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1. Introduction

For t > —1, let Lg’t(]D)) be the weighted Bergman space on the open unit disk D. For
f € L*(D), denote Tf(t) the Toeplitz operator on LZ , (D) with symbol f. Commutators of
Toeplitz operators have been objects of interest in the study of analytic function spaces
for a long time. Various properties, such as compactness, Schatten class membership,
trace formulas, were studied in a numerous amount of works (cf. [1,8,12,13,22,27,33,35,
40,41]). Among others, it is well-known (cf. [24,39]) that for relatively nice symbols f and
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g on the unit disk D, the commutator [TJSO)7 Tg(o)} = T}O)Tg(o) - Tg(O)T}O) on the Bergman
space L2(D) = L2 ;(ID), is in the trace class, and

(0) 7(0) :L/
(1" 1) = 5 [ df Adg. (1.1)
D

This elegant formula is deeply connected to the Pincus function for a pair of noncom-
muting selfadjoint operators, cf. [9,10,29].

Our study of trace of semi-commutator is inspired by our investigation [32] of
the Connes-Chern character for the Toeplitz extension (cf. [15]). Semi-commutator of
Toeplitz operators is the building block in Connes construction. On the other hand, the
semi-commutator has its own importance. Let H}t) be the Hankel operator with symbol
f. The following equation

T - 1y =~ H Y
g

PR oy, (1.2)

provides a natural link between the semi-commutators of Toeplitz operators and Hankel
operators, which allows to study the Hilbert-Schmidt norm of a Hankel operator by the
trace of the associated semi-commutator. We aim in article to establish a generalization of
the Helton-Howe trace formula (1.1) to semi-commutators, which has not been explored
in literature.

Suppose f and g are two Lipschitz functions on D. It is well-known that for any
t > —1, the semi-commutator T}t)Tét) - T}Z) is in the trace class (cf. [40]). We will

establish a trace formula for T}t)T ét) — TJEZ) when f, g are nice function. We obtain the
following trace formula.

Theorem 1.1. Suppose t > —1 and f,g € €*(D). Then
1 _
(1070 -1y ) = 5 [0 nd+ [ ele-PASE Mgtz ). (13
i
D D2

Here g, is defined as below and is strictly positive on (0,1).

1
t+1 ¢, —1
0:(s) = o7 /(1 —z)'z” F(s,z)dx,
S
where
F(s,m)—[wlanr(lx)ln i
-z

Moreover,
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t—o00

1 _
lim Tr (T(“T;) T}?) =5 / af A dg. (1.4)
e
D

Let H; ) be the Hankel operator with symbol f. By Equation (1.2), we apply the
trace formula (1.3) to study the Hilbert-Schmidt norm of Hankel operators with (D)
symbols (See Corollary 6.2 and Corollary 6.3). Also we would like to thank Richard
Rochberg for pointing out the resemblance between Formula (1.3) and Equation (a) of
[2, Proposition 2.5], or Equation (4) on Page 248 of [17].

Next we generalize Theorem 1.1 to higher dimensions. In general, for n > 2, semicom-
mutators of Toeplitz operators on Lgyt(Bn) with Lipschitz symbols only belong to SP for
p > n. In fact, it was shown in [37] that in the case when f = g and g is anti-holomorphic,
their semi-commutator is in the trace class only when g = 0. To make T;t)T;t) T}St)
belong to trace class, one generally requires some further assumptions. We do not aim to
give a criterion of when semi-commutators belong to the trace class. Instead, we focus
on giving a trace formula for relatively nice symbols.

Recall that the Levi form L, f of a function f at a point z is the two form

= Z &@f(z)fzgj, V£ cC".

4,j=1

Define 0. f and 0, f as the n-vectors that has 9;f(z) and 9;f(z) in its i-th entry. Then
(0:f,z—w Zaf zi—w), (Oufiz—w) =Y 0;f(w)(z —w;).
j=1

We say that f, g satisfy Condition 1 if f,g € ¥*(B,,) and there exist C' > 0, € > 0, such
that

|<3zf,z —w)(Owg,z — w>| < Clo. ()21 = (z,w)|" T, Vz,w € B,. (1.5)

We say that f, g satisfy Condition 2 if f, g satisfy condition 1, and f,g € €?(B,,) satisfy
the following inequalities. For any z,w € B,,

[(0:£,7 = w) Lug(z — w)| < Clpz(w)’|1 = (z,w)["*, (1.6)
| L f (2 = w){0uwg, 2 — w)] < Clpz(w)P1 = (z,w)["*, (1.7)
L. f(z = w) Luwg(z — w)| < Cle.(w)[*1 = (z,w)|"**. (1.8)

Here |¢.(w)| is the length of the Mobius transform ¢, (w), or the pseudo-hyperbolic
distance of z and w. We obtain the following generalization of Theorem 1.1.

Theorem 1.2. If t > 2n — 3, and f,g satisfy Condition 1, then the semicommutator
T)Et)Tg(t) — T;;) is in the trace class. If furthermore f, g satisfy Condition 2, then
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n—1
Tr(T}”T;” —T}Q) Zan,t/ﬁf/\ég/\ [aalog(l - |w|2)] (1.9)
dm(z,w)
[ o)) L (e = ) Ll = )
B, xB,,
Here

— fol(l —5)" st Insds
(B(n,t+ 1)?)n(2mi)"

ant =

and

n 1

R (n—-DI?*(n+t+1) ke e
puals) =5y e [ Fle a1 e

k=1 ,
(1.10)
In particular, pn is strictly positive on (0,1), and
(1) 0 "
1-n t)n(t) _ p(t
tlggot Tr(T T,” =Ty ) =) /8f/\89/\ {8810g( —|w] )} . (1.11)

n

Remark 1.3. One can show that if the functions f and g are in (D) then they satisfy
Condition 1 and 2 with n = 1. Therefore Theorem 1.2 actually implies Theorem 1.1.
Because trace formulas at dimension 1 are of independent interest, and because the
proof gets significantly more complicated at higher dimensions, we first give a complete
proof of Theorem 1.1 in Section 3.

Remark 1.4. In Lemma 5.5 we give an alternative expression of the first term in the right
hand side of (1.9), in terms of radial derivatives R = ;" | 2;9;. So (1.9) and (1.11) can
be rewritten as

Tr(Tf(t)Tg( ) _ it )) — (20)*(n—1) |ant/ i1 0 (w)dig(w) — Rf(w)Rg(w)dm(w)

Ty (1= Jw[?)"
[ sl @)L = )L - )

B, xB,

and

lim tl‘”Tr<T;t)Tét) T(t) ﬂn/zz 1 ( ) — Rf(w)Rg(w)dm(w).

t—o0 |w|2)
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Remark 1.5. It is clear that if we have H](?t) € 8P and Hét) € &1 for some % + % =1 then

the semi-commutator T]Et)Tét) =T JEZ) belongs to the trace class. However, the converse is

not true. The point of Condition 1 and Condition 2 is to give combined conditions of f
and g, instead of separate conditions. The estimates

1= (z,w)| = (1= o) + (1 = Jwl?) + |2 = w]* + [Im(z, w)],

s 2= PP+ (1= P)IQ. ()
el = = (zw)P

give us some insight into the two conditions. In Lemmas 6.4-6.6 we give some special
cases of Theorem 1.2 that are more intuitive and more convenient to work with.

Our proofs involve applying integration by parts formulas on the unit disk and unit
ball (see Lemma 3.3 and Lemma 4.2). These formulas essentially come from the Cauchy
formula and a Bochner-Martinelli type formula we develop in Appendix I. In Section 4,
integration by parts formulas on B,, are developed. The formulas involve auxiliary func-
tions and operations, which we define and study in Appendix II. In Section 5, we prove
Theorem 1.2. Some applications and examples are given in Section 6.

We end the introduction with some explanation on the relationships between this
paper and our other paper [32]. Our study was motivated by the exploration of the
Helton-Howe trace and Connes-Chern character in [32], which is an important invariant
in noncommutative differential geometry. In [32], we study the Helton-Howe trace and
the Connes-Chern character for Toeplitz operators on weighted Bergman spaces via the
idea of quantization, [5-7,14,18-21]. As a remainder term in the Toeplitz quantization,
semi-commutators naturally appears in the proofs. On the other hand, many of the tools
developed here are also heavily used in [32]. The proofs in this paper are intended to be
self-contained.

Acknowledgment: We would like to thank Mohammad Jabbari, Richard Rochberg,
Jingbo Xia and Kai Wang for inspiring discussions. We would also like to thank the

referee who made valuable suggestions to our paper. Tang is partially supported by NSF
Grants DMS 1800666, 1952551.

2. Preliminaries

In this section, we recall some basic definitions and properties about weighted
Bergman spaces and Schatten-p class operators.
Let B,, be the open unit ball of C™ and S,, = 0B,, the unit sphere. Let m be the

Lebesgue measure on B,, and o be the surface measure on S,,. Denote 09,1 = o(S,) =

27{_"
(n—1)!"
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For t > —1, define the probability measure on B,:

(n—1)!

N(2) = ST

(1= |2 dm(2).
Here B(n,t 4 1) is the Beta function. The weighted Bergman space L7 ;(By) is the

subspace of L?(B,,, \) consisting of holomorphic functions on B,,. The reproducing kernel
of L2 ,(By) is

1
(t)
Kw ( ) (1 _ < >)n+1+t’ Vw € Bn

For any f € L*°(B,,), the Toeplitz operator T}Et) is the compression defined by
t) _ pt) @)
17 = POMP |12 .,

where P(®) is the orthogonal projection from L?(B,,, \;) onto L2 ,(By), and Mj(ct) is the
multiplication operator on L?(B,, \;). The Hankel operator with symbol f is

t t
HY = (1 - POYMY PO

Using the reproducing kernels, we can write T;t),H](f) as integral operators. For h €
L2 ,(By), we have the following expressions,

T3 h(z) /f w) KO (2)dM(w), Vz € B,

HOWE) = [ (1) = H@)h@EP@d(w), ¥ € B,.

B,

An important tool on B,, is the Mdbius transform.

Definition 2.1. For z € B,,, z # 0, the Md&bius transform ¢, is the biholomorphic mapping
on B,, defined as follows.

2= Po(w) — (1= [2[*)*Q: (w)
1—(w,z) ’

. (w) = Yw € B,,.

Here P, and Q. denote the orthogonal projection from C™ onto Cz and 2, respectively.
Define

wo(w) = —w, Yw € B,.



X. Tang et al. / Journal of Functional Analysis 285 (2023) 110141 7

It is well-known that ¢, is an automorphism of B,, satisfying ¢, o ¢, = Id. Also, the
two variable function p(z,w) := |p,(w)| = |pw(2)| defines a metric on B,,. Moreover,
B(z,w) := tanh™! p(z,w) coincides with the Bergman metric on B,,.

We list some lemmas that serve as basic tools for our study of Toeplitz operators on
B,,. Most of the following of this section can be found in [30,40]. A proof will be provided
when necessary.

For non-negative values A, B, by A < B we mean that there is a constant C' such that
A < CB. Sometimes, to emphasize that the constant C' depends on some parameter a,
we write A <, B. The notations 2, 2,,~, ~, are defined similarly.

Lemma 2.2. Suppose z,w,( € B,.

(1) 1 — (0—=(=0)A—((w))
1—(p¢(2),0¢(w)) (1—2|C|2)(1—2<27w>) ’
(2) 1= J=(w)? = S EE
(3) For any R > 0 there exists C > 1 such that whenever 5(z,w) < R,

2
1 1-kP <c,

1 ‘1_<27C>|
— < <C.
C ST jup = ¢

C71—{w,Q|~
(4) The real Jacobian of . is % on B, and % on'S,,.
(5) For z € B,

o) = L [2)P(w) + (1= |z)2Q.(w) —  Aw
2= pa(w) = 1—(w, 2) 1= (w,z)’

where A, = [a¥] is an n x n matriz depending on z, and w is viewed as a column
vector.
(6) There exists C > 0 such that for any z € B, z # 0,

|2 = Po(w)] < |- (w)|[1 = (z,w)|, |Q:(w)] < Clo-(w)[|1 = (z,w)['/?,  (2.1)
and
|2 = w| < Cle=(w)||1 = (z,w)|"/2. (2:2)

In contrast, if n =1, then |z — w| = |p,(w)||1 — zw|.
(7) 1= 2 <21 = (z,w)].

Proof. Most of the above are either well-known (cf. [30,40]) or straightforward to verify.
The only part that requires some clarification is the second estimate in (6), i.e.,

|Q=(w)] S = (w)|[1 = (z,w)| /2. (2.3)
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On the one hand, from the definition of ¢, (w), we easily get the follow inequality,

1= (2 w)
(1= 2?12

If | (w)| < 1, then by (3), |1 — (z,w)| &~ 1 — |z|*. From this (2.3) follows.
On the other hand, since

Q= (w)] < |2 (w))|

211 — (z,w)| > 2 — 2Re(z,w) > |z|? + |w|* — 2Re(z,w) = |z — w|?,
for [p.(w)| > %, we obtain the following estimates,
Q:(w)] = 1Q=(w = 2)| < |z —wl| S 1= (5w)[* < 2p:(w)||L - (z,w)|7.
Thus we get (2.3) in both cases. This completes the proof of Lemma 2.2. O

Lemma 2.3. ([30, Proposition 5.1.2]) The two variable function d(z,w) = |1 — (z, w)|2
on B, satisfies the triangle inequality, i.e.,

d(z,w) < d(,€) +d(§,w), Vz,w, € By
Lemma 2.4 (Rudin-Forelli type estimates).

(1) Supposet > —1, ¢ € R. Then there exists C > 0 such that for any z € B,

Cl—[zP)7¢, e>0,
— [wP) dm(w) < ¢ Cln

1 —
|1 — (z, w)|rH1Hte = == c=0, (2.4)
C’ c < 0,
1 C— ), >0,
[ i@ SO o= (25)
C, c<0.

(2) Supposet > —1, a,b,c>0,a>¢c,b>c, anda+b<n+1+t+c. Then there exists
C > 0 such that for any z,& € By,

(1 - Juf2) |
/1—<z,w>|a|1—<w,f>|bdm<w) T (26)

n

(3) Suppose ¢ : (0,1) — [0,00) is measurable. Suppose a > —n, b € R, and

#(s) S s4(1—s)b, s€(0,1).
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Then for any t > —1 — b, ¢ > —b there exists C > 0 such that for any z € B,

1= (z,w)[rtitire

[ otesry R amy <ca-lp @)
B

Proof. The estimates in (1) are standard Rudin-Forelli estimates. See [30, Proposition
1.4.10] for a proof. Let

A={weB,: [1-(zw)|<[1—-(wél}; B={weB,:[1-(zw)|>l—(wl}
By Lemma 2.3, we have the following equality,
11— (261" < 1= (z,w)[V2 + 1 = (w, &)/,
Then we obtain the following bounds,
L= (o)l = 31— (s 0L Vo e B [1—(w,&) > 111 — (=8|, vw € 4

By assumption, a > ¢, b > ¢, a+b—c < n+1+t, therefore by the standard Rudin-Forelli
estimate, we compute the integral as follows,

1wl
/u—zw|u—wanm“m

— Jw|?)t [w[?)*
H*zwlﬂfmﬁ /u zw\ufwwwm“w

1~ jul (1= 2y
d
ST /u—zwwﬂc )+ T J T=fwgpra=e )
s——i—<
T GoF

This proves (2).
To prove (3), make the change of variable w = ¢,(§) in the left hand side of (2.7).
We compute the integral as follows,

_lwl2)t
/¢(gaz(w)|2)|1 _(<1Z7U)|>|7|L+)1+t+cdm(w)
B,

&)
V| t/¢|a Z§HWH+tcmn@)
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1
(=2

B2y do(n)dr

/1—szHHf

o—__

1

5(1 . |Z|2>C ¢(T2)T2n_1(1 - r?)md,r,

o—__

where m =c—1when 1+t—c¢ >0, m =t when 1+t—c <0, and when 1+¢—c =0, we
take m =t — € for a sufficiently small ¢ > 0. With our assumption it is easy to see that
m > —b— 1 and therefore the integral above is finite. This proves (3) and completes the
proof of Lemma 2.3. O

For p > 0, a bounded operator T" on a Hilbert space H is said to be in the Schatten-p
class SP if |T'|P belongs to the trace class. The Schatten-p class operators SP are analogues
of P spaces in the operator-theoretic setting and satisfy the Holder’s inequality (see [31,
Theorem 2.8]).

The following lemma is well-known. See [41, Theorem 6.4] for a proof at n = 1. The
same proof works for general n.

Lemma 2.5. Suppose t > —1 and T is a trace class operator on L2 ,(B,). Then
T = / (TK®, K®Ydx(z2).
B,

3. Trace formulas on the disk

In this section we give the proof of Theorem 1.1. The main ingredient of its proof is
an integral formula coming from the Cauchy formula.

Definition 3.1. Suppose t > —1 and ¢ : (0,1) — [0, 00) is measurable. Define the opera-

tions on ¢:

FOe(s) /(b (1—r)tdr, GWe(s) =571 (1 —s) " LFDe(s).

Lemma 3.2. Suppose that t > —1, and ¢ : (0,1) — [0,00) is a measurable function, and
v € €Y (D). Assume that the two integrals

/(b |2[)u(2)dAe(2), /(1 — [2[1)GW o(|2*)200(2)d e (2)

D

both converge absolutely. Then
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[ P reran() (3.1)
D
_ { (t+1)FH(0) - v(0) + [ (1 = [21*)G P 6(|2[*)200(2)d e (2), if v(0) # 0, FP(0) < oo,
Jo (1= 121G ¢(|21*)20v(2)d N (2), if v(0) = 0, 7V ¢(0) < o0.

Proof. Assume first that v(0) = 0. For any 0 < r < 1, denote o, the Euclidean surface
measure on rT. If we apply the Cauchy Formula to Q = rD C C and v € (D), then
we have the following equation of integrals,

/v(z)dar(z) = 2r/%dm(z).
rT rD

By assumption the left hand side of (3.1) is absolutely integrable, so we compute the
integral as follows,

[ ellz)an ) “Z”/lmr?)(l—r?)t{/v( Jow () par

D 0 rT
_(t+1) / 21 2o dv(2) .
— 0/¢< a >{274 Dz Lo

/ )80 b(2[2) 200(2) e (2).
D

The absolute convergence of the integral in the right hand side of (3.1) ensures the third
equality above. This proves the second case.
Now assume that v(0) # 0, and F®$(0) < co. We notice that

1

[ otzPianta) =2 S [ro)a - 2ydr = 0+ )FO0(0)
D

0

Then we get the following estimate

/‘gﬁ ) ()~ o0 a2 /'¢ 520

2)|dA(2) + (£ + 1)FDp(0)]0(0)] < oo.
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Applying the second case to v(z) — v(0) and reorganizing the terms give the first case.
This completes the proof of Lemma 3.2. O

Lemma 3.3. Suppose that t > —1, and ¢ : (0,1) — [0,00) is a measurable function, and
ve (D).

(1) Assuming that z € D, and the integrals

I 0102 (W) Pyo(w) K& (2)dA (w),
Jp 6V (- (w)]? >7“ D) G w) K P (2)dAe (w)

converge absolutely, then

/ 002 () 2 (w) K (2) AN (w) (32)

(t+1D)FD6(0) - v(2) ) if v(2) # 0, F(0) < o0,
— i G0 6(|p= (w)|?) L) Gy () K (2)d N (w),

— [ 6D (| p: (w) ) E=E=0) Gy () KD (2)dAe(w),  if v(z) = 0, FD(0) < oc.

(2) Assuming that w € D, and the integrals

[ 69olle-wP = RGO )an(2)
D

converge absolutely, then

/ O(|z(w) P v(2) KD (2)dNe (2) (3.3)
D
(t +1)FD(0) - v(w) if v(w) # 0, FM¢(0) < oo

+ fip GP (I (w)[2) C=EDE=0) 5y () KD (2)d e (2),
Jip GV (lp= (w)|?) L= ELE= gy () KD () A (2), if v(w) = 0, FD(0) < oo

Proof. First, we prove case (1). The formula is obtained from (3.1) by taking Mdbius
transforms. By Lemma 2.2 (4) it is easy to verify the following equation,

KO (2)dA (w) =251 g0 (£)dn(¢). (3.4)

E=p(w)



X. Tang et al. / Journal of Functional Analysis 285 (2023) 110141 13

By Lemma 2.2 (1)(2), Lemma 3.2 and the above equality, if F®$(0) < oo, then we
compute the integral as follows.

/ &l ()20 (w) K (2)dA (1)
D

@ / BP0 0 02 (O KD (€)dN(€)
D

D 44 1) FOg(0) / GOl 1 — e ( - goz@)K(“(s))dAt(o

=(t+ 1) FDg(0) / GD(IE17) (1 — |€7)Edv (= (€))L (KD ()N (€)

e+ DFO60) o) - [ 6Vl - I >sav<wz<s>>%f<<“<a>dx (©)
D

o
2220 (14 ) F00(0) - 0(2) — [ 690 ETEDEZ D500 KO (yar(w).
D
The case when F®¢(0) = oco,v(z) = 0 is proved by the same equations as above, but
with the term “(t + 1)F®¢(0) - v(2)” removed. This proves (1). To prove (2), apply
(3.2) to v(2), then swap z and w, then take conjugate over the equation. Note that the

equations |, (w)| = |pw(2)| and Két)(w) = KS)(Z) is used here. This completes the
proof of Lemma 3.3. O

Recall that in Theorem 1.1 we defined

1—s

s
F(sw)-—[mln;—i—(l—x)lnl

— T

Lemma 3.4. Suppose 0 < s <z < 1. Then

// 571 (1 —s1)" 'dsidsy = F(s,x)

s<s1<s2<x

Proof. // 31_1(1 — 51) *dsdsy

s<s1<s2<x

://sfl(l—sl)_ldSstl

Tr — 81
_ [ I g
/31(181) !

S
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14
fo 1
= i— —$d81
S1 1751
=zxln=+4+(1—-2z)n <
s -5
F(s,x)

This completes the proof. 0O

Lemma 3.5. For 0 < € < 1 there exists C' > 0 such that

T

/(1 —§) “F(s,z)ds < Cz?, 0<z<l.

0

Proof. By definition,

x

O/(1 —8) F(s,x)ds

:—x/(l—s)_elnzds—(l—x)/(l—s)_eln(l—s)ds—l—(l—x)ln(l—x)

0 0

x

/(1 — )" “ds.

0
For 0 < < 1, In(1 — x) < 0. Thus the last term in the above is negative. Therefore

/(1 ) F(s,z)ds < —x/u —5) I 2ds— (1 —x)/(l — ) “In(1— s)ds. (3.5)
0 0 0

For the first term in the right hand side of (3.5), take the change of variable » = 2. Then

T 1 1
—x/(l—s)*lnid S/l x2/1—rw “Clnrdr < wg/l—r “Clnrdr < 22
x
0 0

0
(3.6)

For the second term in the right hand side of (3.5), notice that

—In(1—s) <s.

So
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x xT

—(1-2) /(1 ) csds < (1— x)l_E/sds <22 (3.7)

0 0

Combining (3.5), (3.6) and (3.7) gives the desired result. O

Proof of Theorem 1.1. By Lemma 2.5, we have the following expression of Tr (T;t)Tg(t) -
(t))
fg
() (t ®\ _ (t) (2 (t) (t) (1)
Tr(Tf T — ng> = /((Tf T — Ty, )K6 KA ()
D

- / { / (f(z) - f(w))g(w)Ké“(w)Ky(z)KS”<s>dAt<w>dAt<z>}dAt<f>.

D D2

The rest of the proof is simply iterating (3.2) and (3.3) on the integral above. For each
fixed £ € D, we calculate the inner product ((T;t)Tg(t) — T}?)K ét), K ét)> as follows:

(o -1y 50 KL
= / (f(2) = f(w)g(w) K (w) KD (2) KD (€)dA (w)d e (2)

- / { / [(/(2) —f(w))g(w)Ké”(w)KS)<s>]K$><z>dAt<z>}dAt<w>

{ / G| >w[af<z>g<w>K§“<w>K§t><s>]K$><z>dAt(z>}dAt<w>.

wz
In the above, we apply (3.3) with ¢ = 1 and v(z) = [(f(z) — f(w))g(w)Két)(w)th) ©].
Here, by direct computation, we obtain

1
(t+1)s

(G“1)(s) =

Since ¢ € D is fixed, and f, g are €' to the boundary, the term [af(z)g(w)KE(t) (w)th) )]
is bounded. By (2.7), the two-fold integral in the above converges absolutely. Applying
Fubini’s Theorem, and then (3.2) with

— 22 (z —w ¢ ‘
p=601, vw) = LEDEZW 00 ) KO () KO ()],

1—wz #



16 X. Tang et al. / Journal of Functional Analysis 285 (2023) 110141

the above integral is computed as follows,

/ { / g“)l(\soz(w)ﬁ%[af(z>g<w)f<§“(w)K.ﬁ%)}K$)<z)dxt<w>}dxt<z>

wz
D D

(3:2) _/{/(g<t>)21(|@z(w)|2)(1_ wiB)(z —w) 12Nz —w)

1—wz 1—wz
D D

- [0£(2)Bg(w)KP (w) KO <s>]K£;><z>dAt<w>}dAt<z>

/{/ GO) 1. (w)]?) (1 = Lo (w) 2o (w) 2(1 — 210
D

- [0£(2)Bg(w)KP (w) KO <s>]K$><z>dAt<w>}dAt<z>
/ D1 (|-(w)?)(1 = 2@)?[0f(2)Dg(w) K (w) KD (€)] KD (2)d e (w)d e (2).
Here we have the following bound of 1,

f(t: 1)1(1_rs)dr ST s). (3.8)

i (s) = [(Q(t))Ql(s)] (1—s)s =
Using (2.6) and (2.7), we can show that the integrand above is absolutely integrable

with the measure dA;(§)dA;(w)dA¢(z). Therefore by Lemma 2.5 and Fubini’s Theorem,
we compute Tr (T}t)Tg(t) - TJE?) as follows,

ﬂ@mww)
_/ { / $1(lp= (w)2)(1 — 2)? [Bf(Z)ég(w)Két)(w)K?)(E)}Kff’(Z)dAt(w)d/\t(Z)}d/\t(f)
D

- /wl(\wz(w)F)(l — 20)20f (2)9g(w) | KL (2)]*dAe (w)dAe (2).

D2

To obtain (1.3), we apply (3.3) again, with z, w reversed,

o=v1,  v(w)=[(1-20)°0f(2)0g(w)K{(2)].

We compute the above integral as follows.
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(
Tr P

7/ N

p(t) _ p(t)
7T, ng)

/wl lo. (w 1 (1 — zw) af(z)(?g(w)Kg)(z)]th)(w)d)\t(w)}d)\t(z)
D

(33)

{t+1 FOP(0)- (1 - 2P0 (:)0g(:) KO (2)

/g% R e ()

@\ @\

1—zw

- zw>28f<z>859<w>K£5><z>JK§f><w>dxt<w>}dxt<z>

L / af A dy
271
D
[ sl @ )~ 2)(1 ~ #8)97 (009K ()] KL @ (w)an ).
]:D)Q

Here we have the following expressions

fol fsl r~ (1 —r)tdrds B fol for r~ (1 —r)tdsdr _ fol(l —r)tdr

(t) _ _ _
FH(0) t+1 t+1 t+1

= (t+1)7?

(3.9)
and

oo ndr _ Jfoe (1 - aydedr gy

bal0) = 0 0ute) = o = e g

1—s).
(3.10)

Again, applying Fubini’s Theorem and (3.2), with z,w reversed, ¢ = v, v(z) = [(1 —

|w|?)(w—2)(1— zw)af(z)aég(w)Kg)(z)], we compute the second integral in the above

Tr (T}”Tg“) - T}?) as follows.

/ Pa(|= (W) ) [(1 — [w]?) (w — 2)(1 — 20)8f (2)Dg(w) K5 (2) K (w)dAe (w)d e (2)

_ / { / o= (@)?)[(1 — Jwl?)(w — 2)(1 — m)af(z)aég(w)KS)(z)]Kngw)dAt(z)}dAz(w)

N ——

D
A = o) (w - 2)(1 - zw)aaf<z>aag<w>f<s><z>}K§t><w>dAt<z>}dAt<w>
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t+1 1= 12121 (1 — w2 w — 22
=t / 6 pa(le- o)) ED Ul =2 A ) g am )

:3/gxwxwﬂ%Af@wmwanwaw»
DQ

Here, by Lemma 2.2, we have

1672

C(t+1) _
T 1672 /// sy (1—s1)” 1(1—83)td83d82d81. (3.11)

S 81 82

@12 gy (1 :
ouls) = o)1 -9+ = G [t - s

Therefore we have reached the following identity

Tr<T;t>Ty> —T};)> = %/Bf/\(?)g—k/gt(\goz(w)|2)Af(z)Ag(w)dm(z,w). (3.12)
D D2

Let us simplify the expression of g;.

11 1
///s (1—s1)" gl(l — 53)'dszdsads;

s 81 82

- /// 51_1(1 — 31)718:;1(1 — 83)td51d32d83
{(51,52,83):8<51<s2<s3<1}
1
:/ { // s7H(1 - 81)1d51d82}83_1(1 — s3)"dss3
s {(s1,52):s<s1<s2<s3z}
1
:/F(Sa 53)33:1(1 - S3)td83.

S

Here the last equality is by Lemma 3.4. This proves the equation for g;. It also follows
from Lemma 3.4 that F(s, z) is strictly positive on (0, 1). Therefore p; is strictly positive
n (0,1).
It remains to prove (1.4). In other words, the second term of (3.12) tends to zero as ¢
tends to infinity. Clearly the absolute value of the second term has the following bound,

< [ [ ati-tyfamw //gtm|1 L an(cyam )
D D
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2 1 2\—1/2
< [ allcP)n =rgdm(©) < D/ o(1GD(1 = [~ 2dm Q)

D
1

m/gt(s)(l — 5)7/2ds.
0

Plugging in the formula of g; and applying the Fubini’s theorem gives

o+(s)(1 — s)fl/st

0
. 11
:tlg— 5 //(1 —8)"V2F(s,2)a (1 — z)dxds
7T
0 s
1 1 T
:tuj;L 5 / {/(1 —5)"Y2F(s,2)ds |27 (1 — 2)tdz.
7T
0 0

By Lemma 3.5,

0< [(1—s)"Y2F(s,x)ds < 22

o\a

So

x

[/ V2P (s, 2)ds |2~ (1 — 2)'da

[y

(V)

/1 or()(1— )25 =1 /
0 0

1
<(t+1) /x 1750
0

=(t+1)B(2,t+1)

~t L

Therefore the second term in (3.12) vanishes as ¢ — oo. This completes the proof of
Theorem 1.1. O

4. Integration by parts
In the remaining sections of the article, we aim to extend Theorem 1.1 to higher

dimensions and prove Theorem 1.2. Reviewing the proof of Theorem 1.1, we notice that
there are two key ingredients:
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(1) the integral formulas in Lemma 3.3;
(2) the auxiliary operations F ®), G® that record the change in ¢ after each application
of the formulas.

With the above tools, we obtain the trace formula in Theorem 1.1 by applying iterations
of Lemma 3.3.

The proof of Theorem 1.2 relies on generalizing (1) and (2). The goal of this section
is to establish Lemma 4.2, which is an analogue of Lemma 3.3 in higher dimensions.
Applying iteration of Lemma 4.2 two times, we get Lemma 4.3. In Appendix II, more
general auxiliary operations .F,S?, g(“ are defined and some basic properties are estab-
lished. In Section 5, we apply Lemma 4.3 to obtain a formula for the semi-commutator
(see Lemma 5.1), and we apply Lemma 4.3 again with z,w reversed, to get the trace
formula in Theorem 1.2.

The proof of Lemma 4.2 relies on a Bochner-Martinelli type formula that we establish
in Appendix I. Similar integral formulas as in Lemma 4.2 were discovered by Charpentier
n [11]. Such integral formulas were used in [28] to study Bergman-Besov spaces and in
[16] to study the corona problem on the multiplier algebra of the Drury-Arveson space.

Let us start with a few definitions. Recall that by Lemma 2.2 (5), for z € B,

(1= |21 Pa(w) + (1= [21*)2Qz(w) = (1 = (w, 2)) (2 — ¢:(w)) = A.w,
where A, is an n X n matrix depending on z, and w is treated as a column vector.

Definition 4.1. For multi-indices o, 8 € N§' and z € B,,, define

dopz) = [ (4:0)Ta0) 22,

O2n—1
Sn

In particular, dpo = 1, and

(n—1)la!

do3(2) = 0a,p(1 — |2?) 21 =Tt el

if z = (#,0,...,0). (4.1)
For multi-indices o, 8 € N§’ and ¢ € C", denote
7(¢) = ¢

Lemma 4.2. Suppose t > —1, o, 8 € NJ'. Suppose ¢ : (0,1) — [0,00) is measurable and
v € €1 (B,,). Then the following hold.

1. If |a| > |B| and all integrals converge absolutely, then

/ 6150 () 2T (2 — wyo(w) K (2)dA () (4.2)
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Bt FO L 6000(=) = Xy fis, Gkl n@lp= () P4 (5 — w) S (w) KL (2)dhe (w),
v(z) # 0, F) 56(0) < o0,

Y0y Jw, Gl a0l () TPF (2 — w) 85 (w) K (2)d A (w),
v(z) = 0,7 56(0) < o0,

where

(1= [w*)d, [(1 = (z,w))Plo(w)]

S50 2) = T A )P

2. If |a| < |8] and all integrals converge absolutely, then

/ B[ (w) [T (2 — w)o(2) KD (2)di(2) (4.3)

B - Pl 0)0(w) + 0y fig, 91 8l0= () )1 P (2 — w)Si(2) K (2)d (2),
v(w) # 0, F)|,8(0) < o0

S fa, G d(p= ()P (2 — w)Si(2) K (2)dNe (2),

v(w) =0, FO

n-Ha\qﬁ(O) S 0,

where

S (P[0~ ()]
S5 = T A e

With Lemma 4.2, we show the following.

Lemma 4.3. Suppose k is a non-negative integer and I' C NI x N is a finite set of
multi-indices with |a| = |8] = k for every («,3) € T'. Suppose for some e > —1 —t,
{Fa,ﬂ}(a,ﬁ)ef‘ - %Q(Bn X ]Bn) and

S (s w>Fa,ﬁ<z,w>\ < lon(w)PH1 = (2w P4, (4.4)
(a,B)eT
S (s - )5ija,ﬁ<z,w>\swz<w>|2k“|1—<z,w>|2k+€. (45)
j=1(a,B)el’

Then

KW (2)dA(w)dA(2)

[ w2y Btasper [P~ w) Fa (2, 0)

J 1= (o, w)*
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) &)
Fo . P (O)/
n+k “n,k
= [(l-]|z do F,5(z,2)d\ 4.6
R ES N AR (a%:er 5(2)Fap(2 2)dNi(2) (4.6)
ST Eapyer 17T (2 — w) Dy, Fa (2, w)
/ g (lp= (W) SRS KO (2)dh (2)dA (w).

Here D; ; denotes the operation

Di’j = (]. - <z7w>)28z.('“)

i Ow; -

Lemma 4.3 will be a key ingredient in the proof of Theorem 1.2. For the rest of this
section, we prove the two lemmas. As in Section 3, we start by proving a version of
Lemma 4.2 at the point 0.

Lemma 4.4. Suppose t > —1, k,l are non-negative integers with k > [, and I' C N’ x
N@ is a finite set of multi-indices with |k| = k,|y| = 1 for every (k,v) € T". Suppose
{cxr}mmer CC, ¢:(0,1) = [0,00) is measurable and v € €*(B,,) satisfies that both

/M[

cn,wcﬂcv]v@dxt(o

(k,y)€rT

and

/ 6 (IC) |<|2>[ 3 cn,ycﬂRvmdAt(o

(kyy)€T

converge absolutely. Then

/ o(1¢?) [ cﬁ,wcw]v@)dxt(o (4.7)
(k,y)eT
w0+ i, 62,006 = 1) e per e0r6"T | RN, 0(0) 0. 72000) < o
Ji. G2, 6(CIH(1 —[¢?) [zwer cc} Ro(¢)dA(0), v(0) = 0, F.),6(0) < oo.
Here

c—/¢|<|[

Proof. Assume first that v(0) = 0. As in Appendix IT we use ¢; to stand for the function

CmC”C”] dA¢(¢)-

(Fw )er

(1 — s)*. By assumption on v, the first line of (4.7) converges absolutely. Therefore
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/¢ c2) [M)GF

e me) RUS5] D DSl TGEtS
B,

(k,y)€T

cﬁ,wiﬂv@)dxt(c)

T 0/1 o) ¥ e / o, (6)]

(k,y)el

Define R = Y7 | 2;0,, be the radial derivative operator, and R = Y1 | Z;0.,.
Appendix I, Lemma 7.1, we show that

[ ¢ Tuen 0 =2t [ S Rucm(c)

rS,, rB,,

Plugging it back gives

/¢|<|[

bty [ 5 e | i

(k,y)er

et

(k,7)€T

'rL — 1 / / ¢¢ 2l+2’ﬂ71 |: Z Cl{,’y . CHC’Y:| |<‘72[727}Rv(<~)dm(c)dr

7T”B (n,t+1)
0 rB, (k,y)eET

((nt)+1 / ['C e / 2y 2“2"‘1drH > cm,wcﬂm(odm@)

1<l (k,7)€ET

/ g (1C) |<|2>[ ) cmcﬁc‘*]Rv(<>dAt<o.

(k,y)€T

Here in the last equality we used that by Definition 8.1,

1
|<|—2l—2n/¢¢t(r 2l+2n ld |<| —2]— 2n/¢¢ H—n 1ds
9 [¢I2

= (1) o(1¢)?

23

In

).
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In the second to last equality, Fubini’s theorem is applied: since by assumption the last
integral converges absolutely, the condition for Fubini’s theorem is satisfied. This proves
the second case.

Assuming that v(0) # 0 and fl+n¢( ) < 00, then we have

/‘«bm [
/‘¢>|<| {

By assumption, the first integral converges. Also since |s| =k > 1 = ||,

/'as <) [(

< / S(ICPICP AN ()
B,

] [COR ) BY

(rkyy)€T

dA¢(¢)-

c,g,vcﬂév}v«)]dxt(o+|v<o>| / ]¢<<l2>[ > CC]
B,

(r,y)ED (k,y)€r

CR,VCHC_‘Y] ‘dAt (C)

1
”_1"7% p2nt2l-1 2\t
" 1-— d
7r”Bnt+1 /¢ ( ro)dr

0
(n—1)! /
s=r2 (n—1)log,_1 gnH— 1 t
— d
2w3nt+1/¢ —s)ds

0

- (n — 1) O2n—1
2Bt +1) FO,6(0)

<00.

Therefore we may apply the formula with v(¢) — v(0) replacing v(¢). This gives the first
case. O

Suppose {e1,...,en} and {f1,..., fn} are two orthonormal basis of C™. Suppose

n n n n
dGei=Y &ifii Y Nei=)> wifi.
i=1 i=1 i=1 i=1

Then there is a unitary matrix U = [u;;] such that
E=UC, w=UA

Denote U* = [uj;]. Therefore
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n v n 81} ~ _ *7 - n 8/1} ‘ ~ - n @ .
S eh= Y () ) = ¥ S -G 6y

i,j,k=1 Jk=1

In other words, the function

2": (v, \)

does not depend on the choice of a basis.

Lemma 4.5. Suppose v € €*(B,,) and z € B,,. Then

(0(vop.)(p(¢),z — #:(Q)

2ev(¢),¢) = — 4.9
(0c0(0), ) e (19)
Proof. By (4.8), both sides of (4.9) do not depend on the choice of basis. Thus we may
assume z = (r,0,...,0). In this case, we have the following expression
1 2y1/2 2y1/2
('OZ(w):l—wlr(T_wl’ —(1—r)/w2, R —(1—r)/wn).
Consequently, we compute the Jacobian
i 1-r2 T
;W (1_()2)1/2 O 0 ... O
o (17;w17“)112]2r - 1jw1r 0 0 ... 0
8(90,2)1 (1—r2) 2pgr (1—7'2)1/2
= | S 0 — 4= 0 ... 0
awj wlr wir
(1) ' ' ) e
A= 0 0 0 . T

Therefore we have the following expression,

By the above, set
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and for i =2,...,n,

oo U P ) (PP QR
' (1 —wyr)? 1—wir (1—wyr)2t " N

(1 _ 7"2)3/2
(1 —wyr)? Wi

Thus we have

1—7r2

1—wyr

£= w2 (w). (4.11)

If we plug in w = ¢,(¢) then by (4.10), (4.11) and Lemma 2.2, we obtain the equalities

1— |z =

<5(U o Wz)(‘pz(g)%z - @z(g» = <5U(C)a _mg> = _(1 - <Z,<>)<8’U(C),C>

Equivalently, (4.9) holds. This completes the proof of Lemma 4.5. O

Proof of Lemma 4.2. By Lemma 2.2 (4) (5),

KO (2)d (w) ~=2251 g 0(¢)dA(€),
C:Saz (U))

and

200 = Ty (@12

where A,w is the linear transformation
AC= (1= [z P(Q) + (1 - 121)2Q.(0).

Write |a| = k, |8] = I. Assume that v(z) # 0 and }—T(QW(O) < 0.
/ 0= (w) )T (2 — w)o(w) K (2)dA (w)
B,

220 [ (I e~ el 2 KL AN (C).

B,

By (4.12),

a, o Z\nl:k,M:l Ca,ﬁ,n,%zCNE’Y
I ﬁ(z_@z(C)) - (1 — <<,Z>)k(1 — <Z,C>)l .

(4.13)

By the above and Lemma 4.4,
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/ Bl () )17 (2 — w)o(w) KL (=) (w)

vo:(¢)

K (t)
/ <P Ll 0 Gt C e g ©ae)
=cv(z)
(t) 21 — |¢]2 . wiv| v o ¢=(¢) ® .
+B[ T I D [ e e oG] L
=cv(z)

G0 SR -1 T capmnecidr| R[22 (1 e ) E RO ©dn(c)
/ r Ln,_kh_, e fraerd

=cv(z)

+ [ 62,6070 - 61z ~ ()1 - <z,<>>lR[%}Ké”(g)dAt@).
B

Write A(¢) = 7=¢24;. Then

(1= (2 w))'w(w)

el =T Ty

By Lemma 4.5,

[ poed)

(@(ho soz)( =(9)): 2 = ¢=(O)
1—(z,0) ; '

} = Rh(¢) = (3:(€), ) = — — 2,0

Taking the change of variable { = ¢, (w) we get

/ 612, 6(1cP) |<|2>Ia’ﬁ<z—soz<<>><1—<z,<>>lR[%}K;”<odAt<o

/ g o(Ic2)(1 = |c2)

190z = ()1 = (%, 0)' 7Ok 0 02) (:(Q), 2 = @=(ONEL(QdN()
—~ [ 6o P)1 ~ fos(w)P)
B

08y | LI )T [t w) o @)]
Gt B el CSSE R
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— Jwl|? ) - by(w
= — Z/gl |80z )Iohﬁ"l‘ej (Z . w) 117 <| | > [(1(1 << >)>)l( )] KS)(z)dAt(w)
=g ’ Z,

== Z / Gi0u6 (- ()Y I (2 = w) S (w) KD (2)de (w).
To find the constant ¢, recall that by Lemma 4.4,

C_/¢ |C| |: CQ,B,H,W,ZCKQUY d)\t(C)

&=t |vI=t

Clearly if k # [ then ¢ = 0. Assuming k = [, then by (4.13), we compute c¢ as follows,

e= [P = (ORI~ oo Oan(c)

- / ST (A.Q)AN(C)
Wann—tl_F 1 /¢ 2n++2l—1(1 _TQ)t{/Ia’B(AZC)dG(C)] dr
0 S,
:7-[-”(]51(”;;:_) 2 7(L:)—l¢( ) U2n71da,ﬂ(2)
Fle0)
“B(n,t+1) @ (2)-

This proves the first case of (4.2). The second case is proved in the same way.
In (4.2), reverse (z,w), (a, ), and replace v with v. Then

/ &1 ()PP (w — 2)5(x) KO (w)dAi(2)

Doalt) . FO60)0w) = S, o G dlew(2)D) P4 (1w — 2)8;(2) KL (w)dAi(2),

B(n,t+1)
w(w) # 0, F{1),,,6(0) < oo,

=0 g, G b lew (2)P) TPt (w — 2)8;(2) KD (w)d i (2),
v(w) =0, F ,6(0) < oo,

where

(1~ 23, [(1 — (w,2)"lo(2)]
(1~ (zw) (1~ (w,z)ll

Si(z) =
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Taking conjugate on both sides, we get Equation ((4.3)) from

dap(2) = dga(2), |ez(w)] = |pw(z)]-
This completes the proof. O

Proof of Lemma 4.3. By Estimates (8.4), (2.7), and assumption (4.4), we conclude that
the left hand side of Equation (4.6) is absolutely integrable. For each z € B,,, (o, 8) € T,
we compute the following integral,

[ @kl = ) KD G w)

B.,

(4.2)  dap(2) ) &) o Fas(z2)
_%ap\Z) P 0)—2A 0 7/
Bln,t+ 1) ek Pk O e

~ t t) - e — |w|? éw o8z, w +
- [ 0o @) e - w) (ﬁ <J, Z'»L;g ;5§Z7w>))kau><z>dAt<w>.

—
I=B,

By (8.5), (2.7) and assumption (4.5), the integral

/ 6,8, (jp-(w)?)

>t Yangper 17714 (2 = w)(1 — [w]*)Du, F (2, w)

K®
(1= (w0, )11 — )" o )N
converges absolutely. Therefore the first line of (4.6) equals
dap(2) () g0 () Fas(2:2)
E = F, 1 P, (0) o d A (2)
B 1 n+k *n,k 1— 2\2k
B, (A€l (. +1) (1= 12l)
/ G120 k- w) )
n ToPte (2 —w) (1 — |w|?) 0w, F(z,w
Sor Rpper 740G )= 00, Faw)

(1= (w, 2))5+1(1 = (z,w))*

Again, for any w € B,,, j =1,...,n and (o, 8) € ', we compute the following integral,

— |w|?)By, F(z,w .
/gn+k (0= (W) [ IO+ (2 —w)(l _(1<w,|2>|)k)+1(91F_( B L»kaU)(Z)d)\t(z)
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L3 [ (600 o)

i= an

Ia+ei,f3+ej (Z . ’LU) (]- - |Z|2>(1 - ‘w|2)azéwF(Zaw)

i3 J

T (w (0= e ()G
-3 / M, (G1)1) @k (1= (w)])

le

0., 0uw. F(z,w t
otenBres (5 ) = z;)kﬁllil( B <2’ L KO (2)d\(2)

—Z / el BI04 (c - ) 2T ()N ()

Altogether, the first line of (4.6) equals

(2) 0 g gy Les(z2)
/ Z B n t+1 n+k nk(o)( | | ) d)‘t(z)
n Q'B)GF

oy i1y Lagyer LT (2 — w)Di i F (2, w)
+/ nk+1(|§02(w %) = ,ﬂ)eﬁ_ (w, z)[2FD) K (2)dMe(2)de (w).

This completes the proof of Lemma 4.3. O

Using the same proof of Lemma 4.2, one can show the following
Lemma 4.6. Suppose o, f € NI, and v € ¢'(B,

n). Then the following hold.
1. If |a| > |B]|, then

/ 198 (2 — w)o(w) Ko (2) 220

4.14
O02n—1 ( )
Sn

— Doz _l - w —2|8|—2n ra,B+e; r—w 5][(1_< >)‘B|’U(w)] 2 w
o s (2)0(2) njz_le/m( R s (o) P S K (o (w),

2. If la| < 5], then

/Io"ﬁ(z — w)v(z)Kw(z)dU—(z)

4.15
O2n—1 ( )
Sn,

" (1= (z,w)) (2
= dg,o(w)v(w) + % Z / [ (w)|—2|a\—2n1a+e,,75(z_w) (161[(<1z w;)laa‘ (>1) — <1(U )1>) K, (2)dAo(2),
i=lg ) )
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5. The higher dimensions

The goal of this section is to prove Theorem 1.2. To start with, we apply Lemma 4.3
to get the following.

Lemma 5.1. Suppose t > —1 and f,g € €*(B,). Suppose f,g,0f,0g are bounded on B,,.
Then

() (t () _ p(t
10T - T3) = POR,

where R : L2 ,(B,) — L*(\) is defined by

Bi) = — [ 0O (lpw(w)P) 20, £ 70 Bug, = — whh(w) KO (2)dAe(w).
1—(w,z)

En

Proof. By definition, for h € H*(B,,),

(0020 =10 )9 = [ [ (1edato) ~ Fwlg(u)tw) KD HROEr(w)an(2)
B, B,

Denote Fe(z,w) = (f(2)g(w) — f(w)g(w))h(w) K" (). Then

F(z,z) =0.

For fixed £ € B,,, F¢(2,w) is bounded, and by Lemma 2.2,

S 10 (- w)awﬂz,w)\ <z — ] S oo (w)l]1 = (2 w2,
j=1

Then the assumption of Lemma 4.3 is satisfied when we take I' = {(0,0)}, £k =0,e =0
and Fy o = F¢. Applying the lemma, we obtain the following computation,

(t) ()
(Tf T — Ty, ) (&)

= [ ol G KN ) )

B, xB,
t_ I%% (2 —w)D; i F(z,w)
_ (t) 21 2iyg=1 i Flzw)
— [ e = KD (2)r (an(w)
B, xB,,

— [ P

B, xB,
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n

ST (2 = w)0if (2)59(w)h(w) KO (€KL (2)dhu(2) ()

i,7=1

=PYRA(E).
This completes the proof. O

Lemma 5.2. Suppose t > 2n — 3 and f, g satisfy Condition 1. Then the semicommutator
T;t)Tg(t) — T;? belongs to the trace class.

Proof. Divide T]Et)Tét) fT]Ef]) = P®R asin Lemma 5.1. Take € > 0 so that ¢ > 2n—3+ 2.

Let ¢ = n + € and denote R : L§’t+QC(Bn) — L%(\;) the integral operator with the same
integral formula as R, i.e.,

0,1, Bug, = w)h(w) KD ()N w).

)= - [ o)) s

B'Il
Let E: L2 ,(B,) — L2, ,.(B,) be the embedding map. Split TV T\ — 7 as
- Hat n a,t+2c\"Pn g p.- 9P f g fg

‘ ‘ E R PO
TOTO T L2 ,(By) 5 L2, 50(By) —2 L2(A\) T L2 ,(B).
It is well-known that E is in the trace class [32]. It remains to show that R is bounded.
By definition, the operator R has integral kernel

Fu) = OB (px (0P ] 22 0., 57 0)Bug s — ) K ()1~ ),

where C is a constant. By assumption,

< _Onalles Pl ()
S = ) = Py

| (z,w)
By Lemma 8.3,
o (s) S5 (1 - ).
Take x so that
2n+e)+1>z>-2—4¢.
Let y =n+e+z, plw) = (1 — |w|?)® and ¢(z) = (1 — |2|*)¥. Then by Lemma 2.4 (3),
(1wl

a (t) 2 2
B/ 1B (2, 0) [p(w) g2 0) / B - 0) )l 0) P ) S (2,

n
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(1—[z))

(2, w)|q(2)dN\ (2 — |w|?) "2 (t) () Do, (w)]P——— 2 dm(z
J%F(,)M(MA()S(I )72 [ @ (el (0 T e dm ()

B,

S p(w).

By Schur’s test, R is bounded. Therefore the semicommutator is in the trace class. This
completes the proof. O

Recall that the operations .7-'7%), g,(,? and the functions CIDS),C are defined in Appendix
11

Lemma 5.3. We have

1
—~ Bn+1+j,t+1
) (O)ZZ (ntltt+ ):—/(1— )" s In sds.
0

i=0 L+

Consequently, as t tends to infinity,

FOL0W (0) = nlt 1 4+ o(t772).

n

Proof. First, by Lemma 8.4,

2
fﬁhﬂ“<>:fﬁhhu499)1w>:fﬁhgwlm>

1 .
Z F s (o):ZmB(nHﬂ,Hl).

=0 §=0
By definition, the above equals
o 1 1
1
Z /1—8”'H stds = — /1—3"1tlnsds
— 1+
=0 0 0

This proves the first line of equations. The second line of equation follows from the

estimate
| —Ins—1+s| < (1—s)%s 1t
This completes the proof. O

Lemma 5.4. We have

1

" - " (n=1D)IT(t+1) e _
o =09t S Tt+1+k(/F (L) e,
1
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Proof. By Definition 8.1, we compute CIDS’)Q(S) as follows,

o) (s)
=(1-5)(G911)" My, (G19)1(s)

1
(11— 5)tsn / (G My, (0)1(51)dss

S1

11
=(1—s)"ts [ 571 - s1) 1//5? L 1EG M1 (s3)dssdsadsy
S1 S2
11 1
:(1—5)_’53_"_1/51 (1—s1) 1//3 (1 —s3) 1/ (1 — s4)"dssdsgdsadsy
51 S2 S3
=(1—s)"ts! //// 571 —51) sy (1 — s3) 181 — s4)dsadssdsads
5<81<82<83<84<1
:(1 — 8)_ts_n_1 / { // 1 — 81) 1d81d82}
S 5§<81<82<83

1
. {/szl(l - S4)td84}831(1 — 53) 'dss.

3

By Lemma 3.4, we have the following integral,

// 571 (1—s1)" 'dsidsy = F(s, s3).

§<81<82<53

For a positive integer m, and > —1, temporarily denote I(m, x) f sy’ 1 $4)%dsy.
Then, we obtain the following relations,

(1 — 83)m+1

I(1,2) = r+1

b

and

Ilm+1,2) = | s]'(1 —s4)"dsy

'3
w
\»—-
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1

—(z+ 1)~ /sTd(l —54)" Tt

53
1

1
:x+1s§”(1 — 53)" T 4 / —54) T dsy

1 m
= m]—gg)* 4 T 1).
x+1%( 53) +x+1(mw+ )

Thus by induction, we obtain the following formula for I(n, ),

1

n
n—l'Ft+1) —k ik
/ Y1 = sy)ldsy = I(n,t) = g B3] s5TR(1 — s3)ttR.
(0~ BT+ 1+ k)

53
Therefore, we conclude with the following formula for <I>7(f7)2,
1

© —tgn-1 ~_ (n-DIT(t+1 n—k—1 thh—1
D, 5(s)=(1-9) kzl 'Ft+1+k F88383 (1—s3) dss.

This completes the proof. 0O

The following lemma helps us study the first term of Tr (Tf(t)Téf) T(t ) after itera-

tion.

Lemma 5.5. For f,g € €*(B,,), the following are equal whenever the integrals converge.

dm(w)

/Z” 1 ey e, (W) 0 f (w)0jg(w)
— |w

Py

'nl

/8f A dg A [3810g(1 - |w|2)} i (5.1)

>imy 0if (w)dig(w) — Rf (w)Rg(w)
/ 1 o dm(w).

Proof. By Definition 4.1, we consider

> e ()i @)89(0) = [ [Z 4,0),0:f(w Hfj(ch)jajgw)} dod)

ij=1 g ni=1 j=1
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By an argument similar as in the proof of (4.8), the sum in each big bracket is independent
of the choice of an orthonormal basis of C™. Thus the integrand in the left hand side of
(5.1) does not depend on the choice of a basis. At each w € B,,, w # 0, choose a basis
under which w = (wy,0,...,0). By (4.1),

ZZ;N@@AWWJ@@@WW)_1{@f@miﬂw) S, 0if (w)0g(w) (5.2)

(1= w2y Tl et T (=P

On the other hand, we compute

Z?:l wjdwj] o ZZj:l u?iwjdwi A\ d’lZ)j Z?:l dwj AN d’lZ)j

1= fw]? -

_ T
001og(1 — |w|®) 8[ A= w2 e

At w = (w1,0,...,0) the above equals

n n

B |w|2dw1 A dwq _ Z d’U)j AN d’lI}j . dwy A dw, B Z d’U)j AN d’LT}j

(1= fw[?)? L—fwl? (1~ [w?)? 1—|w*

j=1 j=2

Thus, we have

00105(1 ~ )|

w=(w1,0,...,0)

" dw]' dUTIj n i dUJj d’LZJj
ol et

2 =Py
Therefore at w = (w1, 0,. .. ,0), we have
Of Adg A [65 log(1 — |w|2)] "
~(o1y o - | LG T DT D) /_\ (dw; 1)
o[ ey

Comparing (5.2) and (5.3), we conclude that at w = (w1,0,...,0),

22j=1 d&i,&j (w)azf(w)éjg(w)
(1 _ |w|2)n+1

Of NOg A [aélog(l - |w|2)} ) = —(2i)"n! dm(w).

Since both sides are independent of the choice of basis, the equation holds for general w.
This proves the first equality.



X. Tang et al. / Journal of Functional Analysis 285 (2023) 110141 37

Also, it is easy to see that > 1| 0; f(w)9;g(w) — Rf (w) Rg(w) is invariant of the choice
of a basis. Again, if one chooses a basis so that w = (w1,0,...,0), then

Zaf Rf(w)Rg(w) = (1 — [w|*)d1 f(w)dr g(w +Zaf
Comparing the above and (5.2) gives

i jei ey, (w)0i f (w)Djg(w w)

1 — fw|?

Zaf — Rf(w)Rg(w) =n

(5.4)

Since both sides are independent of the choice of a basis the equation holds for general
w. Plugging (5.4) into the first equality gives the second equality. This completes the
proof. O

Proof of Theorem 1.2. The fact that T}t)Tg(t) — Tf(? belongs to the trace class is proved

in Lemma 5.2. By Lemma 2.5 and Lemma 5.1, we compute the trace of the semi-
commutator as follows,

(&) rp(t) _ (D)
Tr(Tf T, ng)

_ O _ 0 o ® pe®
_/<<T T()—ng>K K

/{// malles(w )%@ﬁz— w)(Owg, 2 — w)

KO (w) KD (2) K <5>dxt<w>dxt<z>}dxt<g>.

It follows from our assumption that f,g satisfy condition 1 and Lemma 2.4 that the
integral converges absolutely. Applying Fubini’s theorem, we continue the above compu-
tation,

// - (0P T2 0., 7= 0) B~ v)

{ / Ké”(w)KS)(ﬁ)dAt(f)}Kﬁﬁ(z)dAt(w)dAt(z)
B,

—— [ [ e P = 0.1 T Bug - )| KD PN ) N()
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(t)ZQ (W) (2).
1= (z,w)? |K8 (2)12de (w)d e (2)

//q,(t) (o (w (1—<w 2))2 300 o 1909 (w — 2)8ig(w); f (2)
Applying Lemma 4.3 with I = {(e;,e;) : 4,5 =1,...,n}, k =1, we obtain

Fei,ej (Za w) = (1 - <w7 Z>)282§(w)5jf(Z)Kz(t) (w)

and also using Lemma 5.5 we get

w, 2))? P I (w—z i f
//q)(tl(‘%w)' ( (w,2))° 3275 (w = 2)0ig(w)9; f(2)

1= {z,w)[?

Y1 Fe e, (2w .
/ / 1 (2 (w Z““ ( )Kﬁﬂ(z)d&(w)d&(z)

|KD (2) e (w)de(2)

=G ulP
‘F'r(LtJ)rlq)(t) (O) 2\ —2 -
~s [agep) 3 ey (3P, (51N ()

n

- / (I>(t) (‘ (w)|2)22j,k,l=1 Jeiteneitea (Z - w)(l - <Z’ w>)282k5wlFei>ej (Z’w)
s 1= ()

B, xB,
KO (2)d\(2)d (w)
fﬁll@” /z” L dese; (2)0,3(2)05 f(2)

dA
B(n,t+1) (1- \Z| yrtiTe t(2)
- / &L, (= (w Z et eneate (;— w)90,5(w)0kd; F(2)| KS (2)Pde (2)d A (w)
B, xB, i,9,k,1=1

fn—i—l ( ) (n — 1)' n—1
N B(n,tJrl) ' B(n,t+ 1)an ’ (2i)n ,/ag/\c’)f/\ {8810g(1 — |wl )}
B,

- / O (- (w)P) L. f(2 — w) Lug(z — w)| K (2)| 2N (2)dN, (w).

B, xB,

Therefore, we continue the computation of the semi-commutator using the above calcu-
lation,

(t) ot (t)
Tr(Tf Tg()—T >

o, 0 — (w0, 2y, 15 (w — 2)0:3(w)85 1 (2)
//‘I’ (= (w)?) (o)

|KS (2)[2dA (w)d e (2)
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n—1

fr(zarl‘l)(t (0) (n—1)!
~ B(nt+1) Blnt+hrt (<20 '/39“9“[ 00 log(1 - |wl?)

+ / B (¢ (w)?) L2 f(2 = w) Lug(z — w) KD (2)2dX(2)d (w)
B, xB,

n—1
=t /8f A Dg A {aalog(l — w|2)}

B,
dm(z, w)
s [ bl )P Lz = ) gl = )
B, xB,,
where
Fh @4 (0) . (=D N e
An,t = (B(n,t+1)) (2mi)" an Pn,t(S)— (m) (1-s) n,2($)'

By Lemma 5.3, we have the following estimate,

_ —f01(1 —5)" 1stInsds _ it~ 4 o(t7"72) _ 1 L o(tn?)
T T Bt + D) a2 (Bt + 1)) a2 (n— Di@m)r | C :

(5.5)
By Lemma 5.4, we have the following formula,

1
n

e (n—DI2(n+t+1) o n
) = 1;(n—k)!l“(t+1+k)r(t+1)w2”/F(S’x)x I

S
(5.6)
This proves Equation (1.9). It remains to prove (1.11). By our assumption on Condition
2, Lemmas 2.2, 2.4 and 3.5, we have the following estimates,

dm(z,w)

[ peallos Pt = )Ll =)

B, xB,,

<t1 n//pnifl'fzz w Illiz(e) dm (w)dm(z)

2 (w 5 2 1- )t
) 1o / / e e e L IGL D

tlfn

— |z|2) 1+
= [Pt [ %dm(zﬂm(@

n n
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<t / prr(ICD)IC[

B,

1
?de(o

1
1
S / s" 1 p, +(s) In - Sds
0

1
s [ - ) s
0

:tlfn/ n+1 P li nfl 'Fz(n+t+1)
— (n— B)IT(t+ 1+ k)D(t + 1)r2
0
1

/F(s,x)xn*k*a - a:)t+k1dx}(l —5)"Y2ds

S

RS (n =D (n+t+1)
=" TR T BTG D

k=1

11
//F(s, )z (1 — )R e (1 — 5) 7Y 2ds
0 s

n

im (n—=DIM2(n+t+1)
= TG T BTG D

/1 {iF(s, x)(1— s)_l/st}xn_k_l(l —z)tthlay
0 0

1
n 2
<l-n (n—DI*(n+t+1) / n—k+1(q _ o \t+k—1
~t k; TG IR ) ) & (ma)de

k=1

n

- ~ D2 (n+t+1)
- (n B
; (n—k)!F(t+1+k)F(t+1)W2nB(“ k+2,t+k)

=o(t™")

— 0,

as t tends to infinity. Combining the above, (5.5), and (1.9) we obtain (1.11). This
completes the proof. O
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6. Applications and examples

We start this section with some applications of Theorem 1.1. Since |, (w)| = |¢w(2)],
it follows immediately that the second term in (1.3) is symmetric in the symbols f and
g. As a consequence, the following trace formula for commutators of Toeplitz operators
holds.

Corollary 6.1. Suppose t > —1 and f,g € €*(D). Then
1
TT(t)T(t):—/d dg. 1
i, 70 = o= [afnag (6.1)
D

For the case when ¢ = 0, this result is well-known (cf. [23,39]).
We can apply Theorem 1.1 to study Hankel operators. Recall that the Hankel operator
with symbol g is defined on L?()\;) by

H‘gt) = - p(t))Mgp(t),
where P(*) is the Bergman projection. By the identity

() _ (O _ _ 0% (o)
T —Tf) = —H HD,

we have
(1T = Tf)) = =Te(H{ " H) = —(H{, HY) 2.

Thus (1.3) leads to a formula for the inner product of Hankel operators in the Hilbert-
Schmidt class. In particular, it leads to a formula for the Hilbert-Schmidt norm of Hankel
operators.

Corollary 6.2. Suppose t > —1 and g € €*(D). Then
1 = _
3 =+ [ 1BaPam — [ el () P)AgE Agtw)dmz, w).
D D2

where oy is defined as in Theorem 1.1. In particular,

lim 2 = = [ 19g/2dm

foo 9 1S s ’

D

For Hankel operators with real subharmonic symbols, the second term is non-negative.
So the following holds.
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Corollary 6.3. Suppose t > —1 and g € €*(D) is real-valued and subharmonic in D.
Then

1 —
1013 < - [ 19gdm, (6:2)
D

with equality holds if and only if g is harmonic in D.

As explained in the introduction, in this paper we focus more on the trace formula (1.9)
and asymptotic trace formula (1.11) of semi-commutators with relatively nice symbols.
Nonetheless, the following lemma and the examples that follow show that Condition 1

is a natural condition to work with.

Lemma 6.4. Suppose n > 2 and f,g satisfy Condition 1. Then there exists a constant
C > 0 such that for any z € B,\{0},

(0:£,0)(0:9.0)] < C(IPZ(C)I2 + (1= IZI2)|Q2(<)I2> (1—[z[)"72*, veecC™. (6.3)

(1) In the special case when f = g, (6.3) becomes

M@%<Mscn(fuow+u—w4%”ﬂonQ<r—zm”i“, (6.4)
which is equivalent to Condition 1. Here Cy is another constant.
(2) If there are a,b >0, a4+ b >n — 2 such that
\@J@MS@Qa@n+u—MW”wxm)u—m%% (6.5)
|wﬂ¢ns@(a«n+umﬁmwxooua%b (6.6)

with some constant Cy, then f,g satisfy Condition 1.
Proof. Note that

1= (z,w) = (1= [21*) + 1 = [wl*) + |2 — w]* + [Im(z, w)],

2 _ 2= P(w)]? + (1~ |2*)|Q: (w)?
|z (w)]” = TEERnIE : (6.7)

Take w = z + A( where A € C is sufficiently small. Then by definition,

2 PO + (1= [2)]Q:(O”

|<)02(w)| :|/\ |1—<z,w>|2
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Condition 1 implies

2 PO + (1 = [2)IQ= (O

(0 £, ) {Dug: O|IA? < CIA 1= (zw)]?

1= (z,w)[""*.

Canceling out |A|? and letting A — 0 we obtain the first inequality in (6.3). The second
inequality is proved similarly.
On the other hand, suppose f = g and (6.4) holds. Then

(@ugz = ) (12 = P+ (1 Q) )1 - o2
S(1e - PP+ (1= BRIQu)? )1 = e+
. WL — (2w,
Equivalently,
|(Bug, 2 — )[* < [0z (w) 2L — {z,w)["*
and also
(0:9, 7= w)|* < lp= ()1 — (z,w)|" .

Multiplying the two inequalities and taking square root gives Condition 1 for f = g. This
proves (1). Statement (2) is proved in the same way as (1). We omit the details. O

Similarly, one may give sufficient conditions for Condition 2 in terms of growth rates
of second order derivatives. Taking the case f = g for example, we have the following.

Lemma 6.5. Suppose n > 2 and g € €%(B,,). If g satisfies (6.4) and for some constant
C >0 and a > max{0, 5 — 2},

IL29(¢) < C(IPZ(C)I2 +01- IZIQ)QZ(C)IQ) 1= 21%),
then f =g and g satisfy Condition 1 and 2.

The Schatten class criterion of Hankel operators is throughly studied, cf. [4,3,26,36,
38]. There are also some results on the Schatten norms of Hankel operator with anti-
holomorphic symbols, cf. [25][34]. In [26, Theorem 3.1], Li and Luecking gave a criterion
for Hankel operators to be in SP. Our condition in (1) of Lemma 6.4 is consistent with
that of fo in Li and Luecking’s Theorem 3.1 when p = 2. One can also check using [26,
Theorem 3.1] that when (2) of Lemma 6.4 holds, ng-t) € SP and Hét) € §9 for some
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)

% + 1 = 1. So the trace class membership of T}t)Tg(lt — T;;) follows from the identity

S}

T}t)Tg(t) — T}? = —HJ(;t)*Hét). The converse, however, is not true: there are symbols f, g

such that H ](;t) and H ét) belong only to bigger Schatten classes but their product belongs

to the trace class. The following lemma gives us a clue.

Lemma 6.6. Suppose f,g € €>(B,,) are bounded and have bounded first and second order
derivatives. If suppfg is a compact subset in B,, then f,g satisfy Conditions 1 and 2 in
Theorem 1.2. In particular (1.9) and (1.11) hold.

Proof. By (6.7), in this case |1 — (z,w)| is bounded away from 0 for (z,w) € suppf x
suppg. From this it is easy to verify Conditions 1 and 2. O

In the case when suppf and suppg do meet on the boundary, Condition 1 gives us an
idea of how much decay is needed when they meet. See the following example.

Example 6.7. Let ¢ > 0 and 1) be a ¢! function on R such that

Y/ (s) =0 for s < 0, and [¢/(s)| < s'T€ for s > 0.
Let n = 2 and

) =v(al’ = |2l?), g(z) = vzl - |=f).

Then we compute

0.1 =0, if 21| < |22]
z .
Sz =z, if 2] > |zl
= =0, if Jwa| < wi]
|Owg] 2 2)1+e s
S (lwal* = Jwe]%)77¢, i Jwa| > fu

Whenever |9, f||0wg| is non-zero we have |21| > |22| and |wsa| > |wi|, in which case
|z —wl & [z1 — wi| + |22 — wa| = [z1] = [wi] + [wa] — |22] = (|21] — |22]) + (Jwa| — [w1]).
So we have the following estimate
10: f110wgl S |2 —w[*T>.
Using the above inequality, we reach the following estimate,
(01, 2= w)[[{Owg, 2 = w)| S |2 = wl*0: fllOwg] S |2 —w|*% < | (w)*|1 = (2,w)[**.

So Condition 1 is satisfied and by Theorem 1.2, T;t)Tét) -T ;? is in the trace class.
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7. Appendix I: a formula of Bochner-Martinelli type

Recall that R = Y"1 | 2,0, is the radial derivative operator, and R = Y 1 | %0.,. In
this appendix we prove the following lemma.

Lemma 7.1. Suppose r > 0, a, f € N}, |a| > |8 and v € €*(rB,,). Then

/ 227P0(2)do,(2) (7.1)

rS,
2|8|+2n—1 2|8|+2n—1 2 -
=0,02n—1T " 'U(O) + 2r " / WRU(Z)dm(Z)
rB,
Here

(n—1)la!

=0pg— .

ol =008 (0 T 1 Jal)!

Lemma 7.1 can be verified directly on v(z) = 27z*, and then using approximation of
v by polynomials. For future reference, we show in the rest of this appendix that it can
be viewed as a special case of a Bochner-Martinelli type formula (see Proposition 7.5
below).

For a (p, q)-form u = Z|I|:P7‘J‘:q ur,gdzr Adzy,

ou = Z Z akULJde ANdzr Adzyg, ou = Z Z 5ku1,Jd2k ANdzy ANdzy.

k=1|I|=p,|J|=q k=1|I|=p,|J|=q

Then d = d + 0 is the exterior derivative.
In some of the estimates, we may abuse notations and use df, df to denote holomor-
phic, and anti-holomorphic gradient of a €' function f, i.e.,

0f(2) = (01f(2),02f(2), ... 0uf(2)),  Of(2) = (01 f(2),02f(2)..... Ouf(2)),

considered as column vectors.

Cauchy formula. Let 2 C C be a bounded open set with 4 boundary and 0 € 2. Then
for every v € €1(9Q),

211 z 211 z
a0 Q

1 /@dzzv(o)_i/av—(’z)dz/\dz.

Its generalization to higher dimensions is the Bochner-Martinelli Formula.
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Bochner-Martinelli formula. Let 2 C C™ be a bounded open set with ¢' boundary and
0 € Q. Then for every v € €*(B,),

/v(z)k:BM(z) =v(0) + /51}(2) NEkpn(2). (7.2)
o9 Q
Here kg is the Bochner-Martinelli kernel, defined by

(=pr! L1-209) 52 512)" !

In this section, we prove a generalization of the above Bochner-Martinelli Formula (7.2).

kBM(Z) =

First, we review the definition of currents on C™.

Definition 7.2. For p,q =0, ..., n, denote 2?7 the locally convex space of smooth (p, q)-
forms on C™ with compact support. The topology of 279 is defined by the collection of
semi-norms

lull gr.a (i), N = Z sup  sup [0°0°us 5(2)|, u= Z ur,j(z)dzr AdZy,
[T=p.[J|=g | FIPISN €K [11=p.l7|=q

where N ranges over all positive integers, and K is any compact subset in C™. The space
of currents of bidegree (p, q), denoted by 279 is the dual space of 2" ~P"~4 endowed
with the weak* topology. The currents in 2'”"% can be viewed as (p, ¢)-forms with dis-
tribution coefficients. In particular, any (p, ¢)-form with locally integrable coefficients is
a current of bidegree (p, ¢). With the identification of Lebesgue measure dm(z) with the
Euclidean volume form

1
dv = mdzl /\dél /\/\dzn/\dén,

a distribution 7" on C™ can be viewed as either a current of bidegree (0,0) or (n,n): for
h on C™ smooth and compactly supported,

(T, h) = (T, hdv).

Differential operators act on currents by duality and are continuous with respect to the
weak™* topology.

Definition 7.3. For multi-indices o, 8 € N}, define

. 2078
H,5(z) = 6£%1+ WkB]vI(Z)

in the sense of current.

, (7.4)
Cn\B,
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In the case when |3| < |a|, Ha,p has locally integrable distributions. So we can simply
write
2278

Only this case will be used in this paper. For completeness and future reference, we
include the case when |3| > |a|. In this case, the current H, s has coefficient distributions
which are not locally integrable, and we need to define it in the style of a principal value.
For any 1 < 5 < n and ¥°, compactly supported function h on C", take the Taylor

expansion

V1 2
h(Z)Z Z M9 h(O)Z’Yli’Y’z+O(|Z|‘B|—‘a‘+1).

l~e!
1772
l+hel<iBl—la) T

For each € > 0, the current inside the limit sign of (7.4) vanishes on every term except
for O(|z|IPI=1e1+1) Thus the current H, g for |3] > || is well-defined.

The standard Bochner-Martinelli formula follows from Stoke’s Theorem and the fol-
lowing identity.

Okpar = o, (7.5)
where dg is the point mass at 0. Standard arguments show that the following holds.
Lemma 7.4. We have

OH, 5 = (=1)"Fa, 50°725,. (7.6)

Here

(n—1)!a! .
oy = [CESEsEDE if a <,
’ 0, otherwise.

Proposition 7.5. Let Q C C™ be a bounded open set with €' boundary and 0 € 2. Then
for multi-indices o, 3 € NI and v € €(Q),

/U(Z)Haﬂ(z) = a.50°0(0) +/z§v(z) A H, 5(2). (7.7)
o0 Q

Proof of Proposition 7.5. By Lemma 7.4 and Stokes’ Theorem for currents, we have the
following equations
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JECICE Q/ A(v() o 5(2)) = Q/ (vt s(2))

o0
:/U(Z)gHa”g(Z) +/5U(z) NHqp(z) = aawgaﬁ*%(()) +/5U(z) N Hg p(z).
Q Q Q

This completes the proof of Proposition 7.5. O
Taking Q2 = rB,, and assuming |a| > |5| in Proposition 7.5 gives Lemma 7.1.
8. Appendix II: auxiliary functions and operations

In Section 3, the integral operations F*), G() simplify our computation. To work in
higher dimensions, it is necessary to extend those integral operations and establish some
basic properties. This is the goal of the current section.

Definition 8.1. For ¢t € R, denote
bi(s) = (1 —s)".

Suppose ¢ : (0,1) — [0,00) is a measurable function. For a positive integer m and any
t > —1, define the operations on ¢

1

FWo(s) = /rmfl(j)(r)(l —7r)tdr € [0, ool (8.1)
and
1
1 JormTre(r)(1—r)tdr
() R — 2 O = o8 0, co]. 8.2
G6(s) = o Fols) = T o (82)
For any t > —1, inductively define the functions
6 _ t £) \2x(t
‘I)gL,)O =1, <I>£L,)k+1 = My, (gr(r)Hc) ‘bé)k
Equivalently,
2 2
(I)S,)k = M¢>1 (g’r(L?’k71> . 'M¢1 (gv(zt)) L (8'3)

It is straightforward to verify that the following estimates hold.

Lemma 8.2. Suppose a > m is not an integer and b > 0. Suppose ¢ : (0,1) — [0,00) is
measurable and
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$(s) S s7(1—s)".
Then
G o(s) S 57 (L—s)".
As a consequence, the following hold.
Lemma 8.3. For any t > —1 and integers n > 0,k > 0,
o (s) S 5T TRE(L - 5)F, (8.4)
and
G\ () S 5T R R (L - ) (8.5)

Lemma 8.4. For any t > —1 and positive integers m,k and ¢ : (0,1) — [0,00) we have

L0, Mo, G06(0) = 2 FL0,,600), (8.6)
F 6D e(0 io FO s ;000), (8.7)
Fi¢ = FO My, 6(0) + Fiy16, (8.8)
and
FW1(0) = B(m,t +1). (8.9)

Proof. The proof is a simple application of Fubini’s Theorem. By definition, we have the
following computation for Fi +kM¢1g,,§)¢( 0),

FO My, G g(0)

1

:/rm+k_1(l — r)tHgg)Qﬁ(T)dr

0

/ /1 11 = 5)to(s)dsdr

1 s
//Tk_ldrsm_l(l — 5)'¢(s)ds
00
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/sm+k_1(1 — 5)'¢(s)ds

Finally, we arrive at the following equation,
1
FH1(0) = /rm—1(1 —r)tdr = B(m,t +1).
0

This completes the proof of Lemma 8.4. O
Data availability
No data was used for the research described in the article.
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