〈z, w〉|n+ε.

Equivalently, ∣∣〈∂̄wg, z − w〉
∣∣2 � |ϕz(w)|2|1 − 〈z, w〉|n+ε

and also ∣∣〈∂z ḡ, z − w〉
∣∣2 � |ϕz(w)|2|1 − 〈z, w〉|n+ε.

Multiplying the two inequalities and taking square root gives Condition 1 for f = ḡ. This 
proves (1). Statement (2) is proved in the same way as (1). We omit the details. �

Similarly, one may give sufficient conditions for Condition 2 in terms of growth rates 
of second order derivatives. Taking the case f = ḡ for example, we have the following.

Lemma 6.5. Suppose n ≥ 2 and g ∈ C 2(Bn). If g satisfies (6.4) and for some constant 
C > 0 and a ≥ max{0, n2 − 2},

|Lzg(ζ)| ≤ C

(
|Pz(ζ)|2 + (1 − |z|2)|Qz(ζ)|2

)
(1 − |z|2)a,

then f = ḡ and g satisfy Condition 1 and 2.

The Schatten class criterion of Hankel operators is throughly studied, cf. [4,3,26,36,
38]. There are also some results on the Schatten norms of Hankel operator with anti-
holomorphic symbols, cf. [25][34]. In [26, Theorem 3.1], Li and Luecking gave a criterion 
for Hankel operators to be in Sp. Our condition in (1) of Lemma 6.4 is consistent with 
that of f2 in Li and Luecking’s Theorem 3.1 when p = 2. One can also check using [26, 
Theorem 3.1] that when (2) of Lemma 6.4 holds, H(t)

¯ ∈ Sp and H(t)
g ∈ Sq for some 
f
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1
p + 1

q = 1. So the trace class membership of T (t)
f T

(t)
g − T

(t)
fg follows from the identity 

T
(t)
f T

(t)
g − T

(t)
fg = −H

(t)∗
f̄

H
(t)
g . The converse, however, is not true: there are symbols f, g

such that H(t)
f̄

and H(t)
g belong only to bigger Schatten classes but their product belongs 

to the trace class. The following lemma gives us a clue.

Lemma 6.6. Suppose f, g ∈ C 2(Bn) are bounded and have bounded first and second order 
derivatives. If suppfg is a compact subset in Bn then f, g satisfy Conditions 1 and 2 in 
Theorem 1.2. In particular (1.9) and (1.11) hold.

Proof. By (6.7), in this case |1 − 〈z, w〉| is bounded away from 0 for (z, w) ∈ suppf ×
suppg. From this it is easy to verify Conditions 1 and 2. �

In the case when suppf and suppg do meet on the boundary, Condition 1 gives us an 
idea of how much decay is needed when they meet. See the following example.

Example 6.7. Let ε > 0 and ψ be a C 1 function on R such that

ψ′(s) = 0 for s < 0, and |ψ′(s)| � s1+ε for s ≥ 0.

Let n = 2 and

f(z) = ψ(|z1|2 − |z2|2), g(z) = ψ(|z2|2 − |z1|2).

Then we compute

|∂zf |
{

= 0, if |z1| < |z2|
� (|z1|2 − |z2|2)1+ε, if |z1| ≥ |z2|

,

|∂̄wg|
{

= 0, if |w2| < |w1|
� (|w2|2 − |w1|2)1+ε, if |w2| ≥ |w1|

Whenever |∂zf ||∂̄wg| is non-zero we have |z1| > |z2| and |w2| > |w1|, in which case

|z − w| ≈ |z1 − w1| + |z2 − w2| ≥ |z1| − |w1| + |w2| − |z2| = (|z1| − |z2|) + (|w2| − |w1|).

So we have the following estimate

|∂zf ||∂̄wg| � |z − w|2+2ε.

Using the above inequality, we reach the following estimate,

|〈∂zf, z − w〉||〈∂̄wg, z −w〉| � |z −w|2|∂zf ||∂̄wg| � |z −w|4+2ε � |ϕz(w)|2|1− 〈z, w〉|2+ε.

So Condition 1 is satisfied and by Theorem 1.2, T (t)
f T

(t)
g − T

(t)
fg is in the trace class.
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7. Appendix I: a formula of Bochner-Martinelli type

Recall that R =
∑n

i=1 zi∂zi is the radial derivative operator, and R̄ =
∑n

i=1 z̄i∂̄zi . In 
this appendix we prove the following lemma.

Lemma 7.1. Suppose r > 0, α, β ∈ Nn
0 , |α| ≥ |β| and v ∈ C 1(rBn). Then

ˆ

rSn

zαz̄βv(z)dσr(z) (7.1)

=aα,βσ2n−1r
2|β|+2n−1v(0) + 2r2|β|+2n−1

ˆ

rBn

zαz̄β

|z|2|β|+2n R̄v(z)dm(z).

Here

aα,β = δα,β
(n− 1)!α!

(n− 1 + |α|)! .

Lemma 7.1 can be verified directly on v(z) = zγ z̄ι, and then using approximation of 
v by polynomials. For future reference, we show in the rest of this appendix that it can 
be viewed as a special case of a Bochner-Martinelli type formula (see Proposition 7.5
below).

For a (p, q)-form u =
∑

|I|=p,|J|=q uI,JdzI ∧ dzJ ,

∂u =
n∑

k=1

∑
|I|=p,|J|=q

∂kuI,Jdzk ∧ dzI ∧ dzJ , ∂̄u =
n∑

k=1

∑
|I|=p,|J|=q

∂̄kuI,Jdz̄k ∧ dzI ∧ dzJ .

Then d = ∂ + ∂̄ is the exterior derivative.
In some of the estimates, we may abuse notations and use ∂f , ∂̄f to denote holomor-

phic, and anti-holomorphic gradient of a C 1 function f , i.e.,

∂f(z) = (∂1f(z), ∂2f(z), . . . , ∂nf(z)), ∂̄f(z) = (∂̄1f(z), ∂̄2f(z), . . . , ∂̄nf(z)),

considered as column vectors.

Cauchy formula. Let Ω ⊂ C be a bounded open set with C 1 boundary and 0 ∈ Ω. Then 
for every v ∈ C 1(Ω),

1
2πi

ˆ

∂Ω

v(z)
z

dz = v(0) − 1
2πi

ˆ

Ω

∂̄v(z)
z

dz ∧ dz̄.

Its generalization to higher dimensions is the Bochner-Martinelli Formula.
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Bochner-Martinelli formula. Let Ω ⊂ Cn be a bounded open set with C 1 boundary and 
0 ∈ Ω. Then for every v ∈ C 1(Bn),

ˆ

∂Ω

v(z)kBM (z) = v(0) +
ˆ

Ω

∂̄v(z) ∧ kBM (z). (7.2)

Here kBM is the Bochner-Martinelli kernel, defined by

kBM (z) = (−1)n−1

(2πi)n |z|−2n∂|z|2 ∧
(
∂∂̄|z|2

)n−1
. (7.3)

In this section, we prove a generalization of the above Bochner-Martinelli Formula (7.2). 
First, we review the definition of currents on Cn.

Definition 7.2. For p, q = 0, . . . , n, denote Dp,q the locally convex space of smooth (p, q)-
forms on Cn with compact support. The topology of Dp,q is defined by the collection of 
semi-norms

‖u‖Dp,q(K),N :=
∑

|I|=p,|J|=q

sup
|α|+|β|≤N

sup
z∈K

|∂α∂̄βuI,J(z)|, u =
∑

|I|=p,|J|=q

uI,J (z)dzI ∧dz̄J ,

where N ranges over all positive integers, and K is any compact subset in Cn. The space 
of currents of bidegree (p, q), denoted by D ′p,q, is the dual space of Dn−p,n−q, endowed 
with the weak* topology. The currents in D ′p,q can be viewed as (p, q)-forms with dis-
tribution coefficients. In particular, any (p, q)-form with locally integrable coefficients is 
a current of bidegree (p, q). With the identification of Lebesgue measure dm(z) with the 
Euclidean volume form

dv := 1
(−2i)n dz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n,

a distribution T on Cn can be viewed as either a current of bidegree (0, 0) or (n, n): for 
h on Cn smooth and compactly supported,

〈T, h〉 = 〈T, hdv〉.

Differential operators act on currents by duality and are continuous with respect to the 
weak* topology.

Definition 7.3. For multi-indices α, β ∈ Nn
0 , define

Hα,β(z) = lim
ε→0+

(
zαz̄β

|z|2|β| kBM (z)
)∣∣∣∣

Cn\εBn

, (7.4)

in the sense of current.
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In the case when |β| ≤ |α|, Hα,β has locally integrable distributions. So we can simply 
write

Hα,β(z) = zαz̄β

|z|2|β| kBM (z).

Only this case will be used in this paper. For completeness and future reference, we 
include the case when |β| > |α|. In this case, the current Hα,β has coefficient distributions 
which are not locally integrable, and we need to define it in the style of a principal value. 
For any 1 ≤ j ≤ n and C∞, compactly supported function h on Cn, take the Taylor 
expansion

h(z) =
∑

|γ1|+|γ2|≤|β|−|α|

∂γ1 ∂̄γ2h(0)
γ1!γ2!

zγ1 z̄γ2 + O(|z||β|−|α|+1).

For each ε > 0, the current inside the limit sign of (7.4) vanishes on every term except 
for O(|z||β|−|α|+1). Thus the current Hα,β for |β| > |α| is well-defined.

The standard Bochner-Martinelli formula follows from Stoke’s Theorem and the fol-
lowing identity.

∂̄kBM = δ0, (7.5)

where δ0 is the point mass at 0. Standard arguments show that the following holds.

Lemma 7.4. We have

∂̄Hα,β = (−1)l−kaα,β∂
β−αδ0. (7.6)

Here

aα,β =
{ (n−1)!α!

(n−1+|β|)! , if α ≤ β,

0, otherwise.

Proposition 7.5. Let Ω ⊂ Cn be a bounded open set with C 1 boundary and 0 ∈ Ω. Then 
for multi-indices α, β ∈ Nn

0 and v ∈ C 1(Ω),

ˆ

∂Ω

v(z)Hα,β(z) = aα,β∂
β−αv(0) +

ˆ

Ω

∂̄v(z) ∧Hα,β(z). (7.7)

Proof of Proposition 7.5. By Lemma 7.4 and Stokes’ Theorem for currents, we have the 
following equations
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ˆ

∂Ω

v(z)Hα,β(z) =
ˆ

Ω

d
(
v(z)Hα,β(z)

)
=
ˆ

Ω

∂̄

(
v(z)Hα,β(z)

)

=
ˆ

Ω

v(z)∂̄Hα,β(z) +
ˆ

Ω

∂̄v(z) ∧Hα,β(z) = aα,β∂
β−αv(0) +

ˆ

Ω

∂̄v(z) ∧Hα,β(z).

This completes the proof of Proposition 7.5. �
Taking Ω = rBn and assuming |α| ≥ |β| in Proposition 7.5 gives Lemma 7.1.

8. Appendix II: auxiliary functions and operations

In Section 3, the integral operations F (t), G(t) simplify our computation. To work in 
higher dimensions, it is necessary to extend those integral operations and establish some 
basic properties. This is the goal of the current section.

Definition 8.1. For t ∈ R, denote

φt(s) = (1 − s)t.

Suppose φ : (0, 1) → [0, ∞) is a measurable function. For a positive integer m and any 
t > −1, define the operations on φ

F (t)
m φ(s) =

1ˆ

s

rm−1φ(r)(1 − r)tdr ∈ [0,∞], (8.1)

and

G(t)
m φ(s) = 1

smφt+1(s)
F (t)

m φ(s) =
´ 1
s
rm−1φ(r)(1 − r)tdr
sm(1 − s)t+1 ∈ [0,∞]. (8.2)

For any t > −1, inductively define the functions

Φ(t)
n,0 ≡ 1, Φ(t)

n,k+1 = Mφ1

(
G(t)
n+k

)2Φ(t)
n,k.

Equivalently,

Φ(t)
n,k = Mφ1

(
G(t)
n+k−1

)2
. . .Mφ1

(
G(t)
n

)21. (8.3)

It is straightforward to verify that the following estimates hold.

Lemma 8.2. Suppose a > m is not an integer and b ≥ 0. Suppose φ : (0, 1) → [0, ∞) is 
measurable and
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φ(s) � s−a(1 − s)b.

Then

G(t)
m φ(s) � s−a(1 − s)b.

As a consequence, the following hold.

Lemma 8.3. For any t > −1 and integers n > 0, k ≥ 0,

Φ(t)
n,k(s) � s−n−k+ 1

2 (1 − s)k, (8.4)

and

G(t)
n+kΦ

(t)
n,k(s) � s−n−k− 1

2 (1 − s)k. (8.5)

Lemma 8.4. For any t > −1 and positive integers m, k and φ : (0, 1) → [0, ∞) we have

F (t)
m+kMφ1G(t)

m φ(0) = 1
k
F (t)

m+kφ(0), (8.6)

F (t)
m+kG(t)

m φ(0) =
∞∑
j=0

1
k + j

F (t)
m+k+jφ(0), (8.7)

F (t)
m φ = F (t)

m Mφ1φ(0) + F (t)
m+1φ, (8.8)

and

F (t)
m 1(0) = B(m, t + 1). (8.9)

Proof. The proof is a simple application of Fubini’s Theorem. By definition, we have the 
following computation for F (t)

m+kMφ1G
(t)
m φ(0),

F (t)
m+kMφ1G(t)

m φ(0)

=
1ˆ

0

rm+k−1(1 − r)t+1G(t)
m φ(r)dr

=
1ˆ

0

rk−1
1ˆ

r

sm−1(1 − s)tφ(s)dsdr

=
1ˆ sˆ

rk−1drsm−1(1 − s)tφ(s)ds

0 0
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=1
k

1ˆ

0

sm+k−1(1 − s)tφ(s)ds

=1
k
F (t)

m+kφ(0).

This proves (8.6). We prove (8.7) by Lemma 8.3 using the expansion

1
1 − s

=
∞∑
j=0

sj .

Finally, we arrive at the following equation,

F (t)
m 1(0) =

1ˆ

0

rm−1(1 − r)tdr = B(m, t + 1).

This completes the proof of Lemma 8.4. �
Data availability
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