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SUMMARY

Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. Currently,
no systematic strategy exists to infer large-scale physical properties of a cell from its molecular components.
This is an obstacle to understanding processes such as cell adhesion and migration. Here, we develop a
data-driven modeling pipeline to learn the mechanical behavior of adherent cells. We first train neural net-
works to predict cellular forces from images of cytoskeletal proteins. Strikingly, experimental images of a sin-
gle focal adhesion (FA) protein, such as zyxin, are sufficient to predict forces and can generalize to unseen
biological regimes. Using this observation, we develop two approaches—one constrained by physics and
the other agnostic—to construct data-driven continuum models of cellular forces. Both reveal how cellular
forces are encoded by two distinct length scales. Beyond adherent cell mechanics, our work serves as a
case study for integrating neural networks into predictive models for cell biology.

INTRODUCTION

The structure and dynamics of living cells are controlled by the
physical properties of the cytoskeleton.”? The cytoskeleton it-
self, however, is the product of complex biochemical circuits
that regulate its dynamics and spatial organization.®* The central
challenge faced when studying the physical biology of the cell is
to untangle this interplay between physics and biochemistry.
Current modeling approaches lean heavily on intuition built
upon centuries of work on classical continuum mechanics,
where symmetries and conservation laws dictate both the vari-
ables that arise in such models, as well as the equations they
obey.>® Cells, however, are decidedly non-classical, relying
instead on distributed enzymatic activity and non-equilibrium
mechanochemical processes across a hierarchy of scales.”®
For example, forces in cells arise not only to restore local defor-
mations, but also as a result of continuous remodeling regulated
by biochemical signaling networks. This intertwined action of
physics and biochemistry complicates coarse-graining and sys-
tem parameterization of cell dynamics in terms of a few simply
understood collective variables.®'°

Machine learning (ML) has the potential to overcome this chal-
lenge by augmenting existing physical models with biochemical
information and even discovering new ones directly from the sta-
tistics of data.''™"* These tools have proven very successful in

structural biology for predicting protein structures directly from
gene sequences.'”'% Here, we illustrate the power of ML ap-
proaches in a classic cellular biology problem: how cytoskeletal
proteins govern the mechanics of cells. Cells generate contrac-
tile forces, which are critical regulators of cell shape, adhesion,
motility, and mechanotransduction.'”'® Forces generated in
the actin cytoskeleton are transmitted via transmembrane focal
adhesions (FAs) to the extracellular matrix'®" where they can
be measured directly with techniques like traction force micro-
scopy (TFM).?>>* TFM measurements coupled with live-cell im-
aging of fluorescently tagged cytoskeletal proteins have helped
develop a number of biophysical models of cellular force gener-
ation and mechanosensing.”>** While providing insight into
various local microscopic mechanisms, these models do not
capture the broad heterogeneity of structures and behaviors in
cells. As a result, they cannot fully account for how non-local
and cell-scale properties such as cell morphology and FA struc-
ture and location affect, and even dominate, local forces.

In this work, we demonstrate how to harness the flexibility of
neural networks to both improve existing models of cellular
forces as well as discover new ones. We begin by training
deep neural networks to predict forces directly from images of
fluorescent cytoskeletal proteins, and in the process, we
discover that a single FA protein, such as zyxin or paxillin, is suf-
ficient to predict traction stresses. The ability to make accurate
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predictions with only a single protein distribution does not imply
that other proteins are biochemically redundant for force gener-
ation. Rather, it suggests the minimum amount of information,
and hence minimal complexity of models, needed to predict
the magnitude and orientation of cellular forces. These predic-
tions are robust, as we find that the networks can generalize to
previously unseen experimental and biological perturbations.
To understand this generalizability, we probe the neural network
to identify features that inform its predictions and further guide
the formulation of two complementary mathematical models.
First, we introduce a physics-constrained ML approach that
augments existing mechanical cellular models®'=*: it learns
directly from data how a single, measured protein distribution
sets the physically meaningful parameters of an effective
linear-elastic model. Second, we cast away our mechanical hy-
potheses and demonstrate a purely data-driven pipeline that
constructs relevant fields and distills effective equations, which
predict cellular traction stresses. Despite incorporating varying
degrees of model complexity and prior knowledge, all our ap-
proaches consistently reveal that models for force generation
are characterized by the interaction of both local and non-local
features. Our findings illustrate how FA proteins encode informa-
tion of local forces at adhesion sites, as well as whole-cell
contractility through their distribution in the cell, and demon-
strate a suite of complementary approaches to build novel
models of living systems.

RESULTS

Neural networks accurately predict traction forces from
images of a single protein

To assess whether neural networks could make mechanical pre-
dictions from biochemical fields, we created a library by pairing
fluorescence microscopy images of the FA protein zyxin in fibro-
blasts®® (Figure 1A) with their corresponding traction forces as
directly measured by TFM (?exp; Figures 1B and 1C). In total,
our library contained images obtained from 31 separate time lap-
ses of cells expressing zyxin and their associated traction force
fields (see STAR Methods for details). In each of these cells, trac-
tion forces primarily localized along the cell boundary at FAs, as
marked by zyxin accumulation, and pointed inward toward the
cell body (Figures 1C and 1D). For our neural network, we chose
a U-Net architectural backbone that learns large-scale features
via successive strided convolutions, while skip connections be-
tween layers propagate fine-grained information and preserve
local structure that may be lost during coarse-graining® (Fig-
ure 1A). While U-Nets have proven successful at solving the
TFM inverse problem,*”*® here, we push them to link biochem-
istry and mechanics. We augment this backbone with ConvNext
blocks to improve accuracy and training efficiency®® (Figure S1;
see STAR Methods and supplemental information for architecture
details). We trained the U-Net to directly predict traction fog:es,
using the library of paired zyxin images as inputs (F nn;
Figures 1C and 1D). The library was split into training and test
sets containing 16 and 15 cells, respectively (Figure 1G). Although
the U-Net was taught using only the training set, it learned to
generalize and was able to accurately predict traction forces in
cells from the test set, which it had never seen before
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(Figures 1C and 1D). The network predictions of traction forces
agreed generally with experimental measurements in both loca-
tion and magnitude (Figure 1C), with some smoothing occurring
at the micron scale (Figure 1D).

To evaluate the U-Net accuracy, we compared the experimen-
tally measured traction force directions (wexp) and magnitudes
(|Fexp|) with those predicted by the U-Net for all the cells in the
test set (ann, |Fnn|)- Figures 1E and 1F show the conditional dis-
tributions p(aexp|ann) and p(|Fexp!||Frn|) (Se8 STAR Methods for
additional details) along with the averages (solid line) and stan-
dard deviation (dotted line). The neural network achieves near-
optimal accuracy for force angles as well as magnitudes up
to ~4 kPa, which represents ~99.9% of pixels in the test dataset
(Figures 1E, 1F, and S3). To evaluate the neural network’s sensi-
tivity to the test and train data used, we generated 22 random par-
titions of our 31-cell library into 16-cell training sets and 15-cell
test sets. We trained a separate U-Net on each partition and eval-
uated the mean-squared error (MSE) of the force predictions
(Figures 1H, and S3). The network performance varies weakly,
depending on the cells present in the test and train set, with the
MSE fluctuating by less than +5% across test cells. As a com-
parison, the MSE varies by +2% between cells measured on
different days (Figure S3), denoted by D; in Figure 1H. The net-
work’s sensitivity to training and testing data is thus similar in
magnitude to systematic variations, which arise from differences
in experimental preparation, rather than from fundamental differ-
ences between cells. Together, these results demonstrate that
from a readily achievable amount of experimental data, a U-Net
can robustly learn to make accurate predictions of traction forces
from fluorescent images of a single FA protein, such as zyxin.

Zyxin-trained networks outperform other cytoskeletal
proteins

In addition to identifying FAs, zyxin also reveals information
about actin stress fiber organization and general cell geometry.*°
To determine which of these features was driving the U-Net per-
formance, we tested the efficacy of other cytoskeletal proteins
involved in force transmission: actin and myosin, the filaments
and motors that make up the contractile network; paxillin,
another FA protein; mitochondria, an organelle unconnected to
the contractile machinery as a negative control; and binary
masks of the cell morphology. For these experiments, we simul-
taneously expressed zyxin with the other proteins of interest.
Except for mitochondria-trained networks, all networks learned
to predict forces with some degree of accuracy, capturing
the general localization and magnitude of traction stresses
(Figure  2A). The probability distribution of angular error
Ao = ann — aexp Peaked around zero for all proteins, differing
only in the width of the distribution about the true value (Fig-
ure 2B). This distribution width was similar for networks trained
on each protein, except for mitochondria that showed a high
angular variance (Figure 2C). When comparing force magnitude
predictions, we observed larger differences among the proteins,
with the FA proteins zyxin and paxillin outperforming all others
(Figures 2D and S4). Surprisingly, training networks on combined
inputs of zyxin and these proteins did not improve performance,
and they performed as well as a U-Net trained on zyxin alone
(Figures 2E and S4). Similarly, combining paxillin and actin also
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Figure 1. Neural networks accurately predict forces from images of a single protein

(A) Fluorescent protein intensities (e.g., EGFP-zyxin) are measured in cells spread on 2D polyacrylamide gels coated with fibronectin.

(B) Adherent cells generate forces via the contractile activity of the cytoskeleton. These traction forces are transmitted to the substrate through focal adhesions
(FAs). By measuring the displacement of fluorescent beads embedded in the substrate (red circles), the traction forces can be reconstructed using traction force
microscopy (TFM; see STAR Methods).

(C) (Top) Forces (?exp) recovered from experimental measurements of substrate deformations via TFM. (Bottom) U-Nets predict traction forces (?NN) from
images of protein intensity. In both plots, the magnitude of the traction force is indicated by the color and the direction by the overlaid arrow.

(D) Zoomed-in view of colored boxes in (C).

(E and F) At each pixel, we measure (texp, NN, |Fexp|, [Fnn 1), which we bin to calculate the conditional angular distribution p(aexp\aNN) (E) and the conditional
magnitude distribution p(\Fexp\“FNN D (F). An optimal predictor lies exactly along the diagonal. Solid lines denote the average of the distribution, while dashed
lines mark one standard deviation. The angular distribution is strongly peaked along this diagonal (with additional peaks appearing due to periodicity), while the
magnitude distribution remains on the diagonal up to \Fexp \ =4 kPa, which corresponds to 99.9% of pixels. Inset of (E) shows the probability distribution of angular
error Aa = aNN — exp-

(G) Partition of 31-cell dataset into 16-cell training set and 15-cell test set. Every cell shown in this paper is in the test set and was not seen during training.
(H) Model mean-squared error (MSE) for 22 random train/test partitions. Dashed lines denote days on which cells were imaged. Pixel color pj is the average MSE
of all models that use cell j for training and cell j for testing.

did not perform as well as zyxin alone (Figure 2E). Although the
cellular forces themselves are generated by many interacting
proteins, a single FA protein is sufficient to serve as a proxy for
this microscopic complexity and contains enough information
to determine the coarse-grained mechanical behavior. These re-
sults demonstrate that neural networks can be used to sort
through potentially relevant proteins and identify a minimal sub-
set that contains all the necessary information about the cell to
predict forces. We proceeded using our highest-performing neu-
ral network, which was trained using zyxin alone.

Zyxin-trained networks generalize to new cell types and
biological perturbations

While it is generally assumed that the underlying mechanics of
contraction are universal,'® we sought to explicitly test this by
evaluating our U-Net (which was trained on images of fibro-
blasts) on images of other adherent cell types. Specifically, we
imaged zyxin in individual human osteosarcoma epithelial cells
(U20S; Figure 3A) and paxillin in colonies of canine epithelial
cells (MDCK; Figures 3D and S5). Without any retraining, the
zyxin-trained U-Net generally predicted accurate traction force
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Figure 2. Zyxin-trained networks outperform other cytoskeletal proteins
(A) The predictive power of different cellular proteins inputs are compared by training neural networks on each protein individually. The comparison includes
cytoskeletal proteins associated with force generation (actin, myosin), FA proteins (paxillin, zyxin), as well as a protein thought to be unrelated to force generation

(mitochondria) and the binary cell mask. Scale bars are 20 um.

(B) While all networks trained in (A) predict accurate force directions on average, the distribution of errors varies depending on protein.

(C) We quantify the angular error by the full-width half-maximum (FWHM) value of the distributions in (B). The networks performed similarly, except for the
mitochondria network that showed a much larger FWHM. Error bars denote standard deviations of the error across different cells.

(D) NNs trained on focal adhesion proteins, in particular zyxin, predict force magnitudes more accurately than those trained on other inputs. Inset shows
calculation of magnitude error, which measures the cumulative distance from the diagonal up to F* = 6 (black dashed line).

(E) Zyxin outperforms all other proteins in predicting force magnitudes, and training on zyxin plus other proteins does not improve performance. Error bars denote
standard deviations as in (C). One cell in the actin dataset was an outlier and was excluded (see STAR Methods and Figure S4 for details).

directions and magnitudes for both new cell types (Figures 3B,
3C, 3E, and 3F), which were comparable to differences between
training on different cytoskeletal proteins (Figure S6). This was
true despite the MDCK data being taken on a softer substrate
(2.8 vs. 16 kPa shear modulus) using a different microscope.
While these changes in experimental setup can induce small er-
rors (see Figures S7, S8, and S9), the ability of the network to
generalize to different cell types, adhesion proteins, and cell
clusters suggests that it has learned some underlying general
law governing traction force generation.

To probe this idea further, we next challenged our U-Net
model to make predictions in response to a biochemical
perturbation. We imaged cells for 30 min at a basal contractile

484 Cell 187, 481-494, January 18, 2024

state before adding 5 uM of the Rho-kinase (ROCK) inhibitor
Y-27632 for 45 min and then washing out the drug and imaging
for afinal 45 min (Figures 3G and 3H). Adding Y-27632 resulted in
a drop in traction forces, an increase in overall cell area, and a
reduction in the size of FAs, as expected,*'*? while the wash-
out reversed each of these trends. Despite having never seen
these drug perturbations, the network still predicted the overall
changes in global traction forces (Figure 3G) and the local
changes at FAs (Figure 3H) during both the drug treatment and
the subsequent recovery following wash-out. Together, these re-
sults indicate that the distribution of zyxin alone is a faithful proxy
for the mechanical state of a cell and is sufficient to predict trac-
tion forces under a wide variety of conditions.
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Figure 3. Zyxin-trained networks generalize to new cell types and biological perturbations

(A-G) The fibroblast-trained network of Figure 1 is evaluated on (A-C) individual U20S cells expressing zyxin, and (D-F) colonies of MDCK cells expressing
paxillin. Pixel-wise distributions of angle and magnitude predictions for U20S cells (B and C) and MDCK cells (E and F), as in Figure 1. (G) The same network,
which was trained only on fibroblasts in their basal contractile state, is evaluated on fibroblasts perturbed with the ROCK inhibitor Y-27632. The wash-inatt = 30
min impairs cytoskeletal contractility resulting in lower total force, which recovers after the drug is washed out at t = 75 min.

(H) Three snapshots from the time series in (G) demonstrate the NN’s ability to capture redistribution of forces seen during the perturbation.

Neural networks identify features of cell adhesion and
morphology

Motivated by the success of the U-Net at predicting traction
forces, we next sought to identify features of the zyxin distributions
that are relevant for making those predictions. Zyxin encodes both
micron-scale structures, such as FAs (~ 1 um), as well as cell-
scale structures like stress fibers ~ 10-100 um (Figure 1A). To
probe how the network interprets these features, we trained
U-Nets on random image crops of sizes ranging from 10 up to
130 um in our input data (Figure 4A). Even when trained on only
a small fraction of the cell, these networks learned models that
were accurate on average for both force magnitude (Figures 4B
and 4C) and direction (Figures 4D and 4E). In both of these mea-
surements, improvements in the prediction accuracy was negli-
gible as the input size increased beyond ~25 pum (Figures 4C
and 4E). This indicates that the U-Net does not need to know the
whole-cell geometry and that it can make accurate predictions
by considering a smaller neighborhood around any given point.

Previous work has suggested that both cell morphology®°-243-°

and FA distribution*®™® can impact force generation. To
understand how the U-Nets interpreted these features, we
generated synthetic “cells” to systematically vary these features
and examine the trained models’ response.>® To probe the role of
cell morphology, we evaluated the mask-trained U-Net on cells
that were triangular in shape with a width L and whose
edges were arcs with radius of curvature R (Figure 4F). While
the network did not systematically respond to increases in cell
edge curvature (Figure 4H), we did find that force production
increased with total cell size (Figure 4l). This result is consistent
with previous work showing that force generation scales with cell
area, and it further demonstrates that the network is sensitive to
large-scale features of cell geometry.

To probe the role of FA-like features, we created synthetic cells
composed of elliptical “FAs” of varying area and aspect ratio that
were distributed randomly throughout a circular cell (Figures 4J
and S10, and S11). The aspect ratio was defined with respect

Cell 187, 481-494, January 18, 2024 485




- ¢? CellPress

Cell

~ B Avg. Magnitude Magnitude Error 1e—4 P(Aa) E Angle FWHM
8F 11 um °
s 200°
. 2 041 L in ~ 25um 3}
© 6F = 44
L[ —e 0.3f 150° L
= =131 2+
a4r 0.2f
& 100° F
=2t 0.1F ir
: J )
0 \ . \ , 0.0k ol , J 50°f, A ) $
0 4 10 130 -n 0 n 10 50 90 130
|FNN| kPa) Crop Slze (pm) QNN — Qexp Crop Size (um)
Geometry Focal Adhesions
8
F Il ey 9
| 0.9
S kPa
O
S 0.3
Y Input  |Fnn|
2+
H I 9 FA len. (um)
.

& (IF)(kPa)
(IF]) (kPa)
sr &
h
=
3
at 2
& pEIIipseArea (um)
w o = N Y

R./L L (um)

0.1 02 05 1 8
Ellipse Aspect Ratio

1

16 32 1 6 12
Zyxin Intensity (a.u.)

Figure 4. Neural networks identify features of cell adhesion and morphology
(A) Networks are trained with varying crop sizes, ranging from 64 pixels (= 10 pm) to 768 pixels (= 130 u m). All networks are trained on the same data and have the

same architecture as the U-Net of Figures 1 and 3.
(B) Average force magnitude (defined in Figure 1) for varying crop sizes.

(C) Magnitude error as a function of crop size, using the same metric defined in Figure 2D.
(D) Distribution of angular errors A = ann — aexp fOr each crop size. Larger crops cause the distribution to peak sharply about Aa = 0.

(E) FWHM of the distributions in (D) as a function of crop size. FWHM reduces dramatically at a crop size of

=25 pum, beyond which it plateaus.

(F) Synthetic cells of size L consist of three points connected by circular arcs with radius R..

(G) Dependence of average force predicted by mask-trained U-Net on radius of curvature relative to the size of the synthetic cell, and cell size.

(H) Averaging along the x axis of (G) shows that average predicted force is independent of relative radius of curvature.

(I) Averaging along the y axis of (G) shows that average predicted force increases as a function of cell size. Shaded region in both (H) and (I) denotes one standard

deviation.

(J) (Top) Synthetic cells composed of ellipses of varying aspect ratio (defined relative to radial direction) and area, which are randomly distributed in a circular
boundary. A section of one such cell is shown along with the force magnitudes predicted by the zyxin-trained U-Net. (Bottom) Average predicted force mag-

nitudes vary with aspect ratio and area.

(K) Additional synthetic cells are generated of evenly spaced, radially oriented focal adhesions with varying length and intensity. (Top) A section of one such cell is
shown along with the force magnitudes predicted by the zyxin-trained U-Net. (Bottom) Average predicted force varies with zyxin intensity.

to the radial direction, allowing us to simultaneously probe the
response of the network to both orientation and size of the FA-
like structures. We found that the zyxin-trained U-Net predicted
the highest forces for ellipses of area ~2 pm? and aspect ratio
of ~ 0.1 (i.e., those pointed radially), consistent with experimental
descriptions of FAs.*>*'™>% We further investigated the role of FA
intensity by creating circular cells with uniformly distributed ellip-
ses of fixed intensity and length along the edge (Figure 4K). Upon
increasing the intensity of the ellipses, we found a non-linear
response where the magnitude of the predicted traction forces
rose sharply at first and continued to grow at a slower rate at
higher intensities, consistent with previous reports of zyxin inten-
sity increasing with applied force.?® This retrospective analysis
revealed how the neural network transforms many different spe-
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cific features of the zyxin signal into cellular force predictions.
Instead of memorizing complex, uninterpretable correlations in
the training data, the U-Net identified biological features that
allow it to accurately generalize predictions of force generation
across cell types and biomechanical states.

Physical bottleneck neural networks: Learning adhesion
enhances an effective elastic model

While the U-Net-learned rules for predicting forces from zyxin
generalize far beyond the domain on which it was trained, it is
not transparent how the network uses features of the input
data to make predictions. In comparison, previous models
inspired by classical continuum theory rely on simple hypothe-
ses allowing for maximum interpretability. However, they
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Figure 5. The physical bottleneck: Learning adhesion enhances an effective elastic model

(A) We model the cell as an elastic medium that is subject to a uniform active contractility ¢ and is pinned to the substrate with a spatially varying adhesion
field Y(x).

(B)—(F) (B) A neural network learns to map zyxin to model parameters, which a PDE solver uses to compute the forces. Network weights are optimized such that
physical constraints are always satisfied. We refer to this strong enforcement of the PDE as a “physical bottleneck” neural network (PBNN). The elastic model with
non-uniform adhesion captures forces in cells in both high (C) and low-contractility regimes (D). The PBNN predicts both forces directions (E) and magnitudes
(F) similarly on average with the full mask-trained U-Net of Figure 2. The angle FWHM for the PBNN is 68° and for the mask U-Net 65°, while for the zyxin U-Net, it
is 50°.

(G-J) The PBNN reveals how the learned adhesion field depends on zyxin. (G) The learned Y (x) is highly heterogenous and captures the location of FAs. (H) The
magnitude of the Y field decreases in response to the ROCK inhibition but remains localized to FAs. (I) The “susceptibility” of the PBNN, «(x;, x;) = %’:&; is sharply
peaked within a radius of a few microns. (J) We correlate the average adhesion value Y with the amount of zyxin above a threshold {4, Where g denotes the gth

quantile of the zyxin distribution (inset). Y correlates strongly only with the highest values of zyxin.

typically lack the ability to make predictions under wide ranges of
cell shapes and distributions of localized FAs.?>* Here, we
demonstrate how to incorporate zyxin into continuum mechani-
cal models using neural networks, thereby learning relationships
between proteins and physical parameters that enhance the
generalizability of physical models.

We resort to an existing model that views the cell as an effec-
tive two-dimensional (2D) active elastic gel adhered to a sub-
strate.®" % The main attraction of this minimal model is its
simplicity: it represents the complex processes governing cell
adhesion and contractility in terms of only two parameters, a uni-
form adhesion strength Y and a gIobaLactive stress o2 (Fig-
ure 5A). The forces are calculated as F (x) = YU (x), where
T (x) is the displacement field found by minimizing the system’s
free energy (see supplemental information for details). Here, we
extend this model by considering a spatially varying adhesion
field Y(x) to account for the inhomogeneous distribution of FA
sites in the cell.** Inspired by the success of the U-Net, we con-
nect both physical parameters to chemical quantities by making

them zyxin-dependent, Y[¢](x) and ¢?[¢], with {(x) denoting the
experimentally_(}jetermined zyxin distribution, so that forces are
now given by F (x) = Y[¢](x)U (x).

While classical methods exist to estimate model parameters
from experimental force data, they do not account for the addi-
tional constraint that the parameters are functions of zyxin. To
overcome this limitation, we introduce a “physical bottleneck”
neural network (PBNN) architecture. The U-Net of Figures 1, 2,
3, and 4 calculates forces by processing hundreds of features
calculated in the latent layers of the network. In contrast, our
physical bottleneck computes only two features from which
forces are calculated in a deterministic and well-understood
way. Concretely, the PBNN calculates Y[{](x) and ¢?[¢] with a
neural network and feeds them as parameters into a PDE solver
to calculate traction forces (Figures 5C and S2). We train the
PBNN to predict parameters that minimize the MSE between
predicted forces and the experimentally measured forces. In
each iterative training step, the adjoint method®* is used to
calculate updates to the physical model parameters, which are
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then passed to the neural network using backpropagation. This
two-step process ensures that updates to the neural network
obey the stringent constraints of the physical model.

The PBNN accurately predicts forces and generalizes to cells
perturbed by the ROCK inhibitor Y-27632 (Figures 5C and 5D).
The predicted force angles (Figure 5E) and magnitudes (Fig-
ure 5F), however, are less accurate on average across the da-
taset than those predicted by the unconstrained zyxin-trained
U-Net of Figures 1, 2, 3, and 4. This behavior is expected
due to the additional constraints imposed on the PBNN. The
PBNN nevertheless makes predictions on par with the mask-
trained U-Net (Figures 5E and 5F), which indicates that the
two parameters learned at the physical bottleneck contain at
least as much relevant information for force prediction than
anything an unconstrained deep U-Net could infer from the
cell morphology alone. Moreover, the U-Net processes its
latent features with a nearly arbitrarily complex function, while
the PBNN processes the Y field and ¢? into forces via a simple
differential equation.

The introduction of a zyxin-dependent adhesion field Y[¢](x)
was sufficient to make the physical model competitive with fully
deep U-Nets. The notation Y[{](x) is used to indicate that Yis a
functional of the zyxin field ¢, which varies in space. We occa-
sionally omit the dependence on ¢ for brevity. We found that
the learned field is strongly heterogeneous and localizes to FA
sites (Figures 5G and 5H). Furthermore, the intensity of Y(x) de-
creases in response to the ROCK inhibitor Y-27632 and mirrors
the reorganization and reduction in number of FAs (Figures 5D
and 5H). However, it is not immediately clear how the PBNN
calculated Y(x) from the spatial distribution of zyxin {(x). To
characterize how the adhesion at a point x; depends on zyxin
at a point x;, we defined the susceptibility, or linear response,

%t((:;)) The susceptibility curve exhibits
a rapid decay with a minimum at =5 um (Figure 5I). Its shape re-
sembles a Laplace filter commonly used in peak-finding algo-
rithms, indicating that Y(x) is associated with maxima in the
zyxin signal. We further probed the dependence of Y on zyxin
by correlating the average adhesion in each image Y with the
sum of zyxin values above a given threshold (Figures 5H and
S12). Upon increasing the threshold, Y becomes significantly
more correlated with zyxin, suggesting that the magnitude of
the adhesion field is set primarily by the highest zyxin values.
Together, these results indicate that the adhesion field is encod-
ing high-value peaks of zyxin intensity, which correspond to FAs.

The parameters learned by the PBNN are subject to the as-
sumptions of the model used to constrain them. The elastic
model makes predictions about displacements within the
cell, which are not directly accessible experimentally using
TFM, nor is it clear what undeformed reference frame these
displacements should be measured from. This is owing to
the fact that a cell, unlike a passive lattice of masses and
springs, continuously undergoes cytoskeletal remodeling,
even if no external deformations are applied. Nevertheless,
the PBNN is still a powerful tool to test our hypothesized
model, and it informs us of the minimal necessary ingredients
required to predict traction stresses. We showed that cell
shape (encoded as boundary conditions), a global contractile

of the network as ky, x, =
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“set-point” ¢, and a field Y(x) encoding FAs were sufficient
to make predictions. Furthermore, we find that a linear partial
differential equation describing an intermediate displacement
field is an adequate mathematical model to describe the
observed behavior.

Green’s function neural networks: Physics-agnostic
model-building reveals length scales and effective
equations

The success of the PBNN relies on generating plausible hypoth-
esized models, hence the insights it produces are biased by the
specific model prescribed. We now investigate whether we can
relax these constraints to gain insights even in the absence of
strong mechanical hypotheses. To do this, we turn to a phys-
ics-inspired approach to identify machine-learned rules that
are agnostic to specific underlying physical models. This method
again trades the complexity of our deep U-Net for fewer, more
interpretable operations (Figure 6A). Specifically, we assume
that the force can be written as a function of machine-learned
fields derived from zyxin (yellow and pink boxes in Figure 6A(i)).
While these fields are analogous to the PBNN’s displacement
U (x) and adhesion Y(x) fields, we do not demand that these
quantities obey linear elasticity or any other particular continuum
theory. We only require that their non-local machine-learned re-
lationships with zyxin density are represented by Green’s func-
tions. The Green’s function method is a general tool to calculate
a system’s response to localized perturbations. For example, the
Green’s function of classical electrostatics is the 1/r potential
that determines the effect of a charge located at a distance
r away. With the aid of our machine-learned Green’s functions,
we will similarly seek to determine how the local traction force
depends on zyxin density throughout the cell (Figure 6A(ji). In
contrast to the physical bottleneck, this is a question for which
we do not have the luxury of a readily available formula.

Using the same input zyxin images (Figure 6B), we train a
Green'’s function neural network (GFNN) to characterize spatial
interactions between our input zyxin images and their respective
traction maps. The GFNN learns a series of sources and fields
(drawn in yellow and pink in Figures 6C-6E) from the zyxin im-
ages that it uses to predict the traction stresses (see STAR
Methods and supplemental information). While in principle a
GFNN can learn any number of fields, we found that a minimally
complex model could achieve accurate predictions using only
two (Figure 6F). Specifically, the GFNN learned two fields, &, x,
in terms gf which Bredictions of the traction forces can be
made as F = £(x)V x(x). Such a representation is reminiscent
of Coulomb electrostatics, with £ and x analogous to the charge
and electric potential, respectively (see Methods S1 Figure 4 and
discussion for a demonstration of the GFNN method on 2D
Coulomb electrostatics data). Going back to our mechanical
model, note that this machine-learned formula resembles in
form the physics-informed model F=YT. The “charge” ¢
identifies local peaks in zyxin intensity that are similar to FAs
(Figures 6C and 6E, top). The Green’s function for £, G, decays
over a very short length scale ~5 um (Figure 6D), suggesting that
it is determined by local information at the adhesion site
(Figures B6A(ii) and 6D). The “potential” x is less localized and
its Green’s function, G,, accumulates zyxin information from a
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Figure 6. Green’s function neural networks: Physics-agnostic model-building reveals length scales and effective equations
(A) Green’s-function neural networks (GFNNs) first extract the fields and long-range interactions needed to predict forces. Next, sparse regression builds effective

equations fitting the machine-learned model.

(B) The GFNN predicts traction forces from the zyxin intensity field (top), which we compare with the forces measured in experiment (bottom).

(C-E) The GFNN learns sources p;, p, (C) from local zyxin information. These sources are integrated with machine-learned Green’s functions (D) to produce the
fields ¢, x (E). The Green’s functions G:, G, decay over different length scales representing regions over which protein information accumulates (D, top). G:
decays over roughly a focal adhesion size, while G, decays more slowly across the cell.

(F) The predicted force field from the GFNN agrees well with the ground truth (B, bottom).

(G) Using sparse regression, we learn a formula (see supplemental information) based on the GFNN, which predicts the force field.

(H) Time course of predicted forces during a ROCK inhibitor experiment. We compare the experimental forces (gray) with those predicted by GFNN (blue) and the
effective equation (red). The dashed lines indicate the drug wash-in and wash-out times.

(I) Sparse regression yields equations of varying complexity. We plot the improvement in mean-squared error of sparse-regressed models as a function of their
complexity, compared with a baseline model F = 0 with no learnable parameters. Star denotes the average performance of a 10-term equation.

larger area of the cell (Figures 6A(ii) and 6C—6E, bottom). This
longer decay length suggests that the “potential” can infer as-
pects of the cell morphology from the zyxin distribution. Thus,
our GFNN model predicts traction forces from interactions be-
tween a FA “charge” and a cellular “potential.”

To simplify this model further, we used sparse regression to
build effective equations that approximate the traction forces
(Figure BA(iii)). A qualitatively accurate analytical formula (Fig-
ure 6G) can be obtained using only a handful of terms inspired
by the GFNN (see supplemental information for full equation).
This formula is dramatically compressed, compared with the
full U-Net, which contains 105 times more parameters. Neverthe-
less, it can capture 77% of the U-Net predictions and also gen-
eralizes to the biochemical perturbations induced by our ROCK
inhibition experiments (Figures 6H and 6l). This illustrates how
the U-Net, a complex black box, can be distilled into a similarly
accurate formula consisting of two non-local interactions and
parameterized by only a handful of terms (Figure 6l). Our pro-
posed pipeline demonstrates how to extract effective equations

that map protein distributions to traction forces without knowing
the explicit underlying relations. AIthough no phyS|caI input was
used to derive them, the structure F = EV x and the learned
equation (see supplemental information) are strikingly similar to
the PBNN model F Y U. In particular, £ and Y are both fields
that accumulate zyxin information within FAs, while V)X and 7
are vector fields that propagate information throughout the cell.

DISCUSSION

Here, we established that deep neural networks can predict the
contractile mechanics of cells directly from images of protein
distributions. Our results demonstrate that images of a single
FA protein, such as zyxin, contain sufficient information to accu-
rately predict traction forces. We showed that a network trained
on images of one cell type collected from one microscope can
generalize across a range of cell types, experimental setups,
and biomechanical regimes. These results illustrate the utility
of machine learning for extracting robust predictions from

Cell 187, 481-494, January 18, 2024 489




¢ CellP’ress

Protein Distributions

Identify relevant
proteins

Learn governing
rules

Mechanics

Enhance mechanical
models with biochemistry

Cell

Figure 7. Data-driven biophysical modeling
We present a suite of machine learning ap-
proaches to identify and interpret links be-
tween biological information contained in
images of protein distributions and traction
force measurements in adherent cells.

Deep neural networks require no prior knowl-
edge but can identify relevant components for
achieving robust generalizable predictions.
Here, they found that a single adhesion protein
is sufficient to predict traction forces. Physics-
inspired models use structural constraints to
learn governing rules but remain agnostic to
any specific theory. Physics-constrained
learning enhances existing models by linking
biochemical information to physical parame-
ters, such as a zyxin-dependent adhesion field
in a linear elastic model. All three methods

accurately predicted traction stresses and re-
vealed a consistent theme of forces encoded

: \ > by adhesion protein information over two
0 @] J > \ a = length scales—one associated with the adhe-
@ : ‘Tf'/r-‘ - N S sions themselves and another related to cell
@ ® W 5T FF morphology.

o
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Deep learning architectures
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Forces
4
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demonstrated the utility of synthetic
data for identifying relevant components
in processes with many interacting pro-
teins. Next, we introduced a novel
PBNN to test and enhance existing
models, which revealed the protein-
dependence of effective physical param-

B Zyxin, Paxillin
Adhesion proteins

are sufficient
to predict forces

Two length scales
encode
traction forces

heterogeneous biological data. Such methods can be imple-
mented with a readily achievable volume of experimental image
data. This makes them particularly well suited to predict me-
chanical behavior in situations where proteins can be easily
imaged, but physical measurements are difficult.

We introduced three data-driven approaches for biophysical
modeling, which incorporate machine learning at various points
in the model building process to reveal new insights (Figure 7).
While deep neural networks are not directly interpretable, we
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Local adhesion
distribution determines
effective stiffness parameter

eters. Finally, our GFNN approach traded
some of the complexity of deep U-Nets
for interpretable operations, uncovering
long-range interactions and even an
analytical formula that describes the sys-
tem behavior. These methods represent
an alternative approach to hypothesis
testing and formulation in the framework
of data-driven biophysical modeling

All three approaches, despite being
subject to dramatically different con-
straints and assumptions, revealed two
important length scales. One length scale
of a few microns is consistent with the
size of individual FAs and describes the
relationship between force magnitude
and local zyxin intensity (Figures 4J, 4K,
5G-5J, and 6C-6E, top). Predicting force
directions, however, requires information encoded over a larger
length scale. In the GFNN and U-Net, this scale of tens of mi-
crons is associated with aspects of cell morphology, while in
the PBNN, it is accounted for in the PDE’s boundary conditions
(Figures 4C, 4E, 5A, 5B, and 6C-6E, bottom). Moreover, in the
PBNN and GFNN, the fields corresponding to long length scales
(x, W) and short length scales (¢, Y) are coupled in a strikingly
similar way (? -YUand F = EVX). Neural networks are a
complex black box and care must be taken when analyzing their
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behavior. By using multiple methods that produce consistent re-
sults, we become more confident that the rule learned through
our data-driven framework is generalizable and independent of
the method we use to derive it.

From these rules we can also hypothesize why single FA pro-
teins are sufficient to make accurate predictions. The shorter
length scale identified by these models seems directly encoded
by the FA itself, while the longer length scale relating to cell ge-
ometry can be inferred by integrating over many FAs. Additional
information could potentially be gleaned from the geometry and
orientation of the FAs, which are determined by the stress fibers
to which they are coupled. This information is present in the dis-
tribution of multiple FA proteins, which might explain a certain
degree of interchangeability between zyxin and paxillin as re-
vealed in our analysis of MDCK cells. As to why zyxin appears
to slightly outperform paxillin, we speculate this could be related
to its force-sensitive recruitment to actin and FAs,?">° but further
research will be required.

Finally, the approaches presented here are applicable beyond
simple models of cellular contractility. Interpretable machine
learning methods can lead to an improved understanding of
the rules and equations governing spatiotemporal behavior in
diverse biological systems.®®° They may be used to test and
enhance existing models, as well as learn entirely new ones, in
areas where first-principles approaches to biophysics fail. We
only consider prediction of forces from proteins, but an autono-
mous dynamic model will need to be closed by a relation that
predicts how protein distributions evolve in time. Our work sug-
gests that it may suffice to consider only the dynamics of an
effective adhesion field, rather than accounting for the precise
details of cytoskeletal rearrangement. The methods introduced
here could aid in developing mechano-chemical descriptions
of diverse systems such as migrating cells,’°°* epithelial tissue
dynamics,®* " and morphogenesis.®®"" They could also be
coupled to recent large quantitative datasets describing organ-
elle positioning and interactions’® to glean additional insights.
These approaches represent a step forward toward harnessing
the versatility of machine learning to tackle the complexity of
living systems.

Limitations of the study

Our data-driven biophysical modeling pipeline inherently relies
on the data itself. Despite the demonstrated ability of our net-
works to generalize to unseen data, their predictions depend
on the data in subtle ways. Variations in data quality caused
by different microscopes, the choice of imaging fluorophore,
substrate stiffness, or even how individual cells express pro-
teins can affect the accuracy of U-Net predictions (Figures 3
and S5-S7). We can account for some of these effects via
normalization, but to further improve this generalizability, it
may be useful to assemble a wide-ranging dataset using an
ensemble of experimental conditions. In particular, generalizing
to substrates of different stiffness is complicated by the role of
the TFM regularization parameter (Figures S8 and S9), which
suggests that elastic substrates cannot be discarded. Beyond
data quality, our analysis is limited by the use of 2D image
data. Cells are not 2D objects, and so we would not expect
our method to generalize to structured 3D environments where

¢? CellPress

out-of-plane mechanical interactions become important. In this
paper, we also restricted our analysis to time-independent
models. However, we observe that cells move significantly
throughout each movie. Future work may find that additional
biochemical information is needed to capture the cells’ full dy-
namic behavior.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Dulbecco’s modified eagle medium 1 Corning MT10013CV

Leibovitz’s L-15 medium without phenol red Gibco 21083-027

Fetal Bovine Serum Corning MT35-010-CV

Antibiotic-antimycotic Solution Corning MT30004Cl

L-glutamine Fisher Scientific MT25005CIRF

ROCK inhibitor Y-27632 Cayman Chemical Company 10005583

3-aminopropyl-trimethyoxysilane Acros Organics 313255000

70% Glutaraldehyde Electron Microscopy Sciences 16360

40% acrylamide solution Biorad 1610140

2% bis-acrylamide solution Biorad 1610142

0.04 m Dark Red fluorescent microspheres Invitrogen F8789

Sulfo-Sanpah Pierce Scientific 22589

Rat tail collagen | Corning 354236

Human plasma fibronectin Millipore FC010

Deposited data

TFM data This paper https://uchicago.box.com/s/
663yzjrxh41antctsyu2i872artqrmtd

Original code This paper https://doi.org/10.5281/zenodo.10438518

Experimental models: cell lines

Mouse embryonic fibroblasts Hoffman et al.”® N/A

Mouse embryonic fibroblasts zyxin KO Hoffman et al.”® N/A

Mouse embryonic fibroblasts zyxin Hoffman et al.”® N/A

KO + EGFP-zyxin

Human Osteosarcoma cells (U20S) ATCC HTB-96
EGFP-Paxillin-MDCK (G Type Il cells) Borghi et al.” N/A

Oligonucleotides

Zyxin FW primer: This paper N/A

5’- CCGCTCGAGCTATGGCGGCCC -3’

Zyxin RV primer: This paper N/A

5’- CGGGATCCCTACGTCTGGGCTCT -3’

Recombinant DNA

Plasmid: mApple-actin Addgene RRID:Addgene_54862
Plasmid: mApple-paxillin Addgene RRID:Addgene_54935
Plasmid: mApple-myosin light chain Addgene RRID:Addgene_54920
Plasmid: mito-mGarnet Addgene RRID:Addgene_104309
Plasmid: eGFP-Paxillin Addgene RRID;Addgene_15233
Plasmid: eGFP-zyxin Smith et al.”® N/A

Plasmid: mApple-zyxin This paper N/A

Software and algorithms

Python version 3.7.10 Van Rossum and Drake’® python.org

PyTorch version 1.10.0 Paszke et al.”’ pytorch.org

ImageJ Schneider et al.”® imagej.org

Matlab The MathWorks Inc.”® mathworks.com/products/matlab.html

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

TFM analysis Butler et al.,® Sabass et al.,*” https://github.com/OakesLab/TFM

Huang et al.>®

U-Net code This paper https://github.com/schmittms/
cell_force_prediction

Physical bottleneck code This paper https://github.com/schmittms/
physical_bottleneck

GFNN code This paper https://github.com/jcolen/cell_force_gfnn

Other

Neon Electroporation System Thermo Fisher Scientific MPK5000

3.5 mm Stainless Steel Ball Bearing Uxcell ux0292

1.5 mm Stainless Steel Ball Bearing Uxcell ux0274

1/8 in Tungsten Carbide Ball Bearing Uxcell ux0891

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact: Vin-
cenzo Vitelli (vitelli@uchicago.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

o All TFM data, both raw (.tif) and processed (.npy) files, used to train the models in this work have been deposited at https://
uchicago.box.com/s/663yzjrxh41antctsyu2i872artqrmtd and are publicly available as of the date of publication. DOlIs are listed
in the key resources table.

® Code to perform TFM calculations can be found at https://github.com/OakesLab/TFM

® A maintained and up-to-date version of the code for the U-Net models, as well as a walk-through of the code is available at
github.com/schmittms/cell_force_prediction/. Maintained code for the physical bottleneck can be found at github.com/
schmittms/physical_bottleneck/. Maintained code for the Green’s function neural networks can be found at github.com/
jcolen/cell_force_gfnn/. Code on Github is not associated with a permanent identifier and may change in the future. Original
code has therefore also been deposited at Zenodo with permanent identifier https://doi.org/10.5281/zenodo.10438518.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mammalian expression vectors

mApple-actin (Addgene plasmid #54862), mApple-paxillin (Addgene plasmid #54935), mApple-myosin light chain (Addgene plasmid
#54920) and mito-mGarnet (Addgene plasmid #104309) vectors were a kind gift from Michael Davidson. EGFP-Paxillin (Addgene
plasmid #15233) was a kind gift from Rick Horwitz. For expression as mApple-fusion protein, cDNA encoding zyxin was amplified
(Forward primer: 5’- CCGCTCGAGCTATGGCGGCCC -3’, Reverse primer: 5- CGGGATCCCTACGTCTGGGCTCT -3’) from the
eGFP-zyxin vector (kind gift from the Waterman lab) and cloned into the mApple-C1 vector (Addgene plasmid #54631) using the
Xhol and BamHl restriction sites.

Cell culture and transfection

Mouse embryonic fibroblasts (MEFs) stably expressing EGFP-zyxin were a kind gift of Mary Beckerle’s laboratory (University of
Utah, Salt Lake City, UT). Human Osteosarcoma (U20S) cells were purchased from ATCC (Manassas, VA). MEFs and U20S cells
were cultured in DMEM (MT10013CV, Corning) supplemented with 10% fetal bovine serum (MT35-010-CV, Corning) and 1%
antibiotic-antimycotic solution (MT30004ClI, Corning) at 37°C and 5% CO2. MDCK cells were cultured in DMEM supplemented
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with 2mM L-glutamine and 10% fetal bovine serum, also at 37°C and 5% CO2. At 24 h before each experiment, cells were transfected
with 5 g total DNA using a Neon electroporation system (ThermoFisher Scientific) and plated on polyacrylamide gels for traction force
microscopy analysis.

Live cell imaging

MEFs and U20S were imaged in Leibovitz’s L-15 medium without phenol red (21083-027, Gibco), 10% fetal bovine serum (MT35-
010-CV, Corning), and 1% antibiotic, antimycotic solution (MT30004Cl, Corning) at 37°C on a Marianas Imaging System (Intelligent
Imaging Innovations) consisting of an Axio Observer 7 inverted microscope (Zeiss) attached to a W1 Confocal Spinning Disk (Yoko-
gawa) with Mesa field flattening (Intelligent Imaging Innovations), a motorized X,Y stage (ASI), and a Prime 95B sCMOS (Photomet-
rics) camera. lllumination was provided by a TTL triggered multifiber laser launch (Intelligent Imaging Innovations) consisting of 405,
488, 561, and 637 nm lasers, using a 63X, 1.4 NA Plan-Apochromat objective (Zeiss). Temperature and humidity were maintained
using a Bold Line full enclosure incubator (Oko Labs). The microscope was controlled using Slidebook 6 Software (Intelligent Imaging
Innovations). Allimaging was performed as single confocal slices. FA proteins and the gel were imaged at the same focal plane. Actin,
myosin, and mitochondria were imaged at a slightly higher focal plane to achieve optimal focus of the structures being imaged. Cells
were imaged for 2 h at 1 min intervals, with typically 5-6 cells being imaged per experiment. When used, a 2X concentration of 5 uM of
the ROCK inhibitor Y27632 (10005583, Cayman Chemical Company) in imaging media was added after 30 min. After another 45 min
(i.e. 75 min in total), the drug containing media was replaced with fresh imaging media.

Summary table of the datasets considered in this work. We label each dataset by the day on which it was taken. In the case of MDCK,
“number of cells” indicates the number of cell clusters. Cells were imaged at a frequency of 1 min 1, so the time duration in minutes
corresponds to the number of frames in each time series.

Day Cell type Proteins Number of cells Time duration (min) Notes

1 MEF zyxin 4 180

2 MEF zyxin 4 240

3 MEF zyxin, actin 4 120 Y-27632 from T = 30-75
4 MEF zyxin, actin 5 120 Y-27632 from T = 30-75
5 MEF zyxin, paxillin 4 120 Y-27632 from T = 30-75
6 MEF zyxin, myosin 10 120 Y-27632 from T = 30-75
7 MEF zyxin, paxillin 7 120 Y-27632 from T = 30-75
8 MEF zyxin, mitoch. 7 120 Y-27632 from T = 30-75
9 MEF actin, paxillin 10 120 Y-27632 from T = 30-75
10 U208 zyxin 5 120 Y-27632 from T = 30-75
1 U20S zyxin 12 120 Y-27632 from T = 30-75
12 MDCK paxillin 17 (clusters) 42

EGFP-Paxillin-expressing MDCK (G Type Il cells”#) were imaged using a Nikon Ti-E Spinning Disk Confocal microscope with a 40x,
1.15 NA WI objective. Images were acquired at 5-min intervals for 4 h using 488 and 642 lasers, and standard filter sets (Em 525/50,
Em 700/75) (Chroma Technology, Bellows Falls, VT). Samples were mounted on the microscope in a humidified stage top incubator
maintained at 37C and 5% CO2. Images were acquired using the Andor Zyla 4.2 CMOS camera (Andor Technology, Belfast, UK).

Traction force microscopy experiments

Traction force microscopy was performed as described previously.?%®? Coverslips were prepared by incubating with a 2% solution of
(8-aminopropyl)trimethyoxysilane (313255000, Acros Organics) diluted in isopropanol. Coverslips were washed with DI water 5 times
for 10 min and cured overnight at 37°C. Coverslips were incubated with 1% glutaraldehyde (16360, Electron Microscopy Sciences) in
ddH20 for 30 min at room temperature and washed 3 times for 10 min in distilled water, air dried and stored at room temperature.
Polyacrylamide gels (shear modulus for MEFs and U20S cells: 16 kPa—final concentrations of 12% acrylamide (1610140, Bio-Rad)
and 0.15% bis-acrylamide (1610142, Bio-Rad), and 10 kPa-final concentrations of 7.5% acrylamide and 0.2% bis-acrylamide; shear
modulus for MDCK cells: 2.8 kPa-final concentrations of 7.5% acrylamide and 0.1% bis-acrylamide) were embedded with 0.04-pm
fluorescent microspheres (F8789, Invitrogen) and polymerized on activated glass coverslips for 30 min - 1 h at room temperature.
After polymerization, gels were rehydrated for 45 min, treated with cross-linker Sulfo-Sanpah (22589, Pierce Scientific) and photo-
activated for 5 min. Polyacrylamide gels were then washed 3 times with PBS and coupled to matrix proteins, rat tail collagen | (for
MDCK cells, overnight at 4°C; Corning) or human plasma fibronectin (for MEFs and U20S cells, 1 h at room temperature; FC010,
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Millipore). Following matrix protein cross-linking, cells were plated on the gels and allowed to adhere overnight. Cells were imaged
the following day. Immediately after imaging, cells were removed from the gel using 0.05% SDS and a reference image of the fluo-
rescent beads in the unstrained gel was taken.

Analysis of traction forces was performed using code written in Python according to previously described approaches.
Code is available at https://github.com/OakesLab/TFM. Prior to processing, images were flat-field corrected and aligned to the refer-
ence bead image with the cell detached. Other acquired channels were shifted using the same alignment measurements from the
bead channel. Displacements in the beads were calculated using an optical flow algorithm in OpenCV (Open Source Computer Vision
Library, https://github/itseez/opencv) with a window size of 8 pixels. Traction stresses were calculated using the Fourier Transform
Traction Cytometry (FTTC) approach®®*>2° as previously described, with a regularization parameter of 4.1x10~# for the 16 kPa data
set, 2.1x 103 for the 10 kPa data set, and 1.7x 102 for the 2.8 kPa data set.

22,29,82

Gel stiffness measurements

Gels were fabricated as described above, with the only difference that a spacer was used during polymerization to create a thicker gel
of = 300-350 m in height. Gel stiffness was measured be measuring the deformation caused by a stainless steel ball bearing 3.5 mm
in diameter, as previously described.®® Briefly, the gel height was measured by taking the difference between the bottom and top of
the gel. A confocal z-stack with a step size of 1.25 um was then taken through the top of the gel, and the deformation was determined
by finding the center of the indentation and fitting a circle with radius equivalent to the bearing. This depth measurement was
repeated in two orthogonal directions and averaged. The gel Young’s modulus was then determined using a modified Hertz
model®*®* to account for the gel being thin gels bonded to a surface. At least two measurements were taken per gel, and experiments
were repeated in triplicate. Gel stiffness value represent the shear modulus.

METHOD DETAILS

Data processing
Fluorescent images are normalized to have similar values across all cells, for all different proteins considered. For each cell, we calcu-
late the mean value of the fluorescent signal f within the cell mask, uﬁf” = {(f(x,t))xe mask)t» @and the average value of the signal outside
the mask uS = ((f(x,1))xemask)t- The signal is then normalized as fuom (X, 1) = (f(x,t) — ) /(e — uC) and any negative values
(corresponding to values below the noise value of empty space) are set to 0. This ensures that f,o:m has a mean value of approximately
1. Cell masks are binary and are generated by thresholding the zyxin channel in each image and filling any holes which appear.
Due to variations in substrate preparation, forces measured by cell depend slightly on the experimental round they belonged to. In
our case this corresponds to the day on which they were measureg (;%ﬁ Figtie 1). We therefore normalize the forces of each cell by the
average within their dataset, u2® = ((|F(X,t)|)x.)cellc day> SO that F o\ = Feell /3% for each cell in day. Normalized fluorescent sig-

nals and forces are used everywhere in this work.

Training data
The training and testing data used for all networks in this work is shown below.

Overview table of the training and testing data used in this work. “D” stands for “day”, corresponding to datasets in the previous table.
For the protein experiments (U-Net 2), separate networks were, for each protein input, trained on all but one cell that was reserved for
testing. For example, the dataset in row 5 (“D3-4") contains 8 cells. We therefore train 8 identical U-Nets on the zyxin channel from
7 cells, withholding a different cell for testing each time.

Network Figures Trained on Evaluated on
U-Net ! 1,4 (16 cells) D1-6, zyxin D1: {2}, D2: {1, 2}, D3:{2,3,5}
(first 30 frames of each cell) D4: {4,5}, D5: {2,4}, D6: {1, 3,4,5,6}
3A-3C see above u20s
3D-3F see above MDCK
3G and 3H see above D4: {4}
U-Net 2 2 (8 cells) D3-4, zyxin OR mask OR actin OR zyxin and actin (1 cell; each cell chosen once)
U-Net 2 2 (10 cells) D5, 7, zyxin OR mask OR paxillin OR zyxin and paxillin (1 cell; each cell chosen once)
U-Net 2 2 (9 cells) D6, zyxin OR mask OR myosin OR zyxin and myosin (1 cell; each cell chosen once)
U-Net 2 2 (6 cells) D8, zyxin OR mitoch. OR myosin OR zyxin and mitoch. (1 cell; each cell chosen once)
U-Net 2 2 (10 cells) D9, paxillin OR actin OR paxillin and actin (1 cell; each cell chosen once)
PBNN 5 D1: {3,5}, D2: {2,4}, D3: {1,3}, D4: {1,2,4}, D6: {1}, zyxin D1: {2,4}, D2: {3,5}, D3: {2,5},
D4: {3,5}, D6: {2,3,4,5},
GFNN 6 D1 {1, 2} D2 {3} D3 {1}
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The dataset used to train the U-Net of Figures 1, 3, and 4 consists of 31 cells from days 1-6. Of these, 8 were not subjected to any
perturbation (Days 1 and 2). For training we randomly select 16 cells from the full set of 31. To ensure that only images of cells in their
basal contractile are present, we include only the first 30 minutes of each time series. Even for cells not subject to the perturbation, we
only take the first 30 minutes to ensure that each cell is represented equally in the dataset. In total, this amounts to 480 training
frames. For evaluation, full time series are used. The test statistics shown in Figures 1, 3, and 4 are computed from the cells shown
in the table above.

For the U-Nets trained on individual proteins shown in Figure 2 we use 5 datasets. The first is composed of cells from Days 3 and 4,
where actin and zyxin were measured simultaneously; the second from Days 5 and 7, with zyxin and paxillin measured; the third from
Day 6 with zyxin and myosin measured; the fourth from Day 8 with zyxin and mitochondria measured; the fifth from Day 9 with paxillin
and actin measured. For each combination of protein inputs, we train a network on data from all but one cell. We repeat this, with
separate networks, using each cell in the dataset as the hold-out cell one time. The training data consists of full time series (which
includes Y-27632 perturbations, if present). We cap the total size of the training dataset to 600 frames, which is roughly the size of the
smallest dataset (Day 6, zyxin + mitochondria), for a fair comparison.

U-Net architecture
Neural networks are implemented in Python using the Pytorch library. Code for network implementation, training, and evaluation is
available online at github.com/schmittms/cell_force_prediction.

Predicting force distributions from protein fluorescent images is an image analysis problem and many neural network variants have
been proposed for such tasks. In the supplemental information, we provide a primer on common network types and relevant con-
siderations for choosing among them. We opted for a convolutional neural network (CNN) due to their straightforward implementation
and training procedure. A CNN also exploits the spatial structure of the data to limit the number of trainable parameters. While atten-
tion-based networks such as vision transformers have also proven successful at image analysis tasks,*%° they come with higher
computational and training costs and require very large datasets. To achieve competitive performance with visual attention networks
while maintaining efficiency, we instead adapted our CNNs with ConvNext design.®? We found success with a U-Net architecture
which combines aggressive coarse-graining with skip connections that preserve fine-grained features and crucially can learn to
generalize well from limited data.®®

Channel structure for the U-Net used in Figures 1, 3, and 4. We set C=4, while L varies depending on input image size. Strided
convolutions in the encoder layers have a stride of 4. The U-Nets in Figure 2 are the same, but do not have encoder block 2, skip block 3,
or decoder block 2. They also have only 3 ConvNext blocks everywhere instead of 4.

Layer Size in Size out Details
Prepended block 1TxXLxL CxLxL Conv2d, 4x ConvNext blocks
Skip block 0 CxLxL CxLxL 4x ConvNext blocks
Encoder block 0 CxLxL 2C x Ex E 4x ConvNext, BN, Strided Conv2d, GELU
44
Skip block 1 L L L L (cf. skip 0)
2Cx Z X i 2Cx Z X 7
Encoder block 1 L L L L (cf. encoder 0)
2C x 2 X 1 4C x 16 X 16
Skip block 2 L L L L (cf. skip 0)
4C x 16 X 16 4C x 16 X 16
Encoder block 2 L L L L (cf. encoder 0)
4C % el b 8C x 54> 62
Skip block 3 L L L L (cf. skip 0)
8C x 5 X & 8C x 5 X &
Decoder block 2 20 x L % L Cx L < L Upsample, Concat, 4x ConvNext, Conv2d
64 64 16 16
Decoder block 1 L L L L (cf. decoder 2)
6C x 6 X 6 2C x Z X 7
Decoder block 0 L L CxLxL (cf. decoder 2)
3C x 7 X i
Appended block CxLxL 2xLxL 4x ConvNext blocks, Conv2d

The channel structure of the U-Net is shown above. Most layers are composed of blocks with a ConvNext structure.* Briefly, they
consist of a layer-wise convolution, batch normalization, an inverse-bottleneck depth-wise convolution, activation function, and
finally a depth-wise convolution. Our ConvNext blocks have a layer-wise kernel size of 7 and increase channels in the inverse
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bottleneck by a factor of 4. For all other convolutions, we use a kernel size of 3. Dropout is used with a dropout probability of 10%. A
detailed illustration of the architecture is shown in Figure S2. The number of encoding (coarse-graining) layers was set by the minimal
image size we processed in the paper. With a minimal image size of 64 x 64 and 4 x 4 downsampling convolutions, this restricted us
to 3 encoding layers. The hyperparameters of the ConvNext blocks, including kernel size, inverse bottleneck width, and normalization
layers, are chosen according to the optimal values found in.*°

The U-Net is trained with the Adam optimizer with weight decay (“AdamW”,%”) with an initial learning rate of 0.001. The learning rate
is scheduled to decay exponentially with rate 0.99. We use a batch size of 8.

For the U-Net used in Figures 1, 3, and 4, training data consists of 480 randomly sampled frames from time-lapse series of 16 cells
(of 31 cells total). For the U-Nets used in Figure 2, training data consists of 600 randomly sampled frames with a variable number of
cells for training (see “overview table of the training and testing data used in this work”). Each data sample contains an input image
(either zyxin, another protein, the mask, or a two-channel zyxin + protein image) paired with the corresponding traction force map
measured via TFM. Traction force maps have two channels, which we represent as magnitudes and angles rather than x and y com-
ponents. In all cases, the network is trained for 300 epochs (passes through the entire training data set). As a loss function, we take the
MSE for the magnitude component, and a 2x-periodic MSE for the angles.

Synthetic cells

We consider three variants of synthetic cell for the experiments shown in Figure 4. The first variant captures large-scale features of
cell geometry. We generate cells of triangles whose sides are given by circular arcs. The cell shape is parameterized by L, the dis-
tance between the corners of the triangle, and R, the radius of curvature of the circular arcs. Forces measured in Figures 4G- 4l
correspond to the average force across the area of the cell. These synthetic cells were fed as input to a U-Net trained on cell
geometry.

The second class of synthetic cells models the distribution of focal adhesion-like objects in the cell. The intensity structure of these
adhesions was chosen to match those of experimental adhesions, see Figure S10 for details. In each cell, ellipses of a given aspect
ratio and area were randomly distributed (uniformly with a density of 60%) in a circle of fixed radius of 200 pixels (=34 m). Each cell is
parameterized by the corresponding area and aspect ratio of the ellipses. Each ellipse had an intensity of 1, and they were allowed to
overlap. Hence, the input image contained a range of (integer) intensities. Ellipse aspect ratio was defined relative to the radial direc-
tion, so probing aspect ratio in effect probed focal adhesion orientation. We evaluate the predicted force by calculating the average
force on regions where a focal adhesion is present.

The role of zyxin intensity was probed by creating cells consisting of equidistant elliptical adhesions on a circular cell “back-
ground”. These synthetic cells are parameterized by the intensity of the background B, the radius of the cell R, the angular density
of focal adhesions D (D = 1 corresponds to no angular space between neighboring adhesions), and the length L and intensity / of
focal adhesion ellipses. The intensity of the background models zyxin intensity in the cell away from focal adhesions. The zyxin in-
tensity at focal adhesions typically has values in the range 4-12 (a.u.), while the background has values in the range 0-1. In Figure 4K,
we show the change in intensity for B = 0.8 and D = 0.5; results do not strongly depend on B and D. To model the intensity profile of
FAs seen in experiment, at the edges of the FA ellipses intensity increases linearly over 2 pixels until the specified FA intensity is
reached. We evaluate the predicted force by calculating the average force on regions where a focal adhesion is present.

In the supplemental information, we show an additional variant of “synthetic cell” used to probe length-scale dependence of the
neural network. These fake cells were generated by binarizing the zyxin images via thresholding, and applying dilations to achieve
binary regions of different sizes. While this procedure does not afford fine control over the size of the resulting regions, it preserves
some aspect of the distribution of FAs in the cell and results in sufficient regions that trends can be extracted. The results suggest that
information is integrated over a length scale of ~ 5u m, consistent with our other findings in this work. See Figure S11 for details.

Note all values of zyxin here and in the rest of the paper are given in units after normalization described in “Data processing” above.

Effective elastic model
We consider a model of the cell as an effective two-dimensional linear elastic medium. While originally introduced to model cells on
micropillar arrays,*® it has been extended to describe cells uniformly adhered to 2D substrates.®” The free energy of the cell is

h [ 1
U= / dA <a,7' + aaa,»,>u,,+§ / dA Y (X)uiu; )

where u; = 1 (3;u; +9;u;) and o,‘.j.' is the elastic stress tensor. h is the height of the cell, which is assumed to be small. As described in
the main text, Y (x) models a adhesion or pinning force which penalizes deformations, while ¢® serves as an active pressure term.
Minimization of the elastic free energy leads to force balance equations for T (x):

hjos' = Y(x)u; (in bulk) @)

of'nj = — o°n; (on boundary). ()
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In addition to these conditions, we also require that ¢ and U are related via the constitutive relation

E v
7 = 1 (Tt + ) “

where E and v are the effective Young’s modulus and Poisson ratio, respectively, of the cell. Combining the force balance equations
with the constitutive relation gives a PDE which determines U

Physical bottleneck

The physical bottleneck consists of a neural network step joined with a PDE-solver step. The neural network is implemented in the
PyTorch library, and the PDE-solver is implemented with the dolfin-adjoint library.®® At each step during training, we first predict a
field Y (x) and scalars ¢% and v (the Poisson ratio, which we find to be nearly constant v= — 1) using a neural network with zyxin
as input. The convolutional neural network used to calculate Y'is a shallow U-Net with structure shown in the table below. The network
used to calculate the scalars consists of one convolutional layer which aggressively coarse-grains the image by a factor of 16, fol-
lowed by fully-connected layers.

Channel structure for the physical bottleneck neural network. The top section describes the network used to predict the field Y (x).
Here, C = 32, all Conv2d layers have a kernel size of 5, and ConvNext blocks have kernel size of 15 and inverse bottleneck factor of 4.
GELU is used as the activation function throughout. The bottom section describes the fully connected network used to predict the
constants ¢° and v. We use N = 32. In this network, every layer is followed by a ReLU activation.

Layer Size in Size out Details
Prepended block 1xXLxL CxLxL Conva2d
Skip block CxLxL CxLxL 10 ConvNext blocks
Encoder block CxLxL 20 x éx E BN, Strided Conv2d, RelLU
4 4
Skip block 1 2C x Ex L 2C x éx L 10 ConvNext blocks
44 44
Decoder block 3C x Ex E 1XLxL Upsample, Concat, Conv2d
474
Strided Conv2d IxLxL L L Followed by flattening
16X — X —
16 16
FC -L2/16 N
FC N N Layer repeated 10 times
FC N 2

The parameters output by the neural networks are mapped to a mesh (for spatially-varying parameters) after which they are fed as
inputs to a PDE solver. To solve both forward PDE problems and derive adjoints (described in the following), we use the dolfin-adjoint
library.®® The PDE solver calculates a displacement field T (x) satisfying the PDE imposed by the physical model. Forces are calcu-
lated as Y (x) T (x) and compared to the experimentally measured values to give the loss £, which is simply the mean-squared error.
Gradients 0£/3Y (x) etc. are computed using the adjoint method.

We briefly introduce the adjoint method,>* a widely-used technique to optimize PDE parameters in control or data-assimilation
tasks. We consider a PDE which acts on a field u(x) and has parameters p(x). One wants to optimize a function of the PDE’s solution
J(u). This can be cast as a constrained optimization problem where one wants to minimize the Lagrangian

L(u,v,p) = J(u)+{v,Du).

Here D denotes the PDE we wish to optimize (which depends on p(x)) and v(x), introduced as a Lagrange multiplier to enforce that
u satisfies Du = 0, is called the adjoint state. The angled brackets denote an inner product on the function space in which u and v live.
Gradients of the Lagrangian 3£ /dp are given in terms of v, which is itself found by solving the adjoint PDE D*p = f(u). The adjoint
PDE is determined from the Euler-Lagrange equation £/du = 0.

In practice, the adjoint equations are solved using automatic differentiation. We use dolfin-adjoint to calculate 0£/9Y (x), 0L/ d5?
and 0L /dv. These gradients are passed directly to PyTorch’s autograd library to update the neural networks which predict Y (x), ¢2
and v.

Green’s function neural networks
Green’s Function Neural Networks (GFNN) were implemented using the Pytorch Library. To predict traction forces with a GFNN, we

used the Clebsch decomposition ?NN = Vo +£Vy, which is possible for any vector field. We hypothesized that each Clebsch var-
iable was the solution to a linear partial differential equation (PDE) whose source was a function of the local zyxin density.
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D(ﬂ(p = p(p[C]aDEg = Ps[ﬂ?DXX = me (5)

To predict traction forces subject to this hypothesis, we trained a GFNN to compute each Clebsch variable. Under ((5)), each term is
the integral of a source and a Green’s function.

o(X) = /dz? Go(X = T)p,(T);E(X) = /dz? G:(X — Tpe(r);x(X) = /dz? G (X — T)py(r) ©)

For the network presented in Figure 6, we trained on three cells imaged under normal conditions and evaluated on an unseen
cell to which the ROCK inhibition had been applied. The inputs were the zyxin density and the target outputs were traction force
predictions from U-Net discussed in Figures 1, 2, 3, and 4. We center-cropped each input-output pair to a box of size 1024 x
1024 pixels, downscaled by a factor of 4, and applied a Fourier cutoff with kmax = 50. The GFNN used the zyxin field as input
and learned to predict forces through the Clebsch decomposition and its corresponding Green’s functions. It predicted the sour-
ces p, using a shallow convolutional neural network and represented the Fourier-transformed Green’s function as a three-channel
256x256 complex float tensor (N = 256 matches the downscaled images size in pixels). The complete network structure is shown
in the table below.

GFNN architecture for cell force prediction. The network includes convolutional blocks inspired by the ConvNext architecture.
Grouped convolutions accumulate local information within each channel, while 1x1 convolutions with the inverse-bottleneck
structure enable the network to learn complex local functions at each pixel while maintaining a minimal receptive field.

Module Layer Channels Details

Block 1 Convad 1-64 k3 x 3, groups = 64
Conv2d 64 — 256 k1 x 1
Sine Activation function
Conv2d 256 — 64 k1 x 1

Block 2 Convad 64— 64 k3 x 3, groups = 64
Conv2d 64— 256 k1 x 1
Sine Activation function
Conv2d 256 —64 k1 x 1

Sources Conv2d 64—3 k1 x 1

Integration FFT2 {9.&,x}(a) = Gi(a)-fi(a)
Green’s functions
IFFT2

Output Clebsch F = Vo +£&Vyx

We trained the network for 200 epochs with batch size 8, learning rate 1 = 10~2 on the Green’s functions and 2 = 10~ * on all other
parameters. We used the Adam optimizer®® and scheduled the learning rate to decrease by a factor of 10 whenever the loss function
failed to improve for 10 epochs. The GFNN learned to minimize the following loss function with 3 = 0.1

2
L=> (? - F)GFNN) +6ZIG“(3)\2 ™

After training, we found that the ¢ field contributed minimally to the predictions. In Figure S3, we demonstrate that the V¢ termin the
Clebsch representation accounts for 1.1% of the overall traction force field and is not necessary for the GFNN to generalize to exper-
imental perturbations. Because of this, we omitted it from our analysis in Figure 6.

To demonstrate the performance of GFNN as well as the Clebsch decomposition approach, in Figure S4 we train a GFNN to predict
forces in a 2D Coulomb electrostatic system. When trained on synthetic data, the network learns to perfectly predict forces and learns
Green'’s functions which agree well with the ground truth, i.e. the Coulomb force law.

Sparse regression
We performed sparse regression® in Python using the PySINDy library.®'*°2 Our candidate library was informed by the Green’s function
neural network results. We assumed that the sources p, were expressible as linear combinations of local zyxin gradients and approx-

imated G, using a set of radially-decaying functions. We used a set of local scalar derivatives p; e {C,VZC, (VC)z, 2, v, C(Vc)z}
and chose the following candidate functions for the Green’s functions.

Gi(r)e {r",log(r),r,e”%,e "} @)
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The last two terms are exponentially decaying functions whose length scales ¢,, were fit to the machine-learned G;, G, in Figure 6D.
We included the remaining three terms as slowly-decaying functions which might capture the long-range behavior of G,,. From the set

of sources p; and Green’s functions G;, we constructed a library such that F could be represented as a linear combination of the
following terms.

F(X) = Zj:{w,fj‘.’v/dT) Gi(|xX - ?Dp/(?)} +

S| [ a7 % = Fon?))v( [ o7 Guix - 7o)

ikt

£Vx
The weight grouping for £Vx ((9)) is necessary as sparse regression is framed as a linear optimization problem. To obtain the
weights W, we used an elastic net objective.

—

W = argmin [((F’ - F(w))2> + ol W), + %aHWHQ} (10)

Here, « is a parameter which sets the level of solution complexity, which we set to « = 0.75. For training, we used the first 16 mi-
nutes of the cell movie (Day 3 cell 1, see first table), all of which were before the ROCK inhibitor was applies at t = 30 min. We per-
formed sparse regression on 50,000 randomly-selected pixels in the 16 training frames (approximately 8% of the data in the training
frames). This yielded an effective equation with 10 terms (see supplemental information). Figure 6G shows a sample prediction att =
40 min, 10 minutes after the ROCK inhibitor was applied. Figure 6H summarizes the predictions from this equation over the
entire movie.

A different choice of a yields equations of different complexity. For Figure 61, we fit formulas using 17 values of « in the range [10~ 4,
10']. We performed this procedure for each cell in the dataset and recorded the number of terms in the resulting formula and the
mean-squared error (MSE) with experiment. As a baseline, we also recorded the MSE of the U-Net with experiment. To quantify
how adding terms to the formula improves predictions, we defined the Relative Error metric in Figure 61 as MSEgnpy (o) — MSEq,

where MSE; is the error of a model with zero learnable parameters ? = 0, representing the «— « limit. Thus, a model which
uses more learnable parameters to achieve higher accuracy will have a negative relative error. To contextualize the performance
of the sparse regression models, we compared the relative error of the learned equations to that of the U-Net and found that on
average, a 10-term equation achieved 77% of the U-Net relative error.

QUANTIFICATION AND STATISTICAL ANALYSIS

Outlier determination
One cell in the actin dataset was an outlier, and was excluded from the calculation of the mean in Figure 2C. We tested for outliers
using the Iglewicz-Hoaglin outlier test® and illustrate these results in Figure S7.

Optimal predictors and histogram plots
Probability distributions shown in angle and magnitude plots (for example, Figures 1E and 1F) are calculated by binning all pixels of all

frames in the test set to calculate the number of joint occurrences of ?exp and ?NN

. The histogram is normalized to yield a prob-

ability and divided by the marginal distribution to calculate conditional probabilities. The “average” curves in Figures 1E, 1F, 2B, 2D,
3B, 3C, 3E, 3F, 4B, 4D, 5E, and5F are given by C(Fyn) = Er, [Fe|Fn] (or analogously for angles).

In this work, we evaluate predictions by relying on conditional distributions p(|FeXp [IFNN }). (In the following we consider only force
magnitudes and write |F| = F, and we abbreviate Fyy =Fn and Fey, =Fe for brevity). This choice is motivated by the fact that, in the
presence of noise, the conditional average C(Fy) = Eg, [Fe|Fn] will satisfy C(Fn) = Fy for a theoretically optimal predictor and will thus
lie along the diagonal in the Fr — Fp plane. On the other hand, C(Fg) = Er, [Fn|Fe| will generally not lie along this diagonal.

To see this, consider our dataset as a set of pairs {X?), F()} indexed by i where F; is force magnitude at some pixel, and X; is the
distribution of zyxin in a neighborhood of that pixel. The neighborhood is set by the receptive field of the neural network. Due to either
biological or experimental noise, there is a joint (non-deterministic) distribution p(X, Fg) from which our data is drawn. The loss func-
tion for the force predictions Fy(X) can be written

L(Fw) = ExEee [(Fw — Fe)? [X] = ExL (F).

The (Bayes) optimal predictor is one which optimizes, for every X,
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Fa(X) = argrrgin Lx(Fn).
N

In can be shown that Ly is minimized by Fy(X) = Er.[F£|X]. Note that for this to be valid for all X, our network must be sufficiently
expressive, else our model would be constrained and we would not (necessarily) be able to satisfy this condition for all X indepen-
dently. If we do indeed have sufficient (infinite) expressivity, this is the (Bayes) optimal predictor.

In the supplemental information, we show that with an optimal predictor, the conditional averages satisfy

C(Fn) = Er.[FE|FN]) = Fy and C(Fg) = Eg,[FnIFE] = [Ep<F’E|FE) [F£]. Here p(F%|Fe) denotes the posterior predictive distribution
p(FE|Fe) = [dXp(Fg|X)p(X|Fg). We additionally show that even in the case of Gaussian random variables, the mean of the posterior
predictive distribution p(F,’_:|FE) is, for a given Fg, smaller than Fg. Thus even for an optimal predictor, the line defined by C(Fg) lies

below the diagonal. For this reason, we evaluate our predictions by considering C(Fy) and its distance from the diagonal, which is
0 for an optimal predictor.
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UNet parameters:

Conv kernel size k=3 (when not in a ConvNext block)

Downsample block kernel size k=4
1xLxL

2xLxL
ConvNext Block parameters:
ConvNext kernel size = 7
Inverse bottleneck factor F = 4
Dropout rate = 0.1
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Figure S1. U-Net architecture, related to Figures 1, 2, 3, and 4
U-Net architecture augmented with ConvNext residual blocks. The notation (C, L, L) denotes the size of the image at each stage in the network, with C the number

of channels and L the image size. Images are always square, and we must start with an image size which is multiple of 64 pixels. As an activation function, we use
GELU (Gaussian error linear unit) throughout.
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Figure S2. Physical Bottleneck Forward and Backward Passes, related to Figure 5

The physical bottleneck differs from other neural network-based parameter estimation techniques by enforcing a hard constraint, which stands in contrast to the
soft constraints used by PINN-based approaches.®* Hard constraints are enforced by training the network using gradients generated by the adjoint method
described in the previous section. These gradients are then fed to PyTorch’s automatic differentiation pipeline to pass them through the neural network.
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Figure S3. Distribution of force magnitudes and angles and MSE variations, related to Figure 1

(A) Histogram of distribution of force magnitudes in the test dataset for Figure 1. Vertical line denotes the 99.9" percentile of force magnitudes.

(B) Histogram of force directions in the test dataset.

(C) Average magnitude prediction (reproduction from Figure 1F in the main text) Vertical and horizontal dotted lines denote the 99.9th percentile of force
magnitudes, as in (A).

(D) (Center) Reproduction of matrix in Figure 1H of the main text. (Right) for each cell in the test dataset, we calculate the mean-squared error (MSE) averaged over
all possible cells in the train dataset (black solid line). In other words, we take the horizontal average over the “x” axis of the matrix. The shaded region denotes the
maximum and minimum MSE for each test cell. (Bottom) We calculate the average performance across all test cells, for each cell in the training set, by averaging
over the “y” axis of the matrix (center). Shaded region corresponds to maximum and mininum MSE for that particular training cell.

(E) Same as (D), but instead showing MSE relative to the average. For each entry in the matrix, A MSE ; = MSE&A;SQ;'SE) where (MSE) is the total average MSE.
(F) We compare the average A MSE for each cell when it is in the test set (black) or the training set (blue). (These are the same curves as in (E) right and bottom.)
(G) Scatterplot of the average A MSE for each cell when it is in the test set versus the training set. For each cell, presence in the test or train set may result in a
relative increase or decrease of MSE by roughly +4%. Improvement when the cell is in the test versus train set is nearly perfectly anticorrelated, with a correlation

(legend continued on next page)
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constant of -0.9. This indicates that the cells which are hard to predict (high test MSE) lead to better predictive models when they are included in the training set
(lower average MSE when in train).

(H-K) Same matrices as in (D)~(G) but averaged over the experimental day on which the cells were imaged (delimited by dashed lines). A MSE varies by
experimental day up to +2% of the total average MSE.
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Figure S4. Angle and magnitude errors for networks trained on different proteins, related to Figure 2

(A) and (B) Here we show distributions of forces for all models used to generate Figures 2B-2E. For each cell in a dataset, we train a model on all cells except the
held-out cell. These distributions show the distribution of predicted magnitudes for the model evaluated on the held-out cell. (A) Models using zyxin as the input for
the neural network. (B) Models trained using the other protein (actin, mitochondria, myosin, or paxillin) measured in each dataset.

(C) and (D) (C) shows the error in angles and (D) the error in magnitudes for the U-Nets trained on different proteins. Each protein is imaged jointly with zyxin, hence
each protein has a comparable zyxin-trained network (green dots). Training on combinations of proteins (black) does not improve prediction. For each cell in the
corresponding protein’s dataset, we train a network and withhold that cell for testing. Error bars denote standard deviations of these networks on varying the
test cell.

(E) Iglewicz-Hoaglin outlier test®® values for the hold-one-out experiments on the actin dataset in Figures 2D and 2E of the main text.

(F) and (G) Change in magnitude error by removing one of the two identified outliers. Outlier 1 is responsible for a threefold increase in zyxin magnitude error, while
changing the actin magnitude error only marginally.

(H) Predictions on the outlier 1 cell (“17_cell_1” in A and B). The exceptionally large error value is due to high forces predicted at one location where in experiment
there are no forces (white arrow).
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Figure S5. Comparison of zyxin- and paxillin-trained U-Nets, related to Figure 3

Zyxin and paxillin are both LIM-domain proteins which localize to focal adhesions. We find that these proteins are to some degree interchangeable, in the sense
that a network trained on zyxin (paxillin) can still make accurate force predictions when evaluated on paxillin (zyxin). In Figures 2D and 2E of the main text, zyxin
slightly outperforms paxillin in magnitude predictions.

(A) Part of this difference may be attributed to differences between fluorophores. Even when imaging zyxin only, mApple tends to slightly underperform GFP at
high forces.

(B)and (C) In (B) and (C), we evaluate the predictions of zyxin- (left) and paxillin-trained (right) networks when made on both zyxin or paxillin images (green and red
lines, respectively).

(D) MDCK colonies were imaged with EGFP paxillin. We predict forces on these colonies with our network trained on mApple-paxillin cells, as well as EGFP-zyxin
cells (bottom row).

(E) and (F) Both networks predict force magnitudes similarly well, but the zyxin-trained network makes more accurate angle predictions (F).
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Figure S6. Error metrics for predictions on new cell types, related to Figure 3

(A) Magnitude errors (defined in Figures 2D and 2E of the main text) for predictions of fibroblast-trained U-Net when evaluated on MDCK cell clusters and U20S
cells. We show the results of networks trained on different proteins for reference (Figure 2E of the main text).

(B) Angle errors (full width half maxima) for predictions of fibroblast-trained U-Net when evaluated on MDCK cell clusters and U20S cells.
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Figure S7. U-Net dependence on scale, and further generalizations, related to Figure 3

(A) We evaluated the network on cells imaged with a microscope of 1.8 % the resolution on which the network was trained. (Top) As the input image is apparently
larger (in terms of pixels) by a factor 1.8, predictions are less accurate and the network predicts extremely localized features (right). (Bottom) Predictive accuracy
can be recovered by downsampling the image to the training resolution, after which the network predicts the correct large-scale distribution of forces.

(B) We optogenetically stimulate RhoA recruitment to a region of the cell,?® which causes an increase in total force exerted by the cell. Solid curves are smoothed
versions of the corresponding lighter curves.

(C) The optogenetic perturbation causes an accumulation of zyxin and the emergence of traction forces under the stimulated region (white arrow). Surprisingly,
the U-Net accurately predicts these new forces within the cell despite seeing no such phenomena during training.
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Figure S8. Evaluating a trained U-Net on cells adhered to substrates of different stiffness, related to Figure 3

We take a U-Net trained with cells adhered to a 16 kPa substrate (the same in Figures 1,3, and 4 in the main text) and evaluate the network’s ability to generalize to
cells adherent to 10 kPa substrate.

(A) Distribution of forcesp(|Fexp [IFnN \). Predictions are accurate on average (black line) up to 8kPa, albeit with slight underprediction at low forces (the average
curve lies above the diagonal), and slight overprediction at high forces (average is below the diagonal).

(B) Distribution of angles p(aexp |an)-

(C) Sample predictions for two different cells. Note that forces are more smeared out in the experimental data, likely due to the higher regularization parameter
used for TFM with soft substrates. (D) The network captures the relative change in forces during ROCK perturbation experiments. The total force is slightly
different, again likely due to the higher regularization parameter in experiment. (E) Force distribution for a network trained on 10 kPa cells, evaluated on 16 kPa.
The average (black line) lay below the diagonal, indicating that the network is overpredicting magnitudes. This effect may be in part due to the effect of different
regularization parameters, see Figure S4.

(F) Distribution of angles p(cexp |onn)-

(G) Sample predictions for one cell. While the locations of the predicted forces are mostly accurate, the predicted forces are much more spread out than in
experiment. This is likely due to the larger regularization parameter in the data used to train the U-Net and may also be due to the smaller amount of data used to
train the network.

(H) Despite these differences, the network correctly captures the ROCK inhibition experiment. Error bars in (A), (B), (E), and (F) correspond to one standard
deviation in each direction.
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Figure S9. Impact of TFM regularization parameter, related to Figure 3

(A) TFM requires a choice of parameter A that regularizes the inverse elastic Green'’s function which is used to compute forces from substrate displacements. The
choice of regularization parameter impacts the forces found by TFM and determining the “correct” parameter is a matter of active research.’* Here we show how
the distribution of forces shifts due to varying regularization parameter 1-«. These are probability distributions for the normalized forces, using the normalization
procedure as described in STAR Methods. Low-regularization forces are normalized by a larger amount, hence the entire distribution is scaled and shifted
towards smaller forces: the red curves lie below the black curve. Thus, the effective forces in the low-regularization case are smaller.

(B) We directly compare the force maps generated with two different regularization parameters by generating the same histograms in Figure S4 where the
“predicted” forces are those generated at a particular regularization A and the “experimental” forces are generated at a different regularization - «. Even a
“perfect” predictor appears to make errors by deviating from the diagonal. The behavior here is qualitatively similar to the observed curves in Figure S4. In
particular, when evaluated on forces with a higher regularization parameter (blue; corresponding to Figure S4), small forces are slightly underpredicted while large
forces are overpredicted. When evaluated on a lower regularization parameter (red; corresponding to Figure S4) forces appear to be overpredicted.
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Figure S10. Synthetic cell construction, related to Figure 4

To create focal adhesions for our synthetic cells (Figure 4 of the main text), we attempt to mimic the structure of experimentally observed FAs.

(A) We select two FAs from a cell. The first is in a region of relatively high “background” zyxin intensity. The average intensity in the green box is 0.8, in contrast to
the average intensity of 0.1 in the green box for FA 2.

(B) and (C) We align each FA with the x axis and examine its profile along the x and y directions shown in shades of red and blue, respectively.

(D) We approximate FAs as ellipses with a linearly decreasing intensity at the edges.
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Figure S11. Additional synthetic cells: binarized cells, related to Figure 4
(A) We test the trained U-Net’s response to more “natural” features by generating synthetic inputs to the neural network from actual cell images. To generate

synthetic cells, we binarize the zyxin signal via thresholding, and then dilate the binary regions. This allows us to change the size of certain cell features, and by
increasing the dilation size, certain features may merge to create yet larger structures. (B) We measure the average force F predicted for each connected binary
region and show the distribution of p(F|A) where A is region’s area (in um?). The strongest force predictions occurs for structures of area 5 um, consistent with the
results of Figure 4J. We see that above A ~ 50um?, the network no longer predicts large forces. This cut-off agrees with the short length scales learned by the

physical bottleneck (Lpgnn), as well as the Green’s function neural network L.
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Figure S12. Supplementary analysis of physical bottleneck parameters, related to Figure 5

(A) For each image in the dataset, we calculate the total zyxin above a quantile g of the zyxin distribution, which we call {,. The sum of zyxin above this quantile is
{.q = > ¢ Athreshold (quantile) of 0.0 means we take the entire sum of zyxin in the image (far left), while a threshold (quantile) of 0.97 means we take the sum of
>4

the top 3% of zyxin values.

(B) For a given threshold value, we can generate scatter plots of 62 or Y with ¢4 for each image. (C) For increasing quantile values, Y becomes increasingly well-

correlated with total zyxin, suggesting that it depends only on the highest values of zyxin. In contrast, ¢® does not become increasingly correlated, suggesting that

it is not solely a function of high zyxin values.
(D) We correlated normalized versions of average adhesion and total predicted force, (Y — uy)/ oy Where g, oy corresponds to the mean and standard deviation

of Y for all frames across the entire dataset (and analogously for the total force, Fio).
(E) We find that ¢? is more closely correlated to Fit than Y. For clarity of presentation, outliers beyond 2 standard deviations are cropped in both (D) and (E).

(F) lNustration of the evolution of ¢@ and the total predicted force as a function of time for each cell in the test set.
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