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Key points

We utilize a new generation of remote sensing data to study water movement beneath the
vegetation canopy in salt marshes.

Small morphological features in marsh landscape affect the spatial variability in water
drainage within vegetated areas.

Salt marshes located at the same elevation within the local tidal range drain water

differently.
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Abstract

Water movement in coastal wetlands is affected by spatial differences in topography and
vegetation characteristics, as well as by complex hydrological processes operating at different
time scales. Traditionally, numerical models have been used to explore the hydrodynamics in
these valuable ecosystems. However, we still do not know how well such models simulate water-
level fluctuations beneath the vegetation canopy, since we lack extensive field data to test the
model results against observations. This study utilizes remotely sensed images of sub-canopy
water-level change to understand how marshes drain water during falling tides. We employ rapid
repeat interferometric observations from the NASA’s Uninhabited Aerial Vehicle Synthetic
Aperture Radar (UAVSAR) instrument to analyze the spatial variability in water-level change
within a complex of marshes in Terrebonne Bay, Louisiana. We also use maps of herbaceous
aboveground biomass derived from the Airborne Visible/Infrared Imaging Spectrometer-Next
Generation (AVIRIS-NG) to evaluate vegetation’s contribution to such variability. This study
reveals that the distribution of water-level change under salt marsh canopies is strongly
influenced by the presence of small geomorphic features (< 10 meters) in the marsh landscape
(i.e., levees, tidal channels), whereas vegetation plays a minor role in retaining water on the
platform. This new type of high-resolution remote sensing data offers the opportunity to study
the feedbacks between hydrodynamics, topography and biology throughout wetlands at an
unprecedented spatial resolution, and test the capability of numerical models to reproduce such
patterns. Our results are essential to predicting the vulnerability of these delicate environments to

climate change.

Keywords: salt marshes, water levels, vegetation, UAVSAR, AVIRIS-NG
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Plain Language Summary

Salt marshes are vegetated coastal ecosystems particularly susceptible to lateral erosion and sea-
level rise. Hydrodynamic models are crucial to forecasting the vulnerability of these delicate
environments to climate change, but we lack extensive field data to assess the accuracy of such
models in vegetated flooded areas. Here, we utilize measurements collected from a NASA radar
instrument flown on an airplane to determine how water moves beneath the vegetation canopy
within a group of salt marshes located in the Mississippi River delta plain, Louisiana. Plant
structure in the selected marshes is estimated from an imaging spectrometer which flew near-
simultaneously with the radar instrument. Our study shows the utility of remotely sensed data to
comprehend wetland hydrodynamics at a very high spatiotemporal resolution, and improve the

reliability of models that are needed to predict their fate.
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1. Introduction

Salt marshes are vegetated landforms located at the boundary between land and sea. These
valuable coastal ecosystems form in low-energy environments or near large rivers where fine
sediments can accumulate [e.g., Fagherazzi et al., 2012]. Salt marshes provide crucial ecosystem
services to coastal communities since they act as buffers against storms, serve as nurseries for
commercial fisheries, and sequester carbon [e.g., Leonardi et al., 2018]. Their economic value
has been estimated to be US$5 million per square kilometer in the United States [Costanza et al.,

2014; 2017].

Despite their ability to adapt in response to external disturbances, many studies document that
salt marshes are disappearing at an alarming rate around the world due to lateral erosion and
drowning [e.g., Carniello et al., 2011; Marani et al., 2011; Schuerch et al., 2018; Xu et al., 2022].
Degradation of this precious habitat has a severe impact on coastal communities because it
intensifies the risk of flooding and the impact of extreme events on cities and infrastructure [e.g.,

Temmerman et al., 2013; Orton et al., 2020].

Salt marshes expand or contract horizontally as a function of wind-waves and sediment
availability, and they are potentially able to outpace sea-level rise through inorganic matter
accumulation and organic mass production [Marani et al., 2007; 2010]. However, although
organic matter allows vertical accumulation to offset sea-level rise [Mudd et al., 2010], salt
marshes cannot rely on this contribution alone. In fact, if mineral fluxes are not the primary
driver in marsh accretion (i.e. the organic part exceeds the inorganic one), marsh structural

fragility and edge failure may occur [Peteet et al., 2018].
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Mariotti & Fagherazzi [2010] argue that the rate at which salt marshes erode for a given wave
climate and sea-level rise rate depends ultimately on sediment supply. If the sediment input from
rivers and the coastal ocean is low, salt marsh collapse can occur even without sea-level rise. As
such, the evaluation of sediment fluxes’ direction and magnitude is fundamental to forecast the
fate of salt marshes and determine their vulnerability to sea-level rise [e.g., Ganju et al., 2013;
2017]. To make reliable estimations, it is crucial to precisely quantify fluxes of water within

these vegetated ecosystems and then focus on fluxes of sediments.

Until now, numerical modeling has been the primary tool to investigate water and sediment
movements in coastal wetlands [e.g., Beudin et al., 2017; Xie et al., 2022]. However, numerical
models of flooded vegetated areas may be unreliable, since we lack spatially distributed data to
validate them. In fact, collecting field measurements beneath the vegetation canopy is

challenging due to numerous practical limitations [e.g., Alsdorf et al., 2007].

Recently, remote sensing has been utilized to fill this data gap [e.g., Wiberg et al., 2020; Liao et
al., 2020; Ayoub et al., 2016; Cathcart et al., 2020; Donatelli et al., 2023]. Airborne and
spaceborne radars can perform multiple flights over the same region, allowing them to detect
changes in sub-canopy water levels at a very high spatial resolution (5-10 meters) [e.g., Oliver-
Cabrera and Wdowinski, 2016]. The Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR) [Hensley et al., 2008; Fore et al., 2015] has the ability to perform rapid repeat
interferometric surveys, offering a synoptic view of how water levels vary spatially with a revisit
time of ~30 minutes [Oliver-Cabrera et al., 2021]. For instance, interferometric products
measured by UAVSAR have been used to calibrate water levels over extensive wetland areas

[Wright et al., 2022].
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In this paper, we employ UAVSAR water-level change products derived from data collected
during Delta-X campaigns [Jones et al., 2022]. So far, this dataset has been mainly used to
correct bathymetric information derived from lidar [e.g., Wright et al., 2022; Zhang et al., 2022a;
b]. Zhang et al. [2022a; b] proposed an iterative/empirical methodology which corrects bed
elevation in wetlands by using the difference between observed and modelled water-level
change. They assumed that lowering (increasing) bed elevation allows for more (less) tidal
propagation and therefore larger (smaller) water-level change. However, as pointed out by the
same authors, this approach, although it improves the accuracy of the model in reproducing
changes in water level over time, can lead to unrealistic results for other hydrodynamic variables

(e.g., flow velocities).

These UAVSAR observations open the possibility to study wetland hydrodynamics at a spatial
and temporal resolution that has not been possible with other remote sensing platforms. Our goal
is to utilize high-spatial resolution, remotely sensed maps of water-level change beneath the
vegetation canopy to determine the factors influencing water movement in marshes during a
falling tide. This analysis is particularly important for quantifying the resilience of marshes [e.g.,
French & Spencer, 1993; Sullivan et al., 2019; Pannozzo et al., 2021]. In fact, when water drains
back to the ocean, nutrients and sediments are released within the surrounding environment with
consequences for the long-term evolution of these vegetated ecosystems. Additionally, small
creeks are typically ebb dominated because of the delay between water level and peak flow
[Fagherazzi et al., 2008]. As such, water drainage in marshes is critical for the evolution of the

tidal network.

We use a complex of salt marshes located in Terrebonne Bay, Louisiana, as a test case. Here, we

address the following hydrodynamic questions: a) Do salt marshes characterized by the same
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elevation drain water differently? If so, what controls this difference? b) What is the role of
vegetation in retaining water over marsh surfaces? c) Do small morphological features of the
marsh landscape influence water-level change within the surrounding area? These questions are
crucial to (i) understand water movement within these vegetated coastal habitats, and (ii)
determine the level of detail required for topographic data to accurately simulate marsh

hydrodynamics via numerical modeling.

Latitude (°)

Intensive site 421

91.2 -91 -90.8 -90.6 -90.4 -90.2

Longitude (°)

Figure 1. Satellite image of Terrebonne Bay, Louisiana, USA. The rectangle highlights the
location of the three selected salt marshes (here, we call this location ‘intensive site 0421°).

2. Study site

Terrebonne Bay is a deltaic lagoon within the Mississippi Delta on the north coast of the Gulf of
Mexico. Tides are diurnal with a mean astronomical tidal range of 0.32m. The system is strongly
event-driven [Reed, 1989]. For instance, the effective tidal range reaches 0.7m by combining

astronomical and meteorological components [Mariotti, 2016]. The bay presents a series of



137  narrow and low-lying barrier islands (the Isles Dernieres and Timbalier chains) which separate
138  the back-barrier basin from the Gulf of Mexico (Figure 1). The exchange of water between

139  Terrebonne Bay and the coastal ocean occurs through tidal inlets, and it is affected mainly by
140 tides and cold front passages [e.g., Reed et al., 1989]. Sediments needed for marsh accretion are
141  derived from erosional processes occurring within the bay (e.g., bed erosion, marsh lateral

142 erosion), and are delivered from offshore into the lagoon by storms [Cortese & Fagherazzi,

143 2022]. The lagoon is located between the Mississippi River Delta and the Atchafalaya Delta
144  (Figure 1). The presence of these two systems creates differences in vertical stratification of the
145  water column between the eastern and western parts of the bay. Such differences influence

146  biological processes within Terrebonne Bay and are highly variable due to seasonal changes in

147  wind conditions [Hetland & Di Marco, 2007].
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148
149 Figure 2. (a) Topography of the study site. Topographic data are reported with respect to

150 NAVDSS. (b) Above ground biomass (AGB) in spring. The (orange) thin lines and the (black)
151  dashed lines highlight marshes 2 and 3, respectively, while the remaining area represents marsh 1
152 (this area is highlighted by the thicker lines). The dot shows the location of the CRMS0421
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station, and the star indicates the location over the marsh platform where field observations of
water levels were collected.

3. Methods

We utilize remotely sensed maps of sub-canopy water-level change to analyze drainage patterns
over three marshes in Terrebonne Bay, Louisiana, USA. UAVSAR images were collected in two
distinct temporal windows: April 12" 2021 between 19:29 and 22:59 (UTC time), and
September 4™ 2021 between 16:21 and 20:08 (UTC time). Hydrodynamic conditions are similar
during the two campaigns, but vegetation characteristics present marked differences. As such, we
can unravel the effect of vegetation on water-level change (WLC) by comparing UAVSAR data

measured in the two selected temporal windows.

WLC on marsh platforms is affected by water conveyance. The latter can be expressed by the

empirical Manning’s formula that applies to uniform flow in open channels:

q :% BB 12 (1)

where 7 is the Manning’s roughness coefficient, / is the water depth, and i represents the water-
surface slope. In numerical models, the simplest way to account for the effect of vegetation on a
depth-averaged flow is to increase the roughness coefficient with respect to unvegetated areas
[e.g., Beudin et al., 2016]. Similarly, model calibration in channels and open water is often
performed by varying the roughness coefficient until the simulated water levels match those

measured in the field [e.g., Cortese et al., 2023].

To determine the influence of water depth and friction on WLC, we make use of (i) high-spatial
resolution topographic data (Figure 2a) [Christensen et al., 2023]; and (ii) two high-spatial

resolution maps of herbaceous aboveground biomass (AGB) obtained using AVIRIS-NG

10
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hyperspectral imager (see Figure 2b for the AGB distribution during spring) [Jensen et al., 2022].
Note that we employ two AGB maps because the UAVSAR campaigns occurred in two different
seasons (i.e., spring and fall, see how vegetation structure changes with seasons in Table 1
[Castafieda & Solohin, 2021]). The intensive site was dominated by Spartina alterniflora during
the spring campaign, and by a mix of Spartina alterniflora and Juncus roemerianus during the

March-April campaign (Figure 3).

(b)

Figure 3. Field images of vegetation types in the (a, b) spring and (c) fall campaigns.

It is important to highlight that part of the measurements collected during the September 4, 2021,
UAVSAR flight is affected by atmospheric effects (see Figure S1 and Movie S1 in Supporting
Information S1) which prevents the use of these data. This means we cannot use all the data

taken in this campaign. More specifically, WLC measured over the largest marsh (marsh 1 in

11
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Figure 2b) is partially corrupted due to variations in atmospheric properties between the different

SAR acquisitions [e.g., Hanssen et al., 2001].

The procedure adopted here to analyze the spatial variability in salt marsh drainage can be
summarized as follows: (i) we use UAVSAR data (subsection 3.1) and field observations of
water level (subsection 3.2) to evaluate whether UAVSAR provides reliable estimations of WLC
on marsh surfaces; (ii) we employ the WLC measurements collected during the April 12, 2021,
UAVSAR flight to determine whether marshes characterized by the same elevation present
comparable changes in water level within the same temporal window; (iii) we utilize the AGB
map in spring (subsection 3.3, see Figure 2b) to evaluate the effect of spatial variations in
vegetation characteristics on the distribution of WLC; (iv) we use UAVSAR data to understand
the role of small features in the marsh landscape (i.e., levees and channels) on water movement;
(v) we employ WLC measurements collected during the April 12, 2021, and the September 4,
2021, UAVSAR flights to determine the influence of seasonal changes in AGB on WLC over
marshes 2 and 3 (i.e., where UAVSAR data are not affected by atmospheric effects during the

September 4, 2021, UAVSAR flight, see Figure 2b).

3.1 UAVSAR interferometry

UAVSAR is a synthetic aperture imaging radar deployed on a Gulfstream-3 aircraft that collects
measurements of Earth’s surface change from 12.5 km altitude. The instrument is a fully
polarimetric (i.e., it transmits horizontal and vertical pulses and receives returns from each in
both polarizations), left-looking synthetic aperture radar that operates in L-band (A= 0.2379
meters of wavelength) with center frequency of 1.2575 GHz and 80 MHz of bandwidth. The
radar images a region 22 km wide, with incidence angle ranging between ~22° (near range) to

~67° (far range) [Garcia-Pineda et al., 2013].

12



211 A collection of UAVSAR measurements were performed over the entire salt-marsh system in
212 Terrebonne Bay. The region was scanned six times between 19:29 and 22:58 (UTC time) on

213 April 12" 2021, and between 16:21 and 20:08 (UTC time) on September 4", 2021. The goal of
214 these measurements is to take advantage of the rapid-repeat pass capability of UAVSAR and

215 capture WLC over flooded surfaces with emergent vegetation. This capability is possible due to
216  the double-bounce radar-pulse return that bounces from both the water surface and the vegetation
217  [Lu & Kwoun, 2008; Dabboor & Brisco, 2018], allowing measurement of WLC in areas with
218  sparse gauge coverage. In particular, we used pairs of rapid-repeat pass SAR acquisitions

219  acquired by UAVSAR to form sets of interferograms employing the InSAR Scientific

220  Computing Environment (ISCE) [Rosen et al. 2000]. We then performed phase unwrapping to
221  quantify the number of 27 cycles, to be able to accurately derive the total displacement in water
222 level. Once the interferograms were unwrapped, we used them to estimate the InSAR derived
223 WLC time series, as described in the product documentation available at the ORNL DAAC

224 (https://daac.ornl.gov/DELTAX/guides/DeltaX 1.3 UAVSAR WaterLevels.html ) [Jones et al.,
225  2022]. This method can be similarly applied to different wetland types (e.g., mangroves).

226 However, its effectivity will be highly dependent on the repeat pass schedule of the observing
227  sensor as well as the type of vegetation observed. If the vegetation has a soft stem, its scattering
228  properties will change rapidly and data acquisition will require a very short repeat observation
229  time, whereas woody vegetation may allow for a longer temporal baseline in the SAR acquisition
230  pattern [Oliver-Cabrera et al., 2021]. Note that the method cannot be applied to submerged

231  vegetation, e.g. seagrass.

13
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Figure 4. Field measurements of water levels (m) in the channel (triangles, CRMS-421 station,
see Figure 2), and water depth over marsh (solid line, lat 29.170201, lon -90.823649, see Figure
2). Water levels are measured with respect to NAVDS8S. These observations were collected in
April 12, 2021. At represents the interval of time in which the UAVSAR flight took place.

3.2 Field measurements of water levels

The Coastwide Reference Monitoring System (CRMS) was designed by the Louisiana State
Wetlands Authority, and the Coastal Wetlands Planning, Protection, and Restoration Act
(CWPPRA) Task Force to evaluate the effectiveness of restoration projects at multiple spatial
scales along the Louisiana coastline. Instruments at nearly 400 sites continually monitor soils,
hydrology, land change, and vegetation since 2003. These stations provide hourly water-level
data, which are used to analyze spatial variations in hydrodynamic conditions at different
temporal scales. We employ water-level observations from the CRMS-0421 station (see red dot
in Figure 2b) to evaluate how water levels vary in a channel adjacent to the three selected

marshes during the UAVSAR flights.

These data are complemented with field measurements of water levels on the neighboring marsh
platform (see red star in Figure 2b). The instrument on the marsh was installed at approximately

3 cm above the soil surface (thus we do not have data when water level was lower than 3 cm)

14
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and collected water-level data every 20 minutes. Measurements are expressed with respect to

NAVDSS.
3.3 Above Ground Biomass (AGB)

We utilize two maps of herbaceous aboveground biomass (AGB), derived from Airborne Visible
Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) data, developed by Jensen et al.,
[2022; 2023] for the spring and fall seasons. AVIRIS-NG is an imaging spectrometer that
measures radiance at 5 nm sampling across 425 bands in the Visible to Short-Wave Infrared
(VSWIR) spectral range (380-2500 nm). The L1 radiance data were processed to L2 surface
reflectance products with atmospheric correction [Thompson et al. 2019], with further
corrections applied to adjust for Bidirectional Reflectance Distribution Function (BRDF) effects
[Greenberg et al. 2022; Thompson et al. 2022]. AGB, quantified as dry biomass in grams per
square meter (g/m?), was estimated from the BRDF-adjusted surface reflectance and a coincident
AGB field survey [Castafieda-Moya & Solohin 2022]. A machine learning model was generated
to estimate AGB by comparing local pixel reflectance spectra with coincident in-situ samples of
herbaceous vegetation AGB. This model (R* = 0.89, Mean Absolute Error = 109.30 g/m?) was
then scaled to the AVIRIS-NG mosaic imagery to map herbaceous AGB across the Terrebonne
Basin. The instrument is also used to measure water quality and suspended sediment
concentration in coastal regions [e.g., Jensen et al., 2019]. The map has a spatial resolution of ~5
m. The AGB map is depicted in Figure 2b. A detailed description of how the AGB map was

obtained is reported in Jensen et al. [2022].

4. Results

15
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Field measurements of water levels show that the tidal signal in the channel and over the marsh
are generally in phase (Figure 4). However, a small phase shift between these two signals may
exist and be spatially variable, and it depends on the distance between the channel and the
location where water levels are measured over the marsh. We use data from UAVSAR to analyze
the spatial variability in WLC over the selected marshes (Figure 2b). The maps representing
WLC on marsh platforms are shown in Figure S2 for the April 12, 2021, UAVSAR flight (see
Supporting Information S1); the temporal window (At1) in which the UAVSAR campaign took
place is shown in Figure 4. UAVSAR-derived WLC in the marsh pixels located next to the

CRMS station 0421 matches well the field measurements.

Since WLC on marsh platforms depends on flow conveyance, we plot UAVSAR-derived WLC
as a function of marsh elevation (see subsection 4.1) and AGB (see subsection 4.2). Then we
select various marsh sub-regions and we focus on the presence of small geomorphic features
(width smaller than 10 meters) in the marsh landscape. Such geomorphic features may affect
water transport in marshes, and consequently WLC on platforms (see subsection 4.3). In the
same subsection, we also evaluate the effect of seasonal changes in vegetation characteristics on

WLC.
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Figure 5. UAVSAR-derived WLC (cm) as a function of marsh elevation (m) for different
intervals of time, starting at t = 19:29 UTC and ending at the time indicated on each plot. Red
dots represent median values and the red bars indicate the interquartile range. WLC was
measured during the April 12, 2021, UAVSAR flight. The rectangle in Figure 5f shows the
interval of marsh elevation that is considered in Figure 6.

4.1 WLC as a function of marsh elevation

We plot WLC estimated during the April 12, 2021, UAVSAR flight as a function of marsh
height (Figure 5). The values are change in water level relative to the first acquisition, which was
made at 19:29 UTC. Our aim is to determine if vegetated pixels (hereinafter called also marsh
pixels) characterized by the same elevation within the local tidal range experience a similar
change in water level over the selected temporal window (Figure 5). We modified the spatial
resolution of the UAVSAR data (and later that of AVIRIS-NG, see subsection 4.2) to obtain the
same resolution of the available bathymetry (i.e., 10m). In particular, we resampled the raster to

a lower resolution by using a standard method for resampling (i.e., nearest neighbor). Figure 5

17
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depicts WLC as a function of marsh height in six different temporal windows (these six temporal
windows start at 19:29, and end at 20:04, 20:38, 21:13, 21:48, 22:24 and 22:58 respectively).
Note that WLC increases in absolute value with respect to the first UAVSAR acquisition.
Interestingly, vegetated pixels with a similar elevation can exhibit a different change in water
level, indicating that water can drain differently from locations of similar elevation, depending
on their location within the marsh. This result is highlighted by the interquartile range in

UAVSAR-derived WLC which varies as a function of marsh elevation (Figure 5).

The substantial variability in WLC showed by marsh pixels located at the same elevation can
potentially be related to spatial variations in vegetation characteristics. We investigate the

relationship between change in water level and above ground biomass in the next subsection.

-10 1

A5 ¢

Water-level change (cm)

_20 L 1 L 1
0 200 400 600 800

AGB (g/m?)

Figure 6. UAVSAR-derived WLC (cm) as a function of AGB (g/cmz). WLC was measured
during the April 12, 2021, UAVSAR flight during the time interval 19:29 - 22:58 UTC. We only
consider marsh pixels with an elevation between 0.3 and 0.35 meters (see rectangle in Figure 5f).

4.2 Effect of vegetation on the distribution of WLC

We utilize the map of AGB in the spring (Figure 2b) to determine the effect of vegetation on

WLC during the April 12, 2021 UAVSAR flight. We only consider marsh pixels with an

18



322 elevation between 0.3 and 0.35 meters (since the majority of vegetated pixels in the selected

323 group of marshes have an elevation within this range). In other words, we fix marsh height (see
324  rectangle in Figure 5f) to evaluate the relationship between WLC and AGB. When WLC is

325 plotted as a function of the above ground biomass (Figure 6) the results reveal a weak correlation
326  between these two variables. Surprisingly, changes in water level (in absolute value) within the
327  selected temporal window of 3.5 hours seem to increase with greater values of above ground

328  biomass.

329 It should be noted that WLC measured by UAVSAR occurs only in the portion of the water

330 column occupied by plants. This can be easily verified by comparing field measurements of
331  water level over the marsh (Figure 4) with the data of vegetation structure collected between
332 March 21, 2021 and March 31, 2021 (Table 1). The maximum water level observed over the
333  marsh during the selected temporal window is 15 cm, which is indeed smaller than the plant

334  height reported in Table 1.
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Figure 7. Spatial distribution of (a) UAVSAR-derived WLC (cm), and (b) AGB (g/m?) values in
spring for a sub-region of marsh 1. WLC was measured during the April 12, 2021, UAVSAR
flight. Satellite images: (c) entire sub-region; (d) and (e) close up of two different parts of the

selected sub-region (i.e., area without channels and highly channelized area). The arrow indicates

the presence of small tidal channels with a width of 2 and 5 meters. (image “Google,
Landsat/Copernicus).

4.3 Effect of small geomorphic features in marsh landscape on WLC

We analyze images from satellite (Google Earth) to identify the presence of small geomorphic
features in the marsh landscape. Such elements may affect water conveyance on marsh
platforms, allowing for more or less tidal propagation within surrounding areas. First, we map
the spatial distribution of WLC and AGB within the selected sub-regions. Then, we utilize

images from satellite to understand why pixels with a similar elevation drain water differently.
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We start by considering the sub-region depicted in Figure 7 (this sub-region is part of marsh 1
depicted in Figure 2b). Here, we show the spatial distribution of (i) WLC measured during the
April 12,2021, UAVSAR campaign (Figure 7a), and (ii) AGB values during the spring (Figure
7b). We only focus on pixels with an elevation between 0.3 and 0.35 meters. These pixels

present a substantial variability in WLC with values ranging between 0 and 11 cm (Figure 7a).

We show images of this sub-region in Figure 7c, d, e. These images reveal that the vegetated
pixels exhibiting larger values of WLC are located next to tidal channels which are not captured
by the available bathymetric data (see the arrow in Figure 7e). Such channels (width ranging
between 1 meter and 10 meters) help drain water from the marsh surface, therefore increasing

WLC within the adjacent vegetated pixels (see Figure 7¢).

We apply the same approach to marshes 2 and 3 (see Figure 2b). UAVSAR data from another
campaign are also available for these marshes. Figure 8 shows water levels measured at the
CRMS-0421 station in the channel and over the marsh for September 4, 2021. In the same figure,

we show the temporal window in which the UAVSAR flight took place (4t»).
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Figure 8. Field measurements of water levels (m) (i) in the channel (CRMS-421 station), and (ii)
over the marsh (lat 29.170201, lon -90.823649). Water levels are measured with respect to
NAVDSS. These observations were collected in September 4, 2021. At, represents the interval of
time in which the UAVSAR flight took place.

21



368

369

370

371

372

373

374
375
376
377
378

Histograms of WLC and AGB are reported in Figure 9. Table 2 lists the mean, median, standard
deviation, interquartile range, and skewness for each distribution. Here, we use the median as a
measure of the typical value of WLC. Note that the typical value is greater for the September 4,
2021, UAVSAR campaign compared to the April 12, 2021, UAVSAR campaign. This result is
consistent with field observations of water level collected over the marsh (Figures 4-8).
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Figure 9. Histograms of (a, b) WLC and (c, d) AGB for marsh 2 (see Figure 2b) during (a, c) the
April 12, 2021, and (b, d) September 4, 2021, UAVSAR flights. The solid red line represents the
median value, while the dashed lines represent the median value plus/minus one standard
deviation. The black line represents the mean value. WLC is considered positive if it corresponds
to an increase of water level in the selected temporal window.
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Figure 10. Spatial distribution of (a, b) UAVSAR-derived WLC (cm), and (c, d) AGB (g/m?)

water-level change (cm)
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values in spring (a, ¢) and fall (b, d) for marsh 2. WLC was measured during the April 12, 2021,
and September 4, 2021, UAVSAR flights. Satellite images: (e) entire marsh 2; (f) and (g) close
up of two different parts of the selected marsh. Images (f) and (g) highlight the presence of small
tidal channels in the marsh landscape. The large (yellow) arrows highlight the presence of two
small tidal channels with a width of 2-3 meters. The small (blue) arrow indicates an area of the

marsh where tidal channels are absent. (image “Google, Landsat/Copernicus).
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Spatial distributions of WLC and AGB for marsh 2 are shown in Figure 10. We only consider
pixels with an elevation between 0.35 and 0.40 meters (since the majority of pixels in marsh 2
have an elevation within this range). WLC (Figure 10a, b) within the two selected temporal
windows presents a similar spatial distribution (R=0.64). By contrast, the AGB maps do not
exhibit a similar spatial pattern between spring and fall (R=-0.22). This result implies that,
despite both the substantial increase in AGB values (see histograms in Figure 9c, d) and the
occurrence of marked changes in their spatial distribution, WLC remains fairly similar within the
two UAVSAR campaigns. By using satellite images (Figure 10e, f, g), we observe that the area
of the marsh experiencing greater changes in water level (Figure 10a, b) is fragmented (see
Figure 10f, g; the large arrows in Figure 10g highlight the presence of two small tidal channels).
In contrast, the WLC is lower where tidal channels are absent (see for instance the marsh area

highlighted by the small arrow in Figure 10g).
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Figure 11. Histograms of (a, b) WLC and (c, d) AGB for marsh 3 (see Figure 2b) during (a, c)
the April 12, 2021, and (b, d) September 4, 2021, UAVSAR flights. The solid red line represents
the median value, while the dashed lines represent the median value plus/minus one standard
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Finally, we focus on the third marsh. Histograms of WLC and AGB highlight differences
between the two selected temporal windows (Figure 11). Table 3 shows the mean, median,

standard deviation, interquartile range, and skewness for each distribution. We plot maps of

to an increase of water level in the selected temporal window.

WLC and AGB in spring and fall (Figure 12). Note that a low correlation exists between the two

maps of WLC (R=0.33), and between the maps of AGB (R=-0.21). By comparing Figures 12a, b

with satellite images (Figure 13), we observe that levees are present where WLC is much lower
compared to the median value (see for instance the arrow in Figure 13b). Furthermore, we note

that this marsh is highly fragmented (Figure 13c), and, as such, it exhibits a smaller standard

deviation of WLC compared to marsh 2 (see Tables 2-3).
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Figure 12. Spatial distribution of (a, b) UAVSAR-derived WLC (cm), and (c, d) AGB (g/m?)
values in spring (a, ¢) and fall (b, d) for marsh 3. WLC was measured during the April 12, 2021
and September 4, 2021 UAVSAR flights.

Figure 13. Satellite images: (a) entire marsh 3; (b) and (c) close up of two different parts of the
selected marsh. Image (b) highlights the presence of levees, whereas image (c) shows a sub-
region of marsh 3 which is highly channelized. The arrow indicates the presence of levees.
(image “Google, Landsat/Copernicus).

5. Discussion

We utilized a new generation of remotely sensed data to study the interactions of vegetation,
topography, and flow on marsh platforms. These interactions have been explored for three salt
marshes located in Terrebonne Bay, Louisiana (see Figures 1-2). In particular, we focused on
unravelling what factors influence spatial variations in WLC on marsh platforms at hourly time

scales. To this end we used (i) multiple images of UAVSAR-derived WLC collected during
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falling tides, (i1) bathymetric data from lidar, and (iii) high-spatial resolution maps of AGB

obtained through AVIRIS-NG.

5.1 WLC as a function of marsh topography

Our results reveal that marsh platforms exhibit a substantial spatial variability in WLC (e.g.,
Figure 5). Interestingly, marsh pixels characterized by the same elevation within the local tidal
range present marked differences in WLC. Part of this variability can be explained by the
presence of errors in the lidar data. In particular, the laser cannot penetrate into thick vegetation
canopies leading to a positive bias in bed elevation. Such bias is spatially variable and depends
on vegetation density [e.g., Medeiros et al., 2015; Rogers et al., 2018; Cooper et al., 2019]. This
result means we cannot correct topographic errors by uniformly lowering the bathymetry, but an

ad-hoc change in bed elevation is needed for each point of the domain.

Zhang et al. [2022a; b] proposed to correct wetland bathymetry (i.e., remove the positive bias) by
employing data from UAVSAR and numerical modelling. However, it turned out in their study
that the derived topographic corrections were either positive or negative (i.e., bed elevations
were also biased towards a lower elevation). Since the bias in bathymetric information due to the
laser’s inability to penetrate vegetation can be only positive, it is likely that the negative bias can
be related to the presence of geomorphic elements in the marsh that are not captured in the model
grid [e.g., Blanton et al., 2010]. These topographic features (e.g., small levees) promote water

retention within the surrounding vegetated areas, leading to a smaller WLC.

It is worth noting that the empirical/iterative approach of Zhang et al. [2022a; b] could modify
bed elevations even in regions where corrections are not needed. If the spatial resolution of the

model is too coarse to capture the presence of small tidal creeks (note that tidal creeks facilitate
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water drainage on marsh surface and therefore increase WLC), a decrease in bed elevation and/or
friction would be required. Specifically, these modifications would increase water conveyance
on platforms, and consequently augment the change in water level within the selected temporal
window. On the other hand, corrections in bathymetry and/or friction would not only alter local
hydrodynamics (i.e., where changes are made) but they would also propagate to areas
downstream leading to an overall decrease of model accuracy in reproducing WLC within
vegetated areas. As such, it is essential that topographic data have sufficient spatial resolution to
identify small tidal creeks and levees on marsh platforms, e.g., 1-meter spatial resolution. This
condition is important to (i) capture the enormous spatial variability in hydrodynamic conditions
across marsh landscapes via numerical modeling; (ii) minimize possible fictitious changes in bed
elevation and/or friction introduced by the procedure proposed by Zhang et al., [2022a; b]; and

(i11) remove the effects related to errors in topography.

5.2 Effect of vegetation on WLC

The interaction between flow and vegetation is complex and has been explored at different
spatial and temporal scales [e.g., Liu et al., 2003; Mazda et al., 1997; Temmerman et al., 2005;
Wu et al., 2001; Donatelli et al., 2019]. Until now, we did not have observations that provide a
spatially-continuous view of how tides propagate in wetlands. UAVSAR repeat-pass
interferometry provides, for the first time, a synoptic view of WLC across vegetated areas. This
remote sensing technique allows us to study the hydrodynamics in these ecosystems at an

unprecedented spatial resolution.

Water retention on marsh platforms depends on (i) the degree of channelization, which affects
the transport of water from marsh interior towards the surrounding environment; (ii) levees,

which obstruct the flow and do not allow the water to drain following the shortest and steepest
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path, and (iii) vegetation, which exerts a drag on the flow and thus slows down tidal currents. In
this study, we show that WLC on marshes during falling tides is not affected by spatial and
temporal changes in AGB (e.g., Figure 6). This finding is a counterintuitive one, since it is well
known that vegetation increases friction on tidal currents [e.g., Gerkema, 2019] and alters spatial
flow patterns in tidal landscapes [e.g., Temmerman et al., 2007; 2012]. However, we argue that
in highly channelized marshes, such as those in Terrebonne Bay, the ebb flow is preferentially
transported via channels. Therefore, vegetation has a limited effect in retaining water on marsh
surfaces. This result is broadly consistent with Montgomery et al. [2018] and Pelckmans et al.
[2023], who found a similar behavior in mangroves. They both showed that vegetation attenuates
long waves only if the transport of water through the vegetation is the main mechanism of fluid
transport. If creek flow dominates, the density of mangrove vegetation has a minimal effect on
the attenuation of water levels [e.g., Horstman et al., 2015]. Our finding also agrees with Zhang
et al. [2022a] who showed through numerical modelling that large variations in friction on marsh

platforms have a minimal impact on WLC.

Another factor that could diminish the effect of vegetation on WLC is water depth. When
vegetation is fully submerged and occupies only part of the water column, large-scale sheet flow
(i.e., flow above the canopy) becomes important and relative spatial differences in friction
decrease [Temmerman et al., 2005; Fagherazzi et al., 2012; Nepf, 2012]. The two 3.5-hour
UAVSAR campaigns were conducted during falling tides with an initial water level in the
channel of ~0.5 meters (Figures 4-8). By comparing water levels on the marsh with plant height
(Table 1), we deduce that WLC occurs in the part of the water column occupied by plants.
Therefore, the transport of water did not occur through sheet flow during the selected temporal

windows and tidal conditions.
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5.3 Temporal variability in hydrodynamic conditions

Water movement in wetlands depends on two major drivers, namely tides and wind. While the
former has a cyclical character, the latter is episodic in nature and can even vary from year to
year [e.g., Donatelli et al., 2022a; b]. WLC on marshes may differ due to tidal variations (e.g.,
spring-neap modulation), freshwater discharge, wind speed and direction, and duration of wind
events [e.g., Gerkema & Duran-Matute, 2017; Valentine & Mariotti, 2018]. Obviously, this type
of UAVSAR flight campaign with repeated imaging within a single flight cannot reveal changes
across the range of time scales. This remote sensing technique can only provide multiple images
of WLC beneath the vegetation canopy within a short temporal window (i.e., it offers

hydrodynamic information at an hourly time scale).

As documented by previous studies, meteorological events have a paramount effect on water
levels in Terrebonne Bay [e.g., Reed, 1989], implying that WLC on marsh platforms can
strongly deviate from its long-term statistics (i.e., long-term mean and/or median). In other
words, the WLC measured by the two UAVSAR campaigns might not be representative of the
typical hydrodynamic conditions experienced by salt marshes during ebb tide. To explore the
temporal variability of such changes in water level at short- and long-time scales, a combination
of UAVSAR images and numerical modeling is needed [e.g., Zhang et al., 2022a; b]. This task is
not trivial, especially if we want to investigate marsh hydrodynamics at a very high spatial
resolution, which this study indicates is important, and at the same time employ numerical
simulations spanning several years [e.g., Donatelli et al., 2022b]. In fact, a grid size of ~1 meter
would dramatically increase the simulation time and consequently reduce the performance of the
model, while a model with a larger resolution (e.g., 10 meters) would not be able to consider the

effect of levees and small channel on WLC within vegetated areas.
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5.4 Implications for coastal vulnerability predictions

This new generation of remotely sensed data can also be used to achieve a precise estimation of
fluxes of water and its constituents in coastal environments, which is essential to evaluate the
impact of climate change on wetlands. A robust quantification of such fluxes allows us to predict
which parts of a salt-marsh system will erode and which parts will grow; this information can be
employed, for instance, to design effective interventions along the shoreline, and forecast the
location and timing of new land creation through sediment accumulation [e.g., Winterwerp et al.,
2020; Tas et al., 2022]. Additionally, UAVSAR observations may be applied to improve the
accuracy of numerical models to simulate hydrodynamics within vegetated areas, which is
fundamental to quantify the impact of future extreme events on coastal communities [e.g.,
Aretxabaleta et al., 2019; Temmerman et al., 2022]. A better understanding of how water levels
are impacted by vegetation is important to limit the economic impact of coastal hazards, and
increase the capability of communities and coastal economies to recover [e.g., Goreau &

Hilbertz, 2005].

6. Conclusions

The main conclusions of this paper can be summarized as follows:

1. UAVSAR can measure changes in water level across salt marshes at an unprecedented
spatial resolution. These data prove reliable in capturing the effect of small geomorphic
features (width smaller than 10 meters) on WLC within these vegetated environments.

2. We utilized UAVSAR data to investigate drainage patterns over three salt marshes in
Terrebonne Bay, USA. Our study shows that these marshes exhibit substantial variability

in WLC during falling tides.
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3. Small tidal channels and levees affect WLC on marsh surfaces. More specifically, these
geomorphic elements affect water transport within the adjacent vegetated areas and, as a
consequence, influence WLC. This finding explains why portions of a marsh
characterized by the same elevation can drain water differently.

4. The presence of small channels in marshes can be easily detected via UAVSAR by
mapping the spatial distribution of WLC.

5. Vegetation has a minimal effect on water retention in the selected marshes. Our result
suggests that in highly-channelized marshes, spatial and seasonal changes in AGB do not
have a substantial influence on WLC. This result implies that water transport during ebb
tides occurs mainly through channels, and, as such, vegetation has a small influence in

retaining water on platforms.
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Open research

The data of aboveground biomass (AGB) from AVIRIS-NG can be accessed through the ORNL
DAAC, which is open for public access and download (Jensen et al., 2021):

https://doi.org/10.3334/ORNLDAAC/1822. The data of water-level change (WLC) from

UAVSAR can be accessed and downloaded through the ORNL DAAC (Jones et al., 2022):

https://doi.org/10.3334/ORNLDAAC/2058. The digital elevation model (DEM) can be accessed

and downloaded through the ORNL DAAC (Christensen et al., 2023):

https://doi.org/10.3334/ORNLDAAC/2181.
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Supplementary material: figure captions

Figure S1. (a, b, ¢, d, e, ) Time series of WLC show a pattern that does not seem to follow the
expected water levels. Yellow indicates an upwards change through the previous steps. (h) When
compared against a nearby station CRMS0307, the discrepancy between inSAR and water level
can be observed. (i) Weather radar image of the area at the time 17:23 from the KLIX station
located in New Orleans reveals atmospheric patterns spread through the region. Note that
weather radar shows reflectivity of 8 db and above. WLC was measured during the September 4,

2021, UAVSAR flight.

Figure S2. Maps of UAVSAR-derived WLC for different intervals of time. WLC was measured

during the April 12, 2021, UAVSAR flights.

Movie S1. Animation of WLC. Yellow indicates an upwards change through the previous steps.
The study site is located towards the lower center. WLC was measured during the September 4,

2021, UAVSAR flight.
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Figure 12.
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Figure 13.



Figure 13



Height Diameter (cm) | Density (stems/m?)
(cm)
Supratidal S. alterniflora AGB 48.71 4.52 112
(spring)
Supratidal S. alterniflora AGN 46.62 6.03 128
(spring)
Supratidal S. alterniflora (fall) | AGB 72.4 6.5 304
Supratidal S. alterniflora (fall) | AGN 44 .3 6.17 48

Table 1. Mean height, mean stem diameter, and stem density (latitude 29.1714, longitude
90.8223). The data were collected between 2021-03-21 to 2021-03-31 during the Delta-X Spring
2021 deployment, and between 2021-08-19 to 2021-08-27 during the Fall deployment.



Median Mean Standard Interquartile | Skewness
deviation range

Water-level -9.73 -9.08 2.68 3.32 0.91
change (cm),
campaign 1
AGB (g/cm?), 445 473 148 145 1.10
spring
Water-level -11.28 -11.05 4.69 6.61 0.18
change (cm),
campaign 2
AGB (g/cm?), 1208 1168 154 159 -1.20
fall

Table 2. Mean, median, standard deviation, interquartile range, and skewness of WLC (cm) and AGB
(g/cm?) on marsh 2 (see Figure 2b).




Median Mean Standard Interquartile | Skewness
deviation range

Water-level -11.10 -10.79 2.38 2.66 0.88
change (cm),
campaign 1
AGB (g/cm?), 471 497 114 83 0.61
spring
Water-level -11.58 -11.08 4.25 5.14 0.56
change (cm),
campaign 2
AGB (g/cm?), 1281 1257 103 117 -1.28
fall

Table 3. Mean, median, standard deviation, interquartile range and skewness of WLC (cm) and AGB
(g/cm?) on marsh 3 (see Figure 2b).




	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure 8 legend
	Figure 8
	Figure 9 legend
	Figure 9
	Figure 10 legend
	Figure 10
	Figure 11 legend
	Figure 11
	Figure 12 legend
	Figure 12
	Figure 13 legend
	Figure 13
	Table
	Table
	Table

