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Fully developed turbulence is a universal and scale-invariant chaotic state
characterized by anenergy cascade from large to small scales at which the cascade is
eventually arrested by dissipation' . Here we show how to harness these seemingly
structureless turbulent cascades to generate patterns. Pattern formation entails a
process of wavelength selection, which can usually be traced to the linear instability of

ahomogeneous state’. By contrast, the mechanism we propose here s fully nonlinear.
Itistriggered by the non-dissipative arrest of turbulent cascades: energy piles up atan
intermediate scale, whichis neither the system size nor the smallest scales at which
energy is usually dissipated. Using a combination of theory and large-scale simulations,
we show that the tunable wavelength of these cascade-induced patterns canbe setby a
non-dissipative transport coefficient called odd viscosity, ubiquitous in chiral fluids

ranging from bioactive to quantum systems

812 0dd viscosity, which acts as a scale-

dependent Coriolis-like force, leads to atwo-dimensionalization of the flow at small
scales, in contrast with rotating fluids in which a two-dimensionalization occurs at large
scales*. Apart from odd viscosity fluids, we discuss how cascade-induced patterns can

arise in natural systems, including atmospheric flows
,or the pulverization and coagulation of objects or droplets in which

solarwind® 2

mass rather than energy cascades

1319 stellar plasmasuch asthe

23-25

Fully developed turbulenceis a highly chaotic non-equilibrium statein
which energy is transferred across scales through a nonlinear mecha-
nism known as a turbulent cascade'®. Although cascades occur in
diverse contexts ranging from optical fibres to solid plates®*?’, their
mosticonic manifestationisin fluids. Heuristically, large eddies, typi-
cally created by the injection of energy at macroscopic scales, break
upinto smaller and smaller eddies. This energy transfer towards small
scales, called adirect or forward cascade, is eventually arrested by dis-
sipation (Fig.1a). Away fromthe scales at which energy isinjected and
dissipated, turbulence is universal and scale invariant.

We sstart with the almost paradoxical question of whether turbulence
canbeharnessed to generate patterns. Our approachto tackle this task
rests on the simple observation that different classes of turbulent cas-
cades exist*. For example, turbulence in two-dimensional (2D) and rotat-
ing fluids hasatendency to transfer energy towards larger scales in what
isknownasaninverse cascade (Fig.1b). Here we consider what happens
whenadirect cascade is combined with aninverse cascade as shownin
Fig.1c. Energy is transferred to an intermediate length scale k;l (k are
wavenumbers, so theirinverses are lengths) both fromsmallerand larger
scales, depending on where energy is injected. As energy accumu-
lates around that scale, structures emerge with characteristic size k;l,
whichis neither the size of the system nor the smallest scales at which
dissipationtypically occurs. This spectral condensation atintermediate
scales requires the mechanismresponsible for arresting both cascades
tobenon-dissipative. As we shall see, nature has found an elegant solu-
tion to this problem: a viscosity that does not dissipate energy®?,
variously known as odd viscosity®, Hall viscosity'® or gyroviscosity™.

Before exploring potential realizations, let us compare and contrast
this scenario with the textbook picture of pattern formation

represented inFig.1d. Inits simplest form, patternformation originates
from the linear instability of ahomogeneous system: the length scale
k;l, corresponding to the maximum of the growth rate o(k), is selected
because the corresponding mode grows faster, and sets the character-
istic size of the emerging pattern. Although nonlinearities are impor-
tant in saturating the growth and selecting the precise shape of the
pattern, they play only a part once the linear instability has setin. This
linear mechanismiis at play in many areas of science”? By contrast, in
the mechanismshowninFig.1c,itisthe nonlinearinteraction between
modes that gives rise to the turbulent cascade.

To realize the mixed cascade of Fig. 1c, we first need to turn a
direct cascade into an inverse cascade. This can be achieved by
simply rotating the fluid at high velocities**, as shown in Fig. 2.
The Coriolis force f, = 2pv x Q (Where v(¢, x) is the velocity field, p
is the density, Q is the rotation vector and x is the vector product)
tends to align vortex lines with the rotation axis, without inject-
ing or dissipating energy. As the rotation speed increases, the vor-
tex tangle becomes more and more polarized, which induces a
two-dimensionalization of the flow. This prevents vortex stretching
and leads to aninverse energy cascade similar to the case of 2D flu-
ids. Eventually, the energy condenses into two vortices of opposite
vorticity. As the inverse cascade proceeds all the way to the largest
scales, this condensation occurs only at the size of the system (Figs. 1b
and 2b,c).

Turbulence with odd viscosity

For our purposes, we need an inverse cascade at small scales
(large wavevectors) only (Fig. 1c). This could be produced by a
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Fig.1|Cascade-induced patternformation. a, Directenergy cascade:ina
turbulent 3D fluid, energy injected at large scales (red arrow) is transferred to
smaller and smaller length scales (black arrows) to microscopic lengthscales
inwhichdissipation occurs (blue arrow), as captured by the so-called energy
spectrum E(k), which describes how much kinetic energy is contained inmodes
with wavenumber k. The energy transfer across scales can be traced to vortices
breaking upintosmaller and smaller vortices up to dissipative scales. This
mechanismisintrinsically nonlinear:itrelies on triadic couplings between the
modes of the system. b, Inverse energy cascade:ina turbulent 2D fluid, orina
rotating 3D fluid, thereisinstead a transfer of energy from the scale in which
energyisinjected (red arrow) tolarger and larger scales, and the energy is
either dissipated or piles up at the largest scale available (blue arrow), the size
ofthe system. Correspondingly, vortices merge together until only asingle

scale-dependent version of the Coriolis force that would involve gra-
dients of the velocity, in a way similar to a viscosity term, so that it is
negligible at large scales. To do so, we consider a situation in which
rotation is induced at microscopic scales, for instance by spinning
particles large enough to be inertial (Fig. 2e). It turns out that such a
system has anantisymmetric partin its viscosity tensor 17;;, # 1, known
as odd viscosity. Like the Coriolis force, the antisymmetric, or odd,
part of the viscosity tensor does not contribute to energy dissipation
or injection as it drops out from the energy balance equation®. 0dd
viscosities arise in various experimental systems breaking time-reversal
and inversion symmetry at the microscopic scale®’, including mag-
netized polyatomic gases®, magnetized graphene'® and active
colloids™.

To mathematically account for the effect of odd viscosity, we con-
sider asimple extension of the Navier-Stokes equations

Dev==VP+VAV+Vyqqe, x AV+ (¢, X) o

with the incompressibility condition V-v=0. Here, D,=0,+v -V
is the convective derivative and fis an external forcing represent-
ing energy injection, Pis the pressure, v=n/p is the familiar shear
VISCOSitY, Voqq = Noqa/P 1S @ particular combination of odd viscosities
(see Supplementary Information for the general case) and e, is the
unit vector along z (the direction set by the magnetic field or rota-
tion axis). Equation (1) can be seen as a nonlinear diffusion equation
for momentum with an antisymmetric cross-diffusion coefficient
Vo4a- The resulting odd viscosity term v, y4€, X AV (Or -V, 44k%€, X v(K) in
wavenumber space) can be seen as a scale-dependent Coriolis force.
Both are non-dissipative and anisotropic (Methods). The additional
Laplacian ensures that the action of v,44 vanishes for small wave-
numbers, as needed to arrest the turbulent cascade at intermediate
scales.
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positive vortex and a single negative vortex remain, both of which have
approximately halfthe size L of the system. Inverse cascades canalso arise in 3D
from mirror symmetry breaking**>*¢ or by imposing large-scale shear*’. ¢, Ina
hypothetical situationin which adirect cascade and aninverse cascade can

be puttogetherintherightorder (blackarrowsin the figure), energy will be
transferred to anintermediate length scale k;l, leadingto the appearance of
structures witha characteristic size k;l independentofthesize L of the system.
This nonlinear wavelength selection mechanismrelying on combined turbulent
cascadescanbeseenasaninstance of pattern formation. d, Standard pattern
formation fromalinearinstability: the wavelength k;l correspondingtothe
mostunstablelinear mode (thatis, the one with the largest growth rate o(k)) is
selected. As an example, we have shown the coat pattern of a cat.

Two-dimensionalization by odd waves

Direct numerical simulations of the Navier-Stokes equations (Meth-
ods) in Fig. 2 confirm that strong odd viscosity fluids can exhibit fea-
tures similar to quickly rotating fluids such as Taylor columns and
quasi-two-dimensionalization? (compare Fig. 2a—c with Fig. 2e-g).
The two-dimensionalization of the flow can be heuristically justified
using a generalization of the Taylor-Proudman argument to odd flu-
ids, where the convective termis neglected, and which yields ,Av =0
(Supplementary Information).

To account for the role of the convective term, we now turn to the
analysis of the nonlinear energy transfer, which governs the redistribu-
tion of energy amongscales®*. The distribution of energy among scales
is described by the energy spectrum E(k, t) = %(HV(t, k) HZ)kSHk”<k+1
averaged over aspherical shell. Its evolutionis captured by the energy
balance equation d £ = - T— vk’E + F,in which Frepresents the forcing
and Tthe nonlinear energy transfer between scales.

As odd viscosity is non-dissipative, it does not act as an energy
source or sink. However, it has an indirect effect on the energy trans-
fer, becauseitinduces waves in the fluid, that oscillate at a frequency
w(K) = +v 44k, k| (Fig.2h and Supplementary Information). The transfer
described by Tarises throughinteractions between three modes with
wavenumbersk, pand qthatsatisfyk + p + q = 0(called atriad; Fig. 2d,
inset). Because of the odd waves described above, the different modes
inatriad quickly go out of phase with each other. This suppresses the
nonlinear energy transfer, except for modes with k,= 0, which all have
w =0 (Fig. 2h, blue line) and therefore do not decorrelate. These 2D
modes form a so-called slow (or resonant) manifold that contributes
to most of the nonlinear energy transfer, giving rise to an inverse
cascade. This can be seen from the expression of the energy transfer
T glle0r0®@o@lt (see the Methods for details; recall that the time aver-
age of e vanishes when w # 0).
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Fig.2|Rotating versus odd turbulence. a-n, We compare turbulenceina
fluid rotating with high frequency Q (a-d and i-k) and a fluid with high odd
viscosity (e-handI-n).a-h, Both fluids are characterized by arotation
direction Q (along z), making them anisotropic and chiral. Therotationis
globalinrotating fluids (a). Itisinduced at microscopic scalesin odd fluids, for
instance, by particles thatall spininthe same direction Q (e). Inboth cases, the
flow becomes 2D, with column-like structures aligned with Q, as seenin the
kinetic energy (b,f) and the z-averaged vertical vorticity (w,), (c,g) obtained
from simulations. The two-dimensionalization originates from the decorrelation
by wavesin the fluid (inertial wavesind and odd waves in h) of the triads by which
energy transfer occurs (d, inset). Modes with k, # 0 have finite frequencies (red
lines) and quickly decorrelate, whereas modes with no vertical variation (k,=0,
bluelines) allhave w = 0.i-n, To predict the direction of the cascades (black
arrows), we compare the inverse frequency of waves with the time over which
energy transfer takes place (the eddy turnover timet ' « £¥%.In rotating fluids (i),

Scaling theory of the arrested cascade

Inaturbulent flow, thelifespan of a typical eddy is called the turnover
time 7;, and itsinverseis called the eddy turnover frequency. The pro-
cesses transferring energy across scales occur over a few turnover
times. To assess whether odd waves suppress the energy transfer, we

the flow is quasi-2D at small wavenumbers (blue region) and isotropic (3D)
atlarge wavenumbers (once r;l >, redregion).Inodd fluids (I), we expect the
flow to be quasi-2D at large wavenumbers (blue region) and isotropic at low
k(once T > To4q red region). The crossover point defines a characteristic
scale k,qq, in analogy with the Zemansscale k,in rotating fluids. We sketch
cascadesintheenergyspectrawhentheinjectionscaleis smaller (j,m) and
larger (k,n) than the characteristic scale. Inrotating fluids, there isadirect
cascade of energy above therotation (Zeman) scale (j) and aninverse cascade
below (k). This situation is known as a split cascade®. In odd fluids, we
expectthesituationtobereversed: energy cascades directly for wavenumbers
below k44 (n) and inversely above (m), causing a pile-up of energy at the odd
viscosity lengthscale and arresting both cascades. The pile-up is saturated
by viscous dissipation, leading toabumpin the energy spectrum at another
scalek..

compare the eddy turnover frequency ¢! with the frequency w(k)
of odd waves. Assuming k, = k (motivated by the isotropization at
small k), we look for the scale kyqq Such that w(k = kogq) = T2 (k= kogq)
(Fig. 21). We estimate the eddy turnover frequency 75" = kv, « k**¢'/3
from the rate of dissipation of energy at small scales € using the Kol-
mogorov scaling valid at k < k44, and find
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— o1/4,,-3/4
kOdd=€ / VOd{j . (2)

When k > k.4, the effect of odd viscosity isimportant: the contribution
of 3D triads tothe energy transfer averages to zero over the lifespan of
atypical eddy, and we expect quasi-2D behaviour. By contrast, when
k < koqq, the effect of odd viscosity is negligible and we expect normal
3D behaviour. This is summarized in Fig. 21. As a consequence, both a
directand aninverse cascade are arrested when they approach the odd
viscosity wavenumber k, .4, because of the inherent tendency to cascade
in the opposite direction beyond that wavenumber (Fig. 2m,n). The
direct cascade dominates when energy is injected below k44 (Fig. 2n),
whereastheinverse cascade dominates when energyisinjected above
Ko4q (Fig.2m).

Figure 2 compares the cases of odd and rotating fluids. In the case of
rotating turbulence**7¢, odd waves are replaced by so-called inertial
waves with dispersion wy(k) = +2Q x k/k (Fig. 2d), and the scale k44 is
replaced by the so-called Zeman scale k, = 2*?¢ 2 (refs. 37,38). Compar-
ing Fig. 2i with Fig. 2l shows that, crucially, the order of the 3D direct
cascade and the quasi-2D inverse cascade are permuted in rotating
and odd fluids. As aconsequence, the fluxes are convergentin the case
of odd turbulence, whereas they are divergent in the case of rotating
turbulence, and the pattern formation effect is thus observed only in
the former scenario.

Wavelength selectionin the energy spectrum

We now refine the intuitive picture in Fig. 1cand show that two length
scales, rather than a single one, are implicated in cascade-induced
pattern formation. To do so, we develop a scaling theory based
on dimensional analysis®*?** focusing on the case in which
energy is injected at large-scale k;, < k,qq and the direct cascade
dominates.

As the cascade is generated by nonlinear triadic interactions, we
expect thatitis related to the corresponding correlation time 7;(k).
Assuming energy conservation and locality in the scale of the cascade,
dimensional analysis leads to E(k) =C [e/rz,(k)]l/2 k2 inwhich Cisa
constant®#042,

Inthe absence of odd viscosity, or whenitis negligible (k < k,4q), the
only time scale available is the eddy turnover time (k) = [kuk]‘lz
k>"*E72(k), 1eading to the Kolmogorov spectrum

E(R) = ek (k< kogo)- €

When odd viscosity is dominant (k > k,44), the relevant time scale is
given by the frequency of odd waves w(k) = v,4.k* (again, we assume
k,=k),leading to

E(k)<eVV2 k" (k> Kogd)- 4)

Asapointof comparison, the relevant time scaleis Q' in rotating tur-
bulence, so thisargument leads to a different scaling F «< k> (refs. 33,40).

The preceding argument shows that the cascade starts to get arrested
when it reaches k.44, leading to an amplification of the modes with
wavenumbers k > k,44. The relative amplification due to odd viscosity
can be described by the ratio between the modified spectrum E(k)
given by equation (4) and the Kolmogorov spectrum E,(k) given by
equation (3) that would occurinthe absence of odd viscosity. Ignoring
first the effect of dissipation, this yields E/E,=1 for k < k,4q and
E/Ey~< (k/kodd)m for k> k,qq. As energy piles up at wavevectors larger
than k4, it is eventually saturated by viscous dissipation, leading to a
maximum in E/E, after which the spectrum decays dissipatively.

By balancing energy injection and viscous dissipation, we can find
the position k. of the maximum as (see Methods)

koo ety UL 5
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The magnitude of the spectral condensation can be estimated as
the height of the peak E(k,)/Eq(K.) > (V,qq/v)">. The ratio v,qq/v thus
controls the height of the peak. According to kinetic theory calcula-
tions corroborated by experimental measurements, thisratioincreases
linearly with the time-reversal breaking field (for example, the spinning
speedin Fig. 2e or the applied magnetic field; see Methods).

The overall picture, summarized in Fig. 2n, involves the two length
scales k44 and k. defined in equations (2) and (5). As the direct cas-
cade (black arrow) approaches k.4 (purple dashed line), itis gradually
arrested: the rate of energy transfer from scale to scale decreases as
kincreases. This leads to the condensation of kinetic energy in wave-
numbers k > k4. Inturn, the amplification of these modes leads to an
increase in viscous dissipation, and the energy spectrum exhibits a
maximum deviation from the Kolmogorov spectrum at a characteristic
wavenumber k. (blue dashed line).

Simulations of the odd Navier-Stokes equations

To put thisscenarioto test, we numerically integrate the Navier-Stokes
equation (1) using a parallelized pseudo-spectral solver (Methods).
In a normal fluid, eddies of all sizes can be found in the statistical
steady state (Fig. 3a). In the presence of odd viscosity, the turbulent
state selects adominant scale, as shown in the visualizations of the
vorticity field in Fig. 3b. The features manifest as vertically aligned,
intermediate scale structures, as expected from the quasi-2D nature of
the system. A direct cascade occurs when energy is injected at large
scales (k;, < k.qq)- As predicted, we find that this turbulent cascade
is arrested because of odd viscosity. This can be seen from the net
flux of energy I1(k) =Y .., T(k"), which gradually decays as k passes
koqq (Fig. 3¢, inset).

This gradual arrest of the cascade near k4 leads to spectral con-
densation atintermediate scales. Quantitatively, the spectral conden-
sation and wavelength selection can be better appreciated from the
relative energetic amplification of each mode E(k)/E,(k) shown in
Fig. 3d. Rescaling the wavenumbers by k4 (Fig. 3e), we observe an
approximate collapse of the curves compatible with the scaling pre-
dicted in the previous paragraph. The condensation peaks around a
wavenumber k., which we can compare quantitatively with our scaling
prediction equation (5) (Fig. 3d, inset). An extension of our scaling
theorytakinginto account the anisotropy of the flow (Methods) reveals
thevisualmeaning of the two length scalesinvolvedin cascade-induced
patterns: k;l manifests predominantly in the horizontal direction,
whereas the typical vertical scale is mainly given by k;}jd(Fing,black
arrows).

Flux loops and helicity conservation

When energy is injected at k;,, > k44 (Fig. 3f-i), we expect an inverse
cascade to be arrested by odd viscosity. This is the case, as evidenced
by snapshots of the steady state, that exhibit scales larger than the
injectionscale (Fig. 3g). In contrast with the case of the arrested direct
cascade, here energy gets piled up at large scales, in which viscous
dissipation is not an effective saturation mechanism. Instead, what
prevents energy blow-up is amechanism known as flux-loop cascade*:
energy goes from the smallinjectionscale to large scales and then back
toevensmallerscales whereitis dissipated. To see that, we decompose
the energy fluxinto heterochiral (red) and homochiral (blue) channels,
that correspond, respectively, to triads with different or same signs of
helicity. Helicity is the volume integral of v - w, where @ =V x v is the
vorticity, anditis aninvariant of the inviscid Navier-Stokes equation.
The conservation of helicity is not affected by odd viscosity (Methods).
AsshowninFig.3i, the heterochiral flux (red) tends to cascade directly,
whereas the homochiral flux (blue) tends to cascade inversely. Below
the injection scale, both fluxes cancel exactly, leading to a vanishing
net flux (grey line). In the case of the inverse cascade, the resulting
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Fig.3|0dd wavesinduce wavelengthselectionand fluxloops. a-i, We
performdirect simulations of the Navier-Stokes equation without and with
odd viscosity.Ina-e, energy isinjected at wavenumbers k;, < k,qqand the
direct cascade dominates. Inf-i, k;, > k.4 and the inverse cascade dominates.
a,b,Slicesof the in-plane component w, of the vorticity with k, < k,qq. Without
odd viscosity (a), vortices of all sizes are present. With odd viscosity (b, in
which v,qe/v = 255), characteristic horizontal and vertical scales k.' and Ky
emerge (black arrows). This wavelength selection originates from the arrest
of the direct cascade near k4. ¢, Energy spectrum E(k) and flux 71(k) (inset)
obtained from simulations, for different values of odd viscosity (legendine).
Energy flows from theinjection scale k;, (red arrow) towards larger k, as
evidenced by the positive energy flux /7(k). The cascade is progressively
arrested near k,qqand energy piles up, triggering viscous dissipation.d, The
relative energetic amplification and/or attenuation due to odd viscosity is
measured by the compensated spectrum E(k)/E,(k) (where Ey(k) is the energy

spectrumwithout odd viscosity), which peaks atascale k. (diamonds). The peak
position k. decreases as odd viscosity increases (inset), as predicted by scaling
arguments (dashed line; see equation (5)). e, Plotting the compensated spectra
against k/k,qq confirms that condensation begins near k.44 (blue arrow) and
follows the scaling prediction (dashed line; see equations (2)-(4)).f,g, Slices of
thein-plane velocity component v, when k;, > k,4q. We visualize v, instead of w,
toemphasize thelarge scales. Without odd viscosity (f), structures of all scales
arepresent, dominated by the injection scale. With odd viscosity (g, in which
Voqa/V =212), secondary features with larger sizes appear because of the arrest
oftheinverse cascade. h, Energy spectrum E(k) and flux 771(k) obtained from the
simulations (diamondsindicate k,4). i, Theinverse cascadeis arrested by a
flux-loop mechanism, asevidenced by adecomposition of the fluxin homochiral
(blue) and heterochiral (red) channels that correspond, respectively, to triads
with different or same signs of helicity. Ini, we have used hyperdissipationin
the simulations to highlight the flux loop (Extended Data Fig.1aiv).
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Fig.4|Cascade-induced patternformation across domains. a-d, Cascade-
induced scale selection can occur insystems ranging from Navier-Stokes
turbulence (a,b) and magnetohydrodynamics (MHD) turbulence (c) to mass
cascades (d). a, Chiral active fluids are an example of fluids with odd viscosity.
Asdemonstratedin Fig. 3, these fluids are expected to exhibitadouble
arrested cascade at high enoughv,,,/vand Reynolds number (see the
Methods for adiscussion on orders of magnitude). We have interpreted this
phenomenon as theresult ofadecorrelation of wavenumber triads by odd
waves. b, In2D geophysical flows and plasma, an arrested inverse cascade
associated with wavelength selection occurs®™. It canbe seen as the
consequence of the decorrelation of triads by Rossby (or drift) waves, which
setthe characteristic scale ky, known as the Rhines scale. ¢, Adouble arrested
cascadehasbeen predicted inthe solar wind, based on the properties of
inviscid invariants of finite Larmor radius MHD?° %2, This mechanism, known
asahelicity barrier, relies on the change of nature of aninviscid invariant,
whichinterpolates between cross-helicity and magnetic helicity (these
quantities cascade in opposite directions).d, Scale selection canalso occurin
mass cascades, ranging from the stationary distribution of raindrop sizes that
would occur insteady-state conditions? to smoke aerosols®. This arises from
thebalance between coalescence and breakup of the droplets, which
effectively have scale-varying rates (wj, red and blue curves in the schematic).
Similar phenomenology arises in active mixtures*®™!, although not
necessarily with afluxacrossscales. In the Methods, we provide aminimal
model of mass cascade exhibiting scale selection.

patternis less visible thanin the direct cascade, because the energy is
deposited over amore broadband range k,qq < k < ki,

Pattern-induced cascades beyond odd fluids

Our analysis demonstrates that the non-dissipative arrest of turbulent
cascades provides a mechanism of wavelength selection. The decor-
relation of triads by waves and the subsequent emergence of aresonant
manifold are not unique to odd fluids (Fig. 4).

In2D atmospheric flows and confined plasmas, for instance, Rossby
waves (also called drift waves) are at the origin of the arrest of aninverse
cascade (Fig. 4b), atascale kg, known as the Rhines scale'®* ™, This leads
to the appearance of a pattern with characteristic scale kg, accompa-
nied by a one-dimensionalization of the flow (Extended Data Fig. 2),
eventually leading to mean flows known as zonal flows. Other waves,
such as gravity waves in stratified flows, can play a similar part***. In
contrast with the case of odd waves in 3D, there is no arrested direct
cascadeinthese (quasi-)2D systems. In space plasmasuch as the solar
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corona (Fig. 4c), the existence of a‘helicity barrier’ leading to the arrest
of cascades has been proposed and traced to the change of nature
of inviscid invariants. This mechanism is enabled by the existence of
additional degrees of freedominmagnetohydrodynamics (MHD) com-
pared with standard hydrodynamics. In the case of odd turbulence,
the onlyinviscid invariants are energy and helicity (Methods), exactly
asin standard turbulence. Beyond fluids, a weak turbulence theory
for odd waves could also be applied, for instance, to optical or elastic
turbulence? %, In this case, arbitrary dispersion relations could be
designed using metamaterials®*?, for example, by using a combination
of so-called odd and even elastic moduli, which replace viscosities in
elastodynamics’.

Scale selection by mass cascades

Cascade-induced patterns canalso occurinsystems in which itis mass
rather than energy that cascades (Fig. 4d). Mass cascades can, for
instance, take place in the pulverization of objects into debris or the
coalescence and breakup of droplets®*%. In this context, a cascade-
induced scale selection would manifestin the selection of objects with
apreferred scale that is neither the largest nor the smallest possible
size. The existence of asteady state with such a characteristic scale can
be observed in situations ranging from rain formation®* and smoke
aerosols® to active mixtures**, In the Methods, we present aminimal
model of scale selection in the steady state of a mass cascade, in the
spiritof shellmodels of turbulence®. The key ideais that large droplets
(or clusters) tend to break up, whereas small ones tend to coalesce,
similar to vortices in odd fluids: the rate of aggregation wy} increases
with k (Fig. 4d, red curve), whereas the rate of fragmentation w;,
decreases (blue curve). This can be captured within a population bal-
ancemodel that we analyse in the Methods using numerical simulations
and analytical solutions. Asshown in Extended Data Fig. 3, a preferen-
tial scale, that is neither the largest nor the smallest droplet size,
emerges fromthe balance between these two physical processes, which
play asimilar part as the homochiral and heterochiral channelsin odd
fluid turbulence. This kind of scale selection can also occur in closed
systems in which mass is neither injected nor removed (that is, with
no net flux), such as in the arrested or interrupted coarsening of
mixtures*!,

Conclusion

We have developed a theory of turbulent cascades modified by odd
waves that captures how nonlinear scale selection emerges because of
the arrest of the 3D direct and inverse cascades. Our work highlights
the impact of waves in the fluid on eddy turbulence. Beyond fluid tur-
bulence, similar mechanisms of scale selection may occurin domains
ranging fromwave turbulencein parity-violating optical media or solids
with odd elasticity to mass cascades as well as cascades that occur in
the time domain®***,
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Methods

Direct numerical simulations of the Navier-Stokes equation
with odd viscosity

Direct numerical simulations of the Navier-Stokes equation with odd
viscosity (equation (1)) are performedin a cubic box of size L = 2t with
periodicboundary conditions (such that the smallest wavenumber is
21/L =1).Our results can be reproduced with any Navier-Stokes solver
by including amodified Coriolis term modulated by k* (or, equivalently,
by a vector Laplacian for real-space-based methods) to account for
odd viscosity. We use a pseudo-spectral method with Adams-Bashforth
time-stepping and a 2/3-dealiasing rule®. Both normal and odd vis-
cosities are integrated exactly using integrating factors. The forcing
f(¢, k) acts on a band of wavenumbers k € [k;,, k;, + 1] with random
phases thataredelta-correlated in space and time, ensuring a constant
average energy injection rate € = {u - f). It has a zero mean compo-
nent {f(¢, kK)) = 0 and covariance{f(¢, k) - f(¢’, k")) =6t - t)6(k - K').
Thetime-stepis chosento resolve the fastest odd wave with frequency
Tobdmax = VoddK oax» Where ki, is the highest resolved wavenumber in
the domain. We find that stable integration requires a time-step
At 50.17,44 max- A complete overview of the input parameters for the
simulationsinthis workis provided inthe Supplementary Information.
Approximately 3 million CPU hours were required to perform the
simulations underlying this work.

Effect of odd waves on the nonlinear energy transfer

In this section, we describe how the waves induced by odd viscosity
(odd waves) affect the nonlinear energy transfer. Our analysis closely
follows that of rotating turbulence®***,

Nonlinear energy transfer. Fourier-transforming the Navier-Stokes
equation, multiplying with v*(¢, k) (where the asterisk denotes complex
conjugation), and adding the complex conjugate, we find the energy
balance equation®*

0F=-2Vvk’E-T+F (6)

where v =n/pis the kinematic viscosity, and in which

T(k,)=Im Y

vi(k, t)Bj(k)qu;(P, t)Uj-(q, t). 7)
k+p+q=0

This term describes the nonlinear energy transfer between scales,
whereas F=v*-fcorresponds to energy injection by the forcing term
f. The term —2vk*E represents standard viscous dissipation. In equa-
tion (7), the sum runs on momenta p and qsuch thatk+p+q=0, and
P,(k) = 6; - kk;/k*is the projector on incompressible flows.

At first glance, equation (6) is left unchanged by odd viscosity,
because of its non-dissipative nature. However, odd viscosity has
indirect effects on the energy transfer (in the same way as the non-
dissipative Coriolis force has anindirect effect on the energy transfer
inrotating turbulence).

Odd waves. To see that, we first consider the linear and inviscid limit
of the Navier-Stokes equation (1) (sowe set v=0and (u- V)u=0). As
detailed in the section ‘Linear stability of the fluid and odd waves’ of
the Supplementary Information (in which we consider amore general
odd viscosity tensor), this equation has wave solutions of the form

v(¢, x) = h'(k) e@:0rikx ¢ e (8)

inwhichh*(k) = e(k) x (k/k) + ie(k) withe(k) = &, x k/||&, x k|| (ref. 60)
with frequency

0,(K) = £V gk, K. )

Taking into account normal viscosity leads to an additional expo-
nential decay of the waves with the rate —vk* (Supplementary Informa-
tion). In particular, we note that the linearized Navier-Stokes equation
does not exhibit any linear instability. By construction, k - h*(k) =0,
so these modes represent incompressible flows. Furthermore,
(h'(k))* - h (k) = 0 and (h*(k))* - h*(k) =2. Hence, odd waves provide
an orthonormal basis for incompressible flows. As k x h* = —kh*, the
basis functions have a well-defined helicity ¥1.

Decomposition of the energy transfer on odd waves. Expanding the
velocity field as a superposition of helical waves

vit,x)=Y Y ult, Kh’(k)e“kx

k s=%

(10)

in which vi(¢, k) = v(t, - k) to ensure the reality of v(¢, x), the Navier-
Stokes equation becomes

— ilw(K)+w(p)+w(@)lt —uk2
0vs= Y Cupge ViVt VK U+,

k+p+q=0 * (11)
SprSq=t

in which we have used the short v for v, (¢, k), the term f, (k) corre-
sponds to the forcing term, and ‘

Cupg== 3 (50~ 5,7 (p) X (@) -h (0T (12)

satisfy Ck|p,q = Cqu,p'

Helicity and energy conservation of inviscid invariants. In terms
of the components v,(Kk), energy and helicity, respectively, read**°

E=Y (I + v (k) 13)
K
H=Y k(o) = [v-(0). (14)
k
Adirect calculation shows that3¢%°
Cipg* Coigut Cquep=0 (15)
and

SkkCyip,g+ SpPCpig.k * 549Cq1k,p =0 (16)

from which we deduce that energy and helicity are conserved when
normal viscosity and the forcing can be neglected (v=0 and f=0),
evenif odd viscosities are present. In particular,

O,E(k) =5 0,v5 + C.C. 17)
so using equation (11), we find (whenv=0and f=0)
QEK) =Y  Cyp eleWro@ro@iyy px x4 ¢,
‘ k+p+q=0 p.a R (18)
Sp,Sq:i

This equation shows that the nonlinear energy transfer 7(k, £) in
equation (7) is suppressed when averaged over long times com-
pared to w(k) + w(p) + w(q), unless this quantity vanishes exactly, as
is the case for 2D modes (Fig. 2h, blue line, corresponding to modes
withk,=0).



Resonant manifold. The 2D modes with k,= 0 form a so-called slow
manifold, or resonant manifold, that contributes to most of the non-
linear energy transfer. Furthermore, isolated triads with k,# 0 can
also satisfy the resonance condition w(p) + w(q) + w(k) = 0. In the
case of rotating turbulence, resonant triads primarily transfer energy
from the 3D modes to the quasi-2D slow manifold with k,= 0, lead-
ing to an accumulation of energy in the slow manifold, enhancing the
two-dimensionalization of the flow***3¢, We expect a similar phenom-
enonto occurin the case of fluids with odd viscosity owing toits similar-
ity torotating fluids, asis also suggested by the two-dimensionalization
observed in our numerical simulations. As a consequence, the effec-
tive spatial dimension of the system depends on the scale at which it
is observed (such as in rotating turbulence or thick layers***!), More
insights may be obtained by developing a weak turbulence theory for
oddwaves, inthe same spirit as for rotating flows (we refer torefs. 26-28
for more details on wave turbulence).

Scaling relations and wavelength selection

Scaling relation for the energy spectrum. We first analyse the power
spectrum, building on the phenomenological theory of ref. 39 (see
ref. 42 for areview). This theory relies on the following hypotheses:
(1) energy is conserved away from injection and dissipative scales;
(2) the cascadeislocal, whichmeans that different length scales are cou-
pled onlylocally (for example, very large scales are not directly coupled
toverysmallscales); and (3) the rate of energy transfer (k) fromscales
higherthan kto scales smaller than kis directly proportional to the triad
correlation time 7,. Because of hypotheses 1and 2, the rate of energy
transfer (k) is constant across the scales (that is, does not depend
onk) and canbeidentified with the energy dissipation rate e. Moreover,
because of hypothesis 2, (k) should depend only on local quantities
kand E(k), inaddition to 7;(k). Therefore, using hypothesis 3, we write

e=e(k) = Ar(k)k“EP 19)
where A is a constant. The exponents are found using dimensional
analysis (With[E]1=13T2,[e] =L°T3,[k] =L, [1;] = T),whichyieldsa = 4
and8=2.

InFig.2, wearguethat the eddy turnover time 7. is the relevant time-
scale when k < k44 (SO We set 7, = 7, in the expression above), whereas
the frequency of odd waves w is the relevant timescale when k > k44
(soweset 1;=w™). The dispersion relation of odd waves is computed
inthe Supplementary Informationand givenin equation (9). Theeddy
turnover timeis t(k) = [1/k]/v,. As E(k) is the shell-average of v,, we have
dimensionally E(k) < v2/k, sov, = [KE(k)]"%. Putting everything together,
we end up with equations (3) and (4) of the main text.

Scaling relation for k.. For the condensation of the forward energy
flux, the collapse of numerical resultsindicates that it canbe described
by amaster scaling law

Ek) _[1
Eok) | (k/koad)*

fOr k < kodd' (20)
for k> kgygq,

Using the Kolmogorov spectrum for the case without odd viscosity,
Eo(k) =< €2*k, we find for the energy spectrum

2303 for k< kogq,

ER=i = (21)

€2k (kfkoag)®  for k> kogq-

Usingthe scaling argument of the previous section (see equations (3)
and (4)), wefind s =2/3, whichis compatible with the numerical results.
This scaling continues until dissipation saturates the condensation. We
can thus estimate the location of the condensation peak k. from the
balance betweeninjection and dissipation. Neglecting contributions

to thedissipation from wavenumbers k < k.44 (Where there is no mean-
ingful change from Kolmogorov scaling), we obtain

¢ «jk° VKCE(k)dk. (22)
Koda
Assuming K 44 < k., this yields
€= v ek kIkou)®, (23)
resulting in the scaling relation for the peak condensation
o € ) T (k) 5%, @)

whereinthelastrelation, we substituted the normal Kolmogorov wave-
number k, < e¥*v 34,
Fors=2/3,wefind

4/3,2/3,1/2 -1/2, -
ke (kykog) < Vv AV (25)
as quoted in the main text.

Estimation of the height for the peak. The mechanism of non-
dissipative arrest analysed in this work is reminiscent of but distinct
from the bottleneck effect®® ¢ generated by the usual viscosity.

A coarse estimate of the height of the peak in E(k)/E,(k) can be
obtained by evaluating equation (4) (to get E(k)) and equation (3) (to
get E,(k)) at k = k. given by equation (5), yielding h=E(k))/Ey(k.) =
(V,q/V)"> (see Extended Data Fig. 1d for acomparison with numerical
data). Notably, this suggests that A depends on only the ratio of odd to
normal viscosity. We also note that h increases as normal viscosity v
decreases (that is, when the Reynolds number increases), in contrast
with the bottleneck effect due to dissipative viscosity®>* in which the
magnitude of the effect decreases as viscosity decreases.

Wavelength selection. In Extended Data Fig. 1c, we plot an estimate of
the power spectrum of the vorticity, evidencing wavelength selection
inthe vorticity. This suggests that the characteristic wavelength 2m/k,
should be directly visible in snapshots of the vorticity field. This can
beseeninFig.3b. The width of the peak leads to awide distribution of
structure sizes inthe image.

We expect the wavelength selection mechanism dueto thearrested
cascadeto persistatarbitrarily long times and to resist small perturba-
tions, in contrast with metastable patterns arising from kinetic effects®
in which the system resides in metastable states for long but finite
periods (see Supplementary Information for convergence plots).

The wavelength selection mechanismwe have described canbe com-
pared with thatin active turbulence, for instance in bacterial suspen-
sions and self-propelled colloids®® 7. In active turbulence, however, it
has been reported that there is no energy transfer across scales (and
henceno cascade): energyis typically dissipated at the same scale asit is
injected, anditisbelieved that the wavelength selectionis the result of
ascale-by-scalebalance (see, forinstance, Figs. 3d and 4g and sections
3.2.2and4.2.3inref. 71and references therein). We note, however, that
finite energy fluxes have been reported in certain cases®*’>°,

In these systems, wavelength selection has been described as the
result of a Swift-Hohenberg-type term included in the stress tensor
(leading to a finite-wavelength linear instability), to which noise is
added”. By contrast, cascade-induced pattern formation cannot be
directly traced to a linear instability of Navier-Stokes equation (1)
(see section ‘Effect of odd waves on the nonlinear energy transfer’
as well as Supplementary Information section ‘Linear stability of the
fluid and odd waves’ for a linear stability analysis). The linear stability
analysis does not predict any instability, neither to a stable branch
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with a particular wavelength nor to an unstable branch that could itself
bifurcate to the state of interest as part of a subcritical bifurcation.

Ananalogy with similar situations such as Rossby and drift wave tur-
bulence®®*¢and laminar and turbulent patternsin wall-bounded shear
flows® ?° suggests that the wavelength selection may be described by
considering the linear stability of the statistically averaged Navier-
Stokes equation, for instance, using an appropriate turbulence closure
model.

Anisotropic energy spectra. In line with the inherent symmetry of
the system, we now consider cylindrically averaged energy spectra
E(k,, k,), which distinguish the horizontal (perpendicular) directions
from the vertical direction”**. To reveal in which part of the k-space the
energetic condensationoccurs, we compute the cylindrically averaged
spectrum of the cases with odd viscosity normalized by the spectrum
of the reference case without odd viscosity (Extended Data Fig. 1b).
Starting with the direct cascading case in Extended Data Fig. 1b (top
panel), we see that indeed the flow remains mostly 3D isotropic for
k < k,q4sand then proceeds to condensate anisotropically into the low-k,
manifold because of the quasi-2-dimensionalization effect of the odd
viscosity. As detailed in the main text, the condensation is saturated
by dissipation, leading to a peak condensation wavelength k., whichis
thus primarily visible in the perpendicular directions because of the
anisotropic condensation. The dominant vertical scale hence remains
closer to k.q¢. Thisleads to a crude estimate for the aspect ratio y of the
featuresinthe pattern produced by the odd viscosity as

Kk _
Ve A (26)
odd

For the case presented in Fig. 3b, this leads to an aspect ratio y ~ 3.

Fortheinverse cascading case (Extended DataFig. 1b, bottom panel),
we again observe anisotropic condensation in the region k > k 4. In
the region k < k.44, however, the kinetic energy for the case with odd
viscosity is larger than the case without odd viscosity, as indicated in
dark orange. Thisis because inthis range, we expect the same diffusive
equipartitioned scaling E(k) « k* for both cases with and without odd
viscosity, and there is no active dissipative mechanismto deplete the
excess energy that has accumulated at higher wavenumbers in the
case with odd viscosity.

Experimental considerations
Inthis section, we discuss the conditions required to observe the wave-
length selection described in the main text in a fluid with odd viscos-
ity. In short, we expect this effect to occur, for instance, in a fluid of
self-spinning particles large enough to be inertial (not overdamped).
First, the Reynolds number Re = UL/v has to be large enough. This
puts constraints on the viscosity v of the fluid, the details of which
depend on the experimental setup considered. The current experi-
mental systems we are aware of in which explicit measurements of
odd viscosities werereported (active spinning colloids®, magnetized
graphene'® and magnetized polyatomic gases®®) areallinaregimein
which the nonlinear advective termin the Navier-Stokes equation can
be neglected, either because vis large enough or for geometric reasons;
effectively, Re « 1. Note also that experimental instances of (especially
2D) odd fluids may include a substrate, on top of which the active par-
ticlesmove. This canlead to the addition of an effective drag force -yv
inthe Navier-Stokes equation describing the odd fluid made of these
particles. If such a term s large, it would prevent the existence of an
inertial regime, and probably spoil the phenomenology discussed here.
Second, theratiov°%/vhas to belarge enough for the effect to be vis-
ible. Whenv°% < v, energy is dissipated as soon as, or before any effect
of odd waves canarise. Henceforth, observing the effects of odd waves
onturbulence would require v*¢ > v. 0dd viscosities (v*% # 0) typically
arise insystems breaking time-reversal and inversion symmetry at the

microscopic scale®**”. They have been experimentally measured in
polyatomic gases under magnetic fields**, spinning colloids® and
magnetized electron fluids'®. They have also been predicted in systems,
including fluids under rotation®®, magnetized plasma™**°°, quantum
fluids®*'91%% vortex matter'®, sheared granular gases'®, assemblies
of spinning objects®*'°* and circle swimming bacteria®'®, In the
systems mentioned above, in which experimental measurements of
odd viscosity have beenreported, v,4,/vreaches at most 1/3 (in active
spinning colloids* and magnetized graphene)'. From a theoretical
point of view, the ratio v,4/v is expected to increase linearly with the
time-reversal breaking field. For instance, ideal vortex fluids are pre-
dicted to have afinite v 44 butavanishing v (ref. 104), leading to an infi-
nite value of v 4,/v. Kinetic theory calculations for magnetized plasma
(ref. 99, section19.44) predict v=v,/[1+x*] and v 44 = vox/[1 + x*]inwhich
x=2wtwithtisacollision time and w =< Bis afrequency proportional
to the magnetic field B, whereas v, is the value of normal shear viscos-
ity when B = 0. Similarly, kinetic theory in rotating gases leads to an
identical result in which x = Q is proportional to the rotation speed®.
Inelectrongasesingraphene, experiments have been performed that
validate these theoretical calculations' (with x = B/B,, where B, is a
reference magnetic field). This resultsin aratio v,y/v = x =< B. Likewise,
inactive fluids, theoretical works suggest that v, is proportional to
the rotation speed of the spinning particles'®.

Rossby and drift wave turbulence

Extended Data Fig. 2 shows examples of simulations of the Rossby
and drift wave turbulence mentioned in Fig. 4b. A brief review is con-
tained in the Supplementary Information, and we refer the reader to
refs. 13-19,93,120-127 for more details. In the figure, we simulate the
Charney-Hasegawa-Mima (CHM) equation?>120-12¢

0w +J(¢, w) + oY =-aw+vAw+f, 27)

in which/(a, b) = (3,a)(0,b) - (3,a)(0,b), w = Ay and ¢ is the stream
function, defined such that the velocity field is v=—¢ - V¢ (eis the 2D
Levi-Civita symbol). The parameter S represents the gradient of the
Coriolis force in a -plane approximation; a represents large-scale
friction and v is viscosity, whereas f,, is a vorticity forcing. Simula-
tions are performed using the open-source pseudo-spectral solver
Dedalus™,

Note that in Rossby wave turbulence, the only exact inviscid invari-
ants are energy and helicity. However, it has been established that a
quantity dubbed zonostrophy evolves slowly enough to be considered
asaninvariant for practical purposes™**'? "3 This raises the question
of whether such an adiabatic invariant may exist for odd turbulence,
and whether it can predict the direction of the cascades (see refs. 4,132
for discussions of the relation between inviscid invariants and the direc-
tion of turbulent cascades).

Minimal model of mass cascade with scale selection
In this section, we consider a simple model of the mass cascade that
exhibits wavelength selection.

Mass cascades can, for instance, occur in the pulverization of objects
into debris or in the coalescence and breakup of droplets®*'** 38, These
processes can be modelled by the aggregation and fragmentation of
clusters composed of monomers linked together: two clusters that col-
lide may merge into a larger cluster; and a given cluster may splitinto
smaller ones, spontaneously or on collision. The mean-field kinetics
ofthese processesis described by apopulation balance equation gen-
eralizing the so-called Smoluchowski equation®"* that can exhibit
scale-invariant cascades, similar to that present in the Navier-Stokes
equation™*™* This kinetic equation may describe two classes of situ-
ations: (1) closed systems in which massis conserved and (2) open sys-
temsinwhich particles areinjected and removed from the system. Case
1may somehow be compared with freely decaying turbulence, whereas



case 2 may be compared with driven turbulence in which energy is
injected and dissipated.

We expect that the balance between aggregation and fragmentation
will lead to a preferred size if large clusters tend to break up, whereas
small clusters tend to coalesce. Such a preferred size should manifest
as a peakin the distribution of aggregate sizes. Such a peak has been
reported, for instance, in the case of raindrop sizes?**>**¢, in which
the distribution originates from complex mechanisms, including air
turbulence and fluid fragmentation™* %2,

In our toy model, we consider clusters M, composed of 2" monomers
M, withn=1, ..., N. Thisis reminiscent of what is done in shell models
of turbulence®, in which the wavenumbers are chosen in geometric
progression. We assume that (1) there are interactions only between
clusters of the same size and (2) there is a maximum cluster size N.
The first assumption ensures that the mass fluxes are local, and the
second enables usto consider afinite number of equations. We include
a constant source of monomers, and a sink that removes the largest
clusters M,.Inthe case of raindropsinacloud, forinstance, the source
may describe the condensation of droplets from vapour, and the sink
may describe the precipitation of large droplets out of the cloud. The
modelis summarized by the set of reactions

@ m, (28a)
K

2My < Moy (28b)

My 28 @ (28¢)

inwhichM, (n=1, ..., N) represents a cluster of size 2" (M, represents
amonomer), and/,,, /... and ki are the rates of the corresponding
reactions.

The number densities c, of clusters then follow the dynamical
equation

dc,

de (29)

- - 1 + 2 + .2
= 2kn+lcn+1_ kncn + Ekn—lcn—l_ knCn +-Iext

where

-Iext = 5".1-Iin - 6H,N-loutCN (30)
inwhichitisimplied thatc,=0forn<landn>N.

We can also consider the mass density p,=2""'mc,, in which m, is
the mass of amonomer. Multiplying equation (29) with 2" 'm,, we find
that the terms with prefactors ki cancelasinatelescopingseries. This
manifests thatequation (29) with /,, =/, = 0 conserves mass. It is there-
fore convenient to introduce the fluxes

+ " /1 1+ 2 +.2
J'm==-[ dn Skn-Caa=kych (31)
and
n - —
J == dn Tk ik, (32)
corresponding to the reactions with rates k, and such that
dc, N _ (33)
de == an[.l (I’l) +./ (n)] + 5",1-Iin - 6n,N»loutCN'

Toinduce wavelength selection, we choose particular forms for .
The basicideais the forward flux k,, should decrease with n, whereas

the backward flux k,, should increase with n. Experimentation suggests
that various strictly increasing functions of (N-n)/(N-1) and (n - 1)/
(N-1), respectively, lead to similar results. We choose

N-n
N-1

-n-1
IN-1

kp=Ko+ K and k,=Ky+K (34)

Equation (29) isthen solved starting from the initial conditionc,=0
for all n using DifferentialEquations.jl (ref. 153) with a fourth-order
A-stable stiffly stable Rosenbrock method (Rodas4P) until a steady
stateis reached. The resulting steady state is shown in Extended Data
Fig.3.InExtended DataFig.3c, we observe that the density ¢, is peaked
atan intermediate value n} (pink dashed line), which is neither the
maximum cluster size N, nor the monomer size 1, demonstrating wave-
length selection. Similarly, Extended Data Fig. 3d shows that the
mass density p, is peaked around a (different) scale nj, (red dashedline).
As we have considered a mean-field description that does not take
space into account, there is no proper pattern-only wavelength
selection.

We observe in Extended Data Fig. 3e that the fluxJ,,,=/" +/ (black
curveininset) is constantand nonzerofor1<n<N.In1D, the existence
of a steady state is equivalent to a constant flux. (Note that certain
models of aggregation-fragmentation may exhibit oscillations, that
is, limit cycles instead of fixed points™**'). The total flux can be decom-
posed into the forward flux J* associated with reactions with rates k;',
and the backward flux/~ associated with reactions with rates k,, respec-
tively, defined in equations (31) and (32), and plotted in Extended Data
Fig.3e (red and blue curves, respectively).

In Extended Data Fig. 3h, we analyse the initial value problem
obtained by setting/;, =/, = 0 in equation (29). An exact solution of
this model is given in the Supplementary Information. Wavelength
selection may occur, although there is no net flux. This can be com-
pared with the arrest of coarsening that can arise in mixtures and
similar mass-conserving systems, even if the mass is not injected
and removed from the system**-115¢"158 'We also observe that wave-
length selection occurs only when the total number of monomers
is large enough, which is reminiscent of what happens in so-called
beam self-cleaning in optics, in which light in an optical waveguide
at sufficiently high power may undergo a nonlinear redistribution of
the mode powers that favours the fundamental, similar to an inverse
cascade™’,

Equation (29) describes the mean-field dynamics of the reactions
(28). To check whether the effect s still present beyond mean field, we
solve the corresponding Doob-Gillespie kinetic Monte Carlo problem
using the package Catalyst.jl (refs. 153,160). The result of the simula-
tionisshownin Extended DataFig.3g, and compared with mean-field
simulations, with excellent agreement.

Finally, we discuss the rate of entropy production in the system. To
doso, itis convenient to introduce the rates k""" = k,/2and k"= k .,
tomatch thenotations used in the literature on chemical reaction net-
works™ 1% We identify the forward and backward fluxes correspond-
ing to the reaction with rates k*"as J ™" = k+‘"c,2, and/"=k""c,,;. The
rate of entropy production corresponding to the reaction is then
G,=(J"" ="M log(J*"})~") (refs. 161-164). We can then evaluate this
quantity and the total rate of entropy production 6=} , 6, from the
steady-state distributions c, obtained numerically (Extended Data
Fig. 3f). The rate of entropy production vanishes when the system is
isolated (J;, =/,..= 0), and increases as a function of the flux going
throughthe system (whichis equalto/,,aslongasthereisastationary
state).

Data availability

The data generated during the course of this study is available on
Zenodo at https://doi.org/10.5281/zenod0.10371195 (ref. 165).
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Code availability

The code used for processing the data, generating the figures and for
the mass cascade and Rossby wave simulations as well as an execut-
able for the DNS are available on Zenodo (https://doi.org/10.5281/
zenodo.10371195) under the 2-clause BSD licence (ref. 165).
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Extended DataFig.1|Arrest of turbulent cascadesin numerical simulations.

(a) Thetotal energy flux I(k) isdecomposed into heterochiral ... (k) and
homochiral ,,,,,(k) components for direct cascading cases (i,ii) and inverse
cascading cases (iii,iv). The cases without odd viscosity (i,iii) are compared to
the cases with odd viscosity vyqq/v =255 (ii) and v,44/v = 212 (iv). Odd viscosity
enhances the homochiral manifold that predominantly cascadesinversely,
whichisinturnbalanced by anincreased heterochiral flux. For theinverse
cascading cases thisleadstoafluxloop condensate state with vanishing net
flux. In (iii, iv) hyperdissipationis used to mimic increased scale separation.
Seealso the section Helical decompositionin theSl. (b) The anisotropickinetic
energy spectrum E(k,, k,) with odd viscosity normalized by the case without
odd viscosity Ey(k,, k,) for the forward cascading case with v,44/v =255 (top
panel) and the inverse cascading case with v,44/v =212 (bottom panel). Both
panelsindicate theregionsin k-space where the energy condensation due to
odd viscosity occurs. (c) Inorder todetermine the characteristic wavelengths

inthe vorticity field for the direct cascading case, we compute the vorticity
spectrum ||@(k)||? as k2E(k). Without odd viscosity, the maximum of the spectrum
isclosetothe dissipative scale. When odd viscosity is present, a stronger peak
emergesinthe spectrumasaconsequence of the spectral condensation at
intermediate scales, evidencing the wavelength selection. (d) Thelozenges
givethe value of h = E(k.)/E,(k.) obtained from the numerical simulations, and
are compared with the predicted scaling i« (v,44/v)"/> (black dashed line).

(e) Wedemonstrate the kinetic energy spectrum E(k) for the case of asharp
transition fromadirectcascadeatsmall ktoaninverse cascadeatlargek,
modeled asastep function of odd viscosity, stepping at Eodd (orange), compared
tothe case without odd viscosity (black). Here, © is the Heaviside step function.
The sharp transition leads to asharp condensation at k= k,44and a diffusive
equipartitioned scaling <k to the left of it. The resulting patternin , is shown
in (f), with typical wavelength IE;I = /Z;Qd inboth the horizontal and vertical
directions. See also the section Odd hyperviscosityinthe SI.
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Extended DataFig. 2| Rossby/drift wave turbulence. Simulations of Eq. (27)
describing Rossby/drift wave turbulence demonstrates one-dimensionalization
ofthe 2D flow and the appearance of a pattern with characteristic scale given
by the Rhines scale 1/kz*"*'?7, Each column shows, from top to bottom: (i) the
vorticity averaged along they direction at final time, (ii) the vorticity field at
final time, (iii) the power spectrum of the vorticity averaged over the last 1/6 of
thesimulationand (iv) the k, average of this quantity. The equationisintegrated
using the pseudospectral solver Dedalus®® onaL x L square domain with size

L =2mndiscretized with N=256 Fourier harmonics per dimension using a

3rd-order 4-stage Diagonally Implicit/Explicit Runge-Kutta scheme (RK433in
Dedalus)*® with anadaptive timestep for 1500 simulation time units. The
forcingistakentobeaGaussianrandom field concentrated onaringof radius
ky=28 (red line) and bandwidth k;, =1.5 (light red rectangle) in Fourier space,
scaled by the forcing rate e = 0.001. We take alinear drag a = 0.01, a viscosity
v=0.00001.The S parameteris(a) =0, (b) =20, (c) =40, (d) =80, leading
to the measured values of the Rhines wavenumber kz=1/2,/8/U,,,s givenin
thefigure (bluelinein the bottom plots) inwhich U, is obtained from the
measured energy spectrum.
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Extended DataFig. 3 |See next page for caption.

n = logy(m.,/my)



Extended DataFig. 3 | Minimal model of mass cascade with scale selection.
(a) Inthe model, two clusters M, of size 2" can merge into a cluster M,,,, of size
2" This aggregation process occurs witharate k.. Conversely, a cluster M,,,,
cansplitinto two clusters M, (except for monomers M,). This fragmentation
processoccurswitharatek,,,.(b) Therates kﬁ ofaggregation/fragmentation
depend onthesize of the cluster, sothat (i) large clusters are more likely to
fragment that small ones (blue curve) and (ii) small clusters are more likely to
aggregate thanlarge ones (red curve). (c-e) Equations (29) are numerically
solved starting from the initial condition ¢, = O for alln. We have set k5 =2and
ki=1,aswellas},, =/, =1. The number distribution c,is plottedin panel c,
while the mass distribution p, = 2""'m,c, (normalized by its maximum value) is
plottedin panel d.In panel e, we show the fluxes J} (red) and J;, (blue) defined
inEgs. (31)-(32). Theinset of panel e shows the total flux J, =/}, +/,, whichis

constantaway from the boundaries. (f) Entropy productionin the mass cascade.

We plot the rate of entropy production (computed within the mean-field

model) as afunction of the fluxJ;, through the system, in logarithmicscale.
(Asthedistributionisstationary, thereis a constant flux equal to the input flux).
Wehaveset N=15,k5=0.1, k;=1,J,,. =1and ¢,(t = 0) = O for all n. (g) Comparison
between mean-field and Monte-Carlo simulations. The red curve (labelled
ODE) shows the mean-field solution of Eq. (29), while the blue curve (labelled
MC) shows the solution of the kinetic Monte-Carlo simulations (average

plus or minus halfastandard deviation over 1000 samples). We have set
N=15,k3=0.1, k7 =1,Jin =Jouc =1and c,(¢=0) = O for all n. (h) Equations (29) with
noinfluxand outflux (J;, = /o, = 0) are numerically solved starting from the
initial condition with only monomersc,(t = 0) = ¢,(0)d,,,, with different values
ofthe number of monomers c,(0). We observe that (i) a peak in the steady-state
distribution only arises when the initial number of monomers c,(0) is large
enough and (ii) the position of the peak moves as ¢,(0) increases. We have set
kp=2and k;=1.
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