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Abstract 
Wetlands around the world are susceptible to wave erosion. Analytical work has 
suggested that the lateral erosion on their edges should be linearly related to the wave 
power, but several field studies have shown a wide range of variability across site 
locations. Non-wave factors at these sites, such as variable soil properties and gravity-5 
induced slumping, have confounded the discovery of a more universal relationship. 
After isolating the effect of these complicating factors using new theory, laboratory, and 
field datasets, we discovered a key asymmetric scaling relationship between lateral 
erosion and the individual components of wave power. Surprisingly, lateral erosion rates 
accelerate non-linearly as waves increase in height, but decelerate non-linearly as waves 10 
become longer in length. These findings suggest that wetlands and other sheltered 
coastlines likely experience outsized quantities of erosion, as compared to oceanic-
facing coastlines. 

Significance Statement 
We discovered that a key asymmetric relationship in wave scaling drives outsized 15 
quantities of lateral wetland erosion. 
 
 
Main Text 
 20 
Introduction 
 
Waves erode wetland shorelines in a wide variety of locations around the world 1. An 
important and open question is whether the lateral erosion of their edges, or 𝐸, can be 
predicted as a function of the intercepting waves. As a first guess, early work 2 posited 25 
that the energy and erosive shear stress generated by a single wave traveling through 
deep water should be roughly proportional to the square of its wave height, or 𝐻! 
(note: a list of variables can be found after the Materials and Methods section). Taking 
this line of thinking a step further, analytical 3  and numerical 4 work  has suggested that 
the lateral erosion of a vertical wetland edge is linearly related to the wave power, or a 30 
combination of 𝐻! and the wave period 𝑇 where 𝐸 ∝ (𝐻!𝑇)" with 𝑥	= 1. 

In contrast however, a wide range of field-based studies have identified a non-linear fit 
between lateral erosion and wave power, with 𝑥	= 1.10 to 1.37, e.g. 5-10 . These studies 
have shown a large amount of variability in erosion across field sites, caused by 
differences in soil properties, vegetation, and myriad other factors 11. While these 35 
inherent differences among the sites can be partially accounted for through mean-
standardization 12, non-wave effects still contaminate the field datasets and raise the 
exponent 𝑥. For example, mass wasting 13, tidal creek flows 14-15, alongshore current 
velocity-driven erosion 11, 16, precipitation driven-erosion 17, and soil cracking due to 
wetting and drying effects 18 each occur at different frequencies across time 19-23. A 40 
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longer duration field study generally will have (a) more of these non-wave effects 
embedded within the reported measurements, and (b) a higher average wave power as 
the likelihood of encountering large wave events increases over time – with the net 
effect raising the exponent. These non-wave effects also occur in variable quantities 
depending on each unique study, which further induces scatter into the non-linear fit, 45 
particularly as the wave power increases 11. Both inherent site variation and these non-
wave effects have complicated the discovery of a more universal relationship between 
lateral erosion and wave mechanics.  

Our overall objective was to identify the relationship between lateral erosion and 
several key wave parameters, after isolating these extraneous effects. To do so, we first 50 
collected several empirical datasets in the laboratory to explore the relationship 
between lateral erosion at the shoreward position of a vertical edge of wetland, 𝐸, and 
wave height 𝐻, wavelength	𝐿, and water depth ℎ∗ (see Materials and Methods section 
below). Our laboratory datasets are the first among the literature to isolate the unique 
effect of each of these parameters to wetland edge erosion, including the variability in 55 
the vertical dimension. From among many convolutions of the variables, we then found 
the best fit with 𝐸 and sought to describe the physics of the wave-conversion-to-erosion 
process from a first principles perspective.  

In this same laboratory dataset, we next explored the statistical properties of the 
individual lateral erosional depths, or “chunks” with a depth of 𝑒,  that occurred across 60 
the vertical face of the eroding edge and related them back to 𝐸. We then collected 
lateral erosion data from across three continents at field sites with a variety of 𝐻, 𝐿, and 
ℎ∗ conditions, as documented further in 12. We mean-standardized the left and right 
sides of Eq. 1 by site location which converted them into what 12 refers to as 𝐸∗ and 𝑃∗, 
respectively, and inserted the laboratory data (see Materials and Methods below). Our 65 
results led us towards a new theoretical conception of how waves induce lateral 
erosion.  

 
 
Results 70 
 
Edge Erosion in the Laboratory 

With our laboratory work, we first found that lateral erosion 𝐸 was a non-linear function 
of wave power as one might expect when holding all other variables constant, similar to 
the aforementioned field studies, though with a far lower exponent of 𝑥	= 0.65 (See 75 
Supporting Information, SI Figs. S1-2).  We attribute this lower value to the removal of 
the non-wave effects. 

However, we found that the best fit was more complex and included a permutation of 
multiple variables (Fig. 1a). While increasing the wave height 𝐻 generally increased the 
cross-shore orbital velocities 𝑢 in the water column, the water depth at the immediate 80 
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edge ℎ∗	also affected them by altering the breaking wave form and thus the vertical 
breadth, location, and magnitude of erosion (SI Figs. 3-4). The best statistical fit for the 
data included the wave height, steepness, and the breaking form effects as:   

𝐸	 ∝ 	.𝐻! 	× 	0$
%
	× 	 %

&∗
	1
'

    Eq. 1 

In this formulation, the lateral erosion was proportional to the product of the wave 85 
energy, the square root of the wave steepness, and the inverse of the relative water 
depth (which accounted for breaking form effects). Both sides of the equation could also 
be divided by time duration 𝑡 to obtain a lateral erosion rate (as depicted in Fig. 1a). The 
scaling exponent 𝜁 described the transformation from two-dimensional wave geometry 
into one-dimensional lateral erosion (see Supplementary Information Derivations and 90 
Dimensionality of Equations).  

For this same laboratory data, 𝐸 was in fact the mean of a large number of individual 
lateral erosional depths, 𝑒, that occurred across the vertical face of the eroding edge 
(Fig. S5). We found that the spatial frequency 𝑓 of encountering these 𝑒 was inversely 
proportional to their magnitude, over a wide range of spatial scales (Fig. 2).  95 

Relatively larger 𝑒 depths were fewer in number, and this limitation exhibited 
reasonably consistent power law behavior over a range of frequency scales where 𝑒 =
1 𝑓(.!*⁄ .  This range for 𝑒 was bounded on its lower magnitude end by the mean of the 
distribution, which was equivalent to 𝐸 (Figs. S6-7). The distribution was long-tailed and 
positively skewed towards larger 𝑒. One potential explanation for this distribution was 100 
that the dynamics of the mechanical erosion process were dampened, with negative 
feedback limiting the number of the deeply eroding chunks of material. This behavior 
consistently scaled across all 𝐻. 

 

Edge Erosion in the Field 105 

We found nearly the same statistical fit across the field sites for 𝐸∗ (Fig. 1b) as we had 
found for the laboratory data for 𝐸, suggesting that Eq. 1 provided at least a first-order 
approximation of the relevant dynamics across the sampled field locations. Indeed, the 
field data showed greater scatter and a lower r-square than the laboratory data, as 
expected from data distributed across many site locations around the globe. Yet 110 
because 𝐸∗ had been standardized by site location, the remaining variance was less 
likely to be due to differences in soil erodibility caused by soil properties or vegetation. 
Rather, this variance was more likely due to non-wave processes such as mass wasting 
and slumping which acted differentially over the unique time lengths for which each 
data point had been collected, or a complex combination of these factors.  115 

To further highlight this concept, we converted Eq. 1 into units of work that accounted 
for cross-site variations in soil erodibility. For consistent units of measurement in the 
equation, we first squared both sides, and then on the right-hand side inserted the 
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common terms for wave energy density +
,
𝜌𝑔𝐻! in place of 𝐻!, and the shallow water 

wave period 𝑇:𝑔ℎ in place of 𝐿 (or alternately, the deepwater wave period -!. 𝑇
!, see 120 

SI-Derivations and Dimensionality of Equations). On the left-hand side, we added the 
bulk density of the sediment 𝜑, and gravitational acceleration 𝑔 of its movement. We 
then redistributed and separated out the constant terms, yielding:  

      𝐸!𝜑𝑔	 = 	𝐻!.* ×	𝑇(.* ×	 /-
".$%

,&∗&.'%
      Eq. 2 

where both sides were made into units of work (kilograms meters2 seconds-2) through 125 
selective cancelation, or otherwise dimensionless through stacking (see SI-Derivations 
and Dimensionality of Equations).  

Thus, based on the bulk density, other sediment or site erosion characteristics (in 
particular 𝜑 on the left hand side of Eq. 2), the data points in Fig. 1a could be shifted 
vertically along the y axis, while the relative slope of the regression line remained the 130 
same, as a function of the wave conditions (right hand side); this was the reason behind 
the common slope across site location in Fig. 1b, upon mean-standardization. In other 
words, site locations with different soil erodibility had different absolute erosion 
quantities, but the relative scaling of the lateral erosion as a function of the wave 
conditions was constant across sites. 135 

 
 
Discussion  
 
Asymmetry between Wave Power and Edge Erosion 140 

The laboratory data is the first among the literature to isolate the contribution of 𝐻, 𝐿, 
and ℎ∗ to lateral erosion, in an empirical manner and with variability in the vertical 
dimension. Although there have been many past studies that have investigated the 
effects of waves on wetland erosion, these studies were conducted over longer time 
periods in the field and thus their measured erosion rates also reflected the influence of 145 
non-wave erosion processes. In the existing lab studies that did exist, e.g. 18, the 
purpose was in fact to induce these non-wave processes. We controlled the laboratory 
conditions to exclusively investigate the continuous impact of waves alone.  

Using this clean laboratory dataset, an asymmetric relationship between lateral erosion 
and the two components of wave power, 𝐻	and 𝑇, emerged from Eqs. 1-2 when using 150 
shallow water formula and removing the constants and depth as: 

𝐸 ∝ 𝐻+.!*𝑇(.!*      Eq. 3 

or alternately as 𝐸 ∝ (𝐻!.*𝑇(.*)'  with 𝜁 = 0.5. Eq. 3 provides the best and most simple 
fit for the controlled, wave-only conditions (Figs. S1-2).  
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As the exponents in Eq. 3 explicitly describe, lateral erosion is more efficient when the 155 
wave power is packed into the wave height as opposed to length. In other words, lateral 
erosion rates non-linearly accelerate as waves increase in height, but non-linearly 
decelerate as waves become longer in length.  

 

Eroding Surface Geometry as a Mechanism for the Asymmetry 160 

We can potentially explain the mechanism that caused the asymmetry by generating a 
hypothesis about the geometry of the individual erosion depths 𝑒 relative to the wave 
height 𝐻. The following description used our knowledge of the empirical 1 𝑓(.!*⁄  
distribution of the 𝑒 erosional depths, but it also greatly simplified the relevant 
processes by assuming that the waves were sinusoidal and that their relative water 165 
velocities were distributed by distance to the mean water line (see SI-Expanded 
Discussion). An expansion to non-linear waves would be straight-forward 
mathematically (it would only slightly alter the relations, while achieving the same 
general effect as our wave steepness parameter in Eq. 1), but much more difficult to 
denote and conceptualize. However, we needed only a first order description to identify 170 
the relevant geometry at play.  

First, we set a generalized vertical dimension ℎ to record all possible water levels that 
intercepted the edge during a 𝐻 wave and recorded them as distances ℎ0 from the 
mean water depth ℎ∗ (Fig. 3a). The maximum and minimum of this wave reached 
ℎ±0234546 on either side of ℎ∗	, which then set the wave height along this dimension as 175 
𝐻 = 2(ℎ±0234546). With no alongshore variation in the lab waves, we assumed that the 
variation in 𝑒 was due to this vertical dimension alone, and that the erosion was 
greatest at ℎ∗. Using the known frequency distribution (Fig. 2), we accordingly made 
each 𝑒 proportional to its vertical distance from ℎ∗ in the y direction (Fig. 3b), writing 
this as  𝑒0 ∝ (1 ℎ0)(.!*⁄ .   180 

Next, we built a relation between the one-dimensional (horizontal erosional depth) 
measure of 𝐸 and the sum of all one-dimensional 𝑒0 erosion depths across ℎ0, as 𝐸 ∝
2∫ 𝑒0Aℎ0B

&±)*+,-,.
&∗

 and thus 𝐸 ∝ 2∫ (1 ℎ0)(.!*⁄ Aℎ0B
&±)*+,-,.
&∗

.   Its right-hand side then 
became 2(ℎ±0234546)+.!* after integrating 𝑒 across all ℎ0. With substitution of 𝐻 for 
2(ℎ±0234546) as described in the paragraph above, the erosion rate then scaled as 𝐸 ∝185 
𝐻+.!*. This rate was equivalent to 𝐸 ∝ (𝐻!.*)'  with 𝜁 = 0.5, as one could find from the 
wave height terms alone in Eqs. 1 and 3. 

The 𝑒0 ∝ (1 ℎ0)(.!*⁄  proportionality occurred within a domain of the ℎ0 dimension that 
stretched from the largest 𝑒 located at the central portion of the edge at ℎ∗, out to the 
mean 𝑒. For 𝑒 smaller than the mean (out towards the upper and lower portion of the 190 
eroding edge), we wrote 𝑒0 ∝ (1 ℎ0)+⁄  because the proportionality scaled linearly in 
this second domain, empirically (Figs. S8-9). The additive result of the two domains for 
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the entire distribution was trivial as the inner domain ultimately drove the asymmetric 
scaling relation of 𝐸 ∝ 𝐻+.!*. 

The result of 𝐸 ∝ 𝐻+.!* was that as waves increase in height alone, their ability to cause 195 
erosion became increasingly more efficient due to the geometry of the eroding surface. 
The erosion rate not only increased, it accelerated non-linearly as wave heights became 
larger. The laboratory data and the statistical geometry of 𝑒 depths exhibited this scaling 
relationship empirically, and our hypothesis provided a potential mechanistic 
explanation.  200 

Within our datasets, the steep erosional pockets composed of 𝑒 depths became 
increasingly deep at an exponential rate in statistical terms. We suggest that a wave’s 
penetration efficiency into these pockets was likely limited by negative feedback with 
the internal angle of the eroding surface, and an increase in wave height better 
exploited the geometry of the total edge by biasing more of its energy to areas outside 205 
of these pockets. Importantly however, we note that the spatial patterning was 
somewhat more heterogeneous across ℎ than in our hypothesis, though it still appears 
to be a statistically valid explanation (eg, Fig 3b versus Fig. S4). Conversely, an increase 
in the wavelength likely put the wave energy into the horizontal dimension, which was 
more easily reduced by these pockets through friction induced into the water column 210 
(see SI- Expanded Discussion). Although we describe the statistical mechanics and their 
relation to our empirical datasets herein, there will need to be more future work done 
to address the wave penetration physics in greater detail. 

The key inclusion of the wave height-to-wavelength ratio term in Eq. 1 (i.e., :𝐻 𝐿⁄ ), and 
through conversion into 𝑇 for Eq. 2 and 3, transformed the wave power into 215 
appropriately scaled ℎ versus 𝑒 erosion terms. Notably, the Iribarren number 𝜉 is known 
to reduce to :𝐿 𝐻⁄  at 45° (ie, 24) and this fact reinforces the idea that the ℎ	versus 𝑒 
erosional shape is likely dependent, but also universally relatable, through the slope of 
the erosional surface. Once an erosional surface tilts towards a 45° angle, then the 
erosional height to length process likely equilibrates such that the differential becomes 220 
irrelevant, 𝑒0 ∝ (1 ℎ0)+⁄ , and the erosion will scale linearly with the wave power, as 
dimensional analysis suggests (ie, 𝐸 ∝ 𝐻!𝑇). A dimensional analysis for wetland edges 3 
thus could be revised to require symmetry between 𝑒 and ℎ as a precondition, implying 
that there is no extra cost to eroding more deeply into narrow spaces, as opposed to the 
open face of a surface. Once the slope decreases below 45° and towards horizontal, 225 
increasing 𝐿 could become a more efficient mode of increasing erosion (i.e., 𝐸 ∝
𝐻(.!*𝑇+.!*). Differential and asymmetric scaling in erosion should be expected when 
stretching a wave in only one direction and impacting a non-45° surface, but it has not 
been considered by previous work on lateral wetland erosion. Further investigations will 
be required to more fully explore the relevance of this concept across a wide range of 230 
coastal slopes. 
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Effects of the Asymmetry on Coastal Wetland Erosion 

Real-world outcomes depend on these fundamentals, regarding the effect of wave 
heights, lengths, and water depths on wetland erosion. While water waves propagate 235 
across more than 73% of the Earth’s surface, the relative proximity of the coastline to 
the location of wave genesis greatly affects the wave height-to-wavelength ratio. In 
general, the waves that strike wetland edges cross relatively short fetch distances and 
were created by local wind events. These types of waves are short in wavelength 
(typically on the order of ~1 cm to 1 m) and steep. In contrast, the waves that strike 240 
open ocean shorelines are relatively long in wavelength (~1 m to 10 m), with the wave 
spectrum having been more strongly organized via wave dispersion. In other words, 
given the same wave height, a wave generated in a small water body will be more likely 
to be steeper (due to shorter wavelength).  

As a direct consequence of the asymmetry, the erosion rate will be generally higher in 245 
smaller water bodies for waves of a given height, with all other parameters being equal. 
Indeed, wetland edges should be particularly affected by the asymmetry in an out-sized 
manner, as they are located in relatively sheltered locations. 

Similarly, we should also expect that erosion has increased more rapidly on vertical edge 
surfaces as compared to surfaces less than or equal to 45°, such as on sandy beaches. 250 
We can take the concept even a step further, for example given that significant wave 
heights have increased 7% across coastal portions of the globe from 1986 to 2005 due 
to wind increases 25. As a consequence of the non-linear relationship between wave 
height and erosion, we might expect to find 18% more erosion at the end of this time 
period. Many new hypotheses, derivative from the asymmetric relationship, can now be 255 
tested with existing data, models, and global imagery of shorelines. These erosional 
outcomes may be surprising, yet we contend that they will be a direct outcome of the 
asymmetry. 

In summary as waves increase in height and impact a vertical surface, the lateral erosion 
process accelerates in its efficiency – yet simultaneously as waves increase in length, the 260 
process decelerates. This seeming contradiction is explained by asymmetric scaling 
between the individual components of the wave power (wave height versus 
wavelength) and lateral erosion of a vertical edge. The first principles formulation, the 
scaling relation, and empirical lab and field results thus point to a new way of conceiving 
of wetland erosion on vertical edges. The identification and use of a physical description 265 
of this process will help scientists, managers and policymakers better mitigate the loss 
of shorelines around the world.  

 
 
  270 
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Materials and Methods 
 
We collected empirical datasets in the laboratory, in the field, and from the literature to 
explore wave-to-erosion mechanics:  

Laboratory. We extracted 0.6 x 0.3 (horizontal footprint) x 0.15 (vertical) m wetland 275 
edge samples and then placed them into a 22.9 x 36.6 x 1.2 m wave basin (See SI-Video 
1; see 9,26 for more details). We subjected them to a range of regular wave heights (0.01-
0.16 m), water depths (0.05-0.26 m), and wave lengths (1.44 m to 3.20 m) common to 
eroding edges. Water depths were measured relative to the bottom of the samples. 
Samples were collected from along the immediate edge of a natural marsh in West 280 
Galveston Bay, Texas, and prepared using established methods to ensure minimal 
compaction and a consistent incident surface (e.g., 27). We recorded the lateral erosion 
using a Terrestrial Laser Scanner (TLS) LIDAR at 0.5 mm resolution, and then extracted 
the vegetative roots from the point clouds manually (see 28). The lateral distance 
between the before versus after point locations was recorded as an individual erosion 285 
depth measurement, 𝑒. For each wave height x water depth x wavelength trial, we 
found the average across all 𝑒 measurements, and then divided it by the time duration 
of the trial, to find the lateral erosion 𝐸 per time 𝑡. 

Field and Literature. Using data from across three continents, we first graphed 
dimensionless erosion 𝐸∗ and dimensionless wave power 𝑃∗ for the Leonardi et al. 290 
(2016) 12 summary dataset. This dataset included site-standardized, original field data 
collected by 2,5, 29-32. We added four data points that we collected from a field site in 
West Galveston Bay, Texas (same location where the laboratory samples had also been 
collected); this data was collected over 318 days along a 20 m long eroding marsh edge 
of 0.6 m in height, using the TLS LIDAR and an ultrasonic sensor to measure the wave 295 
parameters, as described in 28, 33. For our laboratory values from Fig. 1a, we first 
calculated 𝑃 using the Leonardi et al. (2016) 12 equation (𝑃 = 𝑊𝑐-, where 𝑊 =
𝜌𝑔𝐻!	 8⁄  and 𝑐- is the group velocity which is equivalent to 𝐿/𝑇 for the regular lab 
waves). We then followed their method of mean standardization to find 𝑃∗ and 𝐸∗ for 
each record. 300 
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Variables used in equations 
 
𝐸   lateral erosion in the shoreward direction, mean (meters) 
𝐻   wave height (meters) 
𝐿   wave length (meters) 
ℎ∗   water depth, at the erosional edge (meters) 
𝜁   transfer efficiency (unitless) 
𝑡   time duration (seconds) 
𝑢   water velocity in the cross-shore dimension (meters per second) 
𝑒   lateral erosion of edge, specific to vertical or horizontal position(meters) 
𝑓   frequency of occurrence for 𝑒 (count) 
ℎ, ℎ" , ℎ±"$%&'&(  vertical dimension of eroding edge, distance from ℎ∗ on y axis (meters) 
𝑘   wavenumber (per meter) 
𝜔   angular frequency (per second) 
𝐸∗   lateral erosion, standardized by mean E from across-site data (unitless) 
𝑃∗   lateral erosion, standardized by mean P from across-site data (unitless) 
𝑇   wave period (seconds) 
𝜌   water density (kilograms per meter) 
𝑔   gravitational acceleration (meters per second2) 
𝜑   sediment density (kilograms per meter3) 
𝜉    Iribarren number (unitless) 
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Figure 1. (a) The relation 𝐸	 ∝ 	.𝐻! 	× 	0$
%
	× 	 %

&∗
	1
'

 with 𝜁 = 0.5 provided the best fit for 

laboratory flume data sets. Dimensionless erosion was obtained by stacking the two 
sides (in this depiction, the units for both axes were divided by time duration 𝑡 and thus 
were in m/s empirically); (b) The laboratory data (blue circles) and field site data from 
across three continents (black markers) exhibited a similar relationship, when re-
graphed as mean-standardized erosion 𝐸∗ versus wave power 𝑃∗. Units for both axes 
are dimensionless. 
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Figure 2. For the laboratory data, the magnitude of individual erosion depths 𝑒 (on a 
vertical edge) was inversely related to their frequency of occurrence 𝑓, over a wide 
range of scales. Each dot represents the number of times that a given depth was eroded 
on the surface of the edge, during the induced 𝐻 ℎ∗⁄  wave conditions as denoted by the 
colored linear regression fit lines (depicted here as an erosion rate per time 𝑡 in m/s, 
similar to Fig. 1a). The exponential fit for the slope was 𝑒 = 1 𝑓(.!*⁄ , when averaged 
across all wave height 𝐻 ℎ∗⁄  combinations. 
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Figure 3. (a) Conceptual depiction of the simplified, mechanistic hypothesis (nonlinear, 
breaking, and 𝐻 ℎ⁄  transformed wave forms are not depicted for ease of interpretation 
of the primary relationship). As waves of varying height 𝐻, but constant 𝐿, strike a 
hypothetical edge, (b) their horizontal erosion depths 𝑒 are proportional to position 
along a vertical ℎ dimension following a 1 𝑓(.!*⁄  power law. (c) This power law describes 
the behavior of the upper domain of the 𝑒 distribution, when it is standardized by the 
distribution mean, or 𝐸. Part (a) and (b) depict the proportional relations only between 
𝐻, 𝐿, and 𝑒; they are unitless as depicted. Part (c) depicts empirical lab data ranked in 
order of e (per time 𝑡, in m/s units), using 𝐻=16 with ℎ =0.15 (orange), 𝐻=8 with ℎ =0.15  
(grey), and 𝐻 =4 with ℎ =0.16 (blue) as examples. The upper domain of these empirical 
distributions fit the power law (see text, Fig. 2, and SI Figs. S8-9).   
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Supporting Information for Feagin et al. 
 
Fig. S1. Lateral erosion plotted against the traditional definition of wave power, where the 
exponent fits as 𝑥	= 0.65. Only laboratory data is included.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S2. Lateral erosion plotted against asymmetric wave power, where the exponent fits as 𝑥	= 
1.  Only laboratory data is included. The fit is linear with an exponent of 1 – thus the “wave 
power” scales asymmetrically with respect to lateral erosion as 𝐻!.#$𝑇%.#$, when isolating the 
wave processes and excerpting mass wasting or any other processes.  Still, the full version of 
Eq. 1 has a better r2 fit and is dimensionless when stacked (as opposed to the simplified Eq. 3 
wave power relationship displayed here) – this is because Eq. 1 also includes the relative water 
depth, and is thus more universal. 
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Fig. S3.	𝐻# 	× 	&&
'
	× 	 '

(
		versus incident water velocity 𝑢 (m/s), as recorded in the laboratory. 

Water velocity is in the cross-shore dimension (i.e., intercepting the marsh edge from a 

horizontal direction). Assuming the fit of 	𝐻# 	× 	&&
'
	× 	 !

(

)

		with 𝜁 = 0.5 over a given duration of 

time, e.g. 1 sec, yields the relationship dimensionless. 

 

 
 

 

 

 

 

 

 

 

 

 

  



Fig. S4. Erosion depths 𝑒 varied vertically across the ℎ dimension of the marsh edge, when the 
still water level ℎ∗ was near the top (a), at the mid-point (b), and near the bottom of the edge 
(c). 
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Fig. S5. The cross-sectional area of erosion plotted against the various relations described in the 
main text (i.e., the sum of 𝑒 across the vertical dimension ℎ, similar to that depicted in Fig. 3 of 
the main text). Again, 𝜁 = 0.5 provided the best linear fit.  
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Fig. S6. Full datasets for 𝑒 frequency distribution (in this graph, the data is not restricted to 
magnitudes greater than inflection point, i.e. at the mean of distribution, as in Fig. 2 in the main 
text). For 𝐻 = 1 and 𝐻 = 4, the power law extends across the entire domain and the inflection 
point lay below our detection limits. 
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Fig. S7. Datasets for 𝑒 frequency distributions, grouped by wave height 𝐻.  Unique exponents 
and r2 are shown, for each of the cases that contributed to the averaged 𝑒 = 1 𝑓%.#$⁄ . The 
average exponent across all fits was 𝑓 = −0.25. However, each individual fit ranged from -0.11 
to -0.34, with the lowest values corresponding to 𝐻 = 20 with ℎ∗ = 0.26 and the highest to 
𝐻 = 12 with ℎ∗ = 0.05.  The slope of the power function fit steepened when 𝐻# ℎ∗⁄  increased.  
This result highlights the fact that the shape of the 𝑒 erosion changes in response to wave form.  
The 𝑒 distribution is steeper in slope (deeper holes) with plunging waves, and shallower with 
surging waves.  Accordingly, one could solve the 𝐸 ∝ 𝑒 ∗ ℎ side of Eq. 1 for each of these cases 
separately, finding that 𝐻 scales slightly differently in each case; however, for the full Eq. 1, the 
inclusion of ℎ∗ adequately accounts for this variation.  
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Fig. S8. For e individual erosion depths that are greater than the mean value (aka E), the 
distribution generally follows the power law relationship described in the text, across all 
𝐻 ℎ∗⁄ 	combinations. Values are ranked by magnitude on the x axis.  
 

   



Fig. S9. For e individual erosion depths that are less than the mean value (aka E), the 
distribution generally follows the linear relationship described in the text, across all 
𝐻 ℎ∗⁄ 	combinations. Values are ranked by magnitude on the x axis.  
 

  
 
  



Derivations and Dimensionality of Equations 

Dimensionality for Eq. 1 

The units cancel out for Eq. 1 from the main text for 𝜁 = 0.5, making the relation dimensionless 
if stacked: 
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It should be pointed out that for the lab waves (from Fig. 1 in main text), we know that 𝜁 = 0.5. 
This exponent describes the conversion from a two-dimensional sine wave into a one-
dimensional lateral erosion rate 𝐸. It also should be pointed out that both sides can also be 
presented in per-unit time, or the duration over which we allow this wave-to-erosion 
interaction to occur.  So, we could express 𝐸 as 𝑚/𝑠 instead of 𝑚, and implement the same for 
the entirety of the right-hand side. 

  



Derivation of Eq. 2, Dimensionality, and Extension to Deepwater 
 
Eq. 2 can be derived from Eq. 1, using 𝜁 = 0.5: 
 

𝐸	 ∝ 	8𝐻# 	× 	9
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To do this, we first square both sides, then we insert the common terms for wave energy 
density !

+
𝜌𝑔𝐻# in place of 𝐻#, and the shallow water wave period 𝑇C𝑔ℎ in place of 𝐿.  Next, to 

the left hand side, we add the bulk density of the sediment 𝜑, and gravitational acceleration 𝑔 
when it moves: 
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We then offset units and move the terms around to obtain Eq. 2: 
 
 

𝐸#𝜑𝑔	 = 	𝐻#.$ ×	𝑇%.$ ×	 1/
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+(∗&.'%
    for shallow water  

 
 
The units can be cancelled out for Eq. 2 from the main text, also making its respective 
relationship dimensionless.  Alternately, in order to express the two sides of each equation in 
terms of work (kilograms meters2 seconds-2), units can be selectively canceled out.  

 

¯ 

 

𝑚# ∗ (𝑘𝑔 𝑚2⁄ ) ∗ (𝑚 𝑠#⁄ ) 	= 𝑚#.$ 	× 	𝑠%.$ 	× 	 34/ 5(⁄ 7∗35 8$⁄ 7".$%

5&.'% 	   

 

¯ 

𝑚# ∗ (𝑘𝑔 𝑚2⁄ ) ∗ (𝑚 𝑠#⁄ ) 	= 𝑚#.$ 	× 	𝑠%.$ 	× 	
(𝑘𝑔 𝑚2⁄ ) ∗ 𝑚%.$

𝑠#.$  



Cancelling and moving some terms around to make it more obviously symmetric on the two 
sides of the equation yields: 
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A deepwater version of Eq. 2 can alternately be created from Eq. 1, again using 𝜁 = 0.5: 
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To do this, we similarly first square both sides, then we insert the common terms for wave 
energy density !

+
𝜌𝑔𝐻# in place of 𝐻#, but now use the deepwater wave period /

#9
𝑇# in place of 

𝐿.  Next, to the left hand side, we add the bulk density of the sediment 𝜑, and gravitational 
acceleration 𝑔 when it moves: 
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We then offset units and move the terms around to obtain: 
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And the units can be similarly cancelled out, making its respective relationship dimensionless, 
or expressed in terms of work as mentioned above. 
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Cancelling and moving some terms around to make it more obviously symmetric on the two 
sides of the equation yields: 
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𝑚# ∗ (𝑘𝑔 𝑚2⁄ ) ∗ (𝑚 𝑠#⁄ ) 	= 𝑚# 	× (𝑘𝑔 𝑚2⁄ ) 	×	(𝑚 𝑠#⁄ ) 
 
 

            1 : 1 
 
 
The dimensionality, unit cancellation, and symmetry can be made far more elegant – and more 
obvious and easy to do - for both shallow water and deepwater relations, if instead of starting 
with Eq. 2 from the main text, one starts with the equation described in the subsection below 
entitled Expanded Discussion… The same basic procedure then follows of first squaring both 
sides, inserting the common terms for wave energy density, wave period, bulk density of the 
sediment and its gravitational acceleration. 
 
 
 
 
 
  



Expanded Discussion: Why increasing the wave height results in greater erosion efficiency, but 
increasing the wavelength reduces it 

The mechanics implicit in Eq. 1 appear more balanced if we square both sides, redistribute 
C𝐻/𝐿 , and introduce a time duration 𝑡 to both denominators: 

    ;$
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∗ I '
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J      

The potential for a two-dimensional area of erosion 𝐸# (left hand side) is now divided by a 
reduced version of 𝐻 in the denominator, which is to say that it is constrained along a reduced 
vertical dimension ℎ>.  Similarly, the wave energy 𝐻# (right hand side) is constrained across a 
reduced horizontal dimension of the passing 𝐿. This formulation further suggests that the 
potential erosional area and wave energy are more-densely concentrated in specific segments 
of the wave form, across time.  

As the wave height 𝐻 independently increases, the erosional area numerator proportionally 
increases. However, the amount of time that the wave form intersects a discrete ℎ> vertical 
position on the edge decreases, on average, at the rate of its product with the square root of 
the wave height in the vertical dimension, 𝑡√𝐻.  This change in the time expended per 
differential unit of vertical edge occurs, because in order for a sine wave cycle to cover an 
increase in H across the entirety of 𝐿, given the same total time elapsed, the linear velocity 
along the sine wave must increase.  

The rate of the linear velocity increase in the ℎ dimension is directly proportional to the 
increase in 𝐻 and is constant along the wave form, given a constant angular velocity (i.e., 𝐿 is 
unchanged). However, the absolute magnitude of the increase along the wave form in the 𝐻 
dimension is inversely proportional to the distance from ℎ∗; this is due to the nature of the sine 
function. In other words, the wave now spends considerably less absolute time intersecting the 
edge at its node ℎ∗	as compared to its crest or trough ℎ±>@AB5B<.   

If we multiply this time-spent per discrete ℎ> by the unchanged linear velocities in the 𝐸 
dimension (when 𝐿 is unaltered), then the distribution of 𝑒 is flattened relative to the ℎ vertical 
dimension. Given constant linear and angular velocity in the horizontal dimension, the erosional 
face shallows in slope as 𝐻 alone increases. Indeed, the rate of change in the perpendicular 
dimension (i.e., 𝐿), is different from that in the 𝐻 (or, ℎ) dimension, i.e., 𝑒> ∝ 1 ℎ>

%.#$⁄ .  The 
erosional shape is relative to the slope of the 𝑒 distribution across 𝐻.   

It follows that as the wavelength 𝐿 alone independently increases (without altering 𝐻 or the 
time duration 𝑡), the erosion decreases on a per increment of time basis at the rate of the 
square root of the increasing wavelength, 𝑡√𝐿.  However, the converse occurs on a per wave 
basis where the amount of time that the wave form intersects a discrete point of the edge 
increases.  

The time units on either side of the above equation cancel, and so ultimately it can deliver a per 
wave formulation. Additionally, once 𝐻 exceeds roughly double the water depth ℎ∗, a wave 
breaks due to gravity. The water depth ℎ∗ can thus be seen as a modulator of the maximum 
realization of 𝐻# (i.e., 𝐻#/ℎ∗) or as a term in the inverse relative water depth (i.e., 𝐿/ℎ∗). It 



accounts for variation in eroding edge heights and wave height-to-water depth effects, which 
also greatly affect the erosion (Valentine and Mariotti 2019).  Finally, as a general physical rule 
due to gravity and wave-breaking processes, ℎ∗ or 𝐿 cannot be infinitesimally small without 𝐻 
being similar in magnitude. 

Our description of these wave-to-erosion mechanics should be considered valid only for erosion 
surfaces composed of consolidated sediments. Consolidated or cohesive sediments are defined 
herein as those sufficient to maintain vertical and horizontal integrity against gravity or buoyant 
forces, as long as the peds are stacked immediately on top of one another. Non-wetland and 
rocky cliffs likely function similarly to wetland edges when they are under wave attack (Huppert 
et al. 2020). However, because these types of coastlines lie well above the water level for much 
longer time periods, gravity-induced mass failure and precipitation-induced erosion likely 
predominate (Francalanci et al. 2013) and affect the scaling of erosion.   

See main text for the cited references. 

  



Supplementary Video 1 
 
See file Supp_video_1.MOV  
 


