Clustering of hydrological variables across a coastal forest bordering a salt marsh
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Abstract

Sea level rise and storm surges drive coastal forest retreat and salt marsh expansion. Salt intolerant
tree species cannot survive flooding and high soil salinity. Salinization is exacerbated by long-
lasting flooding events. Both salinization and flooding drive ecological zonation in coastal areas.
Hydrological variables, if coupled with ecological surveys, can explain the different stages of
coastal forest retreat and marsh encroachment. In this research, a long-term series of hydrological
variables collected along transects from marsh to inner forest are analyzed. Linear discriminant
analysis (LDA) is used to identify the hydrological variables responsible for the forest-marsh
gradient and their seasonal patterns. Water content in the soil (WC) and groundwater electrical
conductivity (EC) were found to be the main variables responsible for the hydrological difference
among the sites. Higher values of WC and EC were found in the low forest area near the marsh,
as it is reflected by ecological data. Seasonal LDA data suggest that the sites are more
hydrologically different during winter (higher distance among clusters of variables) and similar
during summer (less distance among clusters). In the study area, higher rainfall occurred during
summer, decreasing groundwater EC in areas characterized by less canopy cover (dying forest).
Evapotranspiration in the low forest is higher due to more radiation reaching the soil and new
invasive vegetation. Both processes move these sited closer to the high forest, which is less
impacted by sea level rise. During storm surge events the distance between clusters also decreases,
because of uniform salinization and flooding. We conclude that vegetation gradients at the forest-
marsh boundary are supported by hydrological gradients during winter months in the absence of

storm surges. An additional analysis is carried out to determine whether hydrological values



collected in each forested area are closer to those of the healthy forest or to the marsh. Results
clearly support the previous LDA analysis and the ecological data collected, showing that negative
conditions for trees occur closer to the marsh; these negative conditions are exacerbated during

storm surge events also in the healthy forest.

Introduction

Saltwater intrusion and flooding triggered by SLR (Sea Level Rise) and storm surges are the main
drivers of coastal forest retreat and consequent marsh expansion (Kearney et 2019; Schieder &
Kirwan, 2019; Tully et al. 2019; Doyle et al. 2010; DeSantis et al. 2007; Fagherazzi et al. 2019).
Ghost forests, consisting of dead tree stands adjacent to marshes, are clear indicators of coastal
forest retreats (Schieder & Kirwan, 2019). This process is prominent in low-lying areas, where
saltwater intrusion and flooding can affect the coastal groundwater from above and below (Michael
etal. 2013; Yang et al. 2018; Gleeson et al. 2011). Both higher sea levels and local geomorphology

make these areas more prone to coastal transgression.

Salinization and flooding events are threats for salt intolerant vegetation species and encourage
ecological zonation. Shallow water table and high groundwater salinity affect tree survival,
lowering photosynthetic activity (Antonellini & Mollema, 2010; Munns & Tester 2008).
Increasing salinity values progressively kill salt-intolerant tree species, encouraging expansion of
invasive vegetation and salt marsh establishment (Smith et al. 2013). For example, Phragmites
australis 1s usually found at the lower border of a forest, where salinity conditions are brackish

(Smith et al. 2013).

Rainfall and evapotranspiration also affect local hydrology. Rainfall events can have a positive

effect on coastal aquifers, reducing groundwater and soil salinity (Summer & Belaineh, 2005;



Allen et al. 1998; Gardner et al., 1992). Vegetation canopy, radiation, temperature, wind intensity
and pressure are the main variables regulating evapotranspiration (Cai et al. 2007). In a dense
forest, evapotranspiration of understory vegetation is low, because of the limited radiation

penetrating the canopy (Cao et al. 2006).

Groundwater dynamics along coastal areas are often studied with numerical models (ex. Paldor &
Michael, 2021; Geng et al. 2020; Yu et al. 2016) and field data (ex. Gardner et al. 2002; Thibodeau
et al. 2011). Models simulate the overall response of groundwater to external inputs as a function
of hydro-geological features in idealized domains. Field data allow to quantify local groundwater
dynamics, determining the response to external inputs such as precipitation, evapotranspiration
and storm surges. Collecting and studying long-term datasets is time-consuming. Here we present

a novel approach to analyze hydrological data at the marsh forest boundary.

Linear discriminant analysis (LDA) is mostly used to cluster and classify multivariate data
(Rencher & Christensen, 2012). Ecologists and biologists used LDA to identify patterns in the
collected datasets and the variables driving group separation (Stewart et al. 2013). For instance,
ecological variations were estimated in the Peruvian Amazon using discriminant analysis (Correa-
Metrio et al. 2010). Vegetation data were classified to determine suitable habitats for avian species
(Rice et al. 1983); water quality and physical-chemical data were also correlated to water plant
species incidence (Wiegleb 1981). As far as we know, LDA was never used to cluster multivariate
hydrological datasets. In this paper we apply LDA on groundwater and soil data collected in a
coastal forest bordering a salt marsh from 2019 to 2022. Through this technique, we can spatially
visualize the hydrological separation between groups at different ecological stages and relate

results to the ecological variables collected in fieldwork campaigns. The strength of LDA is that



we can fast know where hydrological conditions differ the most, which variables determine the

difference, and how the group separation changes over time.

Overall, the main goal of our analysis is: (1) to reduce the hydrological multivariate space in a
simple 2-D space; (2) to determine key variables controlling the hydrological separation among
sites; (3) to correlate clustering based on hydrological variables to ecological parameters at each
forest site; (4) to interpret seasonal variations of hydrological parameters affecting the groundwater
and soil dynamics. This approach produces a first overall snapshot of local hydrology, speeding

up the analysis of intensive long-term datasets.

Methods

Study area

We focus our research on a coastal forest bordering a salt marsh in Nassawadox, Delmarva
Peninsula (VA) (Fig. 1a). The forest, occupying an area of 3 ha, is characterized by an average
elevation of 1 m on NAVDS8S8 (North America Vertical Datum) and a distance from the salt marsh
ranging from 140 and 600 m. Soil samples collected every 20 cm until 1m below the ground
surface classified the area as averagely consisting of 80% clay, 10% sand and 10%
vegetation/roots. The forest is dominated by loblolly pines (Pinus taeda), and it is more or less
affected by saltwater intrusion and flooding depending on distance from the salt marsh. Close to
the salt marsh, (low forest) trees are barren or partially dead, and Phragmites australis encroaches
the area (Chambers et al. 1999). Moving inland, the percentage of healthy trees increases. At
intermediate distances, 150 m from the marsh (medium forest), shrubs of Myrica cerifera coexist
with relatively healthy trees. At the farthest distances from the forest-marsh boundary (high forest)

healthy trees dominate. Six different forested sites were considered in this analysis. Two in the



high forest, H5 and H7, two in the medium forest M1 and M2 and two in the low forest L1 and L6
(Fig. 1b). The described ecological patterns represent the evolution of the forest, affected by sea
level rise and storm surges (Fig. 1b). In this area the climate is humid subtropical, with
temperatures ranging from 5 °C in winter and 28 °C in summer, accordingly to NOAA (National
Oceanic and Atmospheric Administration). During the summer season, conspicuous precipitation
events occur frequently, and rainfall amounts are higher. According to data collected between 1991
and 2020, mean precipitation measured at the NOAA Norfolk station (US USW00013750),
reaches its monthly maximum of 13 c¢cm in August, and rainy days are maximum in summer
(around 15 days). The shoreline is characterized by a semidiurnal tide, with mean amplitude of 2
m on NAVD88 (NOAA station: 8631044 Wachapreague). In this area storm surges can occur
during fall, mostly triggered to tropical cyclones; or during winter, caused by nor’easter storms.
Nor’easters form at higher latitudes along the East Coast of North America, bringing wind, snow,

rain and flooding to these regions.
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Figure 1: (a) Study area, (b) different ecological zonation and sites in the coastal forest. Images from ESRI

(Environmental System Research Institute) Satellite Imagery.



Hydrological Data

Groundwater and soil moisture data were collected in six forested sites. Groundwater level,
temperature and specific electrical conductivity (at 25 °C) were measured inside screened wells,
Im deep below the ground surface, using a CTD-diver (Van Essen). Soil water content,
temperature, and specific electrical conductivity (at 25 °C) were measured by TEROS devices
(Meter Group), at each site. The sensors were placed 7 cm below the ground surface. Data
collection started in January 2019 and data were recorded every hour. Data can be found in the
VCR-LTER (Virginia Coast Reserve - Long Term Ecological Research) data portal (dataset
ID:VCR22344) (Fagherazzi & Nordio, 2021). Here we consider data from June 2019 to May 2022.
During this timeframe, four main storm surge events affected groundwater at all sites: Melissa
tropical storm, which occurred between October 11-14, 2019, when sea level reached 1.42 m on
NAVDSS8 at the Wachapreague NOAA station (1d:8631044); two storm surges also occurred in
May 30 and October 10, 2021, when sea level respectively reached 1.39 m and 1.37 m on
NAVDSS. Finally, in January 3, 2022 a strong storm surge was felt in each site, increasing sea
level to 1.55 m on NAVDSS. Tropical storm Wanda, which occurred between October 26 and
November 7, 2021, was partially felt by the sensors, since groundwater level and electrical
conductivity were already high from the previous storm surge. Four storm surges occurred in
August 2019, April 2020,September 2020 and November 2021 and only affected the low forested
sites. Precipitation data collected by NOAA in Norfolk city (VA) and in Salisbury (MD)

(https://www.ncdc.noaa.gov/cag/) are used to correlate seasonal groundwater and soil data to

freshwater external inputs.

Hydrological data are coupled with ecological data collected at the same sites and reported in the

VCR-LTER portal dataset (ID: VCR22354) (Gedan et al. 2022). Tree species were first identified


http://www.vcrlter.virginia.edu/cgi-bin/showDataset.cgi?docid=knb-lter-vcr.349
https://www.ncdc.noaa.gov/cag/
http://www.vcrlter.virginia.edu/cgi-bin/showDataset.cgi?docid=knb-lter-vcr.361

and counted inside a 20x20m plot. For each tree, diameter at breast height (DBH) was measured
at 1.37 m from tree base. Basal area, considered the most significant variable describing the
difference between forest stages, was consequently calculated. An average basal area, independent
of tree species, is considered in future analysis. Shrub species were identified in a 2.5 m-radius
circle in each plot. We concentrate on the dominant species Myrica cerifera. Again, shrub basal
area was calculated and analyzed. Non-woody vegetation data were collected in four to eight
randomly placed 1x1m plots at each site. For each species, the percent cover was estimated using
Domin - Krajina scale (Mueller-Dombois & Ellenberg, 1974). We concentrate the analysis on
Phragmites australis, the species that firstly invade stressed forests and precedes marsh expansion.

In fact, Phragmites australis can survive in brackish conditions (Smith et al. 2013).

Linear Discriminant Analysis

Discriminant analysis (DA) is a powerful tool to cluster and classify multivariate observations
(Balakrishnama, S., & Ganapathiraju, A. 1998; Xanthopoulos et al. 2013). This analysis is used to
examine the group separation in a two-dimensional space, where points of an original p-
dimensional space are represented in the best possible view, reducing their dimensionality. DA
also determines the subset of original variables best separating the groups, and allows to rank the
variables in terms of their contribution to the groups’ separation. Finally, the obtained discriminant
functions can be used to allocate new points (Rencher and Christensen, 2012; Izenman 2013).
Discriminant analysis supervised classifier is one of the basic and simplest classifiers used in many
clustering and classification problems. There are two main types of DA classifiers, the linear
discriminant analysis (LDA) and the quadratic discriminant analysis (QDA) classifiers (Tharwat
2016). When the number of variables in the dataset is much higher than the number of samples for

each class, regularized discriminant functions are preferred (Tharwat 2016; Wu et al. 1996).



Before conducting a DA analysis, we need to check that the data conform to a multivariate normal
distribution. Then, given the original variables Y; (i=1,...n), a linear combination of the original

variables can be generated to separate groups :

Zi = ap Yy +apY, + o+ aY, (1)

The goal is to find the coefficients a that maximize the difference among groups. In other words,
we need to find the largest among-group sums of squares for a given set of Z;’s (Rencher and
Christensen, 2012; Gotelli and Ellison 2004). Considering H as the among-groups sum of squares
and cross-products (SSCP) matrix and E as the between-groups SSCP, coefficients a can be found

solving:

a'(Ha— AEa) =0 2

After determining the eigenvalues A, the eigenvectors a can be finally calculated (Rencher and
Christensen, 2012). Eigenvalues measure the importance of each discriminant function Z;. Wilks’
A-test, with y-approximation, is finally conducted on the eigenvalues to assess the significant p
dimensions of group separation (Rencher and Christensen, 2012). Principal component analysis
(PCA) is a similar classifier, using linear combination of variables as previously described.
Differently from DA, PCA is an unsupervised method that find the greatest extent of variance in a

set of data (Stewart et al. 2014).

Our dataset consists of 6 original variables: groundwater level (WL), groundwater conductivity
(EC), groundwater temperature (T), soil water content (WC), soil conductivity (SEC) and soil
temperature (ST). Variables are measured in each forest site. First, we test the normality
distribution assumption. Second, we check for correlation among variables (linear correlation with

significance level of 95%). This is important because multicollinearity can produce misleading



results. If two variables are strongly correlated, one of them is removed from the final analysis.
Because the variables describe different processes and have different unit of measurements, they

are standardized (mean p,=0, variance c=1).

We then conduct yearly and seasonal DAs on the data. All the linear discriminant classifiers are
first trained using 60% of data and then tested using the remaining 40% of data. Euclidean
distances between centroids are compared over the seasons and years using ANOVA test and post-
hoc Tukey test with 90% significance level. 1da command from MASS library in R-studio is used
to conduct the analyses. Finally, an interpretation of results is provided on the basis of ecological
and hydro-meteorological data. A similar approach, using linear functions, allows us to reduce
data dimensionality and to define the most dominant variables responsible for the ecological spatial
patterns, giving an overview of the differences between sites and the effects of external

hydrological inputs.

Finally, an additional analysis is proposed. Data collected in H5 and in the marsh from June 2021
to May 2022 are firstly classified using linear discriminant analysis. H5 data are considered as
representative of ‘Healthy forest’ group and marsh data of ‘Marsh’ group. Data from the remaining
groups are then classified based on the linear model obtained. According to Rencher and
Christensen (2012), in a two-group classification an observation is assigned to ‘Healthy forest’

(group 1) if:
Z=aV>3Z+7) 3)

where Z; and Z, are the centroids of each group. Otherwise, it is assigned to the ‘Marsh’ group
(group 2). In this way, we can estimate when and where forest is more stressed and compare the

results with the ecological data.



Results

Hydrological data variations over the seasons

Real data of groundwater level, conductivity, temperature, and soil water content, conductivity and
temperature are shown in Fig. 2. According to the post-hoc Tukey test results, mean value of
variables is significantly different (a<0.05) over the seasons. Groundwater level and conductivity,
water content and soil conductivity (Fig. 2a,b,d,e) are usually lower during the summer season.
Groundwater and soil temperature reach their peaks during summer season (Fig. 2¢,f). Storm surge
effects are mostly felt as increases in groundwater conductivity (fall 2019, fall 2021) (Fig. 2b).
From Fig. 2 and from the datasets reported in VCR-LTER portal (Fagherazzi & Nordio, 2021), we
can see the effects of the external inputs on the hydrological variables, but we struggle to easily

explain the overall hydrological difference among the forested areas.

Forest structure

Mean tree basal areas measured in the high forest (H5 and H7) are significantly higher than those
measured in low forest and intermediate forest (p-value <0.1) (Fig. 3a). This confirms the healthy
state of trees in the high forest. No significant difference can be found in the shrub basal areas, in
plots where shrubs of Myrica cerifera are present (Fig. 3b). Phragmites australis is present in each
site except H5. The percent coverage is significantly higher in H7, M2 and L1 compared to the

other stations (Fig. 3c¢).
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Figure 2: Real variables distribution over the season. Datasets are reported in the VCR-LTER data
portal (dataset ID:VCR22344) (Fagherazzi & Nordio, 2021).


http://www.vcrlter.virginia.edu/cgi-bin/showDataset.cgi?docid=knb-lter-vcr.349
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Figure 3: (a) Tree basal area and (b) shrub basal area in six forested sites. (c) Praghmatis australis
percent coverage and correspondent Domin-Krajina scale index in the three forested areas. Letters
identify the post-hoc Tukey test results with 90% confidence level (Gedan et al. 2021).



LDA yearly analysis and cluster identification

LDA results, conducted on yearly data collected in 2020 and 2021, are shown in Fig. 2. In 2020
no storm surge events were detected, while in 2021 two main storm surges occurred. Since ST and
T were significantly correlated (R?=0.88, p<0.05), ST is neglected in the LDA. The first two linear
discriminant functions LD1 and LD2 can explain more than 90% of the group distribution in a 2D-
plane. Accuracy of training and testing data model are around 96% for 2020 dataset and 80% for
2021 dataset (Table 1-2, in Supplementary material). Water content in the soil (WC) and
groundwater electrical conductivity (EC) are the dominant variables in LD1 and LD2, respectively,
in for groups’ separation (Table 3 in Supplementary material). In 2021, the contribution of the
other variables increases. Linear discriminant classifiers can significantly (y*>¥eri®) separate
groups in the 2020 dataset. LD1 and LD2 for high forested sites range respectively from -7 to -2
and from -5 to 5. This suggests low WC and EC values in the high-forest sites. Medium-forest
values range from -2 to 5 in LD1 and from -2 to 2 in LD2, indicating modest WC and EC values
in the medium site. Low forest sites differ from each other. LD2 values for L1 are negative, while
they are positive for L6 (Fig. 4a). This suggests that the L1 cluster is dominated by high electrical
conductivity while L6 by high soil water content (Fig. 4a). The group separation, expression of the
hydrological differences, suggests not only a difference in the ecology of the three forested zones
(low, medium, and high), but also an ecological difference between sites in the same zone, in the
high and low forest. Ellipses, representing variance of data, are larger for clusters L1 and L6. LDA
performed on the 2021 dataset does not clearly separate groups in a 2D-plane (only LD1 %*>ycrii%).
EC and WC are still the dominant variables in the group separation and variances are quite large
for almost all clusters (Fig. 4b). This cluster collapsing can be correlated to storm surge events

occurring in spring and fall 2021. Centroids coordinates in both 2020 LDA and 2021 LDA are



calculated and compared (Fig. 5, Fig. S1 in Supplementary material). On average, distance
between clusters in the 2020 analysis is significantly higher (p<0.1) than the distance in 2021.
Moreover, in 2020 distances between sites in the same forest area are reduced and distances among

sites in different areas are maximum (Fig. S1 in Supplementary material).
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Seasonal patterns, external inputs and ecological change

LDA analysis for each season from summer 2019 to spring 2022 is conducted (Fig. 6). The linear
discriminant functions (LD1 and LD2) explain more than 90% of the group separation in a 2-D
plane. Accuracy of training and testing matrices range from 60% to 100% (Table 4-5, 7-10, 12-15,
17-18 in Supplementary material). WC and EC variables better separate the clusters in winter,
spring and fall seasons (Fig. 6 c,d,f, n Table 6-11-16-19 in Supplementary material) when no storm
surges are detected. During summer, the contribution of temperature (T) in linear discriminant
functions increases (Fig. 6 e,i). This occurs because temperature reaches high values in the low
sites in summer months. A general trend can be recognized considering seasons without storm
surges. In winter, clusters are separated while in summer they reduce the distances from each-other
(Fig. 6b). When storm surges occur, the distance between clusters also decreases (Fig. 6a,b,h,l,m,
Fig.7, Fig. S2 in Supplementary material). In these occasions the LDA is not able to clearly
separate the groups and the importance of each variable in the linear discriminant functions tends
to be equal. In spring and fall of 2020, two storm surges only partially affected the low sites (Fig.
6 d,f). These surges contributed to increase the distance between the low forest clusters and the
others, and to increase the ellipses dimension relative to the low forest sites. The effect of the storm
surge of September 2020 was still felt in winter 2021, when the cluster distances reached maximum
values (Fig. 6g, Fig. 7c). The storm event that occurred in winter 2022 was felt in the low and
medium forest. As a consequence, distances between low and medium forest clusters reduced,
separating the clusters from the high forest (Fig. 6n). An increase in distance among clusters is
regulated by linear discriminant coefficients (Table 6-11-16-19). When coefficients for EC and
WC are higher the distance positively increases (winter seasons with no storm surge events), when

they decrease the distance decreases too. Mean coefficient trends associated to EC and WC in LDI1



and LD2 represents the fluctuations of distances over the seasons. The distance decrease that
occurred in summer is correlated to a decrease in the linear discriminant coefficients for both WC
and EC (Fig. 7b). During the storm surge event occurred in fall 2020, groundwater conductivity
increase is felt in the lower area over the next winter season. Here the coefficient of both WC and
EC reached their peaks (Fig. 7b). On the other hand, during storm surge events felt in the entire
domain, coefficients are low, because representative of a homogenous condition of shut down
where linear discriminant analysis struggles to better separate group. Seasonal trends can be related
to cumulative precipitation. During summer, higher rainfall amounts are measured in the study

area (Fig. 7a).
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Figure 7: (a) Seasonal cumulative precipitation from 2019 to 2021 collected by NOAA in Norfolk city
(VA). (b) Trends of absolute values of the mean coefficient of LDI and LD2 for WC and EC over the
seasons. (c)Euclidean distances between centroids over seasons from 2019 to 2021. Letters represent the
post-hoc test results after ANOVA test (90% significance level). Black arrows identify the occurrence of
storm surge events in all sites. Gray arrows identify storm surge events only felt in the low sites.

Healthy vs Marsh: classification of points from the groups and storm surge effects

Linear discriminant functions are then calculated using data collected from June 2021 to May 2022
in H5 and Marsh sites. HS is chosen as representative of ‘Healthy forest’, since no Phragmites

australis stems are detected and tree basal area reach its peak here. The “Marsh” site is chosen as



the second end member, where forest vegetation has been fully replaced by marsh vegetation. Both
training and testing accuracies are 100% during the period analyzed. Because only two groups are
present, one linear discriminant function is used to separate them. The model is used then to
classify data from the remaining groups (Fig. 8). H7 station is classified as ‘Healthy forest” 87%
of the time (Fig. 8a). Storm surge event occurred in fall 2021 (SS1) changes hydrological
conditions here, making this site more similar to the Marsh site. This effect is felt for around 1
month. The effects of the storm surge occurred in winter 2022 (SS3) cannot be estimated due to
missing data. Similarly, M1 station is classified as ‘Healthy forest” 68% of the time (Fig. 8b) and
their hydrological conditions are closer to those in the Marsh for around 2 months after the storm
surge event in fall 2021 (SS1) and for around 1 month after the storm surge event in winter 2022
(SS3). Station M2 is classified as ‘Healthy forest’ 52% of the time (Fig. 8c), and storm surges in
fall 2021 (SS1) and winter 2022 (SS3) make the hydrological conditions more similar to the Marsh
conditions for around 5 months. For both sites, the effect of the storm surge of late spring 2021
(May 30, 2021) are felt. Results for M1 and M2 confirm the intermediate evolution stage of the
medium forest in comparison to the high forest. In L1 and L6, the forest is classified as ‘Marsh’
99% and 73% of the time respectively (Fig. 8d,e). Here, in addition to SS1 and SS3, another storm
surge event is felt in fall 2021 (SS2). In L6 forest is classified as ‘Healthy forest” from August to
October 2021, when hydrological variables recover from the storm surge event occurred in late

spring 2021.
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Figure 8: Classification of points from clusters H7, M1, M2, L1 and L6 using Healthy forest-Marsh
model derived from linear discriminant analysis. Note: SS1= Storm surge 1, SS2= Storm surge 2,
SS3=Storm surge 3.



Discussion

Overall, LDA is a powerful tool to separate and classify clusters based on hydrological variables.
This new approach allows to identify the variables most contributing to groups’ separation. The
analysis of single variables in long-term series is time consuming, while LDA can detect general

trends reducing the analysis dimensions to two.

Group separation: feedbacks between hydrology and ecology

Previous works indicate that groundwater levels control plants diversity and forest retreat
(Antonellini & Mollema, 2010; Williams et al. 1999; Chen et al. 2006); in our results, the role of
WL in the separation of the clusters is negligible. Contrary to forest margins that are sloping (e.g.
Nordio and Fagherazzi, 2021) here we could suppose that the flat landscape is characterized by
limited hydraulic gradients that do not influence the hydrological budget and consequently
ecological zonation. WC and EC are instead the main variables controlling the hydrological
diversity of the sites. These variables, expression of flooding events (Unger et al. 2009), are more
sensible to the external drivers. The first layer of soil is in fact subject to rapid infiltration and

exfiltration when rainfall events and temperature changes occur.

In the absence of storm surges, our results not only confirm a difference in the hydrological
variables in the three forested zones, but also between sites in the same zone. This is in accordance
with ecological zonation at the forest boundary (Williams et al. 1999a; Williams et al. 1999b).
Williams et al. (1999) studied Sabal palmetto zonation in a coastal forest in Florida. In their
subplots, characterized by a mean salinity of 30 mS/cm and a large number of flooding weeks, the
number of dead stands was respectively 3 times and ten times higher than in the intermediate and

healthy forest. As a consequence, marsh grass cover increased going from the healthy forest to the



dieback area. Trees basal area is lower in the low forest compared to the high forest, since this
parameter is likely correlated to flooding and salinization events. Krauss et al. (2009) showed that
Bald cypress (Taxodium distichum) basal area was affected by flooding events and salinity values.

Frequent flooding and high salinity slows down basal area growth.

In our analysis, lower LD1 values are reached in the high forested area (sites HS and H7). Here
groundwater salinity is on average 5 ppt, the maximum tolerance level where Pinus taeda can
survive without presenting stress (Pezeshki 1992). Where LD1 is higher, hydrological difference
between sites is more evident. Both high EC in L1 and high WC in L6 are toxic for in-situ tree
species, likely triggering dieback (Poulter et al. 2008). The reduced forest canopy in the low forest
allows the penetration of solar radiation and encourages Phragmites australis expansion in late-
spring/summer seasons. Shaw et al. (2022), studied Phragmites australis encroachment in coastal
forests in the Eastern shore of Chesapeake Bay (VA). Although their results suggest that
Phragmites australis can survive in low-light, this plant prefers high-light conditions. Before
marsh vegetation establishment, Phragmites australis is the dominant species in areas dominated
by saltwater intrusion and flooding events. Therefore, Phragmites australis presence represents a

first stage in coastal forest retreat.

The effect of external drivers on seasonal patterns

Our results suggest a seasonal trend in hydrological variables. Both rainfall and evapotranspiration
seem to improve the groundwater conductivity and soil water content conditions in the low sites
during summer, making them closer to high-forest soil conditions. A Higher water content and a
reduction in conductivity in the low forest (L1 and L6), could be correlated to rainfall and
evapotranspiration during the summer season. Where the water content is higher (L6) the decrease

due to evapotranspiration is higher (Ren et al. 2022). Where the conductivity is higher (L1) the



decrease due to rainfall could be higher due to the dilution effect. As consequences, rainfall affects
more the medium and low forest, causing a decrease in EC and moving M1, M2, L1 and L6 clusters
toward high forest conditions. Moreover, during summer, evapotranspiration increases, mainly due
to higher temperature and solar radiation. In low and medium forest sites, the decrease of WC due

to evapotranspiration is more significant, reducing the clusters distance from the high forest.

Other reasons could explain this trend in our data. Tree canopies can intercept large amounts of
rainfall before they reach the soil (Aston 1979; Xiao & McPherson 2011). Cao et al. (2006)
estimated that rainfall interception in a mid-rotation loblolly pine plantation in the coastal plain of
North Carolina ranged from 17% to 26%. Being the trees in the low forest barren or dead, more
rainfall can reach the soil and infiltrate, creating milder edaphic conditions better suited for trees.
In the high forest instead, where trees are healthy, canopy rainfall interception could limit the
rainfall amount reaching the soil (Cao et al. 2006). During summer, evapotranspiration is higher
mainly due to highr temperatures. This contribute to lower soil water content, which is important
for tree roots, that prefer a dry environment (Pezeshki 1991; Poulter et al. 2008). The presence of
new invasive vegetation, mostly growing in the summer season in the low forest, could also

encourage the water content decrease trough transpiration.

Once this happens, the soil is ready to gather water in the next flooding event. Because plants
cannot long live in anoxia conditions, this dynamic is good to encourage soil draining. At the same
time, drier soils are more prone to be filled once storm surge events occur, triggering survival of
in-situ vegetation. Overall, we can conclude that rainfall and evapotranspiration are essential for
the seasonal hydrology of the sites. During summer they can improve the low site hydrological
conditions. This is good for both trees and the establishment of new invasive vegetation, exploiting

the less harsh environmental conditions.



When storm surge events occur, groundwater level, conductivity, water content, and soil
conductivity reach maximum values. If the storm surge affects all sites, the groundwater and soil
conditions reach similar values everywhere, justifying cluster collapsing. Storm surge events
homogenize hydrological conditions, increasing groundwater conductivity and soil water content
in the high forest. The homogenizing process strongly affects the biodiversity and the original
ecosystem functioning (Konar et al. 2013). Therefore, these events drive the forest retreat and
marsh establishment (Fagherazzi et al. 2019; Kirwan & Gedan, 2019; Kearney et al. 2019). When
high conductivity values are reached in the high forest, Pinus taeda photosynthetic activity,
stomatal conductance, and net carbon assimilation drastically decrease (Munns & Tester, 2008;
Pezeshki 1992). When storm surges are only felt in the low forest sites, they make groundwater

and soil conditions harsher, differencing these sites from the others.

Hydrological variables in the low forest reach values more similar to those reached in the marsh
site. Classification done using linear discriminant analysis with two classes is not only easy to
perform, but it clearly shows differences among forested areas and their hydrological closeness to
the salt marsh or healthy forest. More frequent storm surge events in the low sites are encouraging
the marsh transgression here. Results from the LDA analyses together with the ecological data
reinforce this thesis. The medium forest mirrors intermediate conditions of hydrological
conditions, and represents an intermediate stage of the transition. Here storm surge events have a
stronger impact in terms of EC and WC than in the high forest. Overall, storm surge effects are

essential drivers for the forest transgression over the years.

Conclusions

Linear discriminant analysis can easily describe the general trend of hydrological variables along

the marsh-forest ecotone. Using this tool, we can: (1) determine the variables that better separate



the hydrology of each site; (2) visualize seasonal hydrological patterns over the years; and (3)
identify the effects of storm surge events. Our results show that soil water content and groundwater
electrical conductivity are the dominant variables in the linear discriminant functions.
Hydrological differences among sites are related to ecological stages of the forest retreat. The
feedbacks between hydrology and ecology are essential to understand hydrological conditions in
summer. In this season, high evapotranspiration in the low sites combined with significant rainfall
decrease groundwater salinity and soil water content, helping the trees to stay alive. Large storm
surge events tend to homogenize groundwater and soil conditions in the entire forest boundary,
accelerating forest retreat. Small surges affect only the low forest, enhancing the hydrological
difference between the low forest sites and the others. Hydro-ecological zonation is confirmed by
the classification analysis using LDA, where low forest is classified more than 80% of the time as
salt marsh, indicating that salt marsh transgression is occurring in these areas, driven by more

frequent storm surges.
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Supplementary material

Table 1: Accuracy matrices for training and testing data in 2020.

Actual
Predicted H5 H7 L1 L6 M1 M2
s HS5 5045 15 0 0 13 73
=3 H7 181 5288 0 0 0 0
§ % L1 0 0 5244 0 0 0
S s L6 0 0 35 4834 1 0
~ 8 M1 59 0 0 0 4959 39
b M2 0 0 76 432 301 5221
H5 3353 9 0 0 7 44
59 H7 100 3472 0 0 0 0
§ i\o L1 0 0 3368 0 0 0
S = L6 0 0 25 3227 0 0
~ 3 M1 45 0 0 0 3288 30
M2 0 0 36 291 214 3376
Table 2: Accuracy matrices for training and testing data in 2021.
Actual
Predicted H5 H7 L1 L6 M1 M2
HS5 4516 328 0 0 0 12
§ .§° © H7 753 3388 0 122 795 660
% .§ i? L1 0 557 4777 24 302 313
ég & L6 0 1 0 4981 0 281
M1 0 247 0 1 3834 447




| M2 0 50 | 351 159 322 3588
HS5 2976 224 0 0 1 8
59 H7 515 2185 0 99 547 414
§ °°\0 L1 0 385 3040 22 194 208
S S L6 0 0 0 3222 0 216
=~ 3 M1 0 156 0 4 2558 301
M2 0 347 242 126 207 2312
Table 3: coefficients of linear classifiers for each variable in 2020 and 2021.
2020 2021
Original Variables LD1 LD2 LD1 LD2
WL -0.79 -1.04 -1.23 0.10
EC 2.25 -2.87 -0.10 2.75
T 0.54 -0.49 -0.60 -0.25
WC 3.54 2.26 2.83 -0.69
SEC -1.24 0.17 -0.79 -1.61
0 3 6 9 12
.| (a) 2020 | (b) 20
R N R & ~ &
Figure S1: Euclidean distances between centroids in 2020 (a) and 2021 (b)
Table 4: Accuracy matrices for training and testing data in summer 2019.
Actual
Predicted HS H7 L1 L6 M1 M2
© HS5 1138 254 7 96 0 32
2 2\8 H7 234 959 196 35 2 2
§ 50 L1 0 0 455 232 0 0
S § L6 0 0 67 607 2 176
= § M1 0 120 603 38 902 67
M2 0 0 28 341 433 1046




H5 701 166 10 68 0 20
=8 H7 159 637 128 29 2 0
§ \:0 L1 0 0 311 135 0 0
S S L6 0 0 43 431 0 115
=~ 3 M1 0 96 362 24 624 37
M2 0 0 22 196 267 737
Table 5: Accuracy matrices for training and testing data in fall 2019.
Actual
Predicted HS H7 L1 L6 M1 M2
R H5 1056 238 0 0 0 0
=5 H7 264 1022 1 0 5 93
§ % L1 0 0 1270 5 3 0
NS L6 0 0 0 1059 0 64
~ 8 M1 0 0 0 212 1026 62
- M2 0 0 37 3 262 1035
HS5 651 209 0 0 0 0
2 § H7 165 667 1 0 3 56
§ °°°0 L1 0 0 811 4 5 0
S 3 L6 0 0 0 705 0 47
=~ 3 M1 0 0 0 148 677 46
M2 0 0 16 0 155 733
Table 6: coefficients of linear classifiers for each variable for each season in 2019.
Summer Fall
Original *) -, 1, LD2 LD1 LD2
Variables
WL -0.61 -0.12 -1.54 -0.39
EC 0.76 -1.23 -0.60 3.45
T -0.18 -0.25 -0.65 -0.47
WC 2.53 1.26 5.22 -1.52
SEC -1.44 -0.62 -0.41 -1.17
Table 7: Accuracy matrices for training and testing data in winter 2020.
Actual
Predicted HS H7 L1 L6 M1 M2
© HS5 1345 0 0 0 0 0
2 H7 0 1293 0 0 0 0
§ ;J L1 0 0 1331 0 0 0
S § L6 0 0 0 1309 0 0
= s M1 0 0 0 0 1316 0
= M2 0 0 0 0 0 1298




. H5 838 0 0 0 0 0
=S H7 0 891 0 0 0 0
2 L1 0 0 853 0 0 0
S £ L6 0 0 0 875 0 0
= % M1 0 0 0 0 868 0

b M2 0 0 0 0 0 836

Table 8: Accuracy matrices for training and testing data in spring 2020.
Actual
Predicted HS5 H7 L1 L6 M1 M2
o H5 1372 0 0 0 0 0
=S H7 0 1333 0 0 0 0
S % L1 0 0 1356 0 0 0
S S L6 0 0 0 1349 0 0
<3 M1 0 0 0 0 1339 0

= M2 0 0 0 0 0 1323

A} H5 860 0 0 0 0 0
=S H7 0 899 0 0 0 0
2 L1 0 0 876 0 0 0
S £ L6 0 0 0 883 0 0
= % M1 0 0 0 0 893 0

b M2 0 0 0 0 0 909

Table 9: Accuracy matrices for training and testing data in summer 2020.
Actual
Predicted H5 H7 L1 L6 M1 M2

. H5 1371 0 0 0 108 40
=8 H7 0 1333 0 0 0 0
S L1 0 0 1356 0 0 0
S 3 L6 0 0 0 1349 0 0
~ 8 M1 1 0 0 0 904 150

- M2 0 0 0 0 327 1133

H5 860 0 0 0 71 30
= H7 0 899 0 0 0 0
S % L1 0 0 876 0 0 0
S 5 L6 0 0 0 882 0 0
~ 3 M1 0 0 0 0 607 96

M2 0 0 0 1 215 783

Table 10: Accuracy matrices for training and testing data in fall 2020.

Actual




Predicted HS H7 L1 L6 M1 M2
© H5 1372 0 0 0 0 0
2 H7 0 1333 0 0 0 0
§ ?0 L1 0 0 1356 0 0 0
S § L6 0 0 0 1349 0 0
= s M1 0 0 0 0 1339 0
= M2 0 0 0 0 0 1323
R H5 860 0 0 0 0 0
=8 H7 0 899 0 0 0 0
§ ;) L1 0 0 876 0 0 0
S = L6 0 0 0 883 0 0
~ 3% M1 0 0 0 0 893 0
M2 0 0 0 0 0 909
Table 11: coefficients of linear classifiers for each variable for each season in 2020.
Winter Spring Summer Fall
Original -y py | pp2 | LD LD2 LDI LD2 LD1 LD2
Variables
WL -2.79 -0.75 -0.96 0.57 -0.03 -0.79 -2.23 -0.99
EC 6.15 8.86 3.38 10.32 -6.72 -1.47 2.12 -6.07
T -2.58 -0.53 1.59 0.49 -3.54 -0.69 0.70 3.04
WC 7.02 -9.51 16.84 -5.94 -0.86 2.94 7.54 4.16
SEC -3.30 -1.33 -2.81 0.42 -0.12 -1.26 2.72 -2.90
Table 12: Accuracy matrices for training and testing data in winter 2021.
Actual
Predicted HS H7 L1 L6 M1 M2
© H5 1333 0 0 0 0 0
2 H7 0 1278 0 0 0 0
§ ?0 L1 0 0 1328 0 0 0
S § L6 0 0 0 1290 0 0
= s M1 0 0 0 0 1300 0
= M2 0 0 0 0 0 1272
R HS5 827 0 0 0 0 0
=8 H7 0 882 0 0 0 0
§ ;) L1 0 0 832 0 0 0
S = L6 0 0 0 870 0 0
~ 3% M1 0 0 0 0 860 0
M2 0 0 0 0 0 888




Table 13: Accuracy matrices for training and testing data in spring 2021.

Actual
Predicted H5 H7 L1 L6 M1 M2
. H5 1086 10 0 0 0 4
=3 H7 286 1012 0 0 E 6
S L1 0 108 1321 1 64 0
S 3 L6 0 0 0 1109 0 246
RS M1 0 203 0 171 1175 361
- M2 0 0 35 68 82 706
H5 697 10 0 0 0 1
=2 H7 163 684 0 0 15 2
S % L1 0 81 864 3 43 0
S 5 L6 0 0 0 713 0 172
~ 3 M1 0 124 0 127 782 236
M2 0 0 12 40 53 498
Table 14: Accuracy matrices for training and testing data in summer 2021.
Actual
Predicted H5 H7 L1 L6 M1 M2
. H5 1372 0 0 0 0 0
=3 H7 0 1333 0 0 29 0
S L1 0 0 1356 0 0 0
S S L6 0 0 0 1346 0 0
~ 8 M1 0 0 0 3 1138 119
- M2 0 0 0 0 172 1204
H5 860 2 0 0 0 0
59 H7 0 897 0 0 6 0
S % L1 0 0 876 0 0 0
S 5 L6 0 0 0 883 0 0
RS M1 0 0 0 0 748 73
M2 0 0 0 0 139 836
Table 15: Accuracy matrices for training and testing data in fall 2021.
Actual
Predicted H5 H7 L1 L6 M1 M2
< H5 1143 64 0 0 40 21
=3 H7 71 929 79 0 216 226
S L1 0 23 1008 2 77 0
S S L6 0 1 0 1137 0 4
~ 8 M1 105 155 0 1 791 21
- M2 1 4 161 141 162 994
9 3 H5 699 70 0 0 29 18




H7 36 598 58 1 136 156
L1 0 11 646 0 37 0
L6 0 0 0 766 0 1
M1 80 128 0 0 554 4
M2 1 1 98 88 94 691
Table 16: coefficients of linear classifiers for each variable for each season in 2021.
Winter Spring Summer Fall
Original -y 1y | p2 | LD LD2 LDI LD2 LD1 LD2
Variables
WL -0.57 -1.45 -1.05 -0.29 -0.54 1.31 -1.81 -0.18
EC 83.71 0.04 1.41 -2.77 6.73 5.64 1.05 -2.54
T -2.94 2.77 -0.84 0.67 6.09 248 -0.34 1.18
WC -13.11 23.23 2.57 1.18 2.01 -4.33 2.20 1.38
SEC -18.12 -0.50 -1.85 1.64 -0.56 -0.66 -0.17 1.52
Table 17: Accuracy matrices for training and testing data in winter 2022.
Actual
Predicted H5 H7 L1 L6 M1 M2
R HS 1268 0 0 0 0 0
=5 H7 0 668 0 0 0 0
§ % L1 0 0 643 0 0 0
NS L6 0 0 0 1254 0 0
~ 8 M1 0 0 6 0 880 15
- M2 0 0 0 6 396 1234
HS 791 0 0 0 0 0
=8 H7 0 447 0 0 0 0
§ CQO L1 0 0 440 0 0 0
S = L6 0 0 0 796 0 0
RS M1 0 0 1 0 546 7
M2 0 0 0 4 289 878
Table 18: Accuracy matrices for training and testing data in spring 2022.
Actual
Predicted H5 H7 L1 L6 M1 M2
o HS 1054 0 0 0 0 0
=S H7 0 1022 0 0 0 0
§ ?0 L1 0 0 997 0 0 0
S § L6 0 0 0 1041 0 0
= 3 M1 0 0 0 0 1034 0
= M2 0 0 0 0 0 992
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Table 19: coefficients of linear classifiers for each variable for each season in 2022.

Winter Spring
Original LD1 LD2 LD1 LD2
Variables
WL -0.53 -0.18 -0.42 0.30
EC 0.36 4.27 18.90 6.48
T -0.85 0.00 0.78 -0.19
WC 6.37 -4.13 -0.47 -10.81
SEC -0.46 0.61 -2.36 0.71
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Figure S2: Euclidean distances between centroids over seasons from 2019 to 2022.




