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A B S T R A C T

Seasonal variations of atmospheric muons are traditionally interpreted in terms of an effective temperature

that relates the atmospheric temperature profile at a given time to the dependence of muon production on

atmospheric depth. This paper aims to review and generalize the treatment of muon production and effective

temperature that has been used to interpret seasonal variations of atmospheric muons by many experiments.

The formalism is developed both in integral form – for application to compact detectors at a fixed depth

that record all muons with 𝐸𝜇 > 𝐸
min
𝜇

– and in differential form — for application to extended detectors like

IceCube, KM3NeT, and Baikal-GVD, where the rates are proportional to energy-dependent effective areas.

1. Introduction

Atmospheric muons come primarily from the decay of charged pions

and kaons produced by cosmic-ray interactions in the upper atmo-

sphere. In the energy range where the interaction lengths of the parent

mesons are comparable to their decay lengths, higher temperatures

lead to lower density and, therefore, to higher muon production rates.

The degree of correlation evolves over an energy range defined by the

critical energies for pions 𝜖𝜋 ≈ 115 GeV and kaons 𝜖𝐾 ≈ 857 GeV,
where the numerical values correspond to a temperature of 220K. The
correlation with temperature is small at low energies, 𝐸𝜇 < 𝜖𝜋 , where

most mesons decay, and becomes fully correlated for muons energies

above several TeV. Because of the difference in their critical energies,

the 𝜋±∕𝐾± production ratio is an important factor in this study. Prompt

muons from the decay of charmed hadrons and neutral vector mesons

remain uncorrelated with temperature below their critical energies

∼107 GeV [1], but make a negligible contribution to the overall rates

and are therefore not considered.

Seasonal variation of atmospheric muons has been a benchmark

measurement of every underground detector since the classic pa-

per [2] on muons in a salt mine near Ithaca, New York. At a depth

of 1574 m.w.e., muons in that detector required 𝐸𝜇 > 440GeV at pro-

duction to reach the detector. Measurements with experiments at the

Laboratori Nazionali del Gran Sasso (LNGS), starting with MACRO [3]

and LVD [4], have a variable overburden corresponding approximately
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to his passing.
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to 𝐸𝜇 > 1.5 ± 0.2 TeV at production depending on the exact location of

the detector. More recent observations at LNGS include BOREXINO [5],

GERDA [6], and OPERA [7]. The MINOS far detector at a depth of

2100 m.w.e. in the Soudan mine [8] detects muons with 𝐸𝜇 > 730GeV
at production. There are also measurements with shallower experi-

ments such as the MINOS near detector [9,10] and NOvA [11] at

Fermilab that correspond to 𝐸𝜇 ≳ 50GeV.
The relation between measured muon rate 𝑅 and atmospheric tem-

perature is conventionally quantified by a correlation coefficient, 𝛼𝑇 ,

𝛥𝑅⟨𝑅⟩ = 𝛼𝑇
𝛥𝑇eff⟨𝑇eff ⟩ , (1)

where 𝑇eff is the effective temperature characterizing the atmospheric

temperature profile. The 𝛥 in Eq. (1) indicates the variation with

respect to the yearly average muon rate ⟨𝑅⟩ and effective temperature⟨𝑇eff ⟩. Several experimental measurements of the temperature correla-
tion coefficient show that it varies from 0.2 to 0.95 in the energy range

from 20GeV to ∼  (TeV) [7].
This paper is organized with an initial section relating the muon

rate at the detector to the production spectrum of muons as a function

of the atmospheric depth, both for compact detectors like MINOS and

those at LNGS, and for the deep neutrino telescopes that span a large

range of depths. The focus is on an analytic approximation for the muon
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production spectrum, but two alternative approaches are considered.

The next section relates the muon production spectrum to weights

for calculating the effective temperature by weighting the temperature

profile at each depth. It also includes a comparison of the weights

of this work with those defined by Grashorn et al. in Ref. [12] and

used by many measurements. This is followed by a discussion on the

correlation coefficient and its dependence on energy and zenith angle.

The following section demonstrates how the correlation coefficient is a

probe of the atmospheric 𝐾∕𝜋-ratio. Finally, we comment on the impact
of multiple muon events and nuclear primaries on the rate calculation.

An Appendix provides details of the hadronic cascade equations and

their approximate solutions with details of how the lepton spectra are

calculated.

2. Muon rate calculations

The evolution of a cascade of particles in the atmosphere can be

described by the coupled cascade equations [13]

d𝜙𝑖(𝐸,𝑋)
d𝑋

= −
𝜙𝑖(𝐸,𝑋)
𝜆int,𝑖(𝐸)

−
𝜙𝑖(𝐸,𝑋)
𝜆dec,𝑖(𝐸,𝑋)

+
∑
𝑗
∫

∞

𝐸

d𝐸𝑗
d𝑛𝑗(𝐸𝑗 )→𝑖(𝐸)

d𝐸
𝜙𝑗 (𝐸𝑗,𝑋)
𝜆int,𝑗 (𝐸𝑗 )

+
∑
𝑗
∫

∞

𝐸

d𝐸𝑗
d𝑛dec
𝑗(𝐸𝑗 )→𝑖(𝐸)

d𝐸
𝜙𝑗 (𝐸𝑗,𝑋)
𝜆dec,𝑗 (𝐸𝑗,𝑋)

.

(2)

Here, 𝜙𝑖(𝐸,𝑋) d𝐸 is the flux of particles of type 𝑖 at atmospheric slant

depth 𝑋 with energies in the interval 𝐸 to 𝐸 + d𝐸. The first two terms
on the right-hand side of Eq. (2) are loss terms as a result of interaction

and decay of particles 𝑖, governed by the interaction and decay lengths

𝜆int and 𝜆dec. The last two terms are source terms for the production

of particle type 𝑖 due to the interaction and decay of particles of type

𝑗, where d𝑛∕d𝐸 are the inclusive particle production spectra. For an

observation height ℎ0 in the atmosphere, the slant depth 𝑋 in Eq. (2)

is given along the trajectory 𝑙 of the central core of the cascade by

𝑋(ℎ0, 𝜃) = ∫
∞

ℎ0

𝑑𝑙 𝜌air (ℎ(𝑙, 𝜃)), (3)

where the mass density of air, 𝜌air , is typically a function of the

atmospheric height ℎ(𝑙, 𝜃), and 𝜃 is the zenith angle of the trajectory.
Because the density is directly related to temperature, the fluxes of

particles in air showers are sensitive to temperature fluctuations in the

atmosphere.

The inclusive production spectrum of muons, differential in muon

energy 𝐸𝜇 and atmospheric slant depth 𝑋, is then given by

𝑃 (𝐸𝜇, 𝜃,𝑋) =
d𝜙𝜇(𝐸𝜇, 𝜃,𝑋)

d𝑋
, (4)

when solving the cascade equations starting from the total primary

nucleon flux 𝜙𝑁 at the top of the atmosphere. The flux of muons

differential in energy at the surface is obtained from the integral over

the production spectrum,

𝜙𝜇(𝐸𝜇, 𝜃) = ∫
𝑋𝑂

0
d𝑋𝑃 (𝐸𝜇, 𝜃,𝑋). (5)

Due to the relation to the atmospheric density profile, the muon pro-

duction spectrum implicitly depends on the temperature 𝑇 (𝑋) at slant
depth 𝑋.

The rate of muons with energy 𝐸𝜇 from a direction corresponding

to a zenith angle 𝜃 in a detector with effective area 𝐴eff (𝐸𝜇, 𝜃) is given
by

𝑅(𝜃) = ∫ d𝑋 ∫
∞

𝐸min
𝜇

d𝐸𝜇 𝐴eff (𝐸𝜇, 𝜃)𝑃 (𝐸𝜇, 𝜃,𝑋). (6)

For a compact detector at a depth large compared to its vertical

dimension, the effective area is simply its projected physical area at

the zenith angle 𝜃 averaged over the azimuth angle. In this case,

𝑅(𝜃) = 𝐴eff (𝜃)∫ d𝑋 ∫𝐸min
𝜇

d𝐸𝜇 𝑃 (𝐸𝜇, 𝜃,𝑋)

= 𝐴eff (𝜃)∫ d𝑋 𝑃int (𝐸min
𝜇
, 𝜃,𝑋)

= 𝐴eff (𝜃) 𝐼(𝐸min
𝜇
, 𝜃),

(7)

where 𝐼(𝐸min
𝜇
, 𝜃) is the integral muon flux for 𝜃, 𝑃int (𝐸min

𝜇
, 𝜃,𝑋) is the

integral version of the production profile,1 and 𝐸min
𝜇

is the energy

threshold for a muon to reach the detector at this angle. In both cases,

the total rate, 𝑅, is given by integrating over the solid angle 𝛺,

𝑅 = ∫ 𝑅(𝜃) d𝛺. (8)

The differential version (Eq. (6)) is appropriate for a geometrically

extended experiment like IceCube where the effective area depends

on muon energy, for example, because higher energy is required for

a muon at a large angle to reach the lower part of the detector. Fur-

thermore, such experiments are sparsely instrumented which may cause

a fraction of muons to fail to pass the trigger or subsequent analysis

steps, an effect which usually diminishes with increasing energy. For

a compact detector at a given depth, e.g. MACRO, MINOS, and NOvA,

any muon with sufficient energy to reach the depth of the detector can

be recorded if it passes through the detector. In this case, the integral

version of the production profile as in Eq. (7) is appropriate (and has

been used traditionally).

In the following sections, three approaches to obtaining the muon

production spectrum are described. The first approach consists of an

approximate analytical solution to the cascade equations including the

pion and kaon channels. A second approach utilizes a numerical solver

of the cascade equations which includes all relevant channels. A third

and conceptually different approach is based on a parameterization of

muon production profiles in extensive air showers, which are integrated

over the flux of primary particles. For the purpose of illustration, a hy-

pothetical cylindrical detector with a radius of 5m and a height of 20m
at a depth of 2000m.w.e. is used. For a compact detector at such a large
depth, the effective area is given by the projected physical area. The

average minimum energy that a muon requires to reach the detector is

estimated from the approximation given in Ref. [13]. We consider these

values as a sharp cutoff above which muons are detected and below

which they are not.2 The numerical values of the effective areas and

threshold energies used in the calculations are given in Table 1. The

muon rates are calculated using daily temperature data of the South

Pole atmosphere for the year 2012 obtained from the Atmospheric

Infrared Sounder (AIRS) on board of NASA’s Aqua satellite [14]. AIRS

is capable of measuring the geopotential height and temperature in the

atmosphere with an accuracy of 1K over 24 pressure layers between

1 hPa and 1000 hPa, even under cloudy conditions. Assuming an ideal
gas law, the corresponding atmospheric density profile, 𝜌air , can be

obtained using the AIRS pressure and temperature data. All calculations

are performed using the primary nucleon spectrum from Tom Gaisser’s

H3a flux [15].

1 In previous works, the integral muon production spectrum has sometimes

been written as 𝑃 (>𝐸𝜇, 𝜃,𝑋), which represents the differential production

spectrum 𝑃 integrated over all energies above some minimum energy 𝐸𝜇 . For

clarity, we choose in this work to use instead the notation 𝑃int (𝐸min
𝜇
, 𝜃,𝑋) ≡

∫ +∞
𝐸min
𝜇

𝑃 (𝐸𝜇, 𝜃,𝑋)d𝐸𝜇 .
2 Note that because of the steeply falling spectrum of primary nucleons and

consequently of atmospheric muons, an accurate description of the threshold

region is crucial for accurate rate calculations for real detectors.
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Table 1

Effective area and threshold energy for muons at the Earth’s surface to reach a

hypothetical cylindrical detector of radius 5m, height 20m, and depth 2000m.w.e..

cos(𝜃) 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25

𝐸min
𝜇

(GeV) 660 781 952 1211 1641 2458 4416 11766

𝐴eff (m
2) 137 172 191 203 210 214 215 213

2.1. Approximate analytical solution of the cascade equations

The differential production profiles obtained from the cascade equa-

tions in the limits of low and high energy are repeated here from

Ref. [13] and presented in detail in the Appendix of this paper. The

low- and high-energy regime is defined relative to the critical energies

of the parent mesons of the muons, given by

𝜖𝜋 =
𝑚𝜋𝑐

2

𝑐𝜏𝜋

𝑅𝑇

𝑀𝑔
≈ 115GeV 𝑇

220K
(9)

for pions, and equivalent for 𝜖𝐾 . Here, 𝑚𝜋 and 𝜏𝜋 are the mass and

lifetime of the pion, 𝑔 is the acceleration of free fall, 𝑅 the molar

gas constant, 𝑀 the mean molar mass for air, and 𝑇 the atmospheric

temperature. For muons with 𝐸𝜇 ⋘ 𝜖𝜋 ,

𝑃 (𝐸𝜇, 𝜃,𝑋) ≈ 𝜙𝑁 (𝐸𝜇)
𝑒−𝑋∕𝛬𝑁

𝜆𝑁

×

[
𝑍𝑁𝜋 (1 − 𝑟

𝛾+1
𝜋 )

(𝛾 + 1)(1 − 𝑟𝜋 )
+ 0.636

𝑍𝑁𝐾 (1 − 𝑟
𝛾+1
𝐾

)
(𝛾 + 1)(1 − 𝑟𝐾 )

]
, (10)

and for muons with 𝐸𝜇 ⋙ 𝜖𝐾

𝑃 (𝐸𝜇, 𝜃,𝑋) ≈ 𝜙𝑁 (𝐸𝜇)×
[

𝜖𝜋

𝑋 cos(𝜃)𝐸𝜇

(1 − 𝑟𝛾+2𝜋 )
(1 − 𝑟𝜋 )(𝛾 + 2)

𝑍𝑁𝜋

1 −𝑍𝑁𝑁

𝛬𝜋

𝛬𝜋 − 𝛬𝑁
×
(
𝑒−𝑋∕𝛬𝜋 − 𝑒−𝑋∕𝛬𝑁

)
+0.636

𝜖𝐾

𝑋 cos(𝜃)𝐸𝜇

(1 − 𝑟𝛾+2
𝐾

)
(1 − 𝑟𝐾 )(𝛾 + 2)

𝑍𝑁𝐾

1 −𝑍𝑁𝑁

𝛬𝐾

𝛬𝐾 − 𝛬𝑁

×
(
𝑒−𝑋∕𝛬𝐾 − 𝑒−𝑋∕𝛬𝑁

) ]
, (11)

where 𝑟𝜋 = 𝑚2𝜇∕𝑚
2
𝜋
, and 𝜆 and 𝛬 are atmospheric interaction and attenu-

ation lengths respectively. These equations are obtained by integrating

solutions of the hadronic cascade equations (Eq. (2)) for charged pions

and kaons to get the spectrum of leptons from 𝜋±∕𝐾± → 𝜇± + 𝜈𝜇(𝜈̄𝜇),
given a primary nucleon flux 𝜙𝑁 (𝐸) ∝ 𝐸−(𝛾+1), with 𝛾 the integral

spectral index. The integral over the primary flux is related to the

primary flux evaluated at the energy of the muon by spectrum-weighted

moments 𝑍𝑁ℎ. The 𝑍-factors are given by

𝑍𝑁ℎ = ∫
1

0
𝑥𝛾

d𝑛𝑁→ℎ

d𝑥
d𝑥, (12)

where 𝑥 = 𝐸ℎ∕𝐸𝑁 . This definition assumes Feynman scaling for

the particle production and a constant spectral index 𝛾, so that the

spectrum-weighted moments are constants. Such an approximation is

realistic because of the steepness of the primary spectrum and the

threshold of the deep detector, which combine to limit the range of

relevant primary energies.

An approximation valid for all energies can be obtained with the

form

𝑃 (𝐸𝜇, 𝜃,𝑋) =
Low

1 + Low∕High
, (13)

where Low refers to Eq. (10) and High refers to Eq. (11). The approx-

imations are made separately for pions and kaons. From Eq. (10) we

see that

𝑃𝜋 (𝑋) =
𝐴𝜋𝜇(𝑋)

1 + 𝐵𝜋𝜇(𝑋)𝐸𝜇 cos(𝜃)∕𝜖𝜋 (𝑇 )
(14)

with

𝐴𝜋𝜇(𝑋) =
𝑍𝑁𝜋

𝜆𝑁 (𝛾 + 1)
1 − 𝑟𝛾+1𝜋
1 − 𝑟𝜋

𝑒−𝑋∕𝛬𝑁 , (15)

and from Eq. (11)

𝐵𝜋𝜇(𝑋) =
𝛾 + 2
𝛾 + 1

1 − 𝑟𝛾+1𝜋
1 − 𝑟𝛾+2𝜋

𝑋

𝛬∗
𝑒−𝑋∕𝛬𝑁

𝑒−𝑋∕𝛬𝜋 − 𝑒−𝑋∕𝛬𝑁
, (16)

where 𝛬∗
𝜋
= 𝛬𝜋 × 𝛬𝑁∕(𝛬𝜋 − 𝛬𝑁 ) is a combination of the attenuation

lengths for nucleons and pions. The equations for the kaon channel

have the same form with 𝐴𝐾𝜇(𝑋) multiplied by a factor of 0.636,

the branching ratio for the decay 𝐾± → 𝜇± + 𝜈𝜇(𝜈̄𝜇) [16]. The total
differential production spectrum is

𝑃 (𝐸𝜇, 𝜃,𝑋) = 𝜙𝑁 (𝐸𝜇)
{
𝑃𝜋 (𝑋) + 𝑃𝐾 (𝑋)

}
, (17)

The equations assume a power law primary spectrum, where

𝜙𝑁 (𝐸𝜇) = 𝐶𝑁 × 𝐸−(𝛾+1)
𝜇 is primary nucleons per GeV m2 s sr. When

the low-energy form Eq. (10) is integrated to get the corresponding

integral production profile, 𝜙𝑁 (𝐸𝜇) → 𝐸 × 𝜙𝑁 (𝐸𝜇)∕𝛾. The high-energy
form (Eq. (11)) has an additional factor of muon energy in the denom-

inator, so 𝜙𝑁 (𝐸𝜇) → 𝐸 × 𝜙𝑁 (𝐸𝜇)∕(𝛾 + 1) at high energy. Applying the
approximation of Eq. (13) then leads to

𝑃int (𝐸min
𝜇
, 𝜃,𝑋) = 𝐸min

𝜇
𝜙𝑁 (𝐸min

𝜇
)

×
𝐴𝜋𝜇(𝑋)

𝛾 + (𝛾 + 1)𝐵𝜋𝜇(𝑋)𝐸min
𝜇

cos(𝜃)∕𝜖𝜋
. (18)

This form (plus the corresponding term for kaons) provides the produc-

tion profile that can be inserted into Eq. (7) to get the inclusive rate of

muons (assuming an 𝐴eff that does not depend on muon energy). The

production profile for a specific 𝐸𝜇 and cos(𝜃) is shown in Fig. 1.
The above equations are for 𝜇+ + 𝜇−. The corresponding equations

for 𝜈𝜇 + 𝜈𝜇 have the same form with the meson decay kinematic factors

like (1 − 𝑟𝛾+1𝜋 ) and (1 − 𝑟𝛾+2
𝐾

) replaced by (1 − 𝑟𝜋 )𝛾+1 and (1 − 𝑟𝐾 )𝛾+2,
respectively [17].

The constants used in the calculations are given in Table A.2. More

detail can be included in the calculation by taking into account the

non-scaling behavior of hadronic interactions and gradual changes of

the primary spectral index. To first approximation, this is done by intro-

ducing energy-dependent spectrum-weighted moments as in Ref. [18].

For this work, we compared a calculation using the constant values

from Ref. [13] based on Sibyll 2.3 (Table A.2), and a calculation using

energy-dependent values obtained from Sibyll 2.3c [19] (see Fig. A.14).

While the calculation with energy-dependent values gives a higher rate,

the difference is nearly constant with the relative variations throughout

the year deviating by less than 0.1% (see Appendix). In Fig. 2, we

show the daily rate calculated with the energy dependent parameters,

compared to the rates obtained with the other methods considered. The

calculated angular distribution of the events is shown in Fig. 3.

It is possible to check the accuracy of Eqs. (13) and (14) by ex-

panding the exact solution of the cascade equations in Eq. (A.5).

A comparison of predictions given by the analytical approximation

described here to a full numerical solution as described in the following

section was presented earlier in Ref. [20].

2.2. Numerical solution of cascade equations

The approximate analytical solutions of the cascade equations are

based on various simplifications that can introduce uncertainties on

the atmospheric muon fluxes. In order to estimate these uncertainties

Monte-Carlo simulations or numerical solutions of the coupled cascade

equations are required. The software package MCEq (Matrix Cascade

Equations) [21] provides precise numerical solutions of the cascade

equations with a level of detail comparable with current Monte Carlo

simulations. To achieve this, the cascade equations are expressed in

matrix form to make use of modern implementations of linear algebra
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Fig. 1. Integral muon production profiles obtained for 𝐸𝜇 > 500GeV and cos(𝜃) =
0.95 using three different methods: the analytic approximation (AA, Section 2.1), the
numerical solver (MCEq, Section 2.2), and the parameterized air-shower production

profiles integrated over the primary spectrum (Param., Section 2.3).

Fig. 2. Daily event rate for the detector of Table 1 calculated following the three

different methods from Sections 2.1–2.3. (The sharp increase in the expected rate

around October is a feature of the South Pole atmosphere, see for example Ref. [23].).

algorithms. The calculations rely on several input parameters, such as

the initial cosmic-ray flux and the atmospheric density profile. Further

details can be found in Ref. [21]. An extension of this approach is

realized with the Muon Intensity Code (MUTE) [22] which accounts

for muon propagation in dense media to estimate muon fluxes in deep-

underground experiments. However, in this work the simple approach

based on effective areas and energy thresholds, as described in Sec-

tion 2.1 (Table 1), is used to obtain the expected muon flux in a

hypothetical cylindrical detector of radius 5m, height 20m, and depth
2000m.w.e..

The atmospheric muon flux is determined with MCEq, using Sibyll

2.3c, at different atmospheric depths, 𝑋𝑖, assuming the primary nucleon

flux from H3a and a daily atmospheric temperature and density profile

at the South Pole derived from 2012 AIRS data. Subtracting the muon

spectrum at 𝑋𝑖+1 from the spectrum at 𝑋𝑖 for all 𝑖 then directly yields

the muon production spectrum 𝑃 (𝐸𝜇, 𝜃,𝑋), which is shown in Fig. 1.
The expected muon rate, 𝑅(𝜃), is then calculated according to Eq. (6).
Analogously to the analytical approach, integration over the solid angle

yields the total muon rate in the detector, as described in Eqs. (7)

and (8). The resulting total muon rate is shown in Fig. 2 and the

corresponding angular distribution in Fig. 3.

2.3. Parameterization of Monte Carlo cascades

An alternative approach consists of integrating average muon pro-

duction profiles in air showers over the primary cosmic-ray flux. A

parameterization of such profiles based on simulations and its appli-

cations are described in Ref. [24]. The differential muon production

spectrum 𝑃 (𝐸𝜇, 𝜃,𝑋) is given by

𝑃 (𝐸𝜇, 𝜃,𝑋) = ∫𝐸𝜇 𝑔(𝐸𝜇,𝐸0, 𝜃, 𝑋, 𝑇 )𝜙𝑁 (𝐸0)d𝐸0 (19)

with

𝑔(𝐸𝜇,𝐸0, 𝜃, 𝑋, 𝑇 ) =
d

d𝐸𝜇

(
d𝑁(𝐸min

𝜇
, 𝐸0, 𝐴, 𝜃,𝑋, 𝑇 )

d𝑋

)
. (20)

Here d𝑁(𝐸min
𝜇
, 𝐸0, 𝐴, 𝜃,𝑋, 𝑇 )∕d𝑋 is the mean number of muons with

energy > 𝐸min
𝜇

produced per g/cm2 as a function of slant depth 𝑋 in a

cosmic-ray air shower initiated by a primary nucleus with mass number

𝐴, primary energy 𝐸0, and zenith angle 𝜃, where the atmospheric

temperature at 𝑋 is given by 𝑇 . It is a product of the derivative of the

Gaisser–Hillas (G–H) function [25], often used to fit the longitudinal

development of air showers and its derivative here interpreted as the

longitudinal production of mesons in the cascade, multiplied by a

decay factor that provides the temperature dependence of the decay

probability of pions and kaons to muons, and a threshold factor:

d𝑁
d𝑋

(𝐸min
𝜇
, 𝐸0, 𝐴, 𝜃,𝑋, 𝑇 ) =

𝑁max exp((𝑋max −𝑋)∕𝜆)

×
𝑋max −𝑋
𝜆 (𝑋 −𝑋0)

(
𝑋 −𝑋0
𝑋max −𝑋0

)(𝑋max−𝑋0)∕𝜆

×𝐹 (𝐸min
𝜇
, 𝑇 )

(
1 −
𝐴𝐸min
𝜇

𝐸0

)5.99

.

(21)

The parameters 𝑁max, 𝑋max, 𝜆, 𝑋0 are the free parameters appearing

in the original G–H function, which were parameterized in Ref. [24]

in terms of 𝐸0, 𝐴, and 𝐸
min
𝜇

based on fits to muon production profiles

obtained from air-shower simulations. For the parameterization, a scal-

ing form depending on 𝐸0∕(𝐴𝐸min
𝜇

) is used so that only the primary
spectrum of nucleons is required in Eqs. (20) etc.

The decay factor is

𝐹 (𝐸min
𝜇
, 𝑇 ) =

𝑓𝜋

1 +
(𝑓𝐸min

𝜇 ) cos(𝜃)𝑋
𝑟𝜋𝜆𝜋𝜖𝜋 (𝑇 )

+
𝑓𝐾

1 +
(𝑓𝐸min

𝜇 ) cos(𝜃)𝑋
𝑟𝐾𝜆𝐾𝜖𝐾 (𝑇 )

, (22)

with 𝑓 ≥ 1, a factor fitted from the simulations that gives the mean

energy of all muons with energy greater than 𝐸min
𝜇
; 𝑟𝜋 = 0.79 and

𝑟𝐾 = 0.52 are the fraction of the parent meson momentum carried by

the muon, and 𝜆𝜋 = 110 g∕cm2 and 𝜆𝐾 = 122 g∕cm2 are the meson

interaction lengths.

The normalization factors 𝑓𝜋 and 𝑓𝐾 of the pion and kaon com-

ponent are defined in terms of the average momentum they carry

away in interactions of nucleons in the atmosphere, taking into ac-

count the branching ratio for the muon decay channel for charged

kaons. This average momentum fraction is equivalent to the spectrum-

weighted moment of Eq. (12) evaluated for 𝛾 = 1. Requiring the sum
of the normalization factors to be equal to one, they are defined as

𝑓𝜋 = 𝑍
𝛾=1
𝑁𝜋

∕(𝑍𝛾=1
𝑁𝜋

+ 0.636 ×𝑍𝛾=1
𝑁𝐾

) = 0.92 and 𝑓𝐾 = 1 − 𝑓𝜋 = 0.08, where
numerical values from Ref. [13] were used for 𝑍𝛾=1.

The inclusive muon production profile calculated according to

Eqs. (19) and (20) is shown in Fig. 1. The calculated rates and zenith

distribution are shown in Figs. 2 and 3. For our calculations, we use

the fit parameters given in Table 1 from Ref. [24] for the four functions

fitted to Monte Carlo for 𝑁max, 𝑋max, 𝜆, and 𝑋0.

The integral over slant depth of Eq. (21) is equivalent to the Elbert

formula [26,27] approximation for the average number of muons per

shower for a given zenith angle [28]:

⟨𝑁(𝐸min
𝜇

)⟩ ≈ 𝐴 𝐾

𝐸min
𝜇

cos(𝜃)

(
𝐸0

𝐴𝐸min
𝜇

)𝛼1 (
1 −
𝐴𝐸min
𝜇

𝐸0

)𝛼2
, (23)
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Fig. 3. Expected zenith angle distribution of muons calculated for the detector of

Table 1 following the three different methods from Sections 2.1–2.3. (For the AA and

Param. calculations, the effect of the curvature of the Earth was approximated by

replacing cos(𝜃) in the formula by an effective cos(𝜃∗) from Ref. [30].).

where 𝐴 is the mass number of a primary nucleus of total energy 𝐸0.
3

The dependence on the ratio 𝐴𝐸min
𝜇

∕𝐸0 follows from the superposition

approximation, in which incident nuclei are treated as 𝐴 independent

nucleons each of energy 𝐸0∕𝐴. The threshold factor, i.e. the last factor
in Eq. (23), is the same as for Eq. (21). The benefit of integrating

Eq. (21) over Eq. (23) is the dependence on atmospheric temperature

of the former.

Comparisons between the approach presented in this section and the

analytic calculation from Section 2.1 were shown earlier in Ref. [29].

Alternatively to the parameterization of production profiles obtained

from simulation as discussed in this section, one could use MCEq

(Section 2.2) to obtain average production profiles in air showers by

using it to solve the cascade equations with a single primary particle as

the initial condition. This will increase the accuracy of the calculation

in various ways, for example, by taking into account all relevant

muon production channels and including the energy dependence of the

inclusive cross sections, as well as through the implementation of the

curved geometry relevant for more horizontal directions.

3. Effective temperature

The variation of muon rate with atmospheric conditions is ordi-

narily described in terms of correlation with an effective temperature

parameter. The effective temperature characterizes the atmospheric

temperature profile by averaging it with appropriate weights related

to the muon production spectrum. Different definitions of effective

temperature have been used in the literature.

A definition that has traditionally been used can be obtained by

taking the derivative of the rate in Eq. (8) with respect to temperature.

The change in rate is obtained by integrating the change in atmospheric

temperature over depth, i.e.

𝛥𝑅(𝜃) = ∫ d𝑋 ∫ d𝐸𝜇𝐴eff (𝐸𝜇, 𝜃)
d𝑃 (𝐸𝜇, 𝜃,𝑋)

d𝑇
𝛥𝑇 (𝑋). (24)

Defining 𝛥𝑇 (𝑋) = 𝑇 (𝑋) − 𝑇eff and setting 𝛥𝑅 = 0 for an isothermal
atmosphere where 𝑇 (𝑋) = 𝑇eff results in the following definition:

𝑇eff (𝜃) =
∫ d𝑋 ∫ d𝐸𝜇 𝐴eff (𝐸𝜇, 𝜃)𝑇 (𝑋)

d𝑃 (𝐸𝜇,𝜃,𝑋)
d𝑇

∫ d𝑋 ∫ d𝐸𝜇 𝐴eff (𝐸𝜇, 𝜃)
d𝑃 (𝐸𝜇,𝜃,𝑋)

d𝑇

. (25)

3 The Elbert formula traditionally uses the notation ⟨𝑁𝜇(> 𝐸𝜇)⟩, written
here instead as ⟨𝑁(𝐸min

𝜇
)⟩.

The total effective temperature is the weighted average of Eq. (25) over

the zenith distribution. The corresponding integral form is

𝑇eff (𝜃) =
∫ d𝑋𝑇 (𝑋)

d𝑃int (𝐸min
𝜇 ,𝜃,𝑋)
d𝑇

∫ d𝑋
d𝑃int (𝐸min

𝜇 ,𝜃,𝑋)
d𝑇

. (26)

It applies to compact detectors for which the effective area cancels in

Eq. (25) at each zenith angle. For the analytic inclusive form of the

pion channel spectrum from Section 2.1, for example,

𝑇 (𝑋)
d𝑃 (𝐸𝜇, 𝜃,𝑋)

d𝑇
=
𝐴𝜋𝜇(𝑋)𝐵𝜋𝜇(𝑋)𝐸𝜇 cos(𝜃)∕𝜖𝜋 (𝑇 )[

1 + 𝐵𝜋𝜇𝐸𝜇 cos(𝜃)∕𝜖𝜋 (𝑇 )
]2 . (27)

and

𝑇 (𝑋)
d𝑃int (𝐸min

𝜇
, 𝜃,𝑋)

d𝑇
= 𝐸min

𝜇
𝜙𝑁 (𝐸min

𝜇
)

×
𝐴𝜋𝜇(𝑋)(𝛾 + 1)𝐵𝜋𝜇(𝑋)𝐸min

𝜇
cos(𝜃)∕𝜖𝜋 (𝑇 )[

𝛾 + (𝛾 + 1)𝐵𝜋𝜇(𝑋)𝐸min
𝜇

cos(𝜃)∕𝜖𝜋 (𝑇 )
]2 . (28)

An early implementation of this approach, presented in Ref. [12], is

used in the analysis of MINOS, among others. For comparison with the

existing literature, it is necessary to write the effective temperature in

terms of weights:

𝑇eff (𝜃) =
∫ d𝑋𝑇 (𝑋)𝑊 (𝑋)

∫ d𝑋𝑊 (𝑋)
≈

∑
𝑖 𝛿 ln(𝑋𝑖)𝑇 (𝑋𝑖)𝑋𝑖𝑊 (𝑋𝑖)∑
𝑖 𝛿 ln(𝑋𝑖)𝑋𝑖𝑊 (𝑋𝑖)

. (29)

The second form is motivated by the fact that atmospheric temperatures

are commonly tabulated in quasi-logarithmic intervals of depth, so the

integrations in this work are done logarithmically. From Eq. (28)

𝑊 (𝑋) = 𝐸min
𝜇
𝜙𝑁 (𝐸min

𝜇
)

×
𝐴𝜋𝜇(𝑋)(𝛾 + 1)𝐵𝜋𝜇(𝑋)𝐸min

𝜇
cos(𝜃)∕𝜖𝜋 (𝑇 )

𝑇 (𝑋)
[
𝛾 + (𝛾 + 1)𝐵𝜋𝜇(𝑋)𝐸min

𝜇
cos(𝜃)∕𝜖𝜋 (𝑇 )

]2 . (30)

The form obtained here differs from the one of Ref. [12], with the

weights now depending on the temperature profile through the critical

energies. The normalized weights are compared in Fig. 4. Despite the

difference in the calculations, the weights are similar, with only a slight

shift deeper in the atmosphere for the present calculation.

For the calculation of 𝑇eff according to Eq. (25), with the parame-

terization of Section 2.3, the corresponding form for the decay factor

is

𝑇 (𝑋)
d𝐹 (𝐸min

𝜇
, 𝜃,𝑋)

d𝑇
=
𝑓𝜋 (𝑓𝐸min

𝜇
) cos(𝜃)𝑋∕𝑟𝜋𝜆𝜋𝜖𝜋 (𝑇 )[

1 + (𝑓𝐸min
𝜇

) cos(𝜃)𝑋∕𝑟𝜋𝜆𝜋𝜖𝜋 (𝑇 )
]2 . (31)

To calculate the derivative of the muon production spectrum with

respect to temperature with MCEq, first the production spectrum

𝑃 (𝐸𝜇, 𝜃,𝑋) is determined as described in Section 2.2. In a second step,
muon production spectra are derived for a local temperature change

of d𝑇 = 1K. This is done by changing each atmospheric layer 𝑖 in the
AIRS temperature and density profiles individually by 1K to obtain

𝑃𝑖(𝐸𝜇, 𝜃,𝑋𝑖) and

𝑃 (𝐸𝜇, 𝜃,𝑋) =
(
𝑃1(𝐸𝜇, 𝜃,𝑋1),… , 𝑃𝑛(𝐸𝜇, 𝜃,𝑋𝑛)

)
, (32)

where 𝑛 is the total number of layers considered in the AIRS data.

The derivative of the production spectrum is then constructed via the

difference quotient as

d𝑃 (𝐸𝜇, 𝜃,𝑋)
d𝑇

=
𝑃 (𝑇 + d𝑇 ) − 𝑃 (𝑇 )

d𝑇

=
𝑃 (𝐸𝜇, 𝜃,𝑋) − 𝑃 (𝐸𝜇, 𝜃,𝑋)

1K
. (33)

The resulting derivative of the production spectrum in terms of weights,

𝑊 (𝑋), is also shown in Fig. 4.
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Fig. 4. Weight of different atmospheric depths in the calculation of the effective

temperature according to Eq. (25). The black dotted line show the (temperature-

independent) values from Ref. [12]. They are compared to values obtained using the

methods of Section 2, averaged over a full year, as these weights depend on the

atmospheric temperature profile. The calculations are done for 𝐸min
𝜇

= 500GeV and

cos(𝜃) = 0.95.

Alternatively to the definition of Eq. (25), in which the atmospheric

temperature profile is multiplied by the derivative of the muon produc-

tion spectrum with respect to temperature, the effective temperature

has been defined as a straightforward convolution of the temperature

profile with the muon production spectrum, normalized to the muon

rate for each angle [31]:

𝑇̃eff (𝜃) =
∫ d𝑋 𝑇 (𝑋) ∫ d𝐸𝜇 𝐴eff (𝐸𝜇, 𝜃)𝑃 (𝐸𝜇, 𝜃,𝑋)

∫ d𝑋 ∫ d𝐸𝜇 𝐴eff (𝐸𝜇, 𝜃)𝑃 (𝐸𝜇, 𝜃,𝑋)
. (34)

A benefit of this definition is that the technical implementation is more

simple compared to the derivative definition when using MCEq. A

comparison of the daily effective temperature with the two definitions

is shown in Fig. 5.

The relative variations in the calculated rate throughout the year

are plotted as a function of relative variations of effective temperature

in Fig. 6. The derivative definition of 𝑇eff , Eq. (25), minimizes the

difference between calculated rates on days that have the same value of

𝑇eff . Using the alternative definition of Eq. (34), a separation is visible

between the months in which the atmosphere cools versus when it

warms. This so-called hysteresis has been reported earlier by IceCube

using this definition of effective temperature [23].

4. Correlation coefficient

The relation between the variation of effective temperature and

the variation of muon rate can be expressed in terms of a correlation

coefficient 𝛼𝑇 as in Eq. (1).

A theoretical expectation for the correlation coefficient as a function

of zenith angle and threshold energy can be calculated by writing it in

the following form:

𝛼th
𝑇
(𝐸min
𝜇
, 𝜃) = 𝑇

𝐼(𝐸min
𝜇
, 𝜃)

d𝐼(𝐸min
𝜇
, 𝜃)

d𝑇
. (35)

Using the expression for the integral rate, Eq. (7), together with the

expression in Eq. (18), the theoretical correlation coefficient for the

integral muon spectrum can be estimated. To do so, we assume rela-

tively small deviations of 𝑇 (𝑋) from ⟨𝑇eff ⟩. The result is shown for fixed
𝑇 = 220K in Fig. 7 as a function of 𝐸min

𝜇
cos(𝜃) (see also Eq. (18)). We

limit the energy range at the lower end to 50GeV as at lower energies

muon decay is expected to have a non-negligible impact. At energies

above 10 TeV, the muon prompt component is expected to become im-
portant, which will lower the value of 𝛼𝑇 compared to the calculations

Fig. 5. Comparison of the values of effective temperature obtained from the derivative

definition Eq. (25) and the alternative definition of Eq. (34) for the three different

methods of calculation muon production discussed in Section 2.

including only contributions from pions and kaons [1]. A calculation

of the theoretical 𝛼𝑇 using the weights of Ref. [12] is compared with a

range of experimental results in Ref. [7]. Calculation of the correlation

coefficient for the differential case can be carried out equivalently, but

is less universal because it depends on the energy-dependent effective

area, which is different for each detector.

Experimental values of 𝛼𝑇 are obtained by applying a linear fit

to 𝛥𝑅∕⟨𝑅⟩ as a function of 𝛥𝑇eff ∕⟨𝑇eff ⟩, where 𝑅 and 𝑇eff are the

measured event rate and the corresponding calculated effective tem-

perature (e.g. per day) and the denominators are the average over

the observation period (e.g. a year). In Fig. 6, we show correlation

plots with calculated rates for the hypothetical detector introduced

in Section 2. Values obtained for the correlation coefficients differ

little between effective temperature definitions. A larger difference

is present between the methods based on cascade equations and the

muon profile parameterization method. The good agreement between

the analytic approximation and the MCEq calculation has been shown

before, including for the case of seasonal variations of neutrinos [20,

32]. In Ref. [29], a comparison between the analytic approach and the

parameterization suggests that the level of agreement between different

calculations and experimental results depends on the energy range

relevant to the detector.
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Fig. 6. Correlation between the relative variation in event rate and effective tem-

perature calculated according to the methods from Sections 2.1–2.3. Different colors

indicate the two definitions of effective temperature. Correlation coefficients calculated

by fitting a line to the points are given in the legend.

5. Relative contributions from pions and kaons

The higher critical energy of kaons compared to pions results in a

lower correlation with temperature for muons from kaon decay. This is

illustrated in Fig. 8, where 𝛼𝑇 is determined separately for the kaon

and pion component in the calculation, 𝑅 = 𝑅𝜋 + 𝑅𝐾 , using the

analytic approximation Eq. (17). As a result, the measured correlation

coefficient depends on the relative contribution of pions and kaons to

the production of muons. A measurement of the seasonal variations

of the atmospheric muon rate is therefore a probe of the atmospheric

kaon-to-pion production ratio 𝑟𝐾∕𝜋 .

In Ref. [12], 𝑟𝐾∕𝜋 was defined in terms of the spectrum weighted

moments 𝑍𝑁𝐾 and 𝑍𝑁𝜋 as

𝑟𝐾∕𝜋 =
𝑍𝑁𝐾

𝑍𝑁𝜋
. (36)

The dependence of the correlation coefficient on the 𝐾∕𝜋 ratio can
be estimated straightforwardly from the analytic approximation of

Fig. 7. Theoretical prediction of the temperature correlation coefficient as a function

of muon threshold energy and zenith angle, calculated using the analytic approximation

of Section 2.1 assuming an isothermal atmosphere with 𝑇 = 220K.

Fig. 8. Variation of the muon rate originating from the pion and kaon channels plotted

separately as a function of the effective temperature, calculated with the analytic

approximation of Section 2.1.

Section 2.1, as the dependence on the spectrum weighted moments 𝑍𝑁𝜋
and 𝑍𝑁𝐾 is explicit in the parameters 𝐴𝜋𝜇 and 𝐴𝐾𝜇 of Eq. (15). In this

case, the correlation depends only on the ratio of 𝑍𝑁𝐾 and 𝑍𝑁𝜋 . Fig. 9

shows the theoretical expectation for 𝛼th
𝑇
for different 𝐸min

𝜇
cos(𝜃) from

Eq. (35), calculated as a function of 𝑟𝐾∕𝜋 assuming 𝑍𝑁𝐾 and 𝑍𝑁𝜋 to be

independent of energy, as in Eq. (12). The nominal value of 𝐾∕𝜋 ratio
is in this case taken to be 𝑟𝐾∕𝜋 = 0.0109∕0.066 = 0.165.

In Ref. [33], a modified 𝐾∕𝜋 ratio was defined in terms of two

weights 𝑤𝜋 and 𝑤𝐾 which scale the inclusive particle production

spectrum,

𝑟⋆
𝐾∕𝜋 =

𝑍⋆
𝑁𝐾

𝑍⋆
𝑁𝜋

=
𝑤𝐾𝑍𝑁𝐾

𝑊𝜋𝑍𝑁𝜋
=
𝑤𝐾

𝑤𝜋
𝑟𝐾∕𝜋. (37)

When using energy-dependent 𝑍-factors or comparing different meth-

ods of calculating 𝛼𝑇 , it is easier to express 𝛼𝑇 as a function of 𝑤𝜋 and

𝑤𝐾 rather than the value of 𝑟𝐾∕𝜋 itself. For calculations including only

muons from the decay of 𝜋± and 𝐾±, 𝛼𝑇 will depend only on the ratio

of the weights. In a full calculation including contributions from other

channels, such as performed with MCEq, this simple relation breaks

down. In Fig. 10, a full calculation of the expected 𝛼𝑇 for the detector
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Fig. 9. Theoretical expectations of the relation between 𝛼𝑇 and the kaon-to-pion ratio

𝑟𝐾∕𝜋 calculated with the analytical approximation of the production spectrum given by

Eq. (18). Spectrum weighted moments were assumed to be independent of energy.

Fig. 10. Relation between 𝛼𝑇 and the ratio of 𝑤𝐾 and 𝑤𝜋 , modifying the production of

charged pions and kaons. The values are calculated for the detector of Table 1, using

the analytic approximation of Section 2.1, the parameterization of Section 2.3, and

the MCEq calculation of Section 2.2. Both definitions of effective temperature given in

Section 3 are included.

of Table 1 is shown as a function of 𝑤𝜋∕𝑤𝐾 for the analytic approx-

imation, MCEq, and the parameterization. For the latter, the weights

entered in the calculation of 𝑓𝜋 = (𝑤𝜋𝑍
𝛾=1
𝑁𝜋

)∕(𝑤𝜋𝑍
𝛾=1
𝑁𝜋

+ 0.635𝑤𝐾𝑍
𝛾=1
𝑁𝐾

),
with 𝑍

𝛾=1
𝑁𝜋

the energy-independent spectrum weighted moment for 𝛾 =
1, as described in Section 2.3. For MCEq, the dependence was approxi-
mately estimated by scaling the production spectra of muons produced

by pions and kaons with 𝑤𝜋 and 𝑤𝐾 , respectively. The calculation of

the effective temperatures and 𝛼𝑇 is then repeated, as described in

Section 3, with the scaled distributions.

Determining the experimental value of 𝛼𝑇 is relatively insensitive

to the assumed value of 𝑟𝐾∕𝜋 , as the dependence in the calculation of

the effective temperature mostly cancels out. By comparing the exper-

imental result to the calculated correlation coefficient, it is possible

to measure 𝑟𝐾∕𝜋 for nucleon–nucleon interactions at median primary

energies which are typically between 10–100 times the muon threshold

energy at production, as illustrated in Fig. 11.

Fig. 11. Response curve showing the contribution to the muon rate as a function of pri-

mary nucleon energy for the detector of Table 1. Calculated using the parameterization

of Section 2.3.

Preliminary results from IceCube were shown in Ref. [31]. An

alternative calculation of the relation between 𝛼𝑇 and 𝑟𝐾∕𝜋 was shown

earlier in Ref. [12] and used by other experiments such as Borex-

ino [34].

6. Multiple muon events and nuclear primaries

The traditional rate calculation as presented in Section 2 is based

on the inclusive atmospheric muon flux. A shortcoming is that it does

not take into account that muons produced in the same shower arrive

at the detector simultaneously. While the muons arriving in bundles

contribute individually to the calculated muon intensity, in realistic

detectors they will often be indistinguishable, making the event rate

lower than what is predicted from the calculation of Eq. (6).

An estimate of the effect can be obtained for compact detectors

by modifying the calculations presented in Section 2.3. Combining

Eqs. (7), (19) and (20), the traditional rate calculation can be written

as

𝑅 = 𝐴eff 𝐼(𝐸min
𝜇

)

= 𝐴eff ∫𝐸min
𝜇

d𝐸0 𝜙𝑁 (𝐸0) ⟨𝑁(𝐸min
𝜇
, 𝐸0)⟩, (38)

where ⟨𝑁⟩ is the mean number of muons with energy above 𝐸min
𝜇

produced by a nucleon with energy 𝐸0, and we omit the 𝜃-dependence

for conciseness. Writing the average as ⟨𝑁⟩ = ∑∞
0 𝑛𝑝(𝑛), with 𝑝(𝑛) the

probability for a nucleon to produce a bundle of 𝑛 muons, shows explic-

itly that multiple muons get accounted for separately in the calculation

rather than as a single event. Replacing this by the probability to

have at least one muon above threshold per primary nucleon gives the

expected intensity of bundles of muons with one or more muons above

𝐸min
𝜇
,

𝐼bundle(𝐸min
𝜇

) = ∫𝐸min
𝜇

d𝐸0 𝜙𝑁 (𝐸0)
∞∑
𝑛=1
𝑝(𝑛|⟨𝑁⟩). (39)

Assuming the multiplicity to follow a Poisson distribution,4 the sum is

given by 1 − 𝑒−⟨𝑁⟩.
Another effect which will decrease the event rate compared to

Eq. (6) is the fact that a fraction of the primary nucleons arrive at

the Earth bound in nuclei, which are more likely to produce higher

4 Ref. [35] finds that the multiplicity is described better by a negative

binomial distribution.
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Fig. 12. Daily event rate for the detector of Table 1 taking into account the effect of

multiple muons from a single air shower arriving together. The standard calculation

from the parameterization, already shown in Fig. 2, is compared to the calculation of

Eq. (39) using the total H3a nucleon flux, and of Eq. (40) using the mass composition

given by H3a. The multiplicity was assumed to follow a Poisson distribution of mean⟨𝑁⟩ given by Eq. (41).

multiplicity bundles of muons arriving simultaneously. To take this into

account, we can integrate over a realistic flux model, such as the H3a

model,

𝐼bundle(𝐸min
𝜇

) =
∑
𝐴

∫𝐴𝐸min
𝜇

d𝐸𝐴 𝜙𝐴(𝐸𝐴)
∞∑
𝑛=1
𝑝

(
𝑛|⟨𝑁(𝐸min

𝜇
, 𝐸𝐴, 𝐴)⟩) , (40)

where 𝜙𝐴 is the differential flux of element 𝐴 and the sum runs over

the different primary nuclei in the flux model. Note that we still assume

that the energy in the nucleus is divided evenly over the 𝐴 nucleons.

The expectation ⟨𝑁⟩, which depends on the atmospheric temperature
profile, can be estimated by integrating the parameterized production

profile Eq. (21),

⟨𝑁⟩(𝐸min
𝜇
, 𝐸𝐴, 𝐴, 𝜃,𝑋, 𝑇 ) = ∫ d𝑋 d𝑁

d𝑋
(𝐸min
𝜇
, 𝐸𝐴, 𝐴, 𝜃,𝑋, 𝑇 ). (41)

The effect of taking muon multiplicity and a realistic nucleus flux into

account is shown in Fig. 12. Performing the calculation using the total

nucleon flux but taking into account multiple muon events decreases

the expected rate by close to 10%. Taking into account also the mass

composition of primary nuclei decreases the expectations by another

10%.

It is of interest to examine how this modified rate calculation affects

the expected correlation coefficient. The correlation plot including

different rate calculations is shown in Fig. 13. Here, the effective tem-

perature is taken to be the same in all cases, i.e. it is given by Eq. (25).

This shows how the standard approach of comparing measured rates

to the calculated 𝑇eff may cause an underestimation of 𝛼𝑇 . This may in

turn lead to inaccuracies in the determination of 𝑟𝐾∕𝜋 .

We note that this is a simplified estimate of this effect. A more

accurate calculation can be obtained replacing the parameterized muon

production profiles by production profiles obtained by using MCEq

to solve the cascade equations for individual primary nuclei, or by

performing a full simulation of the problem. This is especially impor-

tant for geometrically extended detectors, where the energy threshold

region needs to be treated in more detail.

7. Summary

The flux of atmospheric leptons varies with the seasons as the atmo-

sphere contracts and expands, which influences the decay probability of

Fig. 13. Relative variations in the calculated event rate from Fig. 12 as a function of

variations in the effective temperature. Three rate calculations are shown — Standard:

each muon is individually counted in the rate; Bundle (𝜙𝑁 ): muons produced by the

same nucleon are counted as a single event; Bundle (𝜙𝐴): muons produced by the same

nucleus are counted as a single event. The effective temperature uses the standard

calculation in each case.

parent mesons. The observation of this variation in the muon rate of un-

derground detectors has a long history, and is usually analyzed in terms

of its correlation with an effective temperature which is a weighted

average of the atmospheric temperature profile. The magnitude of the

correlation is expressed in terms of a correlation coefficient, which is

sensitive to properties of the hadronic interactions in the atmosphere,

specifically the kaon-to-pion production ratio.

The expected rate of muons can be calculated by integrating over

the muon production spectrum multiplied by the effective area of

the detector. An important difference exists between large-volume

detectors where the effective area is energy dependent, and compact

detectors at large depth, which can be approximated as energy inde-

pendent (except for the dependence of the muon energy threshold on

the zenith angle). Various approximations for calculating the muon

production have been presented in the literature, each with their own

advantages and disadvantages. We have considered here an approxi-

mate analytical solution to the atmospheric cascade equations, a code

which numerically solves the cascade equations, and an approach

where one integrates the muon production spectrum in individual air

showers over the primary flux. Furthermore, different definitions of

effective temperature have been used in the literature. A so-called

derivative definition of the effective temperature, Eq. (25), follows nat-

urally from the formalism, but is less straightforward to calculate than

the simple average of the atmospheric temperature profile weighted

by the muon production spectrum which has alternatively been used.

In this work, we have compared several of these different methods

and definitions, and showed how they lead to different predictions of

the correlation coefficient 𝛼𝑇 . We have also demonstrated the relation

between the 𝛼𝑇 and the kaon-to-pion production ratio. Finally, the

relevance of multiple muon events and nuclear primaries was discussed,

which are both not taken into account in the standard approach of an

inclusive flux calculation from the total primary nucleon flux.

The treatment of seasonal variations of the atmospheric neutrino

flux was not treated explicitly in this paper but can be carried out

equivalently. With neutrinos originating dominantly from kaon decay

above several hundred GeV, the temperature correlation is expected to

be smaller compared to muons up to energies of several TeV [1,23].

The different kinematics of neutrino production in the atmosphere thus

make it possible to probe the K/pi ratio in an independent way using

the same observatory. The feasibility has been demonstrated by the

recent observation of seasonal variations of atmospheric neutrinos by

IceCube [32].
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Appendix. Cascade equations and their approximate solutions

A simplified form of the cascade equation for the inclusive spectrum

of charged pions in the atmosphere 𝛱(𝐸,𝑋) is [13]

d𝛱
d𝑋

= −𝛱(𝐸,𝑋)
(

1
𝛬𝜋

+
𝜖𝜋

𝐸 𝑋 cos(𝜃)

)
(A.1)

+
𝑍𝑁𝜋

𝜆𝑁
𝜙𝑁 (𝐸) 𝑒−𝑋∕𝛬𝑁 , (A.2)

with a similar equation for the charged kaon channel. The equation has

two loss terms. The first is from pion interactions in the atmosphere

where 𝛬𝜋 > 𝜆𝜋,int is an attenuation length for pions that accounts for

their regeneration. The second is the pion decay term, which depends

on temperature, as in Eq. (9). 𝑋 is the atmospheric slant depth along

a direction with zenith angle 𝜃, and the solution applies to a boundary

condition at the top of the atmosphere where 𝛱(𝐸,𝑋 = 0) = 0 and
𝜙𝑁 (𝐸) is the spectrum of nucleons evaluated at the energy of the pion.

This form holds for a power-law spectrum of primary nucleons and for

production cross sections that depend only on the ratio 𝑥𝐿 of the lab

energy of the secondary particle to that of the parent. In this case, the

energy-dependence of the production of the secondary is represented

by the spectrum weighted moment, which for charged pions is

𝑍𝑁𝜋 = ∫
1

0
(𝑥𝐿)𝛾−1𝐹𝑁𝜋 (𝑥𝐿)𝑑𝑥𝐿, (A.3)

with 𝐹𝑁𝜋 (𝑥𝐿 = 𝐸𝜋∕𝐸𝑁 ) the dimensionless inclusive particle production
spectrum

𝐹𝑁𝜋 =
𝐸𝜋

𝜎𝑁,air

d𝜎𝑁,air→𝜋
d𝐸𝜋

= 𝐸𝜋
d𝑛𝜋 (𝐸𝜋,𝐸𝑁 )

d𝐸𝜋
, . (A.4)

which follows from the inclusive cross section 𝜎𝑁,air→𝜋 , where 𝜎𝑁,air is

the inelastic nucleon-air cross section.

In application of this approximation, it is important to include all

intermediate channels in the calculation of the spectrum weighted

moments. Especially important, for example, is 𝑝 + air → 𝛬 + 𝐾+ +
𝑥𝑥𝑥, which has an important influence on the muon charge ratio

and on the energy dependence of the kaon channel in general [36].

Comparison [20] of the approach given here with MCEq [21] that

includes all intermediate channels shows only small differences, see

also Sections 2 and 4. Generalizations to include non-scaling behavior

of the production cross sections and energy-dependence of the primary

spectral index are possible [17,18]. However, the main justification for

Table A.2

Constants used in the calculations, from Ref. [13] (based on Sibyll 2.3 [37]).

Symbol Value

𝛾 1.7

𝑍𝑁𝑁 0.262

𝑍𝑁𝜋 0.066

𝑍𝑁𝐾 0.0109

𝜆𝑁 85 g∕cm2

𝛬𝑁 115 g∕cm2

𝛬𝜋 148 g∕cm2

𝛬𝐾 147 g∕cm2

𝑟𝜋 0.5731

𝑟𝐾 0.0458

this simple approach, some version of which has been used by many

experiments, is that the seasonal variation is itself a ratio in which

many uncertainties cancel.

The solution of Eq. (A.2) for charged pions is

𝛱(𝐸,𝑋) = 𝑒−(𝑋∕𝛬𝜋 )
𝑍𝑁𝜋

𝜆𝑁
𝜙𝑁 (𝐸)∫

𝑋

0
exp

[
−𝑋

′

𝛬∗
𝜋

](
𝑋′

𝑋

) 𝜖𝜋
𝐸 cos(𝜃)

d𝑋′, (A.5)

with 𝛬∗
𝜋
= 𝛬𝜋𝛬𝑁∕(𝛬𝜋 −𝛬𝑁 ). In the high-energy limit, the scaling limit

solution of Eq. (A.5), subject to the boundary condition 𝛱(𝐸, 0) = 0, is

𝛱(𝐸,𝑋)
𝐸≫𝜖𝜋⟶ 𝜙𝑁 (𝐸, 0)

𝑍𝑁𝜋

1 −𝑍𝑁𝑁

𝛬𝜋

𝛬𝜋 − 𝛬𝑁

(
𝑒−𝑋∕𝛬𝜋 − 𝑒−𝑋∕𝛬𝑁

)
. (A.6)

In the low energy limit,

𝛱(𝐸,𝑋)
𝐸≪𝜖𝜋⟶

𝑍𝑁𝜋

𝜆𝑁
𝜙𝑁 (𝐸, 0) 𝑒−𝑋∕𝛬𝑁

𝑋 𝐸 cos(𝜃)
𝜖𝜋

. (A.7)

Accounting for the two-body decay kinematics of 𝜋± → 𝜇 𝜈𝜇 leads

to the muon production spectrum as an integral over the meson fluxes:

𝑃𝜇(𝐸𝜇,𝑋) =
𝜖𝜋

𝑋 cos(𝜃)(1 − 𝑟𝜋 ) ∫
𝐸𝜇

𝑟𝜋

𝐸𝜇

𝛱(𝐸,𝑋)
𝐸

d𝐸
𝐸

+
0.635 𝜖𝐾

𝑋 cos(𝜃)(1 − 𝑟𝐾 ) ∫
𝐸𝜇

𝑟𝐾

𝐸𝜇

𝐾(𝐸,𝑋)
𝐸

d𝐸
𝐸
.

(A.8)

Inserting the low- and high-energy limiting approximations for𝛱(𝐸,𝑋)
and 𝐾(𝐸,𝑋) into Eq. (A.8) leads to the corresponding expressions for
the low- and high-energy muon production spectra in Eqs. (10) and

(11).

To check the accuracy of the approximation of Eq. (13), one can

expand the exponentials in Eq. (A.5) and integrate to obtain

𝛱(𝐸,𝑋) = 𝑒−(𝑋∕𝛬𝜋 )
𝑍𝑁𝜋

𝜆𝑁
𝜙𝑁 (𝐸)𝑋

×

[
1

𝛼𝜋 + 1
−
(
𝑋

𝛬∗
𝜋

)
1

𝛼𝜋 + 2
+ 1

2!

(
𝑋

𝛬∗
𝜋

)2 1
𝛼𝜋 + 3

⋯

]
, (A.9)

where 𝛼𝜋 = 𝜖𝜋∕(𝐸 cos(𝜃)). Inserting this expression into Eq. (A.8) and
defining 𝑧 = 𝐸∕𝐸𝜇 and 𝜉𝜋 = 𝜖𝜋∕(𝐸𝜇 cos 𝜃) then leads to a rapidly

converging expression for the muon production spectrum that can be

evaluated numerically to compare with the approximation of Eq. (13).

The series is

𝑃𝜇,𝜋 (𝐸𝜇,𝑋) =
𝑒−𝑋∕𝛬𝜋

1 − 𝑟𝜋

𝑍𝑁𝜋

𝜆𝑁
𝜙𝑁 (𝐸𝜇) 𝜉𝜋

×∫
1
𝑟𝜋

1

d𝑧
𝑧𝛾+2

[
1

𝑧 + 𝜉𝜋
− 𝑋
𝛬∗
𝜋

1
2𝑧 + 𝜉𝜋

+ 1
2!

(
𝑋

𝛬∗
𝜋

)2 1
3𝑧 + 𝜉𝜋

...

]
. (A.10)

The constants used in this work are those relevant for 𝐸𝜇 ∼ 1TeV
from Ref. [13], repeated in Table A.2. The non-scaling cross sections

and energy-dependent spectral index can be taken into account to

first approximation by using energy dependent values for the param-

eters in the equations. Numerical values, shown in Fig. A.14, were
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Fig. A.14. Energy dependent 𝑍-factors, interaction lengths 𝜆, and attenuation lengths

𝛬 as obtained from MCEq using H3a and Sibyll 2.3c.

Fig. A.15. Rate calculated using the analytic approximation of the cascade equations.

A comparison is made between the calculation using the constants given in Table A.2,

and the energy-dependent values shown in Fig. A.14. The ratio of the two calculations

has only a weak seasonal dependence.

obtained using MCEq and Sibyll 2.3c [19]. A comparison between

the calculations using constants and energy-dependent parameters is

shown in Fig. A.15. The difference in rate is nearly constant throughout

the year, indicating that the energy-independent calculation is a valid

approximation to determine the magnitude of the seasonal effect.
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