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Abstract 

 

Lipid metabolism and glycolysis play crucial roles in the progression and metastasis of cancer, 

and the use of 3-bromopyruvate (3-BP) as an antiglycolytic agent has shown promise in killing 

pancreatic cancer cells. However, developing an effective strategy to avoid chemoresistance 

requires the ability to probe the interaction of cancer drugs with complex tumor-associated 

microenvironments (TAMs). Unfortunately, no robust and multiplexed molecular imaging 

technology is currently available to analyze TAMs. In this study, we demonstrate the 

simultaneous profiling of three protein biomarkers using SERS nanotags and antibody-

functionalized nanoparticles in a syngeneic mouse model of pancreatic cancer. This allows for 

comprehensive information about biomarkers and TAM alterations before and after treatment. 

Our multimodal imaging techniques include surface-enhanced Raman spectroscopy (SERS), 

immunohistochemistry, polarized light microscopy, second harmonic generation (SHG) 

microscopy, fluorescence lifetime imaging microscopy (FLIM), and untargeted liquid 

chromatography and mass spectrometry (LC-MS) analysis. The study reveals the efficacy of 3-

BP in treating pancreatic cancer and identifies drug treatment-induced lipid species remodeling 

and associated pathways through bioinformatics analysis. 

 

 

1. Introduction 

 

Pancreatic cancer (PC) is the fourth leading cause of cancer-related death in the US. Most PC 

patients (> 50%) are diagnosed at an advanced stage where the 5-year survival rate is 3%.[1] The 

surgical removal of pancreatic tumor cells (Whipple procedure) can increase the survivability of 

the patients. However, less than 20% of patients are eligible for surgery due to regional and 

distant metastasis during these end stages. Further, chemotherapy and radiation therapy are 

ineffective for advanced-stage patients. Hence, there is an unmet need to develop new treatment 

options for PC. 
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 3-bromopyruvate (3-BP) is an alkylating agent and has been shown to have potent antitumor 

activities in several types of cancers,[2] including PC.[3] Collagen-rich, weakly vascularized, and 

extremely hypoxic non-neoplastic stroma are among pancreatic tumor tissue's distinguishing 

cellular and non-cellular features.[4] Often, these traits are linked to chemoresistance to the most 

widely used anticancer drugs. Thus, there is a need to understand the interaction of 3-BP with the 

tumor microenvironment.  

 

The tumor microenvironment is complex, and typical components include collagen, proteins, 

DNA, lipids, and varied cell types (macrophage, epithelial cells, stroma, normal cells, and cancer 

cells). A single tool might not be sufficiently sensitive to probe all the components of the tumor 

microenvironment. Lipids exhibit a significantly greater Raman scattering cross section in 

comparison to collagen.[5] Despite being present in significant amounts within the extracellular 

matrix, glycosaminoglycans show weak Raman cross-sections.[6] Similarly, the Raman cross-

section of DNAs is typically larger than that of proteins [7]. On the other hand, the second 

harmonic generation (SHG) cross-section for collagen (Collagen I and III) is high and can be 

easily imaged in a tissue.[8] Therefore, a multimodal approach could be useful in interrogating a 

complex tumor microenvironment. 

 

Pancreatic tumor cells alter their cellular glucose metabolism to fulfill their elevated energy 

demands. This is accomplished through heightened glycolysis, resulting in increased 

consumption of glucose and the production of ATP and lactic acid, which fuel the tumor's 

growth and aggressive behavior.[9] Tumor cells enhance the expression of lactate transporters to 

facilitate their high glucose consumption and lactic acid production, which enables them to 

import surplus glucose and export excessive lactic acid. Interestingly, 3-BP is transported into 

the cells through lactate transporters. Hence, 3-BP can be selectively transported into the cancer 

cells compared to normal cells. Hexokinase 2 (HK2) is a vital enzyme in glucose metabolism 

through aerobic glycolysis.[9b, 10] 3-BP irreversibly alkylates HK2, disrupting glucose metabolism 

and leading to cancer cell death.[11] In addition, 3-BP kills cells by producing reactive oxygen 

species (ROS).[12]  However, the effect of 3-BP on lipid remodeling, the spatial distribution of 

proteins, and metabolic activity have not been well investigated. Here, we have created a 



4 
 

syngeneic in vivo model using a highly aggressive pancreatic cancer cell (Panc-2) to study the 

effect of 3-BP. 

 

Previously, we have shown the efficacy of 3-BP in killing PC cells in vitro and in vivo.[3b] 

Our previous study showed that 3-BP inhibits glycolysis, ATP, lactic acid production, and 

expression of HK2. Furthermore, in vivo study showed that a 20 mg/kg dose level of 3-BP 

reduced tumor growth by ~ 80%. Here, we showed the spatial mapping of three different 

proteins (transforming growth factor- β1 (TGFβ1), HK2, Caspase3) simultaneously on the tumor 

tissues using surface-enhanced Raman spectroscopy (SERS)-encoded Raman nanoparticle 

imaging. 

 

Multiplexed biomarker profiling is crucial for the diagnosis of cancer and for assessing the 

effectiveness of therapies. As a semiquantitative method, immunohistochemistry (IHC) is 

currently the accepted method of detecting biomarkers in clinical samples. Histochemistry is the 

conventional method to visually examine the gross tissue morphology, cell type, subcellular 

structure through the reaction of certain dyes and stains with endogenous chemicals that are 

present to form colored compounds.[13] IHC, however, can only probe one or a small number of 

biomarkers at once in a sample.[14] Furthermore, the utilization of many chemical constituents is 

restricted in traditional histochemistry, thereby constraining its applicability. There are several 

alternative methods for finding multiple targets in a sample, including mass spectrometry,[15] 

protein chips,[16] RT-PCR,[17] spatial transcriptomics,[18] and fluorescence assay.[19] However, 

most of these methods are destructive and necessitate laborious sample preparation. In addition, 

the sample preparation could destroy the three-dimensional architecture of cells and tissues. 

Further, the broad emission peaks (> 30 nm) in fluorescence imaging typically lead to spectral 

cross-talk in multiplexed imaging. Raman spectroscopy and microscopy provide sensitive, 

quantitative, and noninvasive techniques that can detect molecular-level variations through 

specific fingerprints, offering significant advantages over alternative methods.[20] Because of 

SERS nanotag’s high sensitivity [21] and small spectral peak width of 1-2 nm,[22] multiplexed 

detection is feasible. However, typical SERS nanotags often use thiol-conjugated molecules, 

which are unstable and prone to oxidation.[23] Furthermore, conventional Raman reporters have 

several peaks in the fingerprint region (1000-1700 cm−1) that frequently overlap and could lead 
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to cross-talk.[24] Additionally, the SERS signal may overlap with various tissue or cell 

background signals produced from naturally occurring biological molecules, including proteins, 

phospholipids, cytochromes, etc. Consequently, using SERS nanotags with excellent spectral 

resolution and low background interference is necessary. Although several researchers have 

classified the cell and tissue samples with overlapped Raman peaks in the fingerprint regions 

using the Raman unmixing method, only a broad class of cell/tissue features could be obtained 

(e.g. lipids, proteins, collagen, DNA, glycogen etc.).[25] Nonetheless, there hasn't been a strong 

demonstration of using spontaneous Raman spectroscopy to perform spatial imaging of multiple 

proteins or lipid subspecies (e.g. PC 42:4 versus PC 42:6).[26] 

 

Previous researchers have made SERS nanotags using Raman reporters moieties such as 

alkynes (−𝐶 ≡ 𝐶 −, Raman peak at ~ 2230 cm−1), nitriles (−𝐶 ≡ 𝑁, Raman peak at ~ 2120 

cm−1), azides (−𝑁3, Raman peak at ~ 2073 cm−1), and deuterium (𝐶 − 𝐷, Raman peak at ~ 2150 

cm−1) that display distinctive vibrational peaks in the Raman silent region (1800 – 2800 cm−1).[27] 

Raman silent region is free from interference due to the Raman signal of endogenous biological 

substances making these probes highly suitable for multiplexed detection.  

 

Here, we developed SERS nanotags using AuNP core and anchored alkyne (using 

trimethyl(phenylethynyl)silane (TPS); designated as tag1), deuterium (using Dimethyl sulfoxide-

d6 (D-6); tag2), and nitrile (using  4-Mercaptobenzonitril (4-MB; tag3) moieties via 𝜎 − 𝜋,[28] 

and 𝜋 − 𝜋 [29] interactions. These Raman reporters (RRs) exhibit peaks in Raman-silent spectral 

region without any overlap with each other. We used polydopamine (PDA) as a protective 

biocompatible layer thanks to its preferable characteristics, such as self-polymerization and 

adhering capability to the surface of NPs. PDA allows the incorporation of any Raman reporters 

(even without amine or thiol group) on to the AuNP surface.[30] The RR is conjugated to the PDA 

layer through the dopamine quinone group utilizing Michael addition.[31] These characteristics, 

biodegradability, and chemical reactivity with other molecules make them a unique choice for 

fabricating SERS tags, resulting in a novel SERS imaging platform. Moreover, catechol, amine, 

and imine as functional groups on the surface of these tags enhance their reactivity with other 

groups in other biomolecules and antibodies.[32] Our main motivation for developing SERS 

nanotags is to simultaneously profile lipids, collagen and specific proteins of interest (TGFβ1, 
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HK-2, Caspase 3) in the tumor microenvironment (TME). The Raman fingerprint regions (100 – 

1800 cm−1) were utilized to profile the lipids and collagens. The Raman silent regions (1800 – 

2800 cm−1) were utilized to profile the proteins. Simultaneous profiling of lipids, collagen and 

proteins are not possible with a single IHC marker. The antibody conjugated nanotags allowed us 

to profile and image three different proteins simultaneously with high specificity without any 

Raman peak overlaps. The intensity distribution of Raman peaks at 2018 cm−1, 2112 cm−1, and 

2224 cm−1 allowed us to profile TGFβ1, Caspase3, and HK2 respectively.  

 

We used a one-pot synthesis approach; NPs, RRs, and PDA as protective layers were 

compacted to provide the SERS immunoassays with distinctive flavors. Each flavor of probes 

was then conjugated with an antibody— TGFβ1 (designated as tag1), Caspase-3 (defined as 

tag2), and Hexokinase 2 (designated as tag3) tumor-associated proteins expressed in pancreatic 

cancer microenvironment (TAM) in the syngeneic pancreatic cancer tissue to create a multicolor 

image of three biological targets. We used these antibody-conjugated-SERS nanotags to identify 

separate and multiple cancer biomarker changes in response to the drug treatment. To validate 

the efficacy of the 3-bromopyruvate (3-BP) drug, we further analyzed the untreated and treated 

tumor tissues. We used polarized light microscopy, immunohistochemistry, two-photon and 

second harmonic generation (SHG) microscopy, fluorescence lifetime imaging microscopy 

(FLIM), and liquid chromatography-mass spectrometric (LC-MS) measurements method to 

probe the tissue samples.  

 

2. Results and Discussions 

 

2.1. Design and characterization of SERS immunoassays 

 

Figure 1A schematically shows the approach used in the present work. The saline-treated 

(MOCK group) and 3-BP treated (3-BP group) tumor tissues were processed and incubated with 

the antibody-conjugated SERS nanotags. Using Raman microscopy, the SERS nanotags 

comprised three different RRs and antibodies for detecting three corresponding proteins on the 

tissue. Three different types of SERS nanotags were prepared by applying a one-pot synthesis 

approach. First, the surface of gold nanoparticles (Au NPs) was immobilized with three different 
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RRs—4-MB, D-6, and TPS—and then, using a self-polymerization process, a layer of PDA was 

coated on top of them for capturing antibodies. Their respective antibodies were conjugated on 

the surface of SERS nanotags to identify HK2, Caspase3, and TGFβ1 antigens in tissues. The 

Raman signatures of the proteins are shown in Figure 1B. The corresponding Raman peak 

assignments are provided in Tables S1-S3. All SERS nanotags were confirmed by Raman 

spectroscopy (Figure 1C). The related Raman peak assignments for the Raman reporters are 

provided in Tables S4-S6. Figure 1C showed characteristics signals at 2018, 2116, and 2225 cm-

1 in the Raman silent region for each type of SERS nanotags. The characteristics peak at 2018, 

2116, and 2225 cm-1  are due to the RR with TPS (red curve), D-6 (blue curve), and 4-MB (green 

curve), respectively (Figure 1C). The figure also illustrates the successful immobilization of the 

respective RRs on the surface of Au NPs. UV-vis spectra in Figure 1D depict plasmon 

resonance shifts due to surface modification with RRs and Dopamine. The surface plasmon peak 

was observed at 533 ± 3 nm due to the Au NPs.[33] The intensity of the surface plasmon peak 

intensified and red-shifted in peak wavelength after PDA coating (Figure 1D). Dynamic light 

scattering (DLS) measurements (Figure 1E) reveal that the average hydrodynamic size of the Au 

NPs increased from 60 ± 5 nm to 90 ± 15 nm after PDA coating. After 4-MB addition, the 

hydrodynamic diameter changed to 100 ± 20 nm. A transmission electron microscopy (TEM) 

image (Figure 1F, 1G, 1H) of SERS nanotags— Au-Dopamine+4-MB, Au-Dopamine+TPS, 

and Au+Dopamine+D6—shows the approximate size of the NPs as 60 ± 5 nm. 
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Figure 1.  Schematic overview of multiplexed SERS imaging of biomarkers in a subcutaneous tumor model 

of pancreatic cancer and characterization of Raman reporters. (A) Workflow showing the preparation of 

antibody-conjugated SERS nanotags to perform Raman microscopy of tumor tissues. (B) Raman spectra of 

TGFβ1, HK2, and Caspase3 antibodies show each protein's characteristic Raman peaks. (C) SERS spectra 

of three nanotags (4-MB, D-6, and TPS) without antibodies. (D) UV-Vis spectra of all three SERS nanotags 

show the plasmonic peak near 530 nm. (F) Dynamic light scattering (DLS) results show the distribution of 

hydrodynamic diameters of nanoparticles (Au) and nanoparticles conjugated with one of the SERS nanotags 

(Au+Dopamine, Au+Dopamine+4-MB). (F) Representative TEM image of one SERS nanotag 

(Au+Dopamine+4-MB). (G) Representative TEM image of one SERS nanotag (Au+Dopamine+TPS). (H) 

Representative TEM image of one SERS nanotag (Au+Dopamine+ D-6). 

 

2.2. Morphological and IHC imaging of Pancreatic cancer tissues 

 

Figure 2A shows morphological changes in the tumor following 3-BP treatment (3-BP) 

compared to saline treatment (MOCK). The tumor volume decreased by 60-80% following 3-BP 

treatment (Figure 2B). Figure 2C depicts the mRNA expression level changes, in which HK2 

expression level decreased significantly in the 3-BP group in response to two different 

concentration levels of 3-BP, 20 and 40 μM, compared to the MOCK group. The Western blot 
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analysis in Panc-2 cancer cells also showed down regulation of HK2 after 3-BP treatment [3b]. 

Based on the pixel intensity of the H&E images (see Supporting Information Figure S1A and 

S1B), a significantly higher (P < 0.001) cytoplasm content was seen in the 3-BP group compared 

to the MOCK group. The data showed necrotic tissues in 3-BP-treated tissue samples compared 

to the MOCK group. We also have performed several experiments to show the features of TME. 

Both the MOCK and 3-BP tissues showed the blood vessels after H& E (Hematoxylin and 

Eosin) staining (see Supporting Information Figure S1C). The existence of tumor fibroblast in 

tissue samples have been confirmed by staining of same sample tissue, used in this study with 

antibody, α-SMA and vimentin (see Supporting Information Figure S1D) which are known 

marker for cancer associated fibroblast as described by others. [34] Both markers which are 

expressed in cancer associated fibroblast (CAFs cells) are component of TME (tumor 

microenvironment). The α-SMA is involved in cell contractility, structure and integrity of cell 

and promote tumor cell proliferation, immune suppression and impede drug delivery. Vimentin 

(EMT marker) also regulate cell motility structure and integrity, involve in cell invasion and 

metastasis in pancreatic cancer. [35] 

 

 

Figure 2D shows the results of immunohistochemistry (IHC) imaging.  The 

microenvironment of pancreatic cancer contains several factors, such as tumor-associated 

macrophages (TMs), inflammatory cytokines, and macrophages, that contribute to the resistance 

of drug and radiation therapies. Further, these factors can be upregulated and exacerbate tumor 

progression.[36] Moreover, TMs can enhance tumor growth, progression, and invasiveness by 

releasing growth factors and mediators by suppressing immune cells' anticancer responses.[37] 

We utilized Ionized calcium-binding adapter molecule 1 (Iba1) to examine TMs. Iba1 has been 

used frequently as a marker for microglial cells. More recently, it was also recognized as a "pan-

macrophage marker" because it is expressed by all monocyte cell subpopulations/macrophage 

lineage.[38]  We used Iba1 to detect the level of macrophages in both MOCK and 3-BP tissues 

(Figure 2D). The brown color indicates the expression level of Iba1. The calculated pixel 

intensity values of images (Figure 2E) revealed that the Iba1 expression level of the 3-BP 

treated group is significantly lower (P < 0.001) compared to the MOCK group demonstrating the 

effectiveness of 3-BP treatment. We also compared the expression level of TGFβ1, HK2, and 
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Caspase3 before (MOCK) and after 3-BP treatment (Figures 2F, 2H, and 2J). The pixel 

intensity values of images demonstrated a significant decrease in the expression level of TGFβ1 

(Figure 2G) and HK2 (Figure 2I) and a significant increase in the expression level of Caspase3 

(Figure 2K) in the 3-BP groups in comparison with MOCK groups.       
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Figure 2. Structural and immunohistochemical (IHC) imaging of subcutaneous tissue from tumor model 

of pancreatic cancer before and after 3-BP treatment. (A) Representative images of the tumor before 

(MOCK) and after (3-BP) treatment. The image shows the response to two different concentrations of 3-

BP treatments (15 and 20 mg/kg). (B) Comparison of tumor volume on different days before and after 

treatment (n = 4/group). (C) Comparison of the mRNA expression level of HK2 in control versus 3-BP 

groups treated with different concentrations of 3-BP (10 μM, 15 μM, 20 μM, 40 μM). (D) IHC image 

showing the expression level of Iba1 in MOCK and 3-BP tissue. (E) Comparison of Iba1 expression level 

(brown color) of MOCK and 3-BP tissue. Representative IHC images in MOCK and 3-BP groups showing 

the expression level of (F) TGFβ1, (H) HK2, and (J) Caspase 3. Comparison of (G) TGFβ1, (I) HK2, (K) 

Caspase 3 expression levels (brown color) of MOCK and 3-BP tissue. The plot shows the differences in 

pixel intensity of the MOCK and 3-BP groups in Figs. 2E, G, I, and K (n = 3/group). The error bars show 

the standard deviation. *P<0.05, **P<0.01, ***P<0.001 

 

 

2.3. Raman imaging of cancer tissues 

 

To profile TGFβ1, HK2, and Caspase3 proteins and evaluate their expressions in both 

groups, we first probed each tissue type with one antibody-conjugated SERS nanotags. Figure 
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3A shows the bright field images of tissues studied for each type of nanotag.  Next, we obtained 

the Raman map of the indicated area and analyzed each image using the empty modeling method 

to generate mapping data (Figure 3B). The details about empty modeling are provided in the 

Supporting Information (Figures S2-S5). This method is proper when no spectra are available 

for the components. Each Raman image comprises ~ 40.5 x 106 data points (45,000 spectra, and 

900 points per spectra). The analyzed images using this method can identify significant 

biochemical features of the sample and the associated mean Raman spectra. Figure 3B shows 

the Raman mapping images collected from stained tissues with each type of nanotag (red color, 

tag1: Au + Dopamine + TPS + TGFβ1; blue color, tag2: Au + Dopamine + D-6 + Caspase3; 

green color, tag3: Au + Dopamine + 4-MB + HK2). Each color in the heat map is associated 

with the expression of the related biomarkers, which is as follows: red = TGFβ1; green = HK2; 

and blue = Caspase3. The merged Raman map for the tissue background and the respective 

nanotags are shown in Figure 3C. The MOCK group showed a higher expression of TGFβ1 (red 

color) as well as HK2 (green color) and lower expression of Caspase3 (blue color), respectively, 

compared to the 3-BP group (Figure 3B). Figures 3D, 3E, and 3F show different 

magnifications of SEM images captured from stained MOCK tissue with tag1, representing the 

presence of nanotags on the surface of the tissue. The EDS layered images (Figures 3G-3I) of 

the tissue revealed Au footprint on the surface of the tissue, confirming the presence of nanotags 

with the Au nanoparticles as the core (Figure 3I). Figures 3J, 3K, and 3L display SEM images 

at various magnifications that were taken from stained 3-BP tissue with tag1, indicating the 

presence of nanotags on the tissue's surface. The Au footprint on the tissue's surface was detected 

in the EDS layered images (Figures 3M–3N), which supported the existence of nanotags with 

Au nanoparticles as the core (Figure 3O). The SEM and EDS images of the 3-BP and MOCK 

tissues with all tags can be seen in the Supporting Information (Figures S6A-S6L).   
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Figure 3. SERS-based molecular imaging of the subcutaneous tumor model of pancreatic cancer. (A-C) 

Representative SERS mapping image of tumor tissue before (MOCK group) and after (3-BP group) 3-BP 

treatment. The figures show (A) brightfield, (B) SERS mapping, and (C) merged images. SERS mapping 

was carried out using nanoparticles coated with anti-TGFβ1 and TPS (tag1) (n = 49,383 spectra), anti-

Caspase3 and D-6 (tag2) (n = 48,125 spectra), and anti-HK2 and 4-MB (tag3) (n = 50,861 spectra) as 

protein targets and Raman encoding molecules, respectively. The spatial resolution of these images is 0.5 

µm. The same SERS tags were used for both MOCK and 3-BP tissues. The scale bar represents 30 µm. (D) 

Scanning electron microscopic (SEM) images of the MOCK tissue probed with tag1 (TGFβ1 and TPS).  

(E, F) zoomed in image of the AuNPs, (G) the corresponding Energy-dispersive X-ray spectroscopy (EDS) 

image of the tissue (H) EDS map of C Kα1,2, and (I) EDS map of Au Mα1 surface profile on the tissue. 

(J) Scanning electron microscopic (SEM) images of the 3-BP tissue probed with tag1 (TGFβ1 and TPS).  

(K,L) zoomed in image of the AuNPs, (M) the corresponding Energy-dispersive X-ray spectroscopy (EDS) 

image of the tissue (N) EDS map of C Kα1,2, and (O) EDS map of Au Mα1 surface profile on the tissue. 

 

Raman spectra of the MOCK and 3-BP groups were obtained to show the biochemical 

changes to the specific biomarkers in the tumor tissues before and after the treatment (Figure 4A 

– 4C). The associated Raman peak for TGFβ1 (2017 cm-1) showed higher intensity for the 

MOCK group than the 3-BP group (Figure 4A). The comparison of the intensity of the 

corresponding Raman peak at 2111 cm-1 for tag2 illustrates a higher expression of Caspase3 

protein in 3-BP treated tissue than in the saline-treated (MOCK) tissue (Figure 4B). The tissues 

stained with tag3, which targets HK2 with the corresponding Raman peak at 2228 cm-1, showed 
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high expression of HK2 in MOCK tissues compared to the 3-BP treated tissues (Figure 4C).  

We also quantitatively compare the Raman maps (Figure 3B) for each tissue with corresponding 

tags; we calculated their pixel intensities using ImageJ. We found a significant decrease (P < 

0.001) in the expression level of TGFβ1 (Figure 4D) and HK2 (Figure 4F) after the 3-BP 

treatment and a significant increase (P < 0.001) in the expression level of Caspase3 (Figure 4E) 

in the 3-BP treated tumor tissues.  In addition, principal component analysis (PCA) plots made 

by Raman speectra collected from the tissues stained with each nanotag, (TGFβ1, HK2, 

Caspase3, and all tags), show cluster between MOCK and 3-BP groups (Figure 4G-4J).
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Figure 4. Comparison of SERS spectra of MOCK and 3-BP groups for (A)  TGFβ1 and TPS (n = 45,257 

spectra), (B) Caspase3 and D-6 (n = 48,675 spectra), and (C) HK2 and 4-MB (n = 48,321 spectra). The 

standard deviation of spectra showed a shaded color around average spectra. The intensity comparison in 

the Raman silent regions (shown by dotted box) clearly showed the decrease in the expression level of 

TGFβ1 and HK2 after 3-BP treatment (A & C). The result also showed an increase in the expression level 

of Caspase3 after 3-BP treatment (B). The vertical bar corresponds to an intensity of 20,000 counts in each 

figure. The comparison of the expression level of proteins calculated from the corresponding SERS 

mapping images are shown for (D) TGFβ1, (E) Caspase3, and (F) HK2. PCA score plots for the first and 

second principal components of MOCK and 3-BP groups are shown for (G) TGFβ1, (H) Caspase3, (I) 

HK2, and (J) all three nanotags. Statistical significance was measured using a two-tailed Student's paired 

t-test with n = 30 for each group. *P<0.05, **P<0.01, ***P<0.001.  

 

 

We further performed multiplexed imaging of the tissues by mixing all three antibody-

conjugated SERS nanotags. Figure 5A shows bright field images of tissues probed with a 

mixture of all three antibody-conjugated SERS nanotags. The corresponding Raman maps are 

shown in (Figures 5B – 5F). We analyzed the Raman maps using the empty modeling method to 

find significant biochemical components and the related spectrum. MOCK and 3-BP groups 

showed three components: tag1, tag2, and tag3 (Figures 5B – 5D). The fourth component was 

found to be the tissue background (Figure 5E). The merged images of all the tags are shown in 

(Figure 5F). The MOCK tissue group stained with the mixture of all tags showed higher 

expression of TGFβ1 and HK2 and lowered expression of Caspase3 compared to the 3-BP tissue 

group. Figure 5G illustrates the Raman spectra of tissues probed with the mixture of antibody-

conjugated SERS nanotags showing simultaneous detection of their peaks with no interference 

(also see Table S7). Figure 5H represents extracted Raman spectra of each component shown in 

Figures 5B – 5D. These results showed successful simultaneous detection of multiple 

biomarkers using SERS nanotags. Moreover, based on the Raman results of these tissues with 

the respective biomarkers, downregulation of TGFβ1 and HK2 and upregulation of Caspase3 

were observed after the 3-BP treatment.  

The findings suggest that the administration of 3-BP to mice led to a decrease in fibrosis and 

cell proliferation. This may be attributed to the crucial role of TGFβ1 in promoting cell 

transformation and the process of epithelial-to-mesenchymal transition while also inhibiting 
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apoptosis.   The diminished expression of HK2 indicated a significant reduction in ATP 

production through glycolysis. This is because HK2 serves as the initial rate-limiting enzyme in 

the glycolysis pathway. Due to 3-BP treatment, severe energy depletion occurs, leading to cell 

death, which is supported by the upregulation of cleaved Caspase3. The increase in cleaved 

Caspase3 is a very well-known marker for apoptosis. The highly expressed cleaved Caspase3 in 

a 3-BP-treated tumor demonstrated that in the 3-BP group, a tumor-suppressing effect and tumor 

cell death occur through the induction of apoptosis. 

 

 

Figure 5. Multiplexed profiling of TGFβ1, Caspase3, and HK2 expression in the subcutaneous tissue from 

tumor model of pancreatic cancer with and without 3-BP treatment. (A-F) Representative mapping data 

comparing brightfield and SERS images of pancreatic tumors treated with saline (MOCK) or drug (3-BP). 

(A) Brightfield images of tissues treated with a mixture of all three tags: TGFβ1 & TPS (tag1), Caspase3 

& D-6 (tag2), and HK2 & 4-MB (tag3). The corresponding SERS images of (B) tag1, (C) tag2, (D) tag3, 

(E) background, and (F) merged images are shown for both the MOCK (n = 49,029 spectra) and 3-BP (n = 

47,775 spectra) groups. The spatial resolution of these images is 0.5 µm. (G) The comparison of Raman 

spectra of tissues containing all three tags is shown for the MOCK (green) and 3-BP (pink) groups. The 

shaded color on the spectra shows the standard deviation. The characteristic peak of TPS (2018 cm−1), D-6 

(2112 cm−1), and 4-MB (2224 cm−1) are shown. (H) Extracted Raman spectrum for each SERS tag identified 
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automatically after analyzing the Raman mapping images using empty modeling statistical method. The 

scale bar represents 30 µm. 

 

2.4. Second Harmonic Generation (SHG) imaging 

 

We studied the collagen content in the MOCK and 3-BP groups to investigate the tumor-

associated microenvironments (TAMs) before and after the drug treatment. Extracellular matrix 

(ECM), capillaries, activated fibroblasts, immune cells, and basement membrane comprise the 

tumor stroma surrounding pancreatic cancer cells.[39] ECM plays a significant role during cancer 

progression since its physical properties can affect tumor stroma and protect tumor cells.[40]  

 

ECM is split into two groups, basement membrane (BM) and interstitial membrane (IM), 

comprising different types of collagens.[40-41] Fibroblasts, cancer-associated fibroblasts (CAFs), 

and tumor-associated fibroblasts (TAFs) are stimulated by ECM remodeling and deposition 

during tumor invasion and progression.[39-40] Fibroblasts synthesize and form various collagens 

and work as mediators for tissue remodeling.[42] Once tumor initiation and progression happen, 

tumors behave similarly to wounds, responding to cancer fibrosis. Studies showed reactive 

stroma contains a high number of fibroblasts leading to collagen deposition around the tumor, 

while the normal ones have a minimal number.[43] To probe the expression level of collagens in 

MOCK and 3-BP treated tumor tissues, we performed SHG to calculate the level of collagen. In 

addition, to validate our SHG results, we performed picrosirius red and polarized light 

microscopy imaging as useful tools providing information about collagen.[44] The representative 

Picrosirius red image (Figure 6A) showed that the number of fibrotic collagen fibers (red color) 

was reduced after treatment in the 3-BP treated group compared to the MOCK group. The 

corresponding SHG images in (Figures 6E – 6G) revealed that the expression level of fibrotic 

collagens declined after treatment, which agrees with the polarization light microscope results 

(Figure 6B).  Calculation of pixel intensity of picrosirius red images using ImageJ also showed a 

significant increase in the level of cytoplasm (yellow color) and a decrease in the level of muscle 

fiber (pink color) in 3BP treated tissues compared to the MOCK tissues (Figures 6C and 6D). 
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Furthermore, a comparison of collagen levels in MOCK and 3-BP treated tissues calculated 

from the SHG images displayed a significant decrease (P < 0.001) in collagen expression after 

treatment in the 3-BP treated group (Figure 6I). However, the elastin level remained similar 

(Figure 6H). Ohlund et al. found highly expressed collagen type I after pancreatic cancer cell 

progression.[45]  To understand the remodeling of TAMs after the 3-BP treatment, we also probed 

the metabolic alterations at the cellular level.[46] According to the Warburg effect, the ATP 

generation through oxidative phosphorylation in cancer cells turns to the aerobic glycolysis 

pathway.[47] Imaging two important metabolic coenzymes, reduced nicotinamide adenine 

dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD), can determine the 

metabolic states of the cells.[48] Using the SHG and two-photon microscopy images, we 

calculated the redox ratio (
𝐹𝐴𝐷

𝐹𝐴𝐷+𝑁𝐴𝐷𝐻
) in MOCK vs 3-BP treated tumor tissues. The redox ratio 

of the drug treated tissue, 3-BP group, showed significant increase (P < 0.001) in the redox ratio 

compared to the untreated tissue, MOCK group (Figure 6J). Varone et al. [48a] reported that a 

shift in metabolism from glycolysis to oxidative phosphorylation is responsible for an increase in 

the redox ratio. 
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Figure 6. Comparison of the collagen expression level in the subcutaneous tissue from tumor model of 

pancreatic cancer before and after 3-BP treatment using multiphoton microscopy. Representative images 

showing the comparison of the (A) brightfield and (B) polarization images before (MOCK) and after (3-

BP) 3-BP treatment of the tumor. The tissues are stained with picrosirius red (PSR). Quantification of 

collagen expression level using (C) PSR staining and (D) polarization images of MOCK and 3-BP tissues. 

Label-free metabolic imaging of MOCK and 3-BP tissues showing endogenous (E) two-photon 

fluorescence (TP), (F) second harmonic generation (SHG), and (G) merged microscopy images.  The (H) 

elastin and (I) collagen levels are quantified from the TP and SHG images, respectively. (J) Comparison 

showing the quantification of redox ratio [FAD/(FAD+NADH)] in MOCK and 3-BP tissues. FAD level 

was derived from the TP images, whereas the NADH level was derived from the SHG images. Statistical 

significance was measured using a two-tailed Student's paired t-test with n=30 for each group. *P<0.05, 

**P<0.01, ***P<0.001; ns = not significant. 
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2. 5. Fluorescence Lifetime Imaging  

 

FLIM has emerged as a promising diagnostic tool for tumor and drug treatment, owing to its 

ability to detect metabolic markers such as NADH and FAD.[49] Figure 7A shows the FLIM 

image of the pancreatic cancer tissue (MOCK) and drug-treated pancreatic cancer (3-BP). In the 

pseudo-colored images, the red color corresponds to a higher lifetime. Figure 7B shows the 

fluorescence lifetime decay curves for the MOCK (blue) and 3-BP treated (pink) samples. The 

figure demonstrates a slower radiative decay process for 3-BP than for MOCK samples. Figure 

7E compares the distribution of 𝜏1 and 𝜏2 for MOCK and 3-BP treated group; here, the intensity 

is fitted with the function: 𝐼(𝑡) = 𝐴1 exp(− 𝑡 𝜏1⁄ ) + 𝐴2 exp(− 𝑡 𝜏2⁄ ) and 𝜏1 corresponds to fast 

components and 𝜏2 corresponds to the slow component of the lifetime, and A1 and A2 correspond 

to the amplitude of the fast and slow decay components, respectively. 3-BP showed higher 𝜏1 

and 𝜏2 compared to MOCK (Figure 7E). This is also confirmed by comparing the mean lifetime 

of these two groups (Figure 7D). The multicomponent nature of the lifetime is confirmed by the 

phasor plot in Figure 7C. The phasor plot is widely used to illustrate various free/bound protein 

NAD(P)H ratios that reveal changes in cell metabolism under particular circumstances.[49] An 

increased shift toward oxidative phosphorylation (OXPHOS) (3-BP treated group) from 

glycolysis (MOCK group) leads the phasor data toward the left side of the phasor plot (bound 

NAD(P)H leads to a higher lifetime).[50] The amplitude ratio (A1/A2) is shown in Figure 7F. The 

amplitude A1 generally signifies unbound NAD(P)H, and A2 signifies bound NAD(P)H. A 

higher amount of unbound NAD(P)H shows in cancer tissues and illustrates the glycolytic 

process. Remarkably, in our experiments, the A1/A2 ratio decreased after 3-BP treatment in the 

3-BP treated group, indicating a decrease in glycolysis.  Heaster et al.[51] showed that tumor-

associated macrophages have a shorter mean lifetime (𝜏𝑚) than dermal macrophages as a result 

of alterations in NAD(P)H and FAD protein-binding activities.  
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Figure 7. Mapping metabolic changes in the subcutaneous tissue from tumor model of pancreatic cancer 

after 3-BP treatment. Fluorescence lifetime imaging microscopy (FLIM) results of (A) MOCK and 3-BP 

sample. (B) Comparison of mean lifetime spectra for MOCK and 3-BP. The 3-BP group shows a slower 

decay rate signifying a larger fluorescence lifetime. (C) The phasor plot for the MOCK and 3-BP groups 

shows that the lifetimes are multicomponent. (D) Comparison of the mean lifetime for MOCK and 3-BP. 

(E) Distribution of faster (τ1) and slower (τ2) decay components of the lifetime for the 3-BP (pink) and 

MOCK (blue) samples. (F) Comparison of the ratio of the amplitude for the faster (A1) and slower (A2) 

decay components of the lifetime for the 3-BP (pink) and MOCK (blue) samples. 

 

 

Because both NADH and FAD lifetime was increased, the lifetime of 3-BP treated pancreatic 

tumor samples in our investigation was consistently higher than that of control tumor (untreated) 

samples. Earlier studies that employed cell lines from metastatic melanoma revealed that the 

average lifetime of NADH was greater in non-metastatic cells compared to their metastatic 

counterparts. Specifically, the average lifetime of NADH in noncancerous cells was found to be 

between 1.4 to 1.9 nanoseconds, while in malignant cells, it ranged between 0.5 to 0.85 

nanoseconds.[52] Experiments using human breast cancer cells demonstrated that hypoxia reduces 

the protein-bound and free NADH lifetime.[53] Skala et al. used two-photon excited FLIM to 

observe NADH and FAD in vivo in an oral cancer model, finding a significant decrease in the 

lifetime with increasing malignancy grade.[54] According to a separate study by Skala et al., the 
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shift from oxidative phosphorylation (OXPHOS) to glycolysis led to a decrease in the 

fluorescence lifetime of protein-bound NADH.[55] Wang et al. used CoCl2 to inhibit OXPHOS 

and 3-BP to inhibit glycolysis in human lung epithelial cells (BEAS-2B).[56] Similar to our 

results, the study showed an increase in fluorescence lifetime compared to the control after the 3-

BP treatment. This was due to the rise in FAD and NADH lifetime and inhibition of glycolysis. 

Our findings from data on the pancreatic tumor model are in line with the latest FLIM 

investigations in these in vitro or in vivo models. 

 

2.6. Lipidomics analysis 

 

To understand the changes in the lipidomic profile of tissue after 3-BP treatment, we 

performed an untargeted LC-MS analysis. About 301 distinct lipid species were found using the 

LC-MS analysis. The results revealed lipid species profiles in MOCK samples were altered after 

treatment with 3-BP in treated samples. As can be seen in the cumulative lipid composition 

analysis in (Figure 8A), the MOCK sample has higher lipid compositions in comparison to 3-BP 

treated samples. Although lipids can boost pancreatic cancer cell growth, fatty acids de novo 

synthesis can be triggered by tumors for the rapid proliferation of cells.[57] The volcano plot of 

these species can be seen in (Figure 8B) with upregulated (red color) and downregulated (blue 

color) lipid species in 3-BP treated group compared to MOCK. A threshold of 2.0 for fold 

change and 0.05 for P-value was established. The volcano plot integrates fold change (FC) 

analysis and t-test into a single graph.  We found that 33 lipid species were significantly 

upregulated, and 25 species were significantly downregulated in the 3-BP treated group 

compared to the MOCK group.  Figure 8E shows Heat map clustering analysis for these 

upregulated and down-regulated lipids for each class of lipid species. The cumulative 

LysoDGTS and MGDG groups significantly decreased after 3-BP treatment compared to 

MOCK. TG was significantly elevated in the 3-BP treated group compared to the MOCK group. 

The treated (3-BP) and untreated (MOCK) pancreatic tumor samples were readily differentiated 

using PCA based on lipidomics analysis (Figure 8D). The distribution of the two groups' lipid 

metabolisms in different areas suggests that each group's lipid metabolism has its distinct 

features. The samples all fell within Hotelling's T Squared Ellipse's 95% confidence interval. 
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PCA analysis (Figure 8D) for the 3-BP treated and MOCK samples shows that the two data sets 

are significantly distinct due to the profile alteration in lipid species.  

 

The plotted hierarchically clustered heat map (Figure 8C) analysis shows the upregulated 

(red) and downregulated (blue) lipid species in 3-BP treated and MOCK groups. The analysis 

categorized via Variable Importance in Projection (VIP) scores (shown in Figure 8H) indicates a 

clear difference in lipid species for each group among MOCK and 3-BPsamples. Figure 8H 

shows that in 3-BP samples, lipids subspecies including LysoDGTS (21:7), MG (19:8), PC 

(16:2), MGDG (18:5), TG (22:5), MG (18:8), PC (12:5), CL (24:2), DG (24:7), MG (27:10), MG 

(8:3), PC (17:2), DG (7:4), LysoDGTS (22:10), TG (27:9), DG (25:10), LysoDGTS (17:8), 

MGDG (17:2), DGTS (14:3), PC (27:4), MG (29:4), MG (10:1) are significantly upregulated, 

while MG (19:3), MGDG (18:3), MGDG (19:2) lipid species are shown to be downregulated. 

Figures 8F and 8G show significant downregulation of cumulative LysoDGTS (P<0.05) and 

MGDG (P<0.01) in 3-BP samples after treatment.  The level of LysoDGTS is positively 

correlated with the level of Apolipoprotein A1 (ApoA1).[58] ApoA1 is shown to have antitumor 

properties in pancreatic and other cancers.[59] Although, estrogen receptor (ER) positive breast 

cancer tissue showed that increased apoA1 levels contributed to treatment resistance.[60] It was 

found that apoA1 level increases glycolysis.[61] Our study found that the cumulative LysoDGTS 

decreased with 3-BP treatment, which could reduce the apoA1 level and the glycolysis. The 

reduction in glycolysis will reduce the glucose oxidation rate and the proliferation of cancer 

cells. Thus, our lipidomic study potentially links the lipid metabolism pathway in 3-BP treated 

tissues.  
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Figure 8. Profiling lipidomic changes in the subcutaneous tissue from tumor model of pancreatic cancer 

after 3-BP treatment. (A) Comparison of the histogram of cumulative lipid composition between MOCK 

and 3-BP groups showing a decrease in lipids after treatment (3-BP). (B) Volcano plot showing the 

upregulated (red) and downregulated (blue) lipid species in the 3-BP group compared to the MOCK group. 

(C) Hierarchically clustered heat maps show each group's lipid species change. (D) PCA score plot of the 

3-BP and MOCK lipidomic datasets. (E) Heat map showing the difference in the alteration of each lipid 
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class. (F) LysoDGTS and (G) MGDG were significantly downregulated in the 3-BP group compared to the 

MOCK group. (H) Plot showing the top 25 lipid species with Variable Importance in Projection (VIP) 

scores > 1.8 obtained using Partial Least Squares Discriminant Analysis (PLS-DA). The red color box in a 

particular group indicates that specific species is significantly upregulated, and the blue color box indicates 

the related species is significantly downregulated.  

 

 

We further analyzed the Raman images of the tissues by the Direct Classical Least Squares 

(DCLS) method[62] to profile lipid changes on the surface of tissues before and after treatment. 

The DCLS method is proper when we have a reference spectrum of the component we are 

profiling: lipids spectra. Figure 9A represents merged images of two lipid species for MOCK 

and 3-BP tissues. The corresponding Raman maps show a higher level of expression for PC, 

DHA, and LA in MOCK tissues, while TG, CL, Ch, AA, and OA is highly expressed in the 3-BP 

tissues after treatment. The corresponding effect size comparison showed a higher effect size for 

TG, PA, Ch, CL, AA, and OA in the 3-BP treated group compared to the control group (Figure 

9B). The corresponding plots of lipid scores are presented for the MOCK and 3-BP groups 

(Figure 9C and 9D). According to the plots, TG, CL, Ch, AA, and OA increased, while PC, 

DHA, and LA decreased after treatment with 3-BP. This result is consistent with the lipidomics 

data.   
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Figure 9. Representative Direct Classical Least Squares (DCLS)-based Raman mapping images comparing 

profile changes of various lipids expressed on the surface of tissues between MOCK and 3-BP group. (A) 

Merged images showing profile changes of Triglyceride (TG, green) and Cardiolipin (CL, red), 

Phosphatidyl Choline (PC, pink) and Cholesterol (Ch, red), Arachidonic Acid (AA, blue), and 

Docosahexaenoic Acid (DHA, green), Linoleic Acid (LA, cyan), and Oleic Acid (OA, red). (B) Comparison 

of the effect size of lipids calculated using Mann-Whitney U statistic and rank-biserial correlation. The 

corresponding Violin plots comparing each lipid score extracted from the Raman mapped images of MOCK 

and 3-BP tissues are shown for (C) TG, CL, PC, and Ch. (D) Lipid scores are plotted for AA, DHA, LA, 

and OA.     

  

 

To further confirm the association of lipid metabolism with 3-BP treatment, we performed 

pathway analysis using the lipidomics data. Figure 10A shows the pathway enrichment results of 

the lipid-related genes in terms of the clusters. Cluster C2 is shown to have a high enrich ratio. 

The most significantly enriched pathways are represented in the form of clusters. The enrichment 

analysis revealed that Cluster C2 had a high enrich ratio with various pathways, including alpha-

linoleic acid metabolism, glycerolipid metabolism, linoleic acid metabolism, ether lipid 

metabolism, and glycerophospholipid metabolism. Furthermore, the glycerophospholipid 
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metabolism pathway had a higher gene count (as indicated in Figure 10B) within this cluster.  

The lipids network graph (Figure 10C) shows the involvement of PCs and DGs in promoting 

pancreatic cancer cell proliferation. Our results suggest that the lipid metabolism pathways play 

an essential role in remodeling the pancreatic cancer tissue microenvironment. 
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Figure 10. Lipid metabolism-related pathways due to 3-BP treatment. (A) Visualization of gene-list 

enrichment results. The bar plot of the P-value represents the different pathway analyses in terms of other 

clusters. (B) The enrichment network constructed using KEGG pathway analysis shows the significant 

pathways (P < 0.05) associated with differentially expressed lipid-related genes. The number of lipid-

related genes engaged in the pathway is reflected by the size of the nodes, which are filled according to –

log10 (P-value). The line width shows the value of gene similarity between the pathways. (C) Lipid network 

graph generated using BioPAN for the 3-BP and MOCK group. Active lipids and active pathways are 

represented by green-shaded circles and shaded arrows, respectively. The green arrows denote reactions 

with a positive Z-score, and the purple arrows indicate reactions with negative Z-scores. 
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Figure 11. Schematic showing the mechanism of 3-BP and lipid metabolism in pancreatic cancer. 

Pancreatic cancer's lipid metabolism regulation involves enhanced glycolysis during TGFβ-induced 

signaling, resulting in high glycolytic activity in cancer cells. This increase in activity is due to the activation 

of glycolytic enzymes such as GLUT1, HK2, PFKFB3, PFK1, PKM2, and LDHA. In addition, the TGFβ 

signaling also inhibits PDK4, a negative regulator of PDH, which allows pyruvate to enter the TCA cycle.  

 

Furthermore, the mitochondria convert glucose into fatty acids by producing citrate, 

which is subsequently transformed into acetyl-CoA by ACLY.  Acetyl-CoA is regulated by ACC 

and FAS and is used for palmitate synthesis. Finally, the enzyme SCD1 facilitates the 

transformation of saturated fatty acids into monounsaturated fatty acids, which create 

phospholipids used in membrane construction and encourage the proliferation of tumors.  In 

cancer cells, fatty acids are rapidly incorporated into triglycerides through either endogenous 



32 
 

synthesis or exogenous uptake, forming the core of lipid droplets. Hypoxia leads to an 

accumulation of these triglycerides and lipid droplets, which is associated with increased 

expression of LIPIN1, a key enzyme that transforms phosphatidic acid into diacylglycerol during 

TG synthesis.  Treatment with 3-BP inhibits HK2 and TGFβ1, leading to decreased lipid 

synthesis and inducing apoptosis through the activation of Casp3. 

 

 

3. Discussion 

 

Pancreatic cancer is characterized by overexpression of HK2, which is associated with 

increased tumor growth (Roy et al, 2022)[3b], and dysregulated lipid metabolism. Notably, HK2 

has been found to play a role in regulating lipid metabolism in pancreatic cancer cells.[63] HK2 

has been shown to regulate the expression of key enzymes involved in lipid metabolism, 

including FASN (fatty acid synthase) and ACLY (ATP citrate lyase).[64] Additionally, HK2 is 

involved in regulating the AMPK (AMP-activated protein kinase) pathway, which plays a crucial 

role in regulating lipid metabolism and metabolic pathway.[65] Specifically, HK2 inhibition has 

been linked to the inhibition of AMPK activity, leading to increased killing of pancreatic cancer 

cells.[66] TGFβ1 signaling is also dysregulated in pancreatic cancer, with evidence suggesting a 

complex relationship with lipid metabolism.[67] Specifically, TGF-β1 has been shown to regulate 

the expression of several genes involved in lipid metabolism, including FASN (fatty acid 

synthase) [68] and SREBP-1c (sterol regulatory element-binding protein 1c).[69] 3-BP inhibits 

HK2, which reduces the GLUT1 activity and reduces lipid synthesis. This is evident by the 

cumulative lipid composition decrease after 3-BP treatment (Figure 7A). 

 

Comparison of data showed strong correlation between Raman and LC-MS results [Pearson 

correlation coefficient R = 0.9935 as well as Raman and IHC results [Pearson correlation 

coefficient R = 0.9999 Tables S8 and S9. We found LysoDGTS (lysophosphatidylglycerol) 

decreased significantly (P<0.001) after 3-BP treatment (Figure 7F). LysoDGTS is a type of 

lysophospholipid implicated in several aspects of cancer biology, including tumor growth, 

metastasis, and chemotherapy resistance. One study found that LysoDGTS and DGTS levels 

were significantly higher in pancreatic cancer patients than in healthy controls.[70] Mutation of 
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p53 proteins leads to loss of tumor suppressive activities and may lead to additional oncogenic 

functions that allow cells to grow and survive.[71] 3-BP has been shown to degrade p53 to reduce 

the mutated p53.[12a] Previous study [72] showed p53 influenced lipid metabolism, and a reduction 

in p53 was accompanied by a reduction in lysophosphatidylglycerol (LysoDGTS) and other 

Lysophospholipids. 

 

The data indicates how pancreatic cancer cells adjust to metabolic stress when faced with 

oncogenic signals such as LSL-KRASG12D. Lysophospholipid collection is a metabolic 

adaptation that cancer cells employ, providing an alternative nutrient source to sustain their 

growth and multiplication even in low-oxygen conditions.[73] Moreover, lysophospholipids are 

critical in biological processes as they function as signaling molecules.[74] Their quantities have 

been linked to cancer cell migration and invasion capabilities and overall regulatory mechanisms 

that maintain autocrine and paracrine signals, which are essential in the interactions between 

tumors and their microenvironments (TMEs).[75] The functions of lysophospholipids mentioned 

above rely on specific phospholipases regulated by intra- and extracellular stimuli.[76] Although 

the precise mechanisms by which LysoDGTS contributes to pancreatic cancer progression are 

not entirely understood, it has been proposed that LysoDGTS, along with different 

phospholipases C (PLC), may stimulate signaling pathways such as PI3K and AKT to enhance 

cancer cell proliferation and migration.[77] 

 

 

4. Conclusions 

 

Our study found that Raman spectroscopy combined with fluorescence lifetime imaging and 

second harmonic generation imaging effectively identifies lipid metabolism-related changes in 

the tumor microenvironment resulting from 3-BP treatment. The approach can be used for other 

drug treatment and disease systems. Future studies will explore its potential for monitoring 

response to primary tumor therapy and developing new cancer gene therapeutics. The study also 

demonstrated the capability of Raman spectroscopy for noninvasive assessment of tumor 

response to antiglycolytic therapy. However, future studies need to address some limitations, 

including evaluating combination immunotherapy and determining whether Raman 
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measurements can predict treatment response. The combination of SERS-based molecular 

imaging and lipidomics can potentially detect functional alterations in molecular markers during 

pancreatic cancer treatment with 3-BP. This approach could serve as a predictive biomarker for 

drug treatment response and resistance. SERS-based imaging of the tumor microenvironment 

with high spatial resolution could be used to anticipate the successful treatment of pancreatic 

cancer. By using a targeted Raman-enhanced molecular imaging approach in conjunction with 

multiphoton and lifetime imaging, multimodal-based imaging can effectively reveal the 

underlying tumor pathophysiology of the tumor microenvironment. Other studies have also 

shown the potential of lipidomics as a source of cancer biomarkers and therapeutic targets, and 

personalized approaches are necessary due to the heterogeneity of cancer. Further investigation 

is needed to understand lipidomes' underlying mechanisms and impact on cancer development 

and progression.  

 

5. Experimental Methods 

 

Materials. Pure gold nanospheres bare (Citrate) with a diameter of 60 nm were purchased from 

nanoComposix, USA. Dimethyl sulfoxide (DMSO) was purchased from Sigma, MO, USA. 4- 

Mercaptobenzonitril (4-MB) and tris(hydroxymethyl)aminomethane (Tris (HCl)) 1 M with pH: 

8.5 were purchased from Biosynth, USA. Phosphate-Buffered Saline (PBS) was purchased from 

VWR, USA. Distilled water, dopamine hydrochloride, Dimethyl sulfoxide-d6 (D-6), and 

trimethyl(phenylethynyl)silane (TPS) were obtained from Sigma-Aldrich, USA. Hexokinase2 

(HK2) and TGFβ1 were purchased from Santa Cruz Biotechnology, USA. Cleaved Caspase3 

antibodies were obtained from Cell Signaling Technology, USA.  

 

Preparation of SERS nanotags. 100 µL of gold nanoparticles (NPs) were functionalized with 2 

µL of 100 mM Raman reporters (RRs) solutions prepared in DMSO and 98 µL of 0.1 mg/mL 

Dopamine in Tris buffer (10 mM, pH 8.5). After centrifugation of solutions for 15 min at 8000 

rpm, the supernatant was extracted, and 100 µL of DI water was added to the precipitates. Again, 

solutions were centrifuged under the same condition to remove all the excess Dopamine and 

untagged RRs; and they were redispersed in 100 µL of DI water. For conjugation of antibodies, 

first, 4 µL of each antibody solution was added to each prepared solution and rotated vigorously 
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using a rotor (FisherScientific, USA) for 5 h and kept at 4 oC for 18 h. After the completion of 

the reaction, 4 µL of 1 mg/mL of BSA solution was added and incubated at 37 oC for 1 h. Then, 

solutions were centrifuged at 8000 rpm for 10 min to remove unconjugated antibodies, 

redispersed in PBS, and stored at 4 oC for future use.  

 

Physical characterization of SERS nanotags 

Dynamic Light Scattering (DLS). Dynamic light scattering (DLS) measurements were carried 

out using a Malvern Zetasizer Nano ZS apparatus (Malvern Panalytical) equipped with a 4 mW 

He-Ne solid-state laser operating at 633 nm, and 25 °C. The backscattered light was collected at 

173°. 

 

TEM. Transmission Electron Microscopy (TEM) images were captured utilizing JEOL JEM-

2010 TEM with an accelerating voltage of 200 kV.  

 

UV-Vis spectrometry. The UV-vis spectra for the bare and conjugated nanoparticles were 

obtained using 6300 PC, VWR.  

 

Raman spectroscopy experiments. Raman spectra of antibodies and nanotags without 

antibodies were captured using a Renishaw inVia Reflex Raman spectrometer, UK with 785 nm 

laser, the objective lens of 50X (long-working distance), (Leica, USA) with different powers 

depending on the type of samples, 1200 grating, and exposure time of 10 s using the extended 

mode. 

  

Tissue experiments 

Animal model. All the animal experiments were approved by IACUC, University of Maryland, 

Baltimore. This study involved the creation of a syngeneic subcutaneous mice model of 

pancreatic cancer, wherein mouse Panc-2 cancer cells were injected into the right flank of 8-

week-old C57BL/6 female mice (n = 16). The animals were randomly assigned to two groups (n 

= 8 per group) and received either a 10-mg/kg 3-BP injection three times per week (every other 

day) for 30 days or a saline-only injection following the same schedule.  Before tumor collection, 

animals were observed for an additional two weeks without being injected. Tissue samples were 
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collected, then treated with 4% paraformaldehyde solution, and kept at room temperature until 

further testing. 

 

Tissue preparation for imaging. Both the control and treated tumor tissue were cryosectioned. 

Cryosections were prepared from frozen samples affixed to chucks with OCT compound and 

sectioned at 5 µm on a Leica CM1950 cryostat. Cryosections were picked up on Superfrost Plus 

Gold slides (Thermo Fisher, USA) and allowed to dry at room temperature overnight. Unstained 

cryosections were rehydrated in DI water before dehydration with ethanol and xylene. Finally, 

the coverslip was placed using Surgipath Sub-X mounting medium on a Leica ST5020/CV5030 

Coverslipper (Leica Biosystems). 

 

Raman imaging of tissues. All the tissue slices mounted on the stainless-steel metal slides were 

incubated with 100 μL of antibodies (anti-TGFβ1, anti-HK2, and anti-Caspase3) conjugated 

SERS nanotags for 1 h. After 1 h incubation, slices were thoroughly rinsed with PBS two times 

to remove nanotags adsorbed nonspecifically. Raman spectra of tag-stained tissues were obtained 

using a Renishaw inVia Reflex Raman spectrometer, UK, with 785 nm laser, Leica 63x water 

immersion objective, using various powers for each group of tissues, with a grating of 1200, and 

using exposure time = 10 s using extended mode. All the spectra were acquired in the 

wavenumber range of 100-3000 cm−1. At least ten spectra were collected for each tissue sample. 

For taking SERS images of the tissues, mapping was done in SteamHR acquisition mode with a 

laser of 785 nm. Leica, 63x water immersion objective, was used with 10% power, 0.1 s 

exposure time, and step size of 0.5 μm, using static mode. To perform Raman spectroscopy and 

microscopy, all the tissues mounted on the metal slides were immersed in DI water, and the 

objective was then immersed in the water. The equipment was calibrated against Silicon (Si) 

peak at 520 cm−1. 

 

Raman map analysis – Empty Modeling. We used Empty modeling implemented in 

Renishaw's Windows®-based Raman Environment™ (WiRE) 4.4 software. Empty modeling's 

algorithm is an unsupervised technique that uses multivariate curve resolution alternating least 

squares (MCR-ALS). In the MCR-ALS method, the Raman spectrum is broken down into its 

component iteratively at each pixel of the Raman map. The fit is optimized at each time step till 
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the desired variance is achieved. The equation used is of the form X = C*ST + E, where X = 

Raman spectra, C = concentration, S = component of the Raman spectra, and E = error; the 

output of the empty modeling analysis is C and S. The assumption in the MCR-ALS method is 

that the Raman spectrum at a pixel is a linear combination of pure component spectra. For 

example, the Raman spectrum at a pixel of a biological sample is a linear combination of the 

spectrum due to protein, DNA, lipid, and glucose molecule at that location. Empty modeling 

provides pseudo-quantitative information, such as the relative concentration profile of each 

component. 

 

Histology. All fixed tissue sections were stained based on the hematoxylin-eosin (H&E) staining 

protocol for histopathological evaluation. Hematoxylin and eosin staining was done in Surgipath 

Sub-X mounting medium on a Leica ST5020/CV5030 autostainer (Leica Biosystems), and used 

SelecTech Hematoxylin 560, Eosin Phloxine 515, bluing, and define solutions (Leica 

Biosystems). Images were captured using NDP.view2 image viewing software, and all the 

images were analyzed with ImageJ. 

 

Picrosirius red (PSR) staining and polarization microscopy. Dewaxed and rehydrated 

sections were stained with a picrosirius red stain kit (Polysciences, Inc., #24901) following 

manufacturer-specified procedures for FFPE and frozen tissue specimens. Collagen birefringence 

was visualized using a Leica DM6B microscope under polarized light at 10x/0.3 NA objective, 

and images were captured with a Leica DFC450 color CCD camera. 

 

 Immunohistochemistry imaging. Immunohistochemical detection of macrophages was 

performed on a Leica BOND-MAX auto-IHC platform running a modified "Protocol F" that 

included a 60 min primary antibody incubation step with a 1:1500 dilution of anti-Iba1 (Fujifilm 

Wako Chemicals, 019-19741) after a 20 min ER1 HIER step and used Leica's Polymer Refine 

Detection kit. Stained slides were dehydrated and coverslipped as above and allowed to dry 

entirely before scanning on a Hamamatsu Nanozoomer slide scanner using a 20x/0.8 NA dry 

objective. Images were captured using NDP.view2 image viewing software. 
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Liquid chromatography-mass spectrometry (LC-MS) experiments. First, all the tissues were 

lysed in a solution containing 250 µL of methanol (LC-MS grade) and homogenized with a 

Qsonica 500 until grinding all the chunks. Samples were kept under refrigeration or in ice 

throughout the sample preparation. Bradford protein quantification (Thermo Scientific) was 

performed to evaluate the protein concentration, and consequently, the tissue concentration was 

established using a 1:10 ratio of protein to tissue. Based on the protein amount measured, 

volumes containing 10 mg of equivalent tissue material were transferred to a new tube, 0.5 µg of 

Equisplash (Avanti Polar, Birmingham, AL) heavy labeled internal standard (IS) solution was 

added, and the sample vortexed for 1 min. Following the addition of the IS, 200 µL of LC-MS 

grade methanol was added, and the samples were vortexed for 1 min. We added 400 µL of 

HPLC grade chloroform to each tube, vortexed for 1 min, and kept it on ice for 10 min. This step 

was repeated three times. A portion (350 µL) of the organic layer was then transferred to a new 

tube and evaporated in a gentle stream of nitrogen. Samples were then reconstituted in 50 µL of 

40% methanol solution containing 0.1% formic acid. 

Agilent 1260 Infinity II quaternary liquid chromatograph coupled to an Agilent 6230 

Electrospray Time-of-Flight mass spectrometer (Agilent, Santa Clara, CA) was used for LC-MS. 

Using a capillary voltage of 4000 V, samples were run. The fragment voltage was set to 125 V, 

and nitrogen was utilized as the drying gas, provided at a rate of 10 L/min at a temperature of 

325 °C. 100-3000 m/z was the mass range that was employed. A binary mixture of mobile 

phases was employed for chromatographic separation using a gradient program utilizing an 

Agilent Poroshell 120 EC-C18 column (2.7 mm ID, 150 mm length, 2.7 µm pores, end-capped) 

at a fixed flow rate of 400 µL/min. The makeup of mobile stages was as follows: A = 0.1% 

formic acid in water and methanol (60:40, v/v), and B = methanol isopropanol (100:10, v/v). The 

gradient program was as follows: 0-5 min = 5% B, 5-30 min, 90% B, 30-35 min 90% B, 35-45 

min 5% B. Each injection had a volume of 5 µL, and samples were run in positive mode. 

Utilizing the Qualitative Analysis Navigator module of the MassHunter Workstation, LC-MS 

samples were exported to mzData file format (Ver. B.08.00, Build 8.0.8208.0).  

 

Multiphoton microscopy of tissues. The two-photon (TP) fluorescence and second harmonic 

generation (SHG) images of tissues were produced using a Spectra-Physics Mai-Tai 

femtosecond tunable pulsed near-IR laser (690 - 1040 nm) with a Leica SP5 resonant scanning 



39 
 

multiphoton confocal microscope. Images were acquired with a 25x water objective and at 

λex=860 nm, 1024 x 1024 resolution using Leica application suit X (LAS X).  

 

Fluorescence Lifetime Imaging Microscopy (FLIM) experiments. A Leica TCS SP8 confocal 

microscope with motorized DIC attachments was used to collect FLIM data. H&E-prepared 

slides were used to achieve the lifetime data. The Pancreatic cancer tissues were excited with a 

white light laser with an excitation wavelength of 561 nm and captured the emitted photons from 

571 to 613 nm. We used a 63x/1.20 NA water immersion objective. Line repetitions and frame 

repetitions were set at 4. The pixel frame size was 1.14 µm x 1.14 µm for the FLIM images with 

a dwell time of 24.41 µs. With a 1.16 mm x 1.16 mm image size and 400 Hz tandem scanner 

speed, the corresponding frame rate shift was 0.024 s–1. The fit for the decay rate was optimized 

after selecting multiple pixel places on the image of interest for finding an optimal χ2 nearly 

close to 1. 

 

Bioinformatics analysis. The data preprocessing and differential expression of lipids were 

performed using the LINT-Web server. The data cleaning and normalization were performed 

using the default settings. The sample clustering was also performed using the LINT-Web.[78] 

The differentially expressed lipids calculation was performed between 3-BP and MOCK groups. 

The 3-BP group was an experimental group, and the MOCK group was the control group. The 

differentially expressed lipids' pathway analysis and lipid gene enrichment were performed using 

the LipidSig web server [79] and BioPAN.[80] 

 

Statistical analysis and data processing. Intelligent fitting of Renishaw's Wire 4.4 (Raman 

Software) was applied to perform baseline subtraction of all Raman spectra. Mapping data of 

tissues were analyzed using the empty modeling method. Plotting of all the Raman spectra was 

performed using OriginLab (OriginLab, Northampton, MA). All the quantifications of Raman 

images and other microscopy images were carried out using ImageJ. A two-tailed Student's t-test 

was used for the P-value calculation (statistical significance). 
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Simultaneous profiling of lipids, collagen, and proteins is challenging using a single 

immunohistochemistry marker. The rational design of surface-enhanced Raman spectroscopy 

(SERS) nanotags in the Raman-silent region helps us to perform spatial mapping of multiple 

proteins and lipids in the pancreatic tumor model after treatment.   
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H&E imaging analysis 

 

Figure S1A shows morphological changes in the tumor following 3-BP treatment (3-BP) 

compared to silane treatment (MOCK) using H & E staining. During H&E staining, cell nuclei 

are stained with hematoxylin (dark blue color), and other structures like cytoplasm are stained 

with eosin (pink color). Both MOCK and 3-BP tissues consisted of cell nuclei and cytoplasm.  

Cell nuclei in the silane-treated tissues (MOCK) look more prominent and darker than in the 3-

BP groups. Based on the pixel intensity of the images (Figure S2B), a significantly higher (P < 

0.001) cytoplasm content was seen in the 3-BP group compared to the MOCK group. The 

increase in cytoplasm expression level illustrates that cell division is inhibited in 3-BP-treated 

tissues compared to the MOCK group. 
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Figure S1. Structural imaging of Pancreatic tumor tissue before and after 3-BP treatment. (A) 

Representative hematoxylin (purple) and eosin (pink) (H&E) stained images of tumor before (MOCK) and 

after (3-BP) 3-BP treatment. (B) Comparison of cytoplasm content of MOCK and 3-BP tissue. The plot 

shows the pixel intensity differences between the two groups (n =3/group). (C) H & E (Hematoxylin and 

Eosin) stained tissue images. The blood vessels are marked with blue arrows, (D) IHC images of MOCK 

tissue, stained with α-SMA and vimentin, which are cancer associated fibroblast marker. 

 

 

Raman map analysis using WiRE 

 

As an alternating least square method, the Renishaw Empty Modelling technique works 

without any previous knowledge and reference spectra. In this method from a collected dataset 

containing different components, Empty modelling extract distinguishable components spectra 

(with blue color) with their Raman map images indicating the distribution of the components 
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withing the Raman image based on the below matrix equation. In the dataset, the Raman spectra 

of the image (collected spectra of the sample) shows with red color.  

 

𝑋 = 𝐶 ∗ 𝑆𝑇 + 𝐸                                                                                                                             (1) 

 

X is dataset matrix, C image concentration, S extracted spectra, and E error.  

 

Empty Modeling Steps 

 

1- Open collected dataset in WiRE software → Analysis → Mapping Review → In the map 

selection window choose Empty Modelling → Press create with the following setting.  

 

   

Figure S2. An example of the collected dataset.  
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Figure S3. Steps showing how to create Empty Modelling analysis.  

 

 

Some Examples of Empty Modelling  

 

Figure S4 showing the generated Raman map with its meaningful spectrum. This image was 

recorded for the MOCK sample probed with SERS nanotags, Au+Dopamine+TPS+TGFβ1. 

Using the above equation of Empty modelling, it can be seen WiRE generated meaningful 

spectrum (blue color) with a peak position around 2017 cm-1 confirming the presence of SERS 

nanotag, Au + Dopamine + TPS + TGFβ1. In addition, the concentration of this component is 

seen with different color distribution throughout the generated mapping image. In this image, 

dark color shows the area with less probability of the presence of mentioned SERS nanotags, and 

brighter red color shows the area with high probability of the presence of mentioned SERS 

nanotags.   
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Figure S4. Screenshot of WiRE window after extracting component with its spectrum from the image of 

MOCK sample probed with Au + Dopamine + TPS + TGFβ1.  

 

 

Figures S5A-S5D showing the generated Raman maps for three meaningful components 

with their relative spectra analyzed through Empty Modelling. This image was acquired from the 

3-BP sample probed with three different SERS nanotags, (Au + Dopamine + TPS + TGFβ1), 

(Au + Dopamine + D-6 + Caspase3), (Au + Dopamine + 4-MB + HK2). As can be seen in Fig 

S5 A, component one with a peak position around 2017 cm-1 indicating the presence of Au + 

Dopamine + TPS + TGFβ1, component two in Figure S5 B with a peak position around 2111 

cm-1 indicating the presence of Au + Dopamine + D-6 + Caspase3, component three in Figure S5 

C, with a peak position around 2228 cm-1 indicating the presence of Au + Dopamine + 4-MB + 

HK2, Figure S5 D without any peak position indicating substrate as its spectrum is not matched 

with sample spectra (red color). In all images, dark color shows the area with less probability of 

the presence of mentioned SERS nanotags, and brighter color shows the area with high 

probability of the presence of mentioned SERS nanotags.    
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Figure S5. Screenshot of WiRE window after extracting component with its spectrum from the image of 

3-BP sample probed with three different SERS nanotags, Au + Dopamine + TPS + TGFβ1, Au + Dopamine 

+ D-6 + Caspase3, Au + Dopamine + 4-MB + HK2. (A) generated components with their spectra for Au + 

Dopamine + TPS + TGFβ1, (B) Au + Dopamine + D-6 + Caspase3, (C) Au + Dopamine + 4-MB + HK2 

(D) substrate. 
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Figure S6. (A) Scanning electron microscopic (SEM) images of the 3-BP tissue probed with all tags (tag1: 

Au + Dopamine + TPS + TGFβ1; tag2: Au + Dopamine + D-6 + Caspase3; tag3: Au + Dopamine + 4-MB 

+ HK2).  (B,C) zoomed in image of the AuNPs. (D) the corresponding Energy-dispersive X-ray 

spectroscopy (EDS) image of the tissue (E) EDS map of C Kα1,2, and (F) EDS map of Au Mα1 surface 

profile on the tissue. (G) Scanning electron microscopic (SEM) images of the MOCK tissue probed with 

all tags (tag1: Au + Dopamine + TPS + TGFβ1; tag2: Au + Dopamine + D-6 + Caspase3; tag3: Au + 

Dopamine + 4-MB + HK2).  (H,I) zoomed in image of the AuNPs, (J) the corresponding Energy-dispersive 

X-ray spectroscopy (EDS) image of the tissue (K) EDS map of C Kα1,2, and (L) EDS map of Au Mα1 

surface profile on the tissue. 
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ImageJ analysis: 

 

1- Open ImageJ software → Open desired image. 

 

 

Figure S7. Original image of generated Raman image. 

 

 

 

2- Image → Color → Spilt channels to red, green, and blue. For each image, used the 

associated channel (For image with red color, red channel was selected for intensity 

measurements)  

 

 

Figure S8. Red channel image after splitting image to three different channels. 

 

 

3- In the selected channel, using the rectangle icon, 10 different regions were selected to 

measure the intensity. 
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4- Analyze → Set measurements (Check Area, Mean Gray Value, Standard Deviation, 

Minimum, and Maximum) → Analyze → Measure.  

 

 

 

Figure S9. 10 various measurements from the red channel image 

 

 

5- Used the 10 different mean measurements in MOCK samples and 10 different mean 

measurements in 3-BP samples to plot bar charts for comparing them using paired comparison 

feature of Origin software.   

 

Raman Peak Assignment  

 

Table S1. Raman peak positions and their vibrational assignment for TGFβ1 

 

 

Raman peak position (cm-1) Assignment 

397  

467 Polysaccharides 

504 Cys-Cys S-S stretch 

560 Polysaccharides 

936 C-C stretch in α helix  

1063 C-C, C-N, C-O stretching  

1130 C-C asymmetric stretching, C-N stretching,  

1250 Amide III in β-sheet 
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Table S2. Raman peak positions and their vibrational assignment for HK2 

 

Table S3. Raman peak positions and their vibrational assignment for Caspase3 

 

Table S4. Raman peak positions and their vibrational assignment for Au + Dopamine + TPS 

Raman peak position (cm-1) Assignment 

1240 Amide III,  antisymmetric phosphate 

stretching  

1454 CH2 or CH3 scissor, /CH2 bending  

1680 Amide I in β sheet  

Raman peak position (cm-1) Assignment 

417  

487 Glycogen 

677 Cys C-S stretch  

850 Tyrosine 

925 C-C stretch in α helix 

1058 C-C, C-N, C-O stretching mode 

1253 Amide III in β-sheet 

1467 CH, CH2, CH3 vibrations,   

NH in plane vibrations 

2887 CH2 Stretch   

2943 CH3 Stretch  

Raman peak position (cm-1) Assignment 

998 C-C stretch 

1174 Cytosine, guanine 

1482  

1591 C=C stretch 

2018 −C ≡ C − 

2183  
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Table S5. Raman peak positions and their vibrational assignment for Au + Dopamine + D-6 

 

Table S6. Raman peak positions and their vibrational assignment for Au + Dopamine + 4-MB 

 

 

Table S7. Comparison of Raman peak positions for all the Raman reporters 

Tag1 

(TGFβ1

+TPS) 

Tag2 

(Caspase3

+D-6) 

Tag3 

(HK2

+4-

MB) 

All tags 

(tag1+tag

2 

+tag3) 

TGF

β1 

Caspase

3 

HK2 TP

S 

D-6 4-MB Ram

an 

ban

d 

rang

e 

(cm-

1) 

  584  397      300-

400 

Raman peak position (cm-1) Assignment 

2116 C-H/C-D symmetric stretching 

2242 C-H/C-D antisymmetric stretching 

Raman peak position (cm-1) Assignment 

363 wagging of Au-CN 

583  

1074 C-C bond of the benzene 

ring 

1177 symmetric C-N stretching 

1585 symmetric benzene ring 

stretching ring 

2225 C≡N 
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     417     400-

450 

    467 487     450-

500 

506 

527 

   504      500-

550 

   583 560      550-

600 

   646    646 622  600-

650 

 650    677     650-

700 

          700-

750 

        765 777 750-

800 

     850     800-

900 

999 993  999 936 925   999  900-

1000 

1025 1031 1076 1076 1063 1058  100

1 

 1073 1000

-

1100 

1130 

1175 

 1177 1176 1130     1184 1100

-

1200 

1200 

1245 

 1200 1200 1250 1253 1240 122

1 

 1204 1200

-

1300 
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1380          1300

-

1400 

1482 1438 1476 1482  1467 1454 148

9 

148

4 

 1400

-

1500 

1592  1586 1592    160

0 

 1592 1500

-

1600 

 1651 1648    1680    1600

-

1700 

2017   2018     200

6 

 2000

-

2100 

2183 2111  2112    216

0 

213

2 

 2100

-

2200 

 2231 2228 2224     225

9 

2227 2200

-

2300 

 2847    2887     2800

-

2900 

     2943     2900

-

3000 
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Table S8. Result of Pearson correlation coefficient calculated from Raman and LC-MS results. 

Lipids 

  
Raman 

   
LC-MS 

 

Pearson 

R 

 
MOCK 3-BP 3-BP/MOCK 

 
MOCK 3-BP 3-BP/MOCK 

 
TG 0.3389 0.3875 1.1434 

 
463895.7 473073 1.0198 

 
CL -0.2337 0.17751 -0.7596 

 
263064.6 232953.9 0.8855 0.9935 

PC 0.21331 -0.15976 -0.7490 
 

243074.8 210828.8 0.8673 
 

 

Table S9. Result of Pearson correlation coefficient calculated from Raman and IHC results. 

   Proteins      

  Raman    IHC   

 MOCK 3-BP 3-BP/MOCK  MOCK 3-BP 3-BP/MOCK 

Pearson 

R 

TGFB1 53.1437 13.3993 0.2521  47.538 1.757 0.0370  
HK2 48.144 14.5238 0.3017  32.442 2.024 0.0624 0.9999 

Caspase3 7.9435 23.881 3.0064  6.745 91.28 13.5330  
 

Table S10. Redox ratio measured by SHG and FLIM.   

  Redox ratio 

 MOCK 3-BP 3-BP/MOCK 

SHG 0.6704 0.8806 1.3135 

FLIM_mean lifetime 0.1885 0.3365 1.7851 

FLIM (A2/A1) 0.057764 0.216282 3.7442 

 

Table S11. Collagen expression level measured by SHG, PSR, and Polarization methods.   

  Collagen  

 MOCK 3-BP 3-BP/MOCK 

SHG 23.67687 8.98353 0.3794 

PSR 143.4695 130.1647 0.9073 

Polarization 15.06993 7.98683 0.5299 

 


