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ABSTRACT Predictive maintenance is a well studied collection of techniques that aims to prolong the life
of a mechanical system by using artificial intelligence and machine learning to predict the optimal time to
perform maintenance. The methods allow maintainers of systems and hardware to reduce financial and time
costs of upkeep. As these methods are adopted for more serious and potentially life-threatening applications,
the human operators need trust the predictive system. This attracts the field of Explainable Al (XAI) to
introduce explainability and interpretability into the predictive system. XAl brings methods to the field of
predictive maintenance that can amplify trust in the users while maintaining well-performing systems. This
survey on explainable predictive maintenance (XPM) discusses and presents the current methods of XAI
as applied to predictive maintenance while following the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) 2020 guidelines. We categorize the different XPM methods into groups that
follow the XALI literature. Additionally, we include current challenges and a discussion on future research
directions in XPM.

INDEX TERMS Explainable artificial intelligence (XAI), predictive maintenance, industry 4.0, industry
5.0, interpretable machine learning, PRISMA.

I. INTRODUCTION

The history of technological advancements within the past
couple of hundred years is well documented. These centuries
and decades can be categorized into what is described as
revolutions, i.e. Industrial Revolutions [1]. The most recent of
these is agreed to be known as the fourth industrial revolution
or Industry 4.0 [1], [2], [3], [4].

Industry 4.0 is categorized by bridging the gap between
machinery through hardware and software connectivity [5].
This revolution is characterized by the inclusion of human-
machine interfaces, Al, and internet of things technolo-
gies [5]. Through these technologies, we can become more
automated and efficient with new challenges that come
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with big data and cyber-physical systems. One of the
problems created from this revolution has centered around the
optimization of mechanical systems.

One method of optimizing mechanical systems is to
minimize the downtime the system may suffer from due to
break-downs and repairs. To tackle this level of optimization,
researchers of Industry 4.0 have developed the field of
predictive maintenance (PdM). PdM encompasses many
different problems in the field of maintenance, but an
overarching representation of PdM involves monitoring the
system as it is in the present and alerting for any potential
problems such as a specific anomaly or time until failure [1],
[6]. While this problem that exists in the cyber-physical
realm has been well studied from the perspective of deep
learning models, statistical models, and more, the people
that get impacted by these systems have had considerably
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less attention. This change of focus leads us into the fifth
industrial revolution or Industry 5.0.

While the mechanical systems were the focus of the
fourth industrial revolution, human-centered challenges have
become the focus of the fifth revolution. As described by
Leng et al. [2], humans must be important in the processes
related to these important decision-making systems. Naha-
vandi et al. [4] illustrates Industry 5.0 in the realm of a factory
line. The human performs a task that is assisted by an artificial
intelligent agent that can increase the productivity of the
human.

As these systems are moving the focus away from
mechanics and towards humans, a different area must be
brought to the forefront. The way to address human-centered
processes can be derived from the fields of eXplainable Al
(XAI) and Interpretable Machine Learning (iML). XAI and
iML are extensively researched from multiple fields on a wide
array of problems including the various problems in PdM.
Our article’s main contribution involves using the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
statement to organize the XAl and iML works applied to
PdM. We also describe and categorize the different methods,
note challenges found in PAM and provide key aspects to
keep the field of Explainable Predictive Maintenance (XPM)
moving forward.

The article is organized in the following manner. In Sec-
tion II, important information surrounding explainability,
Interpretable Machine Learning, and predictive maintenance
are described. Section III describes the literature search
performed including identification, screening, and inclusion.
In Sections IV,V and VI, the results of the literature review
are categorized and discussed in detail. Section VII discusses
challenges in the field that remain to be addressed, and
Section VIII provides our closing remarks.

Il. BACKGROUND

To accommodate readers of varying backgrounds, we briefly
explain a couple of key topics needed for understanding the
importance of this research, namely Explainable Artificial
Intelligence (XAI), Interpretable Machine Learning (iML),
and Predictive Maintenance (PdM). We will also discuss the
distinction between XAl and iML to inform the readers of the
perspective with which we evaluated the literature.

A. EXPLAINABILITY AND INTERPRETABILITY IN
ARTIFICIAL INTELLIGENCE

The fine distinction between explainability and interpretabil-
ity in the context of Al and ML has raised considerable
debate [7]. While several researchers argue that the terms
are synonymous, viewing them as interchangeable to simplify
discussions [8], [9], [10], [11], others assert that they capture
distinct concepts [12], [13], [14], [15], [16], [17], [18], [19].
Interestingly, a third perspective points out that one term is a
subset of the other, adding another layer to the discourse [20],
[21], [22].
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FIGURE 1. Visualization of XAl Design Cycle.

Explanations

1) EXPLAINABLE ARTIFICIAL INTELLIGENCE

The rapidly growing field of eXplainable Artificial Intel-
ligence (XAI) aims to demystify Al systems by clarifying
their reasoning mechanisms and subsequent outputs [7]. XAl
methodologies can typically be classified based on features
such as the scope of explanation—whether global or local—
and the techniques employed for generating explanations,
like feature perturbation. A unifying theme across these
methods is the endeavor to interpret the workings of
an already-trained model. As Sokol et al. succinctly put
it, explainability is for the model’s output [19]. From a
more analytical standpoint, XAl predominantly encompasses
post-hoc strategies to shed light on otherwise opaque, black-
box models [16]. This paradigm is illustrated in Figure 1,
where a model’s explanations are constructed to enhance user
comprehension.

a: MODEL-AGNOSTIC AND MODEL-SPECIFIC

Explainable methods can be categorized based on their
suitability for addressing various types of black-box models.
Methods that are applicable to models regardless of their
architecture are called model-agnostic. Common methods
that fall into this category are Shapley Additive Explana-
tions (SHAP) [23] and Local Interpretable Model-agnostic
Explanations (LIME) [24]. These methods and additional
model-agnostic methods are described in Section V-A. The
opposite of these methods are known as model-specific.
Model-specific methods such as Class Activation Mapping
(CAM) [25] for Convolutional Neural Networks (CNNs)
are designed to take advantage of the architecture already
to provide explainability. These methods and others are
described in Section V-B.

b: LOCAL EXPLANATIONS AND GLOBAL EXPLANATIONS

Another way of classifying explainable methods is by the
scope of the explaination. These scopes are commonly
described as either local or global. Local explanations aim
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FIGURE 2. Visualization of interpretable ML Design Cycle.

at explaining the model’s behavior for a single data point.
Global explanations provide reasoning that represents the
model’s behavior for any data point.

c: XAl EXAMPLE

To give a concrete example of XAlI, a researcher may want
to use a Long Short-Term Memory neural network for
time-series analysis due to its temporal modeling capabil-
ities [1], [6]. Common deep learning models like this one
are not commonly interpretable, so to make it explainable,
the researcher might consider using a simpler model, i.e.,
linear regression, decision tree, etc., to serve as a surrogate
for post-hoc explanations. These explanations would then be
presented to the user/developer/stakeholder to better explain
the behavior of an inherent black-box architecture.

2) INTERPRETABLE MACHINE LEARNING

Interpretable Machine Learning (iML) describes ML models
that are referred to as white- or gray-boxes [12], and
their interpretability is enforced by architectural or func-
tional constraints. Between the two, architectural constraints
make models simple enough to understand, while physical
constraints attempt to cast the model’s computations in
terms of real-world features. While XAI focuses on the
model’s output, iML focuses on the model itself [19].
This has also been stated as intrinsic interpretability as to
separate it from post-hoc explainability methods [22], [26].
As follows, this article will equate iML with models that
are intrinsically interpretable through methods of structural
constraints, physical bindings, etc. This can be seen in
Figure 2, where there is no need for translating the model
through an explainable method.

For a concrete example, a researcher may have a problem
that could benefit from a simple logistic regression classifier.
With such a simple architecture, the network itself would
be interpretable as it would be clear what inputs affect what
outputs. One could also extrapolate the overarching equation
if the network is simple enough. This illustrates inherent
interpretability.

B. PREDICTIVE MAINTENANCE

Predictive maintenance (PdM) is a subcategory of prognos-
tics and health management (PHM) that has seen widespread
attention in recent years [1], [22], [27], [28]. PdM utilizes Al
and previous failure information from mechanical systems to
predict a fault or downtime in the future [1], [6], [29]. PAM
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]
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non XAI/iML articles
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non PDM case studies
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no explanations of results
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Reports sought for retrieval (n = 116) Reports not retrieved (n = 3)

Reports assessed for eligibility (n = 113) Reports excluded (n = 11)
Neither XAl/iml focused (n = 2)
Mentions XAI/iML but not
focused (n = 3)

FIGURE 3. PRISMA Search.

is implemented with a variety of tools, including anomaly
detection, fault diagnosis and prognosis [22], [28].

Anomaly detection and fault diagnosis have a very distinct
difference. Whereas anomaly detection aims at determining
whether a fault occured or not, fault diagnosis aims to identify
the cause of a fault [28], [30]. This means that anomaly
detection can be thought of as a binary classification problem,
and fault diagnosis can be thought of as an extension of
anomaly detection to a multi-classification problem. Finally,
prognosis deals with predicting the remaining useful life
(RUL) or time until failure [1], [6], [28]. This puts prognosis
in the domain of regression problems. Now that these terms
are defined and categorized into their different problems,
we can discuss the PRISMA compliant systematic search that
we performed.

Ill. SYSTEMATIC SEARCH

We utilized the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) 2020 statement [31],
[32] to layout a systemized methodology of performing a
literature review. The full process can be seen in Fig. 3.

A. IDENTIFICATION

In identifying the potential databases, we focused on popular
computer science publishers as well as general scientific
publishers. We utilized the following databases for literature
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searches: IEEE Xplore, ACM Digital Library, ScienceDirect
and Scopus, all of which were accessed on June 21, 2023.
To capture as much as we could, we searched titles, keywords,
and abstracts with two ideas in mind: XAl and iML and PdM.

In the former case we used explainable OR interpretable
OR xai to capture the first grouping of papers. This should
gather papers with common phrases like explainable artificial
intelligence, explainable machine learning, interpretable ML,
XAl etc. To capture the PAM aspect, we provided more
explicit words so as to represent the research area better.
We used prognos* OR diagnos* OR RUL OR remaining
useful life OR predictive maintenance OR detection. This
would capture ideas such as prognosis, prognostics, diagno-
sis, diagnostics, detection, etc.

In research, words like prognosis and diagnosis appear
in medically related articles. This makes sense as many
can attest that they would go to their physician for a
diagnosis. To minimize the inclusion of medical literature,
ScienceDirect and Scopus were set to look at Engineering
and Computer Science related articles only. Even with this
selection, the initial pool of research was 6932 articles.

This narrowing down of papers was not as effective as we
initially expected as only the titles, keywords, and abstracts
were checked. Prior to removing duplicates, we also removed
articles that did not mention predictive maintenance inside of
the article. After removing those papers and duplicates, the
initial screening started with 296 articles.

B. EXCLUSION CRITERIA AND SCREENING

Our initial screenings involved skimming through the
abstracts, main objectives, conclusions, and images of the
articles. These initial screenings utilized the following
exclusion criteria:

1) Neither XAl nor iML are a main focus of the article.
2) Articles are not PdM case studies.
3) No explanation or interpretation is provided.

The need for the first tow criteria is easily apparent.
Many articles would mention one of the search terms from
XAI/iML, but they would not fall into this category of work
(n = 49). This would mainly emerge as using the words
explainable or interpretable in a sentence of the abstract.
Similarly, to the PAM case studies, many articles mention
diagnosis, and such, in a sentence without it being the focus
of the article (n = 97). However, the third criterion needs a
more in-depth explanation.

When stating that an architecture is interpretable or
explainable, a certain expectation is implanted in the reader’s
mind. This applies to any concept whether it be computer
science related or not. One of the expectations that we agreed
upon was providing proof of interpretability or explainability.
This would necessitate the explanation from the explainable
method or the inherent interpretation of the interpretable
model. With this expectation in mind, a few articles (n = 34)
were removed before in-depth screening due to a mention
of an explanatory method without any output of the said
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FIGURE 5. Google Search Trend for PdM, XAl, and iML from our article
years.

method. This finalized a screening population of 116 articles
which were sought for retrieval. Three were not retrieved by
our resources. Upon further examination, those three articles
seem to lead to dead URLs.

For final assessment of eligibility, all of the resources
were read. Many of the articles that were excluded were
not available outside of a small preview. Of the remaining
113 articles, 11 were excluded for the following reasons:

e Three mention XAI/iML in the abstract but do not utilize
any methods that we could find.

o Two were neither XAl nor iML. These mention search
terms in the abstracts, but do not build on them.

o Three offer no interpretations of their interpretive
method.

o Two mention PdM in the abstract but do not focus on
PdM in an experiment.

« One was not a case study.

C. INCLUSION

After careful review of the articles, we finalized a population
of 102 articles. Our findings and these articles are now
discussed in Section IV.

IV. SEARCH RESULTS

To paint an overarching picture of our results, Fig. 4 shows
a break-down of our inclusion population grouped by year.
This shows a clear increasing trajectory in publications that
can be explained by a few potential factors. Firstly, the
popularity of predictive maintenance continues to increase,
as shown in [1] and in Fig. 5, as we move to a big-data
centric world in industry. This provides more opportunities
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to implement these very large and very complex neural
architectures for making important decisions. The importance
of these decisions leads to a second reason for increasing
importance, trust.

Many articles discuss the importance of increasing the
trust of the users in the model while decreasing the bias in
black-box models [33], [34], [35], [36]. Rojat et al. define
trust as achieved once a model can effectively explain its
decisions to a person [18]. This would necessitate some sort
of explainable or inherently interpretable architecture that
could give the users insight. Furthermore, Vollert et al. [22]
even state that trust is a prerequisite for a successful data-
driven application.

Looking at Fig. 6, our findings reflect the idea that XAI
is slightly more popular than iML in PdM. One potential
reason could be the desire to make use of the benefits from
complex models. Many of the articles utilize architectures
such as Deep Convolutional Neural Networks [37] or Long
Short-term Memory Neural Networks [38] due to their high
performance in the application. With the inherent black-box
nature of these models, these researchers need post-hoc
explainable methods. This desire for XAI over iML seems
to be affecting specific PAM tasks more than others.

The articles are categorized according to PdM task in
Fig. 7, and those are further distinguished into XAI and
iML within tasks in Fig. 8. Our article population reflects
anomaly detection as the main task that utilizes XAI and
iML. Fault diagnosis and prognosis are virtually the same in
number of articles published within this population; however,
Fig. 8 shows that the interest in XAl and iML are reversed
in these groups. Succinctly, prognosis focuses on XAlI, while
diagnosis focuses on iML. We now describe the many
methods that were applied to the varying datasets seen in
Table 1. These methods are split between section V for
XAI methods and section VI for iML methods. Additionally,
specific articles of interest can be found in Table 4.

V. EXPLAINABLE Al IN PREDICTIVE MAINTENANCE

XAI in predictive maintenance captures a wide range of
methods that can be categorized in several ways. To not
repeat information, the methods are broken up into three sub-
sections: model-agnostic, model-specific, and combination.
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The taxonomy that distinguishes the model-agnostic methods
from the model-specific methods can be seen in Fig. 9.

A. MODEL-AGNOSTIC

This section describes the explainable methods in our
population, seen in Table 2, that could be applied to
any architecture. These methods are colloquially known as
model-agnostic explainable methods [149]. These methods
found in this section can be applied to any architecture and
consist of SHAP in Section V-A1, LIME in Section V-A2 and
additional related methods.

1) SHAPLEY ADDITIVE EXPLANATIONS (SHAP).
SHAP values were introduced by Lundberge et al. as a
unified measure of feature importance [23]. SHAP is based on
three properties that are shared with classical Shapley value
estimation: local accuracy, missingness, and consistency.
Local accuracy refers to the ability of the simplified input
to at least match the output of the input from the data.
Missingness refers to the features that are missing from the
simplified input. Succinctly, this states that if a feature is not
useful to the explanation, then it is not useful to the model.
Finally, consistency brings the idea that the importance of
a feature should stay the same or increase regardless of the
other features.

By far, SHAP is the most used method seen in our sample.
Moreover, SHAP is one of the few methods that has been
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TABLE 1. Datasets from the literature search.

Datasets

Most Common Methods Articles

Bearings and PRONOSTIA [39], [40]

Local Interpretable Model-agnostic Explana- [331, [37], [41]-[55]
tions, Interpretable Filters and Fuzzy Knowledge

Vehicles or vehicle subsystem

Attention and Local Interpretable Model- [56]-[68]
agnostic Explanations

CMAPSS [69]

Shapley Additive Explanations and Rule Based [351-[371, [70]-[80]

General Machine Faults and Failures [81]

Feature Importance, Shapley Additive Explana- [42], [48], [82]-[87]
tion, Class Activation Mapping and Local Inter-
pretable Modle-agnostic Explanation

Trains Feature Importance [341, [88]-[93]
Gearboxes [94] Shapley Additive Explanations and Interpretable [42], [45], [48], [95]
Filters

Artificial Dataset

Local Interpretable Modle-agnostic Explanation, [441, [96], [97]
Shapley Additive Explanation, Counterfactual
and Surrogate

Hot or Cold Rolling Steel Shapley Additive Explanations [72], [96], [98]
Maritime Feature Importance and Shapley Additive Expla- [99]-[101]
nations

Mechanical Pump

Physical Constraints, Knowledge-based and [102]-[104]
Sparse Networks

Hard Drives [105]

Shapley Additive Explanations, Rule Based, [38], [70], [106]
Local Interpretable Modle-agnostic Explanation
and Decision Tree

Lithium-ion Batteries [107]

Layer-wise Relevance Propagation [371, [108], [109]

Wind Turbines [110]

Autoencoder-based Anomaly Root Cause Analy- [111],[112]
sis and Sparse Networks

Amusement Park Rides

Depth-based Isolation Forrest Feature Impor- [113], [114]
tance and Accelerated Model-agnostic Explana-

tions
Particle Accelerators Layer-wise Relevance Propagation and Feature [115], [116]
importance
Chemical plant Shapley Additive Explanations [117], [118]
Semi-conductors [119] Shapley Additive Explanations and Knowledge- [120], [121]
based
Aircraft Fuzzy [52], [122]
Air Conditioners Attention [56]
Tennessee Eastman Process [123] Rule-based [70]
Compacting Machines Accelerated Model-agnostic Explanations [114]
UCI Machine Learning Repository [124] Mahalanobis-Taguchi System [125]
Transducers Fuzzy [126]
Heaters Fault Tree [127]
Computer Numerical Control data Depth-based Isolation Forrest Feature Impor- [128]
tance
Textiles Visualization [129]
Plastic Extruders Shapley Additive Explanations [130]
Press Machine Shapley Additive Explanations [131]
Coal Machinery Shapley Additive Explanations [132]
Refrigerators Attention [133]
Gas Compressors Shapley Additive Explanations [134]
Hydraulic Systems Shapley Additive Explanations [135]
Iron Making Furnaces Signal Temporal Logic [136]
Cutting Tools Feature Importance [137]
Power Lines [138] Feature Importance [139]
Communication Equipment Surrogate [140]
Water Pump Fuzzy [141]
Oil Drilling Equipment Knowledge-based [142]
Solenoid operated valves Physical Constraints [143]
Coal Conveyors Digital Twin [144]
Temperature Monitoring Devices k-Nearest Neighbors [145]
Distillation Unit Rule-Based Interpretation [146]
Water Pipes [147] Statistical Model [148]
applied to the problems of anomaly detection [72], [99], Steurtewagen et al. [134] created a framework for fault

[117], [118], [131], [132], fault diagnosis [130], [134], and diagnosis that consists of three parts: data collection,
prognosis [75], [77], [120]. This is likely due to its wide prognosis, and diagnosis. Importantly, in the data collection
versatility as a model-agnostic method that can provide global phase, they received the reports that were associated with

explanations.

VOLUME 12, 2024

the faults. The prognosis section used an XGBoost algorithm

57579



IEEE Access

L. Cummins et al.: XPM: A Survey of Current Methods, Challenges, and Opportunities

Explainable Al

Model-Agnostic Model-Specific

v | v
Causal CAMand
S Inference GradCAM
Saliency Map
LIME (€ ARCANA
> Counterfactuals LionForest
’ LRP 0.3 B e —— DIFFI

> SmoothGrad

ELI5 <€

> ACME
Surrogate <

N .
Feature -
Importance <

> Rule-Based
Integrated
Gradients

“»  Visualization

FIGURE 9. XAl taxonomy.

to detect a fault occurring. The diagnosis utilized SHAP to
determine the features that are important to the output of
XGBoost. These features are validated using the reports that
accompany the fault.

Choi et al. [118] proposed a method for explainable
unsupervised anomaly detection to predict system shutdowns
for chemical processes. Their method consisted of what they
call a period-independent framework and a period-integrated
framework. The period-independent framework searched for
the best anomaly detection model and applied the explainable
method. In the period-integrated framework, they applied
real-time information to the model chosen from the previous
framework. They found that the isolation forest provided the
best results in the period-independent framework based on the
number of unplanned shutdowns detected, and they utilized
show SHAP as an effective way of measuring root cause
analysis.

Gashi et al. [120] conducted predictive maintenance on
a multi-component system. Their objective was to model
interdependencies and assess the significance of the inter-
dependencies. Prior to training their Random Forest model,
they used visual exploration to study interdependencies. They
used two methods to justify the use of interdependencies:
statistics and XAI. They used chi-squared testing to show
that the performance of a model with interdependencies is
better (p <0.001). When applying SHAP to the random forest,
they showed that the interdependency variables were usually
among the top explainer features. This adds validity to SHAP
as an explainable method in terms of the accuracy of its
explanations.

Keleko et al. [135] utilized a fully connected deep neural
network for predicting degradation states of a hydraulic
system. Their model was able to predict different health states

57580

for five different internal components of the hydraulic system
with high precision, recall and F1-score. To apply explain-
ability, they utilized DeepSHAP, a mixture of DeepLIFT and
Shapley values. This mixture allows for a better SHAP-based
approach for deep neural networks as it is able to tailor the
calculation of Shapley values to a deep neural architecture.

2) LOCAL INTERPRETABLE MODEL-AGNOSTIC
EXPLANATIONS (LIME)

LIME was introduced by Ribeiro et al. as a way of
explaining any model using a local representation around the
prediction [24]. This is done by sampling around the given
input data and training a linear model with the sampled data.
In doing this, they can generate an explanation that is faithful
to that prediction while using only information gained from
the original model.

Protopapadakis et al. [35] computed the RUL as applied
to the CMAPSS turbofan dataset. They initially attempted to
perform RUL prediction with two models, a random forest
and a deep neural network. They found the random forest to
perform poorly, which would lead to poor explanations. Their
deep neural network achieved high performance, so they
applied LIME. They compared two LIME explanations, one
for early life and one for late life with a specific fault. They
found that LIME was able to label the important features for
failures that reflected the physical faults. Additionally, they
showed that LIME would have a more difficult time labeling
the important features when it was applied to segments with
no faults as anything could occur in the future.

Allah Bukhsh et al. [93] discussed multiple tree-based
classifiers for predicting the need for maintenance events,
i.e., anomaly detection, for train switches. From their pool
of tree-based classifiers, including decision tree, random
forest, and gradient boosted tree, they identified gradient
boosted tree as the most accurate amongst the models when
predicting if a problem would occur. In a separate test, they
had the same models predict specific types of anomalies.
In this experiment, random forest outperformed the rest. For
interpretability, they implemented LIME to learn from the
outputs of the random forest. The researchers intend that the
output from LIME will help establish trust in the model for
domain experts and decision makers

3) FEATURE IMPORTANCE
Feature importance refers to the idea that some of the input
features have more influence on the output than others.
For example, when determining if an image is a dog, the
background that has no pixels of the dog would potentially
be less important than the pixels with the dog. Feature
importance is typically assessed using techniques like SHAP
and LIME, but various approaches exist in the literature.
Many researchers have applied different methods of
feature importance calculations. Bakdi et al. [101] tackled
predictive maintenance for ship propulsion systems. They
combined balanced random forest models and multi-instance
learning to achieve a high true positive rate which was then
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TABLE 2. Explainable methods from the literature.

Method

Articles

Shapley Additive Explanations
(V-Al)

Local Interpretable
Model-agnostic Explanations
(V-A2)

Feature Importance (V-A3)

Layer-wise Relevance
Propagation (V-A4)
Rule-based (V-AS)

Class Activation Mapping
(CAM) and Gradient-weighted
CAM (V-B1)

Surrogate (V-A6)
Visualization (V-A9)
Depth-based Isolation Forrest
Feature Importance (V-B2)
Integrated Gradients (V-A7)
Causal Inference (V-AS8)
Accelerated Model-agnostic

[72], [96], [99], [117], [118], [130],
[132] [36]-[38], [42], [66], [75]-[77],
[120], [131], [134], [135]

[35]-(38], [44], [50], [51], [54], [61],
[66], [76], [84]

[341, [541, [671, [851, [861, [93], [1011,
[115], [137], [139]
[371, [44], [68], [87], [109], [116]

[65], [70], [71], [73]
[371, [44], [48], [63]

[82], [901], [96], [140]
[471, [74], [100], [129]
[42], [113], [128]

[95], [131]
[89]
[114]

Explanations (V-A10)

Statistics (V-A11) [59]
Smooth Gradients (V-A12) [131
Counterfactuals (V-A13) [98]
LionForests (V-B3) [97]
Explain Like I'm 5 (V-A14) [51]
Saliency Maps (V-B4) [37]
Autoencoder-based Anomaly [111
Root Cause Analysis (V-B5)

explained via Gini feature importance. Schmetz et al. [137]
also applied Gini feature importance to verify a Tree
Interpreter [150] for their random forest classifier.

Other researchers have ranked their features in different
ways. Manco et al. [34] performed fault prediction to train
systems where they ranked time steps by how anomalous
they were within a time window. This ranking was performed
by mixture modeling of the prior probability of the trend
with the probability of the trend being normal behavior.
Marcato et al. [115] applied anomaly detection to particle
accelerators where permutation-based feature importance to
guide further model development.

Finally, Voronov et al. [67] and Ghasemkhani et al. [86]
each proposed different methods of calculating feature
importance that tackle different problems. Voronov et al.
proposed a forest-based variable selector called Variable
Depth Distribution (VDD) that addressed the issue of variable
interdependencies through clustering of features. The impor-
tant features appeared in multiple clusters. Ghasemkhani et
al. developed Balanced K-Star to deal with the imbalance
problem commonly found in predictive maintenance. To add
explainability, they applied chi-square to determine the
important features in the machine failure.

4) LAYER-WISE RELEVANCE PROPAGATION (LRP)

LRP was introduced by Bach et al. [151] as an explainable
method that assumes that a classifier can be decomposed into
several layers of computation. LRP works with the concept
of a relevance score that measures how important a feature
is to an output. LRP works by extrapolating the relevance to
the input layer by moving backwards through the architecture
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starting at the output layer. The importance of an input feature
can then be measured as a summation of features it impacts
through the architecture.

LRP falls into the category of model-agnostic which can be
seen in the use-cases in the literature. Felsberger et al. [116]
applied LRP to multiple architectures including kNN,
random forest, and CNN-based models. Through LRP, they
found that the CNN architectures were learning important
features which led to higher performance. Han et al. [68]
performed fault diagnosis for motors using the notable model
LeNet [152]. Through the use of LRP, they were able to bring
explainability to a notable architecture.

Wang et al. [109] proposed a method of using explain-
ability as a method of driving the training process. They
utilized LRP to calculate feature importance for the training
data. The importance calculations were embedded for
optimizing the model’s performance. They introduced this
explainability-driven approach to the problem of aging
batteries, and showed its superb accuracy when compared to
a data-driven approach.

Grezmak et al. [87] proposed utilizing LRP as a method
of incorporating explainability to the problem of fault
diagnosis of machine failure. First, they apply Continuous
Wavelet Transform to change the time series information to a
multiscale time-frequency images. They train a convolutional
neural network (CNN) using these images to be able to
classify one of four potential faults that would be occurring.
This is followed up by their LRP implementation for added
explainability. They found LRP able to show unique elements
in the time-frequency images that could map to each class of
fault. The most interesting finding occurred when comparing
CNNs trained on the pure time series and discrete-fourier
transformed data. LRP was not able to show consistent
explanations for items of the same class for these two CNNs
even though all of the trained models performed high with
accuracies. They argue this is due to the generalizability of
the time-frequency domain transformation which shows an
interesting use case of explainable methods: verifying the
generalizability of a model or data transformation method.

5) RULE-BASED EXPLAINERS

Rule-based explainers use a combination of the black-box
model and the training data to create a series of IF-THEN
rules. These rules are generally created using combinatorial
logic (ANDs, ORs, and NOTs) to combine the features in the
IF portion of the rules. The THEN portion of the rules are
populated by the result from the model, usually a class or a
predicted value. The rules are then presented as explanations
or may be used as a replacement for the black-box model
itself.

Even in rule-based explainers, there are numerous methods
that have been used. Wu et al. [71] proposed the K-PdM (KPI-
oriented PDM) framework, a cluster-based HMM based on
key performance indicators (KPIs). A KPI is a vector of one
feature of fine-grained deterioration, and a combination of
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KPIs reflect the health of a machine. The health was modeled
as an HMM for each KPI. These HMMs were converted into
a rule-based reasoning system for explainability.

Brunello et al. [70], [73] showed twice that temporal
logic can be used in anomaly detection. Firstly, they showed
that linear temporal logic could be added to an online
system for monitoring failures [73]. They again showed that
temporal logic could be used in a different approach to
the same problem. Brunello et al. [70] created syntax trees
that utilized bounded signal temporal logic statement. The
trees were altered using an evolutionary approach to predict
failure in Blackblaze Hard Drive [105], Tennessee Eastman
Process [123], and CMAPSS [69] datasets, commononly
used datasets for PAM of hard drives, electrical processes and
turbofans. This method led to great performance with rule-
based explanations.

Ribeiro et al. [65] applied XAl to the online learning pro-
cess using a Long Short-term Memory AutoEncoder (LSTM-
AE) for modeling public transport faults. Simultaneously, the
authors’ system learned regression rules that explained the
outputs of the model. While their system was learning to map
the anomalies, the output of their model was fed into Adaptive
Model Rules (AMRules), a stream rule learning algorithm.
They applied their method to four public transport datasets,
and they output their global and local rule-based explanations
given used in their system.

6) SURROGATE MODELS

Surrogate models are simpler models that are used to
represent more complex models. These surrogate models
generally take the form of simple decision trees and
linear/logistic regression models. The simplistic nature of
these models makes them interpretable; however, their use
has their interpretability as an explainable method for a black-
box model.

When utilizing a surrogate model as an explainable
method, the surrogate model must be inherently interpretable
as a way of allowing an explanation to be gathered from the
main model. Glock et al. [82] utilized two ARIMA models to
explain a random forest model. One ARIMA model learned
the same data as the random forest, and the second ARIMA
model learned the residual errors from the random forest.
While the random forest is not explainable, the two ARIMA
models could show what the random forest could and could
not learn.

Zhang et al. [140] proposed an alarm-fault association rule
extraction based on feature importance and decision trees.
Their process started with a weighted-random forest. Feature
selection was performed to gather the important features in
the abnormal state. These features were used to create a
series of C4.5 decision trees that model different features.
Once their random forest was trained and predicted a fault,
the decision tree with the highest accuracy could be used to
extrapolate an explanation of the fault.

Errandonea et al. [90] tested XAl on edge computing with
all possible models in H20.ai’s AutoML to perform their fault
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diagnosis. After determining the optimal architectures, they
trained a decision tree surrogate model to add explainability
to their autoML process. By optimizing hardware and accu-
racy, they showed that explainable predictive maintenance
could theoretically occur on edge computing devices.

7) INTEGRATED GRADIENTS

Integrated gradients was introduced by Sundararajan et al.
[153] to attribute the prediction of a deep architecture to
its input features. They introduce two axioms, sensitivity
and implementation invariance, to build their explainable
method. Sensitivity is achieved if for every input and baseline
that differ in one feature but have different predictions then
the differing feature should be given a non-zero attribution.
Implementation invariance means attributions are always
identical for two functionally equivalent networks. With these
axioms in mind, the integrated gradients are calculated via
small summations through the layers’ gradients.

Hajgato et al. [95] introduced the PredMaX framework for
predictive maintenance which identified sensitive machine
parts and clustered time periods. It works in two steps: a
deep convolutional autoencoder was applied to the data,
and clustering was performed on the latent space in the
autoencoder. From the clusters, they showed which channels
contribute to the transition from normal to abnormal.
Additionally, the integrated gradients technique was used
to extract the relevant sensor channels for a malfunctioning
machine part.

8) CAUSAL INFERENCE

Causality goes beyond the notion of statistics dependencies
as it shows a true relationship between two or more
variables [154]. Causality can be measured in causal strength
which measures the change in distribution of n-1 variables
when one variable has been changed [154]. Causality is not
an easy quality to analyze as it can only be truly discovered
by repeated observations of a phenomenon occurring given an
event; however, causal inference has been a method of XAI
that some researchers have utilized.

Trilla et al. [89] designed an anomaly detection framework
based around a denoising variational autoencoder (VAE) and
an MLP. They extracted intra-subsystem and inter-subsystem
patterns by making the time series data into voxels. The
VAE generalized the embeddings. Finally the MLP was used
to create a smooth diagnosis probabilistic function. They
applied their method on a locomotion dataset and utilized
causal inference via the Peter-Clark algorithm to answer the
question “Did the VAE learn cause-effect relationships?”
They found that the VAE could at best be described as
modeling a correlation relationship, but this limitation was
mainly attributed to limited data availability.

9) VISUALIZATION
Visualization techniques do not take any one specific form.
Generally, these visualizations take the form of visualizing
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FIGURE 10. Use of XAl methods.

weights; however they may also take the form of visualizing
specific examples. Whatever the case, these methods benefit
the users by providing an image enlightens the user to the
inner workings of the architecture.

Visualizations can be utilized in many ways for explain-
ability. Michalowska et al. [100] use visualizations to
compare healthy and anomalous data. Costa et al. [74]
utilized visualizations coupled with a recurrent variational
encoder. They show that the latent space created by the
encoder can add explainability. When input data with similar
RULSs pass through the encoder, they show the latent spaces
are similar for those with similar RULs.

Xin et al. [47] aimed to address bearing fault diagnosis
via a novel model named logarithmic-short-time Fourier
transform modified self-calibrated residual network (log-
STFT-MSCResNet). The STFT extracts time-frequency
features from raw signals to retain physical meaning of
fault signatures which are visualized for explainability. The
MSCResNet is used to enlarge the receptive field without
introducing more parameters. With the combination of the
two, they aim to have high accuracy even under unknown
working conditions. They compared their model to popular
models such as LSTM and ResNet18. log-STFT-MSCResNet
performed among the best even under unknown working
conditions, had a small number of features and had a shorter
training time than the others.

10) ACCELERATED MODEL-AGNOSTIC EXPLANATIONS
(ACME)

ACME was introduced by Dandolo et al. [155] as a method
of quickly generating local and global feature importance
measures based on perturbations of the data. For global
explanations, they take a vector that holds the mean of
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each feature through the entire dataset; this is known as the
baseline vector. Then a variable-quantile matrix is created
that holds the different quantiles of the features. This matrix
is used to gather predictions that would represent each
quantile. The global feature importance is finally calculated
for each feature by computing the standardized effect over
each quantile. To get a local explanation, the baseline vector
is replaced with the specific data point that is meant for
explaining.

Anello et al. [114] applied ACME to the problem of
anomaly detection to compare it to SHAP. They utilized
isolation forest to detect anomalies as it is commonly used
for detecting outliers or anomalies. An anomaly score was
used as a label for the time series to represent the problem
as a regression task which allows ACME to be applied. After
applying SHAP and ACME to a roller coaster dataset and a
compacting machine dataset, they found a drastic speed up
by using ACME with all of the data while SHAP would be
slower even with access to 30% of the data.

11) STATISTICS

As a method of explaination applied to the problem of
predictive maintenance, statistical tests can be used to
compare the distribution of the features between different
classes.

Fan et al. [59] developed ML methods that take advantage
of physics knowledge for added interpretability. Their case
study was fault detection of leak-related faults in vehicle
air systems. They applied three physics equations to their
data that would model the air leakage. Moreover, they
used that data in the training data of their kNN and MLP
models. Results showed that the physics-assisted models to
outperform the non-assisted models.
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12) SMOOTH GRADIENTS (SMOOTHGRAD)

SmoothGrad was developed by Smilkov et al. [156] to
produce a gradient-based sensitivity map. The intuition
behind SmoothGrad involves differentiating the predicting
model with respect to the input. This derivative creates a
sensitivity map that represents how much difference a change
in each pixel of the input would make to the classifica-
tion [156]. Moreover, this sensitivity map can ideally show
regions that are key to the prediction. Serradilla et al. [131]
utilized this method in combination with others; therefore, the
information surrounding this work can be found in V-C.

13) COUNTERFACTUALS

Counterfactuals were introduced by Wachter et al. [157] to
provide statements of the differences needed to gain the
desirable outcome. This method also works by providing
an explanation for the output of the model, but this extra
capability makes counterfactuals very unique in realm of XAl
methods.

Jakubowski et al. [98] developed a predictive main-
tenance solution for an industrial cold rolling operation.
They utilize a semi-supervised algorithm based on the
Physics-Informed Auto-Encoder (PIAE). This architecture
was physics-informed by applying a list of equations at the
beginning of their input data. The output of the equations was
appended to the input data of their AE. Their model proved
to be more accurate than a base AE. While PIAE has some
interpretable aspects already, they applied counterfactuals as
an explainability method to show the important features from
their algorithm’s decisions.

14) EXPLAIN LIKE I'M 5 (ELI5)

ELI5 is a popular method from Github [158] maintained
by the user TeamHG-Memex and 15 other contributors.
This Python library focuses on explaining the weights of a
model which also serves as a method for calculating feature
importance. While maintaining original methods, ELIS
also provides other explainability method implementations.
Serradilla et al. [51] utilized this method; however, their work
is presented in V-C as they applied multiple methods.

B. MODEL-SPECIFIC

This section describes the explainable methods in our
population that base the explanations on the properties of
the architecture it intends to explain. These methods are
known as model-specific [149]. Here we discuss methods that
take advantage of the architecture for generating explanations
such as CAM and GradCAM in Section V-B1, DIFFI in
Section V-B2 and more.

1) CLASS ACTIVATION MAPPING (CAM) AND
GRADIENT-WEIGHTED CAM (GRADCAM)

CAM was introduced by Zhou et al. [25] as a method of global
explainability for convolutional neural networks (CNN). The
map that is created indicates the image regions that are used
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by the CNN to identify the target category. CAM does this by
utilizing a global average pooling (GAP) layer in the CNN
architecture which outputs the spatial average of the feature
map of the final layer. The pixels with higher values are
associated with the pixels in the image associated with the
class label. Additionally, Selvaraju et al. [159] extend CAM
to GradCAM by using the gradient information going into the
last convolutional layer to understand the importance of the
features.

GradCAM has been validated through different studies
via comparison and metrics. Mey et al. [44] focuses on the
plausibility of XAI for explaining a CNN. They investigated
GradCAM, LRP and LIME as methods of explaining a
CNN for anomaly detection. They found non-distinguishable
features highlighted by LRP, and they found unimportant
features highlighted by LIME. GradCAM was able to high-
light the important features that they labeled prior to CNN
training. This could point towards model-specific methods
outperforming model-agnostic methods when applicable.

Solis-Martin et al. [37] present a comparison on LIME,
SHAP, LRP, Image-Specific Class Saliency (Saliency Maps)
and GradCAM as applied to predictive maintenance datasets
such as CMAPSS and batteries. They identify eight metrics
for comparison: identity, separability, stability, selectivity,
coherence, completeness, congruence and acumen, an evalu-
ation proposed by the authors. When comparing the different
methods as applied to a CNN architecture, GradCAM
performed the best in regards to the nine metrics.

Oh et al. [63] propose a fault detection and diagnosis
framework that consists of a 1D-CNN for fault detection,
class activation maps for fault diagnosis (explainable method)
and VAE for implementing user feedback. The CNN utilizes a
GAP layer as the output layer due to its ability to maintain the
temporal information. This also allows them to use CAM as
an explainable method as opposed to GradCAM. The VAE is
utilized with the principle of Garbage-In, Garbage-Out logic
to minimize the amount of false positives and negatives that
would be presented to the users. To verify their method, they
apply it to the Ford Motor dataset which is a vehicle engine
dataset that contains an amount of noisy data. They show that
their model is accurate even in noisy data, and they show that
the VAE increases their accuracy. They also show via CAM
that the anomalous data is linearly separable, which is found
in the VAE.

2) DEPTH-BASED ISOLATION FORREST FEATURE
IMPORTANCE (DIFFI)

DIFFI was introduced by Carletti et al. [160] as an explanable
method for isolation forests. Isolation forests are an ensemble
of isolation trees which learn outliers by isolating them from
the inliers. DIFFI relies on two hypotheses to define feature
importance where a feature must: induce the isolation of
anomalous data points at small depth (i.e., close to the root)
and produce a higher imbalance on anomalous data points
while being useless on regular points [ 160]. These hypotheses
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would allow explanations for anomalous data which would
allow for explanations of outliers or faulty data.

Berno et al. [113] performed anomaly detection for
automated rides at entertainment parks. They introduced the
idea of providing extra focus specific features by splitting
their data into a multivariate set and many univariate sets
based on a prior knowledge. They utilized isloation forest
to model the multivariate time series with DIFFI explaining
the output. They modeled the univariate time series with a
Growing When Required (GWR) neural gas network. The
multivariate analysis was used for determining anomalies
within most of the variables, and the explanations were used
to rank the features causing the anomaly.

Lorenti et al. [128] designed an unsupervised interpretable
anomaly detection pipeline known as Continuous Unsuper-
vised Anomaly Detection on Machining Operations (CUAD-
MO). CUAD-MO consists of 4 parts: data segmentation and
feature extraction, unsupervised feature selection via Forward
Selection Component Analysis (FSCA), anomaly detection
via Isolation Forest, and post-hoc explainability via DIFFL.
Their feature extraction consisted of adding basic statistics
and higher order moments of the signals such as Kurtosis.
FSCA iteratively selects features to maximize the amount of
variance explained. Finally, the Isolation Forest is used to
detect outliers which are handled as faulty events. These are
explained via DIFFI. They applied their method to 2 years of
computer numerical control data resulting in a 67% precision
rate.

3) LIONFORESTS

LionForests were introduced by Mollas et al. [161] as a local
explanation method specifically for random forests. Their
method follows these steps: estimating the minimum number
of paths for the accurate answer, reducing the paths through
association rules, clustering, random selection or distribution-
based selection, extracting the feature-ranges, categorical
handling of features, composing the interpretation, and
visualizing the feature ranges. The outputs of their method
are the interpretations in the form of IF-THEN rules and
visualizations of the features.

Mylonas et al. [97] aimed to alleviate the non-explainable
nature of random forest by applying an expanded version of
LionForests to fault diagnosis. They expanded LionForests
into the realm of multi-label classification by applying three
different strategies: single label, predicted labelset, and label
subsets. Single label aims at explaining every individual
prediction (local); predicted labelset aims at explaining all
predictions (global); and label subsets aim at explaining based
on frequently appearing subsets of predictions. With their
expansion, their attention is focused on multiple machine
failure datasets, but specifically the AI4I dataset [162]. They
utilized accuracy metrics such as precision, and they provided
metrics for their explanations such as length of explanations
and coverage of data. One of the more notable elements
of their work involves comparing their XAI algorithm to
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other algorithms, namely global and local surrogates and
Anchors.

4) SALIENCY MAPS

Saliency maps were introduced by Simonyan et al. [163] as
a method for explaining CNN outputs. Given an input and
a model, saliency maps rank the pixels of the input based
on their influence on the output of the model. This is done
by approximating the output with a linear function in the
neighborhood of the input by using the derivative of the
scoring function with respect to the input. This approximation
is the saliency map. Solis-Martin et al. [37] utilized
saliency maps in a comparison experiment where they found
GradCAM to be best in their use-case. More information
about this experiment can be found in Section V-B1.

5) AUTOENCODER-BASED ANOMALY ROOT CAUSE
ANALYSIS (ARCANA)

ARCANA was introduced by Roelofs et al. [111]. They
noticed that autoencoders were a popular method of detecting
anomalies in their target domain, wind turbines; however by
themselves, autoencoders are not interpretable. To overcome
this lack of interpretability, they implement ARCANA as a
way of explaining the cause of the reconstruction error of an
autoencoder. ARCANA works by minimizing a loss function
that is based on reconstruction. As opposed to measuring
the difference between the output of the autoencoder and
the input, they add this bias vector to the input data as to
have a corrected input. Moreover, the bias shows “‘incorrect”
features based on the output; therefore, the bias would explain
the behavior of the autoencoder by showing which features
are making the output anomalous.

Roelofs et al. [111] also utilize their method for anomaly
detection and root cause analysis for wind turbines. They
verify that ARCANA provides the most important feature
causing the issues with their wind turbines. This method is
done by firstly measuring the features reconstruction error.
When performing ARCANA, the feature that shows the most
importance is the same feature with the largest error. They
then show that even when the feature does not appear in
the reconstruction error, ARCANA is able to find feature
importance in sensors that are applicable to known anomalies.

C. COMBINATION OF METHODS

This section describes the works that used multiple explain-
ability methods. Some of these works were utilized to
just note the differences between the different explainable
methods. Other works compared the methods as to determine
the better method. This section reviews the works that
combine multiple methods without aiming to declare one
method as better than another.

Utilizing multiple explainable methods can be used in a
stacked manner or in a simultaneous manner. The stacked
manner involves using explainable methods sequentially.
In Jakubowski et al. [96] they created a quasi-autoencoder
for explainable anomaly detection. A surrogate model of
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XGBoost was used as a way of simplifying the orig-
inal model. They achieved a high R> score using this
XGBoost model while adding explainability via TreeEx-
plainer (SHAP).

More commonly, a simultaneous utilization of explainable
methods appears in the literature where the authors
obtain multiple explanations from different methods.
Khan et al. [36] found the best architecture for their problem
of RUL prediction amongst: random forest, SVM, gradient
boosting, elastic net GLM and an MLP regressor. After
seeing the MLP regressor to have the best performance,
they used LIME and SHAP to explain the output. LIME
and SHAP did not have the same explanations, but they
had similar explanations. Similarly, Jakubowski et al. [76]
performed an experiment testing five architectures and using
SHAP and LIME as explainers. The found that SHAP and
LIME had different explanations throughout the different
neural architectures suggesting a fidelity concern between
architectures.

Like the prior two, Serradilla et al. [51] performed
remaining useful life prediction on a bushings testbed. They
tested six different models and determined random forest
regressor to be the best. They then utilize two explainability
methods (ELIS and LIME) to show global and local feature
importance of driving model development. Additionally in
future work, Serradilla et al. [131] utilized a combination
of SHAP, Integrated Gradients and SmoothGrad to explain
the connection between the variables and the loss of their
deep architecture for anomaly diagnostics. Brito et al. [42]
performed a large experiment that applied many unsupervised
learning algorithms for fault detection and fault diagnosis.
They showed that Local-DIFFI and SHAP seemed to be
mostly in agreement about the explanation for the model’s
output, but they did not move further in asking which is better.

Ferraro et al. [38] focused on analyzing the effectiveness
of explainability methods on the predictions of a recurrent
neural network based model for RUL prediction. Notably,
the model performed well, but the focus was on the explain-
able methods SHAP and LIME. A quantitative analysis
was performed using three metrics: identity, stability and
separability. This showed: (1) LIME was unable to give
identical explanations for identical instances; (2) LIME
more than SHAP gave similar explanations to instances
in the same class; and (3) LIME and SHAP were able
to give different explanations for instances in different
classes.

Li et al. [66] aimed at integrating explainability into an
AutoML environment used for vehicle data. They tested four
different AutoML platforms: AutoSklearn, TPOT, H,O, and
AutoKeras. They performed two different experiments where
they provided different subsections of their dataset with both
resulting in TPOT performing the best in accuracy. Finally,
they apply LIME and SHAP to the resulting model to explain
a local sample and the whole model. Their work results in
a defined workflow for an automatic predictive maintenance
system that includes explainability.
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FIGURE 11. Interpretable ML taxonomy.

VI. INTERPRETABLE ML IN PREDICTIVE MAINTENANCE
Interpretable machine learning (iML) encompasses many
methods whose inner-workings are understandable without
requiring a post-hoc method for explanation generation.
These methods can be interpreted by the target audience
without the need of separate methods to serve as a translator
between the model and the person. iML methods namely
consist of architectures that can have human-readable outputs
such as rule-based systems, simple visual representations
such as decision trees and simple networks or physical
mappings that are intelligible to the user. The overarching
taxonomy can be seen in Fig.11.

A. SIMPLE ARCHITECTURES

What is denoted as a “‘simple” architecture is really just
an architecture that is small in the number of weights or a
tree like architecture. A small number of weights indicates a
straightforward understanding of the model’s performance as
there are no layers one has to decipher. Additionally, tree-
based architectures are simplistic in nature as one is able
to visualize a tree structure and follow the reasoning of a
small enough tree. This section consists of Sparse Networks,
Section VI-A1, Decision Trees, Section VI-A2, Fault Trees,
Section VI-A3, and Symbolic Life Models, Section VI-A4.

1) SPARSE NETWORKS

Sparse networks are neural networks that are limited in
their architecture. Large deep neural networks are inherently
blackbox models; however, interpretable whitebox models
can take the form of very simple neural network models
such as linear regression or logistic regression models. As the
models are simple, the impacts of the input features can be
seen as they are propagated through the network.

Beretta et al. [112] utilized two different models for
predictive maintenance: a gradient-boosting regressor to
model the normal data and an isolation forest to model the
fault data. The output of these are merged with a mean
average of the temperature readings to create a score of
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failure. The authors praise the simplicity of the algorithms
as the source of interpretability in their method.

Pu et al. [46] explored a new frequency domain space they
call the restricted sparse frequency domain space (RSFDS)
for rolling bearing faults. The RSFDS breaks down the
features into a space that is made of real and imaginary points.
This space is able to visualize boundaries that have physical
meanings to the faults. They use a simple two-layer neural
network to these points, and they achieve high performance
equal to that of a CNN-LSTM with less memory and CPU
usage.

Langone et al. [104] proposed a model for interpretable
anomaly prediction based on a logistic regression model with
elastic net regularization. Their method is made of 3 steps:
data preparation, learning and refinement of the prediction
model. In the data preparation phase, they categorize the
data using included statistics, apply windowing to the data,
and finally mark the windows as either being anomalous
or not. The learning phase consists of learning the relevant
features from the windowed data. This includes considering
the feature distributions across failures and non-failures
and measuring the distance according to the Kolmogorov-
Smirnov metric. The refinement of prediction model phase
consists of the training and utilization of the logistic
regression model. Coupled with elastic net regularization,
this model selected a smaller subset of the original data and
captures the variable correlations. They applied their method
to a plunger pump in a chemical plant and produced relative
good and consistent scores.

2) DECISION TREES

Decision trees encompass both classification and regression
trees that date back to the first regression tree algorithm
proposed by Morgan and Songquist [164]. Decision trees
create a tree-based architecture where each set of children
of each node is split using a feature. To produce an output,
a decision tree algorithm starts at the root of the tree and
proceeds down the tree by evaluating the feature that is used
for splitting. The output corresponds to the final leaf node that
the decision trees reaches on its path.

Li et al. [92] perform failure prediction with a combination
of two methods. Firstly, they perform alarm prediction,a
specific failure prediction, using an SVM based model.
To make the output human-readable, they perform an
exhaustive search among the feature space and visualize the
first two principle components. With the visualization they
are able to make some basic rules that predict the alarm.
For failure prediction, specific failures besides general alarm,
they use a decision tree. This decision tree can be translated
directly into rules as their model is highly interpretable.

Amram et al. [106] utilized two types of decision
trees, optimal classification trees [165] and optimal survival
trees [166]. Their goals included predicting the RUL of
long-term health of hard drives, predicting RUL of the
short-term health of hard drives, predicting failure classifi-

VOLUME 12, 2024

cation in short-term health of the hard drives and performing
similar experiments with limited information. Their results
showed that they could gather better results using separate
models for the tasks as opposed to using one model. They
also showed the interpretable methods shared many of the
important features for the different tasks.

Panda et al. [57] aimed at tackling the problem of
commercial vehicle predictive maintenance by designing an
interpretable ML framework. To simplify their problem, they
solely looked at the air compressor system. By looking at
the air compressor system, they ran a broad experiment
that analyzed different configurations of models and data.
The C5.0 with boosting model performed the best, and the
inclusion of Diagnostic Trouble Codes with the sensor data
raised the performance metrics.

Simmons et al. [139] argued that the dynamics of a
time-series are in themselves discriminative of health or
failure. Additionally, the dynamics are interpretable because
they are derived directly from the information. These ideas
were translated into the data mining domain by creating
features that represent shorter time series in the temporal,
spatial, and mixed domains. The features went through a
rank-based selection process which gathered features that
were statistically different between classes. These features
were used to train a Light Gradient Boosting Machine
(LightGBM) which is a type of gradient boosting decision
tree introduced by Ke et al. [167]. This method allows for
constant monitoring of feature importance during training
which can be used for interpreting the results.

Matzka et al. [83] provided two main findings. Firstly, they
provided a synthetic dataset for predictive maintenance that
others in the community can use. Secondly, they utilized a
bagged tree ensemble where each decision tree was trained
on different combinations of features. They found that their
ensemble could correctly identify three of the four failure
modes consistently. Additionally, they provided the user with
the features that deviate the most from healthy as to provide
only the most useful information.

3) FAULT TREES
Fault trees were introduced by H.A. Watson at Bell Labs in
1961 [168]. Fault trees were introduced as an understandable
model that can learn complex systems and perform root cause
analysis. They are tree-like structures that are created using
different types of nodes: basic events, gate events, condition
events, and transfer events. Basic events are the nodes that
represent either a failure event or a normal operating event.
Gate events are the logic combining nodes and consists of
AND, OR, Inhibit, Priority and Exclusive OR. Condition
events represent conditions that must occur for a gate event to
occur. Transfer events are nodes that point to somewhere else
in the tree. With all of these gates, fault trees are able to learn
root causes for different faults that can occur in a system.
Verkuil et al. [127] noticed that fault trees are made via
human intervention. With the idea of automating the process,
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TABLE 3. Interpretable methods from the literature.

Method

Articles

Attention (VI-D1)

Fuzzy (VI-B1)
Knowledge-based (VI-B2)
Sparse Networks (VI-Al)

[56], [58], [64], [78], [133]
[52], [53], [126], [141]
[103], [121], [142]

[46], [104], [112]

Interpretable Filters (VI-B3) [45], [49], [60]
Physical Constraints (VI-B4) [55], [102], [143]
Statistical Model (VI-C1) [41], [148]
Decision Tree (VI-A2) [571, [106]
Fault Tree (VI-A3) [79], [127]
Graph Attention Networks (VI-BS) [88]

Gaussian Mixture Model (VI-C3) [108]
Explainable Boosting Machine (VI-C6) [76]

Hidden Markov Model (VI-C2) [80]

Prototype (VI-B6) [62], [122]
Signal Temporal Logic (VI-B7) [136]

Digital Twin (VI-D2) [144]
Symbolic Life Model (VI-A4) [33]

Generalized Additive Model (VI-C4) [43]

Mahalanobis-Taguchi System (VI-C5) [125]
k-Nearest Neighbors (VI-D3) [145]
Rule-based Interpretations (VI-B8) [146]

they applied the C4.5 tree combined with LIFT to create
fault trees for domestic heaters. C4.5 is used to learn the
failure thresholds of the sensor data. LIFT creates fault trees
in an iterative process using the learned features. While they
do not provide a performance metric, they note that their
method cannot be optimal for the reasons of oversimplifying
the problem and using a greedy heuristic. However, domain
experts weighed in on the explanations provided in a positive
manner.

Waghen et al. [79] utilized fault trees to perform inter-
pretable time causality analysis. Their methodology consisted
of building multiple logic trees for each subset of data. These
logic trees were aggregated into one fault tree representing
the multiple trees. They performed interpretatable time cause
analysis by going through each variable in the fault tree.
By traversing the fault tree, they were able to extrapolate rules
that can model the causality through time towards faults.

4) SYMBOLIC LIFE MODEL (SLM)
Symbolic life models aim to alleviate the black box effect
by modeling the process learned by mapping relationships
and results. Symbolic life models are a form of symbolic
regression based on genetic programming. This method
creates a tree representation of an equation where the nodes
are an input, a mathematical expression or a number. The
output of the tree given an input is found by traversing the
tree and performing the mathematical expressions as nodes
are expanded. The genetic algorithm is used to perform
crossovers and mutations based on the different mathematical
functions and numbers where the goal is to maximize the
tree’s performance on a given dataset. For more detailed
information, we recommend Augusto and Barbosa [169].
Ding et al. [33] proposed the use of symbolic life models,
specifically dynamic structure-adaptive symbolic approach
(DSASA), as a way of modeling RUL. DSASA combines the
evolving methods of symbolic life models with the structure
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of adaption methods. An initial symbolic life model is created
from a genetic programming algorithm and run-to-failure
data. This is followed by the dynamic adjustment to the life
models based on the performance on real-time information.
This creates groups of improved models that can all be used
for prediction. The life models are interpretable as they are
simple models that perform based on the physical constraints.

B. INTERPRETABLE REPRESENTATIONS

An interpretable representation is the idea that a model
or architecture is able to represent its knowledge or the
training/testing data in an interpretable fashion. This may
consist of representing the decision or data using rule
structures such as Fuzzy Knowledge, Section VI-B1, or Rule-
based structures like Signal Temporal Logic and Rule-
based Interpretations, Section VI-B7 and Section VI-BS
respectively. Additionally, they may use grounding in their
model to represent simple sin waves, as in Section VI-B3
Interpretable Filters, or real life processes, Section VI-B4
Physical Constraints. This section goes over many different
ways to take a difficult process, such as predictive mainte-
nance, to an simpler, more interpretable dimension.

1) FUZZY-BASED

Fuzzy logic was introduced by Zadeh [170] as a way
of understanding the approximate mode of reasoning as
opposed to the exact. Following this approximate model of
understanding, all knowledge would come with a degree
of confidence as opposed to a statement being 100% in a
category. This adds some interesting and useful components
to machine learning as these in-between categories can be
utilized in a way that is different from having all information
fall strictly into one category.

Fuzzy-based methods apply fuzzy logic in different ways.
Lughofer et al. [53] and Kothamasu et al. [52] used type 1
fuzzy logic. Lughofer et al. proposed a framework of
representation learning based on transfer of fuzzy classifiers.
The transfer learning matched the distributions between the
source data and the target task using fuzzy rule activation.
This was done by feeding the model all of the source data
and the healthy data from the target domain. Through this
training, the model classified unseen healthy and unhealthy
data from the target task. Their model did not outperform
all black box models; however, it was in the upper ranks of
performance while bringing interpretability to the user.

Additionally, Kothamasu et al. [52] presented a Mamdani
neuro-fuzzy modeling approach for two use cases, bearing
fault detection and aircraft engine fault diagnosis. They chose
this model as it has the characteristics of being adaptive,
flexible, lucid, and robust. Their model consists of five layers:
input, linguistic term input, rules, linguistic terms output, and
defuzzification. As the rules can become undistinguisable
through training, they utilized Kullback-Leibler mean infor-
mation to refine the rules.

Fuzzy-based methods can also take the form of
higher-order fuzzy logic as seen by Upasane et al. [126], [141].

VOLUME 12, 2024



L. Cummins et al.: XPM: A Survey of Current Methods, Challenges, and Opportunities

IEEE Access

Attention

Fuzzy

Knowledge-based

Sparse networks
Interpretable filters
Physical constraints
Decision tree

Fault tree

Statistical Model

Graph Attention Networks
Gaussian mixture model
Explainable Boosting Model
Hidden Markov Model
Prototype

Signal Temporal Logic
Digital twin

Symbolic life models
Generalized Additive Models
MTS

k-Nearest Neighbors
Rule-based Interpretations

Method

FIGURE 12. Use of iML methods.

They proposed a type 2 fuzzy logic system for fault prediction
to allow interpretability [126]. Additionally, the Big-Bang
Big-Crunch (BB-BC) evolutionary algorithm was used for
optimizing the number of antecedents of their fuzzy logic
system. This was optimized for minimizing the RMSE of
their system. Their system was able to get a very low RMSE
with 100 rules and six antecedents per rule.

Upasane et al. [141] extended their previous work [126] to
include most of the faults that can occur as well as proposing
an explainable framework. While maintaining accuracy with
more faults is noteworthy, the experiment’s measurement of
users’ trust was quite unique compared to the literature. They
observed that 80% of the respondents agreed or strongly
agreed with having trust in the interpretable system. This trust
is attributed to the explainable framework and interpretable
nature of their architecture; moreover, the interface is noted
to provide helpful insights to the users that would minimize
downtime of the assets.

2) KNOWLEDGE-BASED

In this paper, knowledge-based approaches include methods
such as knowledge-graphs, knowledge-based systems, etc.
Knowledge-based approaches focus on a symbolic repre-
sentation of the data that one can find in a source of
data. These representations consist of connections between
different features where the links take the form of a link
when discussing graphs or production rules when discussing
production systems. These methods produce interpretation by
providing these connections within the features, usually in the
form of natural language.

Xia et al. [142] proposed a maintenance-oriented knowl-
edge graph to apply for predictive maintenance of oil
drilling equipment. Once they had the maintenance-oriented
knowledge graph, an attention-based compressed relational
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graph convolutional network (ACRGCN) was used to predict
solutions for different faults by predicting links between
knowledge. This method also explained faults due to
its knowledge-graph that maps different symptoms and
maintenance requirements. Even though knowledge-graphs
have inherent interpretability, they created a question-answer
system that allowed the user to query the graph.

Salido et al. [103] created a fuzzy diagnosis system based
on knowledge-based networks (KBN) and genetic algorithms
(GA). The KBN constructed fuzzy rules using neural learning
where the input is the features and the following layers are OR
neurons and AND neurons. To determine the optimal number
of neurons, they used a GA. Importantly in their GA, they
added a metric to measure simplicity of their rules by making
more concise rules. With their architecture, they could 1)
detect a fault and 2) explain the fault using an [F-THEN rule
which can be used as a method of root cause analysis.

Cao et al. [121] created an approach based on
knowledge-based systems for anomaly prediction. Their
method is broken into three parts: pruning of chronicle rule
base, integration of expert rules, and predictive maintenance.
Pruning of chronicle rule base consists of mining the rules
with frequent chronicle mining, translating the rules into
SWRL rules, and using accuracy (how many true rules) and
coverage (how many true encompassing rules) to select the
best quality rules. The integration of expert rules involved
receiving input from the experts and placing the same
restrictions on their rules. Finally, the rules were used for
anomaly prediction of semiconductors.

Steenwinckel et al. [91] produce a framework for anomaly
detection and root cause analysis. They introduce Fused-Al
Interpretable Anomaly Generation System (FLAGS) which
combines knowledge-driven and data-driven techniques to
gain the benefits of both and negate the detriments. Their
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framework is made of 3 parts: anomaly detection, fault
recognition and root cause analysis to create semantic and
interpretable anomalies and faults, a dashboard to capture
user feedback, and an optimization of the anomaly detection
and root cause analysis through fused Al and user feedback.
This is done by creating a semantic database of rules through
knowledge graphs and Matrix Profile, displaying the rules
for user feedback and utilizing the feedback to optimize the
models. They showed high accuracy when applied to a train
dataset, and they illustrated the adaptability of their method
by utilizing input given from the train operators.

3) INTERPRETABLE FILTERS

Interpretable filters are a concept that brings specific
waveforms to a CNN architecture as a way of showing what
signals are being learned. As explained in Ravanelli and
Bengio [171], the first layer of a CNN appears to be important
for waveform-based CNNs. In using these interpretable filters
that take the form of common waveforms, one can begin to
understand the behavior of the CNN if one understands the
behavior of the waveform.

Li et al. [45] aimed to improve CNN-based methods for
PHM by addressing the black box problem. They proposed
the Continuous Wavelet Convolution (CWC) layer which is
designed to make the first layer of a CNN interpretable.
It does this by using a library of filters that have physical
meanings which are convolved on the input signal. These con-
volutions can be traversed along the series and projected into
atwo-dimensional time and scale dimension. Its performance
was compared with a CNN with different wavelets, and their
findings were two-fold. Firstly, the performance of the CNN
with a CWC layer showed better performance than a CNN
without. Lastly, the CWC learned a well-defined waveform
while the one without learned what looked to be a noisy and
uninterpretable representation.

Li et al. [45] built on their previous work by examining
compound faults. They designed an interpretable framework
called wavelet capsule network (WavCapsNet) which uti-
lizes backward tracking. This network has 1) interpretable
meaning from the wavelet kernel convolutional layer, 2)
capsule layers that allow decoupling of the compound fault,
and 3) backward tracking which helps interpret output by
focusing on the relationships between the features and health
conditions. Not only was their framework able to achieve
high accuracy on all conditions, including compound faults,
but also they showed that the backward tracking method can
decouple the capsule layers effectively.

Ben et al. [49] proposed a new architecture, SincNet,
that trains directly on the raw vibration signals to diagnose
bearing faults. Their architecture utilized interpretable digital
filters for CNN architectures. They reduced the number
of trainable parameters and extracted meaningful represen-
tations by having the predefined functions serve as the
convolution. When comparing the performance to a CNN,
the SincNet had a higher precision and reached convergence
faster.
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4) PHYSICAL CONSTRAINTS

Physical constraints are used to bring real-life limitations
to the data-driven models. This can be in the form of
mapping the input and output of the architectures to physical
components, or more commonly, utilizing known physics
information or equations about the real-life system in the
architecture of their model in some way.

The methods of applying physical constraints can be
seen in different forms, namely model-based approaches and
physics-informed approaches, which need to be differenti-
ated. Model-based approaches are created to model a system
without the training of a network with the data provided,
separate from data-based models [143]. These model-based
approaches have physical constraints as they have to
model the mathematical properties of the system. Physics-
informed models aim to combine model-based and data-
driven approaches by attaching the mathematical properties
of the system to the data in data-driven approaches [102].

Tod et al. [143] implemented a first-principle model-based
approach to assess the health of solenoid operated valves.
Compared to other first-principle models, their improved
model takes other degradation effects into account, namely
shading ring degradation and mechanical wear. The method
extracts three condition indicators which allows them to
detect problematic signals that can be directly mapped to
physical components through their model.

Wang et al. [55] performed fault diagnostics of wind
turbines. Their method was an online method that detected
issues with bearings. Coupled with equations that represent
the physical aspects of the bearings, they detected issues
surrounding clearance of the bearings with high interpretabil-
ity. Their interpretation specifically showed the different
frequencies around the physical features of the bearings.

Xu et al. [102] propose the physics-constraint variational
neural network (PCVNN) as applied to external gear pumps.
The PCVNN is physics-informed asymmetric autoencoder
where the encoder is a stacked CNN, BiLSTM, Attention
network while the decoder is a generative physical model.
This would allow for an NN to learn the data, and it would
allow the physical model to represent the learned patterns in
a way that is consistent with the physics of the problem.

5) GRAPH ATTENTION NETWORKS (GATS)

GATs were introduced by Velivckovic et al. [172] as a
way of combining self-attention layers with graph-structured
data. This is done by applying attention layers where nodes
can attend whole neighborhoods of previous graph nodes.
While this comes with many benefits, the main two come
from the benefits that other architectures gain from attention
mechanisms and the retraction of needing prior knowledge of
the graph structure.

Liu et al. [88] designed a framework for fault detection
based around the Graph Convolutional Network and Graph
Attention Networks. They propose the Causal-GAT. Causal-
GAT is comprised of two parts: causal graph construction
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TABLE 4. Examples of articles from sample population.

Title

Objective

Contribution

Impact of Interdependencies: Multi-Component
System Perspective Toward Predictive Mainte-
nance Based on Machine Learning and XAI [120]

Perform predictive maintenance by modeling in-
terdependencies and test their importance

Showed with statistical significance that interde-
pendency modeling increases performance and
understandability of a model

Explainable and Interpretable Al-Assisted Re-
maining Useful Life Estimation for Aeroengines
[35]

Compute RUL of the CMAPSS turbofan dataset
with LIME explaining the performance

Showed that LIME performed poorly when ap-
plied to segments with no faults but performed
well when labeling features with failing se-
quences

Explainability-driven Model Improvement for
SOH Estimation of Lithium-ion Battery [109]

Perform predictive maintenance by embedding
explanations into the training loop

Introduced the idea of explainability-driven train-
ing for predictive maintenance

Online Anomaly Explanation: A Case Study on
Predictive Maintenance [65]

Apply XAI methods to the online learning pro-
cess

Showed that local and global explanations could
be added into the online learning paradigm

Explaining a Random Forest with the Difference
of Two ARIMA Models in an Industrial Fault
Detection Scenario [82]

Utilize two ARIMA surrogate models to explain
the capabilities of a random forest model

Introduced a method of sandwiching a model
between two surrogates to show where a model
fails to perform well

Edge Intelligence-based Proposal for Onboard
Catenary Stagger Amplitude Diagnosis [90]

Test XAI on edge computing for fault diagnosis

Provided a method of performing XAI in an
edge computing example coupled with AutoML
libraries

Explainable AI Algorithms for Vibration Data-
based Fault Detection: Use Case-adapted Meth-
ods and Critical Evaluation [44]

Discover the plausibility of XAI methods ex-
plaining the output of CNN architectures

LRP showed non-distinguishable features, LIME
showed unimportant features, and GradCAM
showed the important features

On the Soundness of XAI in Prognostics and
Health Management (PHM) [37]

Compare different XAI methods for the
CMAPSS and lithium-ion battery dataset

Showed different metrics for comparing expla-
nations generated by different XAI methods and
showed GradCAM to perform the best on CNN
architectures

Interpreting Remaining Useful Life Estimations
Combining Explainable Artificial Intelligence
and Domain Knowledge in Industrial Machinery
[51]

Perform RUL of bushings through multiple dif-
ferent models and explanatory methods

Showed the importance of applying global and
local explanations to interpret performances of
models from all aspects

Evaluating Explainable Artificial Intelligence
Tools for Hard Disk Drive Predictive Mainte-
nance [38]

Analyze the effectiveness of explainability meth-
ods for recurrent neural network based models for
RUL prediction

Utilized three metrics to compare explanations
from LIME and SHAP and showed where each
of them shine over the others

Automatic and Interpretable Predictive Mainte-
nance System [66]

Aimed to integrate explainability into an AutoML
environment

Defined a workflow for an automatic explainable
predictive maintenance system

DTCEncoder: A Swiss Army Knife Architec-
ture for DTC Exploration, Prediction, Search and
Model interpretation [64]

Perform fault detection by classifying DTCs

Designed the DTCEncoder that utilizes an atten-
tion mechanism to provide an interpretable latent
space as to why the a DTC is output

Deep Multi-Instance Contrastive Learning with
Dual Attention for Anomaly Precursor Detection
[133]

Perform anomaly detection and anomaly precur-
sor detection

Performed anomaly precursor detection through
multi-instance learning with verified explana-
tions through domain experts

A Type-2 Fuzzy Based Explainable Al System
for Predictive Maintenance Within the Water
Pumping Industry [141]

Utilize an evolutionary algorithm to optimize
their fuzzy logic system for fault prediction

Used a type 2 fuzzy logic system and evolution-
ary optimization to generate fuzzy rules for fault
prediction

Waveletkernelnet: An Interpretable Deep Neural
Network for Industrial Intelligent Diagnosis [45]

Improve CNN-based methods for PHM

Designed the Continuous Wavelet Convolution to
add physical interpretations to the first layer of
CNN architectures

Restricted Sparse Networks for Rolling Bearing
Fault Diagnosis, [46]

Perform fault detection using a sparse network

Explored the Restricted-Sparse Frequency Do-
main Space and used the transform into this space
to train a two-layer network that performs equal
to a CNN-LSTM

Interpretable and Steerable Sequence Learning
via Prototypes [62]

Construct a deep learning model with built-in
interpretability for fault diagnosis via DTCs

Introduced Prototype Sequence Network (ProS-
eNet) which uses prototype similarity in the train-
ing of the network and justified the interpretabil-
ity of their approach via a user study on Amazon
MTurk

Causal and Interpretable Rules for Time Series
Analysis [146]

Perform predictive maintenance while utilizing
causal rules for explanations

Designed Case-crossover APriori algorithm
for predictive maintenance which showed both
higher performance occurs when having rules
that are additive and subtractive to an output

and DC-Attention for extracting features and detection. The
causal graph construction uses causal discovery methods
and/or prior expertise to encode monitoring variables into a

directed acyclic graph. The Disentangled Causal Attention

(DC-Attention) aggregates the causal variables for generating
representations of the effect variables. The DC-Attention
outputs the system status (faulty or not faulty). They then
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utilize a custom loss function that calculates the distance
between the current support of representations and its
theoretically disentangled support.

6) PROTOTYPE LEARNING
Prototype learning, as described by Ming et al. [62], is a form
of case-based reasoning that determines the output of an input
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by comparison to a representative example. Determining the
best prototypes is a problem itself, but the interpretability
it bring is apparent. The output of a specified input would
be similar to its most similar prototype’s output; therefore,
the reason that the input data has a certain output is due
to the output of a very similar piece of data. This brings
interpretability via comparison to the prototype.

Ming et al. [62] used the concept of prototype learning to
construct a deep learning model with built-in interpretability.
They introduced the prototype sequence network (ProSeNet)
for a multi-class classification problem of fault diagnosis via
diagnostic trouble codes. The model consists of a sequence
encoder that is based on a recurrent architecture. The hidden
state is fed into a prototype layer that determines how similar
the hidden state is to prototypes in the form of a similarity
vector. The network then outputs a prediction probability
for the different classes based on the similarity vector.
Interpretability can be conceived via the prototypes that are
most similar to the input. They justified the interpretability of
their model by using Amazon MTurk and surveying the users
about the interpretability. They also studied how the input
of human knowledge would affect the interpretability. They
showed that including the human feedback improved the
interpretability of their network in a post-study of different
Amazon MTurk users.

7) SIGNAL TEMPORAL LOGIC (STL)

Introduced by Maler and Nichovic [173], STL as a type of
temporal logic that is used for dense-time real-valued signals.
STL is defined as predicates over atomic propositions. These
STL rules are formed by applying Boolean filters for these
atomic propositions that transforms a signal into a Boolean
signal. This involves considering: the filter that is being
applied, the length of the signal, the sampling of the signal
and any additional desired samples. We refer the reader to
Maler and Nichovic [173] for an example.

Chen et al. [136] performed fault diagnosis on a furnace
using internet-of-things, reinforcement learning, and signal
temporal logic. Their algorithm takes in the STL grammar
and labeled input data, and it outputs an optimal STL formula.
The agent chooses a formula from the agenda and adds it to
a chart based on the current policy. The evaluator evaluates
the performance of the formula on the input. The learner
updates the policy function according to the performance.
The agenda is updated based on the formulas in the chart.
They utilize an MDP to construct the agenda-based formulas
while the reinforcement learning solves the problem. They
apply their method to multiple faults demonstrating good
robustness results, fast runtimes, and statistically significant
performances.

8) RULE-BASED INTERPRETATIONS

Similar to rule-based explainers presented in V-A, rule-
based interpretations involve utilizing rules that are learned
from the data. Unlike the rule-based explainers, rule-based
interpretations remove the black-box from the problem. This
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allows the rules to be directly learn from the information as
opposed to learning from the black-box model and the data.

Dhaou et al. [146] proposed a novel approach that
combines case-crossover research design with Apriori data
mining. This combination resulted in the Case-crossover
APriori (CAP) algorithm for association and causal rules
explanation. The case-crossover design describes the way of
setting up the problem. They ignored the group of data where
nothing goes wrong, and they focused on the subjects that
have the class change. In the case of predictive maintenance,
a class change would be from healthy to failure data. The
case-crossover design looks at the period prior to class change
as the control group, and it looks at moments before the class
change as the case period. These data points are combined
with Association Rule Mining APriori to extract causal
rules. These causal rules can be both additive (predictive
of truth) and subtractive (predictive of falsehood). Their
results show that both additive and subtractive rules help with
performance, and they show their algorithm to outperform
random forest on the same problem.

C. STATISTICS

Statistics in a wide-area with many applications that allow
us to evaluate our hypotheses in a meaningful and common
way [174]. These methods allow us to compare data
distributions and more using tried and true ways that have
been around since no later than 1900, in terms of Pearson’s
chi-squared test [175].These methods utilize actual tests
from the realm of statistics in Section VI-C1, or they
utilize methods that build upon these methods such as
Hidden Markov Models and Generalized Additive Models in
Section VI-C2 and Section VI-C4 respectively.

1) STATISTICAL METHODS

Statistical methods are used for explaining by analyzing
different features along different classes using statistical
tests, such as Student’s t-test [176], Pearson’s chi-squared
test [175], etc.

Yao et al. [41] proposed a framework with interpretable
and automatic approaches that consisted of solely statistical
processing. Their method proposed kurtosis-energy metric
to define key sub-bands, a new health index of these sub-
bands, a joint statistical alarm and fault identification strategy.
Additionally, they proposed a health phase segmentation
strategy for health phase assessment and degradation pattern
analysis. This method involved analyzing the data on
the time-frequency domain and suppressing the disturbing
components such as noise. This analysis was able to help
form the sub-bands for monitoring the current state. If it fails
statistical tests, then an anomaly is detected. They tested their
method on the PHM 2012 rolling bearing dataset, and they
reported very low false positives.

As there are typically no sensors within wastewater pipe
blockages, Castle et al. [148] propose a statistical approach
with the historical data. To perform reliability analysis,
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synonymous to anomaly detection, of the wastewater pipes,
they apply two different statistical methods: the frequentist
Cox Proportional Hazards Model (Cox PHM) and Bayesian
Weibull Proportional Hazards Model (Weibull PHM) The
Cox PHM [177] is a statistical model that compares failure
rates between units while providing information about
what variables influence failure events. The Weibull PHM
utilizes a Lasso regression to define the priors calculations,
and they use a Markov Chain Monte Carlo procedure to
update the posterior distributions of their covariates. They
were able to use these approaches to find statistically
significant differences in water pipes with features that
indicate blockages and those that do not. With these statistical
results, they were able to easily interpret these results in
addition to their reliability analysis.

2) HIDDEN MARKOV MODEL (HMM)

HMMs were introduced by Baum and Petrie [178] and can be
described as a statistical state-space algorithm [29]. HMMs
represent the learning as a statistical process that transitions
between states, and HMMs represent the output as separate
states that extend from the transitional states. HMMs, as a
statistical process, can discern hidden states from the data
that may not be readily apparent. They are also capable of
learning combinations of sensor data, leveraging confounding
variables, and executing dimensionality reduction to simplify
the complexity of the data. [80].

Abbas et al. [80] combined the input-output HMM with
reinforcement learning to make interpretable maintenance
decisions. Their hierarchical method consisted of two
steps. The input-output HMM filters the data and detects
failure states. Once the failure state was detected, the
deep reinforcement learning agent learned a policy for
maintenance based on the failures. The first challenge of this
approach involves representing predictive maintenance as a
reinforcement learning problem. This is done by representing
the potential actions as hold, repair, or replace, creating a
reward function based on holding, early replacement and
replacement after failure, and measuring the cost based on
these reward functions. The HMM is used for interpreting
the output of their model by observing the features that led
the model into detecting a failure state.

3) GAUSSIAN MIXTURE MODEL (GMM)

As described by Reynolds [179], Gaussian mixture models
(GMMs) is a probability density function designed as
a weighted sum of Gaussian component densities. The
component densities are created using the mean vector and
covariance matrix of the data while the mixture weights are
estimated. GMMs are commonly used due to their capability
of representing information via a discrete set of Gaussian
functions to improve modeling of larger distributions. These
models can be labeled as interpretable as the models directly
represent the distributions of the features. These models can
then be directly used to explain the features.
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Csalodi et al. [108] performed survival analysis via a
Weibull distribution by representing the operation signals
as a Gaussian mixture models and the parameters of the
Weibull model via clustering. Specifically, their method used
an expectation-maximization algorithm which consists of
two parts. The expectation step determined the probability
that a data point belongs to any cluster given the survival
time and parameters while assuming the clustering is correct.
The maximization step updated the parameters for the
Gaussian mixture models and the Weibell distribution to
better represent the data. When applying their method
to lithium-ion batteries, they represented distributions of
unhealthy batteries quite accurately while healthy batteries
were less well-represented. This occurred due to the large
category of healthy data which was harder to represent in
one small model while the unhealthy data could be easily
represented when isolated.

4) GENERALIZED ADDITIVE MODEL (GAM)

Introduced by Hastie and Tibshirani [180], GAMs are a way
of estimating a function by summing a list of nonlinear
functions in an iterative manner as to become better with
accurate local models as opposed to an overarching global
model. These local models are smoothed using a series of
smoothing functions. Additionally, these local models are
independent of one another as they are trained using single
features. These local models allow for interpretability as well
as importance related to their impacts on the outcome of the
GAM.

Yang et al. [43] introduced the Noise-Aware Sparse
Gaussian Process as a way of solving the scalability and
noise sensitivity issues of normal Guassian Processes. Based
on their NASGP algorithm, they developed an interpretable
GAM that uses additive kernels and individual features. They
applied their method to the IEEE PHM 2012 data challenge
in forms of RUL prediction and fault diagnosis. Their method
performed well in comparison to other methods and allowed
a level of interpretability.

5) MAHALANOBIS-TAGUCHI SYSTEM (MTS)
MTS was introduced by Taguchi and Jugulum [181] as a
diagnosis and forecasting method. This method bases its
discriminative power on the Mahalanobis distance calcula-
tion; this method cannot feasibly work if the classes cannot
be distinguished this way. The feature space is reduced via
orthogonal arrays and signal-to-noise ratios. The orthogonal
array contains different subsets of the features. The signal-to-
noise ratio measures the abnormality of the feature. Finally,
the Mahalanobis distance is maximized by only including the
features whose signal-to-noise ratio increases the distance.
This maximized distance can be seen as the reason for a
diagnosis, which is determined by the features that are used
to calculate the distance.

Scott et al. [125] introduced use of the Mahalanobis-
Taguchi system for fault detection. MTS utilizes Mahalanobis
distance, orthogonal arrays, and signal-to-noise ratios for
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multivariate diagnosis and prediction. The Mahalanobis
space represents the stable operations andyields the differ-
ence of an observation from stable. The orthogonal arrays and
signal-to-noise ratio is used to diagnose or identify variables
responsible for the fault. This method was able to detect
roughly 75% of the faults tested.

6) EXPLAINABLE BOOSTING MACHINE (EBM)

EBM were introduced by Nori et al. [182] as a glassbox
model, another term for interpretable model, with similar
accuracy to that of state-of-the-art blackbox algorithms.
EBM is a type of generalized additive model that learns
each feature’s function using techniques such as bagging.
Additionally, it can detect interactions between features
and include those pairs of terms by learning functions of
combinations of features. Because of its nature as an additive
model, the features can be explained by their impact on the
outcome. Jakubowski et al. [76] utilized this method, but they
focused more on the XAl approaches. Their work is described
in Section V-C.

D. OTHER METHODS

The methods found here do not fit cleanly within the
other categories in interpretable machine learning. These
methods consist of the ever popular attention mechanism,
Section VI-D1, digital twins, Section VI-D2, and k-Nearest
Neighbors, Section VI-D3.

1) ATTENTION

Attention was introduced by Vaswani et al. [183] as a method
of natural language processing. This attention module gets
extended to introduce the transformer architecture that has led
to many famous models such as GPT. The weights from the
attention modules can be visualized to allow interpretation of
the aspects the architecture is focusing.

Xia et al. [58] and Hafeez et al. [64] tackled interpretable
fault diagnosis in two separate ways. Xia et al. looked at
hierarchical attention by grouping the features by systems
and subsystems. They utilized BiLSTM encoders with
attention to obtain important features where the attention
components added interpretability. Hafeez et al. created an
architecture known as the DTCEncoder to learn low level
representations of multivariate sequences with attention.
It utilized the Diagnostic Trouble Codes (DTC) commonly
found in predictive maintenance problems as a class label
for fault diagnosis. Dense layers were used to translate the
encoded latent space from DTCEncoder into a probability
distribution for the different DTCs. The latent space was
learned using attention mechanisms and could be used to add
interpretability of why the network output the DTC.

For interpretable fault prediction, Wang et al. [56] pro-
posed a two-stage method based on anomaly detection and
anomaly accumulation. The anomaly detection module was
made using a CT-GAN to train a discriminator on limited
data, i.e., faults. The anomaly scores from the CT-GAN
were fed into the anomaly accumulation module based on an
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Attention-LSTM. This modeled the temporal dependencies
of the anomaly scores while the attention mechanism was
used to give importance to different anomalies at different
time steps. Their model outperforms models such as SVM
and LSTM on prediction and DTW on classification.

Xu et al. [133] was not only interested in anomaly
detection, but also anomaly precursor detection, early symp-
toms of an upcoming anomaly. They argued that detecting
precursors is useful for early prediction of anomalies to better
understand when and what kind of anomaly will occur. They
proposed Multi-instance Contrastive learning approach with
Dual Attention (MCDA) to tackle the problem of anomaly
precursor detection. MCDA combined multi-instance learn-
ing and tensorized LSTM with time-dependent correlation to
learn the precursors. Additionally, the dual-attention module
produced their interpretable results. This approach had high
accuracy results, and their attention mechanism provided
variables which are explanatory for the results. Importantly,
they verified these explanations with domain experts.

2) DIGITAL TWIN

Digital twins originated in 2002 as described by Grieves and
Vickers [184] as a way of creating a digital construct that
describes a physical system. Moreover, digital twins consist
of two systems: a physical system that is represented by the
asset and a digital system that holds the information about
the physical system. Using digital twins, one can observe
the performance of the physical system without having the
physically observe the asset.

Mahmoodian et al. [144] proposed the use of a digital
twin to monitor the infrastructure of a conveyor. Their digital
twin consists of taking in real data from different sensors and
simulating the data. This data is compared to the real time
data to ensure the data is consistent. Their digital twin can
display the different information as well as receive input from
the users to rate the explanations given. If it is seen as not
valid, the digital twin can run simulations surrounding that
data to increase its accuracy.

3) K-NEAREST NEIGHBORS (KNN)

Originally introduced in 1951 by Fix and Hodges [185], kNN
is a supervised learning algorithm that is based on grouping
input data with the k most similar other pieces of input data.
It represents the input data as a large feature space. The
output of some input data is represented by its place in the
feature space in relation to the k closest other data points.
Small k values lead to less consideration for the output value
of the input data; however, it also leads to a more specific
output. Larger k values lead to considering more values when
determining the output; however, too large k values will make
the output less meaningful.

Konovalenko et al. [145] used a modified kNN algorithm
for generating decision support of temperature alarms.
They tackled three problems associated with KNN: (1) the
difficulty associated with sparse regions; (2) the blindness
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to class boundaries leading to misclassifications; and (3)
sensitivity to class overlap. These problems were addressed
by adding principles of local similarity and neighborhood
homogeneity. Local similarity refers to the idea that a new
data is closer to training samples with the same class label.
Neighborhood homogeneity is the idea that new data falls into
a neighborhood where the class label represents the majority.
This method is interpretable through its ability to separate
classes of data on a small dimensional graph.

VII. CHALLENGES AND RESEARCH DIRECTIONS OF
EXPLAINABLE PREDICTIVE MAINTENANCE

XAI and iML have been successfully utilized in predictive
maintenance on many accounts. Researchers have shown that
these methods can add to a prediction in a way that can
be used for root cause analysis, validation of faults, etc.
The main focus of much of the research focuses on adding
explainability to a complex and unexplainable problem.
While an important aspect of this field of study, there are
multiple facets to the problem that generally go under-
represented.

A. PURPOSE OF THE EXPLANATIONS

All explanations serve one overarching purpose: produce
reasons that make the model’s functioning understandable.
This information transfer has taken form in visualizations
of data distributions, visualizations of feature importance
graphs, predictive rules, etc; however, the information is not
specific to a target audience. To echo Neupane et al. [15],
“explanations are not being designed around stakeholders”.
Not only are the explanations not being designed for
stakeholders, but also many explanations do not have a target
audience outside of the implicit audience of the model’s
designer.

Barredo Arrieta et al. [186] provides a list of potential
audiences XAI can target. While they go into more detail,
some potential target audiences, especially for predictive
maintenance, could be the data scientists and developers
creating the predictive system, the project managers and
stakeholders in the project, or even the mechanics working
on the physical systems. These different people may need
different types of explanations ranging from more explana-
tions relating to the physical and time domains to higher level
abstract information.

B. EVALUATION OF THE EXPLANATIONS

In the literature presented above, there are over ten different
evaluation metrics for the performance of the machine
learning algorithms, including RMSE, MAPE, FP, etc. This
shows that the field has collectively come to an agreement on
how we should measure performance in a meaningful way.
The evaluation of the explanations has not received the same
attention as the performance of the algorithm even though
work has been done in defining these different metrics, some
of which are seen in Table 5.
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TABLE 5. Explanation evaluation metrics from [187], [188], [189], [190],
and [191].

Metrics Viewpoint Description

D Objective Difference between the model’s
performance and the explana-
tion’s performance

R Objective Number of rules in explanations

F Objective Number of features in explanation

S Objective The stability of the explanation

Sensitivity Objective Measure the degree in which ex-
planations are affected by small
changes to the test points

Robustness Objective Similar inputs should have similar
explanations

Monotonicity Objective Feature attributions should be
monotonic; otherwise, the correct
importance is not calculated

Explanation Objective Sensitivity and Fidelity

correctness

Fidelity Objective Explanations correctly describe
the model; features and their attri-
bution are correlated

Generalizability Objective How much one explanation in-
forms about others

Trust Subjective Measured through user question-
naires

Effectiveness Subjective Measures the usefulness of the ex-
planations

Satisfaction Subjective Ease of use

Miller [187] provides one of the most in-depth descriptions
of various people’s needs regarding explanations. Miller has
provided many theoretical representations for explanation
including scientific explanations and data explanations. They
also provide much more information including levels of
explanation that could be applicable to different types of
users, structures of explanations that could impact the power
of the explanations, and more.

Coroama and Groza [188] present 37 different metrics for
measuring the effectiveness of an explanation. The methods
range from objective to subjective types. Each method
includes the property it measures and whether there is a
systemic implementation.

Sisk et al. [189] present the case for human-centered
evaluations and objective evaluations for explainable meth-
ods. Their human-centered evaluations aim at partitioning
the users based on their wants from explainable systems.
The objective metrics provided involve many aspects of
the explanations including number of rules and number of
features.

Kadir et al. [190] propose a taxonomy of XAl evaluations
as they appeared in the literature. They identified 28 different
metrics through their literature search. These metrics are
broken down into a taxonomy of how the analysis is
performed. An example would be sensitivity analysis for local
explanations. Sensitivity analysis is broken down into the
removal of features and the addition of features. Each of these
categories then includes many methods that were used.

Hoffman et al. [191] express the importance of high quality
explanations in XAI. If explanations are received well and
are valid, a user would be better equipped to trust and use
a system that employes the XAI process. This allows for
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FIGURE 13. Potential audiences of explainable predictive maintenance.
Icons taken from'.

multiple areas of evaluations including the goodness of the
explanation, the satisfaction the explanations provided to
the users, the comprehension of the user, the curiosity that
motivates the user, the trust and reliance the user has with
the Al, and the performance of the human-XAlI system. They
provide methods for measuring these metrics that are readily
available.

Lastly, the addition of these metrics only add to the field
of XPM. When we compare two models based on their
RMSE, we can come to concrete conclusions about the use
of these two models; one of the two models will be superior.
The addition of explanation metrics, even ones as simple
as the objective measures found in Table 5, gives us as
researchers another axis to compare our models. This may
show that certain explainable methods perform best with
certain models, and it may show us that certain explainable
methods are better applied to certain cases, especially when
audiences may be different.

C. ADDITION OF HUMAN INVOLVEMENT

The target audience of an explainable system is a human
subject whether a data scientist, a stakeholder, an engineer,
or other. Addressing the needs of different types of users of
an explainable system is an important area of research that is
currently lacking. As seen in Fig. 13, different people on the
same task have different goals and desires from predictive
maintenance. While compensating for these differences
would be difficult, we suggest a way to accomplish this,
together with the resulting benefits.

First, a target audience for the explainable system should
be identified, ensuring that a sample population of statisti-
cally significant size is used. This would allow the researchers
and developers to gather specific user requirements. Second,
one should present the information to this sample population
as a way of evaluating the explanations generated by a pro-
posed method. This would also allow the researchers to apply
evaluation metrics such as effectiveness and trust. Finally,
explanation methods should be altered to the user’s needs as
opposed to an assumed need of the user. This would bring
many benefits to the XAI field as a whole. These include:

1https://icons8.(:om/
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making more quality metrics available, allowing researchers
to discern which information is more or less useful, and
bringing more attention to customizable explanations via the
type of user. These would push the field of XAI forward
as well as push the field of predictive maintenance forward
towards a human-Al teaming environment.

D. STUDY LIMITATIONS

This study focuses on a small amount of potential XAI and
iML literature. While this survey reflects the work done as
applied to predictive maintenance, it does not reflect many
of the applied XAI and iML algorithms that exist. It also
does not reflect all of the applicable ML algorithms developed
within the context of predictive maintenance. While we do not
see this as a detriment to the article presented, we do note that
there are a number of popular methods of which the reader
may be aware that are not present.

VIIl. CONCLUSION

Over the last decade, predictive maintenance has occupied
a considerable presence in the field of machine learning
research. As we move towards complex mechanical systems
with interdependencies that we struggle to explain, predictive
maintenance allows us to break down the mysticality of
what could potentially go wrong in the system. Many of
these approaches move us closer to understanding the system
while building a new system that we need to comprehend.
Explainable predictive maintenance and interpretable predic-
tive maintenance aim at breaking down these new walls to
bring us closer to a clear understanding of the mechanical
system.

In this review, we provided a wide range of methods that
are being used to tackle the problem of explainability. These
methods are broken down in XAl and iML approaches. In our
writing, XAl was broken-up into model-agnostic approaches
like SHAP, LIME and LRP, and model-specific approaches
like GradCAM and DIFFI. iML approaches all apply different
methods of applying inherently interpretable models to the
problem of predictive maintenance.

Additionally, we have brought the attention to over
40 methods that can be utilized to bring explainability and
interpretability to predictive maintenance tasks. We cannot
make statements about the quality of the explanations
generated by these differnet methods. As can be seen in our
review, many methods have been applied to the same datasets
where very few were used in a comparative analysis. This
leaves us lacking in a recommendation for an overarching
best approach to solve the problem of explainability in
predictive maintenance. We provide the different methods
coupled with their datasets, so for researchers beginning
with turbofans for example, beginning with Shapley Additive
Explanations or Rule-based approaches would be the best
place to start, as seen in Table 1.

Our systematic review showed some weak points in the
field that can be addressed. Namely, there is a lack of utiliza-
tion of metrics of explanations in predictive maintenance. The
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field of XAI has shown a number of metrics that do not even
need to show the explanations to the target audience of the
explainable systems. We provided a list of potential metrics
found in the literature that can be applied to this domain.

Lastly, we provided a short description of how humans can
be brought into the evaluation of explainable and interpretable
methods. After defining the target audience, researchers
can gather a statistically significant sized sample of that
audience. Providing the explanations to that sample would
give feedback and allow the field to push towards human-
specified explanations.
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