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Abstract 

Sea level rise and storm surges drive coastal forest retreat and salt marsh expansion. Salt intolerant 

tree species cannot survive flooding and high soil salinity. Salinization is exacerbated by long-

lasting flooding events. Both salinization and flooding drive ecological zonation in coastal areas. 

Hydrological variables, if coupled with ecological surveys, can explain the different stages of 

coastal forest retreat and marsh encroachment. In this research, a long-term series of hydrological 

variables collected along transects from marsh to inner forest are analyzed. Linear discriminant 

analysis (LDA) is used to identify the hydrological variables responsible for the forest-marsh 

gradient and their seasonal patterns. Water content in the soil (WC) and groundwater electrical 

conductivity (EC) were found to be the main variables responsible for the hydrological difference 

among the sites. Higher values of WC and EC were found in the low forest area near the marsh, 

as it is reflected by ecological data. Seasonal LDA data suggest that the sites are more 

hydrologically different during winter (higher distance among clusters of variables) and similar 

during summer (less distance among clusters). In the study area, higher rainfall occurred during 

summer, decreasing groundwater EC in areas characterized by less canopy cover (dying forest). 

Evapotranspiration in the low forest is higher due to more radiation reaching the soil and new 

invasive vegetation. Both processes move these sited closer to the high forest, which is less 

impacted by sea level rise. During storm surge events the distance between clusters also decreases, 

because of uniform salinization and flooding. We conclude that vegetation gradients at the forest-

marsh boundary are supported by hydrological gradients during winter months in the absence of 

storm surges. An additional analysis is carried out to determine whether hydrological values 



collected in each forested area are closer to those of the healthy forest or to the marsh. Results 

clearly support the previous LDA analysis and the ecological data collected, showing that negative 

conditions for trees occur closer to the marsh; these negative conditions are exacerbated during 

storm surge events also in the healthy forest.  

 Introduction 

Saltwater intrusion and flooding triggered by SLR (Sea Level Rise) and storm surges are the main 

drivers of coastal forest retreat and consequent marsh expansion (Kearney et 2019; Schieder & 

Kirwan, 2019; Tully et al. 2019; Doyle et al. 2010; DeSantis et al. 2007; Fagherazzi et al. 2019). 

Ghost forests, consisting of dead tree stands adjacent to marshes, are clear indicators of coastal 

forest retreats (Schieder & Kirwan, 2019). This process is prominent in low-lying areas, where 

saltwater intrusion and flooding can affect the coastal groundwater from above and below (Michael 

et al. 2013; Yang et al. 2018; Gleeson et al. 2011). Both higher sea levels and local geomorphology 

make these areas more prone to coastal transgression.  

Salinization and flooding events are threats for salt intolerant vegetation species and encourage 

ecological zonation. Shallow water table and high groundwater salinity affect tree survival, 

lowering photosynthetic activity (Antonellini & Mollema, 2010; Munns & Tester 2008). 

Increasing salinity values progressively kill salt-intolerant tree species, encouraging expansion of 

invasive vegetation and salt marsh establishment (Smith et al. 2013). For example, Phragmites 

australis is usually found at the lower border of a forest, where salinity conditions are brackish 

(Smith et al. 2013).  

Rainfall and evapotranspiration also affect local hydrology. Rainfall events can have a positive 

effect on coastal aquifers, reducing groundwater and soil salinity (Summer & Belaineh, 2005; 



Allen et al. 1998; Gardner et al., 1992). Vegetation canopy, radiation, temperature, wind intensity 

and pressure are the main variables regulating evapotranspiration (Cai et al. 2007). In a dense 

forest, evapotranspiration of understory vegetation is low, because of the limited radiation 

penetrating the canopy (Cao et al. 2006).  

Groundwater dynamics along coastal areas are often studied with numerical models (ex. Paldor & 

Michael, 2021; Geng et al. 2020; Yu et al. 2016) and field data (ex. Gardner et al. 2002; Thibodeau 

et al. 2011). Models simulate the overall response of groundwater to external inputs as a function 

of hydro-geological features in idealized domains. Field data allow to quantify local groundwater 

dynamics, determining the response to external inputs such as precipitation, evapotranspiration 

and storm surges. Collecting and studying long-term datasets is time-consuming. Here we present 

a novel approach to analyze hydrological data at the marsh forest boundary.  

Linear discriminant analysis (LDA) is mostly used to cluster and classify multivariate data 

(Rencher & Christensen, 2012). Ecologists and biologists used LDA to identify patterns in the 

collected datasets and the variables driving group separation (Stewart et al. 2013). For instance, 

ecological variations were estimated in the Peruvian Amazon using discriminant analysis (Correa-

Metrio et al. 2010). Vegetation data were classified to determine suitable habitats for avian species 

(Rice et al. 1983); water quality and physical-chemical data were also correlated to water plant 

species incidence (Wiegleb 1981). As far as we know, LDA was never used to cluster multivariate 

hydrological datasets. In this paper we apply LDA on groundwater and soil data collected in a 

coastal forest bordering a salt marsh from 2019 to 2022. Through this technique, we can spatially 

visualize the hydrological separation between groups at different ecological stages and relate 

results to the ecological variables collected in fieldwork campaigns. The strength of LDA is that 



we can fast know where hydrological conditions differ the most, which variables determine the 

difference, and how the group separation changes over time. 

Overall, the main goal of our analysis is: (1) to reduce the hydrological multivariate space in a 

simple 2-D space; (2) to determine key variables controlling the hydrological separation among 

sites; (3) to correlate clustering based on hydrological variables to ecological parameters at each 

forest site; (4) to interpret seasonal variations of hydrological parameters affecting the groundwater 

and soil dynamics. This approach produces a first overall snapshot of local hydrology, speeding 

up the analysis of intensive long-term datasets.  

Methods 

Study area 

We focus our research on a coastal forest bordering a salt marsh in Nassawadox, Delmarva 

Peninsula (VA) (Fig. 1a). The forest, occupying an area of 3 ha, is characterized by an average 

elevation of 1 m on NAVD88 (North America Vertical Datum) and a distance from the salt marsh 

ranging from 140 and 600 m. Soil samples collected every 20 cm until 1m below the ground 

surface classified the area as averagely consisting of 80% clay, 10% sand and 10% 

vegetation/roots. The forest is dominated by loblolly pines (Pinus taeda), and it is more or less 

affected by saltwater intrusion and flooding depending on distance from the salt marsh. Close to 

the salt marsh, (low forest) trees are barren or partially dead, and Phragmites australis encroaches 

the area (Chambers et al. 1999). Moving inland, the percentage of healthy trees increases. At 

intermediate distances, 150 m from the marsh (medium forest), shrubs of Myrica cerifera coexist 

with relatively healthy trees. At the farthest distances from the forest-marsh boundary (high forest) 

healthy trees dominate.  Six different forested sites were considered in this analysis. Two in the 



high forest, H5 and H7, two in the medium forest M1 and M2 and two in the low forest L1 and L6 

(Fig. 1b).  The described ecological patterns represent the evolution of the forest, affected by sea 

level rise and storm surges (Fig. 1b). In this area the climate is humid subtropical, with 

temperatures ranging from 5 °C in winter and 28 °C in summer, accordingly to NOAA (National 

Oceanic and Atmospheric Administration). During the summer season, conspicuous precipitation 

events occur frequently, and rainfall amounts are higher. According to data collected between 1991 

and 2020, mean precipitation measured at the NOAA Norfolk station (US USW00013750), 

reaches its monthly maximum of 13 cm in August, and rainy days are maximum in summer 

(around 15 days).  The shoreline is characterized by a semidiurnal tide, with mean amplitude of 2 

m on NAVD88 (NOAA station: 8631044 Wachapreague). In this area storm surges can occur 

during fall, mostly triggered to tropical cyclones; or during winter, caused by nor’easter storms. 

Nor’easters form at higher latitudes along the East Coast of North America, bringing wind, snow, 

rain and flooding to these regions.  

 

 

Figure 1: (a) Study area, (b) different ecological zonation and sites in the coastal forest. Images from ESRI 

(Environmental System Research Institute) Satellite Imagery. 



Hydrological Data  

Groundwater and soil moisture data were collected in six forested sites. Groundwater level, 

temperature and specific electrical conductivity (at 25 °C) were measured inside screened wells, 

1m deep below the ground surface, using a CTD-diver (Van Essen). Soil water content, 

temperature, and specific electrical conductivity (at 25 °C) were measured by TEROS devices 

(Meter Group), at each site. The sensors were placed 7 cm below the ground surface. Data 

collection started in January 2019 and data were recorded every hour. Data can be found in the 

VCR-LTER (Virginia Coast Reserve - Long Term Ecological Research) data portal (dataset 

ID:VCR22344) (Fagherazzi & Nordio, 2021). Here we consider data from June 2019 to May 2022. 

During this timeframe, four main storm surge events affected groundwater at all sites: Melissa 

tropical storm, which occurred between October 11-14, 2019, when sea level reached 1.42 m on 

NAVD88 at the Wachapreague NOAA station (id:8631044); two storm surges also occurred in 

May 30 and October 10, 2021, when sea level respectively reached 1.39 m and 1.37 m on 

NAVD88. Finally, in January 3, 2022 a strong storm surge was felt in each site, increasing sea 

level to 1.55 m on NAVD88. Tropical storm Wanda, which occurred between October 26 and 

November 7, 2021, was partially felt by the sensors, since groundwater level and electrical 

conductivity were already high from the previous storm surge. Four storm surges occurred in 

August 2019, April 2020,September 2020 and November 2021 and only affected the low forested 

sites. Precipitation data collected by NOAA in Norfolk city (VA) and in Salisbury (MD) 

(https://www.ncdc.noaa.gov/cag/) are used to correlate seasonal groundwater and soil data to 

freshwater external inputs. 

Hydrological data are coupled with ecological data collected at the same sites and reported in the 

VCR-LTER portal dataset (ID: VCR22354) (Gedan et al. 2022). Tree species were first identified 

http://www.vcrlter.virginia.edu/cgi-bin/showDataset.cgi?docid=knb-lter-vcr.349
https://www.ncdc.noaa.gov/cag/
http://www.vcrlter.virginia.edu/cgi-bin/showDataset.cgi?docid=knb-lter-vcr.361


and counted inside a 20x20m plot. For each tree, diameter at breast height (DBH) was measured 

at 1.37 m from tree base. Basal area, considered the most significant variable describing the 

difference between forest stages, was consequently calculated. An average basal area, independent 

of tree species, is considered in future analysis. Shrub species were identified in a 2.5 m-radius 

circle in each plot. We concentrate on the dominant species Myrica cerifera. Again, shrub basal 

area was calculated and analyzed. Non-woody vegetation data were collected in four to eight 

randomly placed 1x1m plots at each site. For each species, the percent cover was estimated using 

Domin - Krajina scale (Mueller-Dombois & Ellenberg, 1974). We concentrate the analysis on  

Phragmites australis, the species that firstly invade stressed forests and precedes marsh expansion. 

In fact, Phragmites australis can survive in brackish conditions (Smith et al. 2013).  

Linear Discriminant Analysis  

Discriminant analysis (DA) is a powerful tool to cluster and classify multivariate observations 

(Balakrishnama, S., & Ganapathiraju, A. 1998; Xanthopoulos et al. 2013). This analysis is used to 

examine the group separation in a two-dimensional space, where points of an original p-

dimensional space are represented in the best possible view, reducing their dimensionality. DA 

also determines the subset of original variables best separating the groups, and allows to rank the 

variables in terms of their contribution to the groups’ separation. Finally, the obtained discriminant 

functions can be used to allocate new points (Rencher and Christensen, 2012; Izenman 2013). 

Discriminant analysis supervised classifier is one of the basic and simplest classifiers used in many 

clustering and classification problems. There are two main types of DA classifiers, the linear 

discriminant analysis (LDA) and the quadratic discriminant analysis (QDA) classifiers (Tharwat 

2016). When the number of variables in the dataset is much higher than the number of samples for 

each class, regularized discriminant functions are preferred (Tharwat 2016; Wu et al. 1996).  



Before conducting a DA analysis, we need to check that the data conform to a multivariate normal 

distribution. Then, given the original variables Yi (i=1,…n), a linear combination of the original 

variables can be generated to separate groups :  

𝑍𝑍𝑖𝑖 = 𝑎𝑎𝑖𝑖1𝑌𝑌1 + 𝑎𝑎𝑖𝑖2𝑌𝑌2 + ⋯+ 𝑎𝑎𝑖𝑖𝑖𝑖𝑌𝑌𝑛𝑛                                                                                                 (1) 

The goal is to find the coefficients a that maximize the difference among groups. In other words, 

we need to find the largest among-group sums of squares for a given set of Zi’s (Rencher and 

Christensen, 2012; Gotelli and Ellison 2004). Considering H as the among-groups sum of squares 

and cross-products (SSCP) matrix and E as the between-groups SSCP, coefficients a can be found 

solving:  

𝒂𝒂′(𝐻𝐻𝒂𝒂− 𝜆𝜆𝜆𝜆𝒂𝒂) = 0                                                                                                                     (2) 

After determining the eigenvalues λ, the eigenvectors a can be finally calculated (Rencher and 

Christensen, 2012). Eigenvalues measure the importance of each discriminant function Zi. Wilks’ 

Λ-test, with χ-approximation, is finally conducted on the eigenvalues to assess the significant p 

dimensions of group separation (Rencher and Christensen, 2012). Principal component analysis 

(PCA) is a similar classifier, using linear combination of variables as previously described. 

Differently from DA, PCA is an unsupervised method that find the greatest extent of variance in a 

set of data (Stewart et al. 2014).  

Our dataset consists of 6 original variables: groundwater level (WL), groundwater conductivity 

(EC), groundwater temperature (T), soil water content (WC), soil conductivity (SEC) and soil 

temperature (ST). Variables are measured in each forest site. First, we test the normality 

distribution assumption. Second, we check for correlation among variables (linear correlation with 

significance level of 95%). This is important because multicollinearity can produce misleading 



results. If two variables are strongly correlated, one of them is removed from the final analysis. 

Because the variables describe different processes and have different unit of measurements, they 

are standardized (mean µz=0, variance σ=1).  

We then conduct yearly and seasonal DAs on the data. All the linear discriminant classifiers are 

first trained using 60% of data and then tested using the remaining 40% of data. Euclidean 

distances between centroids are compared over the seasons and years using ANOVA test and post-

hoc Tukey test with 90% significance level. lda command from MASS library in R-studio is used 

to conduct the analyses.  Finally, an interpretation of results is provided on the basis of ecological 

and hydro-meteorological data. A similar approach, using linear functions, allows us to reduce 

data dimensionality and to define the most dominant variables responsible for the ecological spatial 

patterns, giving an overview of the differences between sites and the effects of external 

hydrological inputs. 

Finally, an additional analysis is proposed. Data collected in H5 and in the marsh from June 2021 

to May 2022 are firstly classified using linear discriminant analysis. H5 data are considered as 

representative of ‘Healthy forest’ group and marsh data of ‘Marsh’ group. Data from the remaining 

groups are then classified based on the linear model obtained. According to Rencher and 

Christensen (2012), in a two-group classification an observation is assigned to ‘Healthy forest’ 

(group 1) if: 

𝑍𝑍 = 𝒂𝒂′𝑌𝑌 > 1
2

(𝑍𝑍1��� + 𝑍𝑍2���)                                                                                                                  (3) 

where 𝑍𝑍1��� and 𝑍𝑍2��� are the centroids of each group. Otherwise, it is assigned to the ‘Marsh’ group 

(group 2). In this way, we can estimate when and where forest is more stressed and compare the 

results with the ecological data.  



Results 

Hydrological data variations over the seasons 

Real data of groundwater level, conductivity, temperature, and soil water content, conductivity and 

temperature are shown in Fig. 2. According to the post-hoc Tukey test results, mean value of 

variables is significantly different (α<0.05) over the seasons. Groundwater level and conductivity, 

water content and soil conductivity (Fig. 2a,b,d,e) are usually lower during the summer season. 

Groundwater and soil temperature reach their peaks during summer season (Fig. 2c,f). Storm surge 

effects are mostly felt as increases in groundwater conductivity (fall 2019, fall 2021) (Fig. 2b). 

From Fig. 2 and from the datasets reported in VCR-LTER portal (Fagherazzi & Nordio, 2021), we 

can see the effects of the external inputs on the hydrological variables, but we struggle to easily 

explain the overall hydrological difference among the forested areas. 

Forest structure   

Mean tree basal areas measured in the high forest (H5 and H7) are significantly higher than those 

measured in low forest and intermediate forest (p-value <0.1) (Fig. 3a). This confirms the healthy 

state of trees in the high forest. No significant difference can be found in the shrub basal areas, in 

plots where shrubs of Myrica cerifera are present (Fig. 3b). Phragmites australis is present in each 

site except H5. The percent coverage is significantly higher in H7, M2 and L1 compared to the 

other stations (Fig. 3c).   

 



   

Figure 2: Real variables distribution over the season. Datasets are reported in the VCR-LTER data 
portal (dataset ID:VCR22344) (Fagherazzi & Nordio, 2021). 

http://www.vcrlter.virginia.edu/cgi-bin/showDataset.cgi?docid=knb-lter-vcr.349


 

Figure 3: (a) Tree basal area and (b) shrub basal area in six forested sites. (c) Praghmatis australis 
percent coverage and correspondent Domin-Krajina scale index in the three forested areas. Letters 

identify the post-hoc Tukey test results with 90% confidence level (Gedan et al. 2021). 

 

 

 



LDA yearly analysis and cluster identification 

LDA results, conducted on yearly data collected in 2020 and 2021, are shown in Fig. 2. In 2020 

no storm surge events were detected, while in 2021 two main storm surges occurred. Since ST and 

T were significantly correlated (R2=0.88, p<0.05), ST is neglected in the LDA. The first two linear 

discriminant functions LD1 and LD2 can explain more than 90% of the group distribution in a 2D-

plane. Accuracy of training and testing data model are around 96% for 2020 dataset and 80% for 

2021 dataset (Table 1-2, in Supplementary material). Water content in the soil (WC) and 

groundwater electrical conductivity (EC) are the dominant variables in LD1 and LD2, respectively, 

in for groups’ separation (Table 3 in Supplementary material).  In 2021, the contribution of the 

other variables increases. Linear discriminant classifiers can significantly (χ2>χcrit
2) separate 

groups in the 2020 dataset. LD1 and LD2 for high forested sites range respectively from -7 to -2 

and from -5 to 5. This suggests low WC and EC values in the high-forest sites. Medium-forest 

values range from -2 to 5 in LD1 and from -2 to 2 in LD2, indicating modest WC and EC values 

in the medium site.  Low forest sites differ from each other. LD2 values for L1 are negative, while 

they are positive for L6 (Fig. 4a). This suggests that the L1 cluster is dominated by high electrical 

conductivity while L6 by high soil water content (Fig. 4a). The group separation, expression of the 

hydrological differences, suggests not only a difference in the ecology of the three forested zones 

(low, medium, and high), but also an ecological difference between sites in the same zone, in the 

high and low forest. Ellipses, representing variance of data, are larger for clusters L1 and L6. LDA 

performed on the 2021 dataset does not clearly separate groups in a 2D-plane (only LD1 χ2>χcrit
2). 

EC and WC are still the dominant variables in the group separation and variances are quite large 

for almost all clusters (Fig. 4b). This cluster collapsing can be correlated to storm surge events 

occurring in spring and fall 2021. Centroids coordinates in both 2020 LDA and 2021 LDA are 



calculated and compared (Fig. 5, Fig. S1 in Supplementary material). On average, distance 

between clusters in the 2020 analysis is significantly higher (p<0.1) than the distance in 2021. 

Moreover, in 2020 distances between sites in the same forest area are reduced and distances among 

sites in different areas are maximum (Fig. S1 in Supplementary material). 

 

Figure 4: LDA results for datasets collected in 2020 (a) and 2021 (b). Arrows are proportional to the 
linear function loadings. WL=groundwater level, EC= groundwater electrical conductivity, 

T=temperature, WC= soil water content, SEC=soil electrical conductivity. 

 

 

 

Figure 5: Euclidean distances between centroids in 2020 and 2021. Letters represent the post-hoc test 
results after t-test (90% significance level). Black arrow identifies the occurrence of storm surge events. 

 

 

 



Seasonal patterns, external inputs and ecological change 

LDA analysis for each season from summer 2019 to spring 2022 is conducted (Fig. 6). The linear 

discriminant functions (LD1 and LD2) explain more than 90% of the group separation in a 2-D 

plane. Accuracy of training and testing matrices range from 60% to 100% (Table 4-5, 7-10, 12-15, 

17-18 in Supplementary material). WC and EC variables better separate the clusters in winter, 

spring and fall seasons (Fig. 6 c,d,f, n Table 6-11-16-19 in Supplementary material) when no storm 

surges are detected. During summer, the contribution of temperature (T) in linear discriminant 

functions increases (Fig. 6 e,i). This occurs because temperature reaches high values in the low 

sites in summer months. A general trend can be recognized considering seasons without storm 

surges. In winter, clusters are separated while in summer they reduce the distances from each-other 

(Fig. 6b). When storm surges occur, the distance between clusters also decreases (Fig. 6a,b,h,l,m, 

Fig.7, Fig. S2 in Supplementary material). In these occasions the LDA is not able to clearly 

separate the groups and the importance of each variable in the linear discriminant functions tends 

to be equal. In spring and fall of 2020, two storm surges only partially affected the low sites (Fig. 

6 d,f). These surges contributed to increase the distance between the low forest clusters and the 

others, and to increase the ellipses dimension relative to the low forest sites. The effect of the storm 

surge of September 2020 was still felt in winter 2021, when the cluster distances reached maximum 

values (Fig. 6g, Fig. 7c). The storm event that occurred in winter 2022 was felt in the low and 

medium forest. As a consequence, distances between low and medium forest clusters reduced, 

separating the clusters from the high forest (Fig. 6n). An increase in distance among clusters is 

regulated by linear discriminant coefficients (Table 6-11-16-19). When coefficients for EC and 

WC are higher the distance positively increases (winter seasons with no storm surge events), when 

they decrease the distance decreases too. Mean coefficient trends associated to EC and WC in LD1 



and LD2 represents the fluctuations of distances over the seasons. The distance decrease that 

occurred in summer is correlated to a decrease in the linear discriminant coefficients for both WC 

and EC (Fig. 7b). During the storm surge event occurred in fall 2020, groundwater conductivity 

increase is felt in the lower area over the next winter season. Here the coefficient of both WC and 

EC reached their peaks (Fig. 7b). On the other hand, during storm surge events felt in the entire 

domain, coefficients are low, because representative of a homogenous condition of shut down 

where linear discriminant analysis struggles to better separate group. Seasonal trends can be related 

to cumulative precipitation. During summer, higher rainfall amounts are measured in the study 

area (Fig. 7a).  

 

 

 

 

 

 

 

 

 

 



 

Figure 6: LDA results for each season from 2019 to 2022. Arrows are proportional to the linear function 
loadings. WL=groundwater level, EC= groundwater electrical conductivity, T=temperature, WC= soil 

water content, SEC=soil electrical conductivity. Note: in (g) the x- and y-axis are different from the other 
plots because values are higher. 



 

Figure 7: (a) Seasonal cumulative precipitation from 2019 to 2021 collected by NOAA in Norfolk city 
(VA). (b) Trends of absolute values of the mean coefficient of LD1 and LD2 for WC and EC over the 

seasons. (c)Euclidean distances between centroids over seasons from 2019 to 2021. Letters represent the 
post-hoc test results after ANOVA test (90% significance level). Black arrows identify the occurrence of 

storm surge events in all sites. Gray arrows identify storm surge events only felt in the low sites. 

 

Healthy vs Marsh: classification of points from the groups and storm surge effects 

Linear discriminant functions are then calculated using data collected from June 2021 to May 2022 

in H5 and Marsh sites. H5 is chosen as representative of ‘Healthy forest’, since no Phragmites 

australis stems are detected and tree basal area reach its peak here. The “Marsh” site is chosen as 



the second end member, where forest vegetation has been fully replaced by marsh vegetation. Both 

training and testing accuracies are 100% during the period analyzed. Because only two groups are 

present, one linear discriminant function is used to separate them. The model is used then to 

classify data from the remaining groups (Fig. 8). H7 station is classified as ‘Healthy forest’ 87% 

of the time (Fig. 8a). Storm surge event occurred in fall 2021 (SS1) changes hydrological 

conditions here, making this site more similar to the Marsh site. This effect is felt for around 1 

month. The effects of the storm surge occurred in winter 2022 (SS3) cannot be estimated due to 

missing data. Similarly, M1 station is classified as ‘Healthy forest’ 68% of the time (Fig. 8b) and 

their hydrological conditions are closer to those in the Marsh for around 2 months after the storm 

surge event in fall 2021 (SS1) and for around 1 month after the storm surge event in winter 2022 

(SS3). Station M2 is classified as ‘Healthy forest’ 52% of the time (Fig. 8c), and storm surges in 

fall 2021 (SS1) and winter 2022 (SS3) make the hydrological conditions more similar to the Marsh 

conditions for around 5 months. For both sites, the effect of the storm surge of late spring 2021 

(May 30, 2021) are felt. Results for M1 and M2 confirm the intermediate evolution stage of the 

medium forest in comparison to the high forest. In L1 and L6, the forest is classified as ‘Marsh’ 

99% and 73% of the time respectively (Fig. 8d,e). Here, in addition to SS1 and SS3, another storm 

surge event is felt in fall 2021 (SS2). In L6 forest is classified as ‘Healthy forest’ from August to 

October 2021, when hydrological variables recover from the storm surge event occurred in late 

spring 2021.   



 

Figure 8: Classification of points from clusters H7, M1, M2, L1 and L6 using Healthy forest-Marsh 
model derived from linear discriminant analysis. Note: SS1= Storm surge 1, SS2= Storm surge 2, 

SS3=Storm surge 3. 

 

 



Discussion 

Overall, LDA is a powerful tool to separate and classify clusters based on hydrological variables. 

This new approach allows to identify the variables most contributing to groups’ separation. The 

analysis of single variables in long-term series is time consuming, while LDA can detect general 

trends reducing the analysis dimensions to two.  

Group separation: feedbacks between hydrology and ecology 

Previous works indicate that groundwater levels control plants diversity and forest retreat 

(Antonellini & Mollema, 2010; Williams et al. 1999; Chen et al. 2006); in our results, the role of 

WL in the separation of the clusters is negligible. Contrary to forest margins that are sloping (e.g. 

Nordio and Fagherazzi, 2021) here we could suppose that the flat landscape is characterized by 

limited hydraulic gradients that do not influence the hydrological budget and consequently 

ecological zonation. WC and EC are instead the main variables controlling the hydrological 

diversity of the sites. These variables, expression of flooding events (Unger et al. 2009), are more 

sensible to the external drivers. The first layer of soil is in fact subject to rapid infiltration and 

exfiltration when rainfall events and temperature changes occur.  

In the absence of storm surges, our results not only confirm a difference in the hydrological 

variables in the three forested zones, but also between sites in the same zone. This is in accordance 

with ecological zonation at the forest boundary (Williams et al. 1999a; Williams et al. 1999b). 

Williams et al. (1999) studied Sabal palmetto zonation in a coastal forest in Florida. In their 

subplots, characterized by a mean salinity of 30 mS/cm and a large number of flooding weeks, the 

number of dead stands was respectively 3 times and ten times higher than in the intermediate and 

healthy forest. As a consequence, marsh grass cover increased going from the healthy forest to the 



dieback area. Trees basal area is lower in the low forest compared to the high forest, since this 

parameter is likely correlated to flooding and salinization events. Krauss et al. (2009) showed that 

Bald cypress (Taxodium distichum) basal area was affected by flooding events and salinity values. 

Frequent flooding and high salinity slows down basal area growth.   

In our analysis, lower LD1 values are reached in the high forested area (sites H5 and H7). Here 

groundwater salinity is on average 5 ppt, the maximum tolerance level where Pinus taeda can 

survive without presenting stress (Pezeshki 1992). Where LD1 is higher, hydrological difference 

between sites is more evident. Both high EC in L1 and high WC in L6 are toxic for in-situ tree 

species, likely triggering dieback (Poulter et al. 2008). The reduced forest canopy in the low forest 

allows the penetration of solar radiation and encourages Phragmites australis expansion in late-

spring/summer seasons. Shaw et al. (2022), studied Phragmites australis encroachment in coastal 

forests in the Eastern shore of Chesapeake Bay (VA). Although their results suggest that 

Phragmites australis can survive in low-light, this plant prefers high-light conditions. Before 

marsh vegetation establishment, Phragmites australis is the dominant species in areas dominated 

by saltwater intrusion and flooding events. Therefore, Phragmites australis presence represents a 

first stage in coastal forest retreat.  

The effect of external drivers on seasonal patterns   

Our results suggest a seasonal trend in hydrological variables. Both rainfall and evapotranspiration 

seem to improve the groundwater conductivity and soil water content conditions in the low sites 

during summer, making them closer to high-forest soil conditions.  A Higher water content and a 

reduction in conductivity in the low forest (L1 and L6), could be correlated to rainfall and 

evapotranspiration during the summer season. Where the water content is higher (L6) the decrease 

due to evapotranspiration is higher (Ren et al. 2022). Where the conductivity is higher (L1) the 



decrease due to rainfall could be higher due to the dilution effect. As consequences, rainfall affects 

more the medium and low forest, causing a decrease in EC and moving M1, M2, L1 and L6 clusters 

toward high forest conditions. Moreover, during summer, evapotranspiration increases, mainly due 

to higher temperature and solar radiation. In low and medium forest sites, the decrease of WC due 

to evapotranspiration is more significant, reducing the clusters distance from the high forest.  

Other reasons could explain this trend in our data. Tree canopies can intercept large amounts of 

rainfall before they reach the soil (Aston 1979; Xiao & McPherson 2011). Cao et al. (2006) 

estimated that rainfall interception in a mid-rotation loblolly pine plantation in the coastal plain of 

North Carolina ranged from 17% to 26%. Being the trees in the low forest barren or dead, more 

rainfall can reach the soil and infiltrate, creating milder edaphic conditions better suited for trees. 

In the high forest instead, where trees are healthy, canopy rainfall interception could limit the 

rainfall amount reaching the soil (Cao et al. 2006). During summer, evapotranspiration is higher 

mainly due to highr temperatures. This contribute to lower soil water content, which is important 

for tree roots, that prefer a dry environment (Pezeshki 1991; Poulter et al. 2008). The presence of 

new invasive vegetation, mostly growing in the summer season in the low forest, could also 

encourage the water content decrease trough transpiration.  

 Once this happens, the soil is ready to gather water in the next flooding event. Because plants 

cannot long live in anoxia conditions, this dynamic is good to encourage soil draining. At the same 

time, drier soils are more prone to be filled once storm surge events occur, triggering survival of 

in-situ vegetation. Overall, we can conclude that rainfall and evapotranspiration are essential for 

the seasonal hydrology of the sites. During summer they can improve the low site hydrological 

conditions. This is good for both trees and the establishment of new invasive vegetation, exploiting 

the less harsh environmental conditions.   



When storm surge events occur, groundwater level, conductivity, water content, and soil 

conductivity reach maximum values. If the storm surge affects all sites, the groundwater and soil 

conditions reach similar values everywhere, justifying cluster collapsing. Storm surge events 

homogenize hydrological conditions, increasing groundwater conductivity and soil water content 

in the high forest. The homogenizing process strongly affects the biodiversity and the original 

ecosystem functioning (Konar et al. 2013). Therefore, these events drive the forest retreat and 

marsh establishment (Fagherazzi et al. 2019; Kirwan & Gedan, 2019; Kearney et al. 2019). When 

high conductivity values are reached in the high forest, Pinus taeda photosynthetic activity, 

stomatal conductance, and net carbon assimilation drastically decrease (Munns & Tester, 2008; 

Pezeshki 1992). When storm surges are only felt in the low forest sites, they make groundwater 

and soil conditions harsher, differencing these sites from the others. 

Hydrological variables in the low forest reach values more similar to those reached in the marsh 

site. Classification done using linear discriminant analysis with two classes is not only easy to 

perform, but it clearly shows differences among forested areas and their hydrological closeness to 

the salt marsh or healthy forest. More frequent storm surge events in the low sites are encouraging 

the marsh transgression here. Results from the LDA analyses together with the ecological data 

reinforce this thesis. The medium forest mirrors intermediate conditions of hydrological 

conditions, and represents an intermediate stage of the transition. Here storm surge events have a 

stronger impact in terms of EC and WC than in the high forest. Overall, storm surge effects are 

essential drivers for the forest transgression over the years.  

Conclusions 

Linear discriminant analysis can easily describe the general trend of hydrological variables along 

the marsh-forest ecotone. Using this tool, we can: (1) determine the variables that better separate 



the hydrology of each site; (2) visualize seasonal hydrological patterns over the years; and (3) 

identify the effects of storm surge events. Our results show that soil water content and groundwater 

electrical conductivity are the dominant variables in the linear discriminant functions. 

Hydrological differences among sites are related to ecological stages of the forest retreat. The 

feedbacks between hydrology and ecology are essential to understand hydrological conditions in 

summer. In this season, high evapotranspiration in the low sites combined with significant rainfall 

decrease groundwater salinity and soil water content, helping the trees to stay alive. Large storm 

surge events tend to homogenize groundwater and soil conditions in the entire forest boundary, 

accelerating forest retreat. Small surges affect only the low forest, enhancing the hydrological 

difference between the low forest sites and the others. Hydro-ecological zonation is confirmed by 

the classification analysis using LDA, where low forest is classified more than 80% of the time as 

salt marsh, indicating that salt marsh transgression is occurring in these areas, driven by more 

frequent storm surges.  
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Supplementary material  

Table 1: Accuracy matrices for training and testing data in 2020.  

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 9

6%
 H5 5045 15 0 0 13 73 

H7 181 5288 0 0 0 0 
L1 0 0 5244 0 0 0 
L6 0 0 35 4834 1 0 
M1 59 0 0 0 4959 39 
M2 0 0 76 432 301 5221 

        

Ac
cu

ra
cy

 
te

st
in

g 
96

%
 H5 3353 9 0 0 7 44 

H7 100 3472 0 0 0 0 
L1 0 0 3368 0 0 0 
L6 0 0 25 3227 0 0 
M1 45 0 0 0 3288 30 
M2 0 0 36 291 214 3376 

 

Table 2: Accuracy matrices for training and testing data in 2021. 

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 

96
%

 

H5 4516 328 0 0 0 12 
H7 753 3388 0 122 795 660 
L1 0 557 4777 24 302 313 
L6 0 1 0 4981 0 281 
M1 0 247 0 1 3834 447 



M2 0 526 351 159 322 3588 
        

Ac
cu

ra
cy

 
te

st
in

g 
96

%
 H5 2976 224 0 0 1 8 

H7 515 2185 0 99 547 414 
L1 0 385 3040 22 194 208 
L6 0 0 0 3222 0 216 
M1 0 156 0 4 2558 301 
M2 0 347 242 126 207 2312 

 

Table 3: coefficients of linear classifiers for each variable in 2020 and 2021. 

 2020 2021 
Original Variables LD1 LD2 LD1 LD2 

WL -0.79 -1.04 -1.23 0.10 
EC 2.25 -2.87 -0.10 2.75 
T 0.54 -0.49 -0.60 -0.25 

WC 3.54 2.26 2.83 -0.69 
SEC -1.24 0.17 -0.79 -1.61 

 

 

Figure S1: Euclidean distances between centroids in 2020 (a) and 2021 (b) 

. 

 

Table 4: Accuracy matrices for training and testing data in summer 2019. 

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 6

3%
 H5 1138 254 7 96 0 32 

H7 234 959 196 35 2 2 
L1 0 0 455 232 0 0 
L6 0 0 67 607 2 176 
M1 0 120 603 38 902 67 
M2 0 0 28 341 433 1046 

        



Ac
cu

ra
cy

 
te

st
in

g 
65

%
 H5 701 166 10 68 0 20 

H7 159 637 128 29 2 0 
L1 0 0 311 135 0 0 
L6 0 0 43 431 0 115 
M1 0 96 362 24 624 37 
M2 0 0 22 196 267 737 

 

Table 5: Accuracy matrices for training and testing data in fall 2019. 

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 8

4%
 H5 1056 238 0 0 0 0 

H7 264 1022 1 0 5 93 
L1 0 0 1270 5 3 0 
L6 0 0 0 1059 0 64 
M1 0 0 0 212 1026 62 
M2 0 0 37 3 262 1035 

        

Ac
cu

ra
cy

 
te

st
in

g 
83

%
 H5 651 209 0 0 0 0 

H7 165 667 1 0 3 56 
L1 0 0 811 4 5 0 
L6 0 0 0 705 0 47 
M1 0 0 0 148 677 46 
M2 0 0 16 0 155 733 

 

Table 6: coefficients of linear classifiers for each variable for each season in 2019. 

 Summer Fall 
Original 
Variables LD1 LD2 LD1 LD2 

WL -0.61 -0.12 -1.54 -0.39 
EC 0.76 -1.23 -0.60 3.45 
T -0.18 -0.25 -0.65 -0.47 

WC 2.53 1.26 5.22 -1.52 
SEC -1.44 -0.62 -0.41 -1.17 

 

Table 7: Accuracy matrices for training and testing data in winter 2020. 

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 1

00
%

 H5 1345 0 0 0 0 0 
H7 0 1293 0 0 0 0 
L1 0 0 1331 0 0 0 
L6 0 0 0 1309 0 0 
M1 0 0 0 0 1316 0 
M2 0 0 0 0 0 1298 

        



Ac
cu

ra
cy

 
te

st
in

g 
10

0%
 H5 838 0 0 0 0 0 

H7 0 891 0 0 0 0 
L1 0 0 853 0 0 0 
L6 0 0 0 875 0 0 
M1 0 0 0 0 868 0 
M2 0 0 0 0 0 886 

 

 

Table 8: Accuracy matrices for training and testing data in spring 2020. 

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 1

00
%

 H5 1372 0 0 0 0 0 
H7 0 1333 0 0 0 0 
L1 0 0 1356 0 0 0 
L6 0 0 0 1349 0 0 
M1 0 0 0 0 1339 0 
M2 0 0 0 0 0 1323 

        

Ac
cu

ra
cy

 
te

st
in

g 
10

0%
 H5 860 0 0 0 0 0 

H7 0 899 0 0 0 0 
L1 0 0 876 0 0 0 
L6 0 0 0 883 0 0 
M1 0 0 0 0 893 0 
M2 0 0 0 0 0 909 

 

Table 9: Accuracy matrices for training and testing data in summer 2020. 

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 9

2%
 H5 1371 0 0 0 108 40 

H7 0 1333 0 0 0 0 
L1 0 0 1356 0 0 0 
L6 0 0 0 1349 0 0 
M1 1 0 0 0 904 150 
M2 0 0 0 0 327 1133 

        

Ac
cu

ra
cy

 
te

st
in

g 
92

%
 H5 860 0 0 0 71 30 

H7 0 899 0 0 0 0 
L1 0 0 876 0 0 0 
L6 0 0 0 882 0 0 
M1 0 0 0 0 607 96 
M2 0 0 0 1 215 783 

 

Table 10: Accuracy matrices for training and testing data in fall 2020. 

  Actual      



 Predicted H5 H7 L1 L6 M1 M2 
Ac

cu
ra

cy
 

tr
ai

ni
ng

 1
00

%
 H5 1372 0 0 0 0 0 

H7 0 1333 0 0 0 0 
L1 0 0 1356 0 0 0 
L6 0 0 0 1349 0 0 
M1 0 0 0 0 1339 0 
M2 0 0 0 0 0 1323 

        

Ac
cu

ra
cy

 
te

st
in

g 
10

0%
 H5 860 0 0 0 0 0 

H7 0 899 0 0 0 0 
L1 0 0 876 0 0 0 
L6 0 0 0 883 0 0 
M1 0 0 0 0 893 0 
M2 0 0 0 0 0 909 

 

 

Table 11: coefficients of linear classifiers for each variable for each season in 2020. 

 Winter Spring Summer Fall 
Original 
Variables LD1 LD2 LD1 LD2 LD1 LD2 LD1 LD2 

WL -2.79 -0.75 -0.96 0.57 -0.03 -0.79 -2.23 -0.99 
EC 6.15 8.86 3.38 10.32 -6.72 -1.47 2.12 -6.07 
T -2.58 -0.53 1.59 0.49 -3.54 -0.69 0.70 3.04 

WC 7.02 -9.51 16.84 -5.94 -0.86 2.94 7.54 4.16 
SEC -3.30 -1.33 -2.81 0.42 -0.12 -1.26 -2.72 -2.90 

 

Table 12: Accuracy matrices for training and testing data in winter 2021. 

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 1

00
%

 H5 1333 0 0 0 0 0 
H7 0 1278 0 0 0 0 
L1 0 0 1328 0 0 0 
L6 0 0 0 1290 0 0 
M1 0 0 0 0 1300 0 
M2 0 0 0 0 0 1272 

        

Ac
cu

ra
cy

 
te

st
in

g 
10

0%
 H5 827 0 0 0 0 0 

H7 0 882 0 0 0 0 
L1 0 0 832 0 0 0 
L6 0 0 0 870 0 0 
M1 0 0 0 0 860 0 
M2 0 0 0 0 0 888 

 



Table 13: Accuracy matrices for training and testing data in spring 2021. 

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 7

9%
 H5 1086 10 0 0 0 4 

H7 286 1012 0 0 18 6 
L1 0 108 1321 1 64 0 
L6 0 0 0 1109 0 246 
M1 0 203 0 171 1175 361 
M2 0 0 35 68 82 706 

        

Ac
cu

ra
cy

 
te

st
in

g 
80

%
 H5 697 10 0 0 0 1 

H7 163 684 0 0 15 2 
L1 0 81 864 3 43 0 
L6 0 0 0 713 0 172 
M1 0 124 0 127 782 236 
M2 0 0 12 40 53 498 

 

Table 14: Accuracy matrices for training and testing data in summer 2021. 

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 9

6%
 H5 1372 0 0 0 0 0 

H7 0 1333 0 0 29 0 
L1 0 0 1356 0 0 0 
L6 0 0 0 1346 0 0 
M1 0 0 0 3 1138 119 
M2 0 0 0 0 172 1204 

        

Ac
cu

ra
cy

 
te

st
in

g 
96

%
 H5 860 2 0 0 0 0 

H7 0 897 0 0 6 0 
L1 0 0 876 0 0 0 
L6 0 0 0 883 0 0 
M1 0 0 0 0 748 73 
M2 0 0 0 0 139 836 

 

Table 15: Accuracy matrices for training and testing data in fall 2021. 

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 7

9%
 H5 1143 64 0 0 40 21 

H7 71 929 79 0 216 226 
L1 0 23 1008 2 77 0 
L6 0 1 0 1137 0 4 
M1 105 155 0 1 791 21 
M2 1 4 161 141 162 994 

        

A c c u    

H5 699 70 0 0 29 18 



H7 36 598 58 1 136 156 
L1 0 11 646 0 37 0 
L6 0 0 0 766 0 1 
M1 80 128 0 0 554 4 
M2 1 1 98 88 94 691 

 

Table 16: coefficients of linear classifiers for each variable for each season in 2021. 

 Winter Spring Summer Fall 
Original 
Variables LD1 LD2 LD1 LD2 LD1 LD2 LD1 LD2 

WL -0.57 -1.45 -1.05 -0.29 -0.54 1.31 -1.81 -0.18 
EC 83.71 0.04 1.41 -2.77 6.73 5.64 1.05 -2.54 
T -2.94 2.77 -0.84 0.67 6.09 2.48 -0.34 1.18 

WC -13.11 23.23 2.57 1.18 2.01 -4.33 2.20 1.38 
SEC -18.12 -0.50 -1.85 1.64 -0.56 -0.66 -0.17 1.52 

 

 

Table 17: Accuracy matrices for training and testing data in winter 2022. 

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 9

3%
 H5 1268 0 0 0 0 0 

H7 0 668 0 0 0 0 
L1 0 0 643 0 0 0 
L6 0 0 0 1254 0 0 
M1 0 0 6 0 880 15 
M2 0 0 0 6 396 1234 

        

Ac
cu

ra
cy

 
te

st
in

g 
93

%
 H5 791 0 0 0 0 0 

H7 0 447 0 0 0 0 
L1 0 0 440 0 0 0 
L6 0 0 0 796 0 0 
M1 0 0 1 0 546 7 
M2 0 0 0 4 289 878 

 

Table 18: Accuracy matrices for training and testing data in spring 2022. 

  Actual      
 Predicted H5 H7 L1 L6 M1 M2 

Ac
cu

ra
cy

 
tr

ai
ni

ng
 1

00
%

 H5 1054 0 0 0 0 0 
H7 0 1022 0 0 0 0 
L1 0 0 997 0 0 0 
L6 0 0 0 1041 0 0 
M1 0 0 0 0 1034 0 
M2 0 0 0 0 0 992 

        



Ac
cu

ra
cy

 
te

st
in

g 
10

0%
 H5 662 0 0 0 0 0 

H7 0 672 0 0 0 0 
L1 0 0 695 0 0 0 
L6 0 0 0 651 0 0 
M1 0 0 0 0 658 0 
M2 0 0 0 0 0 699 

 

Table 19: coefficients of linear classifiers for each variable for each season in 2022. 

 Winter Spring 
Original 
Variables LD1 LD2 LD1 LD2 

WL -0.53 -0.18 -0.42 0.30 
EC 0.36 4.27 18.90 6.48 
T -0.85 0.00 0.78 -0.19 

WC 6.37 -4.13 -0.47 -10.81 
SEC -0.46 0.61 -2.36 0.71 



 

Figure S2: Euclidean distances between centroids over seasons from 2019 to 2022. 


