
Oblivious Accumulators

Foteini Baldimtsi1(B) , Ioanna Karantaidou1 ,
and Srinivasan Raghuraman2

1 George Mason University, Fairfax, USA
{foteini,ikaranta}@gmu.edu

2 Visa Research and MIT, Cambridge, USA

Abstract. A cryptographic accumulator is a succinct set commitment
scheme with efficient (non-)membership proofs that typically supports
updates (additions and deletions) on the accumulated set. When ele-
ments are added to or deleted from the set, an update message is issued.
The collection of all the update messages essentially leaks the underlying
accumulated set which in certain applications is not desirable.

In this work, we define oblivious accumulators, a set commitment with
concise membership proofs that hides the elements and the set size from
every entity: an outsider, a verifier or other element holders. We formalize
this notion of privacy via two properties: element hiding and add-delete
indistinguishability. We also define almost-oblivious accumulators, that
only achieve a weaker notion of privacy called add-delete unlinkability.
Such accumulators hide the elements but not the set size. We consider
the trapdoorless, decentralized setting where different users can add and
delete elements from the accumulator and compute membership proofs.

We then give a generic construction of an oblivious accumulator based
on key-value commitments (KVC). We also show a generic way to con-
struct KVCs from an accumulator and a vector commitment scheme.
Finally, we give lower bounds on the communication (size of update mes-
sages) required for oblivious accumulators and almost-oblivious accumu-
lators.

Keywords: accumulators · oblivious · key-value commitments

1 Introduction

A cryptographic accumulator [6,7] is a set commitment, i.e., a compact repre-
sentation of a set of elements, as a short digest C. It allows a prover to generate a
short proof of membership wx, often called a witness, for any element x that has
been accumulated, or non-membership proof for any element in the accumula-
tor domain that has not been accumulated. A verifier can efficiently verify such

F. Baldimtsi and I. Karantaidou are supported by NSF Awards #2143287 and
#2247304, as well as a Google Faculty Award. Ioanna Karantaidou is additionally
supported by a Protocol Labs Fellowship.
I. Karantaidou—Part of this work was done while the second author was an intern at
Visa Research.

c© International Association for Cryptologic Research 2024
Q. Tang and V. Teague (Eds.): PKC 2024, LNCS 14602, pp. 99–131, 2024.
https://doi.org/10.1007/978-3-031-57722-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57722-2_4&domain=pdf
http://orcid.org/0000-0003-3296-5336
http://orcid.org/0000-0002-0517-1656
http://orcid.org/0000-0001-6737-6991
https://doi.org/10.1007/978-3-031-57722-2_4

100 F. Baldimtsi et al.

proofs using the digest alone without the need to access the entire set. Since their
inception, accumulators have been considered in various settings with varying
capabilities, leading to a rich taxonomy. Accumulators that only support mem-
bership proofs are called positive, while those supporting only non-membership
proofs are called negative. An accumulator that supports both membership and
non-membership proofs is called universal. Regarding updating the accumulated
set, accumulators are called additive if they only allow for additions of new ele-
ments, negative or subtractive if they only allow for deletions, and dynamic if
they support both operations. There exist a variety of accumulator construc-
tions proposed in the literature with different properties and under different
computational assumptions [3,11,12,20,27,30,37].

Accumulators have also been classified into two main categories based on the
entity who is responsible for updating the accumulated set: trapdoor-based accu-
mulators managed by a trusted party, and trapdoorless or strong accumulators.
In a trapdoor-based accumulator, a trusted entity known as the accumulator
manager, holds some secret information/trapdoor and has the ability to effi-
ciently add or delete elements and create witnesses. Whenever a new element
is added to the accumulator, the accumulator manager issues the corresponding
membership proof wx. On the other hand, trapdoorless accumulators allow for
public additions or deletions of elements without relying on a trusted entity.
Users adding new elements to the accumulator can compute (and later update)
their corresponding witnesses themselves. Finally, some accumulator construc-
tions have an interesting property called proof batching [9,32]. In this case, the
prover can further compact proofs for multiple elements into one proof of size
sublinear in the number of elements, that verifies faster than when compared to
verifying each individual proof.

Accumulators have found numerous applications, with the most popular
being anonymous credentials [1,4,11,12,21], group signatures [13,28,31], cloud
storage [34,37], and more recently, stateless [9,18] and privacy-preserving cryp-
tocurrencies such as ZCash [29] and RingCT 2.0 [33] proposed for Monero. Revo-
cation of anonymous credentials is one of the most prominent applications of
trapdoor-based accumulators. The credential issuing authority, that is responsi-
ble for granting credentials, also serves as the accumulator manager and main-
tains a list of valid credentials in the form of an accumulator. When a new
credential is issued, it is added to the accumulated set by the issuing authority
and the corresponding witness is sent to the user along with the credential. To
use the credential, the user will have to prove membership in the accumulator in
order to demonstrate to the verifier that the credential is still valid. The issuing
authority/accumulator manager is responsible for removing revoked credentials
from the accumulated set. Trapdoorless accumulators are mostly used in appli-
cations where set updates and witness creation are performed by an untrusted
party, for example a cloud storage provider. Recently, trapdoorless accumulators
have been proposed for data compression in decentralized settings. An accumu-
lator can be used to construct a stateless blockchain, where anyone can add
elements, as long as they can prove that their update is consistent with the
previous state of the chain.

Oblivious Accumulators 101

Privacy in Accumulators. The classic definition of a cryptographic accumu-
lator does not offer any privacy preserving properties: an accumulator is not a
hiding commitment and can leak information about the set. Information can be
leaked from the accumulator digest itself, a membership proof, and most impor-
tantly from the update messages, that usually describe explicitly which element
was added or deleted. This information can be used by any entity (proof hold-
ers and verifiers) in order to update their proof and/or the accumulator value.
However, accumulators are often used in applications where privacy is needed
for specific operations carried out on the accumulated set. A common example
is in the context of anonymous credentials, where users may wish to hide the
specific credential for which they are proving membership. To achieve this, a user
can present a commitment to the credential and subsequently provide a zero-
knowledge (ZK) proof, demonstrating that the committed value is indeed present
in the accumulator. ZK proofs of (non-)membership for accumulators have been
previously studied in the literature in the form of individual proofs [4,8,12] and
batched proofs [14,32]. In the context of anonymous credentials, the notion of
join-revoke unlinkability was previously introduced [5] which guarantees that the
addition and revocation of the same credential should not be linkable. This idea
could be extended to direct accumulator property of add-delete unlinikability
and it is achieved by modular constructions as explained below. Finally, another
flavor of privacy for accumulators is that of zero-knowledge accumulators for
set operations [17,23,25,37]. In that setting, the guarantees provided by zero-
knowledge assures that an external entity, such as a verifier, that gets to see only
(non-)membership proofs and the accumulator digest, learns nothing else about
the accumulated set.

Beyond the privacy-preserving accumulator application of anonymous cre-
dentials mentioned above, there are other scenarios where there is a need to
conceal the elements of the accumulated set from all participants, including wit-
ness holders (and the accumulator manager in the case of trapdoor-based con-
structions), and additionally hide the size of the accumulated set. Consider for
example a smart contract that is executed on a public blockchain and is using
an accumulator to hold the credentials for all the customers of an organization
in order to efficiently check (non-)membership. In such a scenario, it is crucial to
hide the accumulated elements, since having access to the credentials of a user
might allow for unauthorized access. At the same time, it would also be useful
to hide the total number of the elements accumulated in order to conceal the
size of the “customer base” of the organization. This brings us to the following
interesting question:

Is it possible to construct a dynamic accumulator that hides the
accumulated set (both its elements and its size)?

In this work we answer this question affirmatively. For the first time, we define
the notion of oblivious accumulators, that achieve all the above properties and
we provide a construction that achieves our definition. We also show that our
construction meets the standard information-theoretic lower bounds. We prove
communication costs for oblivious accumulators, along the lines of similar bounds

102 F. Baldimtsi et al.

that have been shown for dynamic accumulators [10] and revocable proof sys-
tems [19]. More specifically, we show that the total communication cost in the
form of updates in our construction is equal to what must necessarily be stored as
a state for an oblivious accumulator with the privacy properties that we propose.

1.1 Our Contributions

In Sect. 4 we define a dynamic positive trapdoorless oblivious accumulator. At a
high level, an oblivious accumulator supports the typical accumulator operations.
Setup generates the parameters and the initial accumulator C. Add inserts a new
element x into the accumulator and computes its membership proof wx and the
new accumulator C ′. Similarly, Del deletes an element from the accumulator
and computes the new accumulator C ′. The addition and deletion processes also
release an update message u. The rest of the proof holders run MemProofUpdate
with u as input and update their proofs. The digest U of all update messages
can be used to update membership proofs at any point in time, thus alleviating
the need for parties to always be online and process update messages as they
come in. Anyone can check whether x has been accumulated by running MemVer,
given the proof wx and the accumulator C. A feature specific to our oblivious
accumulator is the following: in order to add x, Add also generates auxiliary
information aux (only known to the user that holds x), which is necessary in
order to later construct a membership proof for x or to delete x.1

On top of the typical accumulator security properties, we define new privacy-
related properties. The first property, element hiding, guarantees that one cannot
learn x by looking at the corresponding update message u. Then we define add-
delete indistinguishability which guarantees that one cannot even tell what type
of operation, i.e., an add or a delete, took place, even with the knowledge of
the accumulated set before the update. This property is equivalent to hiding
the size of the set since, if one could track the number of additions and dele-
tions, they could infer the current size of the set. We also formalize the notion
of add-delete unlinkability as an intermediate privacy goal (this property was
previously discussed in [5] under the term “join-revoke” unlinkability for a revo-
cation system and not directly for an accumulator). Add-delete unlinkability
states that despite having access to addition update messages, that may not
hide the element, and with the knowledge that an update u corresponds to a
deletion, one can still not link which updates refer to the same element. We note
that add-delete indistinguishability implies add-delete unlinkability.

An Almost-Oblivious Accumulator. After defining the privacy properties
of an oblivious accumulator, we focus on constructions that satisfy these proper-
ties. In order to build some intuition, we start by describing a construction,
called almost-oblivious accumulator, that supports element hiding and add-
delete unlinkability but not add-deleted indistinguishability. An intuitive way
to achieve element hiding: is to accumulate hiding commitments of the element
1 In a sense, aux is a summary of how x was hidden in order to achieve the privacy

properties that we discuss ahead.

Oblivious Accumulators 103

instead of adding them in the clear. Achieving add-delete unlinkability though is
a bit more complex. An implicit solution for unlinkable additions and deletions
was presented as Construction A in [5] and describes a modular construction of
two accumulators Acc = (Acc1,Acc2), Acc1 is additive and used for added ele-
ments and Acc2 is additive and used for storing deleted elements. Acc1 supports
membership proofs and Acc2 supports non-membership proofs, in order for the
overall accumulator Acc to support membership proofs. To prove membership
of x in Acc, one has to present a membership proof for x in Acc1 and a non-
membership proof for x in Acc2. To get add-delete unlinkability in this modular
accumulator, one can, instead of adding x in Acc1, add c1, a hiding commitment
to x. We can delete x by adding a different commitment c2 in Acc2. A mem-
bership proof wx in Acc now consists of a membership proof of c1 in Acc1 and
a non-membership proof of c2 in Acc2, together with openings of c1, c2 to the
same element x. An observer is not able to link c1, c2 unless they see wx.

A more generic way to describe the modular structure is with two sets, with-
out specifying compression techniques: the set of added elements (previously
described as Acc1) and the set of deleted elements (previously Acc2). The anony-
mous cryptocurrency ZCash initially emerged as Zerocoin [29], an accumulator-
based system for compressing the set of valid coins. ZCash follows the same
modular structure. Random elements (serial numbers) are added as hiding com-
mitments in the first set and then added in the clear in the second set. The first
set is further compressed using a Merkle tree and proofs of membership. The
second set is kept as a list and in order to ensure that an element has not been
deleted, a lookup operation is performed. The trade-off compared to using com-
pression and non-membership proofs in order to save in space is that storing the
whole list, allows for concurrency. Concurrency of operations is a special prop-
erty that comes up in cryptocurrencies. In this case, a transaction for spending a
valid coin x is a membership proof wx together with a deletion for x. If deletions
are compressed, then wx needs to be updated to reflect the new digest and as a
result, transactions cannot be submitted and validated in parallel.

These constructions, which we call almost-oblivious accumulators achieve
element hiding and add-delete unlinkability. However, since the two sets of added
and deleted elements are distinct, such constructions inherently fail to satisfy
add-delete indistinguishability (and thus these constructions reveal the size of
the accumulated set).

Our Construction. Our goal is to build an oblivious accumulator that achieves
element hiding and the stronger property of add-delete indistinguishability which
will allow for hiding the size of the accumulated set. In order to achieve add-delete
indistinguishability, we will use a single data structure for both additions and
deletions, as opposed to the modular constructions from above. Both addition
and deletion operations will result in new elements being added in the data
structure in a way that is indistinguishable yet sound when it comes to proving
(non-)membership. A first idea is to insert flags in random-looking positions of
a vector commitment (VC) scheme. The positions are derived from the inserted
element x and some randomness. However, a VC has to commit to a specified

104 F. Baldimtsi et al.

number of positions when initialized. Even if the VC supported a procedure
that allows to extend the length of the vector (which some VCs do), this would
not be enough, as we would need the random-looking positions to have high
entropy, i.e., come from a very large space, which would mean that the length of
the vector would have to be exponentially large. For VCs that we know today,
this would be grossly inefficient if not impossible. Instead, our approach is to
use Key-Value Commitments (KVC) [2,35]. A KVC is a dynamic length, sparse
vector commitment with elements (k, v), k being the key and v being the inserted
value. Its security property is key binding, meaning that proof of opening for
(k, v) guarantees that there is a tuple of the form (k, ·) and it is impossible to
find a different proof for (k, v′), and v �= v′. At the same time, KVC can support
key non-membership proofs (i.e., proofs that a key k′ was never inserted), a
property that will be used by our construction in order to prove that an element
has not been deleted. Looking ahead, the keys that we will use are essentially
the random-looking positions from our prior discussion.

In Sect. 5, we present a generic trapdoorless, positive, dynamic oblivious accu-
mulator from any KVC scheme that supports non-membership. Our construction
is proven secure in the Random Oracle Model. Our construction briefly works
as follows. The position of addition is decided by the output of a commitment
using a hash function H1 and the position of a deletion is decided by H2. More
specifically, the user who wishes to add x, generates randomness r and adds a
value v = 1 in position H1(x, r). It also sets auxiliary information aux = r that
allows them to delete x and compute a proof of membership on x. A proof of
membership includes a proof of opening for key-value pair (H1(x, r), 1). We com-
plete our oblivious accumulator construction with a non-membership proof for
key H2(x, r), used by the prover to prove that x has not been deleted. Finally, a
deletion for x happens with adding the key-value pair (H2(x, r), 1). This makes
a membership proof invalid. In Sect. 5.5 we briefly discuss an extension of our
constructions that allows for the accumulation of unique elements.

Since our construction is KVC-based, we can use values other than v = 1.
This value, which is revealed during additions/deletions, allows for more expres-
sive application scenarios. Consider the smart contract application described
above: our KVC-based oblivious accumulator could be used to hold the customer
base obliviously, i.e., hiding the accumulated elements and the size of the set,
but at the same time, it could allow for a public value like the value of assets
of each customer to be added as “metadata” when the customer is added in
the accumulator. This scheme for example, can be used to guarantee that all
added customers are contributing at least some minimum amount of assets in
the smart contract. Assuming that the assets are within some fixed set of values
(and not completely arbitrary real numbers), this additional metadata does not
downgrade the overall privacy of the scheme. Furthermore, since we are working
with a KVC, we will be able to update the values of the assets over time.

In Sect. 3, we show, as a side result, how to construct a KVC scheme with
non-membership, using a universal accumulator and vector commitment with
extendable length. We add keys k in the accumulator and elements (k,v) in the

Oblivious Accumulators 105

vector sequentially. Our construction inherits the position binding properties and
additive updates from the vector commitment and the non-membership proofs
from the accumulator. Moreover, it preserves efficiency properties of the under-
lying schemes such as constant commitment and proof size, efficient updates,
etc., or features such as proof batching and aggregation or cross-aggregation.
This construction is of independent interest as it gives a generic way to build a
KVC and can allow for constructions under different assumptions than the ones
currently known.

Finally, we investigate the lower bounds for almost-oblivious and oblivious
accumulators with constant proof size and constant digest. In more detail, in
Sect. 6, we follow the analysis of [10,19] to prove lower bounds on the com-
munication costs of deletions, and then show that the obliviousness properties
of oblivious accumulators translate these bounds for arbitrary operations, not
just deletions. In light of this result, our construction has optimal communica-
tion cost. In the case of almost-oblivious accumulators, we leverage add-delete
unlinkability to show the lower bound, which implies that constructions such as
ZCash are essentially optimal.

2 Preliminaries

2.1 Notation

For n ∈ N, let [n] = {1, 2, . . . , n}. Let λ ∈ N denote the security parameter.
Symbols in boldface such as a denote vectors. By ai we denote the i-th element
of the vector a. For a vector a of length n ∈ N and an index set I ⊆ [n], we denote
by a|I the sub-vector of elements ai for i ∈ I induced by I. By poly(·), we denote
any function which is bounded by a polynomial in its argument. An algorithm
A is said to be PPT if it is modeled as a probabilistic Turing machine that runs
in time polynomial in λ. Informally, we say that a function is negligible, denoted
by negl, if it vanishes faster than the inverse of any polynomial. If S is a set, then
x ←$ S indicates the process of selecting x uniformly at random from S (which
in particular assumes that S can be sampled efficiently). Similarly, x ←$ A(·)
denotes the random variable that is the output of a randomized algorithm A.

2.2 Compressing Primitives

In this section, we briefly recall definitions of compressing primitives for sets
(accumulators), vectors (vector commitments), and key-value maps (key-value
commitments). We present the various algorithms underlying the primitives,
along with their corresponding correctness and security properties. We include
related work for each primitive in our supplementary material.

2.2.1 Accumulators

An accumulator (Acc) allows one to commit to a set in such a way that it
is later possible to prove or disprove that elements are in the set. We require

106 F. Baldimtsi et al.

an accumulator to be concise in the sense that the size of the accumulator
string C is independent of the size of the set. We describe the primitive in the
universal (supports membership and non-membership proofs) dynamic (supports
additions and deletions) setting. We also assume that we are in the trapdoorless
setting, i.e., updates can be performed with publicly available information.

We denote a set S ⊆ D to be a collection of elements x ∈ D where D is
the accumulator domain. We define an accumulator Acc as a non-interactive
primitive that can be described via the following algorithms:

– (pp, C) ←$ Setup(1λ): On input the security parameter λ, the setup algorithm
outputs some public parameters pp (which implicitly define the accumulator
domain D) and the initial accumulator string C to the empty set. All other
algorithms have access to the public parameters.

– (C,wx, u) ← Add(C, x): On input an accumulator string C and an element x ∈
D, the addition algorithm outputs a new accumulator string C, a membership
proof wx (that x ∈ S), and update information u.

– (C, u) ← Del(C, x, U): On input an accumulator string C, an element x ∈ D,
and the digest of all update information U produced until the current point in
time, the deletion algorithm outputs a new accumulator string C and update
information u.

– wx ← MemProofUpdate(wx, u): On input a membership proof wx and update
information u, the membership proof update algorithm outputs an updated
membership proof wx.

– wx ← NonMemProofCreate(x,U): On input an element x ∈ D and the digest
of all updated information U produced until the current point in time, the
non-membership proof creation algorithm outputs a non-membership proof
wx (that x �∈ S).

– wx ← NonMemProofUpdate(wx, u): On input a non-membership proof wx and
update information u, the non-membership proof update algorithm outputs
an updated non-membership proof wx.

– 0/1 ← MemVer(C, x,wx): On input an accumulator string C, an element
x ∈ D, and a membership proof wx, the membership verification algorithm
either outputs 1 (denoting accept) or 0 (denoting reject).

– 0/1 ← NonMemVer(C, x,wx): On input an accumulator string C, an element
x ∈ D, and a non-membership proof wx, the non-membership verification
algorithm either outputs 1 (denoting accept) or 0 (denoting reject).

For correctness, we require that for all λ ∈ N, for all honestly generated
public parameters pp ←$ Setup(1λ), if C is an accumulator to a set S, obtained
by running a sequence of calls to Add and Del, wx is a membership proof corre-
sponding to an element x ∈ D for any x ∈ S, generated during the call to Add
and updated by appropriate calls to MemProofUpdate, then MemVer(C, x,wx)
outputs 1 with probability 1. Similarly, if wx is a non-membership proof cor-
responding to an element x ∈ D for any x �∈ S, generated by a call to
NonMemProofCreate and updated by appropriate calls to NonMemProofUpdate,
then NonMemVer(C, x,wx) outputs 1 with probability 1.

Oblivious Accumulators 107

The security requirement for accumulators is that of soundness. We consider
two notions of soundness, i.e., weak and strong soundness. To satisfy weak sound-
ness, it must be computationally infeasible for any polynomially bounded adver-
sary (with knowledge of pp) to come up with an honestly generated2 accumulator
and either a membership proof that certifies membership of an element that has
not been added, or a non-membership proof that certifies non-membership of an
element that has been added. To satisfy strong soundness, it must be compu-
tationally infeasible for any polynomially bounded adversary (with knowledge
of pp) to come up with a potentially adversarially generated accumulator and
a pair of membership and non-membership proofs that certify membership and
non-membership, respectively, of the same element.

Alternative Formalization. Some works alternatively formalize the algorithms
Del and NonMemProofCreate to take S as input instead of U , but in most cases,
the two hold similar information.

2.2.2 Vector Commitments

A vector commitment (VC) allows one to commit to a vector in such a way that it
is later possible to open the commitment with respect to any specific index. We
require a vector commitment to be concise in the sense that the size of the vector
commitment string C is independent of the size of the vector. Furthermore, it
must be possible to update the vector by updating the value of the vector at
a specific position. We also assume that we are in the trapdoorless setting, i.e.,
updates can be performed with publicly available information.

We set up the following notation for a vector: A vector v ∈ Dq of length q is
a collection of q elements vi ∈ D3 for i ∈ [q]. We define a vector commitment VC
as a non-interactive primitive that can be formally described via the following
algorithms:

– (pp, C) ←$ Setup(1λ, q): On input the security parameter λ and a length q, the
setup algorithm outputs some public parameters pp (which implicitly define
the vector commitment domain D and the vector length q) and the initial
vector commitment string C to the vector of all 0s. All other algorithms have
access to the public parameters. All other algorithms also have access to the
initial proofs Λi for all i ∈ [q] (that vi = 0).

– (C, u) ← Update(C, (i, δ)): On input a vector commitment string C, a position
i ∈ [q], and an additive update value δ ∈ D, the update algorithm outputs a
new vector commitment string C and update information u.

– Λi ← ProofUpdate(Λi, u): On input a proof Λi and update information u, the
proof update algorithm outputs an updated proof Λi.

2 In the experiment defining security, we also assume that elements that have not yet
been added are never requested to be deleted by the adversary.

3 We assume that 0 ∈ D.

108 F. Baldimtsi et al.

– 0/1 ← ProofVer(C, (i, v), Λi): On input a vector commitment string C, a
position i ∈ [q], an element v ∈ D, and a proof Λi, the proof verification
algorithm either outputs 1 (denoting accept) or 0 (denoting reject).

For correctness, we require that for all λ ∈ N, for all honestly generated
public parameters pp ←$ Setup(1λ), if C is the vector commitment to a vector
v, obtained by running a sequence of calls to Update, Λi is a proof correspond-
ing to a position i ∈ [q], updated by appropriate calls to ProofUpdate, then
ProofVer(C, i, vi, Λi) outputs 1 with probability 1.

The security requirement for vector commitments is that of position binding.
We consider two notions of soundness, i.e., weak and strong position binding. To
satisfy weak position binding, it must be computationally infeasible for any poly-
nomially bounded adversary (with knowledge of pp) to come up with an honestly
generated vector commitment and a proof that certifies a value at any position
different from the one in the vector that has been committed. To satisfy strong
soundness, it must be computationally infeasible for any polynomially bounded
adversary (with knowledge of pp) to come up with a potentially adversarially
generated vector commitment and a pair of proofs that certify different values
at the same position.

Alternative Formalization. Some works alternatively formalize a vector commit-
ment to not generate an initial vector commitment to the vector of all 0s, but
rather to have an initial Commit procedure that takes a vector and generates
a vector commitment to it. This formalization would usually be paired with a
ProofCreate algorithm that takes the initial committed vector and a position and
outputs the initial proof for that position. Some works also assume that Update
takes as input the old and new values at a position, as opposed to an additive
update–we say that such an Update algorithm is non-oblivious.

Positive Length. Occasionally, we will also consider vector commitments which
support a dynamic increase of the length of the vector that is being committed
to. In this case, the vector commitment has an additional algorithm:

– (pp, C, u) ←$ Extend(1λ, C): On input the security parameter λ and a vector
commitment string C for a vector v of length q, the extend algorithm outputs
new public parameters pp (corresponding to vectors of length q +1), the new
vector commitment string C to the vector v′ of length q +1, where v′|[q] = v
and v′

q+1 = 0, and update information u. All other algorithms have access to
the initial proof Λq+1 (that v′

q+1 = 0).

2.2.3 Key-Value Commitments

A key-value commitment (KVC) allows one to commit to a key-value map in such
a way that it is later possible to open the commitment with respect to any specific
key. We require a key-value commitment to be concise in the sense that the size of
the commitment string C is independent of the size of the map. We describe the

Oblivious Accumulators 109

primitive in the universal (supports membership and non-membership proofs)
setting. Furthermore, it must be possible to update the map, by either adding
new key-value pairs or updating the value corresponding to an existing key
We also assume that we are in the trapdoorless setting, i.e., updates can be
performed with publicly available information.

We set up the following notation for a key-value map: A key-value map
M ⊆ K×V is a collection of key-value pairs (k, v) ∈ K×V. Let KM ⊆ K denote
the set of keys for which values have been stored in the map M. We define a
key-value commitment KVC as a non-interactive primitive that can be formally
described via the following algorithms:

– (pp, C) ←$ Setup(1λ): On input the security parameter λ, the setup genera-
tion algorithm outputs some public parameters pp (which implicitly define the
key space K and value space V) and the initial commitment C to the empty
key-value map. All other algorithms have access to the public parameters.

– (C,Λk, u) ← Insert(C, (k, v)): On input a key-value commitment string C
and a key-value pair (k, v) ∈ K × V, the insertion algorithm outputs a new
key-value commitment string C, a proof Λk (that (k, v) ∈ M), and update
information u.

– (C, u) ← Update(C, (k, δ)): On input a key-value commitment string C, a key
k ∈ K, and an additive update value δ ∈ V, the update algorithm outputs a
new key-value commitment string C and update information u.

– Λk ← ProofUpdate(Λk, u): On input a proof Λk for some value corresponding
to the key k and update information u, the proof update algorithm outputs
an updated proof Λk.

– Λk ← NonMemProofCreate(k, U): On input a key k ∈ K and the digest of
all updated information U produced until the current point in time, the non-
membership proof creation algorithm outputs a non-membership proof Λk

(that k �∈ KM).
– Λk ← NonMemProofUpdate(Λk, u): On input a non-membership proof Λk and

update information u, the non-membership proof update algorithm outputs
an updated non-membership proof Λk.

– 1/0 ← Ver(C, (k, v), Λk): On input a key-value commitment string C, a key-
value pair (k, v) ∈ K × V, and a proof Λk, the verification algorithm either
outputs 1 (denoting accept) or 0 (denoting reject).

– 0/1 ← NonMemVer(C, k, Λk): On input a key-value commitment string C, a
key x ∈ K, and a non-membership proof Λk, the non-membership verification
algorithm either outputs 1 (denoting accept) or 0 (denoting reject).

For correctness, we require that for all λ ∈ N, for all honestly generated public
parameters pp ←$ KeyGen(1λ), if C is the key-value commitment to a key-value
map M, obtained by running a sequence of calls to Insert and Update, Λk is a
proof corresponding to a key k ∈ K for any k ∈ KM, generated during the call to
Insert and updated by appropriate calls to ProofUpdate, then Ver(C, (k, v), Λk)
outputs 1 with probability 1 if (k, v) ∈ M. Similarly, if Λk is a non-membership
proof corresponding to a key k ∈ K for any k �∈ KM, generated by a call to

110 F. Baldimtsi et al.

NonMemProofCreate and updated by appropriate calls to NonMemProofUpdate,
then NonMemVer(C, k, Λk) outputs 1 with probability 1.

The security requirement for key-value commitments is that of key binding.
We consider two notions of soundness, i.e., weak and strong key binding. To
satisfy weak key binding, it must be computationally infeasible for any polyno-
mially bounded adversary (with knowledge of pp) to come up with an honestly
generated key-value commitment and either a proof that certifies membership
of a key or a key-value pair that has not been inserted, or a non-membership
proof that certifies non-membership of a key that has been inserted. To satisfy
strong key-binding, it must be computationally infeasible for any polynomially
bounded adversary (with knowledge of pp) to come up with a potentially adver-
sarially generated key-value commitment and either a pair of membership and
non-membership proofs that certify membership and non-membership, respec-
tively, of the same key, or a pair of proofs that certify different values for the
same key.

Alternative Formalization. Some works alternatively formalize the algorithm
NonMemProofCreate to take M as input instead of U , but in most cases, the
two hold similar information. Some works also assume that Update takes as
input the old and new values corresponding to a key, as opposed to an additive
update–we say that such an Update algorithm is non-oblivious.

3 KVC Based on Acc and VC

In Sects. 3.1 and 3.2, we show how to generically construct a key-value commit-
ment using an accumulator and a vector commitment. The idea is to maintain
an accumulator of the keys and a vector commitment of the values, tied by the
positions. In realizing this, we will need the property that the vector commitment
supports the procedure Extend that can dynamically increase the length of the
vector that is being committed to, as described in Sect. 2.2.2. The efficiency of
the final key-value commitment crucially depends on how efficient Extend is. We
highlight that our generic construction allows us to achieve all desired properties
of a KVC, including non-membership proofs.4 It also provides a holistic way to
look at existing constructions of KVCs, as we describe in Sect. 3.3.

3.1 Construction I with Weak Key Binding

Let Acc be an accumulator as described in Sect. 2.2.1, and let VC be a vector
commitment as described in Sect. 2.2.2 that supports the procedure Extend. In
this section, we will be designing a key-value commitment with weak key binding
for the space of keys K which is the same as the space of elements D of Acc,
and the space of values V, where the space of elements D of VC is K × V. We
construct our key-value commitment KVC as follows:

4 One can also readily support key-deletion, but we ignore this in our presentation.

Oblivious Accumulators 111

– (pp, C) ←$ Setup(1λ): On input the security parameter λ, the setup genera-
tion algorithm:

• runs (ppAcc, CAcc) ←$ Acc.Setup(1λ)
• runs (ppVC, CVC) ←$ VC.Setup(1λ, 0)

and finally outputs the public parameters pp = (ppAcc, ppVC) and the ini-
tial commitment C = (CAcc, CVC, 0) to the empty key-value map. All other
algorithms have access to the public parameters.

– (C,Λk, u) ← Insert(C, (k, v)): On input a key-value commitment string C and
a key-value pair (k, v) ∈ K × V, the insertion algorithm:

• parses C = (CAcc, CVC, q)
• runs (CAcc, wk, uAcc) ← Acc.Add(CAcc, k)
• runs (ppVC, CVC, uVC,1) ←$ VC.Extend(1λ, CVC)
• runs (CVC, uVC,2) ← VC.Update(CVC, (q + 1, (k, v)))
• runs Λq+1 ← VC.ProofUpdate(Λq+1, uVC,2)

and finally outputs a new key-value commitment string C = (CAcc, CVC, q+1),
a proof Λk = Λq+1, and update information u = (uAcc, uVC,1, uVC,2).

– (C, u) ← Update(C, (k, δ)): On input a key-value commitment string C, a key
k ∈ K along with a position qk

5, and an additive update value δ ∈ V, the
update algorithm:

• parses C = (CAcc, CVC, q)
• runs (CVC, uVC) ← VC.Update(CVC, (qk, δ))6

and finally outputs a new key-value commitment string C = (CAcc, CVC, q)
and update information u = uVC.

– Λk ← ProofUpdate(Λk, u): On input a proof Λk for some value corresponding
to the key k and update information u, the proof update algorithm:

• parses u as either (·, uVC,1, uVC,2) or uVC

• runs Λk ← VC.ProofUpdate(VC.ProofUpdate(Λk, uVC,1), uVC,2) or Λk =
VC.ProofUpdate(Λk, uVC)

and finally outputs an updated proof Λk.
– Λk ← NonMemProofCreate(k, U): On input a key k ∈ K and the digest of

all updated information U produced until the current point in time, the non-
membership proof creation algorithm:

• parses U = {u}, where either u = (uAcc, ·, ·) or u = ·
• defines UAcc = {uAcc}, the set of all update information released for Acc
• runs wk ← Acc.NonMemProofCreate(k, UAcc)

and finally outputs a non-membership proof Λk = wk.

5 This is an implementation detail and can be assumed to be available in practice.
6 We are slightly cheating here as we have stored the key-value pair as the element in

the vector and we only wish to add δ to the value component of this pair. This can
be realized in practice by carefully handling the sizes of K and V to simulate addition
to the value component by performing regular addition and avoiding overflows. The
alternative is to store just the value in VC, but then Acc would have to store the keys
with the positions where their values are stored in VC, which would mean that a
non-membership proof for our KVC would now have to be a batched non-membership
proof of Acc, which is also a viable solution, but may be less efficient depending on
how large |KM| becomes.

112 F. Baldimtsi et al.

– Λk ← NonMemProofUpdate(Λk, u): On input a non-membership proof Λk and
update information u, the non-membership proof update algorithm:

• parses u as either (uAcc, ·, ·) or ·, in the latter case, the algorithm makes
no changes to Λk

• runs Λk ← Acc.NonMemProofUpdate(Λk, uAcc)
outputs an updated non-membership proof Λk.

– 1/0 ← Ver(C, (k, v), Λk): On input a key-value commitment string C, a key-
value pair (k, v) ∈ K × V along with a position qk, and a proof Λk, the
verification algorithm:

• parses C = (CAcc, CVC, q)
• checks that qk ≤ q
• runs b ← VC.ProofVer(CVC, (qk, (k, v)), Λk)

and finally outputs b.
– 0/1 ← NonMemVer(C, k, Λk): On input a key-value commitment string C, a

key x ∈ K, and a non-membership proof Λk, the non-membership verification
algorithm:

• parses C = (CAcc, CVC, ·)
• runs b ← Acc.NonMemVer(CAcc, k, Λk)

and finally outputs b.

The correctness of the above scheme follows directly from the construction
and the correctness of Acc and VC. Additionally, we have the following lemma
with regard to key binding.

Lemma 1. If Acc and VC have (any flavor of) soundness and position binding,
then KVC has weak key binding.

Proof. This is a fairly simple reduction. Indeed, suppose we have a PPT adver-
sary A that can break the weak key binding of KVC. By definition, this means
that A, with knowledge of pp, can come up with an honestly generated key-value
commitment and either a proof that certifies membership of a key or key-value
pair that has not been inserted, or a non-membership proof that certifies non-
membership of a key that has been inserted. Suppose it is the former. Recall
that in our scheme, a membership proof Λk is simply a proof of VC. Therefore, if
a membership proof breaks the key binding of KVC, it can be used to break the
position binding of VC. In the latter case, note that a non-membership proof Λk

is simply a non-membership proof of Acc. Therefore, if a non-membership proof
breaks the key binding of KVC, it can be used to break the weak soundness of
Acc. We note that this KVC construction only achieves weak key binding because
the verification algorithm has no way to verify the mapping between key-value
pair (k, v) and its position qk. In particular, for an adversarially generated key-
value commitment, it is possible that the same key was inserted with different
values in two different positions in the VC. ��
We thus have the following theorem.

Theorem 1. Assuming the existence of an accumulator and vector commitment
(supporting the procedure Extend) that satisfy correctness, and soundness and
position binding respectively, then there exists a key-value commitment that sat-
isfies correctness and weak key binding.

Oblivious Accumulators 113

3.2 Construction II with Strong Key Binding

As before, let Acc be an accumulator as described in Sect. 2.2.1, and let VC
be a vector commitment as described in Sect. 2.2.2 that supports the procedure
Extend. In this section, we will be designing a key-value commitment with strong
key binding (assuming both Acc and VC have strong soundness) for the space
of keys K where the space of elements D of Acc is K × {0, 1}λ × {0, 1}7, and
the space of values V, where the space of elements D of VC is K × V. To do
this, we introduce what we call a key position proof which ties a key-value pair
(actually, the key) with its corresponding position. These key position proofs
can be created and updated similar to other membership and non-membership
proofs. Specifically, KeyPosProofCreate would be called by Insert (with access
to the digest of all update information U produced until the current point in
time) and KeyPosProofUpdate would be called by ProofUpdate. We construct our
key-value commitment KVC as follows:

– (pp, C) ←$ Setup(1λ): On input the security parameter λ, the setup genera-
tion algorithm:

• runs (ppAcc, CAcc) ←$ Acc.Setup(1λ)
• runs (ppVC, CVC) ←$ VC.Setup(1λ, 0)

and finally outputs the public parameters pp = (ppAcc, ppVC) and the ini-
tial commitment C = (CAcc, CVC, 0) to the empty key-value map. All other
algorithms have access to the public parameters.

– (C,Λk, u) ← Insert(C, (k, v)): On input a key-value commitment string C and
a key-value pair (k, v) ∈ K × V, the insertion algorithm:

• parses C = (CAcc, CVC, q)
• parses q + 1 as a λ-bit string b1, . . . , bλ, where b1 is the least significant

bit, and bλ is the most significant bit of q + 1
• runs (CAcc, wk,j , uAcc,j) ← Acc.Add(CAcc, (k, j, bj)) for each j ∈ [λ]
• runs (ppVC, CVC, uVC,1) ←$ VC.Extend(1λ, CVC)
• runs (CVC, uVC,2) ← VC.Update(CVC, (q + 1, (k, v)))
• runs Λq+1 ← VC.ProofUpdate(Λq+1, uVC,2)

and finally outputs a new key-value commitment string C = (CAcc, CVC, q +
1), a proof Λk = ({wk,j}j∈[λ], Λq+1), and update information u =
({uAcc,j}j∈[λ], uVC,1, uVC,2).

– (C, u) ← Update(C, (k, δ)): On input a key-value commitment string C, a key
k ∈ K along with a position qk , and an additive update value δ ∈ V, the
update algorithm:

• parses C = (CAcc, CVC, q)
• runs (CVC, uVC) ← VC.Update(CVC, (qk, δ))

and finally outputs a new key-value commitment string C = (CAcc, CVC, q)
and update information u = uVC.

– Λk ← ProofUpdate(Λk, u): On input a proof Λk for some value corresponding
to the key k and update information u, the proof update algorithm:

7 We assume that the number of key-value pairs that will ever be inserted into our
KVC is less than 2λ.

114 F. Baldimtsi et al.

• parses Λk = ({Λk,j}j∈[λ], Λqk)
• parses u as either ({uAcc,j}j∈[λ], uVC,1, uVC,2) or uVC

• runs Λk,j ← Acc.MemProofUpdate(Λk,j , uAcc,j′) for each j, j′ ∈ [λ]
• runs Λk ← VC.ProofUpdate(VC.ProofUpdate(Λk, uVC,1), uVC,2) or Λk =

VC.ProofUpdate(Λk, uVC)
and finally outputs an updated proof Λk = ({Λk,j}j∈[λ], Λqk).

– Λk,qk ← KeyPosProofCreate(k, qk, U) : On input a key k ∈ K along with a
position qk, and the digest of all update information U produced until the
current point in time, the key position proof creation algorithm:

• parses qk as a λ-bit string b1, . . . , bλ, where b1 is the least significant bit,
and bλ is the most significant bit of qk

• parses U = {u}, where either u = (uAcc, ·, ·) or u = ·
• defines UAcc = {uAcc}, the set of all update information released for Acc
• runs wk,qk,j ← Acc.NonMemProofCreate((k, j, bj), UAcc) for each j ∈ [λ]

and finally outputs a key position proof Λk,qk = {wk,qk,j}j∈[λ].
– Λk,qk ← KeyPosProofUpdate(Λk,qk , u) : On input a non-membership proof Λk

and update information u, the key position proof update algorithm:
• parses u as either (uAcc, ·, ·) or ·, in the latter case, the algorithm makes

no changes to Λk,qk

• parses Λk,qk = {Λk,qk,j}j∈[λ]

• runs Λk,qk,j ← Acc.NonMemProofUpdate(Λk,qk,j , uAcc) for each j ∈ [λ]
outputs an updated key position proof Λk,qk = {Λk,qk,j}j∈[λ].

– Λk ← NonMemProofCreate(k, U): On input a key k ∈ K and the digest of
all update information U produced until the current point in time, the non-
membership proof creation algorithm:

• parses U = {u}, where either u = (uAcc, ·, ·) or u = ·
• defines UAcc = {uAcc}, the set of all update information released for Acc
• runs wk,b ← Acc.NonMemProofCreate((k, 1, b), UAcc) for each b ∈ {0, 1}

and finally outputs a non-membership proof Λk = {wk,b}b∈{0,1}.
– Λk ← NonMemProofUpdate(Λk, u): On input a non-membership proof Λk and

update information u, the non-membership proof update algorithm:
• parses u as either (uAcc, ·, ·) or ·, in the latter case, the algorithm makes

no changes to Λk

• parses Λk = {Λk,b}b∈{0,1}
• runs Λk,b ← Acc.NonMemProofUpdate(Λk,b, uAcc) for each b ∈ {0, 1}

outputs an updated non-membership proof Λk = {Λk,b}b∈{0,1}.
– 1/0 ← Ver(C, (k, v), Λk): On input a key-value commitment string C, a key-

value pair (k, v) ∈ K×V along with a position qk and a position proof Λk,qk
8,

and a proof Λk, the verification algorithm:
• parses C = (CAcc, CVC, q)
• checks that qk ≤ q
• parses qk as a λ-bit string b1, . . . , bλ, where b1 is the least significant bit,

and bλ is the most significant bit of qk

• parses Λk = ({Λk,j}j∈[λ], Λqk) and Λk,qk = {Λk,qk,j}j∈[λ]

8 This is obtained using KeyPosProofCreate(k, qk, ·) and KeyPosProofUpdate(Λk,qk , ·).

Oblivious Accumulators 115

• runs b1 ← ∧
j∈[λ] Acc.MemVer(CAcc, (k, j, bj), Λk,j)

• runs b2 ← ∧
j∈[λ] Acc.NonMemVer(CAcc, (k, j, bj), Λk,qk,j)

• runs b3 ← VC.ProofVer(CVC, (qk, (k, v)), Λqk)
and finally outputs b1 ∧ b2 ∧ b3.

– 0/1 ← NonMemVer(C, k, Λk): On input a key-value commitment string C, a
key x ∈ K, and a non-membership proof Λk, the non-membership verification
algorithm:

• parses C = (CAcc, CVC, ·)
• parses Λk = {Λk,b′}b′∈{0,1}
• runs b ← ∧

b′∈{0,1} Acc.NonMemVer(CAcc, (k, 1, b′), Λk,b′)
and finally outputs b.

The correctness of the above scheme follows directly from the construction
and the correctness of Acc and VC. Additionally, we have the following lemma
with regard to key binding which leads to the subsequent theorem.

Lemma 2. If Acc and VC have strong soundness and position binding, then
KVC has strong key binding.

Proof. This is a fairly simple reduction. Indeed, suppose we have a PPT adver-
sary A that can break the strong key binding of KVC. By definition, this means
that A, with knowledge of pp, can come up with a potentially adversarially gen-
erated key-value commitment and either a proof that certifies membership of a
key or key-value pair that has not been inserted, or a non-membership proof
that certifies non-membership of a key that has been inserted. Suppose it is the
former. Our verification algorithm ensures that the key k is bound to precisely
the position qk in Acc and that VC stores the right key-value pair at position
qk. Therefore, if a membership proof breaks the strong key binding of KVC, it
can be used to break either the strong soundness of Acc or the strong position
binding of VC. In the latter case, note that a non-membership proof Λk is simply
a pair of non-membership proofs of Acc which cannot verify if the key k has been
inserted. Therefore, if a non-membership proof breaks the strong key binding of
KVC, it can be used to break the strong soundness of Acc. ��
Theorem 2. Assuming the existence of an accumulator and vector commitment
(supporting the procedure Extend) that satisfy correctness, and strong soundness
and strong position binding respectively, then there exists a key-value commit-
ment that satisfies correctness and strong key binding.

Constant Sized Proofs. In our construction, proofs are in general larger by a
factor of O(λ). If Acc supports batched membership and non-membership proofs,
this can be brought down to O(1) in a straightforward manner.

3.3 Relation to Existing Constructions

We now describe how existing KVC constructions relate to our generic con-
struction. We focus on schemes that support key non-membership and updates.

116 F. Baldimtsi et al.

Black-box KVC constructions have been proposed from stronger primitives such
as functional commitments [15].9. Aardvark [26] is a generic construction that
uses a plain VC scheme and performs sequential insertions. It differs in the way it
implements key non-membership. In order to support non-membership, it stores
elements (k, v, succ(k)), where succ(k) is the smallest key in the list larger than
k. To prove non-membership for k′, one gives a proof of opening for an element
with the same successor as k′. This approach complicates updates, because when
a new key is inserted, multiple positions need to be updated. The same holds
for the generic construction by Fiore et al. [22] that utilizes VC schemes and
cuckoo hashing. Instead of sequential VC additions, keys and their correspond-
ing values are placed in the same position inside two vectors, determined by the
cuckoo hashing functions. Because of the heavy rearrangement of elements when
a new key is inserted, there is no proof updates, instead, many proofs need to
be computed from scratch (to reflect the new position). Compared to our strong
KVC from Sect. 3.2, both [22,26] have a verifier state overhead (Aardvark uses
multiple vector commitments and cuckoo hashing uses a stack) and they do not
offer stateless updates. Beyond black box constructions, there exist a number of
KVC constructions with key non-membership and updates which are based on
specific RSA-related assumptions [2,35,36]. Our generic construction could give
rise to concrete instantiations under different assumptions.

4 Oblivious Accumulators

In this section, we provide our definition of oblivious accumulators. The overarch-
ing goal of an oblivious accumulator is for its updates to be completely oblivious,
i.e., hide the details of the underlying operation being performed on the accu-
mulator. In particular, from the definition of the accumulator from Sect. 2.2.1,
we would like for the public parameters pp, accumulator string C, and update
any information u that is released by calls to Add or Del (and hence the digest of
all update information at any point in time) to hide as much information about
the underlying accumulated set S as possible10.

Looking forward, we will formulate three properties that an oblivious accu-
mulator must satisfy. These three properties combined will provide the guarantee
that any publicly available information will hide as much information about S
as possible. The three properties are:

1. Element hiding. Informally, this will mean that any publicly available infor-
mation does not reveal anything about the elements in S.

2. Add-Del unlinkability. Informally, this will mean that any publicly available
information does not reveal if two operations correspond to an add and a
delete of the same element.

9 KVC constructions have also been proposed from sparse VC schemes [9,16] but sup-
porting key non-membership and updates at the same time is expensive.

10 Indeed, note that if only one operation has been performed, we know that it must
be an Add, but we don’t necessarily know the element that has been added.

Oblivious Accumulators 117

3. Add-Del indistinguishability. Informally, this will mean that any publicly avail-
able information does not reveal if an operation corresponds to an add or a
delete, more than can be deduced given no update information.11

4.1 Definition

Recall that we will define the primitive in the positive (supports membership
proofs) dynamic (supports additions and deletions) setting. We also assume that
we are in the trapdoorless setting, i.e., updates can be performed with publicly
available information. Much of our definition from Sect. 2.2.1 can be used to
define oblivious accumulators, but crucially some changes are required. Essen-
tially, any operation that is performed, in order to hide particulars of the oper-
ation such as the nature of the operation itself (Add or Del) and the associated
element, must make use of some secret or auxiliary information, that we denote
by aux. This auxiliary information must at the very least be used in the gen-
eration and verification of membership proofs.12 Furthermore, since Adds and
Dels are indistinguishable, it may become necessary for an Add to now take as
input all past updates, just as Del does. Based on these observations, we modify
our definition from 2.2.1 and define oblivious accumulators below. We define
an oblivious accumulator OblvAcc as a non-interactive primitive that can be
formally described via the following algorithms:

– (pp, C) ←$ Setup(1λ): On input the security parameter λ, the setup algorithm
outputs some public parameters pp (which implicitly define the accumulator
domain D) and the initial accumulator string C to the empty set. All other
algorithms have access to the public parameters.

– (C,wx, u, aux) ←$ Add(C, x, U): On input an accumulator string C, an ele-
ment x ∈ D, and the digest of all update information U produced until the
current point in time, the addition algorithm outputs a new accumulator
string C, a membership proof wx (that x ∈ S), update information u, and
auxiliary information aux.

– (C, u) ← Del(C, x, U, aux): On input an accumulator string C, an element
x ∈ D, the digest of all update information U produced until the current
point in time, and auxiliary information aux, the deletion algorithm outputs
a new accumulator string C and update information u.

– wx ← MemProofUpdate(wx, u): On input a membership proof wx and update
information u, the membership proof update algorithm outputs an updated
membership proof wx.

– 0/1 ← MemVer(C, x,wx, aux): On input an accumulator string C, an element
x ∈ D, a membership proof wx, and auxiliary information aux, the member-
ship verification algorithm either outputs 1 (denoting accept) or 0 (denoting
reject).

11 For example, if we have a sequence of four operations, they cannot be one Add and
three Dels.

12 One could imagine that they are also required for updating membership proofs, but
we will not need this and so opt for the stronger definition where aux is only needed
to generate membership proofs.

118 F. Baldimtsi et al.

The correctness and soundness properties of an oblivious accumulator are
identical to those of a regular accumulator, as defined in Sect. 2.2.1. We will
define the three properties underlying the obliviousness of the accumulator in
the next section.

4.2 Obliviousness Properties

In this section, we will define the three properties underlying the obliviousness
of the accumulator.

4.2.1 Element Hiding

The property of element hiding is meant to provide the guarantee that an adver-
sary that observes the publicly available information does not learn about the
elements in the underlying accumulated set S. We define this property as a game
between a challenger and an adversary. In the game, the adversary gets to see
honestly generated public parameters and then pick two elements x0, x1 ∈ D.
The challenger then picks b ←$ {0, 1} and performs an Add of xb, followed by
a Del of xb. The adversary is then given the update information generated by
each of the operations and has to guess b. The oblivious accumulator is said to
be element hiding if the adversary cannot guess b with non-negligible advantage
over 1

2 . We extend the game in a natural left-or-right paradigm to extend it to
support multiple queries (denoted by {·}i where the queries are indexed by i).
We define this formally below.

Definition 1 (Element hiding). An oblivious accumulator is said to be element
hiding if for any PPT adversary A, the following probability is at most 1

2 +
negl(λ):

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′ = b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(pp, C0) ←$ Setup(1λ)
b ←$ {0, 1}, inp = (pp, C0), j = 0, U = ∅, J = ∅

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩

j = j + 1
(add, x0,j , x1,j) ←$ A(inp)

(Ci, ·, ui, auxj) ←$ Add(Ci−1, xb,j , U)
inp = inp‖(add, x0,j , x1,j , Ci), U = U ∪ {ui}

⎫
⎪⎪⎬

⎪⎪⎭

or

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(del, j′) ←$ A(inp)
assert j′ ≤ j ∧ j′ �∈ J

J = J ∪ {j′}
(Ci, ui) ← Del(Ci−1, xb,j′ , U, auxj′)
inp = inp‖(del, j′, Ci), U = U ∪ {ui}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
i

b′ ←$ A(inp, U)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Oblivious Accumulators 119

We note that while there are other games one could think of to define this
property, they would not offer any advantages over our proposed game.

4.2.2 Add-Del Unlinkability

We first state a weaker flavor of privacy: Add-Del unlinkability, introduced by
Baldimtsi et al. [5] in the context of manager-based anonymous revocation com-
ponent (ARC) systems. We re-define this property in the context of a trapdoorless
accumulator. Add-Del unlinkability is meant to provide the guarantee that an
adversary that observes the publicly available information does not learn if two
operations correspond to an Add and a Del of the same element. We define this
property as a game between a challenger and an adversary. In the game, the
adversary gets to see honestly generated public parameters and then pick two
elements x0, x1 ∈ D. The challenger first performs an Add of x0 and x1, in order.
Then, the challenger picks b ←$ {0, 1} and performs a Del of xb, followed by a
Del of x1−b. The adversary is then given the update information generated by
each of the operations and has to guess b. The oblivious accumulator is said to
be Add-Del unlinkable if the adversary cannot guess b with non-negligible advan-
tage over 1

2 . We extend the game in a natural left-or-right paradigm to extend
it to support multiple queries (denoted by {·}i where the queries are indexed by
i). We define this formally below.

Definition 2 (Add-Del unlinkability). An oblivious accumulator is said to be
Add-Del unlinkable if for any PPT adversary A, the following probability is at
most 1

2 + negl(λ):

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b′ = b

∣∣∣

(pp, C0) ←$ Setup(1λ)
b ←$ {0, 1}, inp = (pp, C0), j = 0, U = ∅, J = ∅

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j = j + 1
(add, x0,j , x1,j) ←$ A(inp)

(C2i−1, ·, u2i−1, aux2j−1) ←$ Add(C2i−2, x0,j , U)
(C2i, ·, u2i, aux2j) ←$ Add(C2i−1, x1,j , U ∪ {u2i−1})

inp = inp‖(add, x0,j , x1,j , C2i−1, C2i)
U = U ∪ {u2i−1, u2i}

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

or

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(del, j′) ←$ A(inp)
assert j′ ≤ j ∧ j′ �∈ J

J = J ∪ {j′}
(C2i−1, u2i−1) ← Del(C2i−2, xb,j′ , U, aux2j′−(1−b))

(C2i, u2i) ← Del(C2i−1, x1−b,j′ , U ∪ {u2i−1}, aux2j′−b)
inp = inp‖(del, j′, C2i−1, C2i)

U = U ∪ {u2i−1, u2i}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i

b′ ←$ A(inp, U)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We note that while there are other games one could think of to define this
property, they would not offer any advantages over our proposed game.

120 F. Baldimtsi et al.

4.2.3 Add-Del Indistinguishability

We now define Add-Del indistinguishability, a stronger privacy property which
implies Add-Del unlinkability as defined above. The property of Add-Del indistin-
guishability is meant to provide the guarantee that an adversary that observes
the publicly available information does not learn if an operation is an Add or a
Del, beyond what it can learn without even observing any update information.
We define this property as a game between a challenger and an adversary. In
the game, the adversary gets to see honestly generated public parameters and
then pick an element x0 ∈ D. The challenger first performs an Add of x0. Then,
the challenger picks b ←$ {0, 1}. If b = 0, the challenger picks a random element
x1 ∈ D and performs an Add of x1. Otherwise, the challenger performs a Del of
x0. The adversary is then given the update information generated by each of the
operations and has to guess b. The oblivious accumulator is said to be Add-Del
indistinguishable if the adversary cannot guess b with non-negligible advantage
over 1

2 . We extend the game in a natural left-or-right paradigm to extend it to
support multiple queries (denoted by {·}i where the queries are indexed by i).
We define this formally below.

Definition 3 (Add-Del indistinguishability). An oblivious accumulator is
said to be Add-Del indistinguishable if for any PPT adversary A, the following
probability is at most 1

2 + negl(λ):

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′ = b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(pp, C0) ←$ Setup(1λ)
b ←$ {0, 1}, inp = (pp, C0), j = 0, U = ∅, J = ∅

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩

j = j + 1
(add, xj) ←$ A(inp)

(Ci, ·, ui, auxj) ←$ Add(Ci−1, xj , U)
inp = inp‖(add, xj , Ci), U = U ∪ {ui}

⎫
⎪⎪⎬

⎪⎪⎭

or

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(del, j′) ←$ A(inp)
assert j′ ≤ j ∧ j′ �∈ J
J = J ∪ {j′}, yi ←$ D

if b = 0 : (Ci, ·, ui, ·) ←$ Add(Ci−1, yi, U)
if b = 1 : (Ci, ui) ←$ Del(Ci−1, xj′ , U, auxj′)

inp = inp‖(del, j′, Ci)
U = U ∪ {ui}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
i

b′ ←$ A(inp, U)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We note that while there are other games one could think of to define this
property, they would not offer any advantages over our proposed game.

Note that Add-Del indistinguishability implies Add-Del unlinkability. Intu-
itively, if an adversary cannot even tell Adds from Dels, then they certainly

Oblivious Accumulators 121

cannot identify a pair of updates that correspond to an Add and a Del, let
along identifying that they are with respect to the same element. Formally, in
the Add-Del unlinkability game, the two Dels can we be swapped with Adds,
assuming Add-Del indistinguishability, and then back to Dels, but in the reverse
order, again assuming Add-Del indistinguishability, and this would prove Add-
Del unlinkability. We call accumulators that satisfy Add-Del unlinkability but
not Add-Del indistinguishability as almost-oblivious accumulators, and ones that
satisfy Add-Del indistinguishability as oblivious accumulators.

5 OblvAcc Based on KVC

In this section, we show how to generically construct an oblivious accumulator
using a key-value commitment. The idea is to maintain an indicator map that
reflects which elements are in the underlying accumulated set, but where the
keys associated with each element are kept secret and hence not publicly known.
This helps in the first step of achieving element hiding. To achieve Add-Del
indistinguishability, we perform both Adds and Dels as Inserts of the key-value
commitment, but with different keys. Finally, the fact that the correspondence
between elements and keys is not publicly known will also lend itself to Add-Del
unlinkability. We formally describe this construction in the next section.

5.1 Construction

Let KVC be a key-value commitment as described in Sect. 2.2.3. Let H1,H2 :
{0, 1}λ×D → K be two hash functions (that will be modeled as random oracles).
Note that we will be designing an oblivious accumulator for elements from D
and K denotes the space of keys for the key-value commitment, and |K| = 22λ.
If all we want is to accumulate elements, then the only requirement from the
space of values V for the key-value commitment is that 1 ∈ V. However, if we
would like to support a richer structure where elements in our accumulator are
tagged by some public values that may change with time, we would require V
to include these public tag values. We present our basic oblivious accumulator
OblvAcc below:

– (pp, C) ←$ Setup(1λ): On input the security parameter λ, the setup algorithm
runs (ppKVC, CKVC) ←$ KVC.Setup(1λ) and outputs the public parameters
pp = (ppKVC,H1,H2) and the initial accumulator string C = CKVC. All other
algorithms have access to the public parameters.

– (C,wx, u, aux) ←$ Add(C, x, U): On input an accumulator string C, an ele-
ment x ∈ D, and the digest of all update information U produced until the
current point in time, the addition algorithm:

• samples r ←$ {0, 1}λ

• computes k1 = H1(r, x), k2 = H2(r, x)
• runs (CKVC, Λk1 , uKVC) ← KVC.Insert(C, (k1, 1))
• runs Λk2 ← KVC.NonMemProofCreate(k2, U ∪ {uKVC})

122 F. Baldimtsi et al.

and finally outputs a new accumulator string C = CKVC, a membership proof
wx = (Λk1 , Λk2), update information u = uKVC, and auxiliary information
aux = r.

– (C, u) ← Del(C, x, U, aux): On input an accumulator string C, an element
x ∈ D, the digest of all update information U produced until the current
point in time, and auxiliary information aux, the deletion algorithm:

• parses aux = r
• computes k2 = H2(r, x)
• runs (CKVC, Λk2 , uKVC) ← KVC.Insert(C, (k2, 1))

and finally outputs a new accumulator string C = CKVC and update informa-
tion u = uKVC.

– wx ← MemProofUpdate(wx, u): On input a membership proof wx and update
information u, the membership proof update algorithm:

• parses wx = (Λk1 , Λk2)
• runs Λk ← KVC.ProofUpdate(Λk1 , u)
• Λk2 ← KVC.NonMemProofUpdate(Λk2 , u)

and finally outputs an updated membership proof wx = (Λk1 , Λk2).
– 0/1 ← MemVer(C, x,wx, aux): On input an accumulator string C, an element

x ∈ D, and a membership proof wx, the membership verification algorithm:
• parses aux = r
• computes k1 = H1(r, x), k2 = H2(r, x)
• parses wx = (Λk1 , Λk2)
• runs b1 ← KVC.Ver(C, (k1, 1), Λk1)
• runs b2 ← KVC.NonMemVer(C, k2, Λk2)

and finally outputs b1 ∧ b2.

Supporting Updatable Public Tags. As noted above, by using a value other than
1 while inserting into the KVC, we can tag elements in our accumulator with
any public value from V. Furthermore, we can update these public tags using
the Update(·) operation of KVC (recall the example of maintaining metadata for
a customer base on a smart contract from Sect. 1.1). Indeed, if one does not
care about such tags, we can replace the KVC in the above construction with an
accumulator.

The correctness of the above scheme follows directly from the construction
and the correctness of KVC. In the remainder of this section, we will prove the
soundness and obliviousness properties of our oblivious accumulator. We thus
have the following theorem.

Theorem 3. Assuming the existence of a key-value commitment that satisfies
correctness and weak (strong) key binding, then there exists an oblivious accu-
mulator that satisfies correctness, weak (strong) soundness, element hiding, and
Add-Del indistinguishability, in the random oracle model.

Oblivious Accumulators 123

5.2 Soundness

Lemma 3. Assume that H1,H2 are random oracles. If KVC has weak (strong)
key binding, then OblvAcc has weak (strong) soundness.

Proof. Suppose we have a PPT adversary A that can break the weak (strong)
soundness of OblvAcc. By definition, this means that A, with knowledge of pp,
can come up with an honestly generated (potentially adversarially generated)
accumulator and either a membership proof that certifies membership of an
element that has not been added, or a non-membership proof that certifies non-
membership of an element that has been added. Suppose it is the former. Recall
that in our scheme, a membership proof wx consists of a proof Λk1 and non-
membership proof Λk2 of KVC, where k1 = H1(r, x), k2 = H2(r, x). If it is the
case that x has not been added, then there cannot exist an r such that both
Λk1 and Λk2 verify (as if they do, by definition, x has been added, and not yet
deleted). Therefore, if wx certifies x that has not been added, at least one of
Λk1 and Λk2 can be used to break the weak (strong) key binding of KVC. A
similar argument can be made for the latter case. A final detail is we assume
that H1,H2 exhibit no collisions over the inputs queried on by A. Indeed, since
A is PPT and |K| = 22λ, this is true with probability all but negl(λ). ��

5.3 Element Hiding

Lemma 4. Assume that H1,H2 are random oracles. OblvAcc is element hiding.

Proof. For simplicity, we will show that for any PPT adversary A,

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′ = b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(pp, C0) ←$ Setup(1λ)
x0, x1 ←$ A(pp, C0)

b ←$ {0, 1}
(C1, wxb

, u1, aux) ←$ Add(C0, xb, ∅)
(C2, u2) ← Del(C1, xb, {u1}, aux)

b′ ←$ A(C1, C2, u1, u2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 1
2

+ negl(λ)

This is essentially the single-query version of the game in Definition 1. To extend
the argument for the single-query version to prove the statement in Definition 1,
one can essentially guess the query that the adversary uses to win the game in
Definition 1 and use it, with appropriate bookkeeping, to break the single-query
version above.

We assume that H1,H2 exhibit no collisions over the inputs queried on by
A. Indeed, since A is PPT and |K| = 22λ, this is true with probability all but
negl(λ). Note that (C1, ·, u1) ← KVC.Insert(C0, (k1,b, 1)), where k1,b = H1(rb, xb),
and (C2, ·, u2) ← KVC.Insert(C1, (k2,b, 1)), where k2,b = H2(rb, xb). Since rb is
sampled at random from {0, 1}λ and H1 and H2 are random oracles, we have
(k1,b, k2,b) ≡ (k1,1−b, k2,1−b) ≡ (α1, α2), where α1, α2 ←$ K. Since these are the
only values needed by the challenger to play the above game, this means that
(C1, C2, u1, u2) is distributed the same, regardless of b. Therefore, the claim of
OblvAcc being element hiding follows. ��

124 F. Baldimtsi et al.

5.4 Add-Del Indistinguishability

Lemma 5. Assume that H1,H2 are random oracles. OblvAcc is Add-Del indis-
tinguishable.

Proof. For simplicity, we will show that for any PPT adversary A,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pp, C0) ←$ Setup(1λ)
x0 ←$ A(pp, C0)

(C1, wx0 , u1, aux0) ←$ Add(C0, x0, ∅)
b ←$ {0, 1}, x1 ←$ D

if b = 0: (C2, wx1 , u2, aux1) ←$ Add(C1, x1, {u1})
if b = 1: (C2, u2) ← Del(C1, x0, {u1}, aux0)

b′ ← A(C1, C2, u1, u2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 1

2
+ negl(λ)

This is essentially the single-query version of the game in Definition 3. To extend
the argument for the single-query version to prove the statement in Definition 3,
one can essentially guess the query that the adversary uses to win the game in
Definition 3 and use it, with appropriate bookkeeping, to break the single-query
version above.

We assume that H1,H2 exhibit no collisions over the inputs queried on
by A. Indeed, since A is PPT and |K| = 22λ, this is true with probability
all but negl(λ). Note that (C1, ·, u1) ← KVC.Insert(C0, (k1,0, 1)), where k1,0 =
H1(r0, x0), and (C2, ·, u2) ← KVC.Insert(C1, (k1,1, 1)), where k1,1 = H1(r1, x1)
if b = 0, and (C2, ·, u2) ← KVC.Insert(C1, (k2,0, 1)), where k2,1 = H2(r0, x0) if
b = 1. Since r0, r1 are sampled at random from {0, 1}λ and H1 and H2 are ran-
dom oracles, we have (k1,0, k1,1) ≡ (k1,0, k2,0) ≡ (α1, α2), where α1, α2 ←$ K.
Since these are the only values needed by the challenger to play the above game,
this means that (C1, C2, u1, u2) is distributed the same, regardless of b. There-
fore, the claim of OblvAcc being Add-Del indistinguishable follows. ��

5.5 Extension for Unique Accumulation of Elements

Both our main construction of Sect. 5.1 and the modular construction of the
almost-oblivious accumulator described in the introduction, do not guarantee
that the accumulated elements are unique. This implies that the same element
x can be accumulated more than once and this would go unnoticed because of
the element hiding property13.

To overcome this problem instead of accumulating commitments to x one
could use a deterministic commitment (assuming also that the accumulated ele-
ments bare random and from a large enough domain to avoid guessing attacks).
One approach to do so, would be to use a hash function as a commitment scheme.
If guessing is still a concern, we could use a verifiable oblivious PRF (VOPRF)
[24] for the generation of the committed value in the almost-oblivious construc-
tion (or for the selection of randomness r in the construction of Sect. 5.1). In
13 In the almost-oblivious accumulator which reveals the size of the accumulated set,

this might be more problematic if in the underlying application the size of the set is
important and should only contain unique elements.

Oblivious Accumulators 125

a high level, in a VOPRF protocol, when given a PRF F , a third party can
communicate with a server holding a secret key k to evaluate an argument x
and get back y = Fk(x), while the server learns nothing about x. If F is also
verifiable, there is a way to convince a third party that y is the true output of
Fk(x) without revealing k. Using this approach, has the trade off of requiring a
server that holds the PRF key (thus, some point of centralization), however it
makes such guessing attacks harder since an attacker would have to interact with
a server in order to test for elements (which might imply some actual financial
cost, i.e. the server could charge a fee for its given evaluation).

6 Lower Bounds

In this section, we will first show that for an oblivious accumulator, the digest of
all update information cannot be compressed with time and must grow linearly
with the number of operations that have been performed. This builds off of an
information-theoretic argument in the style of [10,19] to argue the claim for
deletions, and then uses the obliviousness properties to argue that the claim
must hold for any sequence of operations. This result appears in Sect. 6.1.

Next, we show that a similar claim holds even for non-oblivious accumulators
like ZCash that don’t satisfy Add-Del indistinguishability but have have Add-
Del unlinkability. For such accumulators, we show that the digest of all update
information must grow in a sense with the number of deletions that have been
performed. This result appears in Sect. 6.2.

6.1 Oblivious Accumulators

Lemma 6. Let OblvAcc be an oblivious accumulator over the domain D. Let
S ⊆ D be a set of size n and let T ⊂ S be a set of size n

2 . Consider performing
the following sequence of operations in order:

1. (pp, C) ←$ Setup(1λ)
2. (C,wx, u, aux) ←$ Add(C, x, U) for each x ∈ S
3. (C, u) ← Del(C, x, U, aux) for each x ∈ T

Let C be the accumulator string and U be the digest of all update information
produced at the end of all the operations. Then,

|C| + |U | = Ω(n)

Proof. We will show that if the theorem is false, then we can encode arbitrary
subsets of S of size n

2 with o(n) bits, which is impossible information-theoretically
from Shannon’s coding theorem, as there are

(
n
n
2

)
= 2Ω(n) possible subsets of S

of size n
2 .

Let T ⊂ S be a set of size n
2 . Consider two parties A and B who know

the set S, and suppose A knows T and wishes to encode T for B. A and B
agree upon a mutual source of randomness and thus, we can assume that both

126 F. Baldimtsi et al.

parties toss the same random coins. A proceeds as follows. A runs (pp, C) ←$

OblvAcc.Setup(1λ). Then, A runs (C,wx, u, aux) ←$ OblvAcc.Add(C, x, U) for
each x ∈ S, followed by (C, u) ← OblvAcc.Del(C, x, U, aux) for each x ∈ T .
Let C be the final accumulator string and U be the final digest of all update
information. A then sends along (C,U) to B.

We now claim that B can recover T . B can run (pp, C) ←$ OblvAcc.Setup(1λ)
and (C,wx, u, aux) ←$ OblvAcc.Add(C, x, U) for each x ∈ S (using the same ran-
dom coins as A). Now, using OblvAcc.MemProofUpdate, B can compute mem-
bership proofs wx for each x ∈ S after the sequence of OblvAcc.Adds. Notice that
this point, all those proofs would verify. Then, using OblvAcc.MemProofUpdate
and U , B can compute updated membership proofs for each x ∈ S after the
sequence of OblvAcc.Dels. From the correctness and soundness of OblvAcc, only
the membership proof of x ∈ S\T will now verify. Thus, by attempting to invoke
OblvAcc.MemVer on each wx, B can learn if x ∈ T or not. Thus (C,U) encodes
T and hence the claim in the lemma follows. ��

For an oblivious accumulator, call a sequence of operations {Oi}i valid, where
each Oi is an Add or Del, if and only if no operation attempts to Del an element
that does not exist, i.e., has not been added or has already been deleted.

Lemma 7. Let OblvAcc be an oblivious accumulator and let � ∈ N. Let {Oi}i∈[�]

and {O′
i}i∈[�] be two valid sequences of operations for OblvAcc. Consider perform-

ing the following operations:

1. (pp, C0) ←$ Setup(1λ)
2. (Ci, (·), ui, (·)) ←$ Oi(Ci−1, ·, ·, (·)) for i ∈ [�]
3. (C ′

i, (·), u′
i, (·)) ←$ O′

i(C
′
i−1, ·, ·, (·)) for i ∈ [�], where C ′

0 = C0

Then, for any PPT adversary,

(C1, . . . , C�, u1, . . . , u�) ≈c (C ′
1, . . . , C

′
�, u

′
1, . . . , u

′
�)

that is, the sequence of accumulator strings and update information released are
computationally indistinguishable.

Proof. We can prove this by induction on �. For � = 1, both O1 and O′
1 must

be Adds. In this case, by the element hiding of OblvAcc, the claim of the lemma
holds. Assume the claim holds for � = k, and let us consider the case of � = k+1.

For any sequence of operations O = {Oi}i∈[k+1], let transcript(O) denote the
sequence of accumulator strings and update information released. In particular,

transcript({Oi}i∈[k+1]) = (C1, . . . , Ck+1, u1, . . . , uk+1)

and
transcript({O′

i}i∈[k+1]) = (C ′
1, . . . , C

′
k+1, u

′
1, . . . , u

′
k+1)

Let O be an Add. First, note that

transcript({Oi}i∈[k+1]) ≈c transcript({Oi}i∈[k] ∪ {O})

Oblivious Accumulators 127

This follows from just element hiding if Ok+1 were an Add, and from Add-Del
unlinkability and indistinguishability if Ok+1 were a Del. Next, note that there
is a function fO,pp such that

transcript({Oi}i∈[k] ∪ {O}) ←$ fO,pp(transcript({Oi}i∈[k]))

By our inductive hypothesis,

transcript({Oi}i∈[k]) ≈c transcript({O′
i}i∈[k])

Therefore,

transcript({Oi}i∈[k] ∪ {O}) ≈c transcript({O′
i}i∈[k] ∪ {O})

as
transcript({O′

i}i∈[k] ∪ {O}) ←$ fO,pp(transcript({O′
i}i∈[k]))

Finally, note that

transcript({O′
i}i∈[k+1]) ≈c transcript({O′

i}i∈[k] ∪ {O})

which follows as before from just element hiding if O′
k+1 were an Add, and from

Add-Del unlinkability and indistinguishability if O′
k+1 were a Del. This completes

the proof of the lemma. ��
Theorem 4. Let OblvAcc be an oblivious accumulator. Let {Oi}i∈[n] be a valid
sequence of operations for OblvAcc. Consider performing the following sequence
of operations in order:

1. (pp, C0) ←$ Setup(1λ)
2. (Ci, (·), ui, (·)) ←$ Oi(Ci−1, ·, ·, (·)) for i ∈ [n]

Let C be the accumulator string and U be the digest of all update information
produced at the end of all the operations. Then,

|C| + |U | = Ω(n)

Proof. We combine Lemmas 6 and 7. We know from Lemma 6 that there is
a sequence of valid operations for which the claim in this lemma is true. We
claim that from Lemma 7, this claim is true for all sequences of valid opera-
tions. This follows because both (C,U) is some function of the transcript of a
sequence of operations (as defined in Lemma 7), and since the transcripts are
indistinguishable from Lemma 7, |C| + |U | must be as well. ��

6.2 Oblivious Accumulators Without Add-Del Indistinguishability

For an oblivious accumulator, define the optrace of a sequence of operations
{Oi}i to be the sequence of operation types of each operation Oi as either an
Add or a Del.

128 F. Baldimtsi et al.

Lemma 8. Let OblvAcc be an oblivious accumulator without Add-Del indistin-
guishability and let � ∈ N. Let {Oi}i∈[�] and {O′

i}i∈[�] be two valid sequences of
operations for OblvAcc with the same optrace. Consider performing the following
operations:

1. (pp, C0) ←$ Setup(1λ)
2. (Ci, (·), ui, (·)) ←$ Oi(Ci−1, ·, ·, (·)) for i ∈ [�]
3. (C ′

i, (·), u′
i, (·)) ←$ O′

i(C
′
i−1, ·, ·, (·)) for i ∈ [�], where C ′

0 = C0

Then, for any PPT adversary,

(C1, . . . , C�, u1, . . . , u�) ≈c (C ′
1, . . . , C

′
�, u

′
1, . . . , u

′
�)

that is, the sequence of accumulator strings and update information released are
computationally indistinguishable.

Proof. The proof of this lemma is similar to the proof of Lemma 7, we defer it
to our supplementary material.

For an oblivious accumulator, define the delspace of a sequence of operations
{Oi}i as follows:

– For each i such that Oi is a Del, define

delspace(Oi) = i − 1 − 2 · |{j < i : Oj is a Del}|

– Define
delspace({Oi}i) =

∏

i:Oi is a Del

delspace(Oi)

Based on the above definition and Lemma 8, we can prove the following theorem,
just as we did Theorem 4.

Theorem 5. Let OblvAcc be an oblivious accumulator without Add-Del indistin-
guishability. Let {Oi}i∈[n] be a valid sequence of operations for OblvAcc. Consider
performing the following sequence of operations in order:

1. (pp, C0) ←$ Setup(1λ)
2. (Ci, (·), ui, (·)) ←$ Oi(Ci−1, ·, ·, (·)) for i ∈ [n]

Let C be the accumulator string and U be the digest of all update information
produced at the end of all the operations. Then,

|C| + |U | = Ω(log delspace({Oi}i∈[n]))

Oblivious Accumulators 129

References

1. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Cata-
lano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp.
423–440. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-
8 26

2. Agrawal, S., Raghuraman, S.: KVaC: key-value commitments for blockchains and
beyond. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp.
839–869. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4 28

3. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7 20

4. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In: Fischlin, M. (ed.) Topics in Cryptology - CT-RSA 2009, pp. 295–308.
Springer, Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00862-7 20

5. Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revo-
cation. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P),
pp. 301–315. IEEE (2017)

6. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

7. Benaloh, J., de Mare, M.: One-Way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) Advances in Cryptology – EUROCRYPT
’93, pp. 274–285. Springer, Berlin Heidelberg (1993). https://doi.org/10.1007/3-
540-48285-7 24

8. Benarroch, D., Campanelli, M., Fiore, D., Gurkan, K., Kolonelos, D.: Zero-
knowledge proofs for set membership: efficient, succinct, modular. In: International
Conference on Financial Cryptography and Data Security, pp. 393–414. Springer
(2021). https://doi.org/10.1007/s10623-023-01245-1

9. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
Advances in Cryptology - CRYPTO 2019, pp. 561–586. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7 20

10. Camacho, P., Hevia, A.: On the impossibility of batch update for cryptographic
accumulators. In: Progress in Cryptology–LATINCRYPT 2010: First International
Conference on Cryptology and Information Security in Latin America, Puebla,
Mexico, August 8-11, 2010, Proceedings 1, pp. 178–188. Springer (2010). https://
doi.org/10.1007/978-3-642-14712-8 11

11. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
Public Key Cryptography - PKC 2009, pp. 481–500. Springer, Berlin, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 27

12. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) Advances in Cryptology
– CRYPTO 2002, pp. 61–76. Springer, Berlin, Heidelberg (2002). https://doi.org/
10.1007/3-540-45708-9 5

https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-030-64840-4_28
https://doi.org/10.1007/978-3-642-00862-7_20
https://doi.org/10.1007/978-3-642-00862-7_20
https://doi.org/10.1007/978-3-642-00862-7_20
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/s10623-023-01245-1
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-642-14712-8_11
https://doi.org/10.1007/978-3-642-14712-8_11
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5

130 F. Baldimtsi et al.

13. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
CRYPTO (1997)

14. Campanelli, M., Fiore, D., Han, S., Kim, J., Kolonelos, D., Oh, H.: Succinct zero-
knowledge batch proofs for set accumulators. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pp. 455–469
(2022)

15. de Castro, L., Peikert, C.: Functional commitments for all functions, with trans-
parent setup and from sis. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 287–320. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30620-4 10

16. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

17. Chen, B., et al.: Rotatable zero knowledge sets - post compromise secure auditable
dictionaries with application to key transparency. In: Agrawal, S., Lin, D. (eds.)
Advances in Cryptology - ASIACRYPT 2022 - 28th International Conference on
the Theory and Application of Cryptology and Information Security, Taipei, Tai-
wan, December 5-9, 2022, Proceedings, Part III. Lecture Notes in Computer Sci-
ence, vol. 13793, pp. 547–580. Springer (2022)

18. Chepurnoy, A., Papamanthou, C., Srinivasan, S., Zhang, Y.: EDRAX: a Cryptocur-
rency with Stateless Transaction Validation. Cryptology ePrint Archive, Report
2018/968 (2018)

19. Christ, M., Bonneau, J.: Limits on revocable proof systems, with applications to
stateless blockchains. Cryptology ePrint Archive (2022)

20. Damg̊ard, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-
map accumulators. Cryptology ePrint Archive, Report 2008/538 (2008)

21. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: Eurocrypt (2004)

22. Fiore, D., Kolonelos, D., de Perthuis, P.: Cuckoo commitments: registration-based
encryption and key-value map commitments for large spaces. Cryptology ePrint
Archive (2023)

23. Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos, N.:
Zero-knowledge accumulators and set algebra. In: Asiacrypt (2016)

24. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 13

25. Karantaidou, I., Baldimtsi, F.: Efficient constructions of pairing based accumula-
tors. In: 2021 IEEE 34th Computer Security Foundations Symposium (CSF), pp.
1–16. IEEE (2021)

26. Leung, D., Gilad, Y., Gorbunov, S., Reyzin, L., Zeldovich, N.: Aardvark: an asyn-
chronous authenticated dictionary with applications to account-based cryptocur-
rencies. In: 31st USENIX Security Symposium (USENIX Security 22), pp. 4237–
4254 (2022)

27. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) Applied Cryptography and Network Security, pp.
253–269. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
72738-5 17

28. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Eurocrypt (2016)

https://doi.org/10.1007/978-3-031-30620-4_10
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-540-72738-5_17
https://doi.org/10.1007/978-3-540-72738-5_17

Oblivious Accumulators 131

29. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
E-Cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–
411 (2013)

30. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) Topics in Cryptology - CT-RSA 2005, pp. 275–292. Springer, Berlin, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-30574-3 19

31. Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group
signature schemes from bilinear pairings. In: Asiacrypt (2004)

32. Srinivasan, S., Karantaidou, I., Baldimtsi, F., Papamanthou, C.: Batching, aggre-
gation, and zero-knowledge proofs in bilinear accumulators. In: Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, pp.
2719–2733 (2022)

33. Sun, S.F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency Monero. In:
ESORICS (2017)

34. Tomescu, A., Bhupatiraju, V., Papadopoulos, D., Papamanthou, C., Triandopou-
los, N., Devadas, S.: Transparency logs via append-only authenticated dictionaries.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 1299–1316 (2019)

35. Tomescu, A., Xia, Y., Newman, Z.: Authenticated dictionaries with cross-
incremental proof (dis) aggregation. Cryptology ePrint Archive (2020)

36. Tyagi, N., Fisch, B., Zitek, A., Bonneau, J., Tessaro, S.: VeRSA: verifiable registries
with efficient client audits from RSA authenticated dictionaries. In: Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security,
pp. 2793–2807 (2022)

37. Zhang, Y., Katz, J., Papamanthou, C.: An expressive (Zero-Knowledge) set accu-
mulator. In: 2017 IEEE European Symposium on Security and Privacy (EuroS P),
pp. 158–173 (2017)

https://doi.org/10.1007/978-3-540-30574-3_19

	Oblivious Accumulators
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Compressing Primitives

	3 KVC Based on Acc and VC
	3.1 Construction I with Weak Key Binding
	3.2 Construction II with Strong Key Binding
	3.3 Relation to Existing Constructions

	4 Oblivious Accumulators
	4.1 Definition
	4.2 Obliviousness Properties

	5 OblvAcc Based on KVC
	5.1 Construction
	5.2 Soundness
	5.3 Element Hiding
	5.4 Add-Del Indistinguishability
	5.5 Extension for Unique Accumulation of Elements

	6 Lower Bounds
	6.1 Oblivious Accumulators
	6.2 Oblivious Accumulators Without Add-Del Indistinguishability

	References

