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Hysteretic wavelength selection in isometric,
unsupported radial wrinkling

Anshuman S. Pal

In [A. S. Pal, L. Pocivavsek and T. A. Witten, arXiv, DOI: 10.48550/arXiv.2206.03552], the authors discuss

how an unsupported flat annulus contracted at its inner boundary by fraction D, buckles into a radial

wrinkling pattern that is asymptotically isometric and tension-free. What selects the wavelength in such

a pure-bending configuration, in the absence of any competing sources of work? In this paper, with the

support of numerical simulations, we argue that competition between stretching and bending energies

at local, mesoscopic scales leads to the selection of a wavelength scale l* sensitive to both the width w

and thickness t of the sheet: l* B w2/3t1/3D�1/6. This scale l* corresponds to a kinetic arrest criterion for

wrinkle coarsening starting from any finer wavelength l t l*. However, the sheet can support coarser

wavelengths: l \ l*, since there is no penalty to their existence. Since this wavelength selection

mechanism depends on the initial value of l, it is path-dependent or hysteretic.

Thin elastic sheets under confinement buckle and bend to form
a multitude of shapes. Perhaps the most ubiquitous of these
forms of elastic pattern formation is wrinkling, viz. where the
excess material length gets collected in multiple undulations.
A central concern in the study of these structures is the determi-
nation of the wavelength l of these undulations – which consti-
tutes an emergent intermediate length scale, much smaller than
the system size but much larger than the sheet thickness. Usually,
this wavelength is selected1 through competition between the
sheet’s bending stiffness and some external source of stiffness or
deformation work, like a substrate,2 a tension field,3,4 inertia,5 or
even extrinsic curvature.6 While the bending stiffness promotes
larger l in order to minimise wrinkle curvature, the substrate or
other source of work tends to penalise large l since it leads to
large amplitude deformation. But how is wavelength determined
in an unsupported sheet, i.e. in the absence of such external
sources of stiffness?

A priori, an unconstrained sheet under compression should
spontaneously choose the maximum wavelength possible – at
the scale of the system size – in order to minimise bending
energy. Thus, the minimum ingredient for generating an
intermediate wavelength is the presence of some external
constraint. Besides a substrate, another possible source of
constraints is clamping at the boundary. Ref. 7–10 study such
systems where relatively coarse wrinkling in the bulk of the
sheet gradually becomes refined in the proximity of a clamped
or pinned boundary, in order to minimise the wrinkling
amplitude. Of particular interest to us are ref. 10 and 11, in

particular Vandeparre et al.,10 which consider wrinkling in an
unsupported rectangular sheet contracted at one boundary.
Here, the wrinkle wavelength in the bulk is determined by
the wavelength fixed (i.e. clamped) at the boundary, coarsening
outward through a ‘wrinkle hierarchy’ (see Fig. 2b and 4a). But
what if the sheet is unsupported and also unclamped?

In this paper, we address the question of wavelength determina-
tion in precisely such a case, for the annular geometry reported in
Pal et al.12 The system considered there is a modification of the
classic Lamé radial wrinkling deformation (see Fig. 1a and b), where
we quasi-statically contract the inner boundary of a circular annulus
through a radial displacement D, keeping the outer boundary free.
We call this the ‘‘inner Lamé’’ system. Such gradual boundary-
induced contraction of the flat annulus deforms it smoothly into a
pattern of uniform radial wrinkling (Fig. 1b), as it follows the local
energy minimum.

In ref. 12, we show that this wrinkling deformation is well-
modelled, even up to large amplitudes, as a (piecewise) devel-
opable surface of triangles and cones. Thus, this deformation
becomes isometric (i.e., unstretched) as the thickness becomes
much smaller than the wavelength, with its radial tension
field becoming negligible as compared to that of a similarly
deformed classical Lamé annulus.4 However, even in this
isometric limit, where there should be no dependence on
thickness, the wrinkling deformation selects a wavelength l
that is observed to depend on both the sheet thickness t and
width w (see Fig. 1d). Since the sheet is ‘‘tension-free’’, this l
cannot be explained by the tensile mechanism of classical
Lamé wrinkling.4 Also, since the contracted inner boundary is
both unclamped and unpinned (i.e., free to both displace and
rotate out-of-plane), it cannot act to determine l as in ref. 7–10.
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In this paper, we show that the observed inner Lamé
wavelength is consistent with a similar coarsening mechanism
as in Vandeparre et al.,10 but without any spatial hierarchy
involved. Instead, the coarsening takes place progressively over
the course of the deformation (see Fig. 1c), and is arrested due
to the non-zero stretching energy associated with ‘wrinklons’ –
Y-shaped spatial features where two wrinkles merge into one –
which constitute the basic unit of the coarsening process. Thus,
kinetically arrested coarsening determines the final wavenum-
ber (i.e., the number of wrinkles) m* in the sheet. However, if
the sheet manages to attain a coarser wavenumber m o m* by
any means (e.g., manual setting by the experimenter), then it
stays there. Thus, the wavelength selection depends on initial
conditions, and can be considered hysteretic or path-dependent.
These are the central results of this paper.

Below, we derive the discussed arrest criterion for the
wavelength selection and demonstrate its viability numerically.
The paper is organised as follows. Section 1 defines the inner
Lamé deformation that we simulate, and the numerical

methods we use to this end. In Section 2, we state the
main results of this paper, deriving a scaling law for the critical
arrest wavelength, l* B 1/m* (the black line in Fig. 1d), and
argue that it causes hysteretic wavelength selection. Finally,
Section 3 discusses the significance of these results.

1. Methods

The system under consideration here is sketched in Fig. 1a. We
start with a flat circular annulus of width w and thickness t,
whose initial inner radius we take as our unit of length. To
deform this annulus, we pull the inner boundary radially inward
by a distance D, so that it is forced to live on a cylinder whose
radius is reduced by D. This leads to a contraction of the inner
boundary by a factor D, and the equilibrium shape of the sheet
thus obtained is the radial wrinkling shown in Fig. 1b. The
system can thus be conveniently defined using only three geo-
metric parameters: thickness t, width w, and (dimensionless)

Fig. 1 Geometry of the Inner Lamé radially wrinkled system, and selected wavelengths in its numerical implementation. (a) A schematic diagram of the flat
annulus, showing its geometric parameters: radial distance r, widthw and (in cross-section) thickness t. We take the inner radius as unity. (b) An example of a
deformed configuration, showing the displacement D and the wrinkle wavelength l*, measured at the outer boundary, which we wish to predict. (c) Shows
representative data for the evolution of the wavenumber (i.e. the number of wrinkles) against normalised contraction D/Dmax, measured at both inner (r = 1)
and outer (r = 1 + w) boundaries. m decreases until it saturates to a value m* � 2p(1 + w)/l*. (d) shows data collapse on a log–log scale of measured l*,
along with lhierarchy for the pinned version (see Section 2.3), onto the predicted scaling law given in eqn (6). The data are for multiple numerical annuli with
varying w, t and D. The black line represents the best-fit equation: y = 2.2x (log–log scale). Henceforth, we term this the ‘‘wrinklon line’’.
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radial contraction D. The internal forces determining the shape
arise from the in-plane stretching modulus Y = Et, and the bending
modulus B = Et3(1 � n2)/12, where E and n are the material’s
Young’s modulus and Poisson ratio, resp. In thin sheets with
thickness t much smaller than the inner radius and the width w,
the sheet may be taken as virtually unstretchable, and many
features of the shape are independent of Y.4 Indeed, in ref. 12,
we show that the radial wrinkling morphology under study here
(see Fig. 1b) is isometric, such that its energy is approximately
given by

Usheet E Bm2D. (1)

1.1 Numerical methods

To investigate the wrinkling morphology of the inner Lamé system
here, we use the same numerical methods used in ref. 12. For our
simulations, we used the commercial finite-element (FE) solver
Abaqus 2018 (SIMULIA, Dassault Systèmes). We used a protocol in
which we gradually displaced the boundary in time, allowing the
system to relax quasi-statically, such that the rate of motion of
the boundary does not affect the emergent shape or its energy. The
forward time integration was done using one of two standard FE
protocols – ‘dynamic, explicit’ and ‘dynamic, implicit’ – both being
found to give comparable results. Such dynamic integration

protocols introduce inertia into the simulation, which is essential
for accurately tracking local minima through instabilities and
bifurcations, and thus finding reliable post-buckling solutions.13

In contrast, static (i.e., zero inertia) simulation protocols are known
to remain stuck near the initial conditions, often far away from
the true minimum.13 However, to avoid gross kinetic effects in the
presence of inertia, we made sure to increase the contraction D
slowly enough such that the kinetic energy of the system always
remained �o5% of the elastic energy. This is standard procedure for
quasi-static analyses in finite-element simulations. The FE simula-
tion details are given in depth in the ESI of ref. 12. Here, we give a
brief overview.

To simulate the inner Lamé system, we used its defining
boundary conditions: radial displacement er(r = 1) = �D at
the inner boundary, and the outer boundary at r = 1 + w free. We
chose to apply a maximum contraction of Dmax = 0.267 at the
inner boundary. All observed coarsening and selection in our
simulations occurs for D much smaller than this maximum
(see Fig. 1c); increasing D further within this range only
changes the amplitude without affecting the wavenumber. We
did not extend the range enough to observe the anticipated
weak dependence of l* on D.

To account for the possibility of high strains at such large
contractions, the sheet was modelled as a Neo–Hookean

Fig. 2 Wavelength coarsening and wrinklons (see Section 2.1). (a) An origami paper model of a Y-shaped wrinklon joining, wavelength l- 2l (measured
in-plane; half-wavelengths shown), revealing the nature of its stretching (image modified from ref. 10; scale bar is 5 cm). The gap in the shape shows that
a continuous sheet requires longitudinal stretching to accommodate the wrinklon (see Section 2B). (inset) A schematic diagram of the mid-line of the
sheet (in blue), showing its vertical amplitude z and length L, used in eqn (2). (b) An illustrative example of wavelength coarsening in the inner Lamé system
(for w = 0.33, t = 6.67 � 10�4). The three snapshots are for the bottom-right quadrant of the annulus (coloured by height) taken at D E 0.07,0.15,0.23
resp. (c) To visualise the wrinkling pattern with greater clarity, we ‘flatten’ the polar coordinates, so that the height profile can be plotted in a rectangular
matrix form (same colours, but different colour map). Here, the top edge is the inner boundary. (d) A close-up of a wrinklon in (c) joining wavelengths l-
2l, of longitudinal size L.
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hyperelastic material with coefficients equivalent to the linear
moduli: Young’s modulus, E = 0.907125 MPa, and Poisson
ratio, n = 0.475, corresponding to a rubber-like material. To
verify that results are independent of the material model, we
also re-performed several simulations with a linear material
model with these same moduli.

To test the validity of our results over a range of parameters,
we kept the inner radius fixed and varied the other two
parameters – width w and thickness t – over the range of a
decade. For the width, we used values w = 0.20, 0.33, 0.67, 1.0,
1.67 (a factor of almost 10, ranging from very narrow to moder-
ately wide), and for thickness, we used values t = 2.67 � 10�3,
1.33� 10�3, 6.67� 10�4, 2.67� 10�4, 1.33� 10�4 (a factor of 20,
ranging from moderately thick to very thin). We performed
consistency checks to ensure that the final morphology was
independent of the choice of any simulation parameters.

1.2 Boundary conditions

As noted in the Introduction, the specifics of the wrinkling
morphology depend strongly on how the contracted boundary is
constrained. Clamping the boundary leads to the wrinkling hier-
archy morphologies discussed in ref. 10 (see also Fig. 2b and 4).
The other extreme is to allow each point on the boundary circle to
lie anywhere on the confining cylinder; such boundaries lead to
wrinkling only in a transient regime, leading ultimately to collapse
into a macroscopic fold. Here we study an intermediate constraint
in which points on the bounding circle may displace only axially
(i.e. vertically) on the bounding cylinder; azimuthal (y) motion is
not allowed. Doing so automatically prohibits folding (since this
requires lateral motion), but without interfering with the wrinkling.

1.3 Obtaining sinusoidally-biased flat states

In Section 2.2, we use starting configurations with a pre-determined
wavelength at the outer boundary, linit. To obtain these, we biased
the initial flat state with linear perturbations (of amplitudeB10�4–
10�3) of sinusoidal modes of known wavenumber m. These modes
were obtained using standard linear eigenmode analysis methods
in Abaqus.14

2. Results

The elastic energy of the wrinkled annulus (eqn (1)) is dominated
by bending. Thus, it favours the coarsest possible wrinkling (i.e.,
with minimum m). However, from Fig. 1d, we see that the
observed wavenumber m* in the system becomes indefinitely
large as we decrease thickness t or width w. Thus, there exists
some ‘constraint’ (generically speaking) that competes with
the bending energy to select the intermediate wavenumbers m*.
In this section, we consider this selection mechanism.

In what follows, instead of simply counting the number
of wrinkles m in the annulus, we measure the continuous
(in-plane) wavelength l at the outer boundary, averaged over
multiple wrinkles of the sample.† The standard deviation in l

then also gives a measure of the non-uniformity of wrinkling,
something which the integer m cannot capture. Thus, in what
follows, we aim to predict the continuous variable l*, related to the
counted m* by the approximate relationship: l* E 2p(1 + w)/m*.

2.1 Wrinklons and arrested coarsening

We first note that the selection of the final wavenumber in a
simulation is not an instantaneous process. Fig. 1c and 2b
show that, as we apply the contraction D 4 0, the flat annulus
initially buckles to form fine-scale radial wrinkling. This then
coarsens rapidly, reducing the bending energy, but with the
coarsening stopping at some final wavenumberm*B 1/l*. This
suggests that there is a continuous ‘path’ from the initial fine
value of l to the final value l*, but not beyond. Here, we argue
that this path is blocked because a further coarsening becomes
energetically unfavourable. In other words, the coarsening
process gets kinetically arrested.

The coarsening process is controlled by the Y-shaped spatial
features named ‘wrinklons’,10 which form every time two
wrinkles merge into one. In what follows, we discuss the
energetics of wrinklons, approximating the wrinkles as being
rectilinear (as in Fig. 2a), and ignoring any radial splay. We
discuss the accuracy of this assumption in Section 3. The
energetics of a wrinklon is closely associated to its shape.
Fig. 2a shows the geometry of a wrinklon using an origami
model (adapted from ref. 10). Here, the paper sheet is creased
to have wavelength l on the right and 2l on the left. The
transition zone is the wrinklon. As can be seen from the cut in
the sheet, this involves non-zero extension of the material: to
allow a trough in the l wave on the right to rise up to the peak
of the 2l wave on the left, a horizontal length L (see inset of

Fig. 2d) must be stretched into the hypotenuse
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2zÞ2 þ L2

p
,

where z is the amplitude of the l-wave. For small slope z/L, this
generates a strain of order (z/L)2. In the absence of a substrate
or boundary tension, this contributes a stretching energy
density BY(z/L)4, where Y is the stretching modulus.

Since the inner Lamé wrinkling is isometric or strain-free12,
we can use the constraint of inextensibility (i.e., length con-
servation) to relate the average slope/of the wrinkled circles to
the applied contraction D. Taking this latter to be constant over
the length of the wrinklon, for small slopes, we have: (z/l)2BD.
This is popularly known in literature as the ‘slaving condition’,1

since it shows that the amplitude z and wavelength l are co-
dependent variables for inextensible wrinkling. Thus, removing
z in favour of l and D, the elastic energy of a wrinklon of area
BLl is given by:

Uwrinklon B Yl5L�3D2. (2)

To see how such wrinklons can select the wavelength, consider
the following picture of kinetic arrest. Assume uniform wrink-
ling of wavelength l over the entire width w of the sheet. Then
this wavelength can coarsen further if and only if a wrinklon
can form. This will happen if and only if there is a decrease in
the net elastic energy during this process. Since there is an
energy gain from creating the wrinklon, as well as a bending

† It also allows us to take measurements for only half or quarter of the annulus.
This makes data extraction faster.
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energy decrease due to wrinkle coarsening from l- 2l, the net
change in energy dU is:

dU(l) = Uwrinklon(l) � dUbend(l), (3)

where dUbend(l) B BDwl�1 for an area Blw. Thus, a wrinklon
will form, and the wavelength will increase, only if dU(l) o 0.
Setting dU(l) = 0 then gives us a critical minimum scale L*(l)
(using eqn (2)):

L*(l) B t�2/3D1/3w�1/3l2, (4)

such that only wrinklons having length L 4 L*(l) are energe-
tically feasible in the system, i.e., they lower the net energy:
dU(l)o 0. Since the wrinklon has to be smaller than the sheet’s
width as well, we find that wrinklons can form as long as their
size L obeys the bounds: w 4 L 4 L*(l).

However, with each round of coarsening, as l increases,
eqn (4) shows us that L*(l) also increases (rapidly). Thus, when
L*(l) 4 w, there can be no wrinklon that reduces the energy, so
that no further coarsening can occur. This defines a critical
wavelength scale l* such that

L*(l)|l* = w. (5)

Using eqn (4), we get:

l* B w2/3t1/3D�1/6. (6)

The conclusion is that all wavelengths l with L*(l) o w, and
thus l t l*, are susceptible to wrinklon-mediated coarsening,
and are hence unstable and should not be visible in the sheet.
Moreover, these finer wavelengths should get coarsened up to
or just above the critical wavelength l*; beyond this, coarsening
is energetically unfeasible and gets arrested. This is confirmed
in Fig. 1d, where the best-fit l* line is drawn in black (hence-
forth, we call this the ‘wrinklon line’).

Eqn (6) is the central prediction of this paper. It emerges
directly from eqn (5), which represents an arrest criterion for
wrinklon-mediated coarsening in the annulus. This shows that
transient wrinklons in the inner Lamé system can select a
wavelength by a mechanism of kinetic arrest. This wavelength
l* is an emergent phenomenon depending on all three geometric
factors t, w and D, but independent of material constants E and n.
The pre-factor is a universal number (estimated to be E2.2),
independent of initial wavelength. This is much as in ref. 10,
where the outer wavelength determined through spatial coarsen-
ing is independent of the value at the clamped inner boundary.

Eqn (6) predicts wider and thicker sheets to display coarser
wrinkling, and vice versa for narrower, thinner sheets. On the
other hand, the arrest argument above also suggests that
wavelengths coarser than l* should remain stable since they
are not subject to further coarsening via wrinklons. Our next
step is thus to confirm the possibility of the sheet supporting
wavelengths l \ l*.

2.2 Attaining coarser wavelengths by changing initial
wavelength

The natural tendency of the wrinkled annulus is to minimise
its bending energy and coarsen as much as possible. The arrest
argument above suggests that, using wrinklons, the wrinkling
cannot coarsen beyond l*. However, given an opportunity to
bypass the wrinklon mechanism and coarsen directly, the
annulus should do so.

One way to test this hypothesis is to manually set a coarser
wavelength in our simulations. We do this by biasing the initial
flat state (see Section 1.3) with a sinusoidal perturbation of
known outer wavelength linit. In Fig. 3a, we show the results of
this method. The blue and magenta dots are the same data
points from Fig. 1c, showing the final wavelength l for annuli

Fig. 3 Effect of varying the initial wavelength linit. (a) The data points (in blue and magenta) and best-fit ‘wrinklon line’ from Fig. 1c, having linit r l*, are
overlaid with new sample points (in green) that start from a biased flat state with a perturbation of wavelength linit Z l*. These biased samples show little
to no coarsening. (b) We see the difference in coarsening behaviour clearly by plotting both linit (empty symbols) and the final wavelength lfinal (solid
symbols) for some selected samples. Here, we fix linit and width w, and vary the thickness t, thereby creating a horizontal row of empty symbols for given
linit. We plot linit and lfinal with the same w, t and D, so that any coarsening is noticeable by a vertically upward shift of the solid symbol (some arrows
drawn for indication). We see a clear transition from non-coarsening to coarsening behaviour as we cross the black wrinklon line. The error bars denote
standard error from averaging over all the wrinkles.
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contracted from a flat or nearly flat state (i.e., having linit { l*)
or a state biased with sinusoidal modes having linit t l*. They
all lie on the black ‘wrinklon line’: l = l*. On the other hand,
the new green dots are obtained by starting from biased states
having linit \ l*. We find that, on average, these samples do
not coarsen at all. In other words, they are not susceptible to
the wrinklon coarsening mechanism. Indeed, we used this
method in ref. 12 to generate uniformly wrinkled patterns to
provide clean geometric data. Thus, Fig. 3a is fully consistent
with the hysteretic picture posited at the end of Section 2.1.

In Fig. 3b, we present specific examples of this l -dependent
coarsening. Here, we compare the initial (linit) and final (lfinal)
wavelengths of samples, as we vary their parameters. Specifically,
for fixed initial wavelength linit (i.e., the ordinate), we change the
abscissa by varying the thickness t for samples of fixed width w
and contraction D, and record the simulation lfinal. Fig. 3b shows
some representative data points, showing both linit (empty sym-
bols) and lfinal (full symbols) for these samples. We see that the
leftmost (i.e. thinnest) samples, which start above the wrinklon
line, do not coarsen. However, as soon as we cross the wrinklon
line horizontally (following the dotted grey line), the samples start
to coarsen, i.e., they move straight up. As expected, the coarsening
happens up to or above the wrinklon line, consistent with the
discussion in Section 2.1.

2.3 k* starting from wrinkle hierarchy

The inner Lamé deformation (Fig. 1b) emerges from contracting
an annulus whose inner boundary is free to displace vertically.
The arrest-based mechanism described in the previous two sub-
sections suffices to explain wavelength selection in this system.
To better understand this mechanism, however, it is instructive
to consider a different system: one where the inner boundary
(r = 1) is first pinned – thereby prohibiting any vertical displace-
ment – then contracted by the same fraction D, and then
unpinned again. Thus, the final state is that of the inner Lamé
system – namely, having an unpinned inner boundary con-
tracted by D – but the path taken to arrive there is different.

The reason this parallel, pinned system is instructive is
because it allows us to make a direct connection to a class of
known systems. As shown in Fig. 4b, applying contraction D with
pinned boundary conditions (BCs) leads to the creation of a
spatial wrinkle-hierarchy morphology – like the ones studied in
ref. 7–10 for rectangular geometries – where fine-scale wrinkling
at the pinned boundary coarsens progressively in space via
multiple generations of wrinklons. Despite the qualitatively
different morphologies between the pinned and unpinned cases
(see Fig. 4), we argue that one should still expect the wavelengths
at the outer boundary for the two cases to be the same. To see
this, consider the following.

Fig. 4 Contrasting wrinkled morphologies but similar outer wavelengths, for two different boundary conditions at the inner boundary (r = 1) (see Section
2.3). Data are for the same representative sample used in Fig. 2b (w = 0.33, t = 6.67 � 10�4). The top row shows the bottom-right quadrant of the
deformed annulus in both cases (coloured by height). The bottom row shows the same height profile, but flattened into a rectangular matrix form, as in
Fig. 2 above. (a) The ‘‘inner Lamé’’ boundary condition, the subject of this paper, which allows free vertical displacement at r = 1. This leads to near-
uniform radial wrinkling, with wavelength l* at the outer boundary (r = 1 + w). (b) A pinned boundary condition that prohibits vertical displacement
at r = 1. This leads to a spatial wrinkle hierarchy, that terminates with the coarsest wavelength lhierarchy at r = 1 + w.
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We can think of the emergence of the unpinned morphology
in Fig. 4a starting from the pinned, wrinkle-hierarchy case in
Fig. 4b. Eqn (2) tells us that wrinklons cost non-zero elastic
energy. Moreover, they separate a region of fine, higher-energy
wrinkling (nearer r = 1), from a region of coarser, lower-energy
wrinkling (nearer r = 1 + w). Thus, allowing the wrinklons to
move right up to the inner boundary would eliminate not only
the wrinklons themselves but also the entire fine wrinkling
region, leading to a net lowering of the sheet’s energy.

Imagine gradually undoing the pinning at r = 1 in Fig. 4b,
allowing the boundary nodes to displace vertically within a
maximum height e. As e increases, the boundary will be able to
support coarser wavelengths. Thus, as it reaches the approx-
imate height of the innermost generation of wrinklons, in order
to minimise elastic energy, these wrinklons should all migrate
to the boundary and disappear, thereby increasing the wave-
length at r = 1 by a generation. Similarly, when e reaches the
height of the second (now innermost) wrinklon generation, this
generation should also vanish in a similar manner, decreasing
the energy and coarsening the wavelength by a further genera-
tion. As e increases further, this coarsening process may con-
tinue as long as there are wrinklons that can move into the
inner boundary. That is, as long as there are more inner
wrinkles than outer ones. The end point of this process is thus
a state where the original outer wrinkles extend to the inner
boundary. Thus, we would reach the unpinned boundary con-
ditions of the original inner Lamé system, and anticipate the
same morphology (i.e. Fig. 4a). This argument tells us that we
should expect:

l* = lhierarchy(x = w), (7)

where lhierarchy(x) is the wavelength at distance x from the
pinned boundary in the wrinkle hierarchy. Using the expression

lhierarchy(x) B x2/3t1/3D�1/6 (8)

given for rectangular geometries in Vandeparre et al.,10 we
recover eqn (6) for l*. To verify the prediction of eqn (7), we
perform simulations of this pinned BC for our annular systems
to measure lhierarchy(x = w). We then compare lhierarchy(x = w) to
l* measured for the unpinned case. We find that our measure-
ments are fully consistent with eqn (7). We can already see this
qualitatively in the bottom row of Fig. 4. Fig. 1d shows this
quantitatively: l* and lhierarchy(x = w) measured for a wide range
of samples with varying w, t and D, collapse on to the same
straight line given by eqn (6) and (8). The ‘‘unpinned-hierarchy’’
argument for l* described in this section thereby provides an
independent confirmation of the arrest criterion argument
presented in Sections 2.1 and 2.2.

2.4 Summary

The results presented in Section 2 together paint the following story.
First, the radially-contracted inner Lamé system, despite having its
energy dominated by only bending, selects a critical wavelength scale
l* much finer than the system size. This l* is determined through
competition between stretching and bending energies at the scale
of local features called wrinklons. Second, the selected l* is a

function of the single collective variable w2/3t1/3D�1/6 � x̃, sensi-
tive to both the smallest (thickness t) and largest (width w)
dimensions of the sheet. Third, the wavelength selection is
hysteretic (i.e. path-dependent), since the final wavelength l
selected by the annulus depends on its initial location in the
l� x̃ plane. As seen in Fig. 3a, the critical wavelength l* acts as a
linear discriminant in this plane, separating it into two regions.
Consistent with its desire to minimise bending energy, the sheet
can support wavelengths coarser than l* but nothing finer than
it. Thus, the wavelengths supported by the sheet obey the
inequality: l \ l*.

3. Discussion
3.1 Significance

The mechanism of wrinklon-mediated arrested coarsening pre-
sented in this paper accounts for all the qualitative and quanti-
tative features of the wavelengths l measured in our inner Lamé
samples. The novelty of this mechanism is closely related to the
nature of the inner Lamé deformation. This involves quasi-static
contraction of the annulus, so that it follows a local energy
minimum. The deformation does not thus represent a ground
state (i.e., a global energy minimum),12 and this is reflected in
the proposed wavelength selection mechanism. The hysteretic
wavelength selection paradigm presented here is thus very
different from the traditional paradigms of wavelength selection
in elastic wrinkling, which are based on global energy minimisa-
tion and hence are path-independent. For example, consider the
prototypical case of wrinkling in a thin sheet of bending stiffness
B attached to a substrate of stiffness K.3‡ Competition between
the bending of the sheet and the deformation of the substrate
leads to the selection of a wavelength lsubstrate B (B/K)1/4 that
minimises the global energy. lsubstrate here does not depend on
the initial value of the wavelength chosen. If we start with a
putative wavelength l0 t lsubstrate, then bending energy will
force the wavelength to increase to lsubstrate. Conversely, if we
start with some l0 \ lsubstrate, then the substrate energy will
force the wavelength to decrease to lsubstrate. Thus, on a plot of l
vs. (B/K)1/4, data points measured from samples with different
values B and K should all lie on a single straight line.

In contrast, in the inner Lamé system, the lack of a macro-
scopic force to compete with the sheet’s bending energy means
that the ground state is an m - 0 fold-like solution.15,16

Instead, the inner Lamé contraction selects a wrinkled configu-
ration of non-zero wavenumber, which we claim is due to
kinetic considerations. This wavenumber is selected through
local competition at scale L* between bending and stretching,
this latter being the only source of competition possible in an
unsupported sheet. The observed one-sided hysteresis is a
direct consequence of this. Bending energy wants to coarsen
wavelengths as much as possible, but the size of the sheet w
acts as a fundamental barrier to this coarsening, through the
‘‘coarsening condition’’: L*(l) r w. Conversely, the lack of a

‡ In terms of the quantities already introduced in this paper, K has units of Y/
(length)2 or B/(length)4.
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(real or effective) substrate means that there are no penalties to
wavelengths coarser than l*. Thus, on the l � x̃ wavelength
plane, there is an entire range of wavelengths available to the
sheet: l \ l*.

Thus, in a fundamental but non-trivial way, the wavelength l
in the inner Lamé system is selected by the sheet’s size w. This
is similar and yet dissimilar to known cases of geometric
wavelength selection in isometrically buckled systems, where
both macroscopic stretching and bending are absent. A good
example is the faceted twisted ribbon in ref. 17, which buckles
into a periodic pattern of triangular facets. Here, the wave-
length is directly set by the ribbon’s width w: l = w.17 Our
hysteretic wavelength selection also involves the sheet width,
but through an inequality. In this sense, it is a weaker and less
restrictive geometric selection principle.

3.2 Generalisation

An expected consequence of such a simple size-based selection
principle (cf. eqn (5)) is that it should generalise to other cases as
well, provided wrinklons are the dominant wavelength-selection
mechanism. For example, consider wavelength selection in a hang-
ing rectangular curtain. Let the curtain be short and light, so that
gravity is negligible. Let its height be h, and its manually fixed
wavelength at the top boundary be l0. If l0 is coarse enough that
L*(l0) 4 h, then there should be no wrinklons in the curtain, and
we should see a uniform wrinkling pattern with wavelength l0.
However, if we decrease l0 gradually, then we should find wrinklons
forming as soon as L*(l0) E h, with a consequent doubling of the
wavelength at the outer boundary. Such a concrete prediction for a
crossover can be easily verified through experiments. Given eqn (5),
we would expect this result even to extend to heavy curtains, but
with a different scaling law for L* that includes gravity.10

We also note that the scaling law eqn (6) for l* accounts for
all the parameters in our inner Lamé system. Thus the ratio of
l* to x̃ is a pure number (E2.2) that should be the same even for
more general cases of unsupported, inner boundary-contracted
annuli (with free outer boundary). In Section 2, we have shown
eqn (6) to hold for both unpinned and pinned inner boundaries,
with purely radial displacement. In Section 1.2, we mention the
case where the contracted boundary is also allowed to displace
azimuthally on the constraining cylinder, and shows wrinkling as
a transient state prior to folding.12 Here, the wrinkles persist on a
time scale required for boundary points to migrate azimuthally
over a finite fraction of the circumference. We would expect
eqn (6) to be valid in this transient regime. Finally, we might
expect eqn (6) to hold even for cases where the inner boundary is
contracted in a different manner, e.g., when it is forced to live on a
constraining cone instead of a cylinder. However, the numerical
pre-factor need not be the same in this case.

3.3 Remarks

Certain features of our results in Section 2 deserve comment.
First, we note that both derivations of the threshold l* (viz.,
eqn (6) and (7)) ignore any splay in the wrinkle structure arising
from the overall annular geometry of the system. The fact that
our measurements coincide with the prediction thus suggests

that wrinkle splay is unimportant in the regime of w, t and D
considered here. One might expect such splay to become
important particularly for large width w. Second, in Fig. 3a
and b, we note that the data points which have coarsened up to
the wrinklon line l* from below show considerable dispersion.
The data points reflect the mean outer l, averaged over all
wrinkles in an annulus; in Fig. 3b, we add error bars to
additionally depict the imprecision in l for a sample. Such
variability can be explained partially by two factors. The first is
that the real simulation wavenumbermmust be an integer, and
thus any wrinklon that migrates to the inner boundary must
change m by �1. This will correspond to jumps, and hence
dispersion, in the measured outer wavelength l B 1/m. The
second factor to consider is the random nature of the coarsen-
ing events. All wrinklons do not coarsen simultaneously
(thereby changing m - m/2 directly). Instead, wrinklons form
randomly and wrinkle-pair-by-pair, with wrinkle pairs sepa-
rated in space, a priori, coarsening independently. This leads
to m decreasing in smaller steps (see Fig. 1c), and also to
heterogeneity in the wrinkles and wrinklons (see Fig. 4b and
the error bars in Fig. 3b). The energetic inequality dU o 0 (see
eqn (3)) only marks the feasibility regime for such coarsening
events to occur. Consequently, if coarsening is an equal prob-
ability event for each wrinkle pair, then one should expect a
larger drop in m, i.e. more coarsening, if the configuration starts
out with a larger initial m. We see that, among the coarsened
data points in Fig. 3b, the red dots (w = 0.33) show noticeably
large coarsening. This discrepancy might then be related to
the fact that these samples started from biased states with a
relatively large initial wavenumber minit E 25–35, compared to
minit E 15–20 for the wider samples (green and teal symbols).
Furthermore, we note that the sign of the discrepancy in Fig. 3b
is generally such that the data points lie above l*. This is
consistent with our claim that l* only acts as a lower threshold
to the wavelengths observable in the system: l \ l*.

Finally, we recall that12 shows the inner Lamé wrinkle
configuration to be isometric (see eqn (1)). On the other hand, in
this paper, we use stretching energy to explain the wavelength
selection. This might seem paradoxical, but is so only at first
glance. The stretching energy of the wrinklon defines an energy
barrier that would need to be crossed in order to increase the
wavelength beyond l*. It does not influence the energy of the state
for a given l (equivalently, a givenm), which is the subject of ref. 12.
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