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Enantioselective decarboxylative alkylation 
using synergistic photoenzymatic catalysis

Shang-Zheng Sun1, Bryce T. Nicholls    1, David Bain1, Tianzhang Qiao1, 
Claire G. Page1, Andrew J. Musser    1 & Todd K. Hyster    2 

Photoenzymatic catalysts are attractive for stereoselective radical reactions 
because the transformation occurs within tunable enzyme active sites. When 
using flavoproteins for non-natural photoenzymatic reactions, reductive 
mechanisms are often used for radical initiation. Oxidative mechanisms 
for radical formation would enable abundant functional groups, such as 
amines and carboxylic acids, to serve as radical precursors. However, excited 
state flavin is short-lived in many proteins because of rapid quenching by 
the protein scaffold. Here we report that adding an exogenous Ru(bpy)3

2+ 
cofactor to flavin-dependent ‘ene’-reductases enables the redox-neutral 
decarboxylative coupling of amino acids with vinylpyridines with high yield 
and enantioselectivity. Additionally, stereo-complementary enzymes are 
found to provide access to both enantiomers of the product. Mechanistic 
studies indicate that Ru(bpy)3

2+ binds to the protein, helping to localize 
radical formation to the enzyme’s active site. This work expands the types 
of transformation that can be rendered asymmetric using photoenzymatic 
catalysis and provides an intriguing mechanism of radical initiation.

Enzymes catalyse a litany of unique and selective transformations to 
facilitate essential reactions for life1. The polypeptide scaffold is fre-
quently the target of optimization because its primary sequence can be 
modified using various mutagenesis techniques2,3. However, cofactors 
bound by the protein are often responsible for the bond-forming events 
in a reaction4–7. As researchers have explored whether naturally occur-
ring enzymes can catalyse non-natural reactions, the reactivity available 
to the cofactor has become central to hypothesis-driven studies8–12. Fla-
vin is a versatile cofactor with access to different mechanisms based on 
its oxidation state13,14. Over the past six years, our group and others have 
demonstrated that flavin hydroquinone (FMNhq) and flavin semiquinone 
(FMNsq), either in their ground or excited states, can initiate radical reac-
tions via single electron reduction of substrates within the active sites 
of ‘ene’-reductases (EREDs)15–19 and Baeyer–Villiger monooxygenases 
(BVMOs)20. In general, enzymes are tolerant of high reduction potentials 
because they lack easily reduced functionality. Moreover, as radical 
formation occurs via enzyme-templated charge transfer complexes, 
the electron transfer events are localized and minimize the formation 
of reactive radical species, which could degrade the protein.

Oxidative radical formation represents a significant challenge for 
photoenzymes because the excited state of flavin can be quenched by 
oxidizing amino acid side chains (such as tyrosines or tryptophans), 
making it challenging to use this state for productive chemistry21. Fatty 
acid photodecarboxylase (FAP) is the only known flavoprotein to use 
its excited state to oxidatively generate substrate-centred radicals22. 
This enzyme has a long-lived excited state and is fluorescent because 
there are few tyrosines and tryptophans proximal to the flavin cofactor 
(Y156 8.55 Å, Y466 8.62 Å)23. However, this protein is currently limited to 
hydrodecarboxylation reactions24–26. We sought to develop a strategy 
that would enable catalytically promiscuous EREDs to utilize oxidative 
mechanisms for radical formation as it would allow ubiquitous moie-
ties, such as carboxylic acids and amines, to serve as radical precursors 
for intermolecular reactions27,28.

Reductive quenching by the protein scaffold accounts for the 
short-lived excited state (24 ps) of FMN in old yellow enzyme 1 (OYE1)29. 
Consequently, rather than relying on FMN for substrate oxidation, 
we considered adding an exogenous photo-oxidant to initiate radical 
formation within the protein active site. As this oxidizing cofactor 
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R-enantiomer. Testing previously compiled mutants, we found that 
GluER-T36A-Y343D improved the enantioselectivity to 89:11 e.r. with 
44% yield. A test of different photocatalysts with both enzymes failed 

would not be localized within a protein active site rich with tyrosines 
and tryptophans, the excited state could be sufficiently long-lived to 
enable substrate oxidation. We previously demonstrated that exog-
enous photocatalysts could reduce substrates within ERED sites30,31. In 
these systems, the protein can activate the substrate for reduction by 
serving as a hydrogen-bond donor, making reduction within the active 
site thermodynamically favoured. However, this type of mechanism is 
ineffective for controlling oxidative radical formation. We set out to 
develop a synergistic approach for oxidative radical formation in the 
hope that a selective reaction would reveal a new control mechanism 
that could be broadly applied to oxidative radical formation within 
proteins. In this Article, we report an enantiodivergent decarboxyla-
tive alkylation of amino acids with vinylpyridines and demonstrate up 
to 92% yield and 99:1 enantiomeric ratio (e.r.) by adding an exogenous 
Ru(bpy)3

2+ cofactor to flavin-dependent EREDs. Mechanistic studies 
indicate that Ru(bpy)3

2+ binds to the protein, which localizes radical 
formation to the enzyme’s active site (Fig. 1).

Results and discussion
Reaction development
We initiated our studies by exploring the redox-neutral coupling 
of N-phenyl glycine 1a with vinylpyridine 2a (Fig. 2). This reaction 
involves the generation of a nucleophilic radical, an intermediate 
with different reactivity to electrophilic radicals currently used by 
EREDs. It affords a chiral product containing a pyridine ring, which is 
a common motif in pharmaceuticals32. While this type of transforma-
tion was previously rendered asymmetric using chiral phosphoric 
acids, we envisioned a biocatalytic variant as a proving ground for 
an alternative photoenzymatic radical initiation mechanism33,34. In 
a previous study, we demonstrated that combining the ERED from 
Nostoc punctiforme (NostocER) with Ru(bpy)3Cl2 as a photo-reductant 
enabled the asymmetric reduction of vinylpyridines35. When using 
the same reaction conditions but for the proposed decarboxylative 
coupling, we observed the desired product in 83% yield with 80:20 
e.r. Building on this result, we tested a series of ERED homologues and 
ultimately found that old yellow enzyme 3 (OYE3) formed product in 
90% yield with 93:7 e.r., favouring the S-enantiomer. During this screen, 
we also found that GluER-T36A, the enzyme we often used for reduc-
tive coupling reactions, afforded product in 70:30 e.r., favouring the 
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Fig. 1 | Strategies for photoenzymatic oxidative radical formation for 
an intermolecular coupling reaction. a, The excited state of flavin can be 
quenched by oxidizing amino acid residues, such as tyrosines and tryptophans. 

b, Strategy for oxidative radical generation via photoenzymatic catalysis.  
c, Enantiodivergent decarboxylative alkylation using synergistic 
photoenzymatic catalysis.
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Fig. 2 | Optimization of enantioselective decarboxylative alkylation. aReaction 
conditions: N-phenylglycine (1a, 10 μmol, 1 equiv.), 2-(prop-1-en-2-yl)pyridine 
(2a, 35 μmol, 3.5 equiv.), purified OYE3 (1 mol%), Ru(bpy)3Cl2·6H2O (1 mol%), 
NADP+ (1 mol%), GDH-105 (0.3 mg ml−1) and glucose (1.5 equiv.) in Tris buffer 
(900 μl,100 mM, pH 7.6), with DMSO (150 μl, 14% v/v) as co-solvent. The final total 
volume was 1,050 μl. Reaction mixtures were irradiated with blue light-emitting 
diodes (LEDs) under anaerobic conditions at room temperature for 14 h. bYield 
(average of duplicate measurements) determined using liquid chromatography–
mass spectrometry relative to an internal standard 1,3,5-tribromobenzene (TBB). 
e.r. (S:R) determined by high-performance liquid chromatography on a chiral 
stationary phase. cTricine buffer (100 mM, pH 9.0), 16 h.
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to enhance the yields or enantioselectivities. Control experiments 
confirmed essential features of this reaction. When OYE3 is removed, 
the coupling reaction occurs in 71% yield but as a racemate, indicating 
that the photocatalyst can facilitate radical initiation and termination 
without the protein. By contrast, when the photocatalyst is removed, 
the product is formed in 2% yield but with 97:3 e.r., suggesting that the 
protein is responsible for radical termination. The reduced enantiose-
lectivity observed when the cofactor turnover mix is removed (65:35 
e.r.) is likely due to radical termination from FMNsq rather than FMNhq. 
As FMNsq has a weaker N5–H bond (59.5 kcal mol−1) than FMNhq (79.3 kcal 
mol−1)36, radical termination should have an earlier transition state 
resulting in reduced enantioselectivity. Consequently, it is essential 
to add a cofactor regeneration system to ensure that reactions initiate 
with FMN in the hydroquinone oxidation state. Moreover, to avoid a 
racemic background reaction, the loading of Ru(bpy)3Cl2 needs to be 
precisely controlled (1:1 ratio with OYE3).

Mechanistic investigations
With a selective reaction, we were interested in understanding how high 
enantioselectivity is achieved despite the potential for a significant 
racemic background reaction. Our initial hypothesis was that ERED acti-
vated the substrate for oxidation via a proton-coupled electron transfer 
mechanism. If this were the case, we would expect the reaction to be 
accelerated by the presence of the protein because the first irreversible 
step is oxidative decarboxylation. To our surprise, nearly identical rates 
were observed with and without protein, suggesting that the protein 
is not accelerating carboxylic acid oxidation (Supplementary Fig. 28). 
This is further supported by Stern–Volmer quenching studies, which 
indicate that N-phenylglycine quenches Ru(II)* with a quenching rate 
constant of Kq = 41.4 M−1 s−1 (Fig. 3a). When reduced OYE3 is added to 
the same quenching experiments, a negligible change in the quenching 
constant is observed, confirming that the protein does not accelerate 
substrate oxidation (Supplementary Fig. 21).

Having ruled out enzyme activation of the substrate for oxidation, 
we considered that radical formation and C–C bond formation occurs 
in solution to form a persistent or dynamically stable radical selectively 
terminated within the protein active site. We conducted a density func-
tional theory (DFT) calculation to probe this possibility to determine 
the strength of the C–C bond formed upon radical dimerization. We 
calculate the bond strength as 35.4 kcal mol−1 (Fig. 3b). While weaker 
than a prototypical C–C bond (80 kcal mol−1), it is too strong to form 
reversibly, indicating that radical generation and C–C bond formation 
are not occurring in solution37.

Our final hypothesis was that radical formation occurs within 
the protein active site because of an association between the pho-
tocatalyst and the protein. This association would ensure that radi-
cal formation occurs near the enzyme’s active site, helping to favour 
termination within the active site rather than in solution. To probe 
this possibility, we conducted fluorescence-quenching experiments. 
OYE3 is a steady-state quencher of the Ru(bpy)3

2+ excited state. When 
time-resolved fluorescence quenching was conducted, we did not 
observe quenching, indicating a static quenching mechanism where 
Ru(bpy)3

2+ associates with OYE3 (refs. 38,39). Based on the quencher 
concentration, we calculate a KD of 7.94 μM. This indicates a strong asso-
ciation between the enzyme and the cofactor, providing a mechanism 
for localizing radical formation near the protein (Fig. 3c). While the 
exact location of association is unknown, previous studies by Wilson 
and co-workers suggest that Ru(bpy)3

2+ and structural analogues tend 
to reside in hydrophobic pockets on the protein surface39. Examining 
an electrostatic map of OYE3 reveals possible hydrophobic pockets 
flanking the flavin binding site where the photocatalyst could bind.

We propose the following mechanism based on the association 
between the photocatalyst and enzyme (Fig. 3e). Initially, the ERED is 
reduced from FMNox (flavin quinone) to FMNhq using the cofactor turno-
ver mix. Next, the N-phenylglycine and the vinylpyridine bind to the 

protein active site. Excitation of Ru(bpy)3
2+ affords an excited state that 

oxidizes the carboxylate to afford an α-amino radical and Ru(bpy)3
1+. To 

determine whether the photocatalyst oxidizes the amine or carboxy-
late, we tested N-[(trimethylsilyl)methyl]aniline (1b, Eox = +0.53 versus 
standard calomel electrode (SCE)) (Supplementary Fig. 29)40. This 
coupling partner provides the model product 3 in 76% yield with similar 
enantioselectivity to that observed with the carboxylic acid, suggesting 
that the radical initiation is most likely to occur through amine oxida-
tion. This α-amino radical can react with the vinylpyridine to afford a 
benzylic radical. Experiments with a vinylpyridine containing a cyclo-
propane group show formation of the ring-opened product, suggesting 
that C–C bond formation occurs via a radical mechanism (Supple-
mentary Fig. 32). The use of α-trifluoromethylstyrene shows coupled 
product formation with only 1% yield of defluorination product 6,  
indicating that the radical termination occurs via hydrogen atom trans-
fer (Fig. 3d). Deuterium incorporation experiments were conducted 
to determine the source of the hydrogen atom. However, the results 
of these studies were inconclusive, presumably due to washing out 
of the isotopic label41 (Supplementary Fig. 34). We reasoned that only 
the O–H bond of tyrosine or the N5–H bond of flavin were sufficiently 
weak to serve as hydrogen-atom donors. When variants where prepared 
where active site tyrosines were mutated to phenylalanine (OYE3-Y83F, 
OYE3-Y197F and OYE3-Y376F) and subjected to the standard reaction 
conditions, only modest changes in enantioselectivity were observed, 
suggesting that none were serving as hydrogen-atom donors (Supple-
mentary Fig. 39). Based on these results, the modest level of deuterium 
incorporation when using D2O buffer and the importance of the cofac-
tor turnover, we hypothesize that FMNhq is responsible for radical 
termination. The resulting FMNsq can oxidize Ru(bpy)3

1+ via electron 
transfer followed by protonation to regenerate FMNhq and Ru(bpy)3

2+. 
Based on this proposed mechanism, the cofactor turnover mix should 
not be necessary. Indeed, when the cofactor turnover mix is replaced 
with 1 mol% NADPH, the desired product is formed in 64% yield and 
86:14 e.r. (Supplementary Fig. 5). We attribute the lower yields to com-
petitive quenching of [Ru(bpy)3

2+]* by NADP+ (Supplementary Fig. 22).

Substrate scope of the enantiodivergent decarboxylative 
alkylation
Encouraged by these initial findings, we began investigating the gen-
erality of our enantioselective decarboxylative alkylation of amino 
acids with α-heterocyclic olefins (Fig. 4). Various alkenes with ortho, 
meta and para substituents on the pyridine ring were efficiently 
converted into cross-coupled products in good yields and with 
good levels of enantioselectivity (3, 7–17). Beyond 2-pyridines, this 
system also accommodates pyrimidines (to give 18), pyrazines (to 
give 19 and 20), thiazoles (to give 25 and 26), 3-pyridines (to give 21)  
and 4-pyridines (to give 22), yielding the desired products in good 
yield and excellent stereoselectivity (up to 99:1 e.r. and 2:98 e.r., 
respectively). However, OYE3 was limited to small functional groups 
at the α-position of the olefins, either slightly large heterocycles 
(to give 23 and 24) or alkyl groups (to give 27–29), decreasing the 
stereoselectivity. We anticipated that protein engineering could be 
applied to improve the stereoselectivity in some cases. We note that 
a heteroaromatic alkene (to give 30) and acrylamide (to give 32) were 
equally tolerated, favouring decarboxylative cross-coupling rather 
than direct reduction by EREDs under photoredox conditions35,42. 
This highlights the excellent chemoselectivity of our decarboxylative 
alkylation technology. Also tolerated are 1,2-disubstituted olefins 
(to give 31), albeit with more modest selectivity. Notably, this reac-
tion could occur with 1.0 mmol, affording (S)-3 in 70% yield without 
reduction in enantioselectivity.

Next, we evaluated the influence of the amino acid precursors 
on the catalytic decarboxylative alkylation event. As expected, 
the substituents on the phenyl ring of the N-arylglycine were 
largely inconsequential to the reactivity profile (products 33–40).  
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In addition, secondary N-phenyl phenylalanine (to give 41) and 
indoline-2-carboxylic acid (to give 42) underwent targeted reac-
tion in good yields and with good e.r. values but no diastereoselec-
tivity. This indicates that the stereoselectivity is controlled by the 
hydrogen-atom transfer step rather than the C−C bond-formation 
step. A more sterically encumbered tertiary carboxylic acid could be 
converted into 43 with moderate enantioselectivity.

Aiming to explore our method’s synthetic applicability, an 
anti-human cytomegalovirus (HCMV) compound 47 was synthe-
sized in three steps from 8-aminoquinoline in moderate yield and 
with good enantioselectivity43 (Fig. 5). Driven by the advantage of the 
excellent chemo- and enantio-selectivity of this ERED and photoredox 
dual catalytic event, we wondered whether the more electronically 
activated olefins can be applied in the reaction. As shown, methyl 
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and glucose (1.5 equiv.) in tricine (900 μl, 100 mM, pH 9.0), with DMSO (150 μl, 
14% v/v) as co-solvent. The final total volume was 1,050 μl. Reaction mixtures 

were irradiated with blue LEDs under anaerobic conditions at room temperature 
for 16 h. aYields (average of two separate reactions, determined using liquid 
chromatography–mass spectrometry relative to an internal standard TBB. e.r. 
refers to the ratio of (S)- to (R)-enantiomers, determined by high-performance 
liquid chromatography on a chiral stationary phase. bIsolated yields are given  
for a 0.10 mmol-scale reaction: 3 (84% yield, 93:7 e.r.), 9 (58% yield, 96:4 e.r.),  
17 (56% yield, 79:21 e.r.), 18 (68% yield, 93:7 e.r.), 20 (34% yield, 99:1 e.r.),  
21 (66% yield, 85:15 e.r.), 25 (46% yield, 94:6 e.r.), 34 (74% yield, 92:8 e.r.),  
39 (18% yield, 96:4 e.r.), 41 (70% yield, 1:1 diastereomeric ratio (d.r.), 89:11 e.r., 
90:10 e.r.). cTris buffer (900 μl,100 mM, pH 9.0), with DMSO (150 μl, 14% v/v)  
as co-solvent. The final total volume was 1,050 μl. dWithout NADP+, GDH-105  
and glucose.
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methacrylate (48) was subjected to the reaction, followed by treat-
ment with sodium ethoxide (3.0 equiv.), affording γ-lactam 50 with 
moderate enantioselectivity.

Conclusion
In conclusion, we have established an enantiodivergent decarboxyla-
tive alkylation of amino acids with α-heterocyclic olefins through the 
synergistic merger of EREDs and photoredox catalysis. This protocol 
is distinguished by its excellent chemo- and enantio-selectivity and 
broad scope. Overall, this synergetic approach provides an intriguing 
mechanism for radical generation and expands the types of reaction 
that can be rendered asymmetric using non-natural enzymatic catalysis.

Methods
Protein expression and purification
Saccharomyces cerevisiae old yellow enzymes (OYE3s) were expressed 
in Escherichia coli BL21 (DE3) after transformation with a plasmid 
containing the gene for OYE3. Transformed glycerol stocks were used 
to initiate a 5 ml overnight culture in Luria–Bertani (LB) media with 
ampicillin (100 µg ml−1) at a temperature of 37 °C and with stirring 
at 250 r.p.m. Turbo Broth media (500 ml in a 2 l baffled shake flask) 
containing ampicillin (100 µg ml−1) and auto-inducing mixture were 
inoculated with 2 ml of the overnight culture and then grown at a tem-
perature of 30 °C and with stirring at 250 r.p.m. for 24 h. The cells were 
harvested by centrifugation (4,000g, 20 min, 4 °C). Cell pellets were 
resuspended in purification binding buffer at a concentration of 1 g cell 
pellet per 1 ml binding buffer, transferred to 50 ml conical centrifuge 
tubes, frozen and stored at –20 °C.

Purification. Cell pellets were thawed in cool water. Enzymatic lysis 
was initiated by adding lysozyme (1 mg ml−1), DNase I (0.1 mg ml−1), 
FMN (1 mg ml−1) and phenylmethylsulfonyl fluoride (PMSF, 1 mM). 
Enzymatic lysis was performed for 30 min with shaking at 37 °C. 
Cells were further disrupted by sonication, then the lysates were 
centrifuged (20,000g, 1.5 h, 4 °C). Proteins were purified using a 
nickel-NTA column. Untagged proteins were washed off the column 
with binding buffer A (50 mM TEOA, pH 7.0, 300 mM NaCl, 25 mM 
imidazole) over 15 column volumes. Enzymes were eluted with elu-
tion buffer B (50 mM TEOA, pH 7.0, 300 mM NaCl, 250 mM imidazole) 
over five column volumes. Yellow fractions containing OYE3 enzymes 
were pooled, concentrated using 10 kDa spin concentrators and 
subjected to three buffer exchanges into an imidazole free storage 
buffer C (50 mM TEOA, pH 7.0). Concentrated enzymes (1−4 mM) 

were aliquoted to 100 nmol fractions, flash frozen in liquid nitrogen 
and stored at −80 °C until later use.

General procedure for providing the S-enantiomers
To a 4 ml reaction vial charged with a stir bar, an amino acid (1, 10 μmol, 
1.0 equiv.) and glucose (2.7 mg, 1.5 equiv.) were added. Then the vial 
was transferred into a Coy anaerobic chamber. In the Coy anaerobic 
chamber, Ru(bpy)3Cl2·6H2O (0.064 mg, 1 mol%, 100 μl, 0.64 mg ml−1 
stock solution in dimethylsulfoxide (DMSO), NADP+ (1 mol%) and GDH-
105 stock solution [50 μl, NADP+ (3 mg) and GDH (12 mg) were dissolved 
in 2 ml Tris buffer (100 mM, pH 7.6)], an olefin (2, 35 μmol, 3.5 equiv.), 
Tris buffer (850 μl, 100 mM, pH 7.6) and DMSO (50 μl, total volume was 
150 μl, 14% v/v) were added separately using a pipette. The reaction 
total volume was 1,050 μl. Subsequently, purified OYE3 (1.0 mol%) 
was added using a pipette. The vial was sealed with a rubber cap and 
removed from the anaerobic chamber. Reaction mixtures were irradi-
ated with blue light-emitting diodes and stirred (200 r.p.m.) for 14 h 
while under fan cooling.

General procedure for providing the R-enantiomers
To a 4 ml reaction vial charged with a stir bar, an amino acid (1, 10 μmol, 
1.0 equiv.) and glucose (2.7 mg, 1.5 equiv.) were added. Then the vial 
was transferred into a Coy anaerobic chamber. In the Coy anaerobic 
chamber, Ru(bpy)3Cl2·6H2O (0.064 mg, 1 mol%, 100 μl, 0.64 mg ml−1 
stock solution in DMSO), NADP+ (1 mol%) and GDH-105 stock solution 
[50 μl, NADP+ (3 mg) and GDH (12 mg) were dissolved in 2 ml tricine 
buffer (100 mM, pH 9.0)], an olefin (2, 35 μmol, 3.5 equiv.), tricine 
buffer (850 μl, 100 mM, pH 9.0) and DMSO (50 μl, total volume was 
150 μl, 14% v/v) were added separately using a pipette. The reaction 
total volume was 1,050 μl. Subsequently, purified GluER-T36A-Y343D 
(1.0 mol%) was added using a pipette. The vial was sealed with a rubber 
cap and removed from the anaerobic chamber. Reaction mixtures were 
irradiated with blue light-emitting diodes and stirred (200 r.p.m.) for 
16 h while under fan cooling.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data that support the findings in this study are available within the 
paper and its Supplementary Information or from the corresponding 
author upon reasonable request.
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