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Photoenzymatic catalysts are attractive for stereoselective radical reactions
because the transformation occurs within tunable enzyme active sites. When

using flavoproteins for non-natural photoenzymatic reactions, reductive
mechanisms are often used for radical initiation. Oxidative mechanisms

for radical formation would enable abundant functional groups, such as
amines and carboxylic acids, to serve as radical precursors. However, excited
state flavinis short-lived in many proteins because of rapid quenching by
the protein scaffold. Here we report that adding an exogenous Ru(bpy),>
cofactor to flavin-dependent ‘ene’-reductases enables the redox-neutral
decarboxylative coupling of amino acids with vinylpyridines with high yield
and enantioselectivity. Additionally, stereo-complementary enzymes are
found to provide access to both enantiomers of the product. Mechanistic
studies indicate that Ru(bpy),>* binds to the protein, helping to localize
radical formation to the enzyme’s active site. This work expands the types
of transformation that can be rendered asymmetric using photoenzymatic
catalysis and provides anintriguing mechanism of radical initiation.

Enzymes catalyse a litany of unique and selective transformations to
facilitate essential reactions for life'. The polypeptide scaffold is fre-
quently the target of optimization because its primary sequence can be
modified using various mutagenesis techniques>’. However, cofactors
bound by the protein are often responsible for the bond-forming events
inareaction*”. Asresearchers have explored whether naturally occur-
ring enzymes can catalyse non-natural reactions, the reactivity available
to the cofactor has become central to hypothesis-driven studies® . Fla-
vinisaversatile cofactor with access to different mechanisms based on
itsoxidationstate™". Over the past six years, our group and others have
demonstrated that flavinhydroquinone (FMN,,) and flavin semiquinone
(FMN,,), eitherin their ground or excited states, caninitiate radical reac-
tions via single electron reduction of substrates within the active sites
of ‘ene’-reductases (EREDs)" " and Baeyer-Villiger monooxygenases
(BVMOs)®.Ingeneral, enzymes are tolerant of high reduction potentials
because they lack easily reduced functionality. Moreover, as radical
formation occurs via enzyme-templated charge transfer complexes,
the electron transfer events are localized and minimize the formation
of reactive radical species, which could degrade the protein.

Oxidativeradical formation represents asignificant challenge for
photoenzymesbecause the excited state of flavin can be quenched by
oxidizing amino acid side chains (such as tyrosines or tryptophans),
making it challenging to use this state for productive chemistry?. Fatty
acid photodecarboxylase (FAP) is the only known flavoprotein to use
its excited state to oxidatively generate substrate-centred radicals®.
This enzyme has along-lived excited state and is fluorescent because
there are few tyrosines and tryptophans proximal to the flavin cofactor
(Y156 8.55 A, Y466 8.62 A)>. However, this proteinis currently limited to
hydrodecarboxylation reactions® ¢, We sought to develop astrategy
thatwould enable catalytically promiscuous EREDs to utilize oxidative
mechanisms for radical formation as it would allow ubiquitous moie-
ties, such as carboxylic acids and amines, to serve asradical precursors
forintermolecular reactions”?,

Reductive quenching by the protein scaffold accounts for the
short-lived excited state (24 ps) of FMNin old yellow enzyme 1 (OYE1)”.
Consequently, rather than relying on FMN for substrate oxidation,
we considered adding an exogenous photo-oxidant to initiate radical
formation within the protein active site. As this oxidizing cofactor
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Fig.1|Strategies for photoenzymatic oxidative radical formation for
anintermolecular coupling reaction. a, The excited state of flavin can be
quenched by oxidizing amino acid residues, such as tyrosines and tryptophans.
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b, Strategy for oxidative radical generation via photoenzymatic catalysis.
¢, Enantiodivergent decarboxylative alkylation using synergistic
photoenzymatic catalysis.

would not be localized within a protein active site rich with tyrosines
and tryptophans, the excited state could be sufficiently long-lived to
enable substrate oxidation. We previously demonstrated that exog-
enous photocatalysts could reduce substrates within ERED sites*®*". In
these systems, the protein can activate the substrate for reduction by
servingas ahydrogen-bond donor, making reduction within the active
site thermodynamically favoured. However, this type of mechanismis
ineffective for controlling oxidative radical formation. We set out to
develop a synergistic approach for oxidative radical formation in the
hope that a selective reaction would reveal a new control mechanism
that could be broadly applied to oxidative radical formation within
proteins. In this Article, we report an enantiodivergent decarboxyla-
tive alkylation of amino acids with vinylpyridines and demonstrate up
t092%yield and 99:1enantiomericratio (e.r.) by adding an exogenous
Ru(bpy),>* cofactor to flavin-dependent EREDs. Mechanistic studies
indicate that Ru(bpy),>* binds to the protein, which localizes radical
formation to the enzyme’s active site (Fig. 1).

Results and discussion

Reactiondevelopment

We initiated our studies by exploring the redox-neutral coupling
of N-phenyl glycine 1a with vinylpyridine 2a (Fig. 2). This reaction
involves the generation of a nucleophilic radical, an intermediate
with different reactivity to electrophilic radicals currently used by
EREDs. It affords a chiral product containing a pyridine ring, which is
a common motif in pharmaceuticals®. While this type of transforma-
tion was previously rendered asymmetric using chiral phosphoric
acids, we envisioned a biocatalytic variant as a proving ground for
an alternative photoenzymatic radical initiation mechanism**>*. In
a previous study, we demonstrated that combining the ERED from
Nostoc punctiforme (NostocER) with Ru(bpy),Cl, as aphoto-reductant
enabled the asymmetric reduction of vinylpyridines®. When using
the same reaction conditions but for the proposed decarboxylative
coupling, we observed the desired product in 83% yield with 80:20
e.r.Building on this result, we tested a series of ERED homologues and
ultimately found that old yellow enzyme 3 (OYE3) formed product in
90%yield with 93:7 e.r., favouring the S-enantiomer. During this screen,
we also found that GIUER-T36A, the enzyme we often used for reduc-
tive coupling reactions, afforded product in 70:30 e.r., favouring the

A OYE3 (1 mol%) N
. o
PHHN__CO.H + N/ Ru(bpy)sCla-6H20 (1 mol%)  phiN N/
GDH-105, NADP*, glucose
© Tris buffer, DMSO Me
1a 2a Blue LEDs (8)-3
Entry®° Enzyme screen Yield (%) e.r.
1 NostocER 83 80:20
2 OYE3 90 93:7
3 GIUER-T36A 68 30:70
4¢ GIUER-T36A-Y343D 44 11:89
-------------- Variation from reaction with OYE3 =-=-=-===========--c-c-c-c--o
5 No OYE3 70 50:50
6 No Ru(bpy)sCl> 3 97:3
7 No GDH-105, NADP*, glucose 78 76:24
8 No Ru(bpy)sCly, GDH-105, NADP*, glucose 2 65:35
9 No OYE3, GDH-105, NADP*, glucose 51 50:50
10 No light 0 -

Fig. 2| Optimization of enantioselective decarboxylative alkylation. “Reaction
conditions: N-phenylglycine (1a,10 pmol, 1equiv.), 2-(prop-1-en-2-yl)pyridine
(2a,35umol, 3.5 equiv.), purified OYE3 (1 mol%), Ru(bpy),Cl,-6H,0 (1 mol%),
NADP* (1 mol%), GDH-105 (0.3 mg ml™) and glucose (1.5 equiv.) in Tris buffer

(900 1,100 mM, pH 7.6), with DMSO (150 pl, 14% v/v) as co-solvent. The final total
volume was 1,050 pl. Reaction mixtures were irradiated with blue light-emitting
diodes (LEDs) under anaerobic conditions at room temperature for 14 h. “Yield
(average of duplicate measurements) determined using liquid chromatography-
mass spectrometry relative to aninternal standard 1,3,5-tribromobenzene (TBB).
e.r.(5:R) determined by high-performance liquid chromatography on achiral
stationary phase. “Tricine buffer (100 mM, pH 9.0),16 h.

R-enantiomer. Testing previously compiled mutants, we found that
GIuER-T36A-Y343D improved the enantioselectivity to 89:11 e.r. with
44%yield. A test of different photocatalysts with both enzymes failed
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to enhance the yields or enantioselectivities. Control experiments
confirmed essential features of this reaction. When OYE3 is removed,
the coupling reaction occursin71% yield but as aracemate, indicating
that the photocatalyst can facilitate radical initiation and termination
without the protein. By contrast, when the photocatalyst is removed,
the productis formedin 2% yield but with 97:3 e.r., suggesting that the
proteinis responsible for radical termination. The reduced enantiose-
lectivity observed when the cofactor turnover mix is removed (65:35
e.r.)islikely due to radical termination from FMN,, rather than FMN,,.
AsFMN;, has aweaker N5-H bond (59.5 kcalmol™) than FMNy,, (79.3 keal
mol™)*, radical termination should have an earlier transition state
resulting in reduced enantioselectivity. Consequently, it is essential
toaddacofactorregeneration systemto ensure that reactionsinitiate
with FMN in the hydroquinone oxidation state. Moreover, to avoid a
racemic background reaction, the loading of Ru(bpy);Cl, needs to be
precisely controlled (1:1ratio with OYE3).

Mechanisticinvestigations

Withaselectivereaction, we wereinterested in understanding how high
enantioselectivity is achieved despite the potential for a significant
racemic background reaction. Our initial hypothesis was that ERED acti-
vated the substrate for oxidation via a proton-coupled electron transfer
mechanism. If this were the case, we would expect the reaction to be
accelerated by the presence of the protein because thefirstirreversible
stepis oxidative decarboxylation. To our surprise, nearly identical rates
were observed with and without protein, suggesting that the protein
isnotaccelerating carboxylic acid oxidation (Supplementary Fig. 28).
This is further supported by Stern-Volmer quenching studies, which
indicate that N-phenylglycine quenches Ru(ll)* with a quenching rate
constant of K, = 41.4 M™'s™ (Fig. 3a). When reduced OYE3 is added to
the same quenching experiments, anegligible change inthe quenching
constantis observed, confirmingthat the protein does not accelerate
substrate oxidation (Supplementary Fig. 21).

Havingruled out enzyme activation of the substrate for oxidation,
we considered thatradical formation and C-Cbond formation occurs
insolutiontoformapersistent or dynamically stable radical selectively
terminated within the protein active site. We conducted a density func-
tional theory (DFT) calculation to probe this possibility to determine
the strength of the C-C bond formed upon radical dimerization. We
calculate the bond strength as 35.4 kcal mol™ (Fig. 3b). While weaker
than a prototypical C-C bond (80 kcal mol™), it is too strong to form
reversibly, indicating that radical generation and C-Cbond formation
arenot occurringinsolution®.

Our final hypothesis was that radical formation occurs within
the protein active site because of an association between the pho-
tocatalyst and the protein. This association would ensure that radi-
cal formation occurs near the enzyme’s active site, helping to favour
termination within the active site rather than in solution. To probe
this possibility, we conducted fluorescence-quenching experiments.
OYE3is a steady-state quencher of the Ru(bpy),>* excited state. When
time-resolved fluorescence quenching was conducted, we did not
observe quenching, indicating a static quenching mechanism where
Ru(bpy),** associates with OYE3 (refs. 38,39). Based on the quencher
concentration, we calculate aK; of 7.94 uM. This indicates a strong asso-
ciationbetween the enzyme and the cofactor, providing amechanism
for localizing radical formation near the protein (Fig. 3¢). While the
exact location of association is unknown, previous studies by Wilson
and co-workers suggest that Ru(bpy),**and structural analogues tend
toreside in hydrophobic pockets on the protein surface®. Examining
an electrostatic map of OYE3 reveals possible hydrophobic pockets
flanking the flavin binding site where the photocatalyst could bind.

We propose the following mechanism based on the association
between the photocatalyst and enzyme (Fig. 3e). Initially, the ERED is
reduced from FMN,, (flavin quinone) to FMN,,, using the cofactor turno-
ver mix. Next, the N-phenylglycine and the vinylpyridine bind to the

proteinactive site. Excitation of Ru(bpy),** affords an excited state that
oxidizes the carboxylate to afford an a-amino radical and Ru(bpy),**. To
determine whether the photocatalyst oxidizes the amine or carboxy-
late, we tested N-[(trimethylsilyl)methyl]aniline (1b, E,, = +0.53 versus
standard calomel electrode (SCE)) (Supplementary Fig. 29)*°. This
coupling partner provides the model product 3in 76% yield with similar
enantioselectivity to that observed with the carboxylicacid, suggesting
that the radical initiation is most likely to occur through amine oxida-
tion. This a-amino radical can react with the vinylpyridine to afford a
benzylicradical. Experiments with avinylpyridine containing a cyclo-
propane group show formation of the ring-opened product, suggesting
that C-C bond formation occurs via a radical mechanism (Supple-
mentary Fig. 32). The use of a-trifluoromethylstyrene shows coupled
product formation with only 1% yield of defluorination product 6,
indicating that the radical termination occurs viahydrogenatom trans-
fer (Fig. 3d). Deuterium incorporation experiments were conducted
to determine the source of the hydrogen atom. However, the results
of these studies were inconclusive, presumably due to washing out
of theisotopic label* (Supplementary Fig. 34). We reasoned that only
the O-H bond of tyrosine or the N5-H bond of flavin were sufficiently
weak to serve as hydrogen-atom donors. When variants where prepared
where active site tyrosines were mutated to phenylalanine (OYE3-Y83F,
OYE3-Y197F and OYE3-Y376F) and subjected to the standard reaction
conditions, only modest changes in enantioselectivity were observed,
suggesting that none were serving as hydrogen-atom donors (Supple-
mentary Fig.39). Based on these results, the modest level of deuterium
incorporation when using D,0 buffer and theimportance of the cofac-
tor turnover, we hypothesize that FMN,, is responsible for radical
termination. The resulting FMNg, can oxidize Ru(bpy)," via electron
transfer followed by protonation to regenerate FMNy,, and Ru(bpy),*".
Based onthis proposed mechanism, the cofactor turnover mix should
not be necessary. Indeed, when the cofactor turnover mix is replaced
with 1 mol% NADPH, the desired product is formed in 64% yield and
86:14 e.r. (Supplementary Fig. 5). We attribute the lower yields to com-
petitive quenching of [Ru(bpy),?'1*by NADP* (Supplementary Fig. 22).

Substrate scope of the enantiodivergent decarboxylative
alkylation

Encouraged by these initial findings, we beganinvestigating the gen-
erality of our enantioselective decarboxylative alkylation of amino
acids with a-heterocyclic olefins (Fig. 4). Various alkenes with ortho,
meta and para substituents on the pyridine ring were efficiently
converted into cross-coupled products in good yields and with
good levels of enantioselectivity (3, 7-17). Beyond 2-pyridines, this
system also accommodates pyrimidines (to give 18), pyrazines (to
give19 and 20), thiazoles (to give 25 and 26), 3-pyridines (to give 21)
and 4-pyridines (to give 22), yielding the desired products in good
yield and excellent stereoselectivity (up to 99:1e.r. and 2:98 e.r.,
respectively). However, OYE3 was limited to small functional groups
at the a-position of the olefins, either slightly large heterocycles
(to give 23 and 24) or alkyl groups (to give 27-29), decreasing the
stereoselectivity. We anticipated that protein engineering could be
applied toimprove the stereoselectivity in some cases. We note that
aheteroaromatic alkene (to give 30) and acrylamide (to give 32) were
equally tolerated, favouring decarboxylative cross-coupling rather
than direct reduction by EREDs under photoredox conditions®*%,
This highlights the excellent chemoselectivity of our decarboxylative
alkylation technology. Also tolerated are 1,2-disubstituted olefins
(to give 31), albeit with more modest selectivity. Notably, this reac-
tion could occur with 1.0 mmol, affording (§)-3in 70% yield without
reduction in enantioselectivity.

Next, we evaluated the influence of the amino acid precursors
on the catalytic decarboxylative alkylation event. As expected,
the substituents on the phenyl ring of the N-arylglycine were
largely inconsequential to the reactivity profile (products 33-40).
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quenching study indicates that N-phenylglycine quenches Ru(ll)* and the protein
(OYE3) does not accelerate substrate oxidation. b, DFT calculation to determine
the strength of the C-C bond formed upon radical dimerization. 2-Py, 2-pyridine.
¢, Binding assay study of Ru(bpy),Cl, and OYE3, suggesting a strong association
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between Ru(bpy),;>* and OYE3 (K, = 7.94 uM). d, A radical termination study
indicates that radical termination occurs via hydrogen atom transfer from FMN,,
rather than stepwise reduction and protonation. e, Proposed catalytic cycle.
SET, single electron transfer; HAT, hydrogen atom transfer.

In addition, secondary N-phenyl phenylalanine (to give 41) and
indoline-2-carboxylic acid (to give 42) underwent targeted reac-
tion in good yields and with good e.r. values but no diastereoselec-
tivity. This indicates that the stereoselectivity is controlled by the
hydrogen-atom transfer step rather than the C-C bond-formation
step. Amore sterically encumbered tertiary carboxylic acid could be
converted into 43 with moderate enantioselectivity.

Aiming to explore our method’s synthetic applicability, an
anti-human cytomegalovirus (HCMV) compound 47 was synthe-
sized in three steps from 8-aminoquinoline in moderate yield and
with good enantioselectivity* (Fig. 5). Driven by the advantage of the
excellent chemo- and enantio-selectivity of this ERED and photoredox
dual catalytic event, we wondered whether the more electronically
activated olefins can be applied in the reaction. As shown, methyl
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Fig.4|Scope of the enantioselective decarboxylative alkylation. Reaction
conditions for providing (S)-enantiomers: amino acids (10 pmol, 1 equiv.),
a-olefins (35 umol, 3.5 equiv.), purified OYE3 (1 mol%), Ru(bpy),Cl,:6H,0
(1mol%), NADP* (1 mol%), GDH-105 (0.3 mg mI™) and glucose (1.5 equiv.) in
Tris buffer (900 pl,100 mM, pH 7.6), with DMSO (150 pl, 14% v/v) as co-solvent.
The final total volume was 1,050 pl. Reaction mixtures were irradiated with blue
light-emitting diodes (LEDs) under anaerobic conditions at room temperature
for 14 h.Reaction conditions for providing (R)-enantiomers: amino acids

(10 pmol, 1equiv.), a-olefins (35 umol, 3.5 equiv.), purified GIUER-T36A-Y343D
(1mol%), Ru(bpy);Cl,-6H,0 (1 mol%), NADP* (1 mol%), GDH-105 (0.3 mg ml ™)
andglucose (1.5 equiv.) in tricine (900 pl, 100 mM, pH 9.0), with DMSO (150 pl,
14% v/v) as co-solvent. The final total volume was 1,050 pl. Reaction mixtures
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wereirradiated with blue LEDs under anaerobic conditions at room temperature
for16 h.*Yields (average of two separate reactions, determined using liquid
chromatography-mass spectrometry relative to aninternal standard TBB. e.r.
refers to the ratio of (S)- to (R)-enantiomers, determined by high-performance
liquid chromatography on a chiral stationary phase. ®Isolated yields are given
for a0.10 mmol-scale reaction: 3 (84%yield, 93:7e.r.), 9 (58% yield, 96:4 e.r.),
17 (56%yield, 79:21e.r.),18 (68%yield, 93:7 e.r.), 20 (34% yield, 99:1e.1.),
21(66%yield, 85:15e.r.),25 (46%yield, 94:6 e.r.), 34 (74%yield, 92:8 e.r.),

39 (18%yield, 96:4 e.r.), 41 (70% yield, 1:1 diastereomeric ratio (d.r.), 89:11e.r.,
90:10 e.r.). “Tris buffer (900 pl1,100 mM, pH 9.0), with DMSO (150 pl, 14% v/v)
as co-solvent. The final total volume was 1,050 pl. “Without NADP*, GDH-105
and glucose.
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@ Synthesis of HCMV antiviral compound
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Fig. 5| Synthetic application. a, Synthesis of HCMV antiviral compound 47 using OYE3, NaOAc, sodium acetate; EtOH, ethanol. b, Synthesis of y-lactam 50 using OYE3

(EtONa, sodium ethoxide).

methacrylate (48) was subjected to the reaction, followed by treat-
ment with sodium ethoxide (3.0 equiv.), affording y-lactam 50 with
moderate enantioselectivity.

Conclusion

In conclusion, we have established an enantiodivergent decarboxyla-
tive alkylation of amino acids with a-heterocyclic olefins through the
synergistic merger of EREDs and photoredox catalysis. This protocol
is distinguished by its excellent chemo- and enantio-selectivity and
broad scope. Overall, this synergetic approach provides anintriguing
mechanism for radical generation and expands the types of reaction
that canbe rendered asymmetric using non-natural enzymatic catalysis.

Methods

Protein expression and purification

Saccharomyces cerevisiae old yellow enzymes (OYE3s) were expressed
in Escherichia coli BL21 (DE3) after transformation with a plasmid
containing the gene for OYE3. Transformed glycerol stocks were used
to initiate a 5 ml overnight culture in Luria-Bertani (LB) media with
ampicillin (100 pg ml™) at a temperature of 37 °C and with stirring
at 250 r.p.m. Turbo Broth media (500 ml in a 2| baffled shake flask)
containing ampicillin (100 pg ml™) and auto-inducing mixture were
inoculated with 2 ml of the overnight culture and then grown at atem-
perature of 30 °C and with stirring at 250 r.p.m. for 24 h. The cells were
harvested by centrifugation (4,000g, 20 min, 4 °C). Cell pellets were
resuspended in purificationbinding buffer ata concentration of 1 g cell
pellet per 1 ml binding buffer, transferred to 50 ml conical centrifuge
tubes, frozen and stored at -20 °C.

Purification. Cell pellets were thawed in cool water. Enzymatic lysis
was initiated by adding lysozyme (1 mg ml™), DNase I (0.1 mg ml™),
FMN (1 mg ml™) and phenylmethylsulfonyl fluoride (PMSF, 1 mM).
Enzymatic lysis was performed for 30 min with shaking at 37 °C.
Cells were further disrupted by sonication, then the lysates were
centrifuged (20,000g, 1.5 h, 4 °C). Proteins were purified using a
nickel-NTA column. Untagged proteins were washed off the column
with binding buffer A (50 mM TEOA, pH 7.0, 300 mM NacCl, 25 mM
imidazole) over 15 column volumes. Enzymes were eluted with elu-
tion buffer B (50 mMTEOA, pH7.0,300 mM NaCl, 250 mMimidazole)
over five columnvolumes. Yellow fractions containing OYE3 enzymes
were pooled, concentrated using 10 kDa spin concentrators and
subjected to three buffer exchanges into an imidazole free storage
buffer C (50 mM TEOA, pH 7.0). Concentrated enzymes (1-4 mM)

were aliquoted to 100 nmol fractions, flash frozen in liquid nitrogen
and stored at -80 °C until later use.

General procedure for providing the S-enantiomers

Toa4 mlreactionvial charged with astirbar,anamino acid (1,10 umol,
1.0 equiv.) and glucose (2.7 mg, 1.5 equiv.) were added. Then the vial
was transferred into a Coy anaerobic chamber. In the Coy anaerobic
chamber, Ru(bpy),Cl,-6H,0 (0.064 mg, 1 mol%, 100 ul, 0.64 mg ml™
stock solutionindimethylsulfoxide (DMSO), NADP* (1 mol%) and GDH-
105 stock solution [50 pl, NADP* (3 mg) and GDH (12 mg) were dissolved
in2 ml Tris buffer (100 mM, pH 7.6)], an olefin (2, 35 umol, 3.5 equiv.),
Tris buffer (850 pl,100 mM, pH7.6) and DMSO (50 pl, total volume was
150 pl, 14% v/v) were added separately using a pipette. The reaction
total volume was 1,050 pl. Subsequently, purified OYE3 (1.0 mol%)
was added using a pipette. The vial was sealed with a rubber cap and
removed from the anaerobic chamber. Reaction mixtures wereirradi-
ated with blue light-emitting diodes and stirred (200 r.p.m.) for 14 h
while under fan cooling.

General procedure for providing the R-enantiomers

Toa4 mlreactionvial charged with astirbar,anamino acid (1,10 pmol,
1.0 equiv.) and glucose (2.7 mg, 1.5 equiv.) were added. Then the vial
was transferred into a Coy anaerobic chamber. In the Coy anaerobic
chamber, Ru(bpy),Cl,-6H,0 (0.064 mg, 1 mol%, 100 ul, 0.64 mg ml™
stock solutionin DMSO), NADP* (1 mol%) and GDH-105 stock solution
[50 ul, NADP* (3 mg) and GDH (12 mg) were dissolved in 2 ml tricine
buffer (100 mM, pH 9.0)], an olefin (2, 35 pmol, 3.5 equiv.), tricine
buffer (850 pl, 100 mM, pH 9.0) and DMSO (50 pl, total volume was
150 pl, 14% v/v) were added separately using a pipette. The reaction
total volume was 1,050 pl. Subsequently, purified GIUER-T36A-Y343D
(1.0 mol%) was added using a pipette. The vial was sealed with arubber
cap and removed from the anaerobic chamber. Reaction mixtures were
irradiated with blue light-emitting diodes and stirred (200 r.p.m.) for
16 hwhile under fan cooling.

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Thedatathatsupportthe findings in this study are available within the
paper and its Supplementary Information or from the corresponding
author uponreasonable request.
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