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Abstract

Lipid metabolism and glycolysis play crucial roles in the progression and metastasis of cancer,
and the use of 3-bromopyruvate (3-BP) as an antiglycolytic agent has shown promise in killing
pancreatic cancer cells. However, developing an effective strategy to avoid chemoresistance
requires the ability to probe the interaction of cancer drugs with complex tumor-associated
microenvironments (TAMs). Unfortunately, no robust and multiplexed molecular imaging
technology is currently available to analyze TAMs. In this study, we demonstrate the
simultaneous profiling of three protein biomarkers using SERS nanotags and antibody-
functionalized nanoparticles in a syngeneic mouse model of pancreatic cancer. This allows for
comprehensive information about biomarkers and TAM alterations before and after treatment.
Our multimodal imaging techniques include surface-enhanced Raman spectroscopy (SERS),
immunohistochemistry, polarized light microscopy, second harmonic generation (SHG)
microscopy, fluorescence lifetime imaging microscopy (FLIM), and untargeted liquid
chromatography and mass spectrometry (LC-MS) analysis. The study reveals the efficacy of 3-
BP in treating pancreatic cancer and identifies drug treatment-induced lipid species remodeling

and associated pathways through bioinformatics analysis.

1. Introduction

Pancreatic cancer (PC) is the fourth leading cause of cancer-related death in the US. Most PC
patients (> 50%) are diagnosed at an advanced stage where the 5-year survival rate is 3%.!! The
surgical removal of pancreatic tumor cells (Whipple procedure) can increase the survivability of
the patients. However, less than 20% of patients are eligible for surgery due to regional and
distant metastasis during these end stages. Further, chemotherapy and radiation therapy are
ineffective for advanced-stage patients. Hence, there is an unmet need to develop new treatment

options for PC.



3-bromopyruvate (3-BP) is an alkylating agent and has been shown to have potent antitumor
activities in several types of cancers,”! including PC.[*! Collagen-rich, weakly vascularized, and
extremely hypoxic non-neoplastic stroma are among pancreatic tumor tissue's distinguishing
cellular and non-cellular features.[*] Often, these traits are linked to chemoresistance to the most
widely used anticancer drugs. Thus, there is a need to understand the interaction of 3-BP with the

tumor microenvironment.

The tumor microenvironment is complex, and typical components include collagen, proteins,
DNA, lipids, and varied cell types (macrophage, epithelial cells, stroma, normal cells, and cancer
cells). A single tool might not be sufficiently sensitive to probe all the components of the tumor
microenvironment. Lipids exhibit a significantly greater Raman scattering cross section in
comparison to collagen.!”! Despite being present in significant amounts within the extracellular
matrix, glycosaminoglycans show weak Raman cross-sections.!® Similarly, the Raman cross-
section of DNAS is typically larger than that of proteins . On the other hand, the second
harmonic generation (SHG) cross-section for collagen (Collagen I and III) is high and can be
easily imaged in a tissue.[®! Therefore, a multimodal approach could be useful in interrogating a

complex tumor microenvironment.

Pancreatic tumor cells alter their cellular glucose metabolism to fulfill their elevated energy
demands. This is accomplished through heightened glycolysis, resulting in increased
consumption of glucose and the production of ATP and lactic acid, which fuel the tumor's
growth and aggressive behavior.l”! Tumor cells enhance the expression of lactate transporters to
facilitate their high glucose consumption and lactic acid production, which enables them to
import surplus glucose and export excessive lactic acid. Interestingly, 3-BP is transported into
the cells through lactate transporters. Hence, 3-BP can be selectively transported into the cancer
cells compared to normal cells. Hexokinase 2 (HK2) is a vital enzyme in glucose metabolism
through aerobic glycolysis.[*> 1% 3-BP irreversibly alkylates HK2, disrupting glucose metabolism
and leading to cancer cell death.['!) In addition, 3-BP kills cells by producing reactive oxygen
species (ROS).!'2) However, the effect of 3-BP on lipid remodeling, the spatial distribution of

proteins, and metabolic activity have not been well investigated. Here, we have created a



syngeneic in vivo model using a highly aggressive pancreatic cancer cell (Panc-2) to study the

effect of 3-BP.

Previously, we have shown the efficacy of 3-BP in killing PC cells in vitro and in vivo.l*")
Our previous study showed that 3-BP inhibits glycolysis, ATP, lactic acid production, and
expression of HK2. Furthermore, in vivo study showed that a 20 mg/kg dose level of 3-BP
reduced tumor growth by ~ 80%. Here, we showed the spatial mapping of three different
proteins (transforming growth factor- B1 (TGFB1), HK2, Caspase3) simultaneously on the tumor
tissues using surface-enhanced Raman spectroscopy (SERS)-encoded Raman nanoparticle

imaging.

Multiplexed biomarker profiling is crucial for the diagnosis of cancer and for assessing the
effectiveness of therapies. As a semiquantitative method, immunohistochemistry (IHC) is
currently the accepted method of detecting biomarkers in clinical samples. Histochemistry is the
conventional method to visually examine the gross tissue morphology, cell type, subcellular
structure through the reaction of certain dyes and stains with endogenous chemicals that are

(3] THC, however, can only probe one or a small number of

present to form colored compounds.
biomarkers at once in a sample.!'¥ Furthermore, the utilization of many chemical constituents is
restricted in traditional histochemistry, thereby constraining its applicability. There are several
alternative methods for finding multiple targets in a sample, including mass spectrometry, !>
protein chips,!'® RT-PCR, ') spatial transcriptomics,''®! and fluorescence assay.!'”! However,
most of these methods are destructive and necessitate laborious sample preparation. In addition,
the sample preparation could destroy the three-dimensional architecture of cells and tissues.
Further, the broad emission peaks (> 30 nm) in fluorescence imaging typically lead to spectral
cross-talk in multiplexed imaging. Raman spectroscopy and microscopy provide sensitive,
quantitative, and noninvasive techniques that can detect molecular-level variations through
specific fingerprints, offering significant advantages over alternative methods.*"! Because of

(211 and small spectral peak width of 1-2 nm,?* multiplexed

SERS nanotag’s high sensitivity
detection is feasible. However, typical SERS nanotags often use thiol-conjugated molecules,
which are unstable and prone to oxidation.?*! Furthermore, conventional Raman reporters have

several peaks in the fingerprint region (1000-1700 cm ') that frequently overlap and could lead



to cross-talk.l>*) Additionally, the SERS signal may overlap with various tissue or cell
background signals produced from naturally occurring biological molecules, including proteins,
phospholipids, cytochromes, etc. Consequently, using SERS nanotags with excellent spectral
resolution and low background interference is necessary. Although several researchers have
classified the cell and tissue samples with overlapped Raman peaks in the fingerprint regions
using the Raman unmixing method, only a broad class of cell/tissue features could be obtained
(e.g. lipids, proteins, collagen, DNA, glycogen etc.).[>! Nonetheless, there hasn't been a strong
demonstration of using spontaneous Raman spectroscopy to perform spatial imaging of multiple

proteins or lipid subspecies (e.g. PC 42:4 versus PC 42:6).[2°]

Previous researchers have made SERS nanotags using Raman reporters moieties such as
alkynes (—C = C —, Raman peak at ~ 2230 cm™"), nitriles (—C = N, Raman peak at ~ 2120
cm ), azides (—N3, Raman peak at ~ 2073 cm™!), and deuterium (C — D, Raman peak at ~ 2150
cm ) that display distinctive vibrational peaks in the Raman silent region (1800 — 2800 cm!).1?7]
Raman silent region is free from interference due to the Raman signal of endogenous biological

substances making these probes highly suitable for multiplexed detection.

Here, we developed SERS nanotags using AuNP core and anchored alkyne (using
trimethyl(phenylethynyl)silane (TPS); designated as tagl), deuterium (using Dimethyl sulfoxide-
d6 (D-6); tag2), and nitrile (using 4-Mercaptobenzonitril (4-MB; tag3) moieties via ¢ — 1,?®!
and  — 7 [*! interactions. These Raman reporters (RRs) exhibit peaks in Raman-silent spectral
region without any overlap with each other. We used polydopamine (PDA) as a protective
biocompatible layer thanks to its preferable characteristics, such as self-polymerization and
adhering capability to the surface of NPs. PDA allows the incorporation of any Raman reporters
(even without amine or thiol group) on to the AuNP surface.*”) The RR is conjugated to the PDA
layer through the dopamine quinone group utilizing Michael addition.!*!! These characteristics,
biodegradability, and chemical reactivity with other molecules make them a unique choice for
fabricating SERS tags, resulting in a novel SERS imaging platform. Moreover, catechol, amine,
and imine as functional groups on the surface of these tags enhance their reactivity with other

[32

groups in other biomolecules and antibodies.*?! Our main motivation for developing SERS

nanotags is to simultaneously profile lipids, collagen and specific proteins of interest (TGFp1,



HK-2, Caspase 3) in the tumor microenvironment (TME). The Raman fingerprint regions (100 —
1800 cm™!) were utilized to profile the lipids and collagens. The Raman silent regions (1800 —
2800 cm ') were utilized to profile the proteins. Simultaneous profiling of lipids, collagen and
proteins are not possible with a single IHC marker. The antibody conjugated nanotags allowed us
to profile and image three different proteins simultaneously with high specificity without any
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Raman peak overlaps. The intensity distribution of Raman peaks at 2018 cm ™!, 2112 cm ™!, and

2224 cm™! allowed us to profile TGFP1, Caspase3, and HK2 respectively.

We used a one-pot synthesis approach; NPs, RRs, and PDA as protective layers were
compacted to provide the SERS immunoassays with distinctive flavors. Each flavor of probes
was then conjugated with an antibody— TGFp1 (designated as tagl), Caspase-3 (defined as
tag?), and Hexokinase 2 (designated as tag3) tumor-associated proteins expressed in pancreatic
cancer microenvironment (TAM) in the syngeneic pancreatic cancer tissue to create a multicolor
image of three biological targets. We used these antibody-conjugated-SERS nanotags to identify
separate and multiple cancer biomarker changes in response to the drug treatment. To validate
the efficacy of the 3-bromopyruvate (3-BP) drug, we further analyzed the untreated and treated
tumor tissues. We used polarized light microscopy, immunohistochemistry, two-photon and
second harmonic generation (SHG) microscopy, fluorescence lifetime imaging microscopy
(FLIM), and liquid chromatography-mass spectrometric (LC-MS) measurements method to

probe the tissue samples.

2. Results and Discussions

2.1. Design and characterization of SERS immunoassays

Figure 1A schematically shows the approach used in the present work. The saline-treated
(MOCK group) and 3-BP treated (3-BP group) tumor tissues were processed and incubated with
the antibody-conjugated SERS nanotags. Using Raman microscopy, the SERS nanotags
comprised three different RRs and antibodies for detecting three corresponding proteins on the
tissue. Three different types of SERS nanotags were prepared by applying a one-pot synthesis
approach. First, the surface of gold nanoparticles (Au NPs) was immobilized with three different



RRs—4-MB, D-6, and TPS—and then, using a self-polymerization process, a layer of PDA was
coated on top of them for capturing antibodies. Their respective antibodies were conjugated on
the surface of SERS nanotags to identify HK2, Caspase3, and TGFB1 antigens in tissues. The
Raman signatures of the proteins are shown in Figure 1B. The corresponding Raman peak
assignments are provided in Tables S1-S3. All SERS nanotags were confirmed by Raman
spectroscopy (Figure 1C). The related Raman peak assignments for the Raman reporters are
provided in Tables S4-S6. Figure 1C showed characteristics signals at 2018, 2116, and 2225 cm’
!in the Raman silent region for each type of SERS nanotags. The characteristics peak at 2018,
2116, and 2225 cm™! are due to the RR with TPS (red curve), D-6 (blue curve), and 4-MB (green
curve), respectively (Figure 1C). The figure also illustrates the successful immobilization of the
respective RRs on the surface of Au NPs. UV-vis spectra in Figure 1D depict plasmon
resonance shifts due to surface modification with RRs and Dopamine. The surface plasmon peak
was observed at 533 + 3 nm due to the Au NPs.1**] The intensity of the surface plasmon peak
intensified and red-shifted in peak wavelength after PDA coating (Figure 1D). Dynamic light
scattering (DLS) measurements (Figure 1E) reveal that the average hydrodynamic size of the Au
NPs increased from 60 + 5 nm to 90 £+ 15 nm after PDA coating. After 4-MB addition, the
hydrodynamic diameter changed to 100 + 20 nm. A transmission electron microscopy (TEM)
image (Figure 1F, 1G, 1H) of SERS nanotags— Au-Dopamine+4-MB, Au-Dopamine+TPS,

and Aut+Dopamine+D6—shows the approximate size of the NPs as 60 + 5 nm.
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Figure 1. Schematic overview of multiplexed SERS imaging of biomarkers in a subcutaneous tumor model
of pancreatic cancer and characterization of Raman reporters. (A) Workflow showing the preparation of
antibody-conjugated SERS nanotags to perform Raman microscopy of tumor tissues. (B) Raman spectra of
TGFP1, HK2, and Caspase3 antibodies show each protein's characteristic Raman peaks. (C) SERS spectra
of three nanotags (4-MB, D-6, and TPS) without antibodies. (D) UV-Vis spectra of all three SERS nanotags
show the plasmonic peak near 530 nm. (F) Dynamic light scattering (DLS) results show the distribution of
hydrodynamic diameters of nanoparticles (Au) and nanoparticles conjugated with one of the SERS nanotags
(AutDopamine, Au+Dopamine+4-MB). (F) Representative TEM image of one SERS nanotag
(Aut+Dopamine+4-MB). (G) Representative TEM image of one SERS nanotag (Au+Dopamine+TPS). (H)
Representative TEM image of one SERS nanotag (Au+Dopamine+ D-6).

2.2. Morphological and IHC imaging of Pancreatic cancer tissues

Figure 2A shows morphological changes in the tumor following 3-BP treatment (3-BP)
compared to saline treatment (MOCK). The tumor volume decreased by 60-80% following 3-BP
treatment (Figure 2B). Figure 2C depicts the mRNA expression level changes, in which HK2
expression level decreased significantly in the 3-BP group in response to two different

concentration levels of 3-BP, 20 and 40 uM, compared to the MOCK group. The Western blot



analysis in Panc-2 cancer cells also showed down regulation of HK2 after 3-BP treatment [°].
Based on the pixel intensity of the H&E images (see Supporting Information Figure S1A and
S1B), a significantly higher (P < 0.001) cytoplasm content was seen in the 3-BP group compared
to the MOCK group. The data showed necrotic tissues in 3-BP-treated tissue samples compared
to the MOCK group. We also have performed several experiments to show the features of TME.
Both the MOCK and 3-BP tissues showed the blood vessels after H& E (Hematoxylin and
Eosin) staining (see Supporting Information Figure S1C). The existence of tumor fibroblast in
tissue samples have been confirmed by staining of same sample tissue, used in this study with
antibody, a-SMA and vimentin (see Supporting Information Figure S1D) which are known
marker for cancer associated fibroblast as described by others. [**] Both markers which are
expressed in cancer associated fibroblast (CAFs cells) are component of TME (tumor
microenvironment). The a-SMA is involved in cell contractility, structure and integrity of cell
and promote tumor cell proliferation, immune suppression and impede drug delivery. Vimentin
(EMT marker) also regulate cell motility structure and integrity, involve in cell invasion and

metastasis in pancreatic cancer. [**)

Figure 2D shows the results of immunohistochemistry (IHC) imaging. The
microenvironment of pancreatic cancer contains several factors, such as tumor-associated
macrophages (TMs), inflammatory cytokines, and macrophages, that contribute to the resistance
of drug and radiation therapies. Further, these factors can be upregulated and exacerbate tumor
progression.*®! Moreover, TMs can enhance tumor growth, progression, and invasiveness by
releasing growth factors and mediators by suppressing immune cells' anticancer responses.”’!
We utilized Ionized calcium-binding adapter molecule 1 (Ibal) to examine TMs. Ibal has been
used frequently as a marker for microglial cells. More recently, it was also recognized as a "pan-
macrophage marker" because it is expressed by all monocyte cell subpopulations/macrophage
lineage.*®! We used Ibal to detect the level of macrophages in both MOCK and 3-BP tissues
(Figure 2D). The brown color indicates the expression level of Ibal. The calculated pixel
intensity values of images (Figure 2E) revealed that the Ibal expression level of the 3-BP
treated group is significantly lower (P < 0.001) compared to the MOCK group demonstrating the
effectiveness of 3-BP treatment. We also compared the expression level of TGFB1, HK2, and



Caspase3 before (MOCK) and after 3-BP treatment (Figures 2F, 2H, and 2J). The pixel
intensity values of images demonstrated a significant decrease in the expression level of TGFB1
(Figure 2G) and HK2 (Figure 2I) and a significant increase in the expression level of Caspase3

(Figure 2K) in the 3-BP groups in comparison with MOCK groups.
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Figure 2. Structural and immunohistochemical (IHC) imaging of subcutaneous tissue from tumor model
of pancreatic cancer before and after 3-BP treatment. (A) Representative images of the tumor before
(MOCK) and after (3-BP) treatment. The image shows the response to two different concentrations of 3-
BP treatments (15 and 20 mg/kg). (B) Comparison of tumor volume on different days before and after
treatment (n = 4/group). (C) Comparison of the mRNA expression level of HK2 in control versus 3-BP
groups treated with different concentrations of 3-BP (10 pM, 15 uM, 20 uM, 40 uM). (D) IHC image
showing the expression level of Ibal in MOCK and 3-BP tissue. (E) Comparison of Ibal expression level
(brown color) of MOCK and 3-BP tissue. Representative IHC images in MOCK and 3-BP groups showing
the expression level of (F) TGFB1, (H) HK2, and (J) Caspase 3. Comparison of (G) TGFp1, (I) HK2, (K)
Caspase 3 expression levels (brown color) of MOCK and 3-BP tissue. The plot shows the differences in
pixel intensity of the MOCK and 3-BP groups in Figs. 2E, G, I, and K (n = 3/group). The error bars show
the standard deviation. *P<0.05, **P<0.01, ***P<(.001

2.3. Raman imaging of cancer tissues

To profile TGFB1, HK2, and Caspase3 proteins and evaluate their expressions in both
groups, we first probed each tissue type with one antibody-conjugated SERS nanotags. Figure
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3A shows the bright field images of tissues studied for each type of nanotag. Next, we obtained
the Raman map of the indicated area and analyzed each image using the empty modeling method
to generate mapping data (Figure 3B). The details about empty modeling are provided in the
Supporting Information (Figures S2-S5). This method is proper when no spectra are available
for the components. Each Raman image comprises ~ 40.5 x 10° data points (45,000 spectra, and
900 points per spectra). The analyzed images using this method can identify significant
biochemical features of the sample and the associated mean Raman spectra. Figure 3B shows
the Raman mapping images collected from stained tissues with each type of nanotag (red color,
tagl: Au + Dopamine + TPS + TGFp1; blue color, tag2: Au + Dopamine + D-6 + Caspase3;
green color, tag3: Au + Dopamine + 4-MB + HK2). Each color in the heat map is associated
with the expression of the related biomarkers, which is as follows: red = TGFB1; green = HK2;
and blue = Caspase3. The merged Raman map for the tissue background and the respective
nanotags are shown in Figure 3C. The MOCK group showed a higher expression of TGFB1 (red
color) as well as HK2 (green color) and lower expression of Caspase3 (blue color), respectively,
compared to the 3-BP group (Figure 3B). Figures 3D, 3E, and 3F show different
magnifications of SEM images captured from stained MOCK tissue with tagl, representing the
presence of nanotags on the surface of the tissue. The EDS layered images (Figures 3G-3I) of
the tissue revealed Au footprint on the surface of the tissue, confirming the presence of nanotags
with the Au nanoparticles as the core (Figure 3I). Figures 3J, 3K, and 3L display SEM images
at various magnifications that were taken from stained 3-BP tissue with tagl, indicating the
presence of nanotags on the tissue's surface. The Au footprint on the tissue's surface was detected
in the EDS layered images (Figures 3M-3N), which supported the existence of nanotags with
Au nanoparticles as the core (Figure 30). The SEM and EDS images of the 3-BP and MOCK
tissues with all tags can be seen in the Supporting Information (Figures S6A-S6L).
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Figure 3. SERS-based molecular imaging of the subcutaneous tumor model of pancreatic cancer. (A-C)
Representative SERS mapping image of tumor tissue before (MOCK group) and after (3-BP group) 3-BP
treatment. The figures show (A) brightfield, (B) SERS mapping, and (C) merged images. SERS mapping
was carried out using nanoparticles coated with anti-TGFp1 and TPS (tagl) (n = 49,383 spectra), anti-
Caspase3 and D-6 (tag2) (n = 48,125 spectra), and anti-HK2 and 4-MB (tag3) (n = 50,861 spectra) as
protein targets and Raman encoding molecules, respectively. The spatial resolution of these images is 0.5
um. The same SERS tags were used for both MOCK and 3-BP tissues. The scale bar represents 30 um. (D)
Scanning electron microscopic (SEM) images of the MOCK tissue probed with tagl (TGFB1 and TPS).
(E, F) zoomed in image of the AuNPs, (G) the corresponding Energy-dispersive X-ray spectroscopy (EDS)
image of the tissue (H) EDS map of C Kal,2, and (I) EDS map of Au Mal surface profile on the tissue.
(J) Scanning electron microscopic (SEM) images of the 3-BP tissue probed with tagl (TGFB1 and TPS).
(K,L) zoomed in image of the AuNPs, (M) the corresponding Energy-dispersive X-ray spectroscopy (EDS)
image of the tissue (N) EDS map of C Kal,2, and (O) EDS map of Au Mal surface profile on the tissue.

Raman spectra of the MOCK and 3-BP groups were obtained to show the biochemical
changes to the specific biomarkers in the tumor tissues before and after the treatment (Figure 4A
—4C). The associated Raman peak for TGFB1 (2017 cm™") showed higher intensity for the
MOCK group than the 3-BP group (Figure 4A). The comparison of the intensity of the
corresponding Raman peak at 2111 cm™' for tag2 illustrates a higher expression of Caspase3
protein in 3-BP treated tissue than in the saline-treated (MOCK) tissue (Figure 4B). The tissues

stained with tag3, which targets HK2 with the corresponding Raman peak at 2228 cm’!, showed
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high expression of HK2 in MOCK tissues compared to the 3-BP treated tissues (Figure 4C).

We also quantitatively compare the Raman maps (Figure 3B) for each tissue with corresponding
tags; we calculated their pixel intensities using ImageJ. We found a significant decrease (P <
0.001) in the expression level of TGFB1 (Figure 4D) and HK2 (Figure 4F) after the 3-BP
treatment and a significant increase (P < 0.001) in the expression level of Caspase3 (Figure 4E)
in the 3-BP treated tumor tissues. In addition, principal component analysis (PCA) plots made
by Raman speectra collected from the tissues stained with each nanotag, (TGFp1, HK2,
Caspase3, and all tags), show cluster between MOCK and 3-BP groups (Figure 4G-4J).

15
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Figure 4. Comparison of SERS spectra of MOCK and 3-BP groups for (A) TGFB1 and TPS (n = 45,257
spectra), (B) Caspase3 and D-6 (n = 48,675 spectra), and (C) HK2 and 4-MB (n = 48,321 spectra). The
standard deviation of spectra showed a shaded color around average spectra. The intensity comparison in
the Raman silent regions (shown by dotted box) clearly showed the decrease in the expression level of
TGFP1 and HK?2 after 3-BP treatment (A & C). The result also showed an increase in the expression level
of Caspase3 after 3-BP treatment (B). The vertical bar corresponds to an intensity of 20,000 counts in each
figure. The comparison of the expression level of proteins calculated from the corresponding SERS
mapping images are shown for (D) TGFB1, (E) Caspase3, and (F) HK2. PCA score plots for the first and
second principal components of MOCK and 3-BP groups are shown for (G) TGFp1, (H) Caspase3, (I)
HK?2, and (J) all three nanotags. Statistical significance was measured using a two-tailed Student's paired

t-test with n = 30 for each group. *P<0.05, **P<0.01, ***P<0.001.

We further performed multiplexed imaging of the tissues by mixing all three antibody-
conjugated SERS nanotags. Figure SA shows bright field images of tissues probed with a
mixture of all three antibody-conjugated SERS nanotags. The corresponding Raman maps are
shown in (Figures SB — SF). We analyzed the Raman maps using the empty modeling method to
find significant biochemical components and the related spectrum. MOCK and 3-BP groups
showed three components: tagl, tag?, and tag3 (Figures SB — 5D). The fourth component was
found to be the tissue background (Figure SE). The merged images of all the tags are shown in
(Figure 5F). The MOCK tissue group stained with the mixture of all tags showed higher
expression of TGFB1 and HK2 and lowered expression of Caspase3 compared to the 3-BP tissue
group. Figure 5G illustrates the Raman spectra of tissues probed with the mixture of antibody-
conjugated SERS nanotags showing simultaneous detection of their peaks with no interference
(also see Table S7). Figure SH represents extracted Raman spectra of each component shown in
Figures 5B — SD. These results showed successful simultaneous detection of multiple
biomarkers using SERS nanotags. Moreover, based on the Raman results of these tissues with
the respective biomarkers, downregulation of TGFB1 and HK2 and upregulation of Caspase3
were observed after the 3-BP treatment.

The findings suggest that the administration of 3-BP to mice led to a decrease in fibrosis and
cell proliferation. This may be attributed to the crucial role of TGFB1 in promoting cell

transformation and the process of epithelial-to-mesenchymal transition while also inhibiting
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apoptosis. The diminished expression of HK?2 indicated a significant reduction in ATP
production through glycolysis. This is because HK2 serves as the initial rate-limiting enzyme in
the glycolysis pathway. Due to 3-BP treatment, severe energy depletion occurs, leading to cell
death, which is supported by the upregulation of cleaved Caspase3. The increase in cleaved
Caspase3 is a very well-known marker for apoptosis. The highly expressed cleaved Caspase3 in
a 3-BP-treated tumor demonstrated that in the 3-BP group, a tumor-suppressing effect and tumor

cell death occur through the induction of apoptosis.
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Figure 5. Multiplexed profiling of TGFf1, Caspase3, and HK2 expression in the subcutaneous tissue from
tumor model of pancreatic cancer with and without 3-BP treatment. (A-F) Representative mapping data
comparing brightfield and SERS images of pancreatic tumors treated with saline (MOCK) or drug (3-BP).
(A) Brightfield images of tissues treated with a mixture of all three tags: TGFB1 & TPS (tagl), Caspase3
& D-6 (tag2), and HK2 & 4-MB (tag3). The corresponding SERS images of (B) tagl, (C) tag2, (D) tag3,
(E) background, and (F) merged images are shown for both the MOCK (n = 49,029 spectra) and 3-BP (n=
47,775 spectra) groups. The spatial resolution of these images is 0.5 pm. (G) The comparison of Raman
spectra of tissues containing all three tags is shown for the MOCK (green) and 3-BP (pink) groups. The
shaded color on the spectra shows the standard deviation. The characteristic peak of TPS (2018 cm ™), D-6
(2112 cm™), and 4-MB (2224 cm™") are shown. (H) Extracted Raman spectrum for each SERS tag identified
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automatically after analyzing the Raman mapping images using empty modeling statistical method. The

scale bar represents 30 pm.

2.4. Second Harmonic Generation (SHG) imaging

We studied the collagen content in the MOCK and 3-BP groups to investigate the tumor-
associated microenvironments (TAMs) before and after the drug treatment. Extracellular matrix
(ECM), capillaries, activated fibroblasts, immune cells, and basement membrane comprise the
tumor stroma surrounding pancreatic cancer cells.*”) ECM plays a significant role during cancer

progression since its physical properties can affect tumor stroma and protect tumor cells.[”]

ECM is split into two groups, basement membrane (BM) and interstitial membrane (IM),
comprising different types of collagens.[**-*!] Fibroblasts, cancer-associated fibroblasts (CAFs),
and tumor-associated fibroblasts (TAFs) are stimulated by ECM remodeling and deposition
during tumor invasion and progression.****! Fibroblasts synthesize and form various collagens
and work as mediators for tissue remodeling.!*?! Once tumor initiation and progression happen,
tumors behave similarly to wounds, responding to cancer fibrosis. Studies showed reactive
stroma contains a high number of fibroblasts leading to collagen deposition around the tumor,
while the normal ones have a minimal number.!**! To probe the expression level of collagens in
MOCK and 3-BP treated tumor tissues, we performed SHG to calculate the level of collagen. In
addition, to validate our SHG results, we performed picrosirius red and polarized light
microscopy imaging as useful tools providing information about collagen.[**! The representative
Picrosirius red image (Figure 6A) showed that the number of fibrotic collagen fibers (red color)
was reduced after treatment in the 3-BP treated group compared to the MOCK group. The
corresponding SHG images in (Figures 6E — 6G) revealed that the expression level of fibrotic
collagens declined after treatment, which agrees with the polarization light microscope results
(Figure 6B). Calculation of pixel intensity of picrosirius red images using ImageJ also showed a
significant increase in the level of cytoplasm (yellow color) and a decrease in the level of muscle

fiber (pink color) in 3BP treated tissues compared to the MOCK tissues (Figures 6C and 6D).
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Furthermore, a comparison of collagen levels in MOCK and 3-BP treated tissues calculated
from the SHG images displayed a significant decrease (P < 0.001) in collagen expression after
treatment in the 3-BP treated group (Figure 61). However, the elastin level remained similar
(Figure 6H). Ohlund et al. found highly expressed collagen type I after pancreatic cancer cell
progression.[*’! To understand the remodeling of TAMs after the 3-BP treatment, we also probed
the metabolic alterations at the cellular level.[**) According to the Warburg effect, the ATP
generation through oxidative phosphorylation in cancer cells turns to the aerobic glycolysis
pathway.[*”) Imaging two important metabolic coenzymes, reduced nicotinamide adenine
dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD), can determine the

[48

metabolic states of the cells.!**! Using the SHG and two-photon microscopy images, we

. FAD . . .
calculated the redox ratio (m) in MOCK vs 3-BP treated tumor tissues. The redox ratio

of the drug treated tissue, 3-BP group, showed significant increase (P < 0.001) in the redox ratio
compared to the untreated tissue, MOCK group (Figure 6J). Varone et al. 4% reported that a
shift in metabolism from glycolysis to oxidative phosphorylation is responsible for an increase in

the redox ratio.
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Figure 6. Comparison of the collagen expression level in the subcutaneous tissue from tumor model of
pancreatic cancer before and after 3-BP treatment using multiphoton microscopy. Representative images
showing the comparison of the (A) brightfield and (B) polarization images before (MOCK) and after (3-
BP) 3-BP treatment of the tumor. The tissues are stained with picrosirius red (PSR). Quantification of
collagen expression level using (C) PSR staining and (D) polarization images of MOCK and 3-BP tissues.
Label-free metabolic imaging of MOCK and 3-BP tissues showing endogenous (E) two-photon
fluorescence (TP), (F) second harmonic generation (SHG), and (G) merged microscopy images. The (H)
elastin and (I) collagen levels are quantified from the TP and SHG images, respectively. (J) Comparison
showing the quantification of redox ratio [FAD/(FAD+NADH)] in MOCK and 3-BP tissues. FAD level
was derived from the TP images, whereas the NADH level was derived from the SHG images. Statistical
significance was measured using a two-tailed Student's paired t-test with n=30 for each group. *P<0.05,

**P<0.01, ***P<0.001; ns = not significant.
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2. 5. Fluorescence Lifetime Imaging

FLIM has emerged as a promising diagnostic tool for tumor and drug treatment, owing to its
ability to detect metabolic markers such as NADH and FAD.[*”) Figure 7A shows the FLIM
image of the pancreatic cancer tissue (MOCK) and drug-treated pancreatic cancer (3-BP). In the
pseudo-colored images, the red color corresponds to a higher lifetime. Figure 7B shows the
fluorescence lifetime decay curves for the MOCK (blue) and 3-BP treated (pink) samples. The
figure demonstrates a slower radiative decay process for 3-BP than for MOCK samples. Figure
7E compares the distribution of 7; and 7, for MOCK and 3-BP treated group; here, the intensity
is fitted with the function: I(t) = A; exp(—t/t,) + A, exp(—t/7;) and 7, corresponds to fast
components and 7, corresponds to the slow component of the lifetime, and A1 and A2 correspond
to the amplitude of the fast and slow decay components, respectively. 3-BP showed higher 7,
and 7, compared to MOCK (Figure 7E). This is also confirmed by comparing the mean lifetime
of these two groups (Figure 7D). The multicomponent nature of the lifetime is confirmed by the
phasor plot in Figure 7C. The phasor plot is widely used to illustrate various free/bound protein
NAD(P)H ratios that reveal changes in cell metabolism under particular circumstances.[*”! An
increased shift toward oxidative phosphorylation (OXPHOS) (3-BP treated group) from
glycolysis (MOCK group) leads the phasor data toward the left side of the phasor plot (bound
NAD(P)H leads to a higher lifetime).[°! The amplitude ratio (A1/Az) is shown in Figure 7F. The
amplitude A: generally signifies unbound NAD(P)H, and A: signifies bound NAD(P)H. A
higher amount of unbound NAD(P)H shows in cancer tissues and illustrates the glycolytic
process. Remarkably, in our experiments, the A1/Az ratio decreased after 3-BP treatment in the
3-BP treated group, indicating a decrease in glycolysis. Heaster et al.>!l showed that tumor-
associated macrophages have a shorter mean lifetime (7,,,) than dermal macrophages as a result

of alterations in NAD(P)H and FAD protein-binding activities.
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Figure 7. Mapping metabolic changes in the subcutaneous tissue from tumor model of pancreatic cancer
after 3-BP treatment. Fluorescence lifetime imaging microscopy (FLIM) results of (A) MOCK and 3-BP
sample. (B) Comparison of mean lifetime spectra for MOCK and 3-BP. The 3-BP group shows a slower
decay rate signifying a larger fluorescence lifetime. (C) The phasor plot for the MOCK and 3-BP groups
shows that the lifetimes are multicomponent. (D) Comparison of the mean lifetime for MOCK and 3-BP.
(E) Distribution of faster (1) and slower (t2) decay components of the lifetime for the 3-BP (pink) and
MOCK (blue) samples. (F) Comparison of the ratio of the amplitude for the faster (A;) and slower (A»)
decay components of the lifetime for the 3-BP (pink) and MOCK (blue) samples.

Because both NADH and FAD lifetime was increased, the lifetime of 3-BP treated pancreatic
tumor samples in our investigation was consistently higher than that of control tumor (untreated)
samples. Earlier studies that employed cell lines from metastatic melanoma revealed that the
average lifetime of NADH was greater in non-metastatic cells compared to their metastatic
counterparts. Specifically, the average lifetime of NADH in noncancerous cells was found to be
between 1.4 to 1.9 nanoseconds, while in malignant cells, it ranged between 0.5 to 0.85
nanoseconds.*?! Experiments using human breast cancer cells demonstrated that hypoxia reduces
the protein-bound and free NADH lifetime.*3 Skala et al. used two-photon excited FLIM to
observe NADH and FAD in vivo in an oral cancer model, finding a significant decrease in the

lifetime with increasing malignancy grade.[®*! According to a separate study by Skala et al., the
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shift from oxidative phosphorylation (OXPHOS) to glycolysis led to a decrease in the
fluorescence lifetime of protein-bound NADH.*) Wang et al. used CoClz to inhibit OXPHOS
and 3-BP to inhibit glycolysis in human lung epithelial cells (BEAS-2B).%! Similar to our
results, the study showed an increase in fluorescence lifetime compared to the control after the 3-
BP treatment. This was due to the rise in FAD and NADH lifetime and inhibition of glycolysis.
Our findings from data on the pancreatic tumor model are in line with the latest FLIM

investigations in these in vitro or in vivo models.

2.6. Lipidomics analysis

To understand the changes in the lipidomic profile of tissue after 3-BP treatment, we
performed an untargeted LC-MS analysis. About 301 distinct lipid species were found using the
LC-MS analysis. The results revealed lipid species profiles in MOCK samples were altered after
treatment with 3-BP in treated samples. As can be seen in the cumulative lipid composition
analysis in (Figure 8A), the MOCK sample has higher lipid compositions in comparison to 3-BP
treated samples. Although lipids can boost pancreatic cancer cell growth, fatty acids de novo
synthesis can be triggered by tumors for the rapid proliferation of cells.l*”! The volcano plot of
these species can be seen in (Figure 8B) with upregulated (red color) and downregulated (blue
color) lipid species in 3-BP treated group compared to MOCK. A threshold of 2.0 for fold
change and 0.05 for P-value was established. The volcano plot integrates fold change (FC)
analysis and t-test into a single graph. We found that 33 lipid species were significantly
upregulated, and 25 species were significantly downregulated in the 3-BP treated group
compared to the MOCK group. Figure 8E shows Heat map clustering analysis for these
upregulated and down-regulated lipids for each class of lipid species. The cumulative
LysoDGTS and MGDG groups significantly decreased after 3-BP treatment compared to
MOCK. TG was significantly elevated in the 3-BP treated group compared to the MOCK group.
The treated (3-BP) and untreated (MOCK) pancreatic tumor samples were readily differentiated
using PCA based on lipidomics analysis (Figure 8D). The distribution of the two groups' lipid
metabolisms in different areas suggests that each group's lipid metabolism has its distinct

features. The samples all fell within Hotelling's T Squared Ellipse's 95% confidence interval.
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PCA analysis (Figure 8D) for the 3-BP treated and MOCK samples shows that the two data sets

are significantly distinct due to the profile alteration in lipid species.

The plotted hierarchically clustered heat map (Figure 8C) analysis shows the upregulated
(red) and downregulated (blue) lipid species in 3-BP treated and MOCK groups. The analysis
categorized via Variable Importance in Projection (VIP) scores (shown in Figure 8H) indicates a
clear difference in lipid species for each group among MOCK and 3-BPsamples. Figure 8H
shows that in 3-BP samples, lipids subspecies including LysoDGTS (21:7), MG (19:8), PC
(16:2), MGDG (18:5), TG (22:5), MG (18:8), PC (12:5), CL (24:2), DG (24:7), MG (27:10), MG
(8:3), PC (17:2), DG (7:4), LysoDGTS (22:10), TG (27:9), DG (25:10), LysoDGTS (17:8),
MGDG (17:2), DGTS (14:3), PC (27:4), MG (29:4), MG (10:1) are significantly upregulated,
while MG (19:3), MGDG (18:3), MGDG (19:2) lipid species are shown to be downregulated.
Figures 8F and 8G show significant downregulation of cumulative LysoDGTS (P<0.05) and
MGDG (P<0.01) in 3-BP samples after treatment. The level of LysoDGTS is positively
correlated with the level of Apolipoprotein A1 (ApoA1).8 ApoAl is shown to have antitumor
properties in pancreatic and other cancers.>’! Although, estrogen receptor (ER) positive breast
cancer tissue showed that increased apoAl levels contributed to treatment resistance.l®” It was
found that apoA1 level increases glycolysis.[®!! Our study found that the cumulative LysoDGTS
decreased with 3-BP treatment, which could reduce the apoA1 level and the glycolysis. The
reduction in glycolysis will reduce the glucose oxidation rate and the proliferation of cancer
cells. Thus, our lipidomic study potentially links the lipid metabolism pathway in 3-BP treated

tissues.
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Figure 8. Profiling lipidomic changes in the subcutaneous tissue from tumor model of pancreatic cancer

after 3-BP treatment. (A) Comparison of the histogram of cumulative lipid composition between MOCK

and 3-BP groups showing a decrease in lipids after treatment (3-BP). (B) Volcano plot showing the

upregulated (red) and downregulated (blue) lipid species in the 3-BP group compared to the MOCK group.

(C) Hierarchically clustered heat maps show each group's lipid species change. (D) PCA score plot of the

3-BP and MOCK lipidomic datasets. (E) Heat map showing the difference in the alteration of each lipid
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class. (F) LysoDGTS and (G) MGDG were significantly downregulated in the 3-BP group compared to the
MOCK group. (H) Plot showing the top 25 lipid species with Variable Importance in Projection (VIP)
scores > 1.8 obtained using Partial Least Squares Discriminant Analysis (PLS-DA). The red color box in a
particular group indicates that specific species is significantly upregulated, and the blue color box indicates

the related species is significantly downregulated.

We further analyzed the Raman images of the tissues by the Direct Classical Least Squares
(DCLS) method®? to profile lipid changes on the surface of tissues before and after treatment.
The DCLS method is proper when we have a reference spectrum of the component we are
profiling: lipids spectra. Figure 9A represents merged images of two lipid species for MOCK
and 3-BP tissues. The corresponding Raman maps show a higher level of expression for PC,
DHA, and LA in MOCK tissues, while TG, CL, Ch, AA, and OA is highly expressed in the 3-BP
tissues after treatment. The corresponding effect size comparison showed a higher effect size for
TG, PA, Ch, CL, AA, and OA in the 3-BP treated group compared to the control group (Figure
9B). The corresponding plots of lipid scores are presented for the MOCK and 3-BP groups
(Figure 9C and 9D). According to the plots, TG, CL, Ch, AA, and OA increased, while PC,
DHA, and LA decreased after treatment with 3-BP. This result is consistent with the lipidomics
data.
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Figure 9. Representative Direct Classical Least Squares (DCLS)-based Raman mapping images comparing

profile changes of various lipids expressed on the surface of tissues between MOCK and 3-BP group. (A)

Merged images showing profile changes of Triglyceride (TG, green) and Cardiolipin (CL, red),
Phosphatidyl Choline (PC, pink) and Cholesterol (Ch, red), Arachidonic Acid (AA, blue), and
Docosahexaenoic Acid (DHA, green), Linoleic Acid (LA, cyan), and Oleic Acid (OA, red). (B) Comparison

of the effect size of lipids calculated using Mann-Whitney U statistic and rank-biserial correlation. The

corresponding Violin plots comparing each lipid score extracted from the Raman mapped images of MOCK

and 3-BP tissues are shown for (C) TG, CL, PC, and Ch. (D) Lipid scores are plotted for AA, DHA, LA,

and OA.

To further confirm the association of lipid metabolism with 3-BP treatment, we performed

pathway analysis using the lipidomics data. Figure 10A shows the pathway enrichment results of

the lipid-related genes in terms of the clusters. Cluster C2 is shown to have a high enrich ratio.

The most significantly enriched pathways are represented in the form of clusters. The enrichment

analysis revealed that Cluster C2 had a high enrich ratio with various pathways, including alpha-

linoleic acid metabolism, glycerolipid metabolism, linoleic acid metabolism, ether lipid

metabolism, and glycerophospholipid metabolism. Furthermore, the glycerophospholipid
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metabolism pathway had a higher gene count (as indicated in Figure 10B) within this cluster.
The lipids network graph (Figure 10C) shows the involvement of PCs and DGs in promoting
pancreatic cancer cell proliferation. Our results suggest that the lipid metabolism pathways play

an essential role in remodeling the pancreatic cancer tissue microenvironment.
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Figure 10. Lipid metabolism-related pathways due to 3-BP treatment. (A) Visualization of gene-list

enrichment results. The bar plot of the P-value represents the different pathway analyses in terms of other

clusters. (B) The enrichment network constructed using KEGG pathway analysis shows the significant

pathways (P < 0.05) associated with differentially expressed lipid-related genes. The number of lipid-

related genes engaged in the pathway is reflected by the size of the nodes, which are filled according to —

logio (P-value). The line width shows the value of gene similarity between the pathways. (C) Lipid network

graph generated using BioPAN for the 3-BP and MOCK group. Active lipids and active pathways are

represented by green-shaded circles and shaded arrows, respectively. The green arrows denote reactions

with a positive Z-score, and the purple arrows indicate reactions with negative Z-scores.
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Figure 11. Schematic showing the mechanism of 3-BP and lipid metabolism in pancreatic cancer.
Pancreatic cancer's lipid metabolism regulation involves enhanced glycolysis during TGFB-induced
signaling, resulting in high glycolytic activity in cancer cells. This increase in activity is due to the activation
of glycolytic enzymes such as GLUT1, HK2, PFKFB3, PFK1, PKM2, and LDHA. In addition, the TGFf
signaling also inhibits PDK4, a negative regulator of PDH, which allows pyruvate to enter the TCA cycle.

Furthermore, the mitochondria convert glucose into fatty acids by producing citrate,
which is subsequently transformed into acetyl-CoA by ACLY. Acetyl-CoA is regulated by ACC
and FAS and is used for palmitate synthesis. Finally, the enzyme SCD1 facilitates the
transformation of saturated fatty acids into monounsaturated fatty acids, which create
phospholipids used in membrane construction and encourage the proliferation of tumors. In

cancer cells, fatty acids are rapidly incorporated into triglycerides through either endogenous
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synthesis or exogenous uptake, forming the core of lipid droplets. Hypoxia leads to an
accumulation of these triglycerides and lipid droplets, which is associated with increased
expression of LIPIN1, a key enzyme that transforms phosphatidic acid into diacylglycerol during
TG synthesis. Treatment with 3-BP inhibits HK2 and TGFp1, leading to decreased lipid

synthesis and inducing apoptosis through the activation of Casp3.

3. Discussion

Pancreatic cancer is characterized by overexpression of HK2, which is associated with
increased tumor growth (Roy et al, 2022)P*1 and dysregulated lipid metabolism. Notably, HK2
has been found to play a role in regulating lipid metabolism in pancreatic cancer cells.[®*) HK2
has been shown to regulate the expression of key enzymes involved in lipid metabolism,
including FASN (fatty acid synthase) and ACLY (ATP citrate lyase).[** Additionally, HK2 is
involved in regulating the AMPK (AMP-activated protein kinase) pathway, which plays a crucial
role in regulating lipid metabolism and metabolic pathway.[®* Specifically, HK2 inhibition has
been linked to the inhibition of AMPK activity, leading to increased killing of pancreatic cancer
cells.[®) TGFB1 signaling is also dysregulated in pancreatic cancer, with evidence suggesting a
complex relationship with lipid metabolism.[®”] Specifically, TGF-P1 has been shown to regulate
the expression of several genes involved in lipid metabolism, including FASN (fatty acid
synthase) [/ and SREBP-1c¢ (sterol regulatory element-binding protein 1c).[”! 3-BP inhibits
HK2, which reduces the GLUT1 activity and reduces lipid synthesis. This is evident by the

cumulative lipid composition decrease after 3-BP treatment (Figure 7A).

Comparison of data showed strong correlation between Raman and LC-MS results [Pearson
correlation coefficient R = 0.9935 as well as Raman and ITHC results [Pearson correlation
coefficient R = 0.9999 Tables S8 and S9. We found LysoDGTS (lysophosphatidylglycerol)
decreased significantly (P<0.001) after 3-BP treatment (Figure 7F). LysoDGTS is a type of
lysophospholipid implicated in several aspects of cancer biology, including tumor growth,
metastasis, and chemotherapy resistance. One study found that LysoDGTS and DGTS levels

were significantly higher in pancreatic cancer patients than in healthy controls.””) Mutation of
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p53 proteins leads to loss of tumor suppressive activities and may lead to additional oncogenic
functions that allow cells to grow and survive.l’!l 3-BP has been shown to degrade p53 to reduce

721 showed p53 influenced lipid metabolism, and a reduction

the mutated p53.'?4 Previous study !
in p53 was accompanied by a reduction in lysophosphatidylglycerol (LysoDGTS) and other

Lysophospholipids.

The data indicates how pancreatic cancer cells adjust to metabolic stress when faced with
oncogenic signals such as LSL-KRASS!?P, Lysophospholipid collection is a metabolic
adaptation that cancer cells employ, providing an alternative nutrient source to sustain their
growth and multiplication even in low-oxygen conditions.[”*! Moreover, lysophospholipids are
critical in biological processes as they function as signaling molecules.[* Their quantities have
been linked to cancer cell migration and invasion capabilities and overall regulatory mechanisms
that maintain autocrine and paracrine signals, which are essential in the interactions between
tumors and their microenvironments (TMEs).[”! The functions of lysophospholipids mentioned
above rely on specific phospholipases regulated by intra- and extracellular stimuli.’®! Although
the precise mechanisms by which LysoDGTS contributes to pancreatic cancer progression are
not entirely understood, it has been proposed that LysoDGTS, along with different
phospholipases C (PLC), may stimulate signaling pathways such as PI3K and AKT to enhance

cancer cell proliferation and migration.[””!

4. Conclusions

Our study found that Raman spectroscopy combined with fluorescence lifetime imaging and
second harmonic generation imaging effectively identifies lipid metabolism-related changes in
the tumor microenvironment resulting from 3-BP treatment. The approach can be used for other
drug treatment and disease systems. Future studies will explore its potential for monitoring
response to primary tumor therapy and developing new cancer gene therapeutics. The study also
demonstrated the capability of Raman spectroscopy for noninvasive assessment of tumor
response to antiglycolytic therapy. However, future studies need to address some limitations,

including evaluating combination immunotherapy and determining whether Raman

33



measurements can predict treatment response. The combination of SERS-based molecular
imaging and lipidomics can potentially detect functional alterations in molecular markers during
pancreatic cancer treatment with 3-BP. This approach could serve as a predictive biomarker for
drug treatment response and resistance. SERS-based imaging of the tumor microenvironment
with high spatial resolution could be used to anticipate the successful treatment of pancreatic
cancer. By using a targeted Raman-enhanced molecular imaging approach in conjunction with
multiphoton and lifetime imaging, multimodal-based imaging can effectively reveal the
underlying tumor pathophysiology of the tumor microenvironment. Other studies have also
shown the potential of lipidomics as a source of cancer biomarkers and therapeutic targets, and
personalized approaches are necessary due to the heterogeneity of cancer. Further investigation
is needed to understand lipidomes' underlying mechanisms and impact on cancer development

and progression.

5. Experimental Methods

Materials. Pure gold nanospheres bare (Citrate) with a diameter of 60 nm were purchased from
nanoComposix, USA. Dimethyl sulfoxide (DMSO) was purchased from Sigma, MO, USA. 4-
Mercaptobenzonitril (4-MB) and tris(hydroxymethyl)aminomethane (Tris (HCl)) 1 M with pH:
8.5 were purchased from Biosynth, USA. Phosphate-Buffered Saline (PBS) was purchased from
VWR, USA. Distilled water, dopamine hydrochloride, Dimethyl sulfoxide-d6 (D-6), and
trimethyl(phenylethynyl)silane (TPS) were obtained from Sigma-Aldrich, USA. Hexokinase2
(HK2) and TGFB1 were purchased from Santa Cruz Biotechnology, USA. Cleaved Caspase3
antibodies were obtained from Cell Signaling Technology, USA.

Preparation of SERS nanotags. 100 pL of gold nanoparticles (NPs) were functionalized with 2
puL of 100 mM Raman reporters (RRs) solutions prepared in DMSO and 98 uL of 0.1 mg/mL
Dopamine in Tris buffer (10 mM, pH 8.5). After centrifugation of solutions for 15 min at 8000
rpm, the supernatant was extracted, and 100 pL of DI water was added to the precipitates. Again,
solutions were centrifuged under the same condition to remove all the excess Dopamine and
untagged RRs; and they were redispersed in 100 pL of DI water. For conjugation of antibodies,

first, 4 uL of each antibody solution was added to each prepared solution and rotated vigorously
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using a rotor (FisherScientific, USA) for 5 h and kept at 4 °C for 18 h. After the completion of
the reaction, 4 uL of 1 mg/mL of BSA solution was added and incubated at 37 °C for 1 h. Then,
solutions were centrifuged at 8000 rpm for 10 min to remove unconjugated antibodies,

redispersed in PBS, and stored at 4 °C for future use.

Physical characterization of SERS nanotags

Dynamic Light Scattering (DLS). Dynamic light scattering (DLS) measurements were carried
out using a Malvern Zetasizer Nano ZS apparatus (Malvern Panalytical) equipped with a 4 mW
He-Ne solid-state laser operating at 633 nm, and 25 °C. The backscattered light was collected at
173°.

TEM. Transmission Electron Microscopy (TEM) images were captured utilizing JEOL JEM-
2010 TEM with an accelerating voltage of 200 kV.

UV-Vis spectrometry. The UV-vis spectra for the bare and conjugated nanoparticles were

obtained using 6300 PC, VWR.

Raman spectroscopy experiments. Raman spectra of antibodies and nanotags without
antibodies were captured using a Renishaw inVia Reflex Raman spectrometer, UK with 785 nm
laser, the objective lens of 50X (long-working distance), (Leica, USA) with different powers
depending on the type of samples, 1200 grating, and exposure time of 10 s using the extended

mode.

Tissue experiments

Animal model. All the animal experiments were approved by IACUC, University of Maryland,
Baltimore. This study involved the creation of a syngeneic subcutaneous mice model of
pancreatic cancer, wherein mouse Panc-2 cancer cells were injected into the right flank of 8-
week-old C57BL/6 female mice (n = 16). The animals were randomly assigned to two groups (n
= 8§ per group) and received either a 10-mg/kg 3-BP injection three times per week (every other
day) for 30 days or a saline-only injection following the same schedule. Before tumor collection,

animals were observed for an additional two weeks without being injected. Tissue samples were
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collected, then treated with 4% paraformaldehyde solution, and kept at room temperature until

further testing.

Tissue preparation for imaging. Both the control and treated tumor tissue were cryosectioned.
Cryosections were prepared from frozen samples affixed to chucks with OCT compound and
sectioned at 5 um on a Leica CM 1950 cryostat. Cryosections were picked up on Superfrost Plus
Gold slides (Thermo Fisher, USA) and allowed to dry at room temperature overnight. Unstained
cryosections were rehydrated in DI water before dehydration with ethanol and xylene. Finally,
the coverslip was placed using Surgipath Sub-X mounting medium on a Leica ST5020/CV5030

Coverslipper (Leica Biosystems).

Raman imaging of tissues. All the tissue slices mounted on the stainless-steel metal slides were
incubated with 100 pL of antibodies (anti-TGFB1, anti-HK2, and anti-Caspase3) conjugated
SERS nanotags for 1 h. After 1 h incubation, slices were thoroughly rinsed with PBS two times
to remove nanotags adsorbed nonspecifically. Raman spectra of tag-stained tissues were obtained
using a Renishaw inVia Reflex Raman spectrometer, UK, with 785 nm laser, Leica 63x water
immersion objective, using various powers for each group of tissues, with a grating of 1200, and
using exposure time = 10 s using extended mode. All the spectra were acquired in the

wavenumber range of 100-3000 cm™!

. At least ten spectra were collected for each tissue sample.
For taking SERS images of the tissues, mapping was done in SteamHR acquisition mode with a
laser of 785 nm. Leica, 63x water immersion objective, was used with 10% power, 0.1 s
exposure time, and step size of 0.5 pm, using static mode. To perform Raman spectroscopy and
microscopy, all the tissues mounted on the metal slides were immersed in DI water, and the
objective was then immersed in the water. The equipment was calibrated against Silicon (Si)

peak at 520 cm ™.

Raman map analysis — Empty Modeling. We used Empty modeling implemented in
Renishaw's Windows®-based Raman Environment™ (WiRE) 4.4 software. Empty modeling's
algorithm is an unsupervised technique that uses multivariate curve resolution alternating least
squares (MCR-ALS). In the MCR-ALS method, the Raman spectrum is broken down into its

component iteratively at each pixel of the Raman map. The fit is optimized at each time step till
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the desired variance is achieved. The equation used is of the form X = C*ST + E, where X =
Raman spectra, C = concentration, S = component of the Raman spectra, and E = error; the
output of the empty modeling analysis is C and S. The assumption in the MCR-ALS method is
that the Raman spectrum at a pixel is a linear combination of pure component spectra. For
example, the Raman spectrum at a pixel of a biological sample is a linear combination of the
spectrum due to protein, DNA, lipid, and glucose molecule at that location. Empty modeling
provides pseudo-quantitative information, such as the relative concentration profile of each

component.

Histology. All fixed tissue sections were stained based on the hematoxylin-eosin (H&E) staining
protocol for histopathological evaluation. Hematoxylin and eosin staining was done in Surgipath
Sub-X mounting medium on a Leica ST5020/CV5030 autostainer (Leica Biosystems), and used
SelecTech Hematoxylin 560, Eosin Phloxine 515, bluing, and define solutions (Leica
Biosystems). Images were captured using NDP.view?2 image viewing software, and all the

images were analyzed with Image].

Picrosirius red (PSR) staining and polarization microscopy. Dewaxed and rehydrated
sections were stained with a picrosirius red stain kit (Polysciences, Inc., #24901) following
manufacturer-specified procedures for FFPE and frozen tissue specimens. Collagen birefringence
was visualized using a Leica DM6B microscope under polarized light at 10x/0.3 NA objective,

and images were captured with a Leica DFC450 color CCD camera.

Immunohistochemistry imaging. Immunohistochemical detection of macrophages was
performed on a Leica BOND-MAX auto-IHC platform running a modified "Protocol F" that
included a 60 min primary antibody incubation step with a 1:1500 dilution of anti-Ibal (Fujifilm
Wako Chemicals, 019-19741) after a 20 min ER1 HIER step and used Leica's Polymer Refine
Detection kit. Stained slides were dehydrated and coverslipped as above and allowed to dry
entirely before scanning on a Hamamatsu Nanozoomer slide scanner using a 20x/0.8 NA dry

objective. Images were captured using NDP.view2 image viewing software.
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Liquid chromatography-mass spectrometry (LC-MS) experiments. First, all the tissues were
lysed in a solution containing 250 puL of methanol (LC-MS grade) and homogenized with a
Qsonica 500 until grinding all the chunks. Samples were kept under refrigeration or in ice
throughout the sample preparation. Bradford protein quantification (Thermo Scientific) was
performed to evaluate the protein concentration, and consequently, the tissue concentration was
established using a 1:10 ratio of protein to tissue. Based on the protein amount measured,
volumes containing 10 mg of equivalent tissue material were transferred to a new tube, 0.5 pg of
Equisplash (Avanti Polar, Birmingham, AL) heavy labeled internal standard (IS) solution was
added, and the sample vortexed for 1 min. Following the addition of the IS, 200 pL of LC-MS
grade methanol was added, and the samples were vortexed for 1 min. We added 400 pL of
HPLC grade chloroform to each tube, vortexed for 1 min, and kept it on ice for 10 min. This step
was repeated three times. A portion (350 puL) of the organic layer was then transferred to a new
tube and evaporated in a gentle stream of nitrogen. Samples were then reconstituted in 50 pL of
40% methanol solution containing 0.1% formic acid.

Agilent 1260 Infinity II quaternary liquid chromatograph coupled to an Agilent 6230
Electrospray Time-of-Flight mass spectrometer (Agilent, Santa Clara, CA) was used for LC-MS.
Using a capillary voltage of 4000 V, samples were run. The fragment voltage was set to 125 V,
and nitrogen was utilized as the drying gas, provided at a rate of 10 L/min at a temperature of
325 °C. 100-3000 m/z was the mass range that was employed. A binary mixture of mobile
phases was employed for chromatographic separation using a gradient program utilizing an
Agilent Poroshell 120 EC-C18 column (2.7 mm ID, 150 mm length, 2.7 um pores, end-capped)
at a fixed flow rate of 400 pL/min. The makeup of mobile stages was as follows: A =0.1%
formic acid in water and methanol (60:40, v/v), and B = methanol isopropanol (100:10, v/v). The
gradient program was as follows: 0-5 min = 5% B, 5-30 min, 90% B, 30-35 min 90% B, 35-45
min 5% B. Each injection had a volume of 5 pL, and samples were run in positive mode.
Utilizing the Qualitative Analysis Navigator module of the MassHunter Workstation, LC-MS
samples were exported to mzData file format (Ver. B.08.00, Build 8.0.8208.0).

Multiphoton microscopy of tissues. The two-photon (TP) fluorescence and second harmonic
generation (SHG) images of tissues were produced using a Spectra-Physics Mai-Tai

femtosecond tunable pulsed near-IR laser (690 - 1040 nm) with a Leica SP5 resonant scanning
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multiphoton confocal microscope. Images were acquired with a 25x water objective and at

Aex=860 nm, 1024 x 1024 resolution using Leica application suit X (LAS X).

Fluorescence Lifetime Imaging Microscopy (FLIM) experiments. A Leica TCS SP8 confocal
microscope with motorized DIC attachments was used to collect FLIM data. H&E-prepared
slides were used to achieve the lifetime data. The Pancreatic cancer tissues were excited with a
white light laser with an excitation wavelength of 561 nm and captured the emitted photons from
571 to 613 nm. We used a 63x/1.20 NA water immersion objective. Line repetitions and frame
repetitions were set at 4. The pixel frame size was 1.14 um x 1.14 pm for the FLIM images with
a dwell time of 24.41 ps. With a 1.16 mm x 1.16 mm image size and 400 Hz tandem scanner
speed, the corresponding frame rate shift was 0.024 s~!. The fit for the decay rate was optimized
after selecting multiple pixel places on the image of interest for finding an optimal ¥ nearly

close to 1.

Bioinformatics analysis. The data preprocessing and differential expression of lipids were
performed using the LINT-Web server. The data cleaning and normalization were performed
using the default settings. The sample clustering was also performed using the LINT-Web.!"®]
The differentially expressed lipids calculation was performed between 3-BP and MOCK groups.
The 3-BP group was an experimental group, and the MOCK group was the control group. The
differentially expressed lipids' pathway analysis and lipid gene enrichment were performed using

the LipidSig web server [ and BioPAN. 18]

Statistical analysis and data processing. Intelligent fitting of Renishaw's Wire 4.4 (Raman
Software) was applied to perform baseline subtraction of all Raman spectra. Mapping data of
tissues were analyzed using the empty modeling method. Plotting of all the Raman spectra was
performed using OriginLab (OriginLab, Northampton, MA). All the quantifications of Raman
images and other microscopy images were carried out using ImagelJ. A two-tailed Student's #-test

was used for the P-value calculation (statistical significance).

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.
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H&E imaging analysis

Figure S1A shows morphological changes in the tumor following 3-BP treatment (3-BP)
compared to silane treatment (MOCK) using H & E staining. During H&E staining, cell nuclei
are stained with hematoxylin (dark blue color), and other structures like cytoplasm are stained
with eosin (pink color). Both MOCK and 3-BP tissues consisted of cell nuclei and cytoplasm.
Cell nuclei in the silane-treated tissues (MOCK) look more prominent and darker than in the 3-
BP groups. Based on the pixel intensity of the images (Figure S2B), a significantly higher (P <
0.001) cytoplasm content was seen in the 3-BP group compared to the MOCK group. The
increase in cytoplasm expression level illustrates that cell division is inhibited in 3-BP-treated

tissues compared to the MOCK group.
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Figure S1. Structural imaging of Pancreatic tumor tissue before and after 3-BP treatment. (A)
Representative hematoxylin (purple) and eosin (pink) (H&E) stained images of tumor before (MOCK) and
after (3-BP) 3-BP treatment. (B) Comparison of cytoplasm content of MOCK and 3-BP tissue. The plot
shows the pixel intensity differences between the two groups (n =3/group). (C) H & E (Hematoxylin and
Eosin) stained tissue images. The blood vessels are marked with blue arrows, (D) IHC images of MOCK

tissue, stained with a-SMA and vimentin, which are cancer associated fibroblast marker.

Raman map analysis using WiRE

As an alternating least square method, the Renishaw Empty Modelling technique works
without any previous knowledge and reference spectra. In this method from a collected dataset
containing different components, Empty modelling extract distinguishable components spectra

(with blue color) with their Raman map images indicating the distribution of the components
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withing the Raman image based on the below matrix equation. In the dataset, the Raman spectra

of the image (collected spectra of the sample) shows with red color.

X=C*+ST+E

X 1s dataset matrix, C image concentration, S extracted spectra, and E error.

Empty Modeling Steps

(1)

Open collected dataset in WiRE software — Analysis — Mapping Review — In the map

selection window choose Empty Modelling — Press create with the following setting.

1 e
T L WY M
o =i s At PN A AR b A ¥

T T T
1700 1800 1800 2000

Spactrum Viewer |

Figure S2. An example of the collected dataset.
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Figure S3. Steps showing how to create Empty Modelling analysis.

Some Examples of Empty Modelling

Figure S4 showing the generated Raman map with its meaningful spectrum. This image was
recorded for the MOCK sample probed with SERS nanotags, Au+Dopamine+TPS+TGFf1.
Using the above equation of Empty modelling, it can be seen WiRE generated meaningful
spectrum (blue color) with a peak position around 2017 cm™! confirming the presence of SERS
nanotag, Au + Dopamine + TPS + TGFp1. In addition, the concentration of this component is
seen with different color distribution throughout the generated mapping image. In this image,
dark color shows the area with less probability of the presence of mentioned SERS nanotags, and
brighter red color shows the area with high probability of the presence of mentioned SERS

nanotags.
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Figure S4. Screenshot of WiRE window after extracting component with its spectrum from the image of

MOCK sample probed with Au + Dopamine + TPS + TGFp1.

Figures SSA-S5D showing the generated Raman maps for three meaningful components
with their relative spectra analyzed through Empty Modelling. This image was acquired from the
3-BP sample probed with three different SERS nanotags, (Au + Dopamine + TPS + TGFf1),
(Au + Dopamine + D-6 + Caspase3), (Au + Dopamine + 4-MB + HK2). As can be seen in Fig
S5 A, component one with a peak position around 2017 cm™! indicating the presence of Au +
Dopamine + TPS + TGFf1, component two in Figure S5 B with a peak position around 2111
cm’! indicating the presence of Au + Dopamine + D-6 + Caspase3, component three in Figure S5
C, with a peak position around 2228 cm™! indicating the presence of Au + Dopamine + 4-MB +
HK2, Figure S5 D without any peak position indicating substrate as its spectrum is not matched
with sample spectra (red color). In all images, dark color shows the area with less probability of
the presence of mentioned SERS nanotags, and brighter color shows the area with high

probability of the presence of mentioned SERS nanotags.
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Figure S5. Screenshot of WiRE window after extracting component with its spectrum from the image of

3-BP sample probed with three different SERS nanotags, Au+ Dopamine + TPS + TGFB1, Au + Dopamine

+ D-6 + Caspase3, Au + Dopamine + 4-MB + HK2. (A) generated components with their spectra for Au +

Dopamine + TPS + TGFf1, (B) Au + Dopamine + D-6 + Caspase3, (C) Au + Dopamine + 4-MB + HK2

(D) substrate.
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Figure S6. (A) Scanning electron microscopic (SEM) images of the 3-BP tissue probed with all tags (tagl:
Au + Dopamine + TPS + TGFB1; tag2: Au + Dopamine + D-6 + Caspase3; tag3: Au + Dopamine + 4-MB
+ HK2). (B,C) zoomed in image of the AuNPs. (D) the corresponding Energy-dispersive X-ray
spectroscopy (EDS) image of the tissue (E) EDS map of C Kal,2, and (F) EDS map of Au Mal surface
profile on the tissue. (G) Scanning electron microscopic (SEM) images of the MOCK tissue probed with
all tags (tagl: Au + Dopamine + TPS + TGFf1; tag2: Au + Dopamine + D-6 + Caspase3; tag3: Au +
Dopamine + 4-MB + HK?2). (H,I) zoomed in image of the AuNPs, (J) the corresponding Energy-dispersive
X-ray spectroscopy (EDS) image of the tissue (K) EDS map of C Kal,2, and (L) EDS map of Au Mal

surface profile on the tissue.
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ImageJ analysis:

1- Open Image] software — Open desired image.

Figure S7. Original image of generated Raman image.

2- Image — Color — Spilt channels to red, green, and blue. For each image, used the
associated channel (For image with red color, red channel was selected for intensity

measurements)

Figure S8. Red channel image after splitting image to three different channels.

3- In the selected channel, using the rectangle icon, 10 different regions were selected to

measure the intensity.
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4- Analyze — Set measurements (Check Area, Mean Gray Value, Standard Deviation,

Minimum, and Maximum) — Analyze — Measure.

1" MOCK-intensity.csv = O x
File Edit Font
[area [Mean [stdDev [Mode [Min |Max [intDen  |RawintDen =
128907 52212 13308 55 13 87 1509281 1509281
2 28907 52597 10677 55 22 78 1520411 1520411
3 28807 43851 12449 45 14 77 1267595 1267595
4 28907 54617 11940 61 21 86 1578806 1578806
5 28907 57195 9787 55 23 81 1653347 1653347
6 28907 46829 10903 43 23 79 1353676 1353676
7 28907 50682 12063 55 22 80 1465065 1465085
8 28907 63.142 12981 55 23 87 1825249 1825249 |
9 28907 58466 9939 61 18 81 1690067 1690067
:n 9A0N7 &1 8AR QG958 &5 14 7R 14AGR799  1A4G8793 J%

Figure S9. 10 various measurements from the red channel image

5- Used the 10 different mean measurements in MOCK samples and 10 different mean
measurements in 3-BP samples to plot bar charts for comparing them using paired comparison
feature of Origin software.

Raman Peak Assignment

Table S1. Raman peak positions and their vibrational assignment for TGFp1

Raman peak position (cm™) Assignment

397

467 Polysaccharides

504 Cys-Cys S-S stretch

560 Polysaccharides

936 C-C stretch in a helix

1063 C-C, C-N, C-O stretching

1130 C-C asymmetric stretching, C-N stretching,
1250 Amide III in B-sheet
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Table S2. Raman peak positions and their vibrational assignment for HK2

Raman peak position (cm™)

Assignment

1240

1454
1680

Amide III, antisymmetric phosphate
stretching

CH2 or CH3 scissor, /CH2 bending
Amide I in  sheet

Table S3. Raman peak positions and their vibrational assignment for Caspase3

Raman peak position (cm™) Assignment

417

487 Glycogen

677 Cys C-S stretch

850 Tyrosine

925 C-C stretch in o helix

1058 C-C, C-N, C-O stretching mode

1253 Amide III in B-sheet

1467 CH, CHz, CH3 vibrations,
NH in plane vibrations

2887 CH2 Stretch

2943 CHs Stretch

Table S4. Raman peak positions and their vibrational assignment for Au + Dopamine + TPS

Raman peak position (cm™) Assignment

998 C-C stretch

1174 Cytosine, guanine
1482

1591 C=C stretch

2018 —-C=C-

2183




Table S5. Raman peak positions and their vibrational assignment for Au + Dopamine + D-6

Raman peak position (cm™)

Assignment

2116
2242

C-H/C-D symmetric stretching
C-H/C-D antisymmetric stretching

Table S6. Raman peak positions and their vibrational assignment for Au + Dopamine + 4-MB

Raman peak position (cm™)

Assignment

363
583
1074

1177
1585

2225

wagging of Au-CN

C-C bond of the benzene
ring

symmetric C-N stretching
symmetric benzene ring

stretching ring

C=N

Table S7. Comparison of Raman peak positions for all the Raman reporters

Tagl Tag2 Tag3 | All tags TGF | Caspase | HK2 | TP | D-6 | 4-MB | Ram
(TGFpB1 | (Caspase3 | (HK2 | (tagl+tag | Bl 3 S an
+TPS) | +D-6) +4- 2 ban
MB) +tag3) d
rang
e
(cmr
D)
584 397 300-
400
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417

400-
450

467

487

450-
500

506
527

504

500-
550

583

560

550-
600

646

646

622

600-
650

650

677

650-
700

700-
750

765

777

750-
800

850

800-
900

999

993

999

936

925

999

900-
1000

1025

1031

1076

1076

1063

1058

100

1073

1000

1100

1130
1175

1177

1176

1130

1184

1100

1200

1200
1245

1200

1200

1250

1253

1240

122

1204

1200

1300
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1380

1300

1400

1482

1438

1476

1482

1467

1454

148

148

1400

1500

1592

1586

1592

160

1592

1500

1600

1651

1648

1680

1600

1700

2017

2018

200

2000

2100

2183

2111

2112

216

213

2100

2200

2231

2228

2224

225

2227

2200

2300

2847

2887

2800

2900

2943

2900

3000
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Table S8. Result of Pearson correlation coefficient calculated from Raman and LC-MS results.

Lipids
Pearson
Raman LC-MS R
MOCK 3-BP 3-BP/MOCK MOCK 3-BP 3-BP/MOCK
TG 0.3389 0.3875 1.1434 463895.7 473073 1.0198
CL | -0.2337 0.17751 -0.7596 263064.6 2329539 0.8855 0.9935
PC | 0.21331 | -0.15976 -0.7490 243074.8 210828.8 0.8673
Table S9. Result of Pearson correlation coefficient calculated from Raman and THC results.
Proteins
Raman IHC
Pearson
MOCK 3-BP 3-BP/MOCK MOCK 3-BP 3-BP/MOCK R
TGFB1 | 53.1437 | 13.3993 0.2521 47.538 1.757 0.0370
HK2 48.144 14.5238 0.3017 32.442 2.024 0.0624 0.9999
Caspase3 | 7.9435 23.881 3.0064 6.745 91.28 13.5330
Table S10. Redox ratio measured by SHG and FLIM.
Redox ratio
MOCK 3-BP 3-BP/MOCK
SHG 0.6704 0.8806 1.3135
FLIM mean lifetime 0.1885 0.3365 1.7851
FLIM (A2/A1) 0.057764 0.216282 3.7442

Table S11. Collagen expression level measured by SHG, PSR, and Polarization methods.

Collagen
MOCK 3-BP 3-BP/MOCK
SHG 23.67687 8.98353 0.3794
PSR 143.4695 130.1647 0.9073
Polarization 15.06993 7.98683 0.5299
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