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Abstract. This is the first of two papers dedicated to the detailed determination
of the reduced C∗-algebra of a connected, linear, real reductive group up to Morita
equivalence, and a new and very explicit proof of the Connes–Kasparov conjecture for
these groups using representation theory. In this part we shall give details of the C∗-
algebraic Morita equivalence and then explain how the Connes–Kasparov morphism in
operator K-theory may be computed using what we call the Matching Theorem, which
is a purely representation-theoretic result. We shall prove our Matching Theorem in the
sequel, and indeed go further by giving a simple, direct construction of the components
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of the tempered dual that have non-trivial K-theory using David Vogan’s approach to
the classification of the tempered dual.
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1. Introduction

If π is a unitary representation of a locally compact group G on a Hilbert
space H, then the formula

(1.1) π(f) =

∫
G
f(g)π(g) dg (f ∈ C∞

c (G))

defines a representation of the group C∗-algebra C∗(G) as bounded op-
erators on H. In this way the category of unitary representations of G
becomes equivalent to the category of (non-degenerate) representations of
C∗(G). See [Dix77, Chapter 13].

The C∗-algebra point of view equips the unitary dual of G with a topol-
ogy whose closed sets are in bijection with two-sided ideals J �C∗(G): the
closed set determined by J is the set of all irreducible unitary representa-
tions that vanish on J . The reduced dual of G is by definition the closed
subset of the unitary dual that is associated to the kernel of the left regular
representation

(1.2) λ : C∗(G) −→ B(L2(G)).

If G is a real reductive group, then the representations in the reduced
dual are precisely Harish-Chandra’s tempered irreducible unitary repre-
sentations [HC66, Section 25]. See for instance [Kna86, Theorem 12.23]
and [CHH88, Theorems 1 and 2], together with [CHH88, Remark (b), p.
103] for a proof of this. To a first approximation, the goals of this paper are
to determine the tempered dual of a real reductive group as a topological
space, and to compute its K-theory.

The tempered dual may be identified with the (topological) space of
irreducible representations of the reduced C∗-algebra C∗

r (G), which is the
quotient of the full group C∗-algebra by the kernel of the regular repre-
sentation (1.2). Our precise goals are to determine C∗

r (G) up to Morita
equivalence, and to compute its K-theory.

Studying the tempered dual as a topological space (and at the same
time studying the reduced C∗-algebra) is rewarded in spectacular fashion
by a beautiful isomorphism statement in K-theory that was conjectured
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by A. Connes [Ros84, Conjecture 4.1] and G. Kasparov [Kas84, Section 5,
Conjecture 1]. This Connes–Kasparov isomorphism is now viewed as part
of the more general Baum–Connes conjecture about the reduced group
C∗-algebra of any locally compact group (including any discrete group).
See [BCH94, §4] or [GAJV19] for a recent survey of the status of the
conjecture.

In this work we shall present the full details of a representation-theoretic
proof of the Connes–Kasparov isomorphism for connected, linear, real
reductive groups. Such a proof was announced in outline form only by
A. Wassermann in [Was87], following pioneering work by M. Penington
and R. Plymen [PP83] and A. Valette [Val84], [Val85]. Subsequently, V.
Lafforgue gave an entirely new proof using his work on the Baum–Connes
conjecture [Laf02b]. In some places we shall follow Wassermann’s outline,
but elsewhere we shall follow a quite different route.

Lafforgue explains in [Laf02a, §2] that if G is of equal rank and has
compact center, so that it possesses discrete series representations, then
one can recover Harish-Chandra’s classification of the discrete series in
terms of Harish-Chandra parameters as a consequence of the Connes–
Kasparov isomorphism for G. The starting point is the observation that
each discrete series is isolated in the tempered dual, and so is detectable
in K-theory. Our approach will in effect use Harish-Chandra’s classifica-
tion, rather than provide an independent verification. But in place of that
we shall give an explicit answer to a natural question that arises from
the classification. Harish-Chandra’s parameters are weights (for a cho-
sen maximal torus of a maximal compact subgroup K of G) that satisfy
a non-singularity condition. The same parameters determine Dirac-type
operators on the symmetric space G/K, and as R. Parthasarathy [Par72]
and Atiyah–Schmid [AS77] explained, the associated discrete series can be
constructed as the space of harmonic spinors for this operator. If Harish-
Chandra’s non-singularity condition is dropped, there is still an associated
Dirac operator. We shall show that this Dirac operator determines not a
single representation of G but a single connected component of the tem-
pered dual, and we shall describe this component in full detail, thereby in
some sense completing Harish-Chandra’s parametrization.

We shall reach this goal in the second paper. Our starting point here
is an earlier paper [CCH16] that gave a detailed account of the structure
of C∗

r (G), in the form of a Paley–Wiener type theorem for the reduced
group C∗-algebra. Here we shall go one step further and give a computa-
tion of the K-theory of the reduced C∗-algebra using a dichotomy, first
observed by Wassermann in [Was87], that invokes the Knapp–Stein the-
ory of intertwining operators [KS71], [KS80] to separate the components
of the tempered dual with trivial K-theory from those with non-trivial
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K-theory. The result is that the K-theory of the tempered dual is carried
by those components that are essential, which means that every Knapp–
Stein intertwiner for the component belongs to the Knapp–Stein R-group.
See Definition 4.1. Moreover each essential component contributes one free
generator to K-theory.

On the other hand, Connes and Kasparov conjectured that the K-
theory is freely generated by the indices of indecomposable Dirac-type
operators on the symmetric space G/K, where K is a maximal compact
subgroup in G. These Dirac operators are easily parametrized using more
or less just the representation theory of K. In contrast the set of essential
components of the tempered dual is far more mysterious.

Nevertheless, it is a remarkable fact that the K-theory generators asso-
ciated to the essential components and the K-theory generators associated
to indecomposable Dirac operators are, up to sign, exactly the same. We
shall conclude the present paper by precisely formulating a slightly weaker
correspondence in what we call the Matching Theorem; see Theorem 6.3.
Finally, we shall explain how the Connes–Kasparov isomorphism follows
quickly from the Matching Theorem. We shall present two arguments—
one that relies on fundamental results by Kasparov in KK-theory, and
one that is purely representation theoretic.

In the second paper we shall complete our account of the K-theory
of the tempered dual and the Connes–Kasparov isomorphism by proving
the Matching Theorem, and more. In contrast to earlier works on the
Connes–Kasparov isomorphism, we shall use David Vogan’s approach to
the construction and classification of the tempered dual [Vog81]. We shall
show that Vogan’s theory leads to a simple construction of all the essential
components of the tempered dual, and only those components, all at once.
Although Dirac operators are not used in our construction, the data used
to construct an essential component turns out to be exactly the same
as the data used to construct an indecomposable Dirac operator. From
the point of view of representation theory, this is the fundamental result
underlying the Connes–Kasparov isomorphism.

Notes on Terminology

Throughout this paper and the sequel, by a real reductive group, we shall
always mean the group G of real points in a connected complex reduc-
tive linear algebraic group that is defined over R. See for instance [Mil17,
Chapter 19]. The main reason for this assumption is to guarantee that the
theory developed in Vogan’s monograph [Vog81], which will be crucial in
the sequel, will apply to G. But we shall also assume that G is itself con-
nected, which will considerably simplify both the statements of theorems
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and their proofs. In this paper we shall often refer to the text [Kna86], so
let us note here that our groups are the same (up to isomorphism) as the
linear connected reductive groups in [Kna86, §I.1].

We shall use fraktur letters such as g, etc, to refer to the Lie algebras
of Lie groups such as G, etc, and not to the complexifications of these
Lie algebras. This is because we shall have little use for the complexified
Lie algebras in this first paper. But in the second paper we shall use the
complexifications extensively and we shall follow a different convention.

When discussing Dirac operators we shall follow conventions appro-
priate to index theory on manifolds. These are a bit different from the
conventions in representation theory, where so-called Dirac cohomology
is studied. But in the second paper we shall switch and follow the Dirac
operator conventions that are used in representation theory.

2. Parabolic induction and the reduced group C∗-algebra

In this section we shall review the description of the reduced C∗-algebra
of a real reductive group that was obtained in [CCH16] using results in
tempered representation theory due to Harish-Chandra, R. Langlands and
others. Then, following Wassermann [Was87], we shall refine that descrip-
tion so as to determine the reduced group C∗-algebra up to Morita equiv-
alence.

We shall fix, once and for all in this paper, a maximal compact sub-
group K⊆G and Cartan decomposition g = k ⊕ s. We shall also fix a
maximal abelian subspace a⊆s and a compatible Iwasawa decomposition
G = KAN . The associated minimal parabolic subgroup is Pmin = MAN ,
where M is the centralizer of A in K. See [Kna86, Chapter V].

Since we shall be working with convolution algebras we shall also fix a
Haar measure on G, as well as a normalized Haar measure on K.

Parabolic induction

We begin by reviewing some essential points about parabolic induction
[CCH16]. A standard parabolic subgroup of G is any closed subgroup P of
G that includes Pmin. It decomposes as a semi-direct product P = LPNP

of a Levi component LP that is mapped to itself by the Cartan involution
and the unipotent radical NP . Furthermore, the Levi component LP is
the product of the closed subgroup MP that is generated by all compact
subgroups of LP and the split component AP of LP . This leads to a
Langlands decomposition P = MPAPNP . See [Kna86, §V.5] or [Kna02,
Chapter VII].
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If π is a unitary representation of LP , then we may form the (unitarily)
parabolically induced representation IndGP π, which is the unitary action of
G by left translation on the Hilbert space completion of the vector space
of smooth functions

(2.1) {f : G −→ Hπ : f(gman) = e−ρ(log a)π(ma)−1f(g)}.
The completion is taken with respect to the inner product

(2.2) 〈f1, f2〉 =
∫
K
〈f1(k), f2(k)〉 dk,

and ρ ∈ a∗P is defined by

ρ(X) =
1

2
Trace(adX : nP −→ nP ).

See [Kna86, §VII.1].

2.3 Definition. Let P be a standard parabolic subgroup and let σ be an
irreducible, discrete series representation of MP (that is, an irreducible
unitary representation of MP , all of whose matrix coefficient functions
are square-integrable) and let ϕ ∈ a∗P . The formula

σ⊗eiϕ : ma 	−→ eiϕ(log a)σ(m)

defines a unitary representation of LP=MPAP on the Hilbert space of
the representation σ. The associated (P, σ)-principal series representation
of G is the unitary representation πσ,ϕ that is obtained from σ⊗eiϕ by
parabolic induction. We shall denote by IndGP Hσ⊗Ciϕ the Hilbert space
on which it acts.

2.4 Remark. The Langlands decomposition P=MAN , which is used in the
definition above, will be important at a number of places below. It supplies
each principal series of representations with a natural base point, where
ϕ = 0. This base point is not always available in other contexts, including
for instance that of p-adic groups, and the paper [AA22] examines some
of the difficulties that can arise as a result.

If we restrict the functions in (2.1) to K, then all the representations
in the (P, σ)-principal series can be regarded as acting on the following
common Hilbert space (and we shall mostly do so from now on):

2.5 Definition. We shall denote by IndGP Hσ the Hilbert space completion
of the space of smooth functions

(2.6) {f : K −→ Hσ : f(kh) = σ(h)−1f(k) ∀h ∈ K ∩ L , ∀k ∈ K}
in the inner product (2.2).
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Intertwining operators

The following concept gives us a first, large-scale view of the tempered
dual:

2.7 Definition. Let P1 = M1A1N1 and P2 = M2A2N2 be standard parabolic
subgroups and let σ1, σ2 be irreducible square-integrable representations of
M1 and M2 respectively. The pairs (P1, σ1) and (P2, σ2) are associate if
there exists an element k ∈ K such that

Adk[LP1 ] = LP2 and Ad∗k σ1 � σ2.

We shall call an equivalence class of pairs under this relation an associate
class and use the notation [P, σ].

The theorem below summarizes some of the important results of Harish-
Chandra, Langlands and others, and it is the foundation for our study of
the tempered dual.

2.8 Theorem. The tempered dual admits a disjoint union decomposition

Ĝtemp =
⊔
[P,σ]

ĜP,σ

as a topological space, where ĜP,σ consists of the irreducible components
of the (P, σ)-principal series representations and the union is indexed by
associate classes. Each part ĜP,σ is a connected and open subset of Ĝtemp

(and it follows that each part is also closed).

As for the proof, it is explained by Lipsman in [Lip70] that for semisim-
ple groups with finite center, the topology on each minimal principal series
component of the tempered dual coincides with the “natural topology” in-
herited from the space of continuous parameters of the principal series,
and in particular each principal series is connected. The general case of
Lipsman’s result (covering all reductive groups and all cuspidal principal
series) may be proved in the same way. But in any case, a complete proof
of this and all the other assertions in Theorem 2.8 is given in [CCH16].
Theorem 6.8 in [CCH16], which is reproduced below as Theorem 2.19,
gives a nearly complete description of the reduced C∗-algebra of G, us-
ing which the spectrum of the reduced C∗-algebra is easily determined.
But that spectrum is precisely the tempered dual, as we noted in the
Introduction. So for instance, the fact that each principal series compo-
nent is open and closed in the tempered dual follows from the direct sum
decomposition in Theorem 6.8 of [CCH16].

To probe the equivalences within a single principal series family, as
well as the possible reducibility of the representations within that family,
one studies intertwining operators.
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2.9 Definition. The intertwining group associated with a pair (P, σ) as
above is the finite group

Wσ = {w ∈ NK(LP ) : Ad∗w σ � σ}/K ∩ LP .

The theory of intertwining operators, due to Knapp and Stein [KS71],
[KS80], associates to each w ∈ Wσ, and each ϕ ∈ a∗P , a unitary operator

(2.10) Uw,ϕ : IndGP Hσ −→ IndGP Hσ,

that intertwines the principal series representations πσ,ϕ and πσ,w(ϕ), so
that if g ∈ G, then

(2.11) Uw,ϕπσ,ϕ(g) = πσ,w(ϕ)(g)Uw,ϕ.

Here w(ϕ)(X) = ϕ(Adw−1(X)). The operators Uw,ϕ vary strongly-contin-
uously with ϕ ∈ a∗P .

The construction of Uw,ϕ involves a choice of unitary equivalence of
representations Ad∗w σ � σ. By Schur’s lemma the choice is unique up to
a multiplicative scalar of modulus one, but it is not absolutely unique.
This leads to a cocycle relation

(2.12) Uw1,w2(ϕ)Uw2,ϕ = c(w1, w2)Uw1w2,ϕ ∀ϕ ∈ a∗P

with |c(w1, w2)| = 1.
In fact the equivalences Ad∗w σ � σ may be chosen so that c(w1, w2) = 1

for all w1, w2 ∈ Wσ. This is not trivial, but it is important for what follows,
so let us describe the method.

2.13 Definition ([KS80, §13]). Denote by W ′
σ�Wσ the normal subgroup

W ′
σ = {w′ ∈ Wσ : The intertwiner Uw′,0 acts as a scalar on IndGP Hσ}.

Denote by Rσ the quotient group Wσ/W
′
σ.

For each w′ ∈ W ′
σ we can choose an equivalence Ad∗w′ σ � σ so that in

fact each Uw′,0 acts as the identity operator on IndGP Hσ, and then having
done so we obtain c(w′

1, w
′
2) = 1 for all w′

1, w
′
2 ∈ W ′

σ.

2.14 Theorem ([KS80, Theorem 13.4]). The quotient group homo-
morphism from Wσ to Rσ splits, and the intertwining group Wσ therefore
admits a semi-direct product decomposition Wσ = W ′

σ �Rσ.

2.15 Theorem ([KS80, §13 and §15] and [Kna82, §6]). The R-group
is abelian, and indeed a finite product of groups of order two. Moreover
there is a splitting, as in the previous theorem, so that the associated in-
tertwiners Uw,0 (w ∈ Rσ) also pairwise commute.
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Returning to the cocycle issue, fix a splitting as in Theorem 2.15. Since
Rσ is a direct product of groups of order two, and since the associated
Knapp–Stein intertwiners commute, we can certainly choose equivalences
Ad∗w σ � σ for w ∈ Rσ so that c(w1, w2) = 1 in (2.12), for all w1, w2 ∈ Rσ.
If we now make further adjustments by scalars so that Uw,0Uw′,0 = Uww′,0
for all w ∈ Rσ and all w′ ∈ W ′

σ, then we shall obtain c(w1, w2) ≡ 1 for
all w1, w2 ∈ Wσ, as required. We shall use these adjusted Knapp–Stein
intertwining operators from now on.

The Knapp–Stein intertwining operators completely account for the
decomposition of principal series representations into irreducible repre-
sentations, and for equivalences among these irreducible summands. We
refer to [CCH16, §6] for a summary that is adapted to our purposes; the
same information will be encoded in the description of the reduced C∗-
algebra in Theorem 2.19 below.

The reduced group C∗-algebra

Let P = MPAPNP be a parabolic subgroup of G, and let σ be an irre-
ducible square-integrable representation of MP . The (P, σ)-principal series
representations are tempered, and they therefore determine representa-
tions πσ,ϕ of the reduced group C∗-algebra using formula (1.1). We now
introduce the C∗-algebra

(2.16) C0(a
∗
P ,K(Ind

G
P Hσ))

of norm-continuous functions, vanishing in norm at infinity, from the lo-
cally compact space a∗P to the C∗-algebra of compact operators on the
Hilbert space IndGP Hσ.

2.17 Proposition ([CCH16, Corollary 4.12]). There is a (unique)
C∗-algebra homomorphism

πσ : C
∗
r (G) −→ C0(a

∗
P ,K(Ind

G
P Hσ))

such that πσ(f)(ϕ) = πσ,ϕ(f) for every f ∈ C∞
c (G) and every ϕ ∈ a∗P .

2.18 Remark. In [CCH16], the right-hand side is described in terms of
functions on ÂP , which identifies with a∗P through the exponential map
as in Definition 2.3.

There is an action of the intertwining group Wσ on the C∗-algebra
(2.16) that is characterized by the formula

w(f)(w(ϕ)) = Uw,ϕf(ϕ)U
∗
w,ϕ
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for all w ∈ Wσ and all ϕ ∈ a∗P . It follows from the intertwining property
(2.11) that the image of the morphism πσ in Proposition 2.17 is fixed
pointwise by this action of Wσ. The description of the reduced C∗-algebra
given in [CCH16] is as follows:

2.19 Theorem ([CCH16, Theorem 6.8]). The morphisms in Proposi-
tion 2.17 combine to give an isomorphism of C∗-algebras

C∗
r (G)

∼=−→
⊕
[P,σ]

C0(a
∗
P ,K(Ind

G
P Hσ))

Wσ .

The direct sum is the C0-direct sum of C∗-algebras over a choice of rep-
resentatives of the associate classes [P, σ].

The principal series as an equivariant bundle

In this section we shall show, following Wassermann [Was87], that the
Wσ-action that is used to define the fixed-point algebra Theorem 2.19 can
be replaced by a much simpler action in a way that does not change those
fixed-point algebra, up to ∗-isomorphism.

Form the trivial bundle of Hilbert spaces with fiber IndGP Hσ over the
locally compact space a∗P . The Knapp–Stein intertwiners determine an
action on this bundle,

(2.20) Wσ × (a∗P × IndGP Hσ) −→ (a∗P × IndGP Hσ),

via the formula

(2.21) w · (ϕ, v) = (w(ϕ), Uw,ϕv).

We shall now give a simpler description, up to isomorphism, of this Wσ-
equivariant Hilbert space bundle.

2.22 Remark. The bundle a∗P× IndGP Hσ is infinite-dimensional, but it de-
composes canonically as the orthogonal Hilbert direct sum of its finite-
dimensional K-isotypic components, which are finite-dimensional Wσ-
equivariant bundles in their own right. One could, if one preferred, work
with these finite-dimensional bundles.

Define a second Wσ-action on the bundle a∗P× IndGP Hσ by the formula

(2.23) w · (ϕ, v) = (w(ϕ), Uw,0v).

2.24 Proposition (cf. [Was87, Corollary 5]). The two Wσ-equivariant
bundle structures on a∗P× IndGP Hσ defined by the two actions (2.21) and
(2.23) are unitarily equivalent.
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Proof. The single-point subset {0} ⊆ a∗P is a Wσ-equivariant deformation
retract. It therefore follows from elementary vector bundle theory that
any two Wσ-equivariant bundles over a∗P whose fibers over 0 are unitarily
equivalent as representations of Wσ are in fact unitarily equivariantly
isomorphic as bundles.

2.25 Corollary. The Wσ-actions on the C∗-algebra C0(a
∗
P ,K(Ind

G
P Hσ))

defined by the formulas (2.21) and (2.23) are conjugate by a C∗-algebra
automorphism. In particular, the corresponding fixed-point C∗-subalgebras
are isomorphic.

The reduced C∗-algebra up to Morita equivalence

In this section we shall construct a Morita equivalence between each sum-
mand in the decomposition of Theorem 2.19 and a still more elementary
C∗-algebra. We shall continue to follow Wassermann [Was87] closely.

A complete treatment of the Morita equivalence has appeared very
recently in [AA22], where many situations involving p-adic groups are
also considered. For the sake of completeness we shall nonetheless present
the argument below, although in view of the existence of [AA22] we shall
take the liberty of omitting some details.

We shall use Corollary 2.25, and throughout this subsection we shall
work with the action of Wσ on the C∗-algebra C0(a

∗
P ,K(Ind

G
P Hσ)) that

is derived from (2.23). We shall determine the fixed-point C∗-subalgebra
up to Morita equivalence.

The group Rσ acts on the C∗-algebra C0(a
∗
P /W

′
σ,K(Ind

G
P Hσ)) via the

formula
(r · f)([ϕ]) = Uw,0f([w

−1(ϕ)])U∗
w,0,

where w is any preimage in Wσ of r ∈ Rσ. The morphism

(2.26) C0(a
∗
P ,K(Ind

G
P Hσ))

Wσ
∼=−→ C0(a

∗
P /W

′
σ,K(Ind

G
P Hσ))

Rσ

defined by the formula

f 	−→ [[ϕ] 	−→ f(ϕ)]

is an isomorphism of C∗-algebras. We shall therefore concentrate on the
Rσ-fixed point C∗-algebra.

Now form the space K(IndGP Hσ, �
2Rσ) of compact Hilbert space oper-

ators from IndGP Hσ into the finite-dimensional Hilbert space �2Rσ. Use
the action of Rσ on IndGP H, along with the left-translation action of Rσ

on �2Rσ, to define an Rσ-action on K(IndGP Hσ, �
2Rσ).
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Finally, form the Banach space

(2.27) C0(a
∗
P /W

′
σ,K(Ind

G
P Hσ, �

2Rσ))
Rσ .

It carries commuting actions of the C∗-algebra C0(a
∗
P /W

′
σ,K(Ind

G
P Hσ))

Rσ

on the right, by pointwise composition, and of C0(a
∗
P /W

′
σ,K(�

2Rσ))
Rσ on

the left.

2.28 Theorem (cf. [Was87, Corollary 7]). For each associate class
[P, σ], the bimodule

C0(a
∗
P /W

′
σ,K(Ind

G
P Hσ, �

2Rσ))
Rσ

implements a strong Morita equivalence

C0(a
∗
P /W

′
σ,K(�

2Rσ))
Rσ �

Morita
C0(a

∗
P /W

′
σ,K(Ind

G
P Hσ))

Rσ .

Let us quickly recall the C∗-algebraic concept of Morita equivalence,
which includes analytic requirements that are obviously absent from the
purely algebraic theory (among other things, they help extending the reach
of the theory to non-unital C∗-algebras). A succinct formulation is as
follows: an equivalence A-B-bimodule must have the form pCp⊥, where

(i) C is a C∗-algebra and p is a projection in the multiplier algebra of
C [Ped79, §3.12];

(ii) C∗-algebra isomorphisms are provided between pCp and A, and be-
tween p⊥Cp⊥ and B (where p⊥ = 1−p); and

(iii) pCp⊥Cp and p⊥CpCp⊥ are dense in pCp and p⊥Cp⊥, respectively.

See [RW98]. In the present case, C will be the C∗-algebra of Rσ-fixed func-
tions of class C0 from a∗P /W

′
σ to the C∗-algebra of compact operators on

the direct sum Hilbert space IndGP Hσ⊕ �2Rσ, and p will be the projection
onto the second Hilbert space direct summand, and then pCp⊥ will be
(2.27).

2.29 Lemma. Let Γ be a finite group acting properly on a locally compact
Hausdorff space X, and let H1 and H2 be Hilbert spaces equipped with
unitary representations of Γ. If for every x ∈ X, H1 and H2 are weakly
equivalent representations of the stabilizer subgroup Γx (that is, each is
contained in a multiple of the other), then the bimodule

C0(X,K(H2, H1))
Γ

implements a Morita equivalence of C∗-algebras

C0(X,K(H1))
Γ �

Morita
C0(X,K(H2))

Γ.
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Proof. Denote the two C∗-algebras in the statement of the proposition by
A and B, and the A-B-bimodule by E. We need to show that the sets

{fg∗ : f, g ∈ E} and {f∗g : f, g ∈ E}
span dense ideals in A and B, respectively.

If an ideal in a C∗-algebra is not dense, then there is an irreducible rep-
resentation of the C∗-algebra that vanishes on the ideal [Dix77, Chapter 2].
So to prove density in A we need only show that for every irreducible rep-
resentation of A there is some element f∈E such that the representation
is non-zero on ff∗ ∈ A.

Each irreducible representation of A must factor through evaluation of
functions A in at some point x∈X, since by Schur’s lemma all functions
in C0(X)Γ must act on the representation space as scalar multiples of
the identity. But the image of A under evaluation at x∈X is K(H1)

Γx ,
and its irreducible representations are precisely the non-zero Γx-isotypical
subspaces Hρ

1 of H1 (ρ ∈ Γ̂x).
By hypothesis, the isotypical subspace Hρ

2 is non-zero, and hence there
is a non-zero Γx-equivariant compact operator T : H2 → H1 whose range
lies in Hρ

1 , and there is a function f ∈ E whose value at x is T . But now
the value of ff∗ ∈ A at x is equal to TT ∗, which is non-zero.

We shall need to combine the simple computation above with the fol-
lowing more substantial result from the Knapp–Stein theory:

2.30 Theorem ([Kna86, Theorem 14.43]). The intertwining opera-
tors

Uw,0 : IndGP Hσ −→ IndGP Hσ (w ∈ Rσ)

are linearly independent of one another.

2.31 Corollary. The representation of Rσ on IndGP Hσ includes a copy of
every irreducible representation of Rσ.

Proof. The representation of Rσ on IndGP Hσ determines a representation
of the complex group algebra of Rσ, and Theorem 2.30 implies that this
algebra representation is faithful. That is, every element of the group al-
gebra acts as a non-zero operator. So each of the isotypical projections
associated to the irreducible representations of Rσ acts as a non-zero op-
erator on IndGP Hσ.

Proof of Theorem 2.28. It follows from the corollary above that IndGP Hσ

includes a copy of every irreducible representation of every subgroup of
Rσ, and certainly the same is true of �2Rσ. So Lemma 2.29 applies with
X = a∗P /W

′
σ and Γ = Rσ.
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We shall conclude this section by showing how the statement of The-
orem 2.28 can be streamlined using some standard C∗-algebra language
(although we shall not use this language in what follows).

Let Γ be a finite group. Denote by λ and ρ the actions of Γ on K(�2Γ)
associated with the left and right regular representations, respectively. In
addition, if γ ∈ Γ, then denote by eγ the rank-one projection onto the
functions in �2Γ that are supported on γ. If A is any C∗-algebra with a
Γ-action, then we denote by A� Γ the crossed product C∗-algebra.

2.32 Lemma ([Rie80, Proposition 4.3]). The linear map

A� Γ −→ (A⊗ K(�2Γ))Γ,λ

defined by
a 	−→

∑
γ∈Γ

γ(a)⊗ eγ and γ 	−→ 1⊗ ρ(γ),

is an isomorphism of C∗-algebras.

Combining Lemma 2.32 with Theorem 2.28, we obtain for any compo-
nent [P, σ] of the tempered dual a Morita equivalence

(2.33) C0(a
∗,K(IndGP Hσ))

Wσ �
Morita

C0(a
∗
P /W

′
σ)�Rσ.

Assembling the summands using the isomorphism of Theorem 2.19,
we obtain the following picture of the reduced C∗-algebra up to Morita
equivalence, due to Wassermann [Was87].

2.34 Theorem ([Was87, Theorem 8]). There is a Morita equivalence
of C∗-algebras

C∗
r (G) �

Morita

⊕
[P,σ]

C0(a
∗
P /W

′
σ)�Rσ,

where the sum is over representatives of the associate classes [P, σ].

3. Further information about the Knapp–Stein intertwining
groups

The results in the preceding section give an account of the structure of
C∗
r (G) up to Morita equivalence in terms of the intertwining groups Wσ

and their semi-direct product decompositions Wσ = W ′
σ�Rσ. In this sec-

tion we shall summarize the additional facts about these decompositions
that we shall need to complete the computations in this paper.
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The W’-group

We defined W ′
σ using the action of the Knapp–Stein intertwining operators

on the representations πσ,0. An important result is that W ′
σ is also the

Weyl group of a root system:

3.1 Theorem ([KS80, §13 and §15] and [Kna82, §6]). The subgroup
W ′

σ � Wσ is the Weyl group of a (possibly non-reduced) root system Δ′
σ

spanning a subspace1 of a∗P . The action of the group Wσ on a∗P permutes
the roots in Δ′

σ.

3.2 Definition. We shall denote by

a∗σ,+ ⊆ a∗P

the (closed) dominant Weyl chamber in a∗P associated to some fixed system
of positive roots Δ′

σ,+ ⊆ Δ′
σ.

See [Kna86, Chapter XIV, Section 9] for the definition of the root
system Δ′

σ. One important consequence of Theorem 3.1 for us will be
that the quotient a∗P /W

′
σ may be identified with the dominant chamber

a∗σ,+ (in more detail, we shall use the fact that the projection map from
the closed dominant chamber to a∗P /W

′
σ is a homeomorphism).

The R-group

Using the system of positive roots, Knapp and Stein define Rσ as a sub-
group of Wσ, as follows:

3.3 Definition. The Knapp–Stein R-group Rσ ⊆ Wσ is the subgroup con-
sisting of those elements that permute the positive roots Δ′

σ,+ ⊆ Δ′
σ among

themselves.

This is consistent with our previous terminology: the subgroup Rσ

normalizes W ′
σ, and since Wσ acts by permutations on the Weyl chambers

in a∗P for the root system Δ′
σ, while W ′

σ acts on the chambers simply-
transitively, there is a semi-direct product decomposition Wσ = W ′

σ�Rσ.
Since Rσ permutes the positive roots among themselves, the action of

Rσ on a∗P restricts to an action

Rσ × a∗σ,+ −→ a∗σ,+.

1 To be precise, there is an isomorphism from W ′
σ to the Weyl group of a root system

Δ′
σ spanning a subspace, and the isomorphism gives the action of W ′

σ on that subspace.
There is a complementary subspace on which the action of W ′

σ is trivial.
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We shall use this action in the next section.
By a reflection of a∗P we shall mean an isometric involution of a∗P with

a one-dimensional (−1)-eigenspace. Two reflections are orthogonal if their
(−1)-eigenspaces are orthogonal.

3.4 Theorem ([KS80, §13 and §15] and [Kna82, §6]). The R-group
associated to every associate class [P, σ] is a finite product of groups of
order two that act by pairwise orthogonal reflections on a∗P .

Finally, we shall need the size of the group Rσ in a crucial special case.

3.5 Definition. Denote by amax the split part of a maximally compact
Cartan subalgebra of g = k ⊕ s. Thus amax is the fixed part in s of the
action of a maximal torus in K.

The space amax is unique up to conjugation by elements of K, and so
its dimension dim(amax) is independent of any choices.

3.6 Lemma. dim(amax) ≡ dim(G/K) (mod 2).

Proof. The action of the maximal torus associated to amax on s � amax

has no non-zero fixed vectors. Since every non-trivial irreducible repre-
sentation of the torus has dimension 2, it follows that s � amax is even-
dimensional.

3.7 Theorem. If [P, σ] is an associate class, and if W ′
σ = {e}, then the

group Rσ is generated by dim(aP )− dim(amax) pairwise orthogonal reflec-
tions on a.

We refer the reader to [CHS22] for a proof using an alternative ap-
proach to the R-group due to Vogan [Vog81, Section 4.3] (which seems to
be much better suited to the problem of computing Rσ in the essential
case).

4. K-Theory of the reduced C∗-algebra

In this section we shall compute the K-theory [RLL00] of C∗
r (G) as an

abstract abelian group. Since it is a basic feature of K-theory that for any
family of C∗-algebras {Aα} the natural map⊕

α

K∗(Aα) −→ K∗(
⊕
α

Aα)

is an isomorphism, we can and shall focus on the individual fixed-point
algebras

C0(a
∗
P ,K(Ind

G
P Hσ))

Wσ
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that make up the reduced group C∗-algebra. We have seen that these are
Morita equivalent to the C∗-algebras

C0(a
∗
P /W

′
σ,K(�

2Rσ))
Rσ .

Since K-theory is a Morita invariant it suffices to study the latter.
The computations below are very simple from a K-theoretic point of

view, but they require the difficult results about the R-group that we
surveyed in the last section.

Essential and inessential components

The results in this section are due to Wassermann [Was87]. We start from
the following partition of the set of associate classes [P, σ].

4.1 Definition. An associate class [P, σ] is called essential if the normal
subgroup W ′

σ � Wσ is trivial. Otherwise [P, σ] is called inessential.

4.2 Theorem. If [P, σ] is inessential, then K∗(C0(a
∗
P /W

′
σ,K(�

2Rσ))
Rσ) =

0.

Proof. Identify the quotient a∗P /W
′
σ with the dominant Weyl chamber

a∗σ,+ ⊆ a∗P . The half-sum of the positive roots is a non-zero vector ρ
in the chamber that is fixed under the action of Rσ. The translations
by non-negative multiples of ρ map a∗σ,+ into itself and give an Rσ-
equivariant homotopy between the identity morphism on the C∗-algebra
C0(a

∗
σ,+,K(�

2Rσ)) and the zero morphism. So the Rσ-fixed-point algebra
is homotopy equivalent to zero.

The essential components have non-zero K-theory, and their treatment
requires more of the R-group results from Sect. 3.

4.3 Theorem. If [P, σ] is essential, then K∗(C0(a
∗
P ,K(�

2Rσ))
Rσ) is a free

abelian group on one generator, which lies in degree dim(G/K) (mod 2).

Actually, for the sake of a later calculation we shall make a more precise
statement directly in terms of the K-theory of C0(a

∗
P ,K(Ind

G
P Hσ)). The

assumption that [P, σ] is essential implies that the group Rσ decomposes
as a direct product

Rσ
∼= Z2 × · · · × Z2︸ ︷︷ ︸

q times

,

where q=dim(aP )− dim(amax); see Theorem 3.7. The generators of the
factors act on a∗P as pairwise orthogonal reflections and the fixed subspace

a∗,Rσ

P ⊆ a∗P
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for the action of Rσ has dimension d=dim(amax).
It follows from Theorem 2.30 and Proposition 2.24 that for ϕ ∈ a∗,Rσ

P
the elements of the group Rσ act linearly independently on the represen-
tation space IndGP Hσ⊗Ciϕ, which therefore decomposes into a direct sum
of |Rσ| distinct irreducible subrepresentations,

(4.4) IndGP Hσ⊗Ciϕ =
⊕
μ

Xμ,ϕ,

on each of which Rσ acts as multiples of a distinct character. So we can
write

(4.5) C0(a
∗,Rσ

P ,K(IndGP Hσ))
Rσ =

⊕
μ

C0(a
∗,Rσ

P ,K(Xµ)),

where Xµ is the bundle of Hilbert spaces with fibers Xμ,ϕ. We can there-
fore form the C∗-algebra morphism
(4.6)
C0(a

∗
P ,K(Ind

G
P Hσ))

Rσ −→ C0(a
∗,Rσ

P ,K(IndGP Hσ))
Rσ −→ C0(a

∗,Rσ

P ,K(Xµ))

in which the first map is restriction to a∗,Rσ

P ⊆ a∗P and the second is
projection to a single summand in (4.5). The target C∗-algebra is Morita
equivalent to C0(a

∗,Rσ

P ) via the bimodule C0(a
∗,Rσ

P ,Xµ) and so we can
formulate a more precise version of Theorem 4.3 as follows:

4.7 Theorem. If [P, σ] is essential, then for every μ the restriction-projection
morphism

C0(a
∗
P ,K(Ind

G
P Hσ))

Rσ −→ C0(a
∗,Rσ

P ,K(Xµ))

in (4.6) induces an isomorphism

K∗(C0(a
∗
P ,K(Ind

G
P Hσ))

Rσ)
∼=−→ K∗(C0(a

∗,Rσ

P )).

Proof. We shall prove the Morita equivalent version of the theorem that
uses �2Rσ. The C∗-algebra C0(a

∗
P ,K(�

2Rσ))
Rσ admits a tensor product

decomposition

(4.8)
C0(a

∗
P ,K(�

2Rσ))
Rσ ∼= C0(R

d)⊗ C0(R,K(�
2
Z2))

Z2 ⊗ · · ·
⊗ C0(R,K(�

2
Z2))

Z2 ,

where d is the dimension of the subspace of a∗P fixed by the Rσ-action,
and where there are as many factors of C0(R,K(�

2
Z2))

Z2 as there are
factors of Z2 in the group Rσ. Now each of the fixed point algebras in the
factorization above fits in an extension

0 −→ J −→ C0(R,K(�
2
Z2))

Z2 π−→ C −→ 0,
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where the quotient map π is evaluation at 0 ∈ R, followed by compression
to the subspace of constant functions in �2Z2. The kernel J is Morita equiv-
alent to the contractible C∗-algebra of C0-functions on [0,∞). It follows
that the tensor product of the morphisms π above gives an isomorphism in
K-theory from the right-hand side in (4.8) to C0(R

d), and since the tensor
product of the morphisms π is the same as (4.6), the theorem follows.

Let us summarize:

4.9 Theorem. The group Kdim(G/K)(C
∗
r (G)) is a free abelian group on

the set of essential associate classes, while the group Kdim(G/K)+1(C
∗
r (G))

is zero. More precisely, the K-theory of each essential summand of C∗
r (G)

is free abelian in one generator in degree dim(G/K), while the K-theory
of each inessential summand of C∗

r (G) is zero.

5. The Connes–Kasparov index homomorphism

In this section we shall review the construction of Dirac operators on the
symmetric space K\G of right K-cosets in G and the definition of the
Connes–Kasparov index homomorphism.

We shall fix for the rest of the paper a G-invariant symmetric bilinear
form

(5.1) B : g× g −→ R

that is positive-definite on s and negative-definite on k (where g = k ⊕ s
is the Cartan decomposition that was fixed at the beginning of Sect. 2).

Spin modules

The definitions and results in this section may be applied to any orthog-
onal action of a compact Lie group K on a finite-dimensional Euclidean
vector space s. But soon the only example of interest will be the adjoint
action of the maximal compact subgroup K ⊆ G on the space s in the
Cartan decomposition g = k ⊕ s. With this in mind we shall denote the
K-action by

(k,X) 	−→ Adk(X)

for k ∈ K and X ∈ s (even though this is a slight abuse of notation in
general).

Form the Clifford algebra Cliff(s) using the convention that the square
of any element from s is minus the norm-squared of that element, for the
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inner product s.2 If X ∈ s, then we shall denote by c(X) the corresponding
element in the Clifford algebra, so that the convention reads:

c(X)2 = −‖X‖2 · 1.
5.2 Definition. If s is even-dimensional, then a spin module for the pair
(K, s) is a finite-dimensional, Z2-graded, complex Hilbert space S that is
equipped with

(i) a representation of Cliff(s), written

(X, s) 	−→ X · s
for X ∈ s and s ∈ S, in which each X acts as a grading-degree one,
skew-adjoint operator, and

(ii) a grading-degree zero, unitary representation of K that is compatible
with the representation of Cliff(s) in the sense that

k · (X · s) = Adk(X) · (k · s)
for every k ∈ K, every X ∈ s, and every s ∈ S.

If s is odd-dimensional, then a spin module for (K, s) is a spin module
for (K, s ⊕ R), where R is equipped with the trivial action of K. A spin
module for (K, s) is irreducible if it cannot be decomposed into a direct
sum of two spin submodules.

5.3 Definition. We shall denote by Rspin(K, s) the abelian group gener-
ated by isomorphism classes of spin modules subject to the relations

[S1] + [S2] = [S1 ⊕ S2] and [S] + [Sopp] = 0,

where Sopp is obtained from S by reversing the Z2-grading.

This group may be analyzed using the following standard construction
from Clifford algebras and Lie theory (compare [HP06, Section 2.3] or
[Mei13, Section 2.2.10]):

2 This convention agrees with [HP06], which is one of the main references for the
material here, but it disagrees with [Mei13], which is the other main reference.
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5.4 Definition. The fundamental morphism

α : k −→ Cliff(s)

is defined by the formula

α(Z) = −1

4

∑
c(adZ(Xa)) · c(Xa),

where the sum is over any orthonormal basis {Xa} of s (the sum is inde-
pendent of the choice).

The fundamental morphism is a Lie algebra morphism (for the com-
mutator bracket on the Clifford algebra) and moreover

c(adZ(X)) = [α(Z), c(X)]

for all X ∈ s and all Z ∈ k. If S is a spin module, then by composing the
Clifford algebra action on S with α we obtain a representation of k on S.

Suppose for a moment that s is even-dimensional. Fix an irreducible
representation Sirr of the Clifford algebra on a finite-dimensional Z2-
graded Hilbert space (Sirr is unique up to a possibly grading-reversing
unitary equivalence). The fundamental morphism endows Sirr with a k-
action, and so to any spin module S we can associate the Z2-graded k-
module

(5.5) mod(S) = HomCliff(s)(S, Sirr),

(the morphisms in mod(S) need not be grading-preserving). We can re-
construct S from mod(S) via the canonical isomorphism

(5.6) Sirr⊗̂mod(S)∗
∼=−→ S,

where the tensor product is given the diagonal k-action. Note that as a
result, if S is irreducible in the sense of Definition 5.2, then mod(S) is an
irreducible k-module.

If s is odd-dimensional, then we repeat the above with Cliff(s⊕ R) in
place of Cliff(s). In either case, the k-module mod(S) does not necessarily
integrate to a representation of K. However if we define a compact group
K̃ by means of the pullback diagram

K̃ ��

��

Spin(s)

��
K �� SO(s)
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in which the bottom morphism comes from the adjoint action of K on s,
then mod(S) integrates to a representation of K̃.

The pullback group K̃ may or may not be connected, but in any case
the kernel of the morphism K̃→K is a two-element group, and there is a
unique morphism from K̃ into the group of invertible elements in Cliff(s)
whose associated Lie algebra morphism is α, and which maps the non-
trivial element of the kernel to minus the identity.

5.7 Definition. We shall say that a representation of K̃ is genuine if the
non-trivial element in the kernel of K̃→K acts as −I in the representa-
tion.

5.8 Theorem (See for instance [EP09, Theorem 0.1]). The abelian
group Rspin(K, s) is isomorphic via the correspondence S 	→ mod(S) to
the free abelian group on the set of equivalence classes of irreducible and
genuine representations of K̃.

The Dirac operator and its square

For the rest of this section K will be the given maximal compact subgroup
of our real reductive group G, and s will be the complementary subspace
to k in the Cartan decomposition g = k ⊕ s. We shall equip s with the
inner product coming from (5.1).

Given a spin module S, form the space [C∞
c (G)⊗ S]K , where K acts

diagonally, and where the K-action on C∞
c (G) is by left translation.

5.9 Definition. The Dirac operator associated to a spin module S is the
linear operator

/DS : [C
∞
c (G)⊗ S]K −→ [C∞

c (G)⊗ S]K

given by the formula

/DS =
∑

Xa ⊗ c(Xa),

in which the sum is over any orthonormal basis {Xa} for s, as in Defini-
tion 5.4, and Xa acts on C∞

c (G) via the left-translation action of G on
C∞
c (G). Compare [Par72], [AS77].

5.10 Definition. The Casimir element for G is the element

ΩG =
∑

Y aYa
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in the enveloping algebra3 U (g), where the sum is over any basis {Ya} for
g with dual basis {Y a} for the invariant form B (so that B(Y a, Yb) = δab ).
Similarly the Casimir element for K is the element

ΩK =
∑

ZbZb ∈ U (k),

where the sum is over any basis {Zb} for k and dual basis {Zb} for the
invariant form B, restricted to K.

5.11 Definition. The diagonal morphism

Δ: U (k) −→ U (g)⊗ Cliff(s)

is the morphism of associative algebras for which

Δ(Z) = Z⊗I + I⊗α(Z)

for all Z ∈ k, where α is the fundamental morphism from Definition 5.4.

In the next result, it is convenient to view the Dirac operator alge-
braically, as an element of U (g) ⊗ Cliff(s); the choice of spin module
S is therefore no longer immediately relevant. The expression for the
square of the Dirac operator in Theorem 5.13 below is essentially due
to Parthasarathy [Par72]; see [HP06, Proposition 3.1.6] for a modern ac-
count.

The bilinear form B in (5.1) may be extended to a non-degenerate
symmetric complex-bilinear form

(5.12) B : gC × gC −→ C

on the complexification of g. This restricts to a non-degenerate bilinear
form on each Cartan subalgebra of gC, and also on each Cartan subalgebra
of kC. These restrictions may be used to identify the Cartan subalgebras
with their complex vector space duals in the usual way, and so we obtain
non-degenerate complex-bilinear forms B∗ on these dual spaces.

5.13 Theorem. Let ρK and ρG be the half-sums of the positive roots for
kC and gC (formed using any choices of Cartan subalgebras in the com-
plexified Lie algebras and any systems of positive roots). The square of the
Dirac operator in U (g)⊗ Cliff(s) is given by the formula

/D
2
= Δ(ΩK +B∗(ρK , ρK))− (ΩG +B∗(ρG, ρG)).

3 Generally we shall work with the complexification of the enveloping algebra of the
real Lie algebra g, or equivalently the enveloping algebra of the complexification, but
here it is not necessary to do so.
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The scalars B∗(ρK , ρK) and B∗(ρG, ρG) are independent of the choices
of Cartan subalgebras and systems of positive roots. Moreover they are
real-valued, and indeed non-negative. This may be seen by selecting a
(complexification of a) θ-stable Cartan subalgebra h = t ⊕ a ⊆ g with t
maximal abelian in k and a orthogonal to k, and observing that ρK and
ρG are imaginary-valued on t, where B is positive definite, while ρG is
real-valued on a, where B is real-valued.

In order to reflect this non-negativity, it will be convenient to change
the notation in Theorem 5.13. The formula

(5.14) 〈X,Y 〉 = −B(X, θ(Y )) (X,Y ∈ g)

defines a positive-definite inner product on the real Lie algebra g. Let us
extend it to a complex-sesquilinear inner product on the complexification
gC. Of course, this extension restricts to an inner product on any Cartan
subalgebra of the complexification, and the restriction induces an inner
product on the vector space dual of the Cartan subalgebra. The same goes
for any Cartan subalgebra of the Lie algebra of K. With this notation,
Theorem 5.13 may be restated as

(5.15) /D
2
= Δ(ΩK + ‖ρK‖2)− (ΩG + ‖ρG‖2).

Let us now bring the spin module S back into the picture and compute
the operator

Δ(ΩK + ‖ρK‖2) : [C∞
c (G)⊗ S]K −→ [C∞

c (G)⊗ S]K

arising from Theorem 5.13.

5.16 Definition. If S is an irreducible spin module (Definition 5.2), then
we define

‖S‖ = ‖μ+ ρK‖,
where μ is the highest weight of the irreducible k-module mod(S) (both
μ and ρK depend on a choice of Cartan subalgebra of kC and system of
positive roots, but the norm does not).

5.17 Lemma. If S is an irreducible spin module, then the operator

Δ(ΩK + ‖ρK‖2) : [C∞
c (G)⊗ S]K −→ [C∞

c (G)⊗ S]K

is ‖S‖2 times the identity operator.

Proof. Write S ∼= Sirr ⊗ mod(S)∗ as in (5.6). Under this isomorphism,
the Clifford algebra acts on Sirr, but not on mod(S)∗. So the diagonal
morphism Δ gives the action

Δ(Z) = Z ⊗ 1⊗ 1 + 1⊗ α(Z)⊗ 1
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of the Lie algebra k on

C∞
c (G)⊗ S ∼= C∞

c (G)⊗ Sirr ⊗mod(S)∗.

In contrast, the K-fixed part of this space is computed using the actions
of K (or, strictly speaking K̃) on all three factors, so that

[C∞
c (G)⊗S]K ∼= HomK(C, C∞

c (G)⊗S) ∼= HomK̃(mod(S), C∞
c (G)⊗Sirr).

We can therefore compute the action of Δ(ΩK) using either the action of
k on C∞

c (G)⊗Sirr or the action of k on mod(S). Using the latter it is well
known that we obtain ‖μ+ ρK‖2 −‖ρK‖2; See [KV95, Proposition 4.120]
for instance.

With this, we can simplify the formula for the square of the Dirac
operator:

5.18 Theorem. The square of the Dirac operator

/DS : [C
∞
c (G)⊗ S]K −→ [C∞

c (G)⊗ S]K

associated to an irreducible spin module is given by the formula

/D
2
S = ‖S‖2 − (ΩG + ‖ρG‖2).

Infinitesimal characters

Let us quickly review some basic topics in representation theory. For a
further discussion of all these concepts and results, see for instance [Kna86,
Chapter VIII].

If π is any continuous representation of G on a Hilbert space Hπ by
bounded, invertible operators, then we shall denote by Hπ,fin the space
of K-finite vectors in Hπ. The representation π is said to be admissible
if each K-isotypical subspace in Hπ,fin is finite-dimensional. According to
a theorem of Harish-Chandra, if π is unitary and irreducible, then it is
admissible.

If π is admissible (but not necessarily unitary), then Hπ,fin is included
within the smooth vectors in Hπ and so it carries a representation of the
complexified Lie algebra gC. One says that π is quasi-simple if Z (gC), the
center of the universal enveloping algebra of gC, acts as multiples of the
identity operator.

Let h be any Cartan subalgebra of g. Harish-Chandra defined an iso-
morphism

(5.19) HC : Z (gC)
∼=−→ S (hC)

W ,
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where W is the Weyl group associated to (g, h) and S (hC)
W is the W -

invariant part of the symmetric algebra of hC, the complexification of the
real Lie algebra h. We shall identify the range in (5.19) with the algebra of
W -invariant complex polynomial functions on the complex vector space
HomR(h,C).

If π is an admissible and quasi-simple representation of G, then the
infinitesimal character of π is the algebra homomorphism

inf. ch.(π) : Z (gC) −→ C

that gives the action of the center of the enveloping algebra on Hπ,fin. Us-
ing the Harish-Chandra isomorphism we can and will view the infinitesi-
mal character as (any representative of) a W -orbit in HomR(h,C).

5.20 Definition. Let h = th ⊕ ah be a θ-stable Cartan subalgebra of g,
with th ⊆ k and ah ⊆ s. An element of HomR(h,C) is said to be real if it
belongs to

HomR(th, iR)⊕HomR(ah,R)

and it is said to be imaginary if it belongs to

HomR(th,R)⊕HomR(ah, iR).

The same terminology may be applied to infinitesimal characters, using
the Harish-Chandra isomorphism. Whether or not an infinitesimal charac-
ter is real or imaginary does not depend on the choice of representative of
inf. ch.(π) within its W -orbit. Nor does it depend on the choice of Cartan
subalgebra (as long as the Cartan subalgebra is stable under the Cartan
involution). See [Kna86, p. 535].

For the next result, recall that the complexification process outlined in
the discussion preceding (5.15) endows HomR(h,C) with an inner product.
Every element of HomR(h,C) decomposes as a sum of real and imaginary
parts, and we shall use the standard notation for these.

5.21 Lemma. Let π be a unitary, admissible and quasi-simple representa-
tion of G on a Hilbert space Hπ. If the real and imaginary parts of the in-
finitesimal character of π are orthogonal, then the operator π(ΩG)+‖ρG‖2
acts on Hπ,fin as the scalar

‖Re(inf. ch.(π))‖2 − ‖ Im(inf. ch.(π))‖2.
Proof. The formula in the statement of the lemma is a special case of
the following standard identity for the Harish-Chandra homomorphism
(5.19):

HC(ΩG)(λ) +B∗(ρG, ρG) = B∗(λ, λ) ∀λ ∈ h∗C
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(we introduced the form B∗ in the discussion prior to the statement of
Theorem 5.13). For a proof see for instance [KV95, Proposition 4.120]; the
relation between the form 〈·, ·〉 that appears there and our B∗ is explained
on p.299 of [KV95].

Let us now apply this to the unitary principal series representations of
G. Let [P, σ] be an associate class, and let P = MPAPNP be the Lang-
lands decomposition of P , so that σ is an irreducible square-integrable
representation of MP . Harish-Chandra showed that:

5.22 Theorem. Whenever MP carries an irreducible square-integrable
representation, the Lie algebra tP of any maximal torus in K ∩ MP is
a Cartan subalgebra of mP .

5.23 Theorem. Every irreducible, square-integrable representation of M
has real infinitesimal character. Moreover, for every N > 0 the set of
equivalence classes of irreducible, square-integrable representations of M
with ‖ inf. ch.(σ)‖ < N is finite.

For an exposition of these results, see for instance [Kna86]. We shall
use the second statement in the second theorem in the next subsection.
As a result of the first theorem, the Lie algebra tP ⊕ aP is a Cartan
subalgebra of g, and we may compute the infinitesimal characters for the
(P, σ)-principal series as follows:

5.24 Lemma (See for example [Kna86, Proposition 8.22]). The
infinitesimal character of the unitary (P, σ)-principal series representation
πσ,ϕ is

inf. ch.(σ)⊕ ϕ ∈ HomR(tP , iR)⊕HomR(aP , iR).

Note that the two summands in the infinitesimal character above are
its real and imaginary parts, respectively.

Dirac operator from the representation theory point of view

Now form the Hilbert space IndGP Hσ as in Definition 2.5, and given a spin
module S, form the fixed space

[IndGP Hσ ⊗ S]K .

The same space is obtained if we replace IndGP Hσ by its subspace of K-
finite vectors, and as a result [IndGP Hσ ⊗ S]K carries an action of g. So
if we regard IndGP Hσ as carrying the principal series representation πσ,ϕ,
then we may form the operator
(5.25)

/Dσ,ϕ,S =
∑

πσ,ϕ(Xa)⊗ c(Xa) : [Ind
G
P Hσ ⊗ S]K −→ [IndGP Hσ ⊗ S]K .
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The following is an immediate consequence of Lemmas 5.21 and 5.24:

5.26 Lemma. The operator πσ,ϕ(ΩG)+‖ρG‖2 acts on [IndGP Hσ⊗S]K as
the scalar ‖ inf. ch.(σ)‖2 − ‖ϕ‖2.

Putting this together with Theorems 5.13 and 5.18, we arrive at the
following result (compare [Was87, p. 562]):

5.27 Theorem. If πσ,ϕ is any (P, σ)-principal series representation, and
if S is any irreducible spin module, then

/D
2
σ,ϕ,S = ‖S‖2 − ‖ inf. ch.(σ)‖2 + ‖ϕ‖2.

5.28 Remark. Strictly speaking, to reach this conclusion we need the for-
mula

Δ(ΩK + ‖ρK‖2) = ‖S‖2 : [IndGP Hσ ⊗ S]K −→ [IndGP Hσ ⊗ S]K ,

which is a version of Lemma 5.17 with C∞
c (G) replaced by the K-finite

vectors in IndGP Hσ. This follows by a verbatim repetition of the proof of
Lemma 5.17.

5.29 Corollary. For every spin module S, the space [IndGP Hσ ⊗ S]K is
zero for all but finitely many associate classes [P, σ].

Proof. The formula

/D
2
σ,0,S = ‖S‖2 − ‖ inf. ch.(σ)‖2

shows that /D
2
σ,0,S will be negative whenever ‖ inf. ch.(σ)‖2 > ‖S‖2, assum-

ing that [IndGP Hσ⊗S]K is non-zero. But the Dirac operator is self-adjoint,
so its square is positive semidefinite. So necessarily [IndGP Hσ⊗S]K is zero
in these cases. The corollary now follows from Theorem 5.23.

Dirac operator from a functional analytic point of view

The Dirac operator /DS can be viewed as an unbounded operator on the
Hilbert space [L2(G)⊗S]K with domain [C∞

c (G)⊗S]K . The Dirac opera-
tor so viewed is essentially self-adjoint (see [Che73]), and there is therefore
an associated one-parameter group of unitary operators exp(it /DS). These
restrict to operators

(5.30) exp(it /DS) : [C
∞
c (G)⊗ S]K −→ [C∞

c (G)⊗ S]K

(see [Che73] again); this is the finite propagation property of the Dirac
operator.
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But we are more interested in viewing /DS as an unbounded operator on
the space [C∗

r (G)⊗ S]K , which becomes a Hilbert C∗-module over C∗
r (G)

when equipped with the right action of C∗
r (G) on the first factor and the

C∗
r (G)-valued inner product

〈f1 ⊗ s1, f2 ⊗ s2〉 = f∗
1 f2〈s1, s2〉.

See [Lan95] for general information about Hilbert C∗-modules. The op-
erators exp(it /DS) in (5.30) extend to a one-parameter group of unitary
operators

exp(it /DS) : [C
∗
r (G)⊗ S]K −→ [C∗

r (G)⊗ S]K ,

and the generator of this one-parameter group is a regular and self-adjoint
operator on the Hilbert module [C∗

r (G) ⊗ S]K in the sense of [Lan95,
Chapter 9]. We shall use the same notation /DS for the extension.

5.31 Definition. The bounded transform of /DS is the operator

/FS = /DS(I + /D
2
S)

−1/2 : [C∗
r (G)⊗ S]K −→ [C∗

r (G)⊗ S]K

that is defined using the functional calculus for regular self-adjoint Hilbert
module operators.

As in the previous section, given a (P, σ)-principal series representation

πσ,ϕ : G −→ U(IndGP Hσ)

we may form the operator

/Dσ,ϕ,S =
∑

πσ,ϕ(Xa)⊗ c(Xa) : [Ind
G
P Hσ ⊗ S]K −→ [IndGP Hσ ⊗ S]K ,

with {Xa} an orthonormal basis for s, as usual, and then its bounded
transform4

/F σ,ϕ,S = /Dσ,ϕ,S(I + /D
2
σ,ϕ,S)

−1/2 : [IndGP Hσ ⊗ S]K −→ [IndGP Hσ ⊗ S]K .

5.32 Lemma. Under isomorphism of Hilbert modules

[C∗
r (G)⊗ S]K ∼=

⊕
[P,σ]

[C0(a
∗
P ,K(Ind

G
P Hσ))

Wσ ⊗ S]K

associated with the C∗-algebra isomorphism of Theorem 2.19, the operator

/FS : [C
∗
r (G)⊗ S]K −→ [C∗

r (G)⊗ S]K

4 Of course, the operator /Dσ,ϕ,S is acting on a finite-dimensional Hilbert space, and
is therefore already bounded itself.
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acts as
f ⊗ s 	−→ [ϕ 	→ /F σ,ϕ,S · (f(ϕ)⊗ s)]

for all f ∈ C0(a
∗
P ,K(Ind

G
P Hσ))

Wσ and all s ∈ S, where the product · on the
right hand side is composition of linear operators on the finite-dimensional
space [IndGP Hσ ⊗ S]K .

Proof. The analogous result for exp(it /DS) is readily verified on [C∞
c (G)⊗

S]K , and the stated result follows from this.

See [Lan95, Chapter 1] for the meaning of compact in following funda-
mental result:

5.33 Theorem. The operator

I − /F
2
S = (I + /D

2
S)

−1

is a compact operator on the Hilbert module [C∗
r (G)⊗ S]K .

We shall prove this using the representation theory calculations from
the previous section, since those results are at hand. The original proof,
due to [Kas83], uses the basic elliptic estimates for the Dirac operator and
the Rellich lemma. See [BCH94] for a general account of these matters.

Proof. The formula for /FS in Lemma 5.32 and the formula for /DS,σ,ϕ in
Theorem 5.27 combine to give a formula for 1−/F

2
S as an operator on

[C∗
r (G)⊗ S]K ∼=

⊕
[P,σ]

[C0(a
∗
P ,K(Ind

G
P Hσ))

Wσ ⊗ S]K .

The direct sum here is actually a finite direct sum, in view of Corol-
lary 5.29, and in each summand 1−/F

2
S acts as multiplication by a C0-

scalar-valued function. Each such operator is compact, thanks to the
finite-dimensionality of the spaces [IndGP Hσ ⊗ S]K .

Now the compact operators on any Hilbert C∗-module form an ideal
in the C∗-algebra of all bounded, adjointable operators, and by definition
a bounded adjointable operator is Fredholm if it is invertible modulo this
ideal. In the present case, we see from the theorem above that /FS is its
own inverse, modulo compact operators. Therefore:

5.34 Corollary. The operator

/FS : [C
∗
r (G)⊗ S]K −→ [C∗

r (G)⊗ S]K

is a bounded, self-adjoint, odd-graded, Fredholm operator on the Z2-graded
Hilbert C∗

r (G)-module [C∗
r (G)⊗ S]K .
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The Connes–Kasparov index homomorphism

In order to define the index homomorphism it is convenient to use Kas-
parov’s approach of C∗-algebra K-theory [Kas81] (see [Hig90, Section 3]
for an exposition).

Kasparov defines the K0-group of a C∗-algebra A as the group of ho-
motopy classes of bounded, self-adjoint, odd-graded, Fredholm operators
F on Z2-graded Hilbert A-modules. In addition, he defines the K1-group
in the same way, except that the Hilbert A-module E on which F acts is
required to carry an additional odd-graded skew-symmetry

(5.35)
γ : E −→ E ,

γ∗ = −γ, γ2 = −1

that anti-commutes with F .

5.36 Remark. We note for later use that, as a consequence of the way
homotopy is defined, it is an elementary property of K-theory that if a
Fredholm operator is actually invertible (not merely invertible modulo
compact operators), then it determines the zero class in K-theory.

Kasparov’s definitions are made with Dirac operators in mind, and it
follows immediately from the definitions and the results we have summa-
rized above that if S is any spin module, then the Fredholm operator /FS

determines a class

Index(/FS) ∈ Kdim(G/K)(C
∗
r (G))

(in the case where dim(G/K) is odd, the skew-symmetry γ is Clifford mul-
tiplication by the generator in Cliff(s⊕R) associated to the R-summand).

5.37 Definition. The Connes–Kasparov index homomorphism is the ho-
momorphism of abelian groups

Rspin(K, s) −→ Kdim(G/K)(C
∗
r (G))

that maps the class of a spin module S to the index of /FS in K-theory.

Our aim is to prove that:

5.38 Theorem (Connes–Kasparov Isomorphism). If G is a connected,
linear real reductive Lie group, then Connes–Kasparov index map

Rspin(K, s) −→ Kdim(G/K)(C
∗
r (G))

is an isomorphism of abelian groups. Moreover Kdim(G/K)+1(C
∗
r (G)) = 0.
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5.39 Remarks. There is a Connes–Kasparov index homomorphism for any
almost-connected Lie group (that is, any Lie group with finitely many con-
nected components) and moreover it is an isomorphism in this generality
[CEN03]. The definition of the index homomorphism for connected Lie
groups is essentially the same as the one we have presented. But beyond
connected groups, and even within the realm of real reductive groups,
the definition of the index homomorphism needs to be adjusted [EP09].
Among other things it is possible that both K-theory groups for C∗

r (G)
might be non-zero at the same time, as is the case for GL(2,R), for in-
stance.

6. The Matching Theorem

In this section we shall state a purely representation-theoretic result that
will lead quickly (in the next section) to a proof that the Connes–Kasparov
index homomorphism is an isomorphism.

Statement of the Matching Theorem

6.1 Definition. We shall say that an irreducible spin module S for (K, s)
and an associate class [P, σ] are matched if

(i) the space [IndGP Hσ ⊗ S]K is non-zero, and
(ii) the Dirac operator /Dσ,0,S vanishes on [IndGP Hσ ⊗ S]K .

6.2 Remark. It follows from Theorem 5.27 and the fact that the Dirac
operator is self-adjoint that the second condition in the definition above
is equivalent to the identity ‖S‖ = ‖ inf. ch.(σ)‖.

The result that we shall use to establish the Connes–Kasparov isomor-
phism is as follows:

6.3 Theorem (Matching Theorem). Let G be a connected linear real
reductive group.

(i) For every essential associate class [P, σ] there is a unique irreducible
spin module S to which [P, σ] is matched.

(ii) For every irreducible spin module S there is a unique essential asso-
ciate class [P, σ] to which S is matched.

We shall prove this in a separate article [CHS22] using a number of
important (and quite difficult) results of Vogan from [Vog81]. But let us
give some examples.



On the Connes–Kasparov isomorphism, I 99

6.4 Example. If σ is an irreducible square-integrable representation of G,
then it is an essential component all by itself, labelled by the associate
class [G, σ]. The irreducible spin module matched to [G, σ] is the unique
one, up to not-necessarily-grading-preserving isomorphism, for which

[H ⊗ S]K �= 0.

Moreover if μ is the highest weight of the irreducible and genuine rep-
resentation mod(S) of K̃, then μ+ρK is the so-called Harish-Chandra
parameter of σ. Compare [AS77, Theorem 9.3] or [Laf02a, §2].

6.5 Example. The reduced C∗-algebra for G=SL(2,R) was mostly described
in [CCH16, Example 6.10] (and in several earlier works). The decomposi-
tion of the intertwining groups Wσ as semidirect products W ′

σ � Rσ was
not discussed there, but one may determine by direct computation that
the only inessential component in the tempered dual is the spherical prin-
cipal series component. The essential associate classes are therefore of two
types: the discrete series and the odd principal series.

If [P, σ] is a discrete series component with Harish-Chandra parameter
n ∈ Z, n�=0, then the matching spin module Sn is

Sn = Sirr ⊗ Cn,

where Cn denotes the weight-n irreducible representation of SO(2), viewed
as a genuine representation of K̃ ∼= K×Z2. This may be computed di-
rectly, but the result is in line with Example 6.4 above. If [P, σ] is the odd
principal series component of the tempered dual, then the matching spin
module is S0 = Sirr ⊗ C0; the matching conditions in Definition 6.1 may
again be checked by direct computation.

6.6 Example. If G is a complex reductive group, then all essential associate
classes are attached to the minimal parabolic Pmin = MAN , for which M
is a maximal torus in a maximal compact subgroup of G. The Connes–
Kasparov isomorphism was established in [PP83]. A bit more generally,
the Matching Theorem was established for semi-simple Lie groups having
only one conjugacy class of Cartan subgroups by Valette in [Val85] (see
Theorem 3.12). In the complex case the correspondence provided by the
Matching Theorem is as follows: the spin module Sirr ⊗ Vμ, where Vμ

is irreducible with highest weight μ, is matched to the associate class
[Pmin, σ], where the differential of σ ∈ M̂ is μ+ρK .

6.7 Example. A more complicated and more interesting example is that of
the real symplectic group G=Sp(4,R).

There are three components of the tempered dual associated with the
minimal parabolic subgroup Pmin = MAN of Sp(4,R), given by three
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characters σ0, σ1 and σ2 of the finite group M (there are four characters
altogether, but two lead to the same associate class). None of the principal
series components is essential.

There are two other associate classes of proper parabolic subgroups,
with Levi factors

L1
∼= GL(2,R) and L2

∼= GL(1,R)×SL(2,R).

The compactly generated subgroups M1 ⊆ L1 and M2 ⊆ L2 both carry
discrete series. The group M1 is isomorphic to SL±(2,R), and its discrete
series are parametrized by positive integers; let us write these represen-
tations as σ1,k (k > 0). The group M2 is isomorphic to O(1)×SL(2,R),
and its discrete series are parametrized by pairs (�, k) where � ∈ Z2 and
k ∈ Z, k �=0; let us write these representations as σ2,	,k. Altogether, the
discrete series

σ1,k, (k ∈ Z, k > 0) and σ2,	,k, (� ∈ Z2, k ∈ Z, k �= 0)

label the components in the tempered dual of G that are associated to
the intermediate parabolic subgroups, and the above representations label
these components without repetition. The essential components associated
to the intermediate parabolic subgroups are

σ1,k, (k ∈ 2Z, k > 0) and σ2,0,k, (k ∈ Z, k �= 0).

Finally, there are the discrete series of Sp(4,R). The maximal compact
subgroup of Sp(4,R) is K∼=U(2). Using the diagonal maximal torus in
U(2), the irreducible representations of K may be identified, via highest
weights, with pairs of integers (m,n) such that m≥n, and the Harish-
Chandra parameters of the discrete series may be identified with pairs
(m,n) with

m > n, m �= 0, n �= 0 and m �= −n.

To describe the Matching Theorem, it is convenient to associate to the spin
module Sirr⊗Vμ (where Vμ is irreducible with highest weight μ) the param-
eter μ+ρK . Compare Example 6.4. The parameters μ+ρK range over all
pairs of integers (m,n) with m>n, and using the μ+ρK parametrization,
the Matching Theorem is illustrated in Fig. 1.

The computations involved in checking the Matching Theorem are greatly
simplified by David Vogan’s theory of minimal K-types, and we shall say
more about this in the second paper of the series [CHS22, Theorem 8.4].
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•

• •

• • •

σ2,0,1 σ2,0,2 σ2,0,3 σ2,0,4

σ2,0,−1 σ1,2 • • •

• σ2,0,−2, • σ1,4 • •

• • σ2,0,−3 • • σ1,6 •

• • • σ2,0,−4 • • • σ1,8

Fig. 1. The Matching Theorem for Sp(4,R). The nodes in this diagram are the integer
lattice points (m,n) in the plane with m>n; the entry σ2,2 appears in position (1,−1).
The σ-labels are some of the discrete series attached to intermediate Levi subgroups
of Sp(4,R), and together with the discrete series of Sp(4,R), they give the full list of
essential components in the tempered dual of Sp(4,R). Each essential component is
placed at the location (m,n) = μ+ρK , where μ is the highest weight of the genuine
irreducible representation of K̃ to which it is matched. The bullet points represent the
discrete series for Sp(4,R); their locations are also their Harish-Chandra parameters

7. First proof of the Connes–Kasparov isomorphism

In this section we shall use the Matching Theorem formulated in the pre-
vious section to prove that the Connes–Kasparov index homomorphism
is an isomorphism. We shall follow the shortest route to do so, which
uses the fact, proved by Kasparov, that the index homomorphism is a
split-injective homomorphism of abelian groups (that is, the index ho-
momorphism has a left-inverse). While this is certainly a significant new
ingredient in the proof, injectivity is a considerably simpler and more ac-
cessible result than surjectivity. (In any case, in the next section we shall
take a different approach to the proof of the Connes–Kasparov isomor-
phism that avoids Kasparov’s result.)

Kasparov proved split injectivity in a much broader context than the
one we are considering here—involving both continuous and discrete groups—
in the course of proving groundbreaking results on the Novikov conjecture
in differential topology. But let us record his result as it applies in our case:
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Theorem ([Kas88]). The Connes–Kasparov index morphism

Rspin(K, s) −→ Kdim(G/K)(C
∗
r (G))

is a split injection of abelian groups.

Proof of the Connes–Kasparov isomorphism theorem using split injectivity

To begin with, Theorem 4.9 shows in particular that

Kdim(G/K)+1(C
∗
r (G)) = 0,

which is one of the assertions in Theorem 5.38. The main task is to show
that the index homomorphism

Rspin(K, s) −→ Kdim(G/K)(C
∗
r (G))

is an isomorphism of abelian groups.
The C∗-algebra isomorphism in Theorem 2.19 determines a K-theory

direct sum decomposition

(7.1) Kdim(G/K)(C
∗
r (G)) ∼=

⊕
[P,σ]

Kdim(G/K)(C0(a
∗
P ,K(Ind

G
P Hσ))

Wσ).

If S is a spin module for (K, s), then we shall denote by

Index[P,σ]( /DS) ∈ Kdim(G/K)(C0(a
∗
P ,K(Ind

G
P Hσ))

Wσ)

the [P, σ]-component in (7.1) of the image of S under the Connes–Kasparov
index homomorphism.

7.2 Lemma. Let S be an irreducible spin module for (K, s). If [P, σ] and
S are unmatched, then Index[P,σ]( /DS) = 0.

Proof. If [IndGP Hσ ⊗ S]K = 0, then certainly Index[P,σ]( /DS) = 0. If
[IndGP Hσ ⊗ S]K is non-zero but [P, σ] and S are unmatched, then the
operator /Dσ,0,S is non-zero on [IndGP Hσ ⊗ S]K . Since the Dirac opera-
tor is self-adjoint, the square is also non-zero on [IndGP Hσ ⊗ S]K , and
therefore, by Theorem 5.27,

‖S‖2 − ‖ inf. ch.(σ)‖2 > 0.

But Theorem 5.27 asserts more generally that

/D
2
σ,ϕ,S = ‖S‖2 − ‖ inf. ch.(σ)‖2 + ‖ϕ‖2,

and therefore /D
2
S is uniformly bounded below over the [P, σ]-component of

C∗
r (G). The bounded operator /FS is therefore invertible there, and hence

the index is zero.
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Proof of Theorem 5.38. We shall use the Matching Theorem. Let S be an
irreducible spin module. Lemma 7.2 implies that the image of S under the
index homomorphism is concentrated in the summand in (7.1) associated
to the unique [P, σ] to which S is matched. Since the index homomorphism
is injective, the image there must be non-zero. In fact, because the index
homomorphism is split injective, while the summand is isomorphic to Z,
the image must be a generator. That is, the index homomorphism maps
the basis of Rspin(K, s) determined by the irreducible spin modules to the
basis determined up to signs by Theorem 4.3.

8. Second proof of the Connes–Kasparov isomorphism

In this final section we shall study the Dirac operator /DS in more detail,
and by doing so give a proof of the Connes–Kasparov isomorphism that is
independent of Kasparov’s split-injectivity result. This is probably more
in line with the approach that Wassermann intended to take, as sketched
in the note [Was87].

K-theoretic preliminaries

As we have seen, the Connes–Kasparov index homomorphism carries the
natural basis for Rspin(K, s) to the natural basis5 for the K-theory of
C∗
r (G) (labeled by the essential components of the tempered dual; see

Theorem 4.9). A striking feature of the Connes–Kasparov index is that in
fact it carries natural basis elements to natural basis elements at the level
of cycles, and not merely at the level of K-theory classes. In this section
we shall describe those cycles.

8.1 Definition. Let V be a finite-dimensional Euclidean vector space of
dimension d. A Bott element for V consists of a finite-dimensional Z/2-
graded Hilbert space S with

dim(S) =

{
2d/2 d: even,
2(d−1)/2 d: odd

and an R-linear map v 	→ Dv from V into the odd-graded, self-adjoint
operators on S such that D2

v = ‖v‖2 for all v ∈ V . When the dimension
of V is odd, we also require that S be equipped with a symmetry γ as in
(5.35) that anti-commutes with all Dv.

5 To be accurate, both bases are defined up to choices of signs.
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It follows from the elementary theory of Clifford algebras that Bott ele-
ments are unique up to isomorphism. Each Bott element may be regarded
as a Fredholm operator on the Hilbert C0(V )-module C0(V, S) of the sort
considered by Kasparov (D is unbounded, but one can take the bounded
transform to obtain a bounded Fredholm operator F if preferred). There
is therefore an index

Index(D) ∈ Kd(C0(V )).

Here is one form of the Bott periodicity theorem (see [Kas81, Theorem 7
on p. 547]):

8.2 Theorem. Let V be a finite-dimensional Euclidean vector space of
dimension d. The Kd-group of C0(V ) is freely generated by the index of
any Bott element, and the Kd+1-group is zero.

Representation-theoretic preliminaries

Now let [P, σ] be an essential associate class. As noted earlier, there is a
decomposition of the parabolically induced representation πσ,0 into finitely
many irreducible subrepresentations,

(8.3) IndGP Hσ =
⊕
μ

Xμ,

and the index set in the direct sum is the set R̂σ of characters of the finite
abelian group Rσ. But we can index the sum in a different way using
Vogan’s theory of minimal K-types [Vog81], and it will be very useful to
do so in what follows.

It will not be important to present the precise definition of minimal
K-type here. It will suffice to recall that the K-types of a representation π
of G are the irreducible representations of K that occur upon restriction
of π from G to K, and that every representation has a finite number
of minimal K-types among these, which depend only on the set of all
K-types in π.

The deeper properties of minimal K-types that we shall use below are
as follows:

8.4 Theorem. Let [P, σ] be an essential associate class, and let S be the
irreducible spin module to which it is matched.

(i) Each minimal K-type of IndGP Hσ has multiplicity one6, and each
irreducible direct summand Xμ of IndGP Hσ, as in (8.3), includes pre-
cisely one of these minimal K-types.

6 That is, the underlying irreducible representation of K occurs precisely once in any
decomposition of IndG

P Hσ into irreducible representations of K.
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(ii) If Xμ is any irreducible summand of IndGP Hσ, then

dim[Xμ ⊗ S]K = 2[(dim(amax)+1)/2],

where the brackets [ ] in the exponent denote the integer part.
(iii) If Xμ is any irreducible summand of IndGP Hσ, and if Vμ ⊆ Xμ is its

minimal K-type, then the inclusion

[Vμ ⊗ S]K −→ [Xμ ⊗ S]K

is a vector space isomorphism.

We shall prove this theorem in [CHS22, Section 8] (mostly by collecting
results from elsewhere in the representation theory literature).

It follows from parts (i) and (iii) of the theorem, together with the
direct sum decomposition (8.3), that if {Vμ} is the set of minimal K-
types in IndGP Hσ, then the inclusion

(8.5)
⊕
μ

[Vμ ⊗ S]K −→ [IndGP Hσ ⊗ S]K

is a vector space isomorphism. This gives a very concrete and convenient
description of the space [IndGP Hσ ⊗ S]K . The following lemmas examine
the Dirac operators that act on this space.

8.6 Lemma. Let [P, σ] be an essential associate class and let S be the
irreducible spin module to which it is matched. The operators

/Dσ,ϕ,S : [Vμ ⊗ S]K −→ [Vμ ⊗ S]K

are linear functions of ϕ ∈ a∗P .

Proof. The action of g on the smooth vectors in any principal series repre-
sentation space such as IndGP Hσ⊗Ciϕ is affine-linear in ϕ (compare [KV95,
Proposition 11.47]), and so /Dσ,ϕ,S is affine-linear in ϕ. But since S is
matched to (P, σ), the operator /Dσ,0,S is zero. So /Dσ,ϕ,S is actually linear
in ϕ.

8.7 Lemma. Let [P, σ] be an essential associate class and let S be the
irreducible spin module to which it is matched. Denote by a∗,Rσ

P ⊆ a∗P the
subspace that is fixed under the action of the group Rσ. The image of each
direct summand in (8.5) is invariant under the Dirac operators

/Dσ,ϕ,S : [Ind
G
P Hσ ⊗ S]K −→ [IndGP Hσ ⊗ S]K

for all ϕ ∈ a∗,Rσ

P .
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Proof. The representations Xμ,ϕ that appear in the direct sum decompo-
sition

IndGP Hσ⊗Ciϕ =
⊕
μ

Xμ,ϕ,

compare (4.4), have the same K-isotypic decompositions as the represen-
tations Xμ. Therefore for every ϕ ∈ a∗,Rσ

P the K-type Vμ appears in Xμ,ϕ

as a minimal K-type, and the inclusion

[Vμ ⊗ S]K −→ [Xμ,ϕ ⊗ S]K

is a vector space isomorphism, since [Xμ,ϕ ⊗ S]K depends only on the K-
structure of Xμ,ϕ, and not on ϕ. The Dirac operator Dσ,ϕ,S certainly maps
[Xμ,ϕ ⊗ S]K to itself, and so it maps [Vμ ⊗ S]K to itself, as claimed.

8.8 Theorem. If [P, σ] is any essential associate class, and if S is the
irreducible spin module to which it is matched, then for any μ the family
of Dirac operators

/Dσ,ϕ,S : [Xμ ⊗ S]K −→ [Xμ ⊗ S]K (ϕ ∈ a∗,Rσ

P )

is a Bott element for a∗,Rσ

P .

Proof. This follows from the preceding two lemmas and Theorem 5.27.

Completion of the second proof of the Connes–Kasparov isomorphism

The Matching Theorem and Lemma 7.2 show that the Connes–Kasparov
index morphism maps an irreducible spin module for (K, s) to the index
of the family of Dirac operators

(8.9) /Dσ,ϕ,S : [IndGP Hσ ⊗ S]K −→ [IndGP Hσ ⊗ S]K ,

in Kdim(G/K)(C0(a
∗
P ,K(Ind

G
P Hσ))

Wσ), where [P, σ] is the unique essen-
tial associate class matched to S. To prove the Connes–Kasparov isomor-
phism, it remains to show that the homotopy class of the family (8.9) is
a generator for the K-theory group.

By Theorem 8.8, for any summand Xμ of IndGP Hσ the family of Dirac
operators

/Dσ,ϕ,S : [Xμ ⊗ S]K −→ [Xμ ⊗ S]K (ϕ ∈ a∗,Rσ

P )

is a Bott element for a∗,Rσ

P and therefore its index is a generator of the
K-theory group Kdim(G/K)(C0(a

∗,Rσ

P )). But (8.9) is precisely the image of
the cycle that defines the Connes–Kasparov index

Index[P,σ]( /DS) ∈ Kdim(G/K)(C0(a
∗
P ,K(Ind

G
P Hσ))

Wσ)

under the K-theory isomorphism in Theorem 4.7. The proof is complete.
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