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Abstract

Plant organ size is an important agronomic trait tightly related to crop yield.
However, the molecular mechanisms underlying organ size regulation remain
largely unexplored in legumes. We previously characterized a key regulator F-box
protein MINI ORGAN1 (MIO1)/SMALL LEAF AND BUSHY1 (SLB1), which con-
trols plant organ size in the model legume Medicago truncatula. In order to further
dissect the molecular mechanism, MIO1 was used as the bait to screen its inter-
acting proteins from a yeast library. Subsequently, a KIX protein, designated
MtKIX8, was identified from the candidate list. The interaction between MIO1
and MtKIX8 was confirmed further by Y2H, BiFC, split-luciferase complementa-
tion and pull-down assays. Phylogenetic analyses indicated that MtKIX8 is highly
homologous to Arabidopsis KIX8, which negatively regulates organ size. More-
over, loss-of-function of MtKIX8 led to enlarged leaves and seeds, while ectopic
expression of MtKIX8 in Arabidopsis resulted in decreased cotyledon area and
seed weight. Quantitative reverse-transcription PCR and in situ hybridization
showed that MtKIX8 is expressed in most developing organs. We also found that
MtKIX8 serves as a crucial molecular adaptor, facilitating interactions with BIG
SEEDS1 (BS1) and MtTOPLESS (MtTPL) proteins in M. truncatula. Overall, our
results suggest that the MIO1-MtKIX8 module plays a significant and conserved
role in the regulation of plant organ size. This module could be a good target for

molecular breeding in legume crops and forages.
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1 | INTRODUCTION

Plant organ size is coordinately fine-tuned by a combination of inter-
nal genetic and external environmental cues (Hepworth &
Lenhard, 2014; Vierstra, 2003). In cereal and legume crops, the size of
the plant organs, particularly the seed, is closely related to the final
yield of the crops. However, the molecular mechanisms underlying
organ size control in legumes are still poorly understood. Legumes
contribute significantly to the human diet by providing a majority of
plant protein resources and a significant portion of oils (Reddy
et al., 2005). Increasing the plant organ size is an efficient approach
for breeders to potentially improve crop yields to meet the demand of
the growing global population.

From a cellular point of view, the size of plant organs is deter-
mined by the interplay of cell division and expansion. The develop-
ment of plant organs is a sequential process, starting with the
recruitment of founder cells and leading to the formation of the pri-
mordium, followed by cell proliferation and subsequent cell expansion
(Czesnick & Lenhard, 2015; Gonzalez et al., 2012; Hepworth &
Lenhard, 2014; Powell & Lenhard, 2012). The final organ size is also
depends on the number of cells and the rate and duration of cell pro-
liferation and expansion (Gonzalez et al., 2012). Several genes have
been reported to regulate these processes in Arabidopsis. For example,
STRUWWELPETER (SWP) plays a significant role in determining the
leaf primordium size (Autran et al., 2002). The rate of cell division is
controlled by cell cycle genes such as ANAPHASE PROMOTING
COMPLEX10 (APC10) and CELL DIVISION CYCLE PROTEIN 27
HOMOLOG A (CDC27a) (Eloy et al., 2011; Rojas et al., 2009). AUXIN-
REGULATED GENE INVOLVED IN ORGAN SIZE-AINTEGUMENTA-
AINTEGUMENTA-LIKE-CYCLIN D3  (ARGOS-ANT-AIL-CYCD3)
module, DA1, ENHANCER OF DA1-1 (EOD1), KLUH (KLU) and DELLA
were reported to mainly regulate the duration of cell division (Dewitte
et al., 2003; Fleet & Sun, 2005; Hu et al., 2003; Krizek, 2009; Li
et al., 2008; Nole-Wilson et al., 2005; Stransfeld et al., 2010). Further-
more, EXPANSIN10 (EXP10), ErbB-3 EPIDERMAL GROWTH FACTOR
RECEPTOR BINDING PROTEIN (EBP1), ARGOS-LIKE (ARL), TARGET OF
RAPAMYCIN (TOR), ZINC FINGER HOMEODOMAIN5 (ZHD5) and
AUXIN RESPONSE FACTOR2 (ARF2) have been shown to control the
cell size (Cho & Cosgrove, 2000; Deprost et al, 2007; Hong
et al.,, 2011; Horvath et al., 2006; Hu et al., 2006; Schruff et al., 2006).

In recent years, a series of studies have revealed that the STERILE
APETALA-PEAPOD-KIX-TOPLESS (SAP-PPD-KIX-TPL) module plays
a critical role in regulating organ size and shape in the model plant
Arabidopsis. The F-box protein SAP, which forms an SCF E3 ubiquitin
ligase complex to target substrates for degradation, promotes organ
size by positively regulating meristemoid cell proliferation (Byzova
et al.,, 1999; Wang et al., 2016). The TIFY proteins PPD1 and PPD2
are the first reported regulators that affect meristemoid cell prolifera-
tion (Bai et al.,, 2011; Cuéllar Pérez et al., 2014; Gonzalez et al., 2015;
White, 2006). Knock-out or knock-down of the PPD genes produces
larger, dome-shaped leaves (Gonzalez et al, 2015; White, 2006).
INDUCIBLE DOMAIN INTERACTINGS8 (KIX8) and KIX9 act as an
adaptor between PPD and co-repressor TOPLESS (TPL) to form the

PPD-KIX-TPL repressor complex. SAP can target KIX and PPD for
degradation to disrupt the stability of PPD-KIX-TPL repressor com-
plex, thereby positively regulate the meristemoid cell proliferation and
organ size in Arabidopsis (Gonzalez et al., 2015; Kagale et al., 2010; Li
et al., 2018; Pillitteri & Dong, 2013; Swinnen et al., 2022; Thakur
et al.,, 2013; White, 2006). Moreover, the phenotypes of kix8 single
mutant, kix8 kix9 double mutant, and SAP-overexpression line
are both similar to the phenotype of the ppd mutant (Gonzalez
et al, 2015; Wang et al, 2016), which further confirms that the
SAP-KIX-PPD complex is indeed related to the regulation of plant
organ size. Similarly, transcription factors MYC3/4 could recruit the
TPL-KIX-PPD complex to repress the GRF-INTERACTING FACTOR 1
(GIF1) to specifically regulate the seed size (Liu et al., 2020).
PPD-KIX-TPL also interacts with the NOVEL INTERACTOR OF JAZ
(NINJA) to repress the down-stream cell cycle gene CYCD3 to
regulate the leaf flatness (Baekelandt et al., 2018).

In other plant species, the orthologous genes SAP, KIX and PPD
play important roles in regulating plant organ size. LITTLELEAF (LL) is
an ortholog of SAP and was reported to positively regulate organ size
in cucumber (Cucumis sativus). Loss-of-function and ectopic expres-
sion of LL result in decreased and increased organ size, respectively
(Yang et al., 2018). In the model legume Medicago truncatula, MIO1/
SLB1, the ortholog of SAP, was uncovered to positively regulate the
lateral organ size by controlling the primary cell division during plant
development (Yin et al., 2020; Zhou et al., 2021). Similar to KIX8/9,
SIKIX8/9 acts as an adaptor between SIPPD and SITOPLESS to
negatively regulate organ size in tomatoes (Solanum lycopersicum).
Loss-of-function of SIKIX8 and SIKIX9 leads to enlarged leaves and
fruits (Swinnen et al., 2022). GmKIX8-1 in soybean (Glycine max) nega-
tively regulates the size of aerial plant organs, such as seeds and
leaves, by repressing cell proliferation during development (Nguyen
et al., 2021). BIGGER ORGANS (BIO) gene, the homologs of KIX8/9 in
pea (Pisum sativum), negatively regulates the size of lateral organs like
leaves, flowers and pods (Li et al., 2019). The PPD orthologous genes
BIG SEED1 (BS1) in M. truncatula and soybean, VmPPD in Vigna mungo
and ELEPHANT EAR-LIKE LEAF1 (ELE1) in pea all generate larger leaves
and seeds by negatively regulating primary cell proliferation (Ge
et al., 2016; Li et al., 2019; Naito et al., 2017). From the above clues, it
appears that the SAP-KIX-PPD module is conserved in organ size reg-
ulation in dicot plants.

Recently, we found that MIO1, the ortholog of SAP in M. truncatula,
positively regulates organ size by promoting primary cell proliferation
(Zhou et al., 2021). To further explore how the MIO1 protein regulates
organ size, we used MIO1 as the bait to screen its interacting proteins.
Ultimately, 23 potential interactors were identified. Among them,
Medtr4gl114900 was predicted to encode a typical KIX domain-
containing protein. Phylogenetic analysis showed that Medtr4g114900
is the homolog of Arabidopsis KIX8. Protein sequence analysis indicates
that MtKIX8 harbor the conserved KIX domain, R domain and EAR
domain, and then we named it MtKIX8. In addition, the protein interac-
tion assays showed that MtKIX8 directly interacts with MIO1 in vitro.
Expression pattern analysis indicates high MtKIX8 expression levels in

flower, pod, seed and shoot. To verify the gene function of MtKIX8 in
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M. truncatula, a reverse genetic screening was performed to identify the
mutant that harbors the retrotransposon Tnt1 in the MtKIX8 gene locus.
The mtkix8 mutant produces enlarged leaves and seeds. When MtKIX8
was ectopically expressed in Arabidopsis, it rescued the increased organ
size phenotype in the kix8 mutant. These results confirm that MtKIX8
acts as a negative regulator of organ size. Y2H results showed that
MtKIX8 also directly interacts with BS1 and MtTOPLESS (MtTPL), sug-
gesting that MtKIX8 represses organ size by forming the conserved
repressor complex in M. truncatula. This study demonstrates that MtKIX8
plays an important and conserved role in regulating organ size, and it

would be a promising locus for molecular design breeding in legumes.

2 | MATERIALS AND METHODS

2.1 | Plant materials and growth conditions
Medicago truncatula ecotype R108 and Arabidopsis ecotype Col-O
were used as the wild type in this study. The miol-1 mutant and
355:MIO1 transgenic lines were described previously (Zhou
et al., 2021). The mtkix8 (NF19103) mutant of M. truncatula was iso-
lated from the tobacco Tnt1 retrotransposon tagged mutant collec-
tion at Oklahoma State University. The kix8 (SALK_206915C)
mutant was ordered from AraShare (Fujian Agriculture and Forestry
University). M. truncatula seeds were rubbed with sandpaper and
placed in water dishes at 4°C for 7 days and then sown in the green-
house. Arabidopsis seeds were imbibed and kept at 4°C for 2 days
before being sown in the greenhouse. Plants were grown under the
following conditions: 16/8 h day/night photoperiod, 22/18°C
day/night temperature, 150 umol m~2 s~ light intensity and 50%-
60% relative humidity.

2.2 | Phylogenetic analysis and sequence
alignment

Sequence data were downloaded from Phytozome (https://
phytozome-next.jgi.doe.gov/) and pea genome database (https://urgi.
versailles.inra.fr/blast/). Phylogenetic trees were generated using the
neighbor-joining method, implemented in MEGA 7.0 with 1000 boot-
strap replications. Multiple alignments of the sequences were per-
formed using the DNAMAN software.

2.3 | Yeast two-hybrid screening

The yeast library screening was performed following the manufac-
turer's instructions (Matchmaker® Gold Yeast Two-Hybrid System
User Manual, Clontech). The tissues for cDNA library construction
were shoot tips during the reproductive stage of M. truncatula. The
MIO1 sequence was amplified and cloned into the BamHI-Smal site of
the pGBKT7 bait vector. The bait plasmid was transformed into yeast
strain Y2H Gold and expressed as a fusion to the yeast GAL4 BD-

MIO1. Before the screening, the bait protein was assessed for autoac-
tivity and toxicity. Then, the Y2H Gold strains containing the bait pro-
tein and the Y187 library proteins were mixed for mating. The mated
cells were spread on the 150 mm SD/-Leu/-Trp/-His/-Ade medium at
30°C for 4-6 days. Each clone was selected individually in 10 pL ster-
ile water and then loaded for colony PCR after repeating freezing and
thawing at —37°C three times. The amplified fragments greater than
200 bp were selected for sequencing. To confirm the positive interac-
tion, the complete coding sequence of MtKIX8 was cloned into
pGADT7 as a prey plasmid. The bait plasmid BD-MIO1 and prey plas-
mid AD-MtKIX8 were co-transformed into Y2H Gold strain and cul-
tured on SD/-Leu/-Trp medium at 30°C for 3-4 days. Cultured
colonies were collected when the ODggo reached 1.3, then the cul-
tures were diluted to make 1x, 0.1x, 0.01x and 0.001x culture solu-
tions. The diluted cultures were spread onto the SD/-Leu/-Trp and
SD/-Leu/-Trp/-His/-Ade medium at 30°C for 3-4 days. Other yeast
vectors were also constructed according to the above method. Nota-
bly, due to the low expression of the TPL gene, the reverse primer at
the end of the TPL gene was used as a specific reverse transcription
primer to obtain cDNA. The empty pGBKT7 and pGADT7 vectors

were used as controls.

24 | Bimolecular fluorescence
complementation assay

The complete coding regions of MIO1 and MtKIX8 were fused into
the C-terminal fragment of the pFGC-cYFP vector and the N-terminal
fragment of the pFGC-nYFP vector, respectively. The plasmids were
transformed into Agrobacterium strain EHA105 and co-infiltrated into
the leaves of N. benthamiana plants. The plants were incubated at
22°C in the dark for 48 h, and then the YFP signals were observed

with a confocal laser scanning microscope (Zeiss LSM900).

2.5 | Split-luciferase complementation
imaging assay

The coding sequence of MtKIX8 was cloned into the BamHI-Bglll site
of pCAMBIA1300-nLUC, and the coding sequences of MIO1 and
WD40 were cloned into the Bglll-Xbal site of pPCAMBIA1300-cLUC.
All plasmids were transformed into the Agrobacterium tumefaciens
EHA105 strain and then infiltrated into N. benthamiana leaves. The
N. benthamiana plants were cultured in the dark for 72 h. The 0.5 mM
fluorescein was applied to the abaxial side of leaves and kept in the
dark for 5 minutes, and the signal was observed under the CCD cam-
era (Tanon 5200).

2.6 | Invitro pull-down assay

The coding sequences of MtKIX8 and WD40 were amplified and
cloned into the BamHI-Hindlll site of the pET-28a vector and the

9SUAOI'T suowwo)) aAnear) ajqesrjdde ayy £q pauraroS ae sa[onIe Y (asn Jo sa|n1 10J AI1eIqIT dUIUQ AS[IA\ UO (SUONIPUOI-PUE-SWLIA) /W0 KJ[1M"ATRIqI[aul[uo//:sdNY) suonipuo)) pue swiId ], 3y} 298 "[$707/S0/S 1] uo Areiqiy autjuQ La[ip ‘Kisiaatun aels ewoyepO Aq 9401 1dd/1 111°01/10p/wod Ko[imAreiqrpaurjuoy/:sdiy woly papeojumod ‘S ‘€207 ‘vS0L66€1


https://phytozome-next.jgi.doe.gov/
https://phytozome-next.jgi.doe.gov/
https://urgi.versailles.inra.fr/blast/
https://urgi.versailles.inra.fr/blast/

4of16 | (1o

ia Plantarum.

MAO ET AL

BamHI-EcoRl site of the pGEX-4T-1 vector, respectively. The bacterial
lysates containing the His-MtKIX8 and GST-WD40 fusion proteins
were mixed and incubated with glutathione sepharose beads
(GE Healthcare) at 4°C for 2 h. The isolated proteins were separated
with 10% SDS-polyacrylamide gel and detected by immunoblot analy-
sis with anti-GST and anti-His antibodies, respectively. The empty

GST protein was used as a negative control.

2.7 | RNA extraction and quantitative reverse-
transcription PCR

Total RNA was isolated from plant tissues with a TransZol Kit
(Tiangen Biotech). Agarose gel electrophoresis and Nanodrop
Analyzer (Thermo Scientific) were used to check the quality and con-
centration of RNA. Subsequently, 1.5 pug of total RNA was used for
reverse transcription with HiScript® Il 1st Strand cDNA Synthesis Kit
(Vazyme). Quantitative reverse-transcription PCR was conducted
using TransStart Tip Green gPCR SuperMix (TransGen) on the Light-
Cycler 480Il device (Roche). AtUBQ10 and AtACTIN genes were used
as internal controls in Arabidopsis, and MtACTIN and MtGAPDH genes
were used as internal controls in M. truncatula. Primer sequences are

listed in Table S1, Supporting Information.

2.8 | RNA insitu hybridization

Shoot apices of 8-week-old plants were collected for RNA in situ
hybridization as previously described (Coen et al., 1990). The hybridi-
zation signal was visualized under a microscope (FV1000, Olympus).

2.9 | Subcellular localization

To generate the plasmid 35S:MtKIX8-GFP, the full-length coding
sequence of MtKIX8 was amplified and cloned into the pYS22 vector
between the Xhol and Kpnl restriction sites. The 35S::MtKIX8-GFP con-
struct was transformed into the Agrobacterium tumefaciens EHA105
strain and transiently expressed in N. benthamiana leaves. GFP signals

were examined using a confocal laser scanning microscope.

210 | Plasmid constructions and plant
transformation

The full-length coding sequence of MtKIX8 was amplified by PCR from
WT cDNA of the reproductive shoot apex and was inserted into the
pCAMBIA3301 vector between the Ncol and Eco72I restriction sites to
generate the 355:MtKIX8 construct. The 654 bp native promoter of
AtKIX8 was amplified from WT Col-0, and the full-length MtKIX8 coding
sequence was amplified from the plasmid 35S::MtKIX8. The above two
fragments have a 23 bp overlapping sequence. Overlapping PCR was

carried out using these two fragments as templates to obtain the

recombinational fragment. The fragment was cloned into the Hindlll
and Pmll sites of the pCAMBIA3301 vector to generate the plasmid pAt-
KIX8::MtKIX8. All PCR reactions were carried out using the Phanta Max
Super-Fidelity DNA Polymerase (P505, Vazyme) and the homologous
recombination process was achieved using the ClonExpress Il One Step
Cloning Kit (C112, Vazyme). The constructed vectors were transformed
into A. tumefaciens EHA105 strain and introduced into Col-O and kix8
mutant via the floral dipping method. 20 mg L~! Basta was used to
screen positive transgenic plants. Next, PCR was used to verify the pos-

itive results. Primer sequences are listed in Table S1.

211 | Morphological analysis

Arabidopsis seeds were harvested from the fifth to fifteen siliques on
the stem. Cotyledons were taken from 8-day-old seedlings. The pic-
ture of cotyledons and seeds were captured with the stereomicro-
scope (SZX16, Olympus) and measured by ImageJ software.

3 | RESULTS

3.1 | Identification and characterization of MIO1
interactors

We previously reported that the F-box protein MIO1 plays a promi-
nent role in the regulation of lateral organ size by forming the SCF E3
ubiquitin ligase complex in M. truncatula (Zhou et al., 2021). Mutation
of MIO1 resulted in a significant reduction in plant organ size at both
vegetative (Figure S1A,C) and reproductive development stages
(Figure S1B,D). In contrast, ectopic expression of MIO1 gave rise to
enlarged plant and lateral organ sizes, such as leaves, flowers, pods
and seeds (Figure S1A-I).

To further get insight into how MIO1 regulates organ size in
M. truncatula, a Y2H screening was performed. We firstly examined
whether MIO1 could be autoactivated in this system and found that
MIO1 protein displayed a weak autoactivation on SD/-Leu/-Trp/-His
media but none on SD/-Leu/-Trp/-His/-Ade media. Next, we checked
the toxicity of MIO1 protein on yeast strain Y2H Gold and found that
MIO1 did not impact yeast cell growth (Figure S2A,B). This observa-
tion suggests that MIO1 is appropriate to screen the yeast library on
SD/-Leu/-Trp/-His/-Ade media. During the screening processes, the
number of yeast mating cells (similar to shamrock) gradually increased
with time (Figure S3A,B). Positive colonies were selected for the PCR
test, and the PCR products greater than 200 bp were selected for
sequencing (Figure S4A,B). Finally, 23 candidates of MIO1 interacting
proteins were identified from the sequencing results (Table 1). Among
them, the gene Medtr4g114900 encodes a typical KIX domain protein.
Previously the KIX domain-containing proteins KIX8 and KIX9 had
been reported to negatively regulate organ size in Arabidopsis
(Gonzalez et al., 2015). Based on these clues, it suggests that
Medtr4g114900 encoding a conserved KIX protein could been
involved in organ size regulation by interacting with MIO1.
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TABLE 1 Genes identified from the yeast library screening and their functions annotations
A17 ID Frequency Conserved domain Homologous gene function Reference

Medtr7g009330 9 Porin/voltage-dependent anion-

selective channel protein

Medtr5g097280 5 Chlorophyll A-B binding
Medtrdg114900 2 KIX domain
Medtr1g051895 2 EF-hand motif
Medtr8g015580 2 PWWP domain
Medtr4g098490 1 2Fe-2S iron-sulfur cluster

binding domain

Medtr4g088615 1 Ribosomal protein S5,

N-terminal domain
Medtr1g010290 1
Medtr7g100450 1

Enhancer of polycomb-like

Heavy metal-associated domain

Medtr4g073400 1 C2 domain

Medtr4g029390 1 Bifunctional inhibitor/plant lipid
transfer protein/seed storage

helical domain

Medtr4g021880 1 Ankyrin repeat-containing

domain

Medtr1g094680 1 Anion-transporting ATPase-like

domain

Translation initiation factor
IF2/IF5, W2 domain

NAD(P)-binding Rossmann-fold
domains

CCT domain

Medtr7g082940 1
Medtr2g005870 1
Medtr7g032240 1

Medtr1g019240 1 Helix-loop-helix domain

Medtr8g012410 1 Mediator-associated protein 2

Medtr8g098485 1 BTB domain

Medtr2g082640 1 Myc-type, basic helix-loop-helix

domain

Medtr8g075260 1 The tetratrico peptide repeat

region (TPR)

Medtr7g103620 1 Enolase, C-terminal TIM barrel

domain

Medtr1g093240 1 AUX/IAA domain

32 |
AtKIX9

MtKIX8 is the homolog of AtKIX8 and

To uncover the phylogenetic relationship of Medtrdg114900 with
other reported typical KIX domain proteins, we selected KIXs from
Arabidopsis, soybean, pea and tomato to build a phylogenetic tree
(Gonzalez et al., 2015; Li et al, 2019; Nguyen et al., 2021; Swinnen

Metabolite transport, Programmed Robert et al. (2012)

cell death
Photosynthesis

Plant organ size Li et al. (2018)

Pfeifer et al. (1993)
Structural constituent of ribosome Ramakrishnan et al. (1992)

Seidl et al. (2006)
Abdel-Ghany et al. (2005)

fungus-host interactions

Optimal use of Cu for
photosynthesis

Plasma membrane integrity and Yamazaki et al. (2008)

plant fitness

Intracellular lipid transfer Molina et al. (1993)

Lateral root initiation, leaf Nodzon et al. (2004)

development

Photosynthesis Formighieri et al. (2013)

GTPase-activator protein Paulin et al. (2001)

Nod factor transduction, nodulation Ané et al. (2002)

and mycorrhization

Regulation of flowering by Ben-Naim et al. (2006)

photoperiod

Mediates the germination response Penfield et al. (2005)

to temperature

Coactivator complex regulates cold- Hemsley et al. (2014)

responsive gene expression
Furukawa et al. (2003)
Selote et al. (2015)

BTB-Cullin 3-Roc1 ubiquitin ligases

Plant development, senescence, iron
metabolism and reactive oxygen
species (ROS) homeostasis

Catalyzing the conversion of Van der Straeten et al. (1991)

2-phosphoglycerate to
phosphoenolpyruvate

Repressor of auxin pathway, lateral Fukaki et al. (2002)

root formation

et al, 2022; Thakur et al, 2013). The result showed that
Medtrdg114900 is the homolog of the previously reported KIX pro-
teins. Thus, we named Medtrdg114900 as MtKIX8 (Figure 1A). Com-
pared to Arabidopsis, tomato and soybean, we found only one KIX
protein in this subgroup in M. truncatula. Protein sequence analysis
showed that the N-terminus of MtKIX8 harbors a conserved KIX
domain, which is a protein interaction domain (Kumar et al., 2018;
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FIGURE 2 The interaction between MIO1 and MtKIX8. (A) Yeast two-hybrid assay showing the interaction between MIO1 and MtKIX8. BD
represents GAL4 binding domain; AD represents GAL4 activation domain. pGBKT7 (BD) and pGADT7 (AD) were used as negative controls. Black
triangle represents the range of yeast concentrations from dilution of 10° (OD600 = 1.3) to 10~2. (B) BiFC assay showing the interaction
between MIO1 and MtKIX8 in epidermal cells of N. benthamiana. (C) Split-luciferase complementation imaging assay showing the interaction
between MIO1 and MtKIX8. (D) C-terminal WD40 repeat domain of MIO1 interacts with MtKIX8 in vitro. The empty GST protein is used as a

negative control

Thakur et al.,, 2013), and the C-terminus also has a conserved EAR
domain (Figure 1B). In Arabidopsis, the N-terminal KIX domain of
KIX8/9 interacts with PPD, and the C-terminal EAR motif recruits the
co-repressor TPL to form the PPD-KIX-TPL transcriptional repressor
complex to regulate organ size (Gonzalez et al., 2015; Swinnen
et al., 2022). These results suggest that MtKIX8 might play a conserved

role in organ size regulation in M. truncatula.

3.3 |
in vitro

MIO1 physically interacts with MtKIX8

To further confirm the results from Y2H screening, we used the indi-
vidual Y2H method to verify the interaction between MIO1 and
MtKIX8. The results showed that MtKIX8 interacts with the full
length of MIO1 in yeast cells. Further analysis of the Y2H results
revealed that MIO1 is capable of interacting with MtKIX8 through its

C-terminal WD40 repeat domain (Figure 2A). Furthermore, the inter-
action between MIO1 and MtKIX8 was also verified by the BiFC and
LUC complementation imaging assays (Figure 2B,C). Subsequently,
the pull-down assay was performed. We expressed the C-terminal
WD40 protein of MIO1 fused with GST tag and MtKIX8 protein fused
with His tag in vitro and found that His-MtKIX8 bound to GST-WD40
but not the GST control, suggesting that MtKIX8 can directly interact
with the WD40 domain of MIO1 (Figure 2D). Taken together, these
results demonstrate that MIO1 can form a protein complex with
MtKIX8.

34 |
seed size

MtKIX8 is a negative regulator of leaf and

To check the role of MtKIX8 in regulating organ size in M. truncatula,

we isolated a mtkix8 mutant from the Tnt1 retrotransposon insertion
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mutant population by the reverse genetic approach in the model
legume M. truncatula. While examining the mutation site in mtkix8, we
found that there was a reverse Tnt1 insertion in the MtKIX8 gene
(Figure 3A,B). The loss-of-function of MtKIX8 was confirmed by the
absence of detectable MtKIX8 transcripts in the mtkix8 mutant
(Figure 3C). At the seedling stage, the first true leaf of mtkix8 was sig-
nificantly larger than that of wild type (Figure 3D) and the trifoliate
leaflets at the same node were also significantly larger (Figure 3E,G).
We also observed that the size of mutant seeds was significantly
larger than wild-type seeds (Figure 3F,H). These genetic and biochem-
ical data provide direct and solid evidence to support the role of
MtKIX8 as an important regulator of organ size in M. truncatula.

3.5 | Expression pattern of MtKIX8 and subcellular
localization of MtKIX8

To further gain insight into the gene function of MtKIX8, we per-
formed quantitative reverse-transcription PCR to analyze the expres-
sion pattern of this gene. The results revealed that MtKIX8 was
expressed in all vegetative and reproductive organs of M. truncatula
and with a higher expression level in flowers, pods, seeds and shoots
(Figure 4A). This expression pattern of MtKIX8 is reminiscent of the
expression pattern of MIO1, which was highly expressed in leaves, flo-
ral organs and immature seeds of M. truncatula (Zhou et al., 2021).
RNA in situ hybridization further showed that MtKIX8 transcript sig-
nals were detectable at whole reproductive shoot apical meristem
(R-shoot) (Figure 4B,C). Interestingly, although MtKIX8 is diffusely
expressed in the early floral primordia, a very high expression level of
MtKIX8 was detected in the tapetum during the development
of anthers (Figure 4D,E). The tapetum provides necessary nutrition for
pollen development and maturation, and the defect of the tapetum
will lead to male sterility of plants (Zhang et al., 2006, 2007; Zhu
et al., 2008). This result suggests that MtKIX8 might affect the devel-
opment of anthers. Meanwhile, we used the MtKIX8 sense probe as a
control and found that the endogenous signal could not be detected,
confirming the accuracy of the MtKIX8 expression pattern (Figure 4F).
We transiently expressed MtKIX8-GFP in N. benthamiana epidermal
cells and demonstrated that MtKIX8 is a nuclear localization protein,
which is consistent with the localization of MIO1 protein (Figure 4G).
The expression pattern of MtKIX8 suggests an expression preference
in developing organs, and subcellular localization of the MtKIX8

protein coincides with the gene function of MtKIX8 in the regulation

of lateral organ size in M. truncatula.

3.6 | Ectopic expression of MtKIX8 results in
decreased organ size in Arabidopsis

In order to rapidly explore the gain-of-function of MtKIX8, we ectopically
expressed MtKIX8 in Arabidopsis. The coding sequence of MtKIX8 was
fused with a 35S promoter and was transformed into Col-0. The trans-
genic plants had decreased cotyledon size and seed weight
(Figure 5A-D). By the way, the transformation of the coding sequence
of MtKIX8 driven by the KIX8 promoter into the kix8 mutant restored
the mutant phenotypes in three independent transgenic lines
(Figure 5A-D). The PCR results confirmed that all three overexpressing
lines harbor the target gene, and the expression level of MtKIX8 was sig-
nificantly higher in transgenic plants than that of Col-O (Figure S5A,B).
Moreover, another three transgenic lines driven by the KIX8 promoter
have been validated as positive transgenic plants in a homozygous
mutant background. The expression level of MtKIX8 has also increased
accordingly (Figure S5C,D). These results indicate that MtKIX8 plays a
conserved function in negatively regulating the organ size.

In Arabidopsis, KIX8 form a transcriptional repressor complex with
PPD2 to regulate the downstream cell cycle D3-type cyclin gene, thus
controlling lateral organ size (Gonzalez et al., 2015; Li et al, 2018).
Whether MtKIX8 also affects organ development in the transgenic Ara-
bidopsis plants through regulating cell cycle genes, we examined the
transcriptional level of the typical cell cycle marker genes CYCD3;2 and
CYCD3;3 in Arabidopsis transgenic plants. Consistent with this hypothe-
sis, the transcriptional level of the two cell cycle genes coincided with
organ size changes, for example, the transgenic line with larger organ
size also had higher expression level of CYCD3;2 and CYCD3;3 than that
of WT (Figure 5E,F). These findings indicate that MtKIX8 negatively reg-
ulates organ size by influencing cell cycle gene expression and eventu-

ally influences cell proliferation and cell number during development.

3.7 | MtKIX8 act as an adaptor between the BS1
and MtTPL

In Arabidopsis, the adaptors KIX8/9 interact with PPD to form a PPD-
KIX complex, which is involved in the regulation of lateral organ size

FIGURE 3 MtKIX8 negatively regulates organ size in M. truncatula. (A) The gene structure of MtKIX8 and Tnt1 insertion site of mtkix8 mutant.
The black boxes represent the exons and the gray line represents the intron. The triangle structure indicates the Tnt1 retrotransposon insertion
sites and the arrow indicates the insertion direction. (B) Genotyping of retrotransposon Tnt1 insertion of mtkix8 mutant by PCR. Lane

1 represents Marker, lane 2 represents the PCR results of WT plants with F4 primer and R4 primer, lane 3 represents the PCR results of mtkix8
mutant with F; primer and R, primer, lane 4 represents the PCR results of mtkix8 mutant with F4 primer and Tnt1Fw2 primer, the position of the
primer is shown in A. F; and Ry primer span Tnt1 sequence, owing to the length of Tnt1 sequence is 5334 bp, the lines without a Tnt1 insertion
can amplify the band. (C) The expression level of MtKIX8 in the WT and mtkix8 mutant plants. MtGAPDH was used as an internal control. (D) The
first true leaf of WT and mtkix8 mutant. (E) The third compound leaves of 4-week-old plants of WT and mtkix8 mutant. (F) The seed of the WT
and mtkix8 mutant. Scale bar, 1 cm (D-F). (G, H) The leaf area and seed area of the WT and mtkix8 mutant. (G, n = 6, H, n = 15), data are mean

+ SD, Student's t test, p-values: p < 0.001
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FIGURE 4 Expression patterns of MtKIX8 and subcellular localization of MtKIX8 protein. (A) Relative expression of MtKIX8 in different
tissues. MtACTIN was used as an internal control. Root, stem, leaf, flower, pod, seed, petiole and peduncle were sampled from 8-week-old plants.
V-shoot and R-shoot are vegetative shoot apical meristem (SAM) and reproductive shoot apical meristem (SAM), respectively. V-shoot and
R-shoot were sampled from 4-week-old plants and 8-week-old plants, respectively. Data are mean + SD. (B-E) In situ hybridization of MtKIX8.
The longitudinal sections of the reproductive shoot apical meristem (R-shoot) (B, C), and longitudinal sections (D), and cross sections (E) of flower
were sampled from 8-week-old plants. (F) The MtKIX8 sense probe was used as the control. P + number, plastochron; FM, floral meristem; IM,
inflorescence meristem; AB, axillary buds; Se, sepal; Pe, petal; An, Anther; Ca, Carpel; E, epidermis; En, endothecium; MI, middle layer; T, tapetum;
Msp, microspores. Scale bar, 100 um (B-F). (G) Subcellular localization of MtKIX8-GFP in N. benthamiana epidermal cells. Scale bar, 20 um. Free
GFP driven by the CaMV35S promoter was used as the control
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lines of pAtKIX8::MtKIX8/kix8. (E, F) The relative expression level of CYCD3;2 and CYCD3;3 in the inflorescence tissue from Col-0, three
transgenic lines of 355::MtKIX8/Col-0, kix8 mutant, and three transgenic lines of pAtKIX8::MtKIX8/kix8. AtACTIN was used as an internal control.
Data are mean + SD, one-way ANOVA and LSD post hoc test, p-values: p < 0.05

by modulating cell-cycle gene expression (Baekelandt et al., 2018;
Gonzalez et al., 2015). Beside in Arabidopsis, the PPD-KIX complex
was also reported to regulate organ size in tomato and pea (Li
et al., 2019; Swinnen et al., 2022). The above studies suggest that a
similar repressor complex involved in organ size regulation may exist
in M. truncatula. We first performed a Y2H assay and found that
MtKIX8 interacts with BS1 (Figure 6), suggesting the conservation

function of the MtKIX8-BS1 complex on the organ size regulation in
M. truncatula. Furthermore, the TOPLESS (TPL) family of co-
repressors interact with specific proteins to mediate transcriptional
repression of specific target genes (Plant et al., 2021). It was previ-
ously reported in Arabidopsis and tomatoes that PPD-KIX recruits TPL
to form a PPD-KIX-TPL transcriptional repressor complex (Gonzalez
et al, 2015; Swinnen et al., 2022). Therefore, we redefined the TPL
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FIGURE 6 Yeast two-hybrid assay of interaction between BS1,
MtKIX8 and MtTPL proteins. Yeast cells were grown on dropout
medium SD/-Leu/-Trp and SD/-Leu/-Trp/-His/-Ade for 4 days after
plating. pGBKT7 (BD) was used as negative controls

family proteins in M. truncatula based on previous research (Zhang
et al., 2014). There are seven TPL proteins, all with the same con-
served domain (Figure S6A,B). We selected two TPL proteins from
M. truncatula with the closest homology to Arabidopsis TPL1, MtTPL
and MtTPR1 to explore the interaction function of MtKIX8. These
two TPL proteins directly interact with MtKIX8 but not BS1 (Figures 6
and S7). Thus, MtKIX8 acts as a molecular adaptor to interact with
BS1 and MtTPL in M. truncatula.

4 | DISCUSSION

The molecular mechanism of plant organ size is controllable and sta-
ble, which provides the genetic basis for the improvement of crops
and forages. Recently, we reported that MIO1, the ortholog of SAP in
the model legume M. truncatula, plays a vital role in the regulation of
organ size (Zhou et al., 2021). To further explore how MIO1 regulates
organ size, we performed a yeast library screening and isolated a
potential interactor, MtKIX8 (Table 1). The protein sequence align-
ment reveals that MtKIX8 and its orthologs contain a conserved
N-terminal KIX domain and a C-terminal EAR domain (Figure 1B). The
KIX domain usually serves as a docking site for transcription factors,
which could improve the stability of protein-protein interaction and is
much important for the conformation of transcriptional apparatus and
transcriptional regulation of genes (Thakur et al., 2013). The EAR
domain usually recruits transcriptional co-inhibitors to form transcrip-
tional inhibition complexes. The loss function of MtKIX8 gives rise to
enlarged seeds and leaves (Figure 3), fitting with the assumption that
MtKIX8 plays a role within the repressor complex to negatively regu-

late the organ size. Additionally, ectopic expression of MtKIX8 in the

kix8 mutant partially rescues the mutant phenotypes, and overexpres-
sion of MtKIX8 in Col-0 leads to decreased seed and cotyledon size
(Figure 5). These results indicate that MtKIX8 plays a conserved func-
tion both in Arabidopsis and M. truncatula. Based on the previous
report about the function of MIO1/5LB1 in the organ size regulation
(Yin et al., 2020; Zhou et al., 2021), the MIO1/SLB1-MtKIX8 module
is a key component to fine-tune the organ size in M. truncatula.

The SAP-KIX-PPD signaling pathway plays a prominent role in the
control of lateral organ size in Arabidopsis (Gonzalez et al., 2015; Wang
et al.,, 2016; White, 2006). Moreover, this regulatory pathway also regu-
lates organ size in tomatoes and peas (Li et al, 2019; Swinnen
et al, 2022). There are few reports about the organ size regulation in
legumes. Therefore, we try to dissect its function in the model legume
M. truncatula. The biochemistry data indicate that MtKIX8 acts as a
molecular adaptor to link MIO1 and BS1 to form the MIO1-MtKIX8-BS1
complex (Figures 2 and 6). The SAP-KIX-PPD complex regulates organ
size by negatively regulating secondary cell proliferation in Arabidopsis
(Gonzalez et al, 2015; Wang et al., 2016; White, 2006; Yang
et al,, 2018). However, the changes in organ size reported in soybean,
M. truncatula and blackgram are achieved by repressing primary cell pro-
liferation (Ge et al., 2016; Naito et al., 2017; Zhou et al., 2021). These
findings suggest differences in the organ size control regulatory pro-
cesses between Fabaceae and Brassicaceae. The above-studied plants
belong to the rosids and asterids clade, which constitute most of the core
eudicot species. It seems that this pathway has been recruited to deter-
mine the organ size before the explosion of eudicots or independently
recruited in different plant lineages during the diversification of core
eudicots. Furthermore, the SAP-KIX-PPD complex is absent in Poaceae
(Gonzalez et al., 2015; Wang et al., 2016), which suggests that the
molecular mechanism of organ size regulation in monocots could be dif-
ferent from dicots (Schneider et al., 2021). In addition, MtKIX8 functions
as an adaptor to interact with BS1 and MtTPL to form a repressor com-
plex (Figures 6 and 7), which is consistent with the functional hypothesis
of MtKIX8 protein domain and similar to that of their orthologs in Arabi-
dopsis and tomato (Baekelandt et al., 2018; Swinnen et al., 2022). Based
on these clues, this conserved complex among legumes might shed light
on biomass and yield improvement by molecular design breeding in
important legume crops and forages.

The ubiquitin-proteasome pathways are often involved in the reg-
ulation of plant organ size by controlling the cell-cycle progression
(Baute et al., 2017; Hao et al., 2021). In the mio1 mutant, the downre-
gulation of genes associated with cell division results in organ size
changes (Zhou et al., 2021). In fact, increased expression of MtKIX8
leads to the decreased expression of downstream D3-type genes
(Figure 5E,F), adding an extra layer to understanding the regulatory
pathway of MtKIX8 on plant organ size control. Based on our research
results and previous studies, we proposed a working model in
M. truncatula. MIO1/SLB1 and other proteins could form an SCF™M'©/
SLB1 E3 ubiquitin ligase complex to degrade the MtKIX8-BS1 repres-
sor complex, which affects the expression level of downstream cell
cycle genes to regulate the plant organ size (Figure 7).

Until now, there have been few studies on the roles of KIX pro-

teins in plant development. The KIX domain protein NRB4 is involved
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FIGURE 7 A working model for
MtKIX8 in the organ size regulation in

M. truncatula. The F-box protein MIO1/
SLB1 could form part of an SCF E3
ubiquitin ligase complex to target the
organ size repressor complex
MtKIX8-BS1 for degradation, which ]
regulates the expression level of cell cycle I"
genes, resulting in significant changes in \
plant organ size. MtKIX8 also acts as an X
adaptor to recruit BS1 and MtTPL protein

to form a transcriptional repressor

complex to regulate the organ size

MtTPL

in plant response to salicylic acid, while another KIX domain protein,
CBP/p300-like, can promote flowering time in plants by inhibiting
FLC (Canet et al., 2012; Han et al., 2007; Radhakrishnan et al., 1997).
In addition, KIX8/9 is involved in regulating organ size in plants
(Gonzalez et al., 2015). The above studies suggest that the KIX
domain-containing proteins could regulate different biological pro-
cesses. Interestingly, when we examined the expression pattern of
MtKIX8 in M. truncatula, we found that MtKIX8 is not only expressed
in developing tissues and organs like SAM, leaf and floral primordia
but also is highly expressed in the tapetum of flowers (Figure 4A-E).
These results suggest that MtKIX8 not only regulates cell proliferation
and organ size but may also is recruited to regulate tapetum cell
development and maturation. Previous studies showed that there are
two distinct binding sites within the same KIX domain, which could
interact with two different kinds of transcription regulators at the
same time. This structural basis of the KIX protein further endows
the KIX protein with multi-function (Campbell & Lumb, 2002; Goto
et al., 2002). These clues would drive us to explore the function and
molecular mechanism of the KIX genes in the future.

Furthermore, MIO1 also affects the development of pulvinus
through the auxin pathway (Zhou et al., 2021). Pulvinus is an impor-
tant motor organ essential for leaf movement in legumes (Chen
et al., 2012; Zhou et al., 2012). The Y2H library screening also iden-
tifies the auxin-related gene (Medtr1g093240), which provide a clue
to dissect the molecular mechanism of MIO1 on control of pulvinus
development. In addition, we also identified a flower-related gene
(Medtr7g032240) from the screening. We know that loss-
of-function MIO1 also leads to the severe flower phenotype
(Figure S1D), which provides evidence for future research on the
mechanism of flower development. In conclusion, we identified sev-
eral target genes from the Y2H library screening, which are helpful
in comprehensively deciphering the regulatory mechanism of the
MIO1 in M. truncatula.

The kix8 single mutant in Arabidopsis produces enlarged cotyle-
dons and seeds, and the kix8 kix9 double mutant has a more signifi-
cant phenotype than the single mutant (Liu et al., 2020). Based on our
analysis, there is only one KIX gene in the KIX8 subgroup in

-SCFMIO1£SLB1

26S Prpteasome

Organ size

/
/

|
|
I
!
|
|
\

Primary Cell Proliferation

\
\ /
Cell Cycle Genes

M. truncatula. In contrast, there are two homologous genes in soybean
and tomato, and SIKIX8 and SLKIX9 are functionally redundant in
tomato (Swinnen et al., 2022). The single copy of MtKIX8 works as a
negative regulator of organ size (Figure 3). Consequently, we did find
smaller cotyledons and seeds by ectopic expression of MtKIX8 in
Arabidopsis (Figure 5A-D), which further illustrates the key role of
MIO1-MtKIX8 module on the organ size regulation. In summary, this
study provides a useful target gene for the future genetic improve-

ment of legume forage and crops.
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