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Key points 13 

1. We utilize a new generation of remote sensing data to study water movement beneath the 14 

vegetation canopy in salt marshes. 15 

2. Small morphological features in marsh landscape affect the spatial variability in water 16 

drainage within vegetated areas. 17 

3. Salt marshes located at the same elevation within the local tidal range drain water 18 

differently. 19 

  20 
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Abstract 21 

Water movement in coastal wetlands is affected by spatial differences in topography and 22 

vegetation characteristics, as well as by complex hydrological processes operating at different 23 

time scales. Traditionally, numerical models have been used to explore the hydrodynamics in 24 

these valuable ecosystems. However, we still do not know how well such models simulate water-25 

level fluctuations beneath the vegetation canopy, since we lack extensive field data to test the 26 

model results against observations. This study utilizes remotely sensed images of sub-canopy 27 

water-level change to understand how marshes drain water during falling tides. We employ rapid 28 

repeat interferometric observations from the NASA’s Uninhabited Aerial Vehicle Synthetic 29 

Aperture Radar (UAVSAR) instrument to analyze the spatial variability in water-level change 30 

within a complex of marshes in Terrebonne Bay, Louisiana. We also use maps of herbaceous 31 

aboveground biomass derived from the Airborne Visible/Infrared Imaging Spectrometer-Next 32 

Generation (AVIRIS-NG) to evaluate vegetation’s contribution to such variability. This study 33 

reveals that the distribution of water-level change under salt marsh canopies is strongly 34 

influenced by the presence of small geomorphic features (< 10 meters) in the marsh landscape 35 

(i.e., levees, tidal channels), whereas vegetation plays a minor role in retaining water on the 36 

platform. This new type of high-resolution remote sensing data offers the opportunity to study 37 

the feedbacks between hydrodynamics, topography and biology throughout wetlands at an 38 

unprecedented spatial resolution, and test the capability of numerical models to reproduce such 39 

patterns. Our results are essential to predicting the vulnerability of these delicate environments to 40 

climate change. 41 

 42 
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Plain Language Summary 44 

Salt marshes are vegetated coastal ecosystems particularly susceptible to lateral erosion and sea-45 

level rise. Hydrodynamic models are crucial to forecasting the vulnerability of these delicate 46 

environments to climate change, but we lack extensive field data to assess the accuracy of such 47 

models in vegetated flooded areas. Here, we utilize measurements collected from a NASA radar 48 

instrument flown on an airplane to determine how water moves beneath the vegetation canopy 49 

within a group of salt marshes located in the Mississippi River delta plain, Louisiana. Plant 50 

structure in the selected marshes is estimated from an imaging spectrometer which flew near-51 

simultaneously with the radar instrument. Our study shows the utility of remotely sensed data to 52 

comprehend wetland hydrodynamics at a very high spatiotemporal resolution, and improve the 53 

reliability of models that are needed to predict their fate. 54 

  55 
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1. Introduction 56 

Salt marshes are vegetated landforms located at the boundary between land and sea. These 57 

valuable coastal ecosystems form in low-energy environments or near large rivers where fine 58 

sediments can accumulate [e.g., Fagherazzi et al., 2012]. Salt marshes provide crucial ecosystem 59 

services to coastal communities since they act as buffers against storms, serve as nurseries for 60 

commercial fisheries, and sequester carbon [e.g., Leonardi et al., 2018]. Their economic value 61 

has been estimated to be US$5 million per square kilometer in the United States [Costanza et al., 62 

2014; 2017].  63 

Despite their ability to adapt in response to external disturbances, many studies document that 64 

salt marshes are disappearing at an alarming rate around the world due to lateral erosion and 65 

drowning [e.g., Carniello et al., 2011; Marani et al., 2011; Schuerch et al., 2018; Xu et al., 2022]. 66 

Degradation of this precious habitat has a severe impact on coastal communities because it 67 

intensifies the risk of flooding and the impact of extreme events on cities and infrastructure [e.g., 68 

Temmerman et al., 2013; Orton et al., 2020].  69 

Salt marshes expand or contract horizontally as a function of wind-waves and sediment 70 

availability, and they are potentially able to outpace sea-level rise through inorganic matter 71 

accumulation and organic mass production [Marani et al., 2007; 2010]. However, although 72 

organic matter allows vertical accumulation to offset sea-level rise [Mudd et al., 2010], salt 73 

marshes cannot rely on this contribution alone. In fact, if mineral fluxes are not the primary 74 

driver in marsh accretion (i.e. the organic part exceeds the inorganic one), marsh structural 75 

fragility and edge failure may occur [Peteet et al., 2018].  76 
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Mariotti & Fagherazzi [2010] argue that the rate at which salt marshes erode for a given wave 77 

climate and sea-level rise rate depends ultimately on sediment supply. If the sediment input from 78 

rivers and the coastal ocean is low, salt marsh collapse can occur even without sea-level rise. As 79 

such, the evaluation of sediment fluxes’ direction and magnitude is fundamental to forecast the 80 

fate of salt marshes and determine their vulnerability to sea-level rise [e.g., Ganju et al., 2013; 81 

2017]. To make reliable estimations, it is crucial to precisely quantify fluxes of water within 82 

these vegetated ecosystems and then focus on fluxes of sediments. 83 

Until now, numerical modeling has been the primary tool to investigate water and sediment 84 

movements in coastal wetlands [e.g., Beudin et al., 2017; Xie et al., 2022]. However, numerical 85 

models of flooded vegetated areas may be unreliable, since we lack spatially distributed data to 86 

validate them. In fact, collecting field measurements beneath the vegetation canopy is 87 

challenging due to numerous practical limitations [e.g., Alsdorf et al., 2007]. 88 

Recently, remote sensing has been utilized to fill this data gap [e.g., Wiberg et al., 2020; Liao et 89 

al., 2020; Ayoub et al., 2016; Cathcart et al., 2020; Donatelli et al., 2023]. Airborne and 90 

spaceborne radars can perform multiple flights over the same region, allowing them to detect 91 

changes in sub-canopy water levels at a very high spatial resolution (5-10 meters) [e.g., Oliver-92 

Cabrera and Wdowinski, 2016]. The Uninhabited Aerial Vehicle Synthetic Aperture Radar 93 

(UAVSAR) [Hensley et al., 2008; Fore et al., 2015] has the ability to perform rapid repeat 94 

interferometric surveys, offering a synoptic view of how water levels vary spatially with a revisit 95 

time of ~30 minutes [Oliver-Cabrera et al., 2021]. For instance, interferometric products 96 

measured by UAVSAR have been used to calibrate water levels over extensive wetland areas 97 

[Wright et al., 2022].  98 
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In this paper, we employ UAVSAR water-level change products derived from data collected 99 

during Delta-X campaigns [Jones et al., 2022]. So far, this dataset has been mainly used to 100 

correct bathymetric information derived from lidar [e.g., Wright et al., 2022; Zhang et al., 2022a; 101 

b]. Zhang et al. [2022a; b] proposed an iterative/empirical methodology which corrects bed 102 

elevation in wetlands by using the difference between observed and modelled water-level 103 

change. They assumed that lowering (increasing) bed elevation allows for more (less) tidal 104 

propagation and therefore larger (smaller) water-level change. However, as pointed out by the 105 

same authors, this approach, although it improves the accuracy of the model in reproducing 106 

changes in water level over time, can lead to unrealistic results for other hydrodynamic variables 107 

(e.g., flow velocities).  108 

These UAVSAR observations open the possibility to study wetland hydrodynamics at a spatial 109 

and temporal resolution that has not been possible with other remote sensing platforms. Our goal 110 

is to utilize high-spatial resolution, remotely sensed maps of water-level change beneath the 111 

vegetation canopy to determine the factors influencing water movement in marshes during a 112 

falling tide. This analysis is particularly important for quantifying the resilience of marshes [e.g., 113 

French & Spencer, 1993; Sullivan et al., 2019; Pannozzo et al., 2021]. In fact, when water drains 114 

back to the ocean, nutrients and sediments are released within the surrounding environment with 115 

consequences for the long-term evolution of these vegetated ecosystems. Additionally, small 116 

creeks are typically ebb dominated because of the delay between water level and peak flow 117 

[Fagherazzi et al., 2008]. As such, water drainage in marshes is critical for the evolution of the 118 

tidal network. 119 

We use a complex of salt marshes located in Terrebonne Bay, Louisiana, as a test case. Here, we 120 

address the following hydrodynamic questions: a) Do salt marshes characterized by the same 121 
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elevation drain water differently? If so, what controls this difference? b) What is the role of 122 

vegetation in retaining water over marsh surfaces? c) Do small morphological features of the 123 

marsh landscape influence water-level change within the surrounding area? These questions are 124 

crucial to (i) understand water movement within these vegetated coastal habitats, and (ii) 125 

determine the level of detail required for topographic data to accurately simulate marsh 126 

hydrodynamics via numerical modeling.  127 

 128 

Figure 1. Satellite image of Terrebonne Bay, Louisiana, USA. The rectangle highlights the 129 
location of the three selected salt marshes (here, we call this location ‘intensive site 0421’).  130 

 131 

2. Study site 132 

Terrebonne Bay is a deltaic lagoon within the Mississippi Delta on the north coast of the Gulf of 133 

Mexico. Tides are diurnal with a mean astronomical tidal range of 0.32m. The system is strongly 134 

event-driven [Reed, 1989]. For instance, the effective tidal range reaches 0.7m by combining 135 

astronomical and meteorological components [Mariotti, 2016]. The bay presents a series of 136 



9 
 

narrow and low-lying barrier islands (the Isles Dernieres and Timbalier chains) which separate 137 

the back-barrier basin from the Gulf of Mexico (Figure 1). The exchange of water between 138 

Terrebonne Bay and the coastal ocean occurs through tidal inlets, and it is affected mainly by 139 

tides and cold front passages [e.g., Reed et al., 1989]. Sediments needed for marsh accretion are 140 

derived from erosional processes occurring within the bay (e.g., bed erosion, marsh lateral 141 

erosion), and are delivered from offshore into the lagoon by storms [Cortese & Fagherazzi, 142 

2022]. The lagoon is located between the Mississippi River Delta and the Atchafalaya Delta 143 

(Figure 1). The presence of these two systems creates differences in vertical stratification of the 144 

water column between the eastern and western parts of the bay. Such differences influence 145 

biological processes within Terrebonne Bay and are highly variable due to seasonal changes in 146 

wind conditions [Hetland & Di Marco, 2007].   147 

 148 

Figure 2. (a) Topography of the study site. Topographic data are reported with respect to 149 
NAVD88. (b) Above ground biomass (AGB) in spring. The (orange) thin lines and the (black) 150 

dashed lines highlight marshes 2 and 3, respectively, while the remaining area represents marsh 1 151 
(this area is highlighted by the thicker lines). The dot shows the location of the CRMS0421 152 
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station, and the star indicates the location over the marsh platform where field observations of 153 
water levels were collected. 154 

 155 

3. Methods 156 

We utilize remotely sensed maps of sub-canopy water-level change to analyze drainage patterns 157 

over three marshes in Terrebonne Bay, Louisiana, USA. UAVSAR images were collected in two 158 

distinct temporal windows: April 12th 2021 between 19:29 and 22:59 (UTC time), and 159 

September 4th 2021 between 16:21 and 20:08 (UTC time). Hydrodynamic conditions are similar 160 

during the two campaigns, but vegetation characteristics present marked differences. As such, we 161 

can unravel the effect of vegetation on water-level change (WLC) by comparing UAVSAR data 162 

measured in the two selected temporal windows. 163 

WLC on marsh platforms is affected by water conveyance. The latter can be expressed by the 164 

empirical Manning’s formula that applies to uniform flow in open channels:  165 

q = ଵ௡  ·h5/3 ·i1/2 (1)

where n is the Manning’s roughness coefficient, h is the water depth, and i represents the water-166 

surface slope. In numerical models, the simplest way to account for the effect of vegetation on a 167 

depth-averaged flow is to increase the roughness coefficient with respect to unvegetated areas 168 

[e.g., Beudin et al., 2016]. Similarly, model calibration in channels and open water is often 169 

performed by varying the roughness coefficient until the simulated water levels match those 170 

measured in the field [e.g., Cortese et al., 2023]. 171 

To determine the influence of water depth and friction on WLC, we make use of (i) high-spatial 172 

resolution topographic data (Figure 2a) [Christensen et al., 2023]; and (ii) two high-spatial 173 

resolution maps of herbaceous aboveground biomass (AGB) obtained using AVIRIS-NG 174 
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hyperspectral imager (see Figure 2b for the AGB distribution during spring) [Jensen et al., 2022]. 175 

Note that we employ two AGB maps because the UAVSAR campaigns occurred in two different 176 

seasons (i.e., spring and fall, see how vegetation structure changes with seasons in Table 1 177 

[Castañeda & Solohin, 2021]). The intensive site was dominated by Spartina alterniflora during 178 

the spring campaign, and by a mix of Spartina alterniflora and Juncus roemerianus during the 179 

March-April campaign (Figure 3). 180 

 181 

Figure 3. Field images of vegetation types in the (a, b) spring and (c) fall campaigns. 182 

 183 

It is important to highlight that part of the measurements collected during the September 4, 2021, 184 

UAVSAR flight is affected by atmospheric effects (see Figure S1 and Movie S1 in Supporting 185 

Information S1) which prevents the use of these data. This means we cannot use all the data 186 

taken in this campaign. More specifically, WLC measured over the largest marsh (marsh 1 in 187 
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Figure 2b) is partially corrupted due to variations in atmospheric properties between the different 188 

SAR acquisitions [e.g., Hanssen et al., 2001].  189 

The procedure adopted here to analyze the spatial variability in salt marsh drainage can be 190 

summarized as follows: (i) we use UAVSAR data (subsection 3.1) and field observations of 191 

water level (subsection 3.2) to evaluate whether UAVSAR provides reliable estimations of WLC 192 

on marsh surfaces; (ii) we employ the WLC measurements collected during the April 12, 2021, 193 

UAVSAR flight to determine whether marshes characterized by the same elevation present 194 

comparable changes in water level within the same temporal window; (iii) we utilize the AGB 195 

map in spring (subsection 3.3, see Figure 2b) to evaluate the effect of spatial variations in 196 

vegetation characteristics on the distribution of WLC; (iv) we use UAVSAR data to understand 197 

the role of small features in the marsh landscape (i.e., levees and channels) on water movement; 198 

(v) we employ WLC measurements collected during the April 12, 2021, and the September 4, 199 

2021, UAVSAR flights to determine the influence of seasonal changes in AGB on WLC over 200 

marshes 2 and 3 (i.e., where UAVSAR data are not affected by atmospheric effects during the 201 

September 4, 2021, UAVSAR flight, see Figure 2b). 202 

3.1 UAVSAR interferometry 203 

UAVSAR is a synthetic aperture imaging radar deployed on a Gulfstream-3 aircraft that collects 204 

measurements of Earth’s surface change from 12.5 km altitude. The instrument is a fully 205 

polarimetric (i.e., it transmits horizontal and vertical pulses and receives returns from each in 206 

both polarizations), left-looking synthetic aperture radar that operates in L-band (λ= 0.2379 207 

meters of wavelength) with center frequency of 1.2575 GHz and 80 MHz of bandwidth. The 208 

radar images a region 22 km wide, with incidence angle ranging between ~22° (near range) to 209 

~67° (far range) [Garcia-Pineda et al., 2013]. 210 
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A collection of UAVSAR measurements were performed over the entire salt-marsh system in 211 

Terrebonne Bay. The region was scanned six times between 19:29 and 22:58 (UTC time) on 212 

April 12th, 2021, and between 16:21 and 20:08 (UTC time) on September 4th, 2021. The goal of 213 

these measurements is to take advantage of the rapid-repeat pass capability of UAVSAR and 214 

capture WLC over flooded surfaces with emergent vegetation. This capability is possible due to 215 

the double-bounce radar-pulse return that bounces from both the water surface and the vegetation 216 

[Lu & Kwoun, 2008; Dabboor & Brisco, 2018], allowing measurement of WLC in areas with 217 

sparse gauge coverage. In particular, we used pairs of rapid-repeat pass SAR acquisitions 218 

acquired by UAVSAR to form sets of interferograms employing the InSAR Scientific 219 

Computing Environment (ISCE) [Rosen et al. 2000]. We then performed phase unwrapping to 220 

quantify the number of 2π cycles, to be able to accurately derive the total displacement in water 221 

level. Once the interferograms were unwrapped, we used them to estimate the InSAR derived 222 

WLC time series, as described in the product documentation available at the ORNL DAAC 223 

(https://daac.ornl.gov/DELTAX/guides/DeltaX_L3_UAVSAR_WaterLevels.html ) [Jones et al., 224 

2022]. This method can be similarly applied to different wetland types (e.g., mangroves). 225 

However, its effectivity will be highly dependent on the repeat pass schedule of the observing 226 

sensor as well as the type of vegetation observed. If the vegetation has a soft stem, its scattering 227 

properties will change rapidly and data acquisition will require a very short repeat observation 228 

time, whereas woody vegetation may allow for a longer temporal baseline in the SAR acquisition 229 

pattern [Oliver-Cabrera et al., 2021]. Note that the method cannot be applied to submerged 230 

vegetation, e.g. seagrass. 231 
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 232 

Figure 4. Field measurements of water levels (m) in the channel (triangles, CRMS-421 station, 233 
see Figure 2), and water depth over marsh (solid line, lat 29.170201, lon -90.823649, see Figure 234 
2). Water levels are measured with respect to NAVD88. These observations were collected in 235 

April 12, 2021. 𝛥t1 represents the interval of time in which the UAVSAR flight took place. 236 

 237 

3.2 Field measurements of water levels 238 

The Coastwide Reference Monitoring System (CRMS) was designed by the Louisiana State 239 

Wetlands Authority, and the Coastal Wetlands Planning, Protection, and Restoration Act 240 

(CWPPRA) Task Force to evaluate the effectiveness of restoration projects at multiple spatial 241 

scales along the Louisiana coastline. Instruments at nearly 400 sites continually monitor soils, 242 

hydrology, land change, and vegetation since 2003. These stations provide hourly water-level 243 

data, which are used to analyze spatial variations in hydrodynamic conditions at different 244 

temporal scales. We employ water-level observations from the CRMS-0421 station (see red dot 245 

in Figure 2b) to evaluate how water levels vary in a channel adjacent to the three selected 246 

marshes during the UAVSAR flights. 247 

These data are complemented with field measurements of water levels on the neighboring marsh 248 

platform (see red star in Figure 2b). The instrument on the marsh was installed at approximately 249 

3 cm above the soil surface (thus we do not have data when water level was lower than 3 cm) 250 
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and collected water-level data every 20 minutes. Measurements are expressed with respect to 251 

NAVD88. 252 

3.3 Above Ground Biomass (AGB) 253 

We utilize two maps of herbaceous aboveground biomass (AGB), derived from Airborne Visible 254 

Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) data, developed by Jensen et al., 255 

[2022; 2023] for the spring and fall seasons. AVIRIS-NG is an imaging spectrometer that 256 

measures radiance at 5 nm sampling across 425 bands in the Visible to Short-Wave Infrared 257 

(VSWIR) spectral range (380-2500 nm). The L1 radiance data were processed to L2 surface 258 

reflectance products with atmospheric correction [Thompson et al. 2019], with further 259 

corrections applied to adjust for Bidirectional Reflectance Distribution Function (BRDF) effects 260 

[Greenberg et al. 2022; Thompson et al. 2022]. AGB, quantified as dry biomass in grams per 261 

square meter (g/m2), was estimated from the BRDF-adjusted surface reflectance and a coincident 262 

AGB field survey [Castañeda-Moya & Solohin 2022]. A machine learning model was generated 263 

to estimate AGB by comparing local pixel reflectance spectra with coincident in-situ samples of 264 

herbaceous vegetation AGB. This model (R2 = 0.89, Mean Absolute Error = 109.30 g/m2) was 265 

then scaled to the AVIRIS-NG mosaic imagery to map herbaceous AGB across the Terrebonne 266 

Basin. The instrument is also used to measure water quality and suspended sediment 267 

concentration in coastal regions [e.g., Jensen et al., 2019]. The map has a spatial resolution of ~5 268 

m. The AGB map is depicted in Figure 2b. A detailed description of how the AGB map was 269 

obtained is reported in Jensen et al. [2022]. 270 

4. Results 271 
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Field measurements of water levels show that the tidal signal in the channel and over the marsh 272 

are generally in phase (Figure 4). However, a small phase shift between these two signals may 273 

exist and be spatially variable, and it depends on the distance between the channel and the 274 

location where water levels are measured over the marsh. We use data from UAVSAR to analyze 275 

the spatial variability in WLC over the selected marshes (Figure 2b). The maps representing 276 

WLC on marsh platforms are shown in Figure S2 for the April 12, 2021, UAVSAR flight (see 277 

Supporting Information S1); the temporal window (𝛥t1) in which the UAVSAR campaign took 278 

place is shown in Figure 4. UAVSAR-derived WLC in the marsh pixels located next to the 279 

CRMS station 0421 matches well the field measurements.  280 

Since WLC on marsh platforms depends on flow conveyance, we plot UAVSAR-derived WLC 281 

as a function of marsh elevation (see subsection 4.1) and AGB (see subsection 4.2). Then we 282 

select various marsh sub-regions and we focus on the presence of small geomorphic features 283 

(width smaller than 10 meters) in the marsh landscape. Such geomorphic features may affect 284 

water transport in marshes, and consequently WLC on platforms (see subsection 4.3). In the 285 

same subsection, we also evaluate the effect of seasonal changes in vegetation characteristics on 286 

WLC. 287 
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 288 

Figure 5. UAVSAR-derived WLC (cm) as a function of marsh elevation (m) for different 289 
intervals of time, starting at t = 19:29 UTC and ending at the time indicated on each plot. Red 290 

dots represent median values and the red bars indicate the interquartile range. WLC was 291 
measured during the April 12, 2021, UAVSAR flight. The rectangle in Figure 5f shows the 292 

interval of marsh elevation that is considered in Figure 6. 293 

 294 

4.1 WLC as a function of marsh elevation 295 

We plot WLC estimated during the April 12, 2021, UAVSAR flight as a function of marsh 296 

height (Figure 5). The values are change in water level relative to the first acquisition, which was 297 

made at 19:29 UTC. Our aim is to determine if vegetated pixels (hereinafter called also marsh 298 

pixels) characterized by the same elevation within the local tidal range experience a similar 299 

change in water level over the selected temporal window (Figure 5). We modified the spatial 300 

resolution of the UAVSAR data (and later that of AVIRIS-NG, see subsection 4.2) to obtain the 301 

same resolution of the available bathymetry (i.e., 10m). In particular, we resampled the raster to 302 

a lower resolution by using a standard method for resampling (i.e., nearest neighbor). Figure 5 303 
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depicts WLC as a function of marsh height in six different temporal windows (these six temporal 304 

windows start at 19:29, and end at 20:04, 20:38, 21:13, 21:48, 22:24 and 22:58 respectively). 305 

Note that WLC increases in absolute value with respect to the first UAVSAR acquisition. 306 

Interestingly, vegetated pixels with a similar elevation can exhibit a different change in water 307 

level, indicating that water can drain differently from locations of similar elevation, depending 308 

on their location within the marsh. This result is highlighted by the interquartile range in 309 

UAVSAR-derived WLC which varies as a function of marsh elevation (Figure 5).  310 

The substantial variability in WLC showed by marsh pixels located at the same elevation can 311 

potentially be related to spatial variations in vegetation characteristics. We investigate the 312 

relationship between change in water level and above ground biomass in the next subsection. 313 

 314 

Figure 6. UAVSAR-derived WLC (cm) as a function of AGB (g/cm2). WLC was measured 315 
during the April 12, 2021, UAVSAR flight during the time interval 19:29 - 22:58 UTC. We only 316 
consider marsh pixels with an elevation between 0.3 and 0.35 meters (see rectangle in Figure 5f). 317 

 318 

4.2 Effect of vegetation on the distribution of WLC 319 

We utilize the map of AGB in the spring (Figure 2b) to determine the effect of vegetation on 320 

WLC during the April 12, 2021 UAVSAR flight. We only consider marsh pixels with an 321 
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elevation between 0.3 and 0.35 meters (since the majority of vegetated pixels in the selected 322 

group of marshes have an elevation within this range). In other words, we fix marsh height (see 323 

rectangle in Figure 5f) to evaluate the relationship between WLC and AGB. When WLC is 324 

plotted as a function of the above ground biomass (Figure 6) the results reveal a weak correlation 325 

between these two variables. Surprisingly, changes in water level (in absolute value) within the 326 

selected temporal window of 3.5 hours seem to increase with greater values of above ground 327 

biomass.  328 

It should be noted that WLC measured by UAVSAR occurs only in the portion of the water 329 

column occupied by plants. This can be easily verified by comparing field measurements of 330 

water level over the marsh (Figure 4) with the data of vegetation structure collected between 331 

March 21, 2021 and March 31, 2021 (Table 1). The maximum water level observed over the 332 

marsh during the selected temporal window is 15 cm, which is indeed smaller than the plant 333 

height reported in Table 1. 334 
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 335 

Figure 7. Spatial distribution of (a) UAVSAR-derived WLC (cm), and (b) AGB (g/m2) values in 336 
spring for a sub-region of marsh 1. WLC was measured during the April 12, 2021, UAVSAR 337 
flight. Satellite images: (c) entire sub-region; (d) and (e) close up of two different parts of the 338 

selected sub-region (i.e., area without channels and highly channelized area). The arrow indicates 339 
the presence of small tidal channels with a width of 2 and 5 meters. (image ©Google, 340 

Landsat/Copernicus). 341 

 342 

4.3 Effect of small geomorphic features in marsh landscape on WLC 343 

We analyze images from satellite (Google Earth) to identify the presence of small geomorphic 344 

features in the marsh landscape. Such elements may affect water conveyance on marsh 345 

platforms, allowing for more or less tidal propagation within surrounding areas. First, we map 346 

the spatial distribution of WLC and AGB within the selected sub-regions. Then, we utilize 347 

images from satellite to understand why pixels with a similar elevation drain water differently. 348 
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We start by considering the sub-region depicted in Figure 7 (this sub-region is part of marsh 1 349 

depicted in Figure 2b). Here, we show the spatial distribution of (i) WLC measured during the 350 

April 12, 2021, UAVSAR campaign (Figure 7a), and (ii) AGB values during the spring (Figure 351 

7b). We only focus on pixels with an elevation between 0.3 and 0.35 meters. These pixels 352 

present a substantial variability in WLC with values ranging between 0 and 11 cm (Figure 7a).  353 

We show images of this sub-region in Figure 7c, d, e. These images reveal that the vegetated 354 

pixels exhibiting larger values of WLC are located next to tidal channels which are not captured 355 

by the available bathymetric data (see the arrow in Figure 7e). Such channels (width ranging 356 

between 1 meter and 10 meters) help drain water from the marsh surface, therefore increasing 357 

WLC within the adjacent vegetated pixels (see Figure 7e). 358 

We apply the same approach to marshes 2 and 3 (see Figure 2b). UAVSAR data from another 359 

campaign are also available for these marshes. Figure 8 shows water levels measured at the 360 

CRMS-0421 station in the channel and over the marsh for September 4, 2021. In the same figure, 361 

we show the temporal window in which the UAVSAR flight took place (𝛥t2).   362 

 363 

Figure 8. Field measurements of water levels (m) (i) in the channel (CRMS-421 station), and (ii) 364 
over the marsh (lat 29.170201, lon -90.823649). Water levels are measured with respect to 365 

NAVD88. These observations were collected in September 4, 2021. 𝛥t2 represents the interval of 366 
time in which the UAVSAR flight took place. 367 
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Histograms of WLC and AGB are reported in Figure 9. Table 2 lists the mean, median, standard 368 

deviation, interquartile range, and skewness for each distribution. Here, we use the median as a 369 

measure of the typical value of WLC. Note that the typical value is greater for the September 4, 370 

2021, UAVSAR campaign compared to the April 12, 2021, UAVSAR campaign. This result is 371 

consistent with field observations of water level collected over the marsh (Figures 4-8).  372 

 373 

Figure 9. Histograms of (a, b) WLC and (c, d) AGB for marsh 2 (see Figure 2b) during (a, c) the 374 
April 12, 2021, and (b, d) September 4, 2021, UAVSAR flights. The solid red line represents the 375 

median value, while the dashed lines represent the median value plus/minus one standard 376 
deviation. The black line represents the mean value. WLC is considered positive if it corresponds 377 

to an increase of water level in the selected temporal window. 378 
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 379 

Figure 10. Spatial distribution of (a, b) UAVSAR-derived WLC (cm), and (c, d) AGB (g/m2) 380 
values in spring (a, c) and fall (b, d) for marsh 2. WLC was measured during the April 12, 2021, 381 
and September 4, 2021, UAVSAR flights. Satellite images: (e) entire marsh 2; (f) and (g) close 382 

up of two different parts of the selected marsh. Images (f) and (g) highlight the presence of small 383 
tidal channels in the marsh landscape. The large (yellow) arrows highlight the presence of two 384 
small tidal channels with a width of 2-3 meters. The small (blue) arrow indicates an area of the 385 

marsh where tidal channels are absent. (image ©Google, Landsat/Copernicus). 386 
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Spatial distributions of WLC and AGB for marsh 2 are shown in Figure 10. We only consider 387 

pixels with an elevation between 0.35 and 0.40 meters (since the majority of pixels in marsh 2 388 

have an elevation within this range). WLC (Figure 10a, b) within the two selected temporal 389 

windows presents a similar spatial distribution (R=0.64). By contrast, the AGB maps do not 390 

exhibit a similar spatial pattern between spring and fall (R=-0.22). This result implies that, 391 

despite both the substantial increase in AGB values (see histograms in Figure 9c, d) and the 392 

occurrence of marked changes in their spatial distribution, WLC remains fairly similar within the 393 

two UAVSAR campaigns. By using satellite images (Figure 10e, f, g), we observe that the area 394 

of the marsh experiencing greater changes in water level (Figure 10a, b) is fragmented (see 395 

Figure 10f, g; the large arrows in Figure 10g highlight the presence of two small tidal channels). 396 

In contrast, the WLC is lower where tidal channels are absent (see for instance the marsh area 397 

highlighted by the small arrow in Figure 10g).  398 

 399 

Figure 11. Histograms of (a, b) WLC and (c, d) AGB for marsh 3 (see Figure 2b) during (a, c) 400 
the April 12, 2021, and (b, d) September 4, 2021, UAVSAR flights. The solid red line represents 401 

the median value, while the dashed lines represent the median value plus/minus one standard 402 
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deviation. The black line represents the mean value. WLC is considered positive if it corresponds 403 
to an increase of water level in the selected temporal window. 404 

 405 

Finally, we focus on the third marsh. Histograms of WLC and AGB highlight differences 406 

between the two selected temporal windows (Figure 11). Table 3 shows the mean, median, 407 

standard deviation, interquartile range, and skewness for each distribution. We plot maps of 408 

WLC and AGB in spring and fall (Figure 12). Note that a low correlation exists between the two 409 

maps of WLC (R=0.33), and between the maps of AGB (R=-0.21). By comparing Figures 12a, b 410 

with satellite images (Figure 13), we observe that levees are present where WLC is much lower 411 

compared to the median value (see for instance the arrow in Figure 13b). Furthermore, we note 412 

that this marsh is highly fragmented (Figure 13c), and, as such, it exhibits a smaller standard 413 

deviation of WLC compared to marsh 2 (see Tables 2-3). 414 

 415 
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Figure 12. Spatial distribution of (a, b) UAVSAR-derived WLC (cm), and (c, d) AGB (g/m2) 416 
values in spring (a, c) and fall (b, d) for marsh 3. WLC was measured during the April 12, 2021 417 

and September 4, 2021 UAVSAR flights. 418 

 419 

 420 

Figure 13.  Satellite images: (a) entire marsh 3; (b) and (c) close up of two different parts of the 421 
selected marsh. Image (b) highlights the presence of levees, whereas image (c) shows a sub-422 
region of marsh 3 which is highly channelized. The arrow indicates the presence of levees. 423 

(image ©Google, Landsat/Copernicus). 424 

 425 

5. Discussion 426 

We utilized a new generation of remotely sensed data to study the interactions of vegetation, 427 

topography, and flow on marsh platforms. These interactions have been explored for three salt 428 

marshes located in Terrebonne Bay, Louisiana (see Figures 1-2). In particular, we focused on 429 

unravelling what factors influence spatial variations in WLC on marsh platforms at hourly time 430 

scales. To this end we used (i) multiple images of UAVSAR-derived WLC collected during 431 
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falling tides, (ii) bathymetric data from lidar, and (iii) high-spatial resolution maps of AGB 432 

obtained through AVIRIS-NG.  433 

5.1 WLC as a function of marsh topography 434 

Our results reveal that marsh platforms exhibit a substantial spatial variability in WLC (e.g., 435 

Figure 5). Interestingly, marsh pixels characterized by the same elevation within the local tidal 436 

range present marked differences in WLC. Part of this variability can be explained by the 437 

presence of errors in the lidar data. In particular, the laser cannot penetrate into thick vegetation 438 

canopies leading to a positive bias in bed elevation. Such bias is spatially variable and depends 439 

on vegetation density [e.g., Medeiros et al., 2015; Rogers et al., 2018; Cooper et al., 2019]. This 440 

result means we cannot correct topographic errors by uniformly lowering the bathymetry, but an 441 

ad-hoc change in bed elevation is needed for each point of the domain.  442 

Zhang et al. [2022a; b] proposed to correct wetland bathymetry (i.e., remove the positive bias) by 443 

employing data from UAVSAR and numerical modelling. However, it turned out in their study 444 

that the derived topographic corrections were either positive or negative (i.e., bed elevations 445 

were also biased towards a lower elevation). Since the bias in bathymetric information due to the 446 

laser’s inability to penetrate vegetation can be only positive, it is likely that the negative bias can 447 

be related to the presence of geomorphic elements in the marsh that are not captured in the model 448 

grid [e.g., Blanton et al., 2010]. These topographic features (e.g., small levees) promote water 449 

retention within the surrounding vegetated areas, leading to a smaller WLC.  450 

It is worth noting that the empirical/iterative approach of Zhang et al. [2022a; b] could modify 451 

bed elevations even in regions where corrections are not needed. If the spatial resolution of the 452 

model is too coarse to capture the presence of small tidal creeks (note that tidal creeks facilitate 453 
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water drainage on marsh surface and therefore increase WLC), a decrease in bed elevation and/or 454 

friction would be required. Specifically, these modifications would increase water conveyance 455 

on platforms, and consequently augment the change in water level within the selected temporal 456 

window. On the other hand, corrections in bathymetry and/or friction would not only alter local 457 

hydrodynamics (i.e., where changes are made) but they would also propagate to areas 458 

downstream leading to an overall decrease of model accuracy in reproducing WLC within 459 

vegetated areas. As such, it is essential that topographic data have sufficient spatial resolution to 460 

identify small tidal creeks and levees on marsh platforms, e.g., 1-meter spatial resolution. This 461 

condition is important to (i) capture the enormous spatial variability in hydrodynamic conditions 462 

across marsh landscapes via numerical modeling; (ii) minimize possible fictitious changes in bed 463 

elevation and/or friction introduced by the procedure proposed by Zhang et al., [2022a; b]; and 464 

(iii) remove the effects related to errors in topography.  465 

5.2 Effect of vegetation on WLC 466 

The interaction between flow and vegetation is complex and has been explored at different 467 

spatial and temporal scales [e.g., Liu et al., 2003; Mazda et al., 1997; Temmerman et al., 2005; 468 

Wu et al., 2001; Donatelli et al., 2019]. Until now, we did not have observations that provide a 469 

spatially-continuous view of how tides propagate in wetlands. UAVSAR repeat-pass 470 

interferometry provides, for the first time, a synoptic view of WLC across vegetated areas. This 471 

remote sensing technique allows us to study the hydrodynamics in these ecosystems at an 472 

unprecedented spatial resolution.  473 

Water retention on marsh platforms depends on (i) the degree of channelization, which affects 474 

the transport of water from marsh interior towards the surrounding environment; (ii) levees, 475 

which obstruct the flow and do not allow the water to drain following the shortest and steepest 476 
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path, and (iii) vegetation, which exerts a drag on the flow and thus slows down tidal currents. In 477 

this study, we show that WLC on marshes during falling tides is not affected by spatial and 478 

temporal changes in AGB (e.g., Figure 6). This finding is a counterintuitive one, since it is well 479 

known that vegetation increases friction on tidal currents [e.g., Gerkema, 2019] and alters spatial 480 

flow patterns in tidal landscapes [e.g., Temmerman et al., 2007; 2012]. However, we argue that 481 

in highly channelized marshes, such as those in Terrebonne Bay, the ebb flow is preferentially 482 

transported via channels. Therefore, vegetation has a limited effect in retaining water on marsh 483 

surfaces. This result is broadly consistent with Montgomery et al. [2018] and Pelckmans et al. 484 

[2023], who found a similar behavior in mangroves. They both showed that vegetation attenuates 485 

long waves only if the transport of water through the vegetation is the main mechanism of fluid 486 

transport. If creek flow dominates, the density of mangrove vegetation has a minimal effect on 487 

the attenuation of water levels [e.g., Horstman et al., 2015]. Our finding also agrees with Zhang 488 

et al. [2022a] who showed through numerical modelling that large variations in friction on marsh 489 

platforms have a minimal impact on WLC. 490 

Another factor that could diminish the effect of vegetation on WLC is water depth. When 491 

vegetation is fully submerged and occupies only part of the water column, large-scale sheet flow 492 

(i.e., flow above the canopy) becomes important and relative spatial differences in friction 493 

decrease [Temmerman et al., 2005; Fagherazzi et al., 2012; Nepf, 2012]. The two 3.5-hour 494 

UAVSAR campaigns were conducted during falling tides with an initial water level in the 495 

channel of ~0.5 meters (Figures 4-8). By comparing water levels on the marsh with plant height 496 

(Table 1), we deduce that WLC occurs in the part of the water column occupied by plants. 497 

Therefore, the transport of water did not occur through sheet flow during the selected temporal 498 

windows and tidal conditions.  499 
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5.3 Temporal variability in hydrodynamic conditions 500 

Water movement in wetlands depends on two major drivers, namely tides and wind. While the 501 

former has a cyclical character, the latter is episodic in nature and can even vary from year to 502 

year [e.g., Donatelli et al., 2022a; b]. WLC on marshes may differ due to tidal variations (e.g., 503 

spring-neap modulation), freshwater discharge, wind speed and direction, and duration of wind 504 

events [e.g., Gerkema & Duran-Matute, 2017; Valentine & Mariotti, 2018]. Obviously, this type 505 

of UAVSAR flight campaign with repeated imaging within a single flight cannot reveal changes 506 

across the range of time scales. This remote sensing technique can only provide multiple images 507 

of WLC beneath the vegetation canopy within a short temporal window (i.e., it offers 508 

hydrodynamic information at an hourly time scale).  509 

As documented by previous studies, meteorological events have a paramount effect on water 510 

levels in Terrebonne Bay [e.g., Reed, 1989], implying that WLC on marsh platforms can 511 

strongly deviate from its long-term statistics (i.e., long-term mean and/or median). In other 512 

words, the WLC measured by the two UAVSAR campaigns might not be representative of the 513 

typical hydrodynamic conditions experienced by salt marshes during ebb tide. To explore the 514 

temporal variability of such changes in water level at short- and long-time scales, a combination 515 

of UAVSAR images and numerical modeling is needed [e.g., Zhang et al., 2022a; b]. This task is 516 

not trivial, especially if we want to investigate marsh hydrodynamics at a very high spatial 517 

resolution, which this study indicates is important, and at the same time employ numerical 518 

simulations spanning several years [e.g., Donatelli et al., 2022b]. In fact, a grid size of ~1 meter 519 

would dramatically increase the simulation time and consequently reduce the performance of the 520 

model, while a model with a larger resolution (e.g., 10 meters) would not be able to consider the 521 

effect of levees and small channel on WLC within vegetated areas. 522 
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5.4 Implications for coastal vulnerability predictions 523 

This new generation of remotely sensed data can also be used to achieve a precise estimation of 524 

fluxes of water and its constituents in coastal environments, which is essential to evaluate the 525 

impact of climate change on wetlands. A robust quantification of such fluxes allows us to predict 526 

which parts of a salt-marsh system will erode and which parts will grow; this information can be 527 

employed, for instance, to design effective interventions along the shoreline, and forecast the 528 

location and timing of new land creation through sediment accumulation [e.g., Winterwerp et al., 529 

2020; Tas et al., 2022]. Additionally, UAVSAR observations may be applied to improve the 530 

accuracy of numerical models to simulate hydrodynamics within vegetated areas, which is 531 

fundamental to quantify the impact of future extreme events on coastal communities [e.g., 532 

Aretxabaleta et al., 2019; Temmerman et al., 2022]. A better understanding of how water levels 533 

are impacted by vegetation is important to limit the economic impact of coastal hazards, and 534 

increase the capability of communities and coastal economies to recover [e.g., Goreau & 535 

Hilbertz, 2005]. 536 

6. Conclusions 537 

The main conclusions of this paper can be summarized as follows: 538 

1. UAVSAR can measure changes in water level across salt marshes at an unprecedented 539 

spatial resolution. These data prove reliable in capturing the effect of small geomorphic 540 

features (width smaller than 10 meters) on WLC within these vegetated environments. 541 

2. We utilized UAVSAR data to investigate drainage patterns over three salt marshes in 542 

Terrebonne Bay, USA. Our study shows that these marshes exhibit substantial variability 543 

in WLC during falling tides.  544 
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3. Small tidal channels and levees affect WLC on marsh surfaces. More specifically, these 545 

geomorphic elements affect water transport within the adjacent vegetated areas and, as a 546 

consequence, influence WLC. This finding explains why portions of a marsh 547 

characterized by the same elevation can drain water differently. 548 

4. The presence of small channels in marshes can be easily detected via UAVSAR by 549 

mapping the spatial distribution of WLC. 550 

5. Vegetation has a minimal effect on water retention in the selected marshes. Our result 551 

suggests that in highly-channelized marshes, spatial and seasonal changes in AGB do not 552 

have a substantial influence on WLC. This result implies that water transport during ebb 553 

tides occurs mainly through channels, and, as such, vegetation has a small influence in 554 

retaining water on platforms. 555 

 556 
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 568 

Open research 569 

The data of aboveground biomass (AGB) from AVIRIS-NG can be accessed through the ORNL 570 

DAAC, which is open for public access and download (Jensen et al., 2021): 571 

https://doi.org/10.3334/ORNLDAAC/1822. The data of water-level change (WLC) from 572 

UAVSAR can be accessed and downloaded through the ORNL DAAC (Jones et al., 2022): 573 

https://doi.org/10.3334/ORNLDAAC/2058. The digital elevation model (DEM) can be accessed 574 

and downloaded through the ORNL DAAC (Christensen et al., 2023): 575 

https://doi.org/10.3334/ORNLDAAC/2181.   576 
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Supplementary material: figure captions 577 

Figure S1. (a, b, c, d, e, f) Time series of WLC show a pattern that does not seem to follow the 578 

expected water levels. Yellow indicates an upwards change through the previous steps. (h) When 579 

compared against a nearby station CRMS0307, the discrepancy between inSAR and water level 580 

can be observed. (i) Weather radar image of the area at the time 17:23 from the KLIX station 581 

located in New Orleans reveals atmospheric patterns spread through the region. Note that 582 

weather radar shows reflectivity of 8 db and above. WLC was measured during the September 4, 583 

2021, UAVSAR flight. 584 

 585 

Figure S2. Maps of UAVSAR-derived WLC for different intervals of time. WLC was measured 586 

during the April 12, 2021, UAVSAR flights. 587 

 588 

Movie S1. Animation of WLC. Yellow indicates an upwards change through the previous steps. 589 

The study site is located towards the lower center. WLC was measured during the September 4, 590 

2021, UAVSAR flight. 591 

 592 

  593 
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  Height 
(cm) 

Diameter (cm) Density (stems/m2) 

Supratidal S. alterniflora 
(spring) 

AGB 48.71 4.52 112 

Supratidal S. alterniflora 
(spring) 

AGN 46.62 6.03 128 

Supratidal S. alterniflora (fall) AGB 72.4 6.5 304 
Supratidal S. alterniflora (fall) AGN 44.3 6.17 48 
 

Table 1. Mean height, mean stem diameter, and stem density (latitude 29.1714, longitude 
90.8223). The data were collected between 2021-03-21 to 2021-03-31 during the Delta-X Spring 
2021 deployment, and between 2021-08-19 to 2021-08-27 during the Fall deployment.  

 



 

 Median  Mean Standard 
deviation 

Interquartile 
range 

Skewness 

Water-level 
change (cm), 
campaign 1 

-9.73 -9.08 2.68 3.32 0.91 

AGB (g/cm2), 
spring 

445 473 148 145 1.10 

Water-level 
change (cm), 
campaign 2 

-11.28 -11.05 4.69 6.61 0.18 

AGB (g/cm2), 
fall 

1208 1168 154 159 -1.20 

 

Table 2. Mean, median, standard deviation, interquartile range, and skewness of WLC (cm) and AGB 
(g/cm2) on marsh 2 (see Figure 2b).  



 Median  Mean Standard 
deviation 

Interquartile 
range 

Skewness 

Water-level 
change (cm), 
campaign 1 

-11.10 -10.79 2.38 2.66 0.88 

AGB (g/cm2), 
spring 

471 497 114 83 0.61 

Water-level 
change (cm), 
campaign 2 

-11.58 -11.08 4.25 5.14 0.56 

AGB (g/cm2), 
fall 

1281 1257 103 117 -1.28 

 

Table 3. Mean, median, standard deviation, interquartile range and skewness of WLC (cm) and AGB 
(g/cm2) on marsh 3 (see Figure 2b).  
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