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Pattern formation by turbulent cascades

Xander M. de Wit1,6, Michel Fruchart2,3,6, Tali Khain3, Federico Toschi1,4 ✉ & Vincenzo Vitelli3,5 ✉

Fully developed turbulence is a universal and scale-invariant chaotic state 
characterized by an energy cascade from large to small scales at which the cascade is 
eventually arrested by dissipation1–6. Here we show how to harness these seemingly 
structureless turbulent cascades to generate patterns. Pattern formation entails a 
process of wavelength selection, which can usually be traced to the linear instability of  
a homogeneous state7. By contrast, the mechanism we propose here is fully nonlinear.  
It is triggered by the non-dissipative arrest of turbulent cascades: energy piles up at an 
intermediate scale, which is neither the system size nor the smallest scales at which 
energy is usually dissipated. Using a combination of theory and large-scale simulations, 
we show that the tunable wavelength of these cascade-induced patterns can be set by a 
non-dissipative transport coefficient called odd viscosity, ubiquitous in chiral fluids 
ranging from bioactive to quantum systems8–12. Odd viscosity, which acts as a scale- 
dependent Coriolis-like force, leads to a two-dimensionalization of the flow at small 
scales, in contrast with rotating fluids in which a two-dimensionalization occurs at large 
scales4. Apart from odd viscosity fluids, we discuss how cascade-induced patterns can 
arise in natural systems, including atmospheric flows13–19, stellar plasma such as the 
solar wind20–22, or the pulverization and coagulation of objects or droplets in which 
mass rather than energy cascades23–25.

Fully developed turbulence is a highly chaotic non-equilibrium state in 
which energy is transferred across scales through a nonlinear mecha-
nism known as a turbulent cascade1–6. Although cascades occur in 
diverse contexts ranging from optical fibres to solid plates26–29, their 
most iconic manifestation is in fluids. Heuristically, large eddies, typi-
cally created by the injection of energy at macroscopic scales, break 
up into smaller and smaller eddies. This energy transfer towards small 
scales, called a direct or forward cascade, is eventually arrested by dis-
sipation (Fig. 1a). Away from the scales at which energy is injected and 
dissipated, turbulence is universal and scale invariant.

We start with the almost paradoxical question of whether turbulence 
can be harnessed to generate patterns. Our approach to tackle this task 
rests on the simple observation that different classes of turbulent cas-
cades exist4. For example, turbulence in two-dimensional (2D) and rotat-
ing fluids has a tendency to transfer energy towards larger scales in what 
is known as an inverse cascade (Fig. 1b). Here we consider what happens 
when a direct cascade is combined with an inverse cascade as shown in 
Fig. 1c. Energy is transferred to an intermediate length scale kc

−1 (k are 
wavenumbers, so their inverses are lengths) both from smaller and larger 
scales, depending on where energy is injected. As energy accumu-
lates around that scale, structures emerge with characteristic size kc

−1,  
which is neither the size of the system nor the smallest scales at which 
dissipation typically occurs. This spectral condensation at intermediate 
scales requires the mechanism responsible for arresting both cascades 
to be non-dissipative. As we shall see, nature has found an elegant solu-
tion to this problem: a viscosity that does not dissipate energy9,12,  
variously known as odd viscosity8, Hall viscosity10 or gyroviscosity11.

Before exploring potential realizations, let us compare and contrast 
this scenario with the textbook picture of pattern formation 

represented in Fig. 1d. In its simplest form, pattern formation originates 
from the linear instability of a homogeneous system: the length scale 
kc

−1, corresponding to the maximum of the growth rate σ(k), is selected 
because the corresponding mode grows faster, and sets the character-
istic size of the emerging pattern. Although nonlinearities are impor-
tant in saturating the growth and selecting the precise shape of the 
pattern, they play only a part once the linear instability has set in. This 
linear mechanism is at play in many areas of science7,12. By contrast, in 
the mechanism shown in Fig. 1c, it is the nonlinear interaction between 
modes that gives rise to the turbulent cascade.

To realize the mixed cascade of Fig. 1c, we first need to turn a 
direct cascade into an inverse cascade. This can be achieved by 
simply rotating the fluid at high velocities2,4, as shown in Fig. 2. 
The Coriolis force fΩ = 2ρv × Ω (where v(t, x) is the velocity field, ρ 
is the density, Ω is the rotation vector and × is the vector product) 
tends to align vortex lines with the rotation axis, without inject-
ing or dissipating energy. As the rotation speed increases, the vor-
tex tangle becomes more and more polarized, which induces a 
two-dimensionalization of the flow. This prevents vortex stretching 
and leads to an inverse energy cascade similar to the case of 2D flu-
ids. Eventually, the energy condenses into two vortices of opposite 
vorticity. As the inverse cascade proceeds all the way to the largest 
scales, this condensation occurs only at the size of the system (Figs. 1b  
and 2b,c).

Turbulence with odd viscosity
For our purposes, we need an inverse cascade at small scales 
(large wavevectors) only (Fig.  1c). This could be produced by a 
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scale-dependent version of the Coriolis force that would involve gra-
dients of the velocity, in a way similar to a viscosity term, so that it is 
negligible at large scales. To do so, we consider a situation in which 
rotation is induced at microscopic scales, for instance by spinning 
particles large enough to be inertial (Fig. 2e). It turns out that such a 
system has an antisymmetric part in its viscosity tensor ηijkℓ ≠ ηkℓij, known 
as odd viscosity. Like the Coriolis force, the antisymmetric, or odd, 
part of the viscosity tensor does not contribute to energy dissipation 
or injection as it drops out from the energy balance equation30. Odd 
viscosities arise in various experimental systems breaking time-reversal 
and inversion symmetry at the microscopic scale8,9, including mag-
netized polyatomic gases31, magnetized graphene10 and active  
colloids32.

To mathematically account for the effect of odd viscosity, we con-
sider a simple extension of the Navier–Stokes equations

D P ν ν t∇∇= − + Δ + × Δ + ( , ) (1)t zoddv v e v f x

with the incompressibility condition ∇ ⋅ v = 0. Here, Dt = ∂t + v ⋅ ∇ 
is the convective derivative and f is an external forcing represent-
ing energy injection, P is the pressure, ν = η/ρ is the familiar shear 
viscosity, νodd = ηodd/ρ is a particular combination of odd viscosities 
(see Supplementary Information for the general case) and ez is the 
unit vector along z (the direction set by the magnetic field or rota-
tion axis). Equation (1) can be seen as a nonlinear diffusion equation 
for momentum with an antisymmetric cross-diffusion coefficient 
νodd. The resulting odd viscosity term νoddez × Δv (or −νoddk2ez × v(k) in 
wavenumber space) can be seen as a scale-dependent Coriolis force. 
Both are non-dissipative and anisotropic (Methods). The additional 
Laplacian ensures that the action of νodd vanishes for small wave-
numbers, as needed to arrest the turbulent cascade at intermediate  
scales.

 
Two-dimensionalization  by odd waves
Direct numerical simulations of the Navier–Stokes equations (Meth-
ods) in Fig. 2 confirm that strong odd viscosity fluids can exhibit fea-
tures similar to quickly rotating fluids such as Taylor columns and 
quasi-two-dimensionalization2 (compare Fig. 2a–c with Fig. 2e–g). 
The two-dimensionalization of the flow can be heuristically justified 
using a generalization of the Taylor–Proudman argument to odd flu-
ids, where the convective term is neglected, and which yields ∂zΔv = 0  
(Supplementary Information).

To account for the role of the convective term, we now turn to the 
analysis of the nonlinear energy transfer, which governs the redistribu-
tion of energy among scales2,4. The distribution of energy among scales 
is described by the energy spectrum v k kE k t t( , ) = ⟨ ( , ) ⟩ k k

1
2

2
≤ < +1 

averaged over a spherical shell. Its evolution is captured by the energy 
balance equation ∂tE = − T − νk2E + F, in which F represents the forcing 
and T the nonlinear energy transfer between scales.

As odd viscosity is non-dissipative, it does not act as an energy 
source or sink. However, it has an indirect effect on the energy trans-
fer, because it induces waves in the fluid, that oscillate at a frequency 
ω(k) = ±νoddkz∣k∣ (Fig. 2h and Supplementary Information). The transfer 
described by T arises through interactions between three modes with 
wavenumbers k, p and q that satisfy k + p + q = 0 (called a triad; Fig. 2d, 
inset). Because of the odd waves described above, the different modes 
in a triad quickly go out of phase with each other. This suppresses the 
nonlinear energy transfer, except for modes with kz = 0, which all have 
ω = 0 (Fig. 2h, blue line) and therefore do not decorrelate. These 2D 
modes form a so-called slow (or resonant) manifold that contributes 
to most of the nonlinear energy transfer, giving rise to an inverse 
cascade. This can be seen from the expression of the energy transfer  
T ∝ ei[ω(k)+ω(p)+ω(q)] t (see the Methods for details; recall that the time aver-
age of eiωt vanishes when ω ≠ 0).
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Fig. 1 | Cascade-induced pattern formation. a, Direct energy cascade: in a 
turbulent 3D fluid, energy injected at large scales (red arrow) is transferred to 
smaller and smaller length scales (black arrows) to microscopic length scales  
in which dissipation occurs (blue arrow), as captured by the so-called energy 
spectrum E(k), which describes how much kinetic energy is contained in modes 
with wavenumber k. The energy transfer across scales can be traced to vortices 
breaking up into smaller and smaller vortices up to dissipative scales. This 
mechanism is intrinsically nonlinear: it relies on triadic couplings between the 
modes of the system. b, Inverse energy cascade: in a turbulent 2D fluid, or in a 
rotating 3D fluid, there is instead a transfer of energy from the scale in which 
energy is injected (red arrow) to larger and larger scales, and the energy is 
either dissipated or piles up at the largest scale available (blue arrow), the size 
of the system. Correspondingly, vortices merge together until only a single 

positive vortex and a single negative vortex remain, both of which have 
approximately half the size L of the system. Inverse cascades can also arise in 3D 
from mirror symmetry breaking4,55,56 or by imposing large-scale shear57. c, In a 
hypothetical situation in which a direct cascade and an inverse cascade can  
be put together in the right order (black arrows in the figure), energy will be 
transferred to an intermediate length scale kc

−1, leading to the appearance of 
structures with a characteristic size kc

−1 independent of the size L of the system. 
This nonlinear wavelength selection mechanism relying on combined turbulent 
cascades can be seen as an instance of pattern formation. d, Standard pattern 
formation from a linear instability: the wavelength kc

−1 corresponding to the 
most unstable linear mode (that is, the one with the largest growth rate σ(k)) is 
selected. As an example, we have shown the coat pattern of a cat.
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Scaling theory of the arrested cascade
In a turbulent flow, the lifespan of a typical eddy is called the turnover 
time τE, and its inverse is called the eddy turnover frequency. The pro-
cesses transferring energy across scales occur over a few turnover 
times. To assess whether odd waves suppress the energy transfer, we 

compare the eddy turnover frequency τE
−1 with the frequency ω(k)  

of odd waves. Assuming kz ≈ k (motivated by the isotropization at  
small k), we look for the scale kodd such that ω k k τ k k( = ) = ( = )odd E

−1
odd  

(Fig. 2l). We estimate the eddy turnover frequency τ kv k ϵ= ∝kE
−1 2/3 1/3 

from the rate of dissipation of energy at small scales ϵ using the Kol-
mogorov scaling valid at k ≪ kodd, and find
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Fig. 2 | Rotating versus odd turbulence. a–n, We compare turbulence in a 
fluid rotating with high frequency Ω (a–d and i–k) and a fluid with high odd 
viscosity (e–h and l–n). a–h, Both fluids are characterized by a rotation 
direction Ω (along z), making them anisotropic and chiral. The rotation is  
global in rotating fluids (a). It is induced at microscopic scales in odd fluids, for 
instance, by particles that all spin in the same direction Ω (e). In both cases, the 
flow becomes 2D, with column-like structures aligned with Ω, as seen in the 
kinetic energy (b,f) and the z-averaged vertical vorticity ω⟨ ⟩z z  (c,g) obtained 
from simulations. The two-dimensionalization originates from the decorrelation 
by waves in the fluid (inertial waves in d and odd waves in h) of the triads by which 
energy transfer occurs (d, inset). Modes with kz ≠ 0 have finite frequencies (red 
lines) and quickly decorrelate, whereas modes with no vertical variation (kz = 0, 
blue lines) all have ω = 0. i–n, To predict the direction of the cascades (black 
arrows), we compare the inverse frequency of waves with the time over which 
energy transfer takes place (the eddy turnover time τ k∝ 2/3

E
−1 ). In rotating fluids (i),  

the flow is quasi-2D at small wavenumbers (blue region) and isotropic (3D)  
at large wavenumbers (once τ > ΩE

−1 , red region). In odd fluids (l), we expect the 
flow to be quasi-2D at large wavenumbers (blue region) and isotropic at low  
k (once τ τ>E

−1
odd
−1 , red region). The crossover point defines a characteristic  

scale kodd, in analogy with the Zeman scale k Ω in rotating fluids. We sketch 
cascades in the energy spectra when the injection scale is smaller ( j,m) and 
larger (k,n) than the characteristic scale. In rotating fluids, there is a direct 
cascade of energy above the rotation (Zeman) scale ( j) and an inverse cascade 
below (k). This situation is known as a split cascade4. In odd fluids, we  
expect the situation to be reversed: energy cascades directly for wavenumbers 
below kodd (n) and inversely above (m), causing a pile-up of energy at the odd 
viscosity length scale and arresting both cascades. The pile-up is saturated  
by viscous dissipation, leading to a bump in the energy spectrum at another 
scale kc.
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When k ≫ kodd, the effect of odd viscosity is important: the contribution 
of 3D triads to the energy transfer averages to zero over the lifespan of 
a typical eddy, and we expect quasi-2D behaviour. By contrast, when 
k ≪ kodd, the effect of odd viscosity is negligible and we expect normal 
3D behaviour. This is summarized in Fig. 2l. As a consequence, both a 
direct and an inverse cascade are arrested when they approach the odd 
viscosity wavenumber kodd, because of the inherent tendency to cascade 
in the opposite direction beyond that wavenumber (Fig. 2m,n). The 
direct cascade dominates when energy is injected below kodd (Fig. 2n), 
whereas the inverse cascade dominates when energy is injected above 
kodd (Fig. 2m).

Figure 2 compares the cases of odd and rotating fluids. In the case of 
rotating turbulence4,33–36, odd waves are replaced by so-called inertial 
waves with dispersion ωΩ(k) = ±2Ω × k/k (Fig. 2d), and the scale kodd is 
replaced by the so-called Zeman scale kΩ = Ω3/2ϵ−1/2 (refs. 37,38). Compar-
ing Fig. 2i with Fig. 2l shows that, crucially, the order of the 3D direct 
cascade and the quasi-2D inverse cascade are permuted in rotating 
and odd fluids. As a consequence, the fluxes are convergent in the case 
of odd turbulence, whereas they are divergent in the case of rotating 
turbulence, and the pattern formation effect is thus observed only in 
the former scenario.

Wavelength selection in the energy spectrum
We now refine the intuitive picture in Fig. 1c and show that two length 
scales, rather than a single one, are implicated in cascade-induced 
pattern formation. To do so, we develop a scaling theory based 
on dimensional analysis33,37,39–42, focusing on the case in which 
energy is injected at large-scale kin < kodd and the direct cascade  
dominates.

As the cascade is generated by nonlinear triadic interactions, we 
expect that it is related to the corresponding correlation time τ3(k). 
Assuming energy conservation and locality in the scale of the cascade, 
dimensional analysis leads to E k C ϵ τ k k( ) = [ / ( )]3

1/2 −2  in which C is a 
constant39,40,42.

In the absence of odd viscosity, or when it is negligible (k ≪ kodd), the 
only time scale available is the eddy turnover time τ k kv( ) = [ ] =kE

−1  
k E k( )−3/2 −1/2 , leading to the Kolmogorov spectrum

E k ϵ k k k( ) ∝ ( ≪ ). (3)2/3 −5/3
odd

When odd viscosity is dominant (k ≫ kodd), the relevant time scale is 
given by the frequency of odd waves ω(k) = νoddk2 (again, we assume 
kz ≈ k), leading to

E k ϵ ν k k k( ) ∝ ( ≫ ). (4)1/2
odd
1/2 −1

odd

As a point of comparison, the relevant time scale is Ω−1 in rotating tur-
bulence, so this argument leads to a different scaling E ∝ k−2 (refs. 33,40).

The preceding argument shows that the cascade starts to get arrested 
when it reaches kodd, leading to an amplification of the modes with 
wavenumbers k > kodd. The relative amplification due to odd viscosity 
can be described by the ratio between the modified spectrum E(k) 
given by equation (4) and the Kolmogorov spectrum E0(k) given by 
equation (3) that would occur in the absence of odd viscosity. Ignoring 
first the effect of dissipation, this yields E/E0 = 1 for k ≪ kodd and 
E E k k/ ∝ ( / )0 odd

2/3 for k ≫ kodd. As energy piles up at wavevectors larger 
than kodd, it is eventually saturated by viscous dissipation, leading to a 
maximum in E/E0 after which the spectrum decays dissipatively.

By balancing energy injection and viscous dissipation, we can find 
the position kc of the maximum as (see Methods)

k ϵ ν ν∝ . (5)c
1/4 −1/2

odd
−1/4

The magnitude of the spectral condensation can be estimated as 
the height of the peak E k E k ν ν( )/ ( ) ∝ ( / )c 0 c odd

1/3. The ratio νodd/ν thus  
controls the height of the peak. According to kinetic theory calcula-
tions corroborated by experimental measurements, this ratio increases 
linearly with the time-reversal breaking field (for example, the spinning 
speed in Fig. 2e or the applied magnetic field; see Methods).

The overall picture, summarized in Fig. 2n, involves the two length 
scales kodd and kc defined in equations (2) and (5). As the direct cas-
cade (black arrow) approaches kodd (purple dashed line), it is gradually 
arrested: the rate of energy transfer from scale to scale decreases as 
k increases. This leads to the condensation of kinetic energy in wave-
numbers k > kodd. In turn, the amplification of these modes leads to an 
increase in viscous dissipation, and the energy spectrum exhibits a 
maximum deviation from the Kolmogorov spectrum at a characteristic 
wavenumber kc (blue dashed line).

Simulations of the odd Navier–Stokes equations
To put this scenario to test, we numerically integrate the Navier–Stokes 
equation (1) using a parallelized pseudo-spectral solver (Methods).  
In a normal fluid, eddies of all sizes can be found in the statistical 
steady state (Fig. 3a). In the presence of odd viscosity, the turbulent 
state selects a dominant scale, as shown in the visualizations of the 
vorticity field in Fig. 3b. The features manifest as vertically aligned, 
intermediate scale structures, as expected from the quasi-2D nature of  
the system. A direct cascade occurs when energy is injected at large 
scales (kin < kodd). As predicted, we find that this turbulent cascade 
is arrested because of odd viscosity. This can be seen from the net 
flux of energy Π k T k( ) = ∑ ( ′)k k′< , which gradually decays as k passes 
kodd (Fig. 3c, inset).

This gradual arrest of the cascade near kodd leads to spectral con-
densation at intermediate scales. Quantitatively, the spectral conden-
sation and wavelength selection can be better appreciated from the 
relative energetic amplification of each mode E(k)/E0(k) shown in 
Fig. 3d. Rescaling the wavenumbers by kodd (Fig. 3e), we observe an 
approximate collapse of the curves compatible with the scaling pre-
dicted in the previous paragraph. The condensation peaks around a 
wavenumber kc, which we can compare quantitatively with our scaling 
prediction equation (5) (Fig. 3d, inset). An extension of our scaling 
theory taking into account the anisotropy of the flow (Methods) reveals 
the visual meaning of the two length scales involved in cascade-induced 
patterns: kc

−1 manifests predominantly in the horizontal direction, 
whereas the typical vertical scale is mainly given by kodd

−1  (Fig. 3b, black  
arrows).

Flux loops and helicity conservation
When energy is injected at kin > kodd (Fig. 3f–i), we expect an inverse 
cascade to be arrested by odd viscosity. This is the case, as evidenced 
by snapshots of the steady state, that exhibit scales larger than the 
injection scale (Fig. 3g). In contrast with the case of the arrested direct 
cascade, here energy gets piled up at large scales, in which viscous 
dissipation is not an effective saturation mechanism. Instead, what 
prevents energy blow-up is a mechanism known as flux-loop cascade4: 
energy goes from the small injection scale to large scales and then back 
to even smaller scales where it is dissipated. To see that, we decompose 
the energy flux into heterochiral (red) and homochiral (blue) channels, 
that correspond, respectively, to triads with different or same signs of 
helicity. Helicity is the volume integral of v ⋅ ω, where ω = ∇ × v is the 
vorticity, and it is an invariant of the inviscid Navier–Stokes equation. 
The conservation of helicity is not affected by odd viscosity (Methods). 
As shown in Fig. 3i, the heterochiral flux (red) tends to cascade directly, 
whereas the homochiral flux (blue) tends to cascade inversely. Below 
the injection scale, both fluxes cancel exactly, leading to a vanishing 
net flux (grey line). In the case of the inverse cascade, the resulting 
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Fig. 3 | Odd waves induce wavelength selection and flux loops. a–i, We 
perform direct simulations of the Navier–Stokes equation without and with 
odd viscosity. In a–e, energy is injected at wavenumbers kin < kodd and the  
direct cascade dominates. In f–i, kin > kodd and the inverse cascade dominates. 
a,b, Slices of the in-plane component ωx of the vorticity with kin < kodd. Without 
odd viscosity (a), vortices of all sizes are present. With odd viscosity (b, in 
which νodd/ν = 255), characteristic horizontal and vertical scales kc

−1 and kodd
−1  

emerge (black arrows). This wavelength selection originates from the arrest  
of the direct cascade near kodd. c, Energy spectrum E(k) and flux Π(k) (inset) 
obtained from simulations, for different values of odd viscosity (legend in e). 
Energy flows from the injection scale kin (red arrow) towards larger k, as 
evidenced by the positive energy flux Π(k). The cascade is progressively 
arrested near kodd and energy piles up, triggering viscous dissipation. d, The 
relative energetic amplification and/or attenuation due to odd viscosity is 
measured by the compensated spectrum E(k)/E0(k) (where E0(k) is the energy 

spectrum without odd viscosity), which peaks at a scale kc (diamonds). The peak 
position kc decreases as odd viscosity increases (inset), as predicted by scaling 
arguments (dashed line; see equation (5)). e, Plotting the compensated spectra 
against k/kodd confirms that condensation begins near kodd (blue arrow) and 
follows the scaling prediction (dashed line; see equations (2)–(4)). f,g, Slices of 
the in-plane velocity component vx when kin > kodd. We visualize vx instead of ωx 
to emphasize the large scales. Without odd viscosity (f), structures of all scales 
are present, dominated by the injection scale. With odd viscosity (g, in which 
νodd/ν = 212), secondary features with larger sizes appear because of the arrest 
of the inverse cascade. h, Energy spectrum E(k) and flux Π(k) obtained from the 
simulations (diamonds indicate kodd). i, The inverse cascade is arrested by a 
flux-loop mechanism, as evidenced by a decomposition of the flux in homochiral 
(blue) and heterochiral (red) channels that correspond, respectively, to triads 
with different or same signs of helicity. In i, we have used hyperdissipation in 
the simulations to highlight the flux loop (Extended Data Fig. 1a iv).
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pattern is less visible than in the direct cascade, because the energy is 
deposited over a more broadband range kodd < k < kin.

Pattern-induced cascades beyond odd fluids
Our analysis demonstrates that the non-dissipative arrest of turbulent 
cascades provides a mechanism of wavelength selection. The decor-
relation of triads by waves and the subsequent emergence of a resonant 
manifold are not unique to odd fluids (Fig. 4).

In 2D atmospheric flows and confined plasmas, for instance, Rossby 
waves (also called drift waves) are at the origin of the arrest of an inverse 
cascade (Fig. 4b), at a scale kRh known as the Rhines scale13–19. This leads 
to the appearance of a pattern with characteristic scale kRh accompa-
nied by a one-dimensionalization of the flow (Extended Data Fig. 2), 
eventually leading to mean flows known as zonal flows. Other waves, 
such as gravity waves in stratified flows, can play a similar part44,45. In 
contrast with the case of odd waves in 3D, there is no arrested direct 
cascade in these (quasi-)2D systems. In space plasma such as the solar 

corona (Fig. 4c), the existence of a ‘helicity barrier’ leading to the arrest 
of cascades has been proposed and traced to the change of nature 
of inviscid invariants. This mechanism is enabled by the existence of 
additional degrees of freedom in magnetohydrodynamics (MHD) com-
pared with standard hydrodynamics. In the case of odd turbulence, 
the only inviscid invariants are energy and helicity (Methods), exactly 
as in standard turbulence. Beyond fluids, a weak turbulence theory 
for odd waves could also be applied, for instance, to optical or elastic 
turbulence26–28. In this case, arbitrary dispersion relations could be 
designed using metamaterials9,43, for example, by using a combination 
of so-called odd and even elastic moduli, which replace viscosities in 
elastodynamics9.

Scale selection by mass cascades
Cascade-induced patterns can also occur in systems in which it is mass 
rather than energy that cascades (Fig. 4d). Mass cascades can, for 
instance, take place in the pulverization of objects into debris or the 
coalescence and breakup of droplets23,25. In this context, a cascade- 
induced scale selection would manifest in the selection of objects with 
a preferred scale that is neither the largest nor the smallest possible 
size. The existence of a steady state with such a characteristic scale can 
be observed in situations ranging from rain formation24 and smoke 
aerosols25 to active mixtures46–51. In the Methods, we present a minimal 
model of scale selection in the steady state of a mass cascade, in the 
spirit of shell models of turbulence52. The key idea is that large droplets 
(or clusters) tend to break up, whereas small ones tend to coalesce, 
similar to vortices in odd fluids: the rate of aggregation wk

+ increases 
with k (Fig. 4d, red curve), whereas the rate of fragmentation wk

− 
decreases (blue curve). This can be captured within a population bal-
ance model that we analyse in the Methods using numerical simulations 
and analytical solutions. As shown in Extended Data Fig. 3, a preferen-
tial scale, that is neither the largest nor the smallest droplet size, 
emerges from the balance between these two physical processes, which 
play a similar part as the homochiral and heterochiral channels in odd 
fluid turbulence. This kind of scale selection can also occur in closed 
systems in which mass is neither injected nor removed (that is, with  
no net flux), such as in the arrested or interrupted coarsening of  
mixtures46–51.

Conclusion
We have developed a theory of turbulent cascades modified by odd 
waves that captures how nonlinear scale selection emerges because of 
the arrest of the 3D direct and inverse cascades. Our work highlights 
the impact of waves in the fluid on eddy turbulence. Beyond fluid tur-
bulence, similar mechanisms of scale selection may occur in domains 
ranging from wave turbulence in parity-violating optical media or solids 
with odd elasticity to mass cascades as well as cascades that occur in 
the time domain53,54.
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Methods

Direct numerical simulations of the Navier–Stokes equation 
with odd viscosity
Direct numerical simulations of the Navier–Stokes equation with odd 
viscosity (equation (1)) are performed in a cubic box of size L = 2π with 
periodic boundary conditions (such that the smallest wavenumber is 
2π/L = 1). Our results can be reproduced with any Navier–Stokes solver 
by including a modified Coriolis term modulated by k2 (or, equivalently, 
by a vector Laplacian for real-space-based methods) to account for 
odd viscosity. We use a pseudo-spectral method with Adams–Bashforth 
time-stepping and a 2/3-dealiasing rule58. Both normal and odd vis-
cosities are integrated exactly using integrating factors. The forcing 
f(t, k) acts on a band of wavenumbers k ∈ [kin, kin + 1] with random 
phases that are delta-correlated in space and time, ensuring a constant 
average energy injection rate ϵ = ⟨u ⋅ f ⟩. It has a zero mean compo-
nent ⟨f(t, k)⟩ = 0 and covariance f k f k k kt t ϵδ t t δ⟨ ( , ) ⋅ ( ′, ′)⟩ = ( − ′) ( − ′). 
The time-step is chosen to resolve the fastest odd wave with frequency 
τ ν k=odd,max

−1
odd max

2 , where kmax is the highest resolved wavenumber in 
the domain. We find that stable integration requires a time-step 

≲t τΔ 0.1 odd,max. A complete overview of the input parameters for the 
simulations in this work is provided in the Supplementary Information. 
Approximately 3 million CPU hours were required to perform the 
simulations underlying this work.

Effect of odd waves on the nonlinear energy transfer
In this section, we describe how the waves induced by odd viscosity 
(odd waves) affect the nonlinear energy transfer. Our analysis closely 
follows that of rotating turbulence2,4,36,59.

Nonlinear energy transfer. Fourier-transforming the Navier–Stokes 
equation, multiplying with v*(t, k) (where the asterisk denotes complex 
conjugation), and adding the complex conjugate, we find the energy 
balance equation2,4

E νk E T F∂ = − 2 − + (6)t
2

where ν = η/ρ is the kinematic viscosity, and in which

∑T t v t P q v t v t( , ) = Im ( , ) ( ) ( , ) ( , ). (7)i ij j
00+ + =

k k k p q
k p q

∗
ℓ ℓ

∗ ∗

This term describes the nonlinear energy transfer between scales, 
whereas F = v* ⋅ f corresponds to energy injection by the forcing term 
f. The term −2νk2E represents standard viscous dissipation. In equa-
tion (7), the sum runs on momenta p and q such that k + p + q = 0, and 
Pij(k) = δij − kikj/k2 is the projector on incompressible flows.

At first glance, equation (6) is left unchanged by odd viscosity, 
because of its non-dissipative nature. However, odd viscosity has 
indirect effects on the energy transfer (in the same way as the non- 
dissipative Coriolis force has an indirect effect on the energy transfer 
in rotating turbulence).

Odd waves. To see that, we first consider the linear and inviscid limit 
of the Navier–Stokes equation (1) (so we set ν = 0 and (u ⋅ ∇)u = 0). As 
detailed in the section ‘Linear stability of the fluid and odd waves’ of 
the Supplementary Information (in which we consider a more general 
odd viscosity tensor), this equation has wave solutions of the form

v x h k k k xt( , ) = ( ) e + c.c. (8)ω t± i ( ) +i ⋅±

in which h±(k) = e(k) × (k/k) ± ie(k) with ̂ ̂( ) = × / ×z ze k e k e k  (ref. 60) 
with frequency

kω ν k k( ) = ± . (9)z± odd

Taking into account normal viscosity leads to an additional expo-
nential decay of the waves with the rate −νk2 (Supplementary Informa-
tion). In particular, we note that the linearized Navier–Stokes equation 
does not exhibit any linear instability. By construction, k ⋅ h±(k) = 0, 
so these modes represent incompressible flows. Furthermore, 
h k h k( ( ))* ⋅ ( ) = 0+ −  and h k h k( ( ))* ⋅ ( ) = 2± ± . Hence, odd waves provide 

an orthonormal basis for incompressible flows. As k × h± = −kh±, the 
basis functions have a well-defined helicity ∓1.

Decomposition of the energy transfer on odd waves. Expanding the 
velocity field as a superposition of helical waves

∑ ∑t v t( , ) = ( , ) ( )e (10)
s

s
s ωt

=±

i +i ⋅v x k h k
k

k x

in which k kv t v t*( , ) = ( , − )s s  to ensure the reality of v(t, x), the Navier–
Stokes equation becomes

∑v C v v νk v f∂ = e * * − +
(11)

t s

s s

k p q
ω ω ω t

s s s s
+ + =

, =±

,
i[ ( )+ ( )+ ( )] 2

p q

k p q k k
k p q 0

k p q

in which we have used the short vsk
 for v t( , )sk

k , the term kf ( )sk
 corre-

sponds to the forcing term, and

h p h q h kC s p s q= −
1
4

( − )[( ( ) × ( )) ⋅ ( )]* (12)k p q p q
s s s

,
p q k

satisfy Ck∣p,q = Ck∣q,p.

Helicity and energy conservation of inviscid invariants. In terms  
of the components v±(k), energy and helicity, respectively, read4,60

k k
k
∑E v v= ( ( ) + ( ) ) (13)+

2
−

2

∑H k v v= ( ( ) − ( ) ). (14)+
2

−
2k k

k

A direct calculation shows that36,60

C C C+ + = 0 (15)k p q p q k q k p, , ,

and

s kC s pC s qC+ + = 0 (16)k k p q p p q k q q k p, , ,

from which we deduce that energy and helicity are conserved when 
normal viscosity and the forcing can be neglected (ν = 0 and f = 0), 
even if odd viscosities are present. In particular,

E k v v∂ ( ) = * ∂ + c.c. (17)t s t sk k

so using equation (11), we find (when ν = 0 and f = 0)

k p q 0

k p q∑E k C v v v∂ ( ) = e * * * + c.c.
(18)

t

s s

k p q
ω ω ω t

s s s
+ + =

, =±

,
i[ ( )+ ( )+ ( )]

p q

k p q

This equation shows that the nonlinear energy transfer T(k, t) in 
equation (7) is suppressed when averaged over long times com-
pared to ω(k) + ω(p) + ω(q), unless this quantity vanishes exactly, as 
is the case for 2D modes (Fig. 2h, blue line, corresponding to modes  
with kz = 0).



Resonant manifold. The 2D modes with kz = 0 form a so-called slow 
manifold, or resonant manifold, that contributes to most of the non-
linear energy transfer. Furthermore, isolated triads with kz ≠ 0 can 
also satisfy the resonance condition ω(p) + ω(q) + ω(k) = 0. In the 
case of rotating turbulence, resonant triads primarily transfer energy 
from the 3D modes to the quasi-2D slow manifold with kz = 0, lead-
ing to an accumulation of energy in the slow manifold, enhancing the 
two-dimensionalization of the flow4,33–36. We expect a similar phenom-
enon to occur in the case of fluids with odd viscosity owing to its similar-
ity to rotating fluids, as is also suggested by the two-dimensionalization 
observed in our numerical simulations. As a consequence, the effec-
tive spatial dimension of the system depends on the scale at which it 
is observed (such as in rotating turbulence or thick layers4,35,61). More 
insights may be obtained by developing a weak turbulence theory for 
odd waves, in the same spirit as for rotating flows (we refer to refs. 26–28 
for more details on wave turbulence).

Scaling relations and wavelength selection
Scaling relation for the energy spectrum. We first analyse the power 
spectrum, building on the phenomenological theory of ref. 39 (see 
ref. 42 for a review). This theory relies on the following hypotheses:  
(1) energy is conserved away from injection and dissipative scales;  
(2) the cascade is local, which means that different length scales are cou-
pled only locally (for example, very large scales are not directly coupled 
to very small scales); and (3) the rate of energy transfer ε(k) from scales 
higher than k to scales smaller than k is directly proportional to the triad 
correlation time τ3. Because of hypotheses 1 and 2, the rate of energy 
transfer ε(k) is constant across the scales (that is, does not depend  
on k) and can be identified with the energy dissipation rate ϵ. Moreover, 
because of hypothesis 2, ε(k) should depend only on local quantities 
k and E(k), in addition to τ3(k). Therefore, using hypothesis 3, we write

ϵ ε k Aτ k k E= ( ) = ( ) (19)α β
3

where A is a constant. The exponents are found using dimensional 
analysis (with [E ] = L3T −2, [ϵ] = L2T −3, [k] = L−1, [τ3] = T ), which yields α = 4 
and β = 2.

In Fig. 2, we argue that the eddy turnover time τE is the relevant time-
scale when k ≪ kodd (so we set τ3 = τE in the expression above), whereas 
the frequency of odd waves ω is the relevant timescale when k ≫ kodd 
(so we set τ3 = ω−1). The dispersion relation of odd waves is computed 
in the Supplementary Information and given in equation (9). The eddy 
turnover time is τE(k) = [1/k]/vk. As E(k) is the shell-average of vk, we have 
dimensionally E k v k( ) ∝ /k

2 , so vk = [kE(k)]1/2. Putting everything together, 
we end up with equations (3) and (4) of the main text.

Scaling relation for kc. For the condensation of the forward energy 
flux, the collapse of numerical results indicates that it can be described 
by a master scaling law

≪
≫





E k
E k

k k

k k k k
( )
( )

∝
1 for ,

( / ) for ,
(20)s

0

odd

odd odd

Using the Kolmogorov spectrum for the case without odd viscosity, 
E0(k) ∝ ϵ2/3k−5/3, we find for the energy spectrum




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E k

ϵ k k k

ϵ k k k k k
( ) ∝
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( / ) for .
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odd

2/3 −5/3
odd odd

≪

≫

Using the scaling argument of the previous section (see equations (3) 
and (4)), we find s = 2/3, which is compatible with the numerical results. 
This scaling continues until dissipation saturates the condensation. We 
can thus estimate the location of the condensation peak kc from the 
balance between injection and dissipation. Neglecting contributions 

to the dissipation from wavenumbers k < kodd (where there is no mean-
ingful change from Kolmogorov scaling), we obtain

∫ϵ νk E k k∝ ( )d . (22)
k

k
2

odd

c

Assuming kodd ≪ kc, this yields

ϵ ν ϵ k k k∝ ( / ) , (23)s2/3
c
4/3

c odd

resulting in the scaling relation for the peak condensation

k ϵ ν k k k∝ ( ) ∝ ( ) , (24)s s
ν

s s
c

1/3 −1
odd

1
4/3+ 4/3

odd

1
4/3+

where in the last relation, we substituted the normal Kolmogorov wave-
number kν ∝ ϵ1/4ν−3/4.

For s = 2/3, we find

k k k ϵ ν ν∝ ( ) ∝ (25)
νc
4/3

odd
2/3 1/2 1/4 −1/2

odd
−1/4

as quoted in the main text.

Estimation of the height for the peak. The mechanism of non- 
dissipative arrest analysed in this work is reminiscent of but distinct 
from the bottleneck effect62–67 generated by the usual viscosity.

A coarse estimate of the height of the peak in E(k)/E0(k) can be 
obtained by evaluating equation (4) (to get E(k)) and equation (3) (to 
get E0(k)) at k = kc given by equation (5), yielding h E k E k≡ ( )/ ( ) ∝c 0 c
ν ν( / )odd

1/3 (see Extended Data Fig. 1d for a comparison with numerical 
data). Notably, this suggests that h depends on only the ratio of odd to 
normal viscosity. We also note that h increases as normal viscosity ν 
decreases (that is, when the Reynolds number increases), in contrast 
with the bottleneck effect due to dissipative viscosity62–67 in which the 
magnitude of the effect decreases as viscosity decreases.

Wavelength selection. In Extended Data Fig. 1c, we plot an estimate of 
the power spectrum of the vorticity, evidencing wavelength selection 
in the vorticity. This suggests that the characteristic wavelength 2π/kc 
should be directly visible in snapshots of the vorticity field. This can 
be seen in Fig. 3b. The width of the peak leads to a wide distribution of 
structure sizes in the image.

We expect the wavelength selection mechanism due to the arrested 
cascade to persist at arbitrarily long times and to resist small perturba-
tions, in contrast with metastable patterns arising from kinetic effects68 
in which the system resides in metastable states for long but finite 
periods (see Supplementary Information for convergence plots).

The wavelength selection mechanism we have described can be com-
pared with that in active turbulence, for instance in bacterial suspen-
sions and self-propelled colloids69–74. In active turbulence, however, it 
has been reported that there is no energy transfer across scales (and 
hence no cascade): energy is typically dissipated at the same scale as it is 
injected, and it is believed that the wavelength selection is the result of 
a scale-by-scale balance (see, for instance, Figs. 3d and 4g and sections 
3.2.2 and 4.2.3 in ref. 71 and references therein). We note, however, that 
finite energy fluxes have been reported in certain cases56,75–80.

In these systems, wavelength selection has been described as the 
result of a Swift–Hohenberg-type term included in the stress tensor 
(leading to a finite-wavelength linear instability), to which noise is 
added71. By contrast, cascade-induced pattern formation cannot be 
directly traced to a linear instability of Navier–Stokes equation (1)  
(see section ‘Effect of odd waves on the nonlinear energy transfer’ 
as well as Supplementary Information section ‘Linear stability of the 
fluid and odd waves’ for a linear stability analysis). The linear stability 
analysis does not predict any instability, neither to a stable branch 
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with a particular wavelength nor to an unstable branch that could itself 
bifurcate to the state of interest as part of a subcritical bifurcation.

An analogy with similar situations such as Rossby and drift wave tur-
bulence81–86 and laminar and turbulent patterns in wall-bounded shear 
flows87–90 suggests that the wavelength selection may be described by 
considering the linear stability of the statistically averaged Navier–
Stokes equation, for instance, using an appropriate turbulence closure 
model.

Anisotropic energy spectra. In line with the inherent symmetry of 
the system, we now consider cylindrically averaged energy spectra 
E(k⊥, kz), which distinguish the horizontal (perpendicular) directions 
from the vertical direction91–94. To reveal in which part of the k-space the 
energetic condensation occurs, we compute the cylindrically averaged 
spectrum of the cases with odd viscosity normalized by the spectrum 
of the reference case without odd viscosity (Extended Data Fig. 1b). 
Starting with the direct cascading case in Extended Data Fig. 1b (top 
panel), we see that indeed the flow remains mostly 3D isotropic for 
k < kodd and then proceeds to condensate anisotropically into the low-kz 
manifold because of the quasi-2-dimensionalization effect of the odd 
viscosity. As detailed in the main text, the condensation is saturated 
by dissipation, leading to a peak condensation wavelength kc, which is 
thus primarily visible in the perpendicular directions because of the 
anisotropic condensation. The dominant vertical scale hence remains 
closer to kodd. This leads to a crude estimate for the aspect ratio γ of the 
features in the pattern produced by the odd viscosity as

γ
k

k
ν ν= ∝ . (26)c

odd

−1/2
odd
1/2

For the case presented in Fig. 3b, this leads to an aspect ratio γ ≃ 3.
For the inverse cascading case (Extended Data Fig. 1b, bottom panel), 

we again observe anisotropic condensation in the region k > kodd. In 
the region k < kodd, however, the kinetic energy for the case with odd 
viscosity is larger than the case without odd viscosity, as indicated in 
dark orange. This is because in this range, we expect the same diffusive 
equipartitioned scaling E(k) ∝ k2 for both cases with and without odd 
viscosity, and there is no active dissipative mechanism to deplete the 
excess energy that has accumulated at higher wavenumbers in the 
case with odd viscosity.

Experimental considerations
In this section, we discuss the conditions required to observe the wave-
length selection described in the main text in a fluid with odd viscos-
ity. In short, we expect this effect to occur, for instance, in a fluid of 
self-spinning particles large enough to be inertial (not overdamped).

First, the Reynolds number Re = UL/ν has to be large enough. This 
puts constraints on the viscosity ν of the fluid, the details of which 
depend on the experimental setup considered. The current experi-
mental systems we are aware of in which explicit measurements of 
odd viscosities were reported (active spinning colloids32, magnetized 
graphene10 and magnetized polyatomic gases31,95) are all in a regime in 
which the nonlinear advective term in the Navier–Stokes equation can 
be neglected, either because ν is large enough or for geometric reasons; 
effectively, Re ≪ 1. Note also that experimental instances of (especially 
2D) odd fluids may include a substrate, on top of which the active par-
ticles move. This can lead to the addition of an effective drag force −γv 
in the Navier–Stokes equation describing the odd fluid made of these 
particles. If such a term is large, it would prevent the existence of an 
inertial regime, and probably spoil the phenomenology discussed here.

Second, the ratio νodd/ν has to be large enough for the effect to be vis-
ible. When νodd ≲ ν, energy is dissipated as soon as, or before any effect 
of odd waves can arise. Henceforth, observing the effects of odd waves 
on turbulence would require νodd > ν. Odd viscosities (νodd ≠ 0) typically 
arise in systems breaking time-reversal and inversion symmetry at the 

microscopic scale9,96,97. They have been experimentally measured in 
polyatomic gases under magnetic fields31,95, spinning colloids32 and 
magnetized electron fluids10. They have also been predicted in systems, 
including fluids under rotation98, magnetized plasma11,99,100, quantum 
fluids96,101–103, vortex matter104, sheared granular gases105, assemblies 
of spinning objects69,106–117 and circle swimming bacteria118,119. In the 
systems mentioned above, in which experimental measurements of 
odd viscosity have been reported, νodd/ν reaches at most 1/3 (in active 
spinning colloids32 and magnetized graphene)10. From a theoretical 
point of view, the ratio νodd/ν is expected to increase linearly with the 
time-reversal breaking field. For instance, ideal vortex fluids are pre-
dicted to have a finite νodd but a vanishing ν (ref. 104), leading to an infi-
nite value of νodd/ν. Kinetic theory calculations for magnetized plasma 
(ref. 99, section 19.44) predict ν = ν0/[1 + x2] and νodd = ν0x/[1 + x2] in which 
x = 2ωτ with τ is a collision time and ω ∝ B is a frequency proportional 
to the magnetic field B, whereas ν0 is the value of normal shear viscos-
ity when B = 0. Similarly, kinetic theory in rotating gases leads to an 
identical result in which x ∝ Ω is proportional to the rotation speed98. 
In electron gases in graphene, experiments have been performed that 
validate these theoretical calculations10 (with x = B/B0, where B0 is a 
reference magnetic field). This results in a ratio νodd/ν = x ∝ B. Likewise, 
in active fluids, theoretical works suggest that νodd is proportional to 
the rotation speed of the spinning particles106.

Rossby and drift wave turbulence
Extended Data Fig. 2 shows examples of simulations of the Rossby 
and drift wave turbulence mentioned in Fig. 4b. A brief review is con-
tained in the Supplementary Information, and we refer the reader to 
refs. 13–19,93,120–127 for more details. In the figure, we simulate the  
Charney–Hasegawa–Mima (CHM) equation93,120–126

ω J ψ ω β ψ αω ν ω f∂ + ( , ) + ∂ = − + Δ + (27)t x ω

in which J(a, b) = (∂xa)(∂yb) − (∂ya)(∂xb), ω = Δψ and ψ is the stream 
function, defined such that the velocity field is v = −ϵ ⋅ ∇ψ (ϵ is the 2D 
Levi-Civita symbol). The parameter β represents the gradient of the 
Coriolis force in a β-plane approximation; α represents large-scale 
friction and ν is viscosity, whereas fω is a vorticity forcing. Simula-
tions are performed using the open-source pseudo-spectral solver  
Dedalus128.

Note that in Rossby wave turbulence, the only exact inviscid invari-
ants are energy and helicity. However, it has been established that a 
quantity dubbed zonostrophy evolves slowly enough to be considered 
as an invariant for practical purposes13,93,129–131. This raises the question 
of whether such an adiabatic invariant may exist for odd turbulence, 
and whether it can predict the direction of the cascades (see refs. 4,132 
for discussions of the relation between inviscid invariants and the direc-
tion of turbulent cascades).

Minimal model of mass cascade with scale selection
In this section, we consider a simple model of the mass cascade that 
exhibits wavelength selection.

Mass cascades can, for instance, occur in the pulverization of objects 
into debris or in the coalescence and breakup of droplets23,133–138. These 
processes can be modelled by the aggregation and fragmentation of 
clusters composed of monomers linked together: two clusters that col-
lide may merge into a larger cluster; and a given cluster may split into 
smaller ones, spontaneously or on collision. The mean-field kinetics 
of these processes is described by a population balance equation gen-
eralizing the so-called Smoluchowski equation23,139–141 that can exhibit 
scale-invariant cascades, similar to that present in the Navier–Stokes 
equation142–144. This kinetic equation may describe two classes of situ-
ations: (1) closed systems in which mass is conserved and (2) open sys-
tems in which particles are injected and removed from the system. Case 
1 may somehow be compared with freely decaying turbulence, whereas 



case 2 may be compared with driven turbulence in which energy is 
injected and dissipated.

We expect that the balance between aggregation and fragmentation 
will lead to a preferred size if large clusters tend to break up, whereas 
small clusters tend to coalesce. Such a preferred size should manifest 
as a peak in the distribution of aggregate sizes. Such a peak has been 
reported, for instance, in the case of raindrop sizes24,145,146, in which 
the distribution originates from complex mechanisms, including air 
turbulence and fluid fragmentation147–152.

In our toy model, we consider clusters Mn composed of 2n−1 monomers 
M1, with n = 1, …, N. This is reminiscent of what is done in shell models 
of turbulence52, in which the wavenumbers are chosen in geometric 
progression. We assume that (1) there are interactions only between 
clusters of the same size and (2) there is a maximum cluster size N. 
The first assumption ensures that the mass fluxes are local, and the 
second enables us to consider a finite number of equations. We include 
a constant source of monomers, and a sink that removes the largest 
clusters MN. In the case of raindrops in a cloud, for instance, the source 
may describe the condensation of droplets from vapour, and the sink 
may describe the precipitation of large droplets out of the cloud. The 
model is summarized by the set of reactions
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in
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n
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−
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in which Mn (n = 1, …, N) represents a cluster of size 2n−1 (M1 represents 
a monomer), and Jin, Jout and kn

± are the rates of the corresponding  
reactions.

The number densities cn of clusters then follow the dynamical  
equation
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in which it is implied that cn ≡ 0 for n < 1 and n > N.
We can also consider the mass density ρn = 2n−1m0cn, in which m0 is 

the mass of a monomer. Multiplying equation (29) with 2n−1m0, we find 
that the terms with prefactors kn

± cancel as in a telescoping series. This 
manifests that equation (29) with Jin = Jout = 0 conserves mass. It is there-
fore convenient to introduce the fluxes
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±, and such that
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To induce wavelength selection, we choose particular forms for kn
±. 

The basic idea is the forward flux kn
+ should decrease with n, whereas 

the backward flux kn
− should increase with n. Experimentation suggests 

that various strictly increasing functions of (N − n)/(N − 1) and (n − 1)/
(N − 1), respectively, lead to similar results. We choose
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Equation (29) is then solved starting from the initial condition cn = 0 
for all n using DifferentialEquations.jl (ref. 153) with a fourth-order 
A-stable stiffly stable Rosenbrock method (Rodas4P) until a steady 
state is reached. The resulting steady state is shown in Extended Data 
Fig. 3. In Extended Data Fig. 3c, we observe that the density cn is peaked 
at an intermediate value n*c  (pink dashed line), which is neither the 
maximum cluster size N, nor the monomer size 1, demonstrating wave-
length selection. Similarly, Extended Data Fig. 3d shows that the  
mass density ρn is peaked around a (different) scale n*ρ (red dashed line). 
As we have considered a mean-field description that does not take 
space into account, there is no proper pattern-only wavelength  
selection.

We observe in Extended Data Fig. 3e that the flux Jtot ≡ J+ + J− (black 
curve in inset) is constant and nonzero for 1 < n < N. In 1D, the existence 
of a steady state is equivalent to a constant flux. (Note that certain 
models of aggregation–fragmentation may exhibit oscillations, that 
is, limit cycles instead of fixed points154,155). The total flux can be decom-
posed into the forward flux J+ associated with reactions with rates kn

+ 
and the backward flux J− associated with reactions with rates kn

−, respec-
tively, defined in equations (31) and (32), and plotted in Extended Data 
Fig. 3e (red and blue curves, respectively).

In Extended Data Fig. 3h, we analyse the initial value problem 
obtained by setting Jin = Jout = 0 in equation (29). An exact solution of 
this model is given in the Supplementary Information. Wavelength 
selection may occur, although there is no net flux. This can be com-
pared with the arrest of coarsening that can arise in mixtures and 
similar mass-conserving systems, even if the mass is not injected 
and removed from the system46–51,156–158. We also observe that wave-
length selection occurs only when the total number of monomers 
is large enough, which is reminiscent of what happens in so-called 
beam self-cleaning in optics, in which light in an optical waveguide 
at sufficiently high power may undergo a nonlinear redistribution of 
the mode powers that favours the fundamental, similar to an inverse  
cascade159.

Equation (29) describes the mean-field dynamics of the reactions 
(28). To check whether the effect is still present beyond mean field, we 
solve the corresponding Doob–Gillespie kinetic Monte Carlo problem 
using the package Catalyst.jl (refs. 153,160). The result of the simula-
tion is shown in Extended Data Fig. 3g, and compared with mean-field 
simulations, with excellent agreement.

Finally, we discuss the rate of entropy production in the system. To 
do so, it is convenient to introduce the rates k k= /2n

n
+, +  and k k=n

n
−,

+1
−  

to match the notations used in the literature on chemical reaction net-
works161–164. We identify the forward and backward fluxes correspond-
ing to the reaction with rates k±,n as J k c=n n

n
+, +, 2 and J−,n = k−,ncn+1. The 

rate of entropy production corresponding to the reaction is then 
σ J J J J
.

= ( − )log( / )n
n n n n+, −, +, −,  (refs. 161–164). We can then evaluate this 

quantity and the total rate of entropy production σ σ
.

= ∑
.

n n from the 
steady-state distributions cn obtained numerically (Extended Data 
Fig. 3f). The rate of entropy production vanishes when the system is 
isolated ( Jin = Jout = 0), and increases as a function of the flux going 
through the system (which is equal to Jin as long as there is a stationary 
state).

Data availability
The data generated during the course of this study is available on 
Zenodo at https://doi.org/10.5281/zenodo.10371195 (ref. 165).

https://doi.org/10.5281/zenodo.10371195
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Code availability
The code used for processing the data, generating the figures and for 
the mass cascade and Rossby wave simulations as well as an execut-
able for the DNS are available on Zenodo (https://doi.org/10.5281/
zenodo.10371195) under the 2-clause BSD licence (ref. 165).
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Extended Data Fig. 1 | Arrest of turbulent cascades in numerical simulations. 
(a) The total energy flux Π(k) is decomposed into heterochiral Πhete(k) and 
homochiral Πhomo(k) components for direct cascading cases (i,ii) and inverse 
cascading cases (iii,iv). The cases without odd viscosity (i,iii) are compared to 
the cases with odd viscosity νodd/ν = 255 (ii) and νodd/ν = 212 (iv). Odd viscosity 
enhances the homochiral manifold that predominantly cascades inversely, 
which is in turn balanced by an increased heterochiral flux. For the inverse 
cascading cases this leads to a flux loop condensate state with vanishing net 
flux. In (iii, iv) hyperdissipation is used to mimic increased scale separation.  
See also the section Helical decomposition in the SI. (b) The anisotropic kinetic 
energy spectrum E(kz, k⊥) with odd viscosity normalized by the case without 
odd viscosity E0(kz, k⊥) for the forward cascading case with νodd/ν = 255 (top 
panel) and the inverse cascading case with νodd/ν = 212 (bottom panel). Both 
panels indicate the regions in k-space where the energy condensation due to 
odd viscosity occurs. (c) In order to determine the characteristic wavelengths 

in the vorticity field for the direct cascading case, we compute the vorticity 
spectrum ∥ω(k)∥2 as k2E(k). Without odd viscosity, the maximum of the spectrum 
is close to the dissipative scale. When odd viscosity is present, a stronger peak 
emerges in the spectrum as a consequence of the spectral condensation at 
intermediate scales, evidencing the wavelength selection. (d) The lozenges 
give the value of h ≡ E(kc)/E0(kc) obtained from the numerical simulations, and 
are compared with the predicted scaling h ν ν∝ ( / )odd

1/3 (black dashed line).  
(e) We demonstrate the kinetic energy spectrum E(k) for the case of a sharp 
transition from a direct cascade at small k to an inverse cascade at large k, 
modeled as a step function of odd viscosity, stepping at k

~
odd (orange), compared 

to the case without odd viscosity (black). Here, Θ is the Heaviside step function. 
The sharp transition leads to a sharp condensation at k k

~
≡

~
c odd and a diffusive 

equipartitioned scaling ∝k2 to the left of it. The resulting pattern in ωx is shown 
in (f), with typical wavelength ̃ ̃k k=c

−1
odd
−1

 in both the horizontal and vertical 
directions. See also the section Odd hyperviscosity in the SI.



Extended Data Fig. 2 | Rossby/drift wave turbulence. Simulations of Eq. (27) 
describing Rossby/drift wave turbulence demonstrates one-dimensionalization 
of the 2D flow and the appearance of a pattern with characteristic scale given 
by the Rhines scale 1/kR

13–19,127. Each column shows, from top to bottom: (i) the 
vorticity averaged along the y direction at final time, (ii) the vorticity field at 
final time, (iii) the power spectrum of the vorticity averaged over the last 1/6 of 
the simulation and (iv) the ky average of this quantity. The equation is integrated 
using the pseudospectral solver Dedalus128 on a L × L square domain with size 
L = 2π discretized with N = 256 Fourier harmonics per dimension using a 

3rd-order 4-stage Diagonally Implicit/Explicit Runge-Kutta scheme (RK433 in 
Dedalus)166 with an adaptive timestep for 1500 simulation time units. The 
forcing is taken to be a Gaussian random field concentrated on a ring of radius 
kf = 28 (red line) and bandwidth kfw = 1.5 (light red rectangle) in Fourier space, 
scaled by the forcing rate ϵ = 0.001. We take a linear drag α = 0.01, a viscosity 
ν = 0.00001. The β parameter is (a) β = 0, (b) β = 20, (c) β = 40, (d) β = 80, leading 
to the measured values of the Rhines wavenumber k β U= 1/2 /R rms given in  
the figure (blue line in the bottom plots) in which Urms is obtained from the 
measured energy spectrum.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Minimal model of mass cascade with scale selection. 
(a) In the model, two clusters Mn of size 2n−1 can merge into a cluster Mn+1 of size 
2n. This aggregation process occurs with a rate k n

+. Conversely, a cluster Mn+1  
can split into two clusters Mn (except for monomers M1). This fragmentation 
process occurs with a rate k n +1

− . (b) The rates k n
± of aggregation/fragmentation 

depend on the size of the cluster, so that (i) large clusters are more likely to 
fragment that small ones (blue curve) and (ii) small clusters are more likely to 
aggregate than large ones (red curve). (c-e) Equations (29) are numerically 
solved starting from the initial condition cn = 0 for all n. We have set κ = 20

±  and 
κ = 11

± , as well as Jin = Jout = 1. The number distribution cn is plotted in panel c,  
while the mass distribution ρn = 2n−1m0cn (normalized by its maximum value) is 
plotted in panel d. In panel e, we show the fluxes J n

+ (red) and J n
− (blue) defined  

in Eqs. (31)–(32). The inset of panel e shows the total flux J J J= +n n n
+ −, which is 

constant away from the boundaries. (f) Entropy production in the mass cascade. 
We plot the rate of entropy production (computed within the mean-field 

model) as a function of the flux Jin through the system, in logarithmic scale.  
(As the distribution is stationary, there is a constant flux equal to the input flux). 
We have set N κ κ J= 15, = 0.1, = 1, = 1out0

±
1
±  and cn(t = 0) = 0 for all n. (g) Comparison 

between mean-field and Monte-Carlo simulations. The red curve (labelled 
ODE) shows the mean-field solution of Eq. (29), while the blue curve (labelled 
MC) shows the solution of the kinetic Monte-Carlo simulations (average  
plus or minus half a standard deviation over 1000 samples). We have set 
N κ κ J J= 15, = 0.1, = 1, = = 1in out0

±
1
±  and cn(t = 0) = 0 for all n. (h) Equations (29) with 

no influx and outflux ( Jin = Jout = 0) are numerically solved starting from the 
initial condition with only monomers cn(t = 0) = c0(0)δn,0, with different values 
of the number of monomers c0(0). We observe that (i) a peak in the steady-state 
distribution only arises when the initial number of monomers c0(0) is large 
enough and (ii) the position of the peak moves as c0(0) increases. We have set 
κ = 20

±  and κ = 11
± .
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