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Digital Twinning and
Optimization of Manufacturing
Process Flows

The new wave of Industry 4.0 is transforming manufacturing factories into data-rich envi-
ronments. This provides an unprecedented opportunity to feed large amounts of sensing
data collected from the physical factory into the construction of digital twin (DT) in cyber-
space. However, little has been done to fully utilize the DT technology to improve the smart-
ness and autonomous levels of small and medium-sized manufacturing factories. Indeed,
only a small fraction of small and medium-sized manufacturers (SMMs) has considered
implementing DT technology. There is an urgent need to exploit the full potential of data
analytics and simulation-enabled DTs for advanced manufacturing. Hence, this paper pre-
sents the design and development of DT models for simulation optimization of manufactur-
ing process flows. First, we develop a multi-agent simulation model that describes nonlinear
and stochastic dynamics among a network of interactive manufacturing things, including
customers, machines, automated guided vehicles (AGVs), queues, and jobs. Second, we
propose a statistical metamodeling approach to design sequential computer experiments
to optimize the utilization of AGV under uncertainty. Third, we construct two new graph
models—job flow graph and AGV traveling graph—to track and monitor the real-time per-
formance of manufacturing jobshops. The proposed simulation-enabled DT approach is
evaluated and validated with experimental studies for the representation of a real-world
manufacturing factory. Experimental results show that the proposed methodology effec-
tively transforms a manufacturing jobshop into a new generation of DT-enabled smart fac-
tories. The sequential design of experiments effectively reduces the computation overhead of
expensive simulations while optimally scheduling the AGV to achieve production through-
put cost-effectively. This research is strongly promised to help SMMs fully utilize big data
and DT technology for gaining competitive advantages in the global marketplace.
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1 Introduction integration to derive data-driven intelligence for smart manufactur-
ing operations.

However, only a small fraction of small and medium-sized manu-
facturers (SMMs) has initiated or planned to implement the DT tech-
nology. The Technology-in-Industry Report of Automation Alley
showed that approximately 2% of SMMs in Michigan had imple-
mented artificial intelligence (Al) and/or DT-related technology [4].
Moreover, 48% of respondents had no intention to implement Al
technology into their businesses, and almost 30% stated that Al would
not increase the competitive advantages of operations. Indeed, many
SMMs do not realize the benefits of either Al or DT technology, in
part due to constraints in capital investment and technical support
hampering their ability to implement DT technology, and partly
because SMMs lack advanced sensor technology for data collection
and digital representation in cyberspace [5]. Characterized by low-
volume production of various types, SMMs necessitate implementing

Rapid advances in sensing technology usher in a new generation
of the Internet of Manufacturing Things, which brings the prolifer-
ation of data in the manufacturing jobshop [1]. As such, information
visibility is significantly increased in this data-rich environment
regarding real-time states and actions of manufacturing things
(e.g., sensors, machines, transports, jobs, and queues) in every corner
of the factory, thereby providing an unprecedented opportunity
to transform a large amount of sensing data from the physical
factory into the construction of digital twin (DT) in cyberspace.
DT is a digital representation of manufacturing processes that
allows for real-time data collection from the physical factory, trans-
formation of the data into intelligence, and simultaneous feedback
to the jobshop [2,3]. DT offers a high level of cyber-physical
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flexible production systems. Additionally, volatility in market
demand requires the ability to make decisions quickly. Therefore, it
is imperative to address these challenges facing SMMs and realize
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the full potential of data analytics and DT technology in advanced
manufacturing.

DT technology overcomes practical limitations and offers the flex-
ibility to run experiments in cyberspace, which helps analyze and
evaluate various decision-making rules in manufacturing systems
[6]. Simulation experiments on DT models are effective and cost-
efficient approaches to investigating new decisions, reducing risk,
and predicting system behaviors under a particular set of “what-if”
scenarios [7]. For example, new policies can be tested without con-
suming physical resources for acquisition. Also, the model allows
to solve optimization problems in manufacturing processes. Time
can be compressed or expanded in the model by running simulations.
Therefore, simulation modeling with DT is indispensable for manu-
facturing system analysis. Simulation-enabled optimization of DT
models is conducive to improving the performance of manufacturing
operations such as facility layout planning, factory design, production
scheduling, and quality engineering.

However, computer models of manufacturing systems involve
higher levels of complexity, such as functional non-convexity and
nonlinear interactions among a network of machines, queues, mate-
rial handling systems (MHSs), and jobs. It is also worth mentioning
that machines and MHSs can degrade or fail, queues can be blocked,
and jobs can become backlogged. For example, a multi-agent simu-
lation model of a jobshop with multiple machines and MHSs
involves a large number of attribute settings for each machine or
MHS, which brings the “curse of dimensionality” problem and
expensive computations during the model calibration and optimiza-
tion. Traditional linear and nonlinear optimization methods (e.g.,
linear programming, neural networks, genetic algorithms) tend to
be limited in handling optimization tasks. Additionally, these con-
ventional methods are black-box approaches that provide limited
information about the underlying physics of the manufacturing
process. Therefore, there is an urgent need to improve computa-
tional efficiency and design effective simulation experiments for
manufacturing optimization.

This paper presents the design and development of DT models of
manufacturing jobshops for the simulation and optimization of man-
ufacturing process flows. First, we develop a multi-agent simulation
model to describe stochastic and nonlinear characteristics among
interconnected networks of intelligent manufacturing things, includ-
ing customers, automated guided vehicles (AGVs), machines, queues,
and jobs. Second, we propose a statistical metamodeling approach for
the sequential design of computer experiments to optimize the utili-
zation of MHSs under the uncertainty of jobs, machines, and queues.
Third, we formulate novel graph models—job flow graph and AGV
traveling graph—to monitor and track the real-time status of manu-
facturing jobshops. These models exploit network-like relationships
and provide novel insights into process flows. The proposed
simulation-enabled DT approach is evaluated and validated through
experimental studies for a representation of a real-world manufactur-
ing jobshop. Experimental results demonstrate that the proposed
methodology effectively transforms manufacturing jobshops into a
new generation of smart factories. The sequential design of experi-
ments effectively reduces the computation overhead of expensive
simulations, while optimally scheduling MHSs to achieve production
throughput cost-effectively. Data analytics and DT technology are
strongly promising to help SMMs gain a competitive advantage in
the global market.

The remainder of this paper is organized as follows: Sec. 2 intro-
duces the research background of digital twins; Sec. 3 details the
proposed methodology of the multi-agent simulation model and sta-
tistical metamodeling for sequential designs of simulation experi-
ments; Sec. 4 provides experimental design; Sec. 5 evaluates and
validates the proposed methodology in simulation experiments;
and Sec. 6 concludes this research.

2 Research Background

Manufacturing systems embodying the characteristics of smart
factories show advanced levels of intelligence and autonomy in
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multiple aspects, including process control, machine scheduling,
production planning, and maintenance strategies [8]. Digital simu-
lation models have become essential for smart manufacturing,
enabling cost-effective analysis and real-time state updates within
a factory [9]. Accordingly, research on smart manufacturing tends
to focus on addressing specific problems within a conceptual frame-
work that is validated through model-based analysis and simulation
experiments. There are a variety of simulation modeling methods,
including discrete event simulation (DES) and system dynamics,
to address problems in manufacturing processes. For example,
Mittal et al. [10] introduced a physical-based nonlinear stochastic
differential equation approach to capture downtime dynamics,
while Yang et al. [11] developed a system dynamics model to rep-
resent multi-stage assembly lines as continuous fluid flows. Simula-
tion experiments also helped synchronize the digital model with the
real factory to capture process parameters for building DT [12]. To
acquire these input parameters, the manufacturing system was sep-
arated into four modules (i.e., fabrication, logistics, storage, and
inspection), and DES models were constructed for representing
each module. DES can be combined with a metaheuristic, such as
genetic algorithms, to obtain an optimal solution for the step size,
batch size, and the number of active lines in a production system
while reducing the required computational capacity [13].

However, the manufacturing process involves a diverse range of
interactive manufacturing objects and systems, which leads to
increased complexity in digital models. As the quantity of manufac-
turing objects in a factory increases, the number of events that occur
also increases exponentially, making simulations more challenging
as more computational overhead is necessitated to manage the
growing complexity. Traditional DES models are passive and
operate based on system definition, which limits their ability to
represent real-world manufacturing systems. To overcome these
limitations, multi-agent system (MAS) approaches have been intro-
duced, which represent various behaviors and interactions of man-
ufacturing objects, such as workpieces, AGVs, machines, and
queues, by modeling agents. These agents can actively behave
and interact with each other through their unique characteristics
and actions [14], making MAS a more effective approach for mod-
eling complex manufacturing systems. Furthermore, agent-based
models (ABM) represent and simulate complex systems consisting
of interactions between autonomous agents with unique properties
[15,16]. Overall, MAS and ABM provide more accurate and com-
prehensive representations of manufacturing systems, allowing
better decision-making and process optimization.

With rapid advances in smart manufacturing, the production
paradigm has experienced the transformative shift from mass pro-
duction to mass customization and personalization [17]. In conven-
tional mass production systems, decision-making procedures are
characterized as repetitive and periodic processes, allowing
researchers to pursue optimal solutions through a centralized
decision-making approach [18,19]. However, personalized produc-
tion systems involve the creation of diverse products with distinct
operation sequences, rendering centralized decision-making ineffi-
cient in responding to this variability [20]. To address this issue,
previous studies have sought to address this challenge by defining
specific functions as agents and constructing multi-agent models
for modeling and simulating manufacturing systems.

For example, a manufacturing execution system was modeled by
ABM, incorporating decision-making at the enterprise level by
reflecting relationships between order agents and resource agents
[21]. Huang and Liao [22] developed a negotiation approach to
decision-making models for distributed machine scheduling in par-
allel machine production systems. Their model consisted of job
agents, machine agents, and management agents, representing char-
acteristics of jobs, machines, and supervisors, respectively. The
multi-agent factory model developed by Giordani et al. [23]
enabled factories to model the decentralized decision-making of
machines and mobile robots by decomposing manufacturing
systems into production planning and production scheduling
levels. In their model, ABM could make decisions at each level.

Transactions of the ASME
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Adediran et al. [24] proposed an ABM approach integrated with
heuristic algorithms to solve disruption problems in flow shop pro-
duction caused by customers’ unexpected alterations in demand
quantity, delivery time, and process sequence. In their approach,
large-scale manufacturing systems are decomposed into different
types of agents, such as customer orders, machines, and operators.
Each agent is assigned unique actions and message sequences, facil-
itating communication and coordination among the different agent
types. In another study, Kim et al. [18] developed reinforcement
learning models to furnish the MAS with intelligence. Their distrib-
uted decision-making approach was applied in low-volume and
high-diversity serial production systems, where the system was par-
titioned into three layers, each layer consisting of different types of
interconnected agents.

However, although agents are employed to represent distributed
decision-making in factories, their structure characterizes a central-
ized decision-making procedure in the context of a manufacturing
execution system. This characteristic poses limitations in modeling
the autonomy and flexibility of systems and providing real-time
synchronization of data and decision-making in a dynamically
changing environment. Consequently, there is an urgent need to
develop a digital factory model that empowers manufacturing
objects to make decisions autonomously, interact with other objects,
and acquire the intelligence needed for decision-making through
learning from the manufacturing system.

This paper introduces a multi-agent simulation model that
addresses these issues. Each agent incorporated in the model reflects
the characteristics of corresponding manufacturing devices on the
shop floor, enabling distributed and automated decision-making.
Interactions between these devices are modeled as message transac-
tions. In this study, it is assumed that radio-frequency identification
(RFID) sensors are installed in the jobshop to facilitate data collec-
tion from these message-passing processes. RFID is a matured tech-
nology that identifies and locates assets by capturing wireless data
[25]. These sensors can collect real-time process flow status
through state transitions and transactions performed by interactions
during production.

Real-time and flexible DT models are essential for achieving
autonomy in smart manufacturing, especially in personalized pro-
duction, where processes vary depending on the type of jobs.
However, there is a lack of research on real-time manufacturing
modeling for sensor-based intelligence embedded in manufacturing
objects, which is crucial to realize the full potential of smart manu-
facturing systems. To address this gap, we propose a multi-agent
simulation-enabled DT model that represents the characteristics of
the manufacturing things (e.g., jobs/workpieces, MHSs, machines,
and queues) as multi-agents and captures their interconnectivity.
By leveraging data collected from smart sensors, the agents
reflect the behaviors and decisions of each object that actively inter-
acts with other objects through the cloud environment and intelli-
gence from simulation. These decisions are then delivered to
manufacturing things in physical factories in the form of production
plans, process control, or operation schedules. Variations in states
and decisions of manufacturing things can be reflected by the struc-
ture and topology of the network model in cyberspace [26].
Network models can also capture the interaction patterns between
things in manufacturing systems and reduce the system to a summa-
rized topology [27]. As such, this network model provides a sparse
representation of complex system states, interactive dynamics, and
interconnected and distributed activities [28].

Constructing a multi-agent simulation model of a jobshop with
multiple machines and MHSs is a challenging task due to the
need to consider numerous attribute settings for each machine and
MHS. This challenge, known as the “curse of dimensionality,”
makes model calibration and optimization complex [29]. Moreover,
manufacturing systems typically involve a large number of manu-
facturing things, resulting in multi-optimization problems at the
process level. As a result, model calibration can be computationally
expensive as it requires the simulation of complex factory models in
a high-dimensional design space. This poses significant challenges
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to traditional optimization methods, such as genetic algorithms,
linear programming, and metaheuristics, in computer experiments
and DT model optimization [30]. Simulations of manufacturing
systems are computationally expensive due to the complex, nonlin-
ear, and non-convex nature of the models. This complexity makes it
difficult to optimize the design space effectively, leading to chal-
lenges in both computer experiments and DT model optimization.
To address these issues, the sequential design of experiments
offers a more cost-efficient approach that focuses on optimal
design and model calibration while minimizing the simulation
cost and improving the running speed. This approach has the
benefit of representing latent effects between factors and responses
through statistical metamodeling for optimization. The metamodel
helps search for the optimal solution as well as identify the relation-
ship between control factors and responses. The proposed design
approach allows for the exploration of the intelligence of system
attributes with the analysis of this relationship.

3 Research Methodology

In this paper, we design and develop a DT model of manufactur-
ing jobshops for modeling and optimization of job process flows.
As illustrated in Fig. 1, the proposed simulation-enabled DT
approach is composed of three key components:

(1) A multi-agent simulation model is developed to comprehen-
sively describe the complexity and dynamics inherent in
digital-integrated manufacturing systems. This model cap-
tures the distinctive characteristics of manufacturing
devices and represents their actions and states within the
overall system. The proposed model reflects the active inter-
actions between various manufacturing things through
message transactions and action triggers.

(2) Statistical metamodeling is developed to address the chal-
lenges arising from the high levels of complexity associated
with manufacturing systems. The sequential design approach
incorporating statistical metamodeling significantly improves
the computational efficiency of simulation experiments.

(3) Graph models are designed to characterize interactions
between manufacturing things to provide insights into the
process flows in interactive manufacturing networks.

The combination of these three methods enables a comprehensive
and efficient representation of manufacturing jobshops and facili-
tates the analysis of job process flows.

3.1 Multi-Agent Simulation Model. The multi-agent simula-
tion model of physical factories consists of a variety of manufactur-

ing agents, each representing various manufacturing things, such as
AGVs, machines, queues, and jobs. This model represents digital
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Fig. 1 Flowchart of research methodology
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integration within manufacturing systems and process flows. The
proposed model is structured into two layers: the cloud layer and
the jobshop layer. The cloud layer serves as the decision-making
level, providing an interconnected environment of manufacturing
agents in cyberspace. It facilitates communication and interaction
among diverse manufacturing agents. On the other hand, the job-
shop layer acts as a virtual representation of physical shop floors.
The manufacturing things on the jobshop layer actively and
autonomously process jobs. As depicted in Fig. 2, sensor signals,
including RFID transactions and real-time status information, are
collected from manufacturing objects in the jobshop. The states
and actions of the manufacturing things are recorded in their digital
representations, as outlined in Table 1. Manufacturing objects or
things (e.g., jobs/workpieces, MHSs, machines, and queues) in
the physical world are reflected as a variety of agents (e.g., Job
agents, material handling agents (MHAs), Machine agents, and
queue agents) in the digital world. By leveraging the collected
data, Al techniques, and simulation results, manufacturing intelli-
gence is constructed in DT. This process enables DT to inform
decision-making and provide real-time feedback to its physical
counterpart. The proposed approach effectively models and cap-
tures these relationships, facilitating the modeling of DT with the
message transactions.

The proposed multi-agent simulation model is defined with five
tuples, as shown in Eq. (1)

M=(C,J.MH, MA, I*") (1)

where C represents a cloud layer, and J, MH, and MA correspond
sets of job agents, MHAs, and machine agents, respectively. 15" is a
tuple of system inputs that include the simulation length, replication
number, job arrival time, and a set of parameters for characterizing
manufacturing agents.

The proposed model characterizes manufacturing process flows
and interactions as shown in Fig. 3. The process begins when a cus-
tomer order is delivered to the enterprise (a). Then, the cloud system

Table 1 Definition of agents in DT

Physical factory Digital Twin

Job/Workpiece

Material handling system (AGVs, gantry system)
Machine (drilling, lathe, milling, welding)
Queue

Job agent

Material handling agent
Machine agent

Queue agent
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lllustration of Digital Twin and interconnection between manufacturing things

receives the work order, creates a production plan, and transmits it
to the manufacturing shop. Subsequently, a job is generated (b),
initiating the production processes, and the job is called a work-
in-process (WIP) (c). Throughout the production processes, WIP
actively interacts with various manufacturing things. For example,
it is transported within the factory premises by MHSs to reach its
designated destination (d-1). Upon arrival at a machine, the WIP
enters the corresponding queue (d-2), subsequently being processed
by the machine (d-3). After completing the task, the WIP summons
the MHSs to proceed to the next task (d-1). Because a job may
involve multiple production tasks, these repetitive actions of the
WIP are illustrated as a circular flow in Fig. 3. When all necessary
tasks are completed, the WIP reaches a warehouse and becomes a
final product (e). This product exits the factory system and is
ready to ship to customers. These interactions between the manufac-
turing things are effectively represented through message transac-
tions occurring during state transitions and actions of the
respective agents.

3.1.1 Job Agent. A Job agent (J) is a model of workpieces in a
production system. The definition of Job agent is presented in Eq.

(@3
J= (SJOb, AJOb, IJOb) (2)

where $7° is a set of Job states, A™" is a Job action set, and I"°® is a
tuple of Job inputs, including Job task sequence and basic informa-
tion about the Job, such as Job ID, type, and created time.

The states of a Job agent (S°°) are displayed in a state-action
diagram (Fig. 4(a)) along with its associated actions. When a
work order arrives at the factory, a Job agent is generated and
plans its task sequences (S{""). Then, its state transitions to the
“Initial Planning” phase, which consists of three states representing
the journey from the entrance of the factory to the queue of the first
machine. Once the planning phase is complete, the Job agent enters
the process task phases. The process task phase is recursive and
consists of six states as shown by a blue-dashed circle in
Fig. 4(a). After the job enters the Queue-In, it transitions to the
“in queue” state (S;Ob) and waits for the process to begin. When
the process starts, the state moves to “being processed” (SiP),
and after the process completes, the job waits on the machine
until space is available in the Queue-Out (S3°°). In the queue-out,
the job searches for the next machine (S%"b) and available MHSs
(5%®) to call. The job is carried to its next destination by the
assigned MHS (S°°), and the next process task phase is initiated
unless its destination is the factory exit.

Transactions of the ASME
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The state transition of Job agents is facilitated by Job actions
(A™), which are outlined in Table 2. These actions allow for mod-
eling communication and interactions between jobs and other man-
ufacturing objects, such as MHS, machines, and queues. As the
manufacturing process flow is workpiece-centric, the behaviors of
jobs are closely linked to these other objects. The Job actions can
trigger the actions of other objects and vice versa.

The Job agent also models uncertainties of workpieces due to
other manufacturing objects. The effects of MHS and machine
breakdowns are expressed as actions Ai"b and Ai"b, respectively.
Additionally, the impact on jobs due to lack of queue-out space is
reflected as S3°°. The representation of uncertainty by states and
actions allows the proposed model to effectively represent
complex relationships between manufacturing objects.

(a) State-action Diagram of Manufacturing Job Flows
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Table 2 List of actions for the Job agent

Table 4 List of actions for the Machine agent

Action Description Interaction Action Description Interaction
Alep Searching and selecting an available machine A9 AMA Beginning a process Alob) AQ
AP Searching and selecting an available MHS AVH AMH AMH - AMA Ending a process AlP
AP Being loaded to MHS AVH Aff AA Releasing the finished job Alob, A4Q
Al® Arriving at the next machine, being unloaded ~ AMH AMH AQ Ala Beginning preventive maintenance —

from MHS and entering Queue-In Agle The machine breaking down A;“h
AR A process of the job beginning AYA, AD AMA Beginning reactive maintenance —
AleP A process of the job ending AYA AMA The machine being repaired —
Aleb Entering Queue-Out, and searching and AMA AQ

selecting an available machine
AP Being unloaded due to the failure of MHS AVH, AMH
AFP Being reallocated to another machine due to the  AMA_ AQ Table 3 outlines actions of the MHA (AM*) provoking the MHA’s
Al fﬁifnzt;?fhgu;r:;%f:;ine?ggr?ﬁl;?;e d AMH_ AMH state transitions. Interactions and communications between MHSs

from MHS, and exiting the jobshop

3.1.2  Material Handling Agent. An MHA (i.e., denoted by the
symbol MH) is a digital representation of an MHS, such as an AGV,
robot, and gantry system, that handles and delivers jobs. All MHAs
are generated at the initial stage of the factory model. The MHA can
be formally defined in Eq. (3)

MH = (M, AMH, MH) ?3)

where SMH is a set of states for the MHA, AMH is an MHA action
set, and /™M™ is a tuple of MHA inputs, including operating rules of
the MHS and basic information about the MHS, such as its ID, type,
failure rate, and information of the root node which is the station
where the MHS stays for charging and maintenance. The operating
rules encompass path-searching rules, maintenance policies, and
distributions of maintenance and repair times for the MHS.

The states of the MHA (™) are illustrated in Fig. 4(b). The
initial state of the MHA is “standby” (SY), which represents the
MHS staying on the root node. The MHS searches and plans a
route before moving (SY™). When the MHS is traveling, it can be
in one of the three “in-transit” states. The MHS is either moving
to pick up a job (SYH), carrying a job (S¥H), or returning to the
root node for charging and maintenance (SQ"H). Loading and
unloading operations are expressed by SY™ and SMH, respectively,
both with time delay functions. Maintenance and failure of the
MHS are represented by states SY and S}, respectively. The
MHS can break down under any condition except when it is
under maintenance as displayed by an arrow of AM! in Fig. 4(b).
The impact on MHS’s travel due to system disruptions, such as
obstacles in the jobshop, is modeled as AMH.

Table 3 List of actions for the MHA

Action Description Interaction
AYH Receiving call from a job Alb

AYH Departing travel —

AYH Arriving and beginning loading a job —

AYH Finishing loading a job Alb

Ag‘"“ Arriving and beginning unloading a job —

AMH Finishing unloading a job (no jobs waiting) AP

AYH Finishing unloading a job (other jobs waiting) AP, Alb
AMH Receiving call from a job during travel Alb

AMH Arriving at the root node —

AMH Travel disrupted by system —

AMH Beginning the preventive maintenance of the MHS A

AY The MHS breaking down AP

AI]‘gH Beginning the reactive maintenance of the MHS —

AMH The MHS being repaired —

111008-6 / Vol. 145, NOVEMBER 2023

and jobs are represented as actions. These actions are triggered by
messages from Job agents and vice versa. For example, AMH, AMH,
and AM are triggered by requests to pick up jobs (AXP). AYH,
AYH, AMHAMH "and AYH induce actions of jobs by loading and
unloading them. In the path planning phase during A}, the MHS
selects a traveling route based on the next destination information
provided by the job. Overall, the MHA operates based on a commu-
nication protocol between MHSs and jobs, with actions triggered by
these agents to execute the necessary tasks.

3.1.3 Machine Agent. A Machine agent (MA) represents
machines in factories that process jobs. When initiating the
model, all Machine agents are generated and placed. The
Machine agent is defined as Eq. (4)

MA = (SMA, AMA VA, ) (©)

SMA A MA

where is a set of Machine states, is a Machine action set,
and ™ is a tuple of Machine inputs that include the operating rules
of the machine and basic information about the machine, such as
Machine ID, work type, failure rate, and location. The operating
rules consist of maintenance policies and distributions of mainte-
nance and repair times for the machine. Q is a Queue agent repre-
senting a queue associated with the machine, as described in the
Queue Agent section.

The states of the Machine agent ( ) are depicted in Fig. 4(c).
Each Machine agent starts in the “Idle” state (SIIVIA) when it is gen-
erated in the DT model. As a job arrives at the queue, the machine’s
status transitions to the “Processing” state (S}'*). After the process
is complete, the machine is in the “Finishing” state (S}*). The
length of time stuck in this state is influenced by the capacity of
the associated queue. For example, if the Queue-Out is filled, the
finished job becomes blocked and stays in the machine. States
SYMA and S¥4 correspond to situations where the machine is under
maintenance or repair (due to a failure), respectively.

The Machine agent’s states change in response to actions (AM*),
as outlined in Table 4. Machine actions can trigger actions of jobs
and queues, and vice versa. For example, actions AMA, AMA “and
AYA directly initiate job actions, and these actions also impact
queues. The state of the queue can influence actions A}'. The main-
tenance work is captured by action A}!*. The machine can break
down under any state (A¥2). In particular, if the machine fails
while processing a job in the SY' state, the current process is imme-
diately paused, and the job is sent back to the Queue-In to wait for
the machine to recover. This action triggers AY®. In summary, the
Machine agent operates based on interactions among machines,
jobs, and queues, with various actions triggered.

SMA

3.1.4 Queue Agent. A Queue agent (Q) represents queues asso-
ciated with machines, which are categorized into two types:
Queue-In and Queue-Out. Jobs waiting to be processed by the
machine are placed in the Queue-In (Q™). Upon arrival, a job
enters the corresponding Queue-In and waits until the machine is
available. The top-priority job determined by the queuing rule of
the Queue-In is then processed by the machine. After the process
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completes, the job enters the Queue-Out (0°") and waits for an
MHS to ship it to the next destination.
The Queue agent can be defined as Eq. (5)

0= (5% EI9) )
where S9is a set of Queue states, AQisa Queue action set, and Qis
a tuple of Queue inputs, including capacities of Q™ and Q™ (NQI"
and NQOU'), and queuing rules for both types of queues.

The state of the Queue agent (S?) is a tuple of n?" and n®™", indi-
cating the number of jobs in Queue-In and Queue-Out, respectively,

where nQ" € [O, NQ]"], and n?®™" € [0, NQO"[]. The initial state of

the Queue agent is (0, 0), and state transitions occur when actions
are taken. The Queue agent interacts with its associated Machine
agent and Job agents, with these interactions modeled as actions
of a Queue agent (A9Q), as defined in Table 5. The actions of the

Queue agent account for uncertainty in the queues. If nQ" = NQ",
the corresponding Machine agent will not accept a newly arrived

job. Similarly, if n®™" = N®™, the Machine agent will not process
the new job. The Queue agent effectively represents the operations
of queues and performs based on communication and interactions
among queues, associated machines, and jobs, with actions to
execute the necessary tasks.

3.2 Statistical Metamodeling for Sequential Design of
Computer Experiments in Digital Twin. The DT model repre-
sents a complex network of interactive manufacturing processes
and involves a large number of nonlinear interactions and functions
that operate in a high-dimensional space of experimental factors.
This complexity leads to non-convex functions and nonlinear inter-
actions that pose significant challenges for conventional optimiza-
tion tasks. Further, solving optimization problems with this
complex model requires heavy computational resources due to a
large number of simulation experiments necessary [31]. Simulation
experiments with the DT model generate outcome responses with
respect to input factors. However, the high computational overhead
is required to collect large amounts of data to construct a response
surface corresponding to input factors. Hence, there is an urgent
need to develop computationally efficient design methods for com-
puter experiments to reduce the number of required simulation runs
required for response surface estimation.

Algorithm 1 Sequential design of computer experiments

Input: Dataset D with factors X and response y
1: Construct the initial statistical metamodel (f(X))
2. while xy ¢ X
3: foreachi=1,..., }y| do
4: Extract x; and y; as a validation dataset
5 Form a training set D; by excluding the validation set from D (D;
consisting of X\x; and y \y;)
Compute the discrepancy z; = [y; — f (x)|
7:  end for
8: Construct a discrepancy prediction model (g(X)) to estimate the
discrepancy surface
9: Compute PI based on updated z*
10:  Evaluate discrepancies with the PI and extract the next design point
Xy = arg max, PI(X)
11:  Collect response value of the next design (yy) by the simulation
experiment with respect to Xy

12:  Update the dataset: (X, y) = <[f :|, [yy ])
N N

13:  Update the statistical metamodel (f(X)) with the updated dataset
14: end while

a

The proposed approach, shown in Fig. 5, consists of three core
modules to develop statistical metamodels for addressing the
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Table 5 List of actions for the Queue agent

Action Description Interaction
AQ Job entering Queue-In AP, APP, AMA
AQ Job exiting Queue-In Alb

Ag Job entering Queue-Out Aleb, Aleb

A2 Job exiting Queue-Out Al

challenges of the exhaustive search in the design space. The first
module develops statistical metamodels that construct response sur-
faces according to input factors, based on a sample of experimental
outcomes. This statistical metamodel is a surrogate of multiple sim-
ulations to predict the response surface. The second module con-
structs the discrepancy surface, which is based on the discrepancy
of responses from the DT model and the statistical metamodel.
The discrepancy surface provides information about the accuracy
of the statistical metamodel that the proposed approach aims to
maximize. In the third module, the probability of improvement
(PI) is computed, which helps identify an additional design point
required to improve the prediction power of the statistical metamo-
del [32]. Once the additional design point is identified, the corre-
sponding simulation outcome is added to update the statistical
metamodel. This process continues by selecting the next best
design point and updating the statistical metamodel until the addi-
tional design point converges into the existing data set. By integrat-
ing these three modules into the proposed sequential design method
of computer experiments, complex DT models can be calibrated
more efficiently.

In the first module, a Gaussian process (GP) modeling approach
is adopted to develop the statistical metamodels for predicting
response surfaces. In statistical metamodeling for the design of
computer experiments, the response is defined as simulation out-
comes of the DT model (y). The GP is particularly useful due to
the provision of both mean and variance estimations of the
response, enabling statistical analysis of the predicted response
surface. Furthermore, the GP model is robust to handle the nonlin-
ear and non-convex characteristics of the DT model, allowing for
the uncertainty analysis of responses. Specifically, the statistical
metamodel (f(...)) acts as a surrogate of multiple simulations of
the DT model (y=£(X)), where X is a matrix of control factors
and y is a vector of responses [30].

The second module involves constructing discrepancy surfaces
based on the collected simulation outcomes. This module requires
a discrepancy prediction model (z = g(X)), where each element of
the response is defined as z; = |y,- —f(x,-)] fori=1, ..., lyl. The pro-
posed design approach forms the discrepancy prediction model
using a leave-one-out method to avoid overfitting and overcome
the constraints of a small dataset. This technique trains the model
with all data except for one observation and uses the excluded
observation to evaluate the model’s prediction accuracy. This
process repeats for each observation, resulting in a discrepancy
model that generalizes well to new data.

The measure of PI helps identify an additional design point to
enhance the prediction power of the statistical metamodel. The
objective is to minimize the discrepancy between the simulation
results and the predicted responses by the statistical metamodel.
The PI module calculates the PI value for each point on the discre-
pancy surface using the formula defined as follows:

PI = max { @ <ﬂ> } 6)
s(z)

where @(-) is the cumulative distribution function of a normal dis-
tribution. T),, is a target value defined as 7y.x = Zmax + 0-251Zmaxls
where 7.« is the maximum discrepancy of the training dataset. The
point with the highest PI indicates the largest difference between the

predicted response by the statistical metamodel (¥ = f (X)) and the
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Fig. 5 Flowchart of the sequential design of experiments

actual response (y), so it has the highest likelihood to collect exper-
imental results at this point for subsequent iterations.

Algorithm 1 outlines the detailed procedures of the proposed
sequential design method. The algorithm starts with constructing
the initial statistical metamodel (f(X)) based on the initial dataset
D. Then, the dataset is split to calculate the discrepancies at each
point. Next, the computed discrepancies with respect to the input
space are used to form the discrepancy surface through a discre-
pancy prediction model (g(X)). After computing the PI on the dis-
crepancy surface, the additional design point X, with the highest PI
value is determined. Then, the simulation experiment on Xy is con-
ducted, and the outcomes are updated to the dataset X. The statisti-
cal metamodel (f(X)) is updated based on X, and these procedures
are iterative until the additional design point converges.

3.3 Graph Models. The proposed methodology includes two
types of graph models to extract features of the manufacturing
process flow:

(1) the job flow graph: G*° = (v, E™®, W'
(2) the AGV traveling graph: GMH = (v, EMH wMH)

In both graph models, the set V denotes a set of nodes representing
machines and two special nodes such as inventory and warehouse.
These graph models allow for a comprehensive understanding of
the layout and interconnectivity of the jobshop.

In the case of the job flow graph G*°°, the inventory serves as the
source node, and the warehouse functions as the sink node, repre-
senting the entry and exit points for jobs, respectively. The set
E'"C Vx V represents the directed edges that depict the flow of
jobs between the machines. Additionally, a weight set W'°"
denotes the frequency of job flow between nodes. The value of
wi®® is incremented when a job arrives at a particular machine
(A® or Al%). Analysis of the job flow graph provides insight
into the sequence of operations and the dependencies between dif-
ferent tasks. This understanding helps identify critical paths, poten-
tial delays, and opportunities for improving the overall efficiency of
the manufacturing process flow.

On the other hand, the AGV traveling %/ffrph GM does not
specify any source or sink nodes. The set E™C Vx V represents
the directed edges that illustrate the flow of AGVs between
machines. Similar to the job flow graph, a weight set W™ shows
the frequency of AGV travel between machines. The value of
WMH is incremented when an AGV arrives at a specific machine
(Ajg/[H AMH or AYH). By examining the AGV traveling graph, we

111008-8 / Vol. 145, NOVEMBER 2023

can gain insights into the complexity of the jobshop environment
and the various paths that AGVs can take to transport jobs
between machines. This graph model allows an understanding of
the physical layout of the jobshop and the interconnections
between machines and AGVs.

Overall, the graph models enhance comprehension of the manu-
facturing jobshop, facilitating the analysis and optimization of pro-
duction flow, the study of AGV routing, and the acquisition of
insights into the dynamics of the manufacturing process. These
models provide visual representations that support the interpretation
and analysis of the jobshop environment, aiding decision-making
and optimization efforts.

4 Experimental Design

The proposed simulation-enabled DT approach is evaluated and
validated through a case study of deploying AGVs under uncertain
conditions involving MHSs, machines, queues, and jobs. The anal-
ysis of the simulation focuses on three key performance metrics to
assess the impact of the number of AGVs on the manufacturing
process flow: the expected utilization of AGVs (y;), which is perti-
nent to production throughput; the average number of jobs waiting
for AGVs (y,), indicating the level of process delay due to AGVs;
and the mean number of jobs in Queue-In (y;), which shows the
level of process delay caused by the machine’s processing capacity.

With these three metrics as a basis, the objective function for this
case study aims to minimize the expected cost (C(x)) associated
with the number of AGVs (x). The objective function is defined
as follows:

C(x) = Cagvx + Cldle(l -V (X)) + CBacklogy2(x) + CQueuingy3 ()

()

where Cagy, Cudies Cackiog> a1d Cqueuing denote the setup cost of
each AGV, the cost incurred due to AGVs being idle, the cost
resulting from job backlog caused by AGV delays, and the cost
associated with queuing at machines, respectively. The functions
y1(x), y2(x), and ys;(x) represent the values of each performance
metric corresponding to the number of AGVs.

The case study is subject to constraints imposed by the model and
configuration of the digital factory. We model the manufacturing
process through the proposed DT model and conduct simulation
experiments within the jobshop environment reference of the
FAME laboratory at the Pennsylvania State University [33]. The
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Fig. 6 lllustrations of (a) DT factory floor map, (b) job flow graph of the “CPQ” type, and (c) AGV traveling graph between

machines

jobshop consists of 20 machines, including 10 lathe machines, 4
drilling machines, 3 welding machines, and 3 milling machines.
To provide a visual representation, Fig. 6(a)® illustrates an
example of the manufacturing jobshop, which incorporates a total
of nine AGVs. This simulation setup provides an environment to
test the proposed methodology and evaluate its performance
under various scenarios.

The manufacturing process in this case study involves AGVs that
load raw materials from the inventory upon the arrival of work
orders. Once all processes are completed, AGVs transport finished
products to the warehouse for shipment. AGVs determine their
paths through a Hybrid A* algorithm. The factory model reflects
the uncertainty of machine or AGV failure occurrence by employ-
ing stochastic distributions. Preventive maintenance policies with
regular maintenance periods are implemented for both machines
and AGVs. The capacity of the queues is set to ten and five for
each Queue-In and Queue-Out, respectively, resulting in uncer-
tainty of blocking the queue. The job types processed in the
jobshop are summarized in Table 6. Six types of jobs randomly
arrive at the factory in proportion. To reflect the uncertainty of
market demand and facilitate optimal decision-making, two key
control factors have been identified: the job arrival rate and the
number of deployed AGVs. In each case, the number of deployed
AGVs is varied from 1 to 10, while the job arrival rate spans
from 5s to 50 s. These control factors provide a comprehensive
range of scenarios to assess the system’s performance and deter-
mine the most effective configuration.

To validate the effectiveness of the proposed sequential design
method, we evaluate the accuracy of statistical metamodels and
the computational efficiency of experimental design methods. The
accuracy of statistical metamodels is assessed through a perfor-
mance metric: the coefficient of determination (R%), which measures
the proportion of variance in the predicted response. R> measures
the validity of experimental design methods with respect to three
responses. The computational efficiency is evaluated based on the
number of additional experimental runs required to construct an
effective response surface.

%See YouTube demo in https:/youtu.be/5S2AKA6hyP7E
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Comparative experiments are conducted to compare the effec-
tiveness of the proposed sequential design method against two
other design approaches, namely the MaxPro design method and
a random selection approach. The MaxPro design method selects
additional experimental points based on predetermined criteria
from existing candidate points [34], while the random selection
approach randomly chooses additional points. The comparative
experiments aim to benchmark the proposed design method
against these comparison approaches with a focus on evaluating
the accuracy of statistical metamodels and the computational effi-
ciency of the design methods. For accuracy evaluation, each case
is constrained by the same simulation budget, which corresponds
to the same number of additional experimental points as determined
in the proposed sequential design method. In terms of efficiency
analysis, the comparative design methods are allowed to collect
more experimental points until their R* value approaches that of
the proposed design result. This number of experimental points pro-
vides a performance measure of computational efficiency.

5 Experimental Results

5.1 Digital Twin and Network Models. The proposed
multi-agent simulation model of DT enables real-time monitoring
of the manufacturing process. A factory map, shown in Fig. 6(a),
illustrates the status of machines and MHSs in the jobshop. The
machine icons on the map are accompanied by small boxes indicat-
ing the machine’s state. The “Idle” state (SM4) is shown as a gray

Table 6 List of randomly generated job types, their task
sequences, and proportions

Job type Task sequence Proportion (%)
“CPK” Lathe — Weld — Mill — Drill 6.25
“CPQ” Lathe — Drill — Weld — Mill 6.25
“CPB” Lathe — Drill - Weld — Drill 12.5
“CPN” Lathe — Weld — Mill — Drill — Lathe 12.5
“CPP” Lathe — Mill 50

“CPR” Lathe — Mill — Drill 12.5
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box, while a green-colored box represents the “Processing” (SQ/IA)
state. During maintenance (S}*), the box color changes to blue,
and after a breakdown, it turns red until the machine gets repaired
(SY2). The factory map also shows the paths of AGVs at a particular
time with a red line and a blue-dashed line. Once an AGV sets its
destination, the planned route is displayed as a blue-dashed line.
After the AGV moves, its travel history path changes to a red
line. The AGV icon has two different colors: black when carrying
a job, and white when moving without any load.

With the proposed methodology, graph models of jobshop
networks can be constructed to gain insights into the bottlenecks
and strengths of relationships of job flows between machines.
Figure 6(b) depicts a job flow graph of “CPQ” jobs, where the
source and sink of the network coincide with the inventory
“INV0O01” and the warehouse “WHEOOL,” respectively. The
edges in the graph denote the direction of job flows between corre-
sponding vertices, and the edge width reflects the number of jobs
flowing. Job process flows have a direction between machines,
making the network graph directed. In this example, processing
the “CPQ” type requires four tasks, as described in Table 6. There-
fore, the warehouse is connected to milling machines, while the
inventory is linked to lathe machines. Combining the job flow
network with the factory map enables the analysis to reveal that
the milling machines are situated far from the warehouse, leading
to longer travel times for AGVs and higher utilization.

Analyzing the factory network from another perspective of man-
ufacturing objects such as AGVs, the AGV traveling network can
track the travel history of AGVs within machine nodes. Unlike
the job flow network, this network solely represents characteristics
of facilities in the jobshop, reflecting machines as nodes and AGVs
as the flow objects. Therefore, it can reveal characteristics of the
factory beyond the direct effects of different job types.
Figure 6(c) shows an AGV traveling network for “AGV003”
from the case scenario. This network is directed with weighted
edges where the widths represent the number of moves between
vertices. The remarkable result is that the AGV travels from the
warehouse to the inventory the most frequently, accounting for
2.935% of the number of moves among 345 edges. In the case
study, the distance between the inventory and the warehouse is
the longest. This result shows that the AGV travels from the ware-
house to the inventory vacantly, causing inefficiency in the travel
scheduling of AGVs with a high number of vacant travels.

5.2 Comparative Studies of Statistical Designs. The model-
ing of manufacturing systems presents inherent complexities,
including high-dimensional design spaces and nonlinear, non-
convex response surfaces. These challenges make it difficult to
accurately capture the system dynamics. Moreover, the computa-
tional time required for simulations tends to increase exponentially
as the number of agents increases, further exacerbating the model-
ing process. To address these challenges, statistical metamodeling
is employed as a surrogate for intricate simulation models.

The proposed sequential design method, in combination with sta-
tistical metamodeling, aims to optimize decision-making in manu-
facturing systems while mitigating the computational burden. A
comparative experiment has been conducted to evaluate the effec-
tiveness of the proposed sequential design approach. Specifically,
its accuracy and computational efficiency are assessed in compari-
son to the MaxPro design approach and random selection. Three
key responses, namely the expected utilization of AGVs (y;), the
average number of jobs waiting for AGVs (y,), and the mean
number of jobs in Queue-In (y3), serve as performance metrics for
evaluation.

Within this case study, the proposed sequential design of com-
puter experiments commences with an initial dataset comprising
eight simulation results, which serves as the foundation for con-
structing the statistical metamodel. To form the response surface
for y;, an additional 13 simulation experiments are conducted,
while y, necessitates 9 additional runs, and y; requires 1 more
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point. The construction of the statistical metamodel incorporating
these supplementary experimental results demonstrates the high
effectiveness of the proposed method, as evidenced by R values
of 0.981 for y;, 0.840 for y,, and 0.817 for y;. These results
present that the statistical metamodel implemented in the proposed
design method can effectively serve as a substitute for complex
simulation models. Also, this study’s findings underscore the effi-
cacy of the proposed design method in reducing the number of
required simulation runs from 100 to 21, 17, and 9 for the cases
of yi1, y2, and y3, respectively.

Figure 7 illustrates the outcomes of a comparative analysis con-
ducted to evaluate the effectiveness of different design approaches,
namely the sequential design, MaxPro design, and random selec-
tion, based on the R? metric. Three case studies were conducted
to assess the responses y;, y», and y;, with a fixed simulation
budget denoting the number of additional simulation runs required
by the proposed sequential design. For y;, the budget is set at 13
additional simulation runs, while y, requires 9 supplementary
runs, and y3 necessitates 1 additional run.

The proposed design approach exhibits superior performance in
terms of R® compared to both the MaxPro and random design
approaches. Specifically, the R* value achieved by the proposed
method for y; is 0.981, whereas the values for the MaxPro and
random design approaches are 0.919 and 0.750, respectively. Sim-
ilarly, for y,, the R? value obtained with the proposed method is
0.840, while the values for the MaxPro and random design
approaches are 0.753 and 0.585, respectively. Regarding y;, the
proposed method yields an R* value of 0.817, whereas the values
for the MaxPro and random design approaches are 0.617 and
0.540, respectively.

These results demonstrate a robust correlation between the
expected utilization (y;) and both the number of deployed AGVs
and the job arrival rate. However, it is significant to note that the
average numbers of jobs waiting for AGVs (y,) and waiting in a
queue (y3) cannot be fully explained by these two control factors
alone, leading to a lower prediction accuracy compared to y,. The
reason for this disparity lies in the fact that the backlog of jobs is
influenced by additional factors beyond the number of AGVs,
such as the capacity limitations of the jobshop and individual
machines. A more detailed analysis of the relationship between
the control factors and the responses will be discussed in the forth-
coming section.

The computational efficiency of experimental design approaches
is evaluated based on the number of additional simulation runs
required to achieve a comparable level of accuracy to the proposed
sequential design. For y;, additional simulation experiments are
conducted for comparative methods until the R> value reaches
0.97, which corresponds to 99% of the proposed sequential

Performance Metric (Rz)

B Sequential Design |
[“IMaxPro Design
[l Random Design

Y4 Y2 Y3

Fig. 7 Performance comparison of statistical metamodeling
measured by R? among sequential design, MaxPro design,
and Random design for three responses (y;: utilization of
AGVs, y,: number of jobs waiting for AGVs, and y3;. number of
jobs in Queue-In) under the fixed simulation budget. The
budget requires 13 additional simulation runs for y,, 9 additional
simulation runs for y,, and 1 additional simulation run for y;.
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Fig. 8 Computational efficiency analysis of sequential design, MaxPro design, and Random design for three responses (y;: uti-
lization of AGVs, y,: number of jobs waiting for AGVs, and y;: number of jobs in Queue-In) to achieve comparable accuracy levels

as the sequential design

design’s R value of 0.981. The results of the comparative analysis
for y, are depicted in Fig. 8(a). The proposed sequential design
requires 13 additional points, resulting in a dataset of a total of 21
simulation runs to learn the statistical metamodel. In contrast,
both comparative design approaches need more additional runs to
achieve an R? value of more than 0.98. In particular, the MaxPro
design attains the R? value of more than 0.97 with 23 additional
points, while the random design fails to achieve comparable accu-
racy, even with 30 additional points.

The cases for y, involve collecting additional simulation points
until the R? value surpasses 0.80, which is 95% of the R? value
of the sequential design, 0.840. As shown in Fig. 8(b), the sequen-
tial design necessitates 9 additional points, which leads to a dataset
with a total of 17 simulation runs to train the statistical metamodel.
However, neither comparison design method achieves compara-
ble accuracy with only 9 additional points. The MaxPro design
requires at least 17 additional points to attain the R? value of
more than 0.80, while the random design achieves it with 22 addi-
tional points.

In the case of y;, additional simulation results have been
collected until the R* value exceeds 0.80, which corresponds to
99% of the R* value obtained with the sequential design, 0.817.
As illustrated in Fig. 8(c), only one additional point is necessary
to effectively predict the response surface, resulting in a dataset
comprising a total of 9 simulation results to train the statistical meta-
model. On the other hand, comparative design approaches require a
greater number of supplementary simulation results to achieve an
R? value of more than 0.80. Specifically, the MaxPro design neces-
sitates 9 additional points to reach the desired R? value, while the
random design requires 25 additional points.

The sequential design method significantly reduced the number
of experiments required to train the statistical metamodel efficiently.
Furthermore, the proposed design approach implemented an itera-
tive procedure, continuing until the next additional data point no

Number of Jobs Waiting for AGVs (yz)

longer contributed to improving the accuracy of the response
surface. This methodological approach offers clarity on the
number of simulation experiments necessary to predict response
surfaces using statistical metamodels and allows for a reduction
in computational overhead.

5.3 Case Study: Optimal Number of Automated Guided
Vehicles. The experimental studies conducted in the 20-machine
jobshop yielded three types of output responses: the utilization of
AGVs (y;), the number of jobs waiting for AGVs (y,), and the
number of jobs in Queue-In (y3;). The statistical metamodeling
approach was employed to construct response surfaces with a
reduced number of simulation runs. Figure 9(a) illustrates the qua-
dratic relationship between y; and control factors. The utilization of
AGVs is observed to increase with higher job arrival rates, indicat-
ing a positive correlation.

In contrast, the relationship between y, and the control factors is
more complex, as demonstrated in Fig. 9(b). The number of jobs
waiting for AGVs shows a negative correlation with the number
of AGVs, while the relationship with the job arrival rate exhibits
varying trends. In scenarios with fewer than three AGVs, over
100 jobs tend to wait for AGVs. When there are four AGVs in
the system, the value of y, remains relatively constant regardless
of the job arrival rate. However, with more than five AGVs, the
response shows a quadratic relationship with the control factors.
In cases where the number of AGVs exceeds five, the number of
AGVs no longer acts as a bottleneck in the process flow. Instead,
the process flow is hindered by the capacity limitations of machines
and queues.

As shown in Fig. 9(c), scenarios involving high job arrival rates
and a large number of AGVs result in an accumulation of jobs in the
Queue-In, indicating that the process flow is impacted by the
number of jobs present in the Queue-In. It is worth noting that

Number of Jobs in Queue-In (ys)
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Fig. 9 Response surfaces of three responses (y;: utilization of AGVs, y,: number of jobs waiting for AGVs, and y3: number of
jobs in Queue-In), which are predicted by the proposed statistical metamodeling for the sequential design of computer

experiments
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Fig. 10 Cost-effectiveness analysis with respect to the number
of AGVs under job uncertainty

the capacity of each Queue-In is set to 10, further highlighting the
influence of job accumulation on the process flow in such scenarios.

To identify the optimal number of AGVs in the case study
defined in Eq. (7), the values of cost coefficients are set to
CAGV = 100, CIdle =500, CBaCklog = 10, and CQueuing =10. AISO,
response functions y, y,, and y; are approximated with respect to
the number of AGVs based on the response surfaces in Fig. 9.
Figure 10 illustrates the result of cost analysis in the case study.

The analysis result reveals that as the number of AGVs increases,
there are corresponding increases in AGV setup costs and idle costs,
while the backlog costs decrease. With a greater number of AGVs
deployed in the jobshop, the idle costs increase due to a quadratic
drop in AGV utilization. The backlog cost caused by AGVs exhibits
a decreasing trend when the number of AGVs increases within the
range of 1-6. However, beyond six AGVs, the backlog cost starts
to increase. This finding suggests that the delay in job processing
is not solely attributable to AGVs as a bottleneck when the number
of AGVs exceeds six. Other underlying factors, such as the low
processing speed of machines, limited machine availability, or insuf-
ficient queue capacity, may contribute to the backlog of jobs.

As illustrated in Fig. 9(c), the Queue-In length tends to be longer
when the market demand becomes higher, or there are more AGVs
deployed in the jobshop. This result emphasizes that the processing
and queuing capacities of machines have a significant impact on
the process flow when there is high market demand. Based on the
uncertainty of market demand and the given constraints of the
model and configuration of the digital factory, 6 is determined as
the optimal number of AGVs in this case study. With x=35, the
total cost related to the number of AGVs amounts to 1239.21,
which is lower than the cost of 1253.99 when x=6.

6 Conclusions

This paper presents a novel data-driven DT approach designed to
simulate and optimize manufacturing process flows in small and
medium-sized manufacturing jobshops. The proposed methodology
offers attractive features that contribute to its effectiveness and
applicability, including:

(1) Multi-agent simulation model that comprehensively captures
the complexity and dynamics in manufacturing systems. The
model represents manufacturing things as agents, capturing
their characteristics, actions, and states. The interaction
between these agents is facilitated through message transac-
tions and action triggers, providing a detailed representation
of the manufacturing systems.

(2) Statistical metamodeling for the sequential design of com-
puter experiments that serves as a surrogate model for the
complex simulation model. This approach enables efficient
optimization by reducing the computational overhead

111008-12 / Vol. 145, NOVEMBER 2023

associated with running extensive simulations. By construct-
ing statistical metamodels, the proposed methodology offers
a more computationally efficient alternative for decision-
making and optimization in manufacturing jobshops.

(3) Graph models of job flow and AGV traveling that enhance
real-time monitoring of jobshop’s statuses, facilitating a
deeper understanding of the dynamics of the manufacturing
process. The job flow graph captures the sequence of opera-
tions and dependencies between tasks, while the AGV trav-
eling graph illustrates the paths followed by AGVs as they
transport jobs between machines.

The proposed methodology fetches an unprecedented opportu-
nity for SMM to fully utilize the high technology of Industry 4.0.
This paper also focuses on DT-enabled optimization of complex
manufacturing jobshops that involve an interactive network of man-
ufacturing things and further reduces the computation overhead via
the sequential design of computer experiments. Experimental
results showed that the proposed methodology brings intelligence
to a manufacturing system with DT modeling and simulation opti-
mization. Also, the proposed experimental design method effi-
ciently reduced the required computation resources through the
sequential design approach, while effectively predicting response
surfaces by statistical metamodeling.

Our future work will investigate the integration of multi-agent
models with artificial intelligence techniques for manufacturing
planning, scheduling, and maintenance. By incorporating advanced
Al methodologies, DT can achieve greater efficiency, effectiveness,
and adaptability in managing complex manufacturing systems. This
research direction allows for the exploration and development of
intelligent decision-making mechanisms that leverage advanced
sensing, big data, simulation modeling, and digital twinning. Con-
sequently, DT models can be further refined and optimized to
address the intricate challenges associated with planning, schedul-
ing, and maintenance tasks within manufacturing environments.
Providing a novel and flexible digital twin model to small and
medium-sized manufacturing enterprises leads to competitive
advantages in the global manufacturing industry.
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Nomenclature
ABM = agent-based model

AGV = automated guided vehicle
DT = digital twin
GP = Gaussian process
IoT = Internet of Things
MAS = multi-agent system
MHA = material handling agent
MHS = material handling system
RFID = radio-frequency identification
SMM = small and medium-sized manufacturer
WIP = work-in-process
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