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ABSTRACT: Aromatic electron-deficient heterocycles, such as
pyridines, are found in many biologically relevant structures,
including those with medicinal applications. Methods for their
substitution can streamline the synthesis of valuable molecules and
allow access to unexplored chemical space. However, enantiose-
lective methods for these derivatizations remain lacking, especially
at remote stereocenters. Here, we present a photoenzymatic
reaction for the reductive coupling of electron-deficient hetero-
cycles with alkenes using flavin-dependent “ene”-reductases. This
transformation results in the generation of a y-stereocenter with
high enantioselectivity. We propose that this light-driven trans-
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formation proceeds via excitation of a transient enzyme—substrate complex, enabling the enzyme to access the reductive potential

needed for radical initiation when the substrates are bound in the

active site. This work represents a stereoselective method for

synthesizing derivatives of pyridine and similar heterocycles and an expansion of the substrate capabilities of “ene”-reductases in

chemical synthesis.
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yridine-based scaffolds are indispensable among pharma-

ceutically relevant small molecules, and methods for their
derivatization are mainstays in the medicinal synthetic
toolkit."”” Many strategies toward the synthesis of substituted
pyridines have been developed, employing both ring-building
and derivatization approaches.” > However, many of these
methods cannot introduce stereochemical information, as is
the case with most azine C—H functionalization®” and cross-
coupling strategies.”® Pyridines’ ligand functionality has long
stymied the development of metal-catalyzed methods,” and
when asymmetric methods are successful, control over the new
stereocenter is usually confined to proximal a- or f-
positions.lo_15 Strategies to access y-stereoenriched pyridines
are substantially more rare, relying on the asymmetric addition
of prochiral radicals into vinylpyridines.'°™"* As drug discovery
ventures into three-dimensional space, more diverse methods
will be required to access these sp*-rich molecules with high
selectivity rapidly.'” Our group envisioned that a biocatalytic
method could impart control over constructing a remote
pyridyl y-stereocenter from readily available a-halopyridines,
efficiently increasing the complexity of simple heterocyclic
structures.

Previous work in our lab and others has demonstrated that
flavin-dependent “ene”-reductases (EREDs) can catalyze
various stereoselective C—C,>°™%¢ C—N,>”*®* C—0,’ and
C—S° bond forming reactions. Due to their favorable redox
properties as well as similarity to other ERED substrates,”’
methods for Cy,3—C,,; bond formation have frequently utilized
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a-halocarbonyl compounds as radical precursors. For easily
reduced substrates, such as a-bromo ketones, electron transfer
from the fully reduced flavin cofactor (FMth) occurs in the
ground state.”> When using less reactive substrates, such as a-
chloroamides or alkyl iodides, electron transfer can be initiated
by exciting enzyme-templated charge-transfer (CT) complexes
formed between the substrates and FMth.ZO_Z“'Zé"%Z’33 Based
on these activation modes, we questioned whether alkyl halides
lacking the carbonyl binding handle could serve as radical
precursors. We decided to apply this approach to constructing
pyridine derivatives to develop a highly selective process
compatible with these desirable structures (see Figure 1).
We began by examining the coupling of 4-(chloromethyl)-
pyridine 1 with a-methylstyrene 2 catalyzed by an ERED from
Gluconobacter oxidans (GluER-T36A) (Figure 2). This single
mutant ERED was selected based on its success catalyzing
other reductive coupling reactions in our lab previ-
ously.””*>*#3>°*  Although protonated 4-(chloromethyl)-
pyridine 1 is significantly less challenging to reduce (E,/, =
—0.72 V vs SCE) than chloroamides (Ep/z = —1.65 V vs
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Figure 1. Precedent for and utility of biocatalytic coupling with
pyridyl structures. A. Electron transfer initiation strategies in EREDs.
B. Selected drug molecules bearing electron-deficient heterocycles. C.
Expansion of ERED strategies to pyridyl structures.

‘ene’-reductase (1 mol%)

NN Me NADP* (1 mol%) NP
| + S
O ? : Y
glucose, GDH-105 e

KP, (50 mM, pH 6)

1 2 IPA (10 vol%), 395 nm light 3
entry? conditions? yield 3¢ er. 34
1 GIuER T36A 55% 96:4
2 ERED from G. morbifer (MonstER) 68% 94:6
3 ERED from G. kanchanaburiensis 48% 90:10
4 ERED from G. japonicus 46% 80:20
5 ERED from G. thailandicus 45% 88:12
6 ERED from G. cerinus 42% 84:16
7 ERED from G. frateurii 45% 87:13
8 no enzyme 0% n.d.
9 FMN instead of ERED® 0% n.d.

Figure 2. GIuER homolog screen. *Standard conditions: 1 (10.0
umol, 1.64 mg of hydrochloride salt), NaOH (10 uL of 1 M solution
in water), 2 (40.0 ymol), “ene”-reductase (0.1 umol), NADP* (0.1
pumol), glucose (21.0 pmol), GDH-105 (20 wt %, 0.3 mg),
isopropanol (137.5 uL), buffer (50 mM KP; pH 6, to a total volume
of 1375 uL), 18 h, 25 °C. PPurified “ene”-reductase; full sequence
information included in the Supporting Information. “Assay yield
determined by LCMS against a 1,3,5-tribromobenzene internal
standard. Standard curve is included in the Supporting Information.
Enantiomeric ratio (R:S) determined by HPLC; n.d. = not
determined. “Reaction was run with FMN (0.1 pmol) instead of
enzyme.

SCE*®) or chloroketones (B, = —1.44 V vs SCE™), no
product was observed in the absence of light. However, upon
irradiation with high-intensity cyan LEDs, coupled product 3
was formed in 36% yield alongside 45% yield of 4-
methylpyridine 4, the product of starting material hydro-
dehalogenation. Following a screen of multiple different light
setups (Table S1), the best results were observed using lower-

intensity violet LEDs, which afforded the desired product in
55% yield with only 14% of 4.

To improve the yield of this transformation, we prepared a
collection of GIuER homologs from other species in the
Gluconobacter genus and tested them as catalysts. One “ene”-
reductase from each of the 6 species was chosen based on
sequence similarity and expressed; of these, a wild-type
oxidoreductase from Gluconobacter morbifer dubbed MonstER
was discovered to effect the model reaction in 68% yield and
94:6 e.r. (Figure 2).

Intrigued by the apparent dependence of yield and product
distribution on irradiation wavelength, we performed a
systematic study of different wavelengths with control over
the irradiation intensity. By standardizing the reaction setups
and photon flux, an approximation of an action spectrum could
be obtained, providing a profile of the activity of this system
under different energies of light (Figures 3 and S7, Tables S5—

3

MonstER (1 mol%)
NADP™* (1 mol%)

glucose, GDH-105
KP; (50 mM, pH 6)
IPA (‘IO vol%), light source

entry? light® 1 remaining®  yield 3° e.r.39 yield4° ratio 3:4
1 near-UV (365 nm) 21% 21% 83:17 7% 3.3
2 violet (395 nm) 0% 71% 94:6 23% 3.0
3 indigo (445 nm) 5% 56% 93:7 40% 1.4
4 blue (470 nm) 56% 17% 94:6 27% 0.65
5 cyan (505 nm) 88% 1% n.d. 7% 0.09
6 red (630 nm) 95% 0% n.d. 2% —
7 no light 96% 0% n.d. 0% —

Figure 3. Wavelength studies. *Standard conditions: 1 (10.0 ymol,
1.64 mg of hydrochloride salt), NaOH (10 uL of 1 M solution in
water), 2 (40.0 umol), MonstER (0.1 gmol), NADP* (0.1 pmol),
glucose (21.0 umol), GDH-105 (20 wt %, 0.3 mg), isopropanol
(137.5 uL), buffer (S0 mM KP; pH 6, to a total volume of 1375 uL),
18 h, 25 °C. "Irradiation was conducted using standardized setups
with similar intensity (see the Supporting Information). “Assay yield
was determined by HPLC against 1,3,5-tribromobenzene internal
standard. Standard curve included in the Supporting Information.
dEnantiomeric ratio (R:S) determined by HPLC; n.d. = not
determined.

S7). This would allow us to begin to characterize the various
photoactive species present in the reaction mixture, the
excitation of which could be leading to different mechanistic
pathways.

The desired product 3 is formed across a broad range of
wavelengths from near-UV (365 nm) to cyan (505 nm), with
maximum formation using violet (395 nm) and indigo (445
nm). As the published emission of these LEDs spectra have
minimal overlap with the absorption of FMNj,, direct
excitation of the cofactor alone may not be sufficient to
explain this reactivity.’® The light source displaying the closest
overlap with FMN},, is the 365 nm LED (Figures SS, S8, and
S9); however, this gave poor overall yields. This is likely due to
a combination of enzyme and substrate decomposition under
high-energy irradiation. Formation of the hydrodehalogenated
byproduct 4 showed a different trend, with maximal formation
under indigo (445 nm) irradiation, and small amounts could
be observed under all light sources used, including red (630
nm). This different wavelength dependence results in a
product ratio that changes across the wavelengths studied,
with a distribution biased toward 3 at short wavelengths and 4
at long wavelengths.
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Based on these results, we propose that there are two
important photoactive enzyme-substrate complexes generated
in this reaction. One of these complexes has an absorbance
maximum between 365 and 445 nm and favors the formation
of the desired product 3. This complex likely contains 1 and 2
oriented optimally for carbon—carbon bond formation upon a-
pyridyl radical initiation, resembling the quaternary charge-
transfer complex previously observed between a-chloroamides
and a-methylstyrene in GIuER T36A.”> The second complex
has an absorbance maximum between 445 and 470 nm, and
excitation of this complex leads preferentially to formation of
hydrodehalogenated byproduct 4. We hypothesize that this
complex lacks the alkene, consequently resulting in only
hydrodehalogenation. Indeed, control experiments with 1
equiv of a-methylstyrene 2 result in a 1.5:1 ratio of coupled
product 3 to the hydrodehalogenated product 4 (Table S4).
This result suggests that excess alkene is required to favor
formation of the CT complex composed of the alkene,
chloromethylpyridine, FMN},; and the protein. Unfortunately,
these complexes are difficult to observe via UV—visible
spectroscopy, potentially because of the poor substrate
solubility under the conditions suitable for spectroscopic
measurements (Figure SS). We believe that these wavelength
studies provide substantial evidence for their existence.

Having selected violet LEDs (395 nm) as the best irradiation
source for coupled product formation, MonstER was used to
explore the scope of this transformation (Figure 4). A methyl
substituent on the pyridyl ring is well-tolerated (18), and
interestingly, the 2,6-dimethyl substituted material gave a
product (19) comparable in yield (61%) to the unsubstituted
model system with somewhat lower enantioselectivity. Given
that these methyl substituents create substantial steric bulk
around the pyridyl nitrogen, this suggests that effective
hydrogen bonding to this nitrogen is not required for
productive substrate binding. However, it may play a role in
the geometry of the enantiodetermining step. A pyridine ring
bearing a 3-bromo substituent was also competent in the
reaction (20), providing a potential handle for further
derivatization. The 2-(chloromethyl)pyridine substrate 8 gave
a product (21) in lower yield but still very high
enantioselectivity. We screened a diverse collection of
EREDs on substrate 8 (Table S2), and though none of them
had a higher yield than MonstER, the enzyme OYE1 stood out
for having reversed the enantiomeric preference of the product
(4:96 er.).

A variety of quinolyl and isoquinolyl compounds (22-25)
were also competent substrates. Notable among this category is
the very wide range in selectivities, from the almost racemic 4-
quinolyl to the highly selective 1-isoquinolyl. Again, we suspect
that these results provide a window into the role of substrate
binding geometry in the selectivity of the terminating hydrogen
atom transfer step. A pyrimidyl starting material was also
tested, giving product (26) in moderate yield with excellent
enantioselectivity. On the alkene side, a p-methoxy styrene
partner maintained comparable yields (27) to the model
system with some stereoselectivity. Vinylpyridines in 2- and 4-
substitution patterns (28 and 29) were also effective coupling
partners, affording dipyridyl structures in moderate yields but
with limited enantioselectivity. Lastly, an allyl alcohol partner is
also accepted in a moderate yield (30) with some selectivity.
This structural departure demonstrates that this reaction is not
limited to vinyl arene substrates but might instead accom-
modate a variety of nonstyrenyl coupling partners.

MonstER (1 mol%)
NADP* (1 mol%)

CI+)/|\e

1,513 2,1417

glucose, GDH-105
KP, (50 mM, pH 6)
IPA (10 vol%), 395 nm light

— heterocycle scope
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Me
S
0. Q0
N N
Me

20 X=3-Br 14% yield, 76:24 e.r.
21 32%yield, 98:2 e.r.

D QL
N/ Y | N
Me N

22 51%yield, 86:14 e.r. 23 29%yield, 55:45 e.r.

O I 4 CL/\/@
A A 7
| O AT vy

2N =z Me

24 26%yield, 98:2 e.r. 25 12%yield, 86:14 e.r. 26 42%yield, 98:2 e.r.

— alkene scope

N OMe
-
Ve

27 50% yield, 70:30 e.r.

N A N
|/ \|
’\:Ae

29 38%yield, 66:34 e.r.

,\O\/\/@
= ; \N

Me
28 48%yield, 58:42 e.r.

h@\/\/\
Z y” “OH
I\-/Ie

30 29%yield, 60:40 e.r.

Figure 4. Reaction scope investigation. Absolute (R)-stereoconfigura-
tion of 3 assigned via HPLC by comparison to authentic (R)-3; others
are tentatively assigned the (R)-configuration by analogy. Standard
conditions: (chloromethyl)heteroarene (10.0 ymol of hydrochloride
salt), NaOH (10 uL of 1 M solution in water), alkene (40.0 umol),
MonstER (0.1 gmol), NADP* (0.1 umol), glucose (21.0 umol),
GDH-105 (20 wt %, 0.3 mg), isopropanol (137.5 uL), buffer (S0 mM
KP; pH 6, to a total volume of 1375 uL), 18 h, 25 °C. Yields
determined by '"H NMR against 1,3,5-trimethoxybenzene internal
standard. Enantiomeric ratios (major:minor) were determined by
HPLC.

Isotopic labeling experiments (Figure S) were performed to
probe the source of the radical-terminating hydrogen atom in
MonstER (Table S4 and Figures S2—S4). When reactions are
run with p-glucose-1-H, in a buffer containing > 95% D,0 (to
deuterate active-site residues via solvent exchange that may be

MonstER (1 mol%)

N NADP* (1 mol%) N
{ + X
= Cl )
glucose, GDH-105 M& HD
KP; (50 mM, pH é)
1 2 IPA (10 vol%), 395 nm light 3
entry? deuterium source® yield 3¢ er.3d % D-incorporation®
1 FMN 41% 89:11 73%
2 buffer 50% 93:7 <5%

Figure 5. Isotopic labeling studies. *Standard conditions: 1 (10.0
pumol, 1.64 mg of hydrochloride salt), NaOH (10 L of 1 M solution
in water), 2 (40.0 pumol), GIuER T36A (0.1 umol), NADP* (0.1
umol), glucose (21.0 wmol), GDH-105 (20 wt %, 0.3 mg),
isopropanol (137.5 uL), buffer (S0 mM KP, pH 6, to a total volume
of 1375 uL), 18 h, 25 °C. *Deuterated FMNy,q was generated in situ
using D-glucose-1-d;; deuterated buffer (>95% D,0) was prepared
using D,0 in place of water. “Assay yield determined by '"H NMR
against a 1,3,5-trimethoxybenzene internal standard. dEnantiomeric
ratio (R:S) was determined by HPLC. “Deuterium incorporation was
determined by *C NMR.

https://doi.org/10.1021/acscatal.3c03771
ACS Catal. 2023, 13, 14680—14684


https://pubs.acs.org/doi/suppl/10.1021/acscatal.3c03771/suppl_file/cs3c03771_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscatal.3c03771/suppl_file/cs3c03771_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscatal.3c03771/suppl_file/cs3c03771_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscatal.3c03771/suppl_file/cs3c03771_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscatal.3c03771?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.3c03771?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.3c03771?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.3c03771?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.3c03771?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.3c03771?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.3c03771?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.3c03771?fig=fig5&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.3c03771?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Catalysis

pubs.acs.org/acscatalysis

potential hydrogen atom sources), < 5% deuterium incorpo-
ration is observed, while reactions run with p-glucose-1-d; in
H,O0 buffer (to deuterate flavin at the NS-position via hydride
transfer from deuterated NADPH) result in 73% deuterium
incorporation at the y-position. Additionally, using D-glucose-
1-d, results in somewhat eroded enantioselectivity (89:11 e.r.,
as opposed to 93:7 e.r. with the D,O buffer). Taken together,
these experiments suggest that hydrogen atom transfer occurs
primarily from flavin and that when the flavin is deuterated, the
rate of this transfer event is slowed and other hydrogen atom
sources in the active site become competitive.

In conclusion, we have developed a biocatalytic method in
which halomethylpyridines can be employed as radical
precursors for asymmetric hydroalkylations, providing elabo-
rated structures with highly enantioenriched y-stereocenters.
This is enabled through the excitation of substrate-enzyme
complexes formed in solution, expanding this technology to
noncarbonyl-based substrates that are thus far underutilized in
biocatalytic approaches. We anticipate that this strategy will aid
in the rapid construction of medicinally relevant scaffolds and
set a precedent for this activation mode to be used for a diverse
array of nontraditional radical precursors.
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